Sample records for simulated launch alters

  1. Effects of Microgravity or Simulated Launch on Testicular Function in Rats

    NASA Technical Reports Server (NTRS)

    Amann, R. P.; Deaver, D. R.; Zirkin, B. R.; Grills, G. S.; Sapp, W. J.; Veeramachaneni, D. N. R.; Clemens, J. W.; Banerjee, S. D.; Folmer, J.; Gruppi, C. M.; hide

    1992-01-01

    Testes from flight rats on COSMOS 2044 and simulated-launch, vivarium, or caudal-elevation control rats (5/group) were analyzed by subjective and quantitative methods. On the basis of observations of fixed tissue, it was evident that some rats had testicular abnormalities unassociated with treatment and probably existing when they were assigned randomly to the four treatment groups. Considering rats without preexisting abnormalities, diameter of seminiferous tubules and numbers of germ cells per tubule cross section were lower (P less than 0.05) in flight than in simulated-launch or vivarium rats. However, ratios of germ cells to each other or to Sertoli cells and number of homogenization-resistant spermatids did not differ from values for simulated-launch or vivarium controls. Expression of testis-specific gene products was not greatly altered by flight. Furthermore, there was no evidence for production of stress-inducible transcripts of the hsp7O or hsp9O genes. Concentration of receptors for rat luteinizing hormone in testicular tissue and surface density of smooth endoplasmic reticulum in Leydig cells were similar in flight and simulated-launch rats. However, concentrations of testosterone in testicular tissue or peripheral blood plasma were reduced (P less than 0.05) in flight rats to less than 20% of values for simulated-launch or vivarium controls. Thus spermatogenesis was essentially normal in flight rats, but production of testosterone was severely depressed. Exposure to microgravity for more than 2 wk might result in additional changes. Sequelae of reduced androgen production associated with microgravity on turnover of muscle and bone should be considered.

  2. Gravitational loading of a simulated launch alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Hughes-Fulford, M.

    1996-01-01

    Serum-deprived mouse osteoblastic cells (MC3T3-E1a) were centrifuged under a regime designed to simulate a space shuttle launch (maximum of 3g). Messenger RNA levels for eight genes involved in bone growth and maintenance were determined using RT-PCR. Following 30 min of centrifugation, mRNA level for early response gene c-fos was significantly increased 89% (P < 0.05). The c-fos induction was transient and returned to control levels after 3 h. The mRNA level for the mineralization marker gene osteocalcin was significantly decreased to 44% of control level (P < 0.005) 3 h after centrifugation. No changes in mRNA levels were detected for c-myc, TGFbeta1, TGFbeta2, cyclophilin A, or actin. No basal mRNA level for TGFbeta3 was detected. In addition, no change in the steady-state synthesis of prostaglandin E2 was detected, possibly due to lack of lipid substrates in serum-deprived cells, suggesting that the increase in c-fos mRNA in response to gravitational loading is a result of mechanical stimulation. These results indicate that a small magnitude mechanical loading, such as that experienced during a shuttle launch, can alter mRNA levels in quiescent osteoblastic cells.

  3. Effects of CubeSat Deployments in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Matney, M. J.; Vavrin, A. B.; Manis, A. P.

    2017-01-01

    Long-term models, such as NASA's LEGEND (LEO (Low-Earth Orbit)-to-GEO (Geosynchrous Earth Orbit) Environment Debris) model, are used to make predictions about how space activities will affect the long-term evolution of the debris environment. Part of this process is to predict how spacecraft and rocket bodies will be launched and left in the environment in the future. This has usually been accomplished by repeating past launch history to simulate future launches. It was partially upon the basis of the results of such models that both national and international orbital debris mitigation guidelines - especially the "25-year rule" for post-mission disposal - were determined. The proliferation of Cubesat launches in recent years, however, has raised concerns that we are seeing a fundamental shift in how humans launch satellites into space that may alter the assumptions upon which our current mitigation guidelines are based. The large number of Cubesats, and their short lifetime and general inability to perform collision avoidance, potentially makes them an important new source of debris. The NASA Orbital Debris Program Office (ODPO) has conducted a series of LEGEND computations to investigate the long-term effects of adding Cubesats to the environment. Several possible future scenarios were simulated to investigate the effects of the size of future Cubesat launches and the efficiency of post-mission disposal on the proliferation of catastrophic collisions over the next 200 years. These results are compared to a baseline "business-as-usual" scenario where launches are assumed to continue as in the past without major Cubesat deployments. Using these results, we make observations about the continued use of the 25-year rule and the importance of the universal application of post-mission disposal. We also discuss how the proliferation of Cubesats may affect satellite traffic at lower altitudes.

  4. The Fireball integrated code package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobranich, D.; Powers, D.A.; Harper, F.T.

    1997-07-01

    Many deep-space satellites contain a plutonium heat source. An explosion, during launch, of a rocket carrying such a satellite offers the potential for the release of some of the plutonium. The fireball following such an explosion exposes any released plutonium to a high-temperature chemically-reactive environment. Vaporization, condensation, and agglomeration processes can alter the distribution of plutonium-bearing particles. The Fireball code package simulates the integrated response of the physical and chemical processes occurring in a fireball and the effect these processes have on the plutonium-bearing particle distribution. This integrated treatment of multiple phenomena represents a significant improvement in the state ofmore » the art for fireball simulations. Preliminary simulations of launch-second scenarios indicate: (1) most plutonium vaporization occurs within the first second of the fireball; (2) large non-aerosol-sized particles contribute very little to plutonium vapor production; (3) vaporization and both homogeneous and heterogeneous condensation occur simultaneously; (4) homogeneous condensation transports plutonium down to the smallest-particle sizes; (5) heterogeneous condensation precludes homogeneous condensation if sufficient condensation sites are available; and (6) agglomeration produces larger-sized particles but slows rapidly as the fireball grows.« less

  5. Launch Vehicle Operations Simulator

    NASA Technical Reports Server (NTRS)

    Blackledge, J. W.

    1974-01-01

    The Saturn Launch Vehicle Operations Simulator (LVOS) was developed for NASA at Kennedy Space Center. LVOS simulates the Saturn launch vehicle and its ground support equipment. The simulator was intended primarily to be used as a launch crew trainer but it is also being used for test procedure and software validation. A NASA/contractor team of engineers and programmers implemented the simulator after the Apollo XI lunar landing during the low activity periods between launches.

  6. Real-Time Simulation of Ares I Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick; Matras, Alex; Wilson, Heath; Alday, Nathan; Walker, David; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory (SIL) at the Marshall Space Flight Center (MSFC). The primary purpose of the Ares SIL is to test the vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time software backbone to stimulate all required Ares components through high-fidelity simulation. ARTEMIS has been designed to take full advantage of the advances in underlying computational power now available to support HWIL testing. A modular real-time design relying on a fully distributed computing architecture has been achieved. Two fundamental requirements drove ARTEMIS to pursue the use of high-fidelity simulation models in a real-time environment. First, ARTEMIS must be used to test a man-rated integrated avionics hardware and software system, thus requiring a wide variety of nominal and off-nominal simulation capabilities to certify system robustness. The second driving requirement - derived from a nationwide review of current state-of-the-art HWIL facilities - was that preserving digital model fidelity significantly reduced overall vehicle lifecycle cost by reducing testing time for certification runs and increasing flight tempo through an expanded operational envelope. These two driving requirements necessitated the use of high-fidelity models throughout the ARTEMIS simulation. The nature of the Ares mission profile imposed a variety of additional requirements on the ARTEMIS simulation. The Ares I vehicle is composed of multiple elements, including the First Stage Solid Rocket Booster (SRB), the Upper Stage powered by the J- 2X engine, the Orion Crew Exploration Vehicle (CEV) which houses the crew, the Launch Abort System (LAS), and various secondary elements that separate from the vehicle. At launch, the integrated vehicle stack is composed of these stages, and throughout the mission, various elements separate from the integrated stack and tumble back towards the earth. ARTEMIS must be capable of simulating the integrated stack through the flight as well as propagating each individual element after separation. In addition, abort sequences can lead to other unique configurations of the integrated stack as the timing and sequence of the stage separations are altered.

  7. Vibrational force alters mRNA expression in osteoblasts

    NASA Technical Reports Server (NTRS)

    Tjandrawinata, R. R.; Vincent, V. L.; Hughes-Fulford, M.

    1997-01-01

    Serum-deprived mouse osteoblastic (MC3T3E1) cells were subjected to a vibrational force modeled by NASA to simulate a space shuttle launch (7.83 G rms). The mRNA levels for eight genes were investigated to determine the effect of vibrational force on mRNA expression. The mRNA levels of two growth-related protooncogenes, c-fos and c-myc, were up-regulated significantly within 30 min after vibration, whereas those of osteocalcin as well as transforming growth factor-beta1 were decreased significantly within 3 h after vibration. No changes were detected in the levels of beta-actin, histone H4, or cytoplasmic phospholipase A2 after vibration. No basal levels of cyclooxygenase-2 expression were detected. In addition, the extracellular concentrations of prostaglandin E2 (PGE2), a potent autocrine/paracrine growth factor in bone, were not significantly altered after vibration most likely due to the serum deprivation state of the osteoblasts. In comparison with the gravitational launch profile, vibrational-induced changes in gene expression were greater both in magnitude and number of genes activated. Taken together, these data suggest that the changes in mRNA expression are due to a direct mechanical effect of the vibrational force on the osteoblast cells and not to changes in the local PGE2 concentrations. The finding that launch forces induce gene expression is of utmost importance since many of the biological experiments do not dampen vibrational loads on experimental samples. This lack of dampening of vibrational forces may partially explain why 1-G onboard controls sometimes do not reflect 1-G ground controls. These data may also suggest that scientists use extra ground controls that are exposed to launch forces, have these forces dampened on launched samples, or use facilities such as Biorack that provide an onboard 1-G centrufuge in order to control for space shuttle launch forces.

  8. Simulation of Shuttle launch G forces and acoustic loads using the NASA Ames Research Center 20G centrifuge

    NASA Technical Reports Server (NTRS)

    Shaw, T. L.; Corliss, J. M.; Gundo, D. P.; Mulenburg, G. M.; Breit, G. A.; Griffith, J. B.

    1994-01-01

    The high cost and long times required to develop research packages for space flight can often be offset by using ground test techniques. This paper describes a space shuttle launch and reentry simulating using the NASA Ames Research Center's 20G centrifuge facility. The combined G-forces and acoustic environment during shuttle launch and landing were simulated to evaluate the effect on a payload of laboratory rates. The launch G force and acoustic profiles are matched to actual shuttle launch data to produce the required G-forces and acoustic spectrum in the centrifuge test cab where the rats were caged on a free-swinging platform. For reentry, only G force is simulated as the aero-acoustic noise is insignificant compared to that during launch. The shuttle G-force profiles of launch and landing are achieved by programming the centrifuge drive computer to continuously adjust centrifuge rotational speed to obtain the correct launch and landing G forces. The shuttle launch acoustic environment is simulated using a high-power, low-frequency audio system. Accelerometer data from STS-56 and microphone data from STS-1 through STS-5 are used as baselines for the simulations. This paper provides a description of the test setup and the results of the simulation with recommendations for follow-on simulations.

  9. KSC-05PD-0359

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During an End-to-End (ETE) Mission Management Team (MMT) launch simulation at KSC, Mike Rein, division chief of Media Services, and Lisa Malone, director of External Relations and Business Development at KSC, work the consoles. In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. The ETE MMT simulation included L-2 and L-1 day Prelaunch MMT meetings, an external tanking/weather briefing, and a launch countdown. The ETE transitioned to the Johnson Space Center for the flight portion of the simulation, with the STS-114 crew in a simulator at JSC. Such simulations are common before a launch to keep the Shuttle launch team sharp and ready for liftoff.

  10. The KSC Simulation Team practices for contingencies in Firing Room 1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprised of KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29.

  11. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    Space Launch System and Orion launch team engineers and managers monitor operations from their console in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  12. KSC-98pc970

    NASA Image and Video Library

    1998-08-20

    In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprised of KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29

  13. NASA/Boeing Orbital Test Flight Simulation

    NASA Image and Video Library

    2018-03-07

    NASA, Boeing and United Launch Alliance (ULA) conduct a simulation of launch procedures for Boeing’s Orbital Test Flight, the first uncrewed test of the company’s CST-100 Starliner and a ULA Atlas V rocket. Launch teams participated in the simulation across the country, including inside the Launch Vehicle Data Center at Hangar AE at Cape Canaveral Air Force Station in Florida. The Starliner will launch on an Atlas V rocket to the International Space Station as part of NASA’s Commercial Crew Program.

  14. KSC-98pc969

    NASA Image and Video Library

    1998-08-19

    KENNEDY SPACE CENTER, FLA. -- In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprisING KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29.

  15. KSC-98pc971

    NASA Image and Video Library

    1998-08-20

    KENNEDY SPACE CENTER, FLA. -- In Firing Room 1 at KSC, Shuttle launch team members put the Shuttle system through an integrated simulation. The control room is set up with software used to simulate flight and ground systems in the launch configuration. A Simulation Team, comprising KSC engineers, introduce 12 or more major problems to prepare the launch team for worst-case scenarios. Such tests and simulations keep the Shuttle launch team sharp and ready for liftoff. The next liftoff is targeted for Oct. 29

  16. Using Simulation for Launch Team Training and Evaluation

    NASA Technical Reports Server (NTRS)

    Peaden, Cary J.

    2005-01-01

    This document describes some of the histor y and uses of simulation systems and processes for the training and evaluation of Launch Processing, Mission Control, and Mission Management teams. It documents some of the types of simulations that are used at Kennedy Space Center (KSC) today and that could be utilized (and possibly enhanced) for future launch vehicles. This article is intended to provide an initial baseline for further research into simulation for launch team training in the near future.

  17. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    NASA Launch Director Charlie Blackwell-Thompson follows operations in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  18. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    NASA Launch Director Charlie Blackwell-Thompson at her console in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  19. KSC-99pc0142

    NASA Image and Video Library

    1999-01-28

    The KSC-developed X-33 weight simulator (top), known as the "iron bird," is lifted to a vertical position at the X-33 launch site as part of launch equipment testing on Edwards Air Force Base, CA. The simulator matches the 75,000-pound weight and 63-foot height of the X-33 vehicle that will be using the launch equipment. KSC's Vehicle Positioning System (VPS) placed the simulator on the rotating launch platform prior to the rotation. The new VPS will dramatically reduce the amount of manual labor required to position a reusable launch vehicle for liftoff

  20. KSC-99pc0145

    NASA Image and Video Library

    1999-01-28

    The KSC-developed X-33 weight simulator (top, right), known as the "iron bird," is lifted to a vertical position at the X-33 launch site as part of launch equipment testing on Edwards Air Force Base, CA. The simulator matches the 75,000-pound weight and 63-foot height of the X-33 vehicle that will be using the launch equipment. KSC's Vehicle Positioning System (VPS) placed the simulator on the rotating launch platform prior to the rotation. The new VPS will dramatically reduce the amount of manual labor required to position a reusable launch vehicle for liftoff

  1. KSC-99pc0144

    NASA Image and Video Library

    1999-01-28

    The KSC-developed X-33 weight simulator (left), known as the "iron bird," is fully raised to a vertical position at the X-33 launch site as part of launch equipment testing on Edwards Air Force Base, CA. The simulator matches the 75,000-pound weight and 63-foot height of the X-33 vehicle that will be using the launch equipment. KSC's Vehicle Positioning System (VPS) placed the simulator on the rotating launch platform prior to the rotation. The new VPS will dramatically reduce the amount of manual labor required to position a reusable launch vehicle for liftoff

  2. Modeling and Simulation of Shuttle Launch and Range Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    The simulation and modeling test bed is based on a mockup of a space flight operations control suitable to experiment physical, procedural, software, hardware and psychological aspects of space flight operations. The test bed consists of a weather expert system to advise on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, impact of human health risk, debris dispersion model in 3D visualization. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.

  3. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    NASA Launch Director Charlie Blackwell-Thompson follows operations at her console in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  4. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    NASA Launch Director Charlie Blackwell-Thompson stands next to her console in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  5. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    NASA Launch Director Charlie Blackwell-Thompson follows operations at her console in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission-1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  6. ASTP (SA-210) Launch vehicle operational flight trajectory. Part 3: Final documentation

    NASA Technical Reports Server (NTRS)

    Carter, A. B.; Klug, G. W.; Williams, N. W.

    1975-01-01

    Trajectory data are presented for a nominal and two launch window trajectory simulations. These trajectories are designed to insert a manned Apollo spacecraft into a 150/167 km. (81/90 n. mi.) earth orbit inclined at 51.78 degrees for rendezvous with a Soyuz spacecraft, which will be orbiting at approximately 225 km. (121.5 n. mi.). The launch window allocation defined for this launch is 500 pounds of S-IVB stage propellant. The launch window opening trajectory simulation depicts the earliest launch time deviation from a planar flight launch which conforms to this constraint. The launch window closing trajectory simulation was developed for the more stringent Air Force Eastern Test Range (AFETR) flight azimuth restriction of 37.4 degrees east-of-north. These trajectories enclose a 12.09 minute launch window, pertinent features of which are provided in a tabulation. Planar flight data are included for mid-window reference.

  7. Distributed Web-Based Expert System for Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar

    2005-01-01

    The simulation and modeling of launch operations is based on a representation of the organization of the operations suitable to experiment of the physical, procedural, software, hardware and psychological aspects of space flight operations. The virtual test bed consists of a weather expert system to advice on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, and the risk impact on human health. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.

  8. KSC-99pc0143

    NASA Image and Video Library

    1999-01-28

    As part of X-33 launch equipment testing at Edwards Air Force Base, CA, the KSC-developed X-33 weight simulator (top), known as the "iron bird," is lifted to a vertical position at the X-33 launch site. The simulator matches the 75,000-pound weight and 63-foot height of the X-33 vehicle that will be using the launch equipment. KSC's Vehicle Positioning System (VPS) placed the simulator on the rotating launch platform prior to the rotation. The new VPS will dramatically reduce the amount of manual labor required to position a reusable launch vehicle for liftoff

  9. KSC-04PD-2451

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, the rescue team moves injured astronaut-suited workers out of the M-113 armored personnel carriers that transported them away from the pad (seen in the distance). Pad team members participated in the four-hour exercise simulating normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. The simulation tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.

  10. KSC-04PD-2450

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, the rescue team moves injured astronaut-suited workers out of the M-113 armored personnel carriers that transported them away from the pad (seen in the distance). Pad team members participated in the four-hour exercise simulating normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. The simulation tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.

  11. Preliminary MIPCC Enhanced F-4 and F-15 Preformance Characteristics for a First Stage Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Clark, Casie M.

    2013-01-01

    Performance increases in turbojet engines can theoretically be achieved through Mass Injection Pre-Compressor Cooling (MIPCC), a process involving injecting water or oxidizer or both into an afterburning turbojet engine. The injection of water results in pre-compressor cooling, allowing the propulsion system to operate at high altitudes and Mach numbers. In this way, a MIPCC-enhanced turbojet engine could be used to power the first stage of a reusable launch vehicle or be integrated into an existing aircraft that could launch a 100-lbm payload to a reference 100-nm altitude orbit at 28 deg inclination. The two possible candidates for MIPCC flight demonstration that are evaluated in this study are the F-4 Phantom II airplane and the F-15 Eagle airplane (both of McDonnell Douglas, now The Boeing Company, Chicago, Illinois), powered by two General Electric Company (Fairfield, Connecticut) J79 engines and two Pratt & Whitney (East Hartford, Connecticut) F100-PW-100 engines, respectively. This paper presents a conceptual discussion of the theoretical performance of each of these aircraft using MIPCC propulsion techniques. Trajectory studies were completed with the Optimal Trajectories by Implicit Simulation (OTIS) software (NASA Glenn Research Center, Cleveland, Ohio) for a standard F-4 airplane and a standard F-15 airplane. Standard aircraft simulation models were constructed, and the thrust in each was altered in accordance with estimated MIPCC performance characteristics. The MIPCC and production aircraft model results were then reviewed to assess the feasibility of a MIPCC-enhanced propulsion system for use as a first-stage reusable launch vehicle; it was determined that the MIPCC-enhanced F-15 model showed a significant performance advantage over the MIPCC-enhanced F-4 model.

  12. Preliminary MIPCC Enhanced F-4 and F-15 Performance Characteristics for a First Stage Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.

    2013-01-01

    Performance increases in turbojet engines can theoretically be achieved through Mass Injection Pre-Compressor Cooling (MIPCC), a process involving injecting water or oxidizer or both into an afterburning turbojet engine. The injection of water results in pre-compressor cooling, allowing the propulsion system to operate at high altitudes and Mach numbers. In this way, a MIPCC-enhanced turbojet engine could be used to power the first stage of a reusable launch vehicle or be integrated into an existing aircraft that could launch a 100-lbm payload to a reference 100-nm altitude orbit at 28 deg inclination. The two possible candidates for MIPCC flight demonstration that are evaluated in this study are the F-4 Phantom II airplane and the F-15 Eagle airplane (both of McDonnell Douglas, now The Boeing Company, Chicago, Illinois), powered by two General Electric Company (Fairfield, Connecticut) J79 engines and two Pratt & Whitney (East Hartford, Connecticut) F100-PW-100 engines, respectively. This paper presents a conceptual discussion of the theoretical performance of each of these aircraft using MIPCC propulsion techniques. Trajectory studies were completed with the Optimal Trajectories by Implicit Simulation (OTIS) software (NASA Glenn Research Center, Cleveland, Ohio) for a standard F-4 airplane and a standard F-15 airplane. Standard aircraft simulation models were constructed, and the thrust in each was altered in accordance with estimated MIPCC performance characteristics. The MIPCC and production aircraft model results were then reviewed to assess the feasibility of a MIPCC-enhanced propulsion system for use as a first-stage reusable launch vehicle; it was determined that the MIPCC-enhanced F-15 model showed a significant performance advantage over the MIPCC-enhanced F-4 model.

  13. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    Space Launch System Test Conductors Roberta Wyrick, left, and Tracy Parks, both with Jacobs, NASA's Test and Operations Support Contractor, monitor operations from their consoles in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  14. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    NASA Launch Director Charlie Blackwell-Thompson, above, confers with Senior NASA Test Director Jeff Spaulding, left, and Chief NASA Test Director Jeremy Graeber in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  15. KSC-04PD-2447

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, the rescue team helps astronaut-suited workers climb into an M-113 armored personnel carrier for transport away from the pad. The four-hour exercise simulated normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. It tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.

  16. KSC-04PD-2445

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, the rescue team carries injured astronaut-suited workers into an M-113 armored personnel carrier for transport away from the pad. The four-hour exercise simulated normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. It tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.

  17. The Role of CFD Simulation in Rocket Propulsion Support Activities

    NASA Technical Reports Server (NTRS)

    West, Jeff

    2011-01-01

    Outline of the presentation: CFD at NASA/MSFC (1) Flight Projects are the Customer -- No Science Experiments (2) Customer Support (3) Guiding Philosophy and Resource Allocation (4) Where is CFD at NASA/MSFC? Examples of the expanding Role of CFD at NASA/MSFC (1) Liquid Rocket Engine Applications : Evolution from Symmetric and Steady to 3D Unsteady (2)Launch Pad Debris Transport-> Launch Pad Induced Environments (a) STS and Launch Pad Geometry-steady (b) Moving Body Shuttle Launch Simulations (c) IOP and Acoustics Simulations (3)General Purpose CFD Applications (4) Turbomachinery Applications

  18. An Orion/Ares I Launch and Ascent Simulation: One Segment of the Distributed Space Exploration Simulation (DSES)

    NASA Technical Reports Server (NTRS)

    Chung, Victoria I.; Crues, Edwin Z.; Blum, Mike G.; Alofs, Cathy; Busto, Juan

    2007-01-01

    This paper describes the architecture and implementation of a distributed launch and ascent simulation of NASA's Orion spacecraft and Ares I launch vehicle. This simulation is one segment of the Distributed Space Exploration Simulation (DSES) Project. The DSES project is a research and development collaboration between NASA centers which investigates technologies and processes for distributed simulation of complex space systems in support of NASA's Exploration Initiative. DSES is developing an integrated end-to-end simulation capability to support NASA development and deployment of new exploration spacecraft and missions. This paper describes the first in a collection of simulation capabilities that DSES will support.

  19. Human Performance Modeling and Simulation for Launch Team Applications

    NASA Technical Reports Server (NTRS)

    Peaden, Cary J.; Payne, Stephen J.; Hoblitzell, Richard M., Jr.; Chandler, Faith T.; LaVine, Nils D.; Bagnall, Timothy M.

    2006-01-01

    This paper describes ongoing research into modeling and simulation of humans for launch team analysis, training, and evaluation. The initial research is sponsored by the National Aeronautics and Space Administration's (NASA)'s Office of Safety and Mission Assurance (OSMA) and NASA's Exploration Program and is focused on current and future launch team operations at Kennedy Space Center (KSC). The paper begins with a description of existing KSC launch team environments and procedures. It then describes the goals of new Simulation and Analysis of Launch Teams (SALT) research. The majority of this paper describes products from the SALT team's initial proof-of-concept effort. These products include a nominal case task analysis and a discrete event model and simulation of launch team performance during the final phase of a shuttle countdown; and a first proof-of-concept training demonstration of launch team communications in which the computer plays most roles, and the trainee plays a role of the trainee's choice. This paper then describes possible next steps for the research team and provides conclusions. This research is expected to have significant value to NASA's Exploration Program.

  20. Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB)

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Rajkumar, T.

    2003-01-01

    Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.

  1. Intelligent launch and range operations virtual testbed (ILRO-VTB)

    NASA Astrophysics Data System (ADS)

    Bardina, Jorge; Rajkumar, Thirumalainambi

    2003-09-01

    Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.

  2. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    NASA Test Director Christine St. Germain monitors operations in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  3. Forces associated with launch into space do not impact bone fracture healing

    NASA Astrophysics Data System (ADS)

    Childress, Paul; Brinker, Alexander; Gong, Cynthia-May S.; Harris, Jonathan; Olivos, David J.; Rytlewski, Jeffrey D.; Scofield, David C.; Choi, Sungshin Y.; Shirazi-Fard, Yasaman; McKinley, Todd O.; Chu, Tien-Min G.; Conley, Carolynn L.; Chakraborty, Nabarun; Hammamieh, Rasha; Kacena, Melissa A.

    2018-02-01

    Segmental bone defects (SBDs) secondary to trauma invariably result in a prolonged recovery with an extended period of limited weight bearing on the affected limb. Soldiers sustaining blast injuries and civilians sustaining high energy trauma typify such a clinical scenario. These patients frequently sustain composite injuries with SBDs in concert with extensive soft tissue damage. For soft tissue injury resolution and skeletal reconstruction a patient may experience limited weight bearing for upwards of 6 months. Many small animal investigations have evaluated interventions for SBDs. While providing foundational information regarding the treatment of bone defects, these models do not simulate limited weight bearing conditions after injury. For example, mice ambulate immediately following anesthetic recovery, and in most cases are normally ambulating within 1-3 days post-surgery. Thus, investigations that combine disuse with bone healing may better test novel bone healing strategies. To remove weight bearing, we have designed a SBD rodent healing study in microgravity (μG) on the International Space Station (ISS) for the Rodent Research-4 (RR-4) Mission, which launched February 19, 2017 on SpaceX CRS-10 (Commercial Resupply Services). In preparation for this mission, we conducted an end-to-end mission simulation consisting of surgical infliction of SBD followed by launch simulation and hindlimb unloading (HLU) studies. In brief, a 2 mm defect was created in the femur of 10 week-old C57BL6/J male mice (n = 9-10/group). Three days after surgery, 6 groups of mice were treated as follows: 1) Vivarium Control (maintained continuously in standard cages); 2) Launch Negative Control (placed in the same spaceflight-like hardware as the Launch Positive Control group but were not subjected to launch simulation conditions); 3) Launch Positive Control (placed in spaceflight-like hardware and also subjected to vibration followed by centrifugation); 4) Launch Positive Experimental (identical to Launch Positive Control group, but placed in qualified spaceflight hardware); 5) Hindlimb Unloaded (HLU, were subjected to HLU immediately after launch simulation tests to simulate unloading in spaceflight); and 6) HLU Control (single housed in identical HLU cages but not suspended). Mice were euthanized 28 days after launch simulation and bone healing was examined via micro-Computed Tomography (μCT). These studies demonstrated that the mice post-surgery can tolerate launch conditions. Additionally, forces and vibrations associated with launch did not impact bone healing (p = .3). However, HLU resulted in a 52.5% reduction in total callus volume compared to HLU Controls (p = .0003). Taken together, these findings suggest that mice having a femoral SBD surgery tolerated the vibration and hypergravity associated with launch, and that launch simulation itself did not impact bone healing, but that the prolonged lack of weight bearing associated with HLU did impair bone healing. Based on these findings, we proceeded with testing the efficacy of FDA approved and novel SBD therapies using the unique spaceflight environment as a novel unloading model on SpaceX CRS-10.

  4. Validation and Simulation of Ares I Scale Model Acoustic Test - 2 - Simulations at 5 Foot Elevation for Evaluation of Launch Mount Effects

    NASA Technical Reports Server (NTRS)

    Strutzenberg, Louise L.; Putman, Gabriel C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Expanding from initial simulations of the ASMAT setup in a held down configuration, simulations have been performed using the Loci/CHEM computational fluid dynamics software for ASMAT tests of the vehicle at 5 ft. elevation (100 ft. real vehicle elevation) with worst case drift in the direction of the launch tower. These tests have been performed without water suppression and have compared the acoustic emissions for launch structures with and without launch mounts. In addition, simulation results have also been compared to acoustic and imagery data collected from similar live-fire tests to assess the accuracy of the simulations. Simulations have shown a marked change in the pattern of emissions after removal of the launch mount with a reduction in the overall acoustic environment experienced by the vehicle and the formation of highly directed acoustic waves moving across the platform deck. Comparisons of simulation results to live-fire test data showed good amplitude and temporal correlation and imagery comparisons over the visible and infrared wavelengths showed qualitative capture of all plume and pressure wave evolution features.

  5. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    NASA Operation Project Engineer Rommel Rubio monitors operations from his position in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  6. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    Master console operator David Walsh monitors operations from his position in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  7. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    Senior NASA Test Director Jeff Spaulding monitors operations from his position in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  8. The Exploration of Mars Launch and Assembly Simulation

    NASA Technical Reports Server (NTRS)

    Cates, Grant; Stromgren, Chel; Mattfeld, Bryan; Cirillo, William; Goodliff, Kandyce

    2016-01-01

    Advancing human exploration of space beyond Low Earth Orbit, and ultimately to Mars, is of great interest to NASA, other organizations, and space exploration advocates. Various strategies for getting to Mars have been proposed. These include NASA's Design Reference Architecture 5.0, a near-term flyby of Mars advocated by the group Inspiration Mars, and potential options developed for NASA's Evolvable Mars Campaign. Regardless of which approach is used to get to Mars, they all share a need to visualize and analyze their proposed campaign and evaluate the feasibility of the launch and on-orbit assembly segment of the campaign. The launch and assembly segment starts with flight hardware manufacturing and ends with final departure of a Mars Transfer Vehicle (MTV), or set of MTVs, from an assembly orbit near Earth. This paper describes a discrete event simulation based strategic visualization and analysis tool that can be used to evaluate the launch campaign reliability of any proposed strategy for exploration beyond low Earth orbit. The input to the simulation can be any manifest of multiple launches and their associated transit operations between Earth and the exploration destinations, including Earth orbit, lunar orbit, asteroids, moons of Mars, and ultimately Mars. The simulation output includes expected launch dates and ascent outcomes i.e., success or failure. Running 1,000 replications of the simulation provides the capability to perform launch campaign reliability analysis to determine the probability that all launches occur in a timely manner to support departure opportunities and to deliver their payloads to the intended orbit. This allows for quantitative comparisons between alternative scenarios, as well as the capability to analyze options for improving launch campaign reliability. Results are presented for representative strategies.

  9. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    Master Console Operators Andrea Oneill, left and David Walsh, monitor operations from their positions in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  10. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    Alex Higgins, a liquid hydrogen operations engineer with Jacobs, monitors operations from his position in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  11. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    NASA Launch Director Charlie Blackwell-Thompson, center, stands next to her console in Firing Room 1 at the Kennedy Space Center's Launch Control Center. With her, from the left, are NASA intern Justin Connolly, NASA Engineering Project Manager Dan Tran, Blackwell-Thompson, Shawn Reverter, Project Manager for Red Canyon Software, Inc., and NASA Structures and Mechanisms Design Branch Chief Adam Dokos, during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  12. KSC-04PD-2448

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, M-113 armored personnel carriers transport workers away from the pad. In the background are the Fixed (tall) and Rotating Service Structures. To the left is the water tower that holds 300,000 gallons used during liftoffs.The four-hour exercise simulated normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. It tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.

  13. Forces associated with launch into space do not impact bone fracture healing.

    PubMed

    Childress, Paul; Brinker, Alexander; Gong, Cynthia-May S; Harris, Jonathan; Olivos, David J; Rytlewski, Jeffrey D; Scofield, David C; Choi, Sungshin Y; Shirazi-Fard, Yasaman; McKinley, Todd O; Chu, Tien-Min G; Conley, Carolynn L; Chakraborty, Nabarun; Hammamieh, Rasha; Kacena, Melissa A

    2018-02-01

    Segmental bone defects (SBDs) secondary to trauma invariably result in a prolonged recovery with an extended period of limited weight bearing on the affected limb. Soldiers sustaining blast injuries and civilians sustaining high energy trauma typify such a clinical scenario. These patients frequently sustain composite injuries with SBDs in concert with extensive soft tissue damage. For soft tissue injury resolution and skeletal reconstruction a patient may experience limited weight bearing for upwards of 6 months. Many small animal investigations have evaluated interventions for SBDs. While providing foundational information regarding the treatment of bone defects, these models do not simulate limited weight bearing conditions after injury. For example, mice ambulate immediately following anesthetic recovery, and in most cases are normally ambulating within 1-3 days post-surgery. Thus, investigations that combine disuse with bone healing may better test novel bone healing strategies. To remove weight bearing, we have designed a SBD rodent healing study in microgravity (µG) on the International Space Station (ISS) for the Rodent Research-4 (RR-4) Mission, which launched February 19, 2017 on SpaceX CRS-10 (Commercial Resupply Services). In preparation for this mission, we conducted an end-to-end mission simulation consisting of surgical infliction of SBD followed by launch simulation and hindlimb unloading (HLU) studies. In brief, a 2 mm defect was created in the femur of 10 week-old C57BL6/J male mice (n = 9-10/group). Three days after surgery, 6 groups of mice were treated as follows: 1) Vivarium Control (maintained continuously in standard cages); 2) Launch Negative Control (placed in the same spaceflight-like hardware as the Launch Positive Control group but were not subjected to launch simulation conditions); 3) Launch Positive Control (placed in spaceflight-like hardware and also subjected to vibration followed by centrifugation); 4) Launch Positive Experimental (identical to Launch Positive Control group, but placed in qualified spaceflight hardware); 5) Hindlimb Unloaded (HLU, were subjected to HLU immediately after launch simulation tests to simulate unloading in spaceflight); and 6) HLU Control (single housed in identical HLU cages but not suspended). Mice were euthanized 28 days after launch simulation and bone healing was examined via micro-Computed Tomography (µCT). These studies demonstrated that the mice post-surgery can tolerate launch conditions. Additionally, forces and vibrations associated with launch did not impact bone healing (p = .3). However, HLU resulted in a 52.5% reduction in total callus volume compared to HLU Controls (p = .0003). Taken together, these findings suggest that mice having a femoral SBD surgery tolerated the vibration and hypergravity associated with launch, and that launch simulation itself did not impact bone healing, but that the prolonged lack of weight bearing associated with HLU did impair bone healing. Based on these findings, we proceeded with testing the efficacy of FDA approved and novel SBD therapies using the unique spaceflight environment as a novel unloading model on SpaceX CRS-10. Copyright © 2017 The Committee on Space Research (COSPAR). All rights reserved.

  14. Rapid Contingency Simulation Modeling of the NASA Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Betts, Kevin M.; Rutherford, R. Chad; McDuffie, James; Johnson, Matthew D.

    2007-01-01

    The NASA Crew Launch Vehicle is a two-stage orbital launcher designed to meet NASA's current as well as future needs for human space flight. In order to free the designers to explore more possibilities during the design phase, a need exists for the ability to quickly perform simulation on both the baseline vehicle as well as the vehicle after proposed changes due to mission planning, vehicle configuration and avionics changes, proposed new guidance and control algorithms, and any other contingencies the designers may wish to consider. Further, after the vehicle is designed and built, the need will remain for such analysis in the event of future mission planning. An easily reconfigurable, modular, nonlinear six-degree-of-freedom simulation matching NASA Marshall's in-house high-fidelity simulator is created with the ability to quickly perform simulation and analysis of the Crew Launch Vehicle throughout the entire launch profile. Simulation results are presented and discussed, and an example comparison fly-off between two candidate controllers is presented.

  15. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    Master Console Operator Jennifer Tschanz, left, and Master Console Operator Diego Diaz, both of Jacobs, monitor operations from their consoles in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  16. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    Jacobs Test Project Engineer Don Vinton, left and NASA Operations Project Engineer Doug Robertson, monitor operations from his position in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  17. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    Test Project Engineer Rick Brown, left, and Master Console Operator Jason Robinson, both with Jacobs, monitor operations from their consoles in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  18. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    Roberta Wyrick, spacecraft test conductor with Jacobs, NASA's Test and Operations Support Contractor, monitors operations from her console in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  19. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    Main Propulsion System Engineers Krista Riggs, left, and Joe Pavicic, both with Jacobs, monitor operations from their consoles in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  20. EM-1 Countdown Simulation with Charlie Blackwell-Thompson

    NASA Image and Video Library

    2018-03-29

    Liquid Oxygen Systems Engineer Quinten Jones, left and Liquid Oxygen Systems Engineer Andrew "Kody" Smitherman, both of Jacobs, monitor operation from his position in Firing Room 1 at the Kennedy Space Center's Launch Control Center during a countdown simulation for Exploration Mission 1. It was the agency's first simulation of a portion of the countdown for the first launch of a Space Launch System rocket and Orion spacecraft that will eventually take astronauts beyond low-Earth orbit to destinations such as the Moon and Mars.

  1. Rocket Launch Trajectory Simulations Mechanism

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi; Caimi, Raoul E.; Hauss, Sharon; Voska, N. (Technical Monitor)

    2002-01-01

    The design and development of a Trajectory Simulation Mechanism (TSM) for the Launch Systems Testbed (LST) is outlined. In addition to being one-of-a-kind facility in the world, TSM serves as a platform to study the interaction of rocket launch-induced environments and subsequent dynamic effects on the equipment and structures in the close vicinity of the launch pad. For the first time, researchers and academicians alike will be able to perform tests in a laboratory environment and assess the impact of vibroacoustic behavior of structures in a moving rocket scenario on ground equipment, launch vehicle, and its valuable payload or spacecraft.

  2. Simulations of SSLV Ascent and Debris Transport

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart; Aftosmis, Michael; Murman, Scott; Chan, William; Gomez, Ray; Gomez, Ray; Vicker, Darby; Stuart, Phil

    2006-01-01

    A viewgraph presentation on Computational Fluid Dynamic (CFD) Simulation of Space Shuttle Launch Vehicle (SSLV) ascent and debris transport analysis is shown. The topics include: 1) CFD simulations of the Space Shuttle Launch Vehicle ascent; 2) Debris transport analysis; 3) Debris aerodynamic modeling; and 4) Other applications.

  3. 77 FR 49436 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ... Consideration for Purchase: 240 Block I Javelin Missiles, Command Launch Units (CLU) Missile Simulation Rounds... possible purchase of 240 Block I Javelin Missiles, Command Launch Units (CLU), Missile Simulation Rounds...

  4. 77 FR 49432 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ...: 240 Block I Javelin Missiles, 60 Command Launch Units (CLU), Missile Simulation Rounds (MSR), Battery... purchase of 240 Block I Javelin Missiles, 60 Command Launch Units (CLU) Missile Simulation Rounds (MSR...

  5. Launch Condition Deviations of Reusable Launch Vehicle Simulations in Exo-Atmospheric Zoom Climbs

    NASA Technical Reports Server (NTRS)

    Urschel, Peter H.; Cox, Timothy H.

    2003-01-01

    The Defense Advanced Research Projects Agency has proposed a two-stage system to deliver a small payload to orbit. The proposal calls for an airplane to perform an exo-atmospheric zoom climb maneuver, from which a second-stage rocket is launched carrying the payload into orbit. The NASA Dryden Flight Research Center has conducted an in-house generic simulation study to determine how accurately a human-piloted airplane can deliver a second-stage rocket to a desired exo-atmospheric launch condition. A high-performance, fighter-type, fixed-base, real-time, pilot-in-the-loop airplane simulation has been modified to perform exo-atmospheric zoom climb maneuvers. Four research pilots tracked a reference trajectory in the presence of winds, initial offsets, and degraded engine thrust to a second-stage launch condition. These launch conditions have been compared to the reference launch condition to characterize the expected deviation. At each launch condition, a speed change was applied to the second-stage rocket to insert the payload onto a transfer orbit to the desired operational orbit. The most sensitive of the test cases was the degraded thrust case, yielding second-stage launch energies that were too low to achieve the radius of the desired operational orbit. The handling qualities of the airplane, as a first-stage vehicle, have also been investigated.

  6. STS-49 crew in JSC's FB Shuttle Mission Simulator (SMS) during simulation

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, crewmembers participate in a simulation in JSC's Fixed Base (FB) Shuttle Mission Simulator (SMS) located in the Mission Simulation and Training Facility Bldg 5. Wearing launch and entry suits (LESs) and launch and entry helmets (LEH) and seated on the FB-SMS middeck are (left to right) Mission Specialist (MS) Thomas D. Akers, MS Kathryn C. Thornton, and MS Pierre J. Thuot.

  7. Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.

    2015-01-01

    This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.

  8. Comprehensive Software Simulation on Ground Power Supply for Launch Pads and Processing Facilities at NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Victor, Elias; Vasquez, Angel L.; Urbina, Alfredo R.

    2017-01-01

    A multi-threaded software application has been developed in-house by the Ground Special Power (GSP) team at NASA Kennedy Space Center (KSC) to separately simulate and fully emulate all units that supply VDC power and battery-based power backup to multiple KSC launch ground support systems for NASA Space Launch Systems (SLS) rocket.

  9. Tactical Satellite (TacSat) Feasibility Study: A Scenario Driven Approach

    DTIC Science & Technology

    2006-09-01

    Mobile User Objective System NAFCOM NASA /Air Force Cost Model NAVNETWARCOM Naval Network Warfare Command NGA National Geospatial Intelligence...by providing frequent imagery updates as they search for disaster survivors and trek into regions where all terrain has been destroyed and altered to...Kwajalein Atoll; Wallops Island; NASA . Assets will be located in adjacent to launch sites. 4) Launch schedule- Launch schedule will enable full

  10. Modulation of osteoblast attachment and growth in vitro by inertial forces

    NASA Astrophysics Data System (ADS)

    Kacena, Melissa Ann

    1999-11-01

    Spaceflight exploration and associated experiments show that human bones lose in density during inertial unloading, due principally to their demineralization. This research project examines the effect of gravity on osteoblast attachment and function in various inertial environments. Chicken calvarial osteoblasts were cultured under the following inertial conditions: spaceflight, simulated shuttle launch accelerations and vibrations, centrifugation, clino-rotation, and inversion. Cultures exposed to these conditions were compared with cultures grown in the laboratory as static 1G controls. Electron and light microscopy revealed the number of total osteoblasts attached to their substrate. Biochemical assays discerned changes in viable cell number, alkaline phosphatase levels, and mineralization. Immunohistochemical assays were used to investigate differences in cytoskeletal and extracellular matrix protein concentrations in the cultures, the percentage of proliferative cells, and cell viability. Compared to controls, spaceflight results indicated that the number of attached osteoblast cells was reduced. Launch simulation data indicated that the associated accelerations and vibrations may contribute to the reduction of attached osteoblasts in spaceflight cultures. Following centrifugation, the number of attached cells was unaltered; however, immunostaining of actin, fibronectin, and vinculin did show alterations in cultures exposed to hypergravity. Confluent cultures that were right side up, inverted, and clino-rotated contained a comparable number of attached cells and functioned similarly on the basis of measured alkaline phosphatase and bound calcium content. Sparse clino-rotated or inverted cultures showed an immediate response of diminished viable osteoblast numbers, but this effect disappeared with time and all remaining attached cells functioned similarly (APase and bound calcium). On the basis of these data osteoblast attachment and function in confluent cultures is minimally, if at all, affected by alterations in inertial environments. However, in sparse cultures about half as many cells are found attached initially. The remaining attached cells appear to multiply and function normally. These results suggest that the effects of spaceflight on bone are thus not likely to be caused by direct intrinsic effects of gravity on single osteoblasts that can be simulated in laboratory experiments in vitro experiments.

  11. Compilation of Abstracts for SC12 Conference Proceedings

    NASA Technical Reports Server (NTRS)

    Morello, Gina Francine (Compiler)

    2012-01-01

    1 A Breakthrough in Rotorcraft Prediction Accuracy Using Detached Eddy Simulation; 2 Adjoint-Based Design for Complex Aerospace Configurations; 3 Simulating Hypersonic Turbulent Combustion for Future Aircraft; 4 From a Roar to a Whisper: Making Modern Aircraft Quieter; 5 Modeling of Extended Formation Flight on High-Performance Computers; 6 Supersonic Retropropulsion for Mars Entry; 7 Validating Water Spray Simulation Models for the SLS Launch Environment; 8 Simulating Moving Valves for Space Launch System Liquid Engines; 9 Innovative Simulations for Modeling the SLS Solid Rocket Booster Ignition; 10 Solid Rocket Booster Ignition Overpressure Simulations for the Space Launch System; 11 CFD Simulations to Support the Next Generation of Launch Pads; 12 Modeling and Simulation Support for NASA's Next-Generation Space Launch System; 13 Simulating Planetary Entry Environments for Space Exploration Vehicles; 14 NASA Center for Climate Simulation Highlights; 15 Ultrascale Climate Data Visualization and Analysis; 16 NASA Climate Simulations and Observations for the IPCC and Beyond; 17 Next-Generation Climate Data Services: MERRA Analytics; 18 Recent Advances in High-Resolution Global Atmospheric Modeling; 19 Causes and Consequences of Turbulence in the Earths Protective Shield; 20 NASA Earth Exchange (NEX): A Collaborative Supercomputing Platform; 21 Powering Deep Space Missions: Thermoelectric Properties of Complex Materials; 22 Meeting NASA's High-End Computing Goals Through Innovation; 23 Continuous Enhancements to the Pleiades Supercomputer for Maximum Uptime; 24 Live Demonstrations of 100-Gbps File Transfers Across LANs and WANs; 25 Untangling the Computing Landscape for Climate Simulations; 26 Simulating Galaxies and the Universe; 27 The Mysterious Origin of Stellar Masses; 28 Hot-Plasma Geysers on the Sun; 29 Turbulent Life of Kepler Stars; 30 Modeling Weather on the Sun; 31 Weather on Mars: The Meteorology of Gale Crater; 32 Enhancing Performance of NASAs High-End Computing Applications; 33 Designing Curiosity's Perfect Landing on Mars; 34 The Search Continues: Kepler's Quest for Habitable Earth-Sized Planets.

  12. Using Discrete Event Simulation to Model Integrated Commodities Consumption for a Launch Campaign of the Space Launch System

    NASA Technical Reports Server (NTRS)

    Leonard, Daniel; Parsons, Jeremy W.; Cates, Grant

    2014-01-01

    In May 2013, NASA's GSDO Program requested a study to develop a discrete event simulation (DES) model that analyzes the launch campaign process of the Space Launch System (SLS) from an integrated commodities perspective. The scope of the study includes launch countdown and scrub turnaround and focuses on four core launch commodities: hydrogen, oxygen, nitrogen, and helium. Previously, the commodities were only analyzed individually and deterministically for their launch support capability, but this study was the first to integrate them to examine the impact of their interactions on a launch campaign as well as the effects of process variability on commodity availability. The study produced a validated DES model with Rockwell Arena that showed that Kennedy Space Center's ground systems were capable of supporting a 48-hour scrub turnaround for the SLS. The model will be maintained and updated to provide commodity consumption analysis of future ground system and SLS configurations.

  13. Development of control systems for space shuttle vehicles. Volume 2: Appendixes

    NASA Technical Reports Server (NTRS)

    Stone, C. R.; Chase, T. W.; Kiziloz, B. M.; Ward, M. D.

    1971-01-01

    A launch phase random normal wind model is presented for delta wing, two-stage, space shuttle control system studies. Equations, data, and simulations for conventional launch studies are given as well as pitch and lateral equations and data for covariance analyses of the launch phase of MSFC vehicle B. Lateral equations and data for North American 130G and 134D are also included along with a high-altitude abort simulation.

  14. SLS Core Stage Simulator

    NASA Image and Video Library

    2015-02-02

    CHRISTOPHER CRUMBLY, MANAGER OF THE SPACECRAFT PAYLOAD INTEGRATION AND EVOLUTION OFFICE, GAVE VISITORS AN INSIDER'S PERSPECTIVE ON THE CORE STAGE SIMULATOR AT MARSHALL AND ITS IMPORTANCE TO DEVELOPMENT OF THE SPACE LAUNCH SYSTEM. CHRISTOPHER CRUMBLY, MANAGER OF THE SPACECRAFT PAYLOAD INTEGRATION AND EVOLUTION OFFICE, GAVE VISITORS AN INSIDER'S PERSPECTIVE ON THE CORE STAGE SIMULATOR AT MARSHALL AND ITS IMPORTANCE TO DEVELOPMENT OF THE SPACE LAUNCH SYSTEM.

  15. Experiment K-7-16: Effects of Microgravity or Simulated Launch on Testicular Function in Rats

    NASA Technical Reports Server (NTRS)

    Amann, R. P.; Clemens, J. W.; Deaver, D.; Folmer, J.; Zirkin, B.; Veeramachaneni, D. N. R.; Grills, G. S.; Gruppi, C. M.; Wolgemuth, D.; Serova, L. V.; hide

    1994-01-01

    Fixed or frozen testicular tissues from five rats per group were analyzed by: subjective and quantitative evaluations of spermatogenesis; Northern-blot analysis for expression of selected genes; quantification of testosterone and receptors for LH; and morphometric analysis of Leydig cells. Based on observations of fixed tissue, it was evident that some rats in the flight and vivarium groups had testicular abnormalities unassociated with treatment, and probably existing when they were assigned randomly to the four treatment groups; the simulated-launch group contained no abnormal rat. Lesions induced in testes of caudal-elevation rats precluded discernment of any pre-existing abnormality. Considering rats without pre-existing abnormalities, diameter of seminiferous tubules and numbers of germ cells per tubule cross section were lower (E less than 0.05) in flight rats than in simulated-launch or vivarium rats. However, ratios of germ cells to each other, or to Sertoli cells, and number of homogenization-resistant spermatids did not differ from values for simulated-launch or vivarium controls. There was no effect of flight on normal expression of testis-specific hsp gene products, or evidence for production of stress-inducible transcripts of the hsp70 or hsp90 genes. Concentration of receptors for rLH in testicular tissue, and surface densities of smooth endoplasmic reticulum and peroxisomes in Leydig cells, were similar in flight and simulated-launch rats. However, concentrations of testosterone in testicular tissue or peripheral blood plasma were reduced (P less than 0.05) in flight rats to less than 20 percent of values for simulated-launch or vivarium controls. Thus, spermatogenesis was essentially normal in flight rats, but production of testosterone was severely depressed. Sequela of reduced androgen production on turnover of muscle and bone should be considered when interpreting data from mammals exposed to microgravity.

  16. BIOMEX Experiment: Ultrastructural Alterations, Molecular Damage and Survival of the Fungus Cryomyces antarcticus after the Experiment Verification Tests.

    PubMed

    Pacelli, Claudia; Selbmann, Laura; Zucconi, Laura; De Vera, Jean-Pierre; Rabbow, Elke; Horneck, Gerda; de la Torre, Rosa; Onofri, Silvano

    2017-06-01

    The search for traces of extinct or extant life in extraterrestrial environments is one of the main goals for astrobiologists; due to their ability to withstand stress producing conditions, extremophiles are perfect candidates for astrobiological studies. The BIOMEX project aims to test the ability of biomolecules and cell components to preserve their stability under space and Mars-like conditions, while at the same time investigating the survival capability of microorganisms. The experiment has been launched into space and is being exposed on the EXPOSE-R2 payload, outside of the International Space Station (ISS) over a time-span of 1.5 years. Along with a number of other extremophilic microorganisms, the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 has been included in the experiment. Before launch, dried colonies grown on Lunar and Martian regolith analogues were exposed to vacuum, irradiation and temperature cycles in ground based experiments (EVT1 and EVT2). Cultural and molecular tests revealed that the fungus survived on rock analogues under space and simulated Martian conditions, showing only slight ultra-structural and molecular damage.

  17. BIOMEX Experiment: Ultrastructural Alterations, Molecular Damage and Survival of the Fungus Cryomyces antarcticus after the Experiment Verification Tests

    NASA Astrophysics Data System (ADS)

    Pacelli, Claudia; Selbmann, Laura; Zucconi, Laura; De Vera, Jean-Pierre; Rabbow, Elke; Horneck, Gerda; de la Torre, Rosa; Onofri, Silvano

    2017-06-01

    The search for traces of extinct or extant life in extraterrestrial environments is one of the main goals for astrobiologists; due to their ability to withstand stress producing conditions, extremophiles are perfect candidates for astrobiological studies. The BIOMEX project aims to test the ability of biomolecules and cell components to preserve their stability under space and Mars-like conditions, while at the same time investigating the survival capability of microorganisms. The experiment has been launched into space and is being exposed on the EXPOSE-R2 payload, outside of the International Space Station (ISS) over a time-span of 1.5 years. Along with a number of other extremophilic microorganisms, the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 has been included in the experiment. Before launch, dried colonies grown on Lunar and Martian regolith analogues were exposed to vacuum, irradiation and temperature cycles in ground based experiments (EVT1 and EVT2). Cultural and molecular tests revealed that the fungus survived on rock analogues under space and simulated Martian conditions, showing only slight ultra-structural and molecular damage.

  18. The analysis of a generic air-to-air missile simulation model

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Chappell, Alan R.; Mcmanus, John W.

    1994-01-01

    A generic missile model was developed to evaluate the benefits of using a dynamic missile fly-out simulation system versus a static missile launch envelope system for air-to-air combat simulation. This paper examines the performance of a launch envelope model and a missile fly-out model. The launch envelope model bases its probability of killing the target aircraft on the target aircraft's position at the launch time of the weapon. The benefits gained from a launch envelope model are the simplicity of implementation and the minimal computational overhead required. A missile fly-out model takes into account the physical characteristics of the missile as it simulates the guidance, propulsion, and movement of the missile. The missile's probability of kill is based on the missile miss distance (or the minimum distance between the missile and the target aircraft). The problems associated with this method of modeling are a larger computational overhead, the additional complexity required to determine the missile miss distance, and the additional complexity of determining the reason(s) the missile missed the target. This paper evaluates the two methods and compares the results of running each method on a comprehensive set of test conditions.

  19. Debris Dispersion Model Using Java 3D

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  20. Development of Constraint Force Equation Methodology for Application to Multi-Body Dynamics Including Launch Vehicle Stage Seperation

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Toniolo, Matthew D.; Tartabini, Paul V.; Roithmayr, Carlos M.; Albertson, Cindy W.; Karlgaard, Christopher D.

    2016-01-01

    The objective of this report is to develop and implement a physics based method for analysis and simulation of multi-body dynamics including launch vehicle stage separation. The constraint force equation (CFE) methodology discussed in this report provides such a framework for modeling constraint forces and moments acting at joints when the vehicles are still connected. Several stand-alone test cases involving various types of joints were developed to validate the CFE methodology. The results were compared with ADAMS(Registered Trademark) and Autolev, two different industry standard benchmark codes for multi-body dynamic analysis and simulations. However, these two codes are not designed for aerospace flight trajectory simulations. After this validation exercise, the CFE algorithm was implemented in Program to Optimize Simulated Trajectories II (POST2) to provide a capability to simulate end-to-end trajectories of launch vehicles including stage separation. The POST2/CFE methodology was applied to the STS-1 Space Shuttle solid rocket booster (SRB) separation and Hyper-X Research Vehicle (HXRV) separation from the Pegasus booster as a further test and validation for its application to launch vehicle stage separation problems. Finally, to demonstrate end-to-end simulation capability, POST2/CFE was applied to the ascent, orbit insertion, and booster return of a reusable two-stage-to-orbit (TSTO) vehicle concept. With these validation exercises, POST2/CFE software can be used for performing conceptual level end-to-end simulations, including launch vehicle stage separation, for problems similar to those discussed in this report.

  1. Upgrading Custom Simulink Library Components for Use in Newer Versions of Matlab

    NASA Technical Reports Server (NTRS)

    Stewart, Camiren L.

    2014-01-01

    The Spaceport Command and Control System (SCCS) at Kennedy Space Center (KSC) is a control system for monitoring and launching manned launch vehicles. Simulations of ground support equipment (GSE) and the launch vehicle systems are required throughout the life cycle of SCCS to test software, hardware, and procedures to train the launch team. The simulations of the GSE at the launch site in conjunction with off-line processing locations are developed using Simulink, a piece of Commercial Off-The-Shelf (COTS) software. The simulations that are built are then converted into code and ran in a simulation engine called Trick, a Government off-the-shelf (GOTS) piece of software developed by NASA. In the world of hardware and software, it is not uncommon to see the products that are utilized be upgraded and patched or eventually fade away into an obsolete status. In the case of SCCS simulation software, Matlab, a MathWorks product, has released a number of stable versions of Simulink since the deployment of the software on the Development Work Stations in the Linux environment (DWLs). The upgraded versions of Simulink has introduced a number of new tools and resources that, if utilized fully and correctly, will save time and resources during the overall development of the GSE simulation and its correlating documentation. Unfortunately, simply importing the already built simulations into the new Matlab environment will not suffice as it will produce results that may not be expected as they were in the version that is currently being utilized. Thus, an upgrade execution plan was developed and executed to fully upgrade the simulation environment to one of the latest versions of Matlab.

  2. Flowfield predictions for multiple body launch vehicles

    NASA Technical Reports Server (NTRS)

    Deese, Jerry E.; Pavish, D. L.; Johnson, Jerry G.; Agarwal, Ramesh K.; Soni, Bharat K.

    1992-01-01

    A method is developed for simulating inviscid and viscous flow around multicomponent launch vehicles. Grids are generated by the GENIE general-purpose grid-generation code, and the flow solver is a finite-volume Runge-Kutta time-stepping method. Turbulence effects are simulated using Baldwin and Lomax (1978) turbulence model. Calculations are presented for three multibody launch vehicle configurations: one with two small-diameter solid motors, one with nine small-diameter solid motors, and one with three large-diameter solid motors.

  3. Launch Site Computer Simulation and its Application to Processes

    NASA Technical Reports Server (NTRS)

    Sham, Michael D.

    1995-01-01

    This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.

  4. STS-41 MS Akers assisted by technician on SMS middeck at JSC

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-41 Mission Specialist (MS) Thomas D. Akers, wearing launch and entry suit (LES) and launch and entry helmet (LEH), is assisted by a technician on the middeck of JSC's Shuttle Mission Simulator (SMS). Akers seated in the mission specialists chairis participating in a simulation of mission events. The SMS is located in JSC's Mission Simulation and Training Facility Bldg 5.

  5. Airborne Simulation of Launch Vehicle Dynamics

    NASA Technical Reports Server (NTRS)

    Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.

    2014-01-01

    In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity-turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is optimized for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using NASA Dryden Flight Research Center's Full-scale Advanced Systems Testbed (FAST), a modified F/A-18 airplane, over a range of scenarios designed to stress the SLS's adaptive augmenting control (AAC) algorithm.

  6. KSC-06pd2232

    NASA Image and Video Library

    2006-09-27

    KENNEDY SPACE CENTER, FLA. - In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center, the solid rocket booster aft skirt designated for use on the first stage of the ARES I-1 launch vehicle is being prepared for its first test flight. Ares I is the vehicle being developed for launch of the crew exploration vehicle (CEV), named Orion. Ares I-1 is currently targeted for launch from Launch Pad 39B in 2009 using the SRB first stage and a simulated second stage and simulated CEV. Ares I ascent tests and Ares I orbital tests will also take place at Kennedy at later dates. Photo credit: NASA/Jack Pfaller

  7. KSC-06pd2233

    NASA Image and Video Library

    2006-09-27

    KENNEDY SPACE CENTER, FLA. - In the Assembly and Refurbishment Facility at NASA's Kennedy Space Center, workers examine some of the hardware inside the solid rocket booster aft skirt designated for use on the first stage of the ARES I-1 launch vehicle in its first test flight. Ares I is the vehicle being developed for launch of the crew exploration vehicle (CEV), named Orion. Ares I-1 is currently targeted for launch from Launch Pad 39B in 2009 using the SRB first stage and a simulated second stage and simulated CEV. Ares I ascent tests and Ares I orbital tests will also take place at Kennedy at later dates. Photo credit: NASA/Jack Pfaller

  8. Brief, Why the Launch Equipment Test Facility Needs a Laser Tracker

    NASA Technical Reports Server (NTRS)

    Yue, Shiu H.

    2011-01-01

    The NASA Kennedy Space Center Launch Equipment Test Facility (LETF) supports a wide spectrum of testing and development activities. This capability was originally established in the 1970's to allow full-scale qualification of Space Shuttle umbilicals and T-O release mechanisms. The LETF has leveraged these unique test capabilities to evolve into a versatile test and development area that supports the entire spectrum of operational programs at KSC. These capabilities are historically Aerospace related, but can certainly can be adapted for other industries. One of the more unique test fixtures is the Vehicle Motion Simulator or the VMS. The VMS simulates all of the motions that a launch vehicle will experience from the time of its roll-out to the launch pad, through roughly the first X second of launch. The VMS enables the development and qualification testing of umbilical systems in both pre-launch and launch environments. The VMS can be used to verify operations procedures, clearances, disconnect systems performance &margins, and vehicle loads through processing flow motion excursions.

  9. Statistical Similarities Between WSA-ENLIL+Cone Model and MAVEN in Situ Observations From November 2014 to March 2016

    NASA Astrophysics Data System (ADS)

    Lentz, C. L.; Baker, D. N.; Jaynes, A. N.; Dewey, R. M.; Lee, C. O.; Halekas, J. S.; Brain, D. A.

    2018-02-01

    Normal solar wind flows and intense solar transient events interact directly with the upper Martian atmosphere due to the absence of an intrinsic global planetary magnetic field. Since the launch of the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, there are now new means to directly observe solar wind parameters at the planet's orbital location for limited time spans. Due to MAVEN's highly elliptical orbit, in situ measurements cannot be taken while MAVEN is inside Mars' magnetosheath. To model solar wind conditions during these atmospheric and magnetospheric passages, this research project utilized the solar wind forecasting capabilities of the WSA-ENLIL+Cone model. The model was used to simulate solar wind parameters that included magnetic field magnitude, plasma particle density, dynamic pressure, proton temperature, and velocity during a four Carrington rotation-long segment. An additional simulation that lasted 18 Carrington rotations was then conducted. The precision of each simulation was examined for intervals when MAVEN was in the upstream solar wind, that is, with no exospheric or magnetospheric phenomena altering in situ measurements. It was determined that generalized, extensive simulations have comparable prediction capabilities as shorter, more comprehensive simulations. Generally, this study aimed to quantify the loss of detail in long-term simulations and to determine if extended simulations can provide accurate, continuous upstream solar wind conditions when there is a lack of in situ measurements.

  10. Modelling and Simulation on Multibody Dynamics for Vehicular Cold Launch Systems Based on Subsystem Synthesis Method

    NASA Astrophysics Data System (ADS)

    Panyun, YAN; Guozhu, LIANG; Yongzhi, LU; Zhihui, QI; Xingdou, GAO

    2017-12-01

    The fast simulation of the vehicular cold launch system (VCLS) in the launch process is an essential requirement for practical engineering applications. In particular, a general and fast simulation model of the VCLS will help the designer to obtain the optimum scheme in the initial design phase. For these purposes, a system-level fast simulation model was established for the VCLS based on the subsystem synthesis method. Moreover, a comparison of the load of a seven-axis VCLS on the rigid ground through both theoretical calculations and experiments was carried out. It was found that the error of the load of the rear left outrigger is less than 7.1%, and the error of the total load of all the outriggers is less than 2.8%. Moreover, time taken for completion of the simulation model is only 9.5 min, which is 5% of the time taken by conventional algorithms.

  11. STEREO Mission Design

    NASA Technical Reports Server (NTRS)

    Dunham, David W.; Guzman, Jose J.; Sharer, Peter J.; Friessen, Henry D.

    2007-01-01

    STEREO (Solar-TErestrial RElations Observatory) is the third mission in the Solar Terrestrial Probes program (STP) of the National Aeronautics and Space Administration (NASA). STEREO is the first mission to utilize phasing loops and multiple lunar flybys to alter the trajectories of more than one satellite. This paper describes the launch computation methodology, the launch constraints, and the resulting nine launch windows that were prepared for STEREO. More details are provided for the window in late October 2006 that was actually used.

  12. STS-87 Mission Specialist Chawla is assisted with her launch and entry spacesuit at LC 39B during TC

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Mission Specialist Kalpana Chawla, Ph.D., is assisted with her orange launch and entry spacesuit by NASA suit technicians at Launch Pad 39B during Terminal Countdown Demonstration Test (TCDT) activities. The crew of the STS-87 mission is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  13. KSC-2011-1449

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  14. KSC-2011-1446

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  15. KSC-2011-1450

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, training takes place atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  16. KSC-2011-1448

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training atop a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  17. KSC-2011-1447

    NASA Image and Video Library

    2011-02-15

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, workers receive training on a mast climber that is attached to launch simulation towers outside the Launch Equipment Test Facility. The training includes attaching carrier plates, water and air systems, and electricity to the climber to simulate working in Kennedy's Vehicle Assembly Building (VAB). Mast climbers can be substituted for fixed service structures currently inside the VAB to provide access to any type of launch vehicle. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. Last year, the facility underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator and a cryogenic system. Photo credit: NASA/Jim Grossmann

  18. Internet Based Simulations of Debris Dispersion of Shuttle Launch

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    The debris dispersion model (which dispersion model?) is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models are useful in understanding the complexity of launch and range operations. Modeling and simulation in this area mainly focuses on orbital dynamics and range safety concepts, including destruct limits, telemetry and tracking, and population risk. Particle explosion modeling is the process of simulating an explosion by breaking the rocket into many pieces. The particles are scattered throughout their motion using the laws of physics eventually coming to rest. The size of the foot print explains the type of explosion and distribution of the particles. The shuttle launch and range operations in this paper are discussed based on the operations of the Kennedy Space Center, Florida, USA. Java 3D graphics provides geometric and visual content with suitable modeling behaviors of Shuttle launches.

  19. Preliminary Design of a Ramjet for Integration with Ground-Based Launch Assist

    NASA Technical Reports Server (NTRS)

    Sayles, Emily L.

    2008-01-01

    This viewgraph presentation reviews the preliminary design of a ramjet for integration with a ground based launch assist. The reasons for the use of ground-based launch assist and the proposed mechanism for a system are reviewed. The use of a Optimal Trajectory by Implicit Simulation (OTIS), to model the flight and comparison with an actual rocket trajectory is given. The OTIS system is reviewed, The benefits of a launch assist system are analyzed concluding that a launch assist can provide supersonic speeds thus allowing ignition of ramjet without an onboard compressor. This means a further reduction in total launch weight. The Ramjet study is reviewed next. This included a review of the ONX simulations, the verification of the ONX results with the use of Holloman Sled experiment data as derived from the Feasibility of Ramjet Engine Test Capability on The Holloman AFB Sled Track. The conclusion was that the ONX system was not sufficient to meet the needs for the modeling required. The GECAT (Graphical Engine Cycle Analysis Tool) is examined. The results of the GECAT simulations was verified with data from Stataltex and D21 flights. The Next steps are: to create a GECAT Model of a launch assist ramjet, to adjust the geometry to produce the desired thrust, and to survey the ramjet's performance over a range of Mach numbers. The assumptions and requirements of a launch assist ramjet are given, and the acceptable flight regimes are reviewed.

  20. Airborne Simulation of Launch Vehicle Dynamics

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Orr, Jeb S.; Hanson, Curtis E.; Gilligan, Eric T.

    2015-01-01

    In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is configured for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight-test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Fullscale Advanced Systems Testbed (FAST), a modified F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois), over a range of scenarios designed to stress the SLS's Adaptive Augmenting Control (AAC) algorithm.

  1. Development of the Architectural Simulation Model for Future Launch Systems and its Application to an Existing Launch Fleet

    NASA Technical Reports Server (NTRS)

    Rabadi, Ghaith

    2005-01-01

    A significant portion of lifecycle costs for launch vehicles are generated during the operations phase. Research indicates that operations costs can account for a large percentage of the total life-cycle costs of reusable space transportation systems. These costs are largely determined by decisions made early during conceptual design. Therefore, operational considerations are an important part of vehicle design and concept analysis process that needs to be modeled and studied early in the design phase. However, this is a difficult and challenging task due to uncertainties of operations definitions, the dynamic and combinatorial nature of the processes, and lack of analytical models and the scarcity of historical data during the conceptual design phase. Ultimately, NASA would like to know the best mix of launch vehicle concepts that would meet the missions launch dates at the minimum cost. To answer this question, we first need to develop a model to estimate the total cost, including the operational cost, to accomplish this set of missions. In this project, we have developed and implemented a discrete-event simulation model using ARENA (a simulation modeling environment) to determine this cost assessment. Discrete-event simulation is widely used in modeling complex systems, including transportation systems, due to its flexibility, and ability to capture the dynamics of the system. The simulation model accepts manifest inputs including the set of missions that need to be accomplished over a period of time, the clients (e.g., NASA or DoD) who wish to transport the payload to space, the payload weights, and their destinations (e.g., International Space Station, LEO, or GEO). A user of the simulation model can define an architecture of reusable or expendable launch vehicles to achieve these missions. Launch vehicles may belong to different families where each family may have it own set of resources, processing times, and cost factors. The goal is to capture the required resource levels of the major launch elements and their required facilities. The model s output can show whether or not a certain architecture of vehicles can meet the launch dates, and if not, how much the delay cost would be. It will also produce aggregate figures of missions cost based on element procurement cost, processing cost, cargo integration cost, delay cost, and mission support cost. One of the most useful features of this model is that it is stochastic where it accepts statistical distributions to represent the processing times mimicking the stochastic nature of real systems.

  2. KSC-08pd2858

    NASA Image and Video Library

    2008-09-23

    CAPE CANAVERAL, Fla. - STS-125 Pilot Gregory C. Johnson serves as a “guinea pig” to demonstrate emergency escape apparatus from the 195-foot level of the fixed service structure on Launch Pad 39A at NASA's Kennedy Space Center in Florida. Looking on are Mission Specialists Andrew Feustel, Megan McArthur and Mike Massimino. The crew is at Kennedy to take part in terminal countdown demonstration test, or TCDT, activities before launching on space shuttle Atlantis’ mission to service NASA’s Hubble Space Telescope. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization, emergency training and a simulated launch countdown. Atlantis is targeted to launch Oct. 10. Photo credit: NASA/Kim Shiflett

  3. Shuttle operations simulation model programmers'/users' manual

    NASA Technical Reports Server (NTRS)

    Porter, D. G.

    1972-01-01

    The prospective user of the shuttle operations simulation (SOS) model is given sufficient information to enable him to perform simulation studies of the space shuttle launch-to-launch operations cycle. The procedures used for modifying the SOS model to meet user requirements are described. The various control card sequences required to execute the SOS model are given. The report is written for users with varying computer simulation experience. A description of the components of the SOS model is included that presents both an explanation of the logic involved in the simulation of the shuttle operations cycle and a description of the routines used to support the actual simulation.

  4. Modeling and Simulation at NASA

    NASA Technical Reports Server (NTRS)

    Steele, Martin J.

    2009-01-01

    This slide presentation is composed of two topics. The first reviews the use of modeling and simulation (M&S) particularly as it relates to the Constellation program and discrete event simulation (DES). DES is defined as a process and system analysis, through time-based and resource constrained probabilistic simulation models, that provide insight into operation system performance. The DES shows that the cycles for a launch from manufacturing and assembly to launch and recovery is about 45 days and that approximately 4 launches per year are practicable. The second topic reviews a NASA Standard for Modeling and Simulation. The Columbia Accident Investigation Board made some recommendations related to models and simulations. Some of the ideas inherent in the new standard are the documentation of M&S activities, an assessment of the credibility, and reporting to decision makers, which should include the analysis of the results, a statement as to the uncertainty in the results,and the credibility of the results. There is also discussion about verification and validation (V&V) of models. There is also discussion about the different types of models and simulation.

  5. Validation and Simulation of Ares I Scale Model Acoustic Test - 3 - Modeling and Evaluating the Effect of Rainbird Water Deluge Inclusion

    NASA Technical Reports Server (NTRS)

    Strutzenberg, Louise L.; Putman, Gabriel C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Building on dry simulations of the ASMAT tests with the vehicle at 5 ft. elevation (100 ft. real vehicle elevation), wet simulations of the ASMAT test setup have been performed using the Loci/CHEM computational fluid dynamics software to explore the effect of rainbird water suppression inclusion on the launch platform deck. Two-phase water simulation has been performed using an energy and mass coupled lagrangian particle system module where liquid phase emissions are segregated into clouds of virtual particles and gas phase mass transfer is accomplished through simple Weber number controlled breakup and boiling models. Comparisons have been performed to the dry 5 ft. elevation cases, using configurations with and without launch mounts. These cases have been used to explore the interaction between rainbird spray patterns and launch mount geometry and evaluate the acoustic sound pressure level knockdown achieved through above-deck rainbird deluge inclusion. This comparison has been anchored with validation from live-fire test data which showed a reduction in rainbird effectiveness with the presence of a launch mount.

  6. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.

    2011-01-01

    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  7. Launch Vehicle Ascent Trajectory Simulation Using the Program to Optimize Simulated Trajectories II (POST2)

    NASA Technical Reports Server (NTRS)

    Lugo, Rafael A.; Shidner, Jeremy D.; Powell, Richard W.; Marsh, Steven M.; Hoffman, James A.; Litton, Daniel K.; Schmitt, Terri L.

    2017-01-01

    The Program to Optimize Simulated Trajectories II (POST2) has been continuously developed for over 40 years and has been used in many flight and research projects. Recently, there has been an effort to improve the POST2 architecture by promoting modularity, flexibility, and ability to support multiple simultaneous projects. The purpose of this paper is to provide insight into the development of trajectory simulation in POST2 by describing methods and examples of various improved models for a launch vehicle liftoff and ascent.

  8. NASA Completes Webb Telescope Center of Curvature Pre-test

    NASA Image and Video Library

    2017-12-08

    Engineers and technicians working on the James Webb Space Telescope successfully completed the first important optical measurement of Webb’s fully assembled primary mirror, called a Center of Curvature test. Taking a “before” optical measurement of the telescope’s deployed mirror is crucial before the telescope goes into several stages of rigorous mechanical testing. These tests will simulate the violent sound and vibration environments the telescope will experience inside its rocket on its way out into space. This environment is one of the most stressful structurally and could alter the shape and alignment of Webb’s primary mirror, which could degrade or, in the worst case, ruin its performance. Webb has been designed and constructed to withstand its launch environment, but it must be tested to verify that it will indeed survive and not change in any unexpected way. Making the same optical measurements both before and after simulated launch environment testing and comparing the results is fundamental to Webb’s development, assuring that it will work in space. Credit: NASA/Goddard/Chris Gunn Read more: go.nasa.gov/2enIgwP NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Modeling, Analysis and Simulation Approaches Used in Development of the National Aeronautics and Space Administration Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Yuchnovicz, Daniel E.; Dennehy, Cornelius J.; Schuster, David M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center was chartered to develop an alternate launch abort system (LAS) as risk mitigation for the Orion Project. Its successful flight test provided data for the design of future LAS vehicles. Design of the flight test vehicle (FTV) and pad abort trajectory relied heavily on modeling and simulation including computational fluid dynamics for vehicle aero modeling, 6-degree-of-freedom kinematics models for flight trajectory modeling, and 3-degree-of-freedom kinematics models for parachute force modeling. This paper highlights the simulation techniques and the interaction between the aerodynamics, flight mechanics, and aerodynamic decelerator disciplines during development of the Max Launch Abort System FTV.

  10. Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.

    2015-01-01

    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.

  11. Single microparticle launching method using two-stage light-gas gun for simulating hypervelocity impacts of micrometeoroids and space debris.

    PubMed

    Kawai, Nobuaki; Tsurui, Kenji; Hasegawa, Sunao; Sato, Eiichi

    2010-11-01

    A single microparticle launching method is described to simulate the hypervelocity impacts of micrometeoroids and microdebris on space structures at the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency. A microparticle placed in a sabot with slits is accelerated using a rifled two-stage light-gas gun. The centrifugal force provided by the rifling in the launch tube separates the sabot. The sabot-separation distance and the impact-point deviation are strongly affected by the combination of the sabot diameter and the bore diameter, and by the projectile diameter. Using this method, spherical projectiles of 1.0-0.1 mm diameter were launched at up to 7 km/s.

  12. KSC-05PD-0855

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Mission Specialist Andrew Thomas is ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.

  13. KSC-05PD-0854

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Pilot James Kelly is ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.

  14. KSC-05PD-0846

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, the STS-114 Mission Specialist Wendy Lawrence is getting ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.

  15. KSC-05PD-0848

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Mission Specialist Stephen Robinson is getting ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.

  16. Single microparticle launching method using two-stage light-gas gun for simulating hypervelocity impacts of micrometeoroids and space debris

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuaki; Tsurui, Kenji; Hasegawa, Sunao; Sato, Eiichi

    2010-11-01

    A single microparticle launching method is described to simulate the hypervelocity impacts of micrometeoroids and microdebris on space structures at the Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency. A microparticle placed in a sabot with slits is accelerated using a rifled two-stage light-gas gun. The centrifugal force provided by the rifling in the launch tube separates the sabot. The sabot-separation distance and the impact-point deviation are strongly affected by the combination of the sabot diameter and the bore diameter, and by the projectile diameter. Using this method, spherical projectiles of 1.0-0.1 mm diameter were launched at up to 7 km/s.

  17. 2011 Ground Testing Highlights Article

    NASA Technical Reports Server (NTRS)

    Ross, James C.; Buchholz, Steven J.

    2011-01-01

    Two tests supporting development of the launch abort system for the Orion MultiPurpose Crew Vehicle were run in the NASA Ames Unitary Plan wind tunnel last year. The first test used a fully metric model to examine the stability and controllability of the Launch Abort Vehicle during potential abort scenarios for Mach numbers ranging from 0.3 to 2.5. The aerodynamic effects of the Abort Motor and Attitude Control Motor plumes were simulated using high-pressure air flowing through independent paths. The aerodynamic effects of the proximity to the launch vehicle during the early moments of an abort were simulated with a remotely actuated Service Module that allowed the position relative to the Crew Module to be varied appropriately. The second test simulated the acoustic environment around the Launch Abort Vehicle caused by the plumes from the 400,000-pound thrust, solid-fueled Abort Motor. To obtain the proper acoustic characteristics of the hot rocket plumes for the flight vehicle, heated Helium was used. A custom Helium supply system was developed for the test consisting of 2 jumbo high-pressure Helium trailers, a twelve-tube accumulator, and a 13MW gas-fired heater borrowed from the Propulsion Simulation Laboratory at NASA Glenn Research Center. The test provided fluctuating surface pressure measurements at over 200 points on the vehicle surface that have now been used to define the ground-testing requirements for the Orion Launch Abort Vehicle.

  18. KSC-07pd1285

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. Speaking to attendees is Center Director Bill Parsons. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  19. Orion Service Module Umbilical (OSMU) Testing Complete

    NASA Image and Video Library

    2016-10-19

    Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.

  20. The STS-97 crew leaves O&C for Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-97 crew leaves the O&C Building on their way to Launch Pad 39B for a simulated launch countdown. Commander Brent Jett (right) leads the way with Pilot Mike Bloomfield behind him. Taking up the rear are (left) Mission Specialists Carlos Noriega, Joe Tanner and (right) Marc Garneau, who is with the Canadian Space Agency. The crew is taking part in Terminal Countdown Demonstration Test activities that include emergency egress training, familiarization with the payload, and the simulated launch countdown. Mission STS-97is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at about 10:05 p.m. EST.

  1. Time Domain Stability Margin Assessment of the NASA Space Launch System GN&C Design for Exploration Mission One

    NASA Technical Reports Server (NTRS)

    Clements, Keith; Wall, John

    2017-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.

  2. Time Domain Stability Margin Assessment of the NS Space Launch System GN&C Design for Exploration Mission One

    NASA Technical Reports Server (NTRS)

    Clements, Keith; Wall, John

    2017-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.

  3. A Real-Time Telemetry Simulator of the IUS Spacecraft

    NASA Technical Reports Server (NTRS)

    Drews, Michael E.; Forman, Douglas A.; Baker, Damon M.; Khazoyan, Louis B.; Viazzo, Danilo

    1998-01-01

    A real-time telemetry simulator of the IUS spacecraft has recently entered operation to train Flight Control Teams for the launch of the AXAF telescope from the Shuttle. The simulator has proven to be a successful higher fidelity implementation of its predecessor, while affirming the rapid development methodology used in its design. Although composed of COTS hardware and software, the system simulates the full breadth of the mission: Launch, Pre-Deployment-Checkout, Burn Sequence, and AXAF/IUS separation. Realism is increased through patching the system into the operations facility to simulate IUS telemetry, Shuttle telemetry, and the Tracking Station link (commands and status message).

  4. Cyclic Cryogenic Thermal-Mechanical Testing of an X-33/RLV Liquid Oxygen Tank Concept

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin

    1999-01-01

    An important step in developing a cost-effective, reusable, launch vehicle is the development of durable, lightweight, insulated, cryogenic propellant tanks. Current cryogenic tanks are expendable so most of the existing technology is not directly applicable to future launch vehicles. As part of the X-33/Reusable Launch Vehicle (RLV) Program, an experimental apparatus developed at the NASA Langley Research Center for evaluating the effects of combined, cyclic, thermal and mechanical loading on cryogenic tank concepts was used to evaluate cryogenic propellant tank concepts for Lockheed-Martin Michoud Space Systems. An aluminum-lithium (Al 2195) liquid oxygen tank concept, insulated with SS-1171 and PDL-1034 cryogenic insulation, is tested under simulated mission conditions, and the results of those tests are reported. The tests consists of twenty-five simulated Launch/Abort missions and twenty-five simulated flight missions with temperatures ranging from -320 F to 350 F and a maximum mechanical load of 71,300 lb. in tension.

  5. Launch vehicle design and GNC sizing with ASTOS

    NASA Astrophysics Data System (ADS)

    Cremaschi, Francesco; Winter, Sebastian; Rossi, Valerio; Wiegand, Andreas

    2018-03-01

    The European Space Agency (ESA) is currently involved in several activities related to launch vehicle designs (Future Launcher Preparatory Program, Ariane 6, VEGA evolutions, etc.). Within these activities, ESA has identified the importance of developing a simulation infrastructure capable of supporting the multi-disciplinary design and preliminary guidance navigation and control (GNC) design of different launch vehicle configurations. Astos Solutions has developed the multi-disciplinary optimization and launcher GNC simulation and sizing tool (LGSST) under ESA contract. The functionality is integrated in the Analysis, Simulation and Trajectory Optimization Software for space applications (ASTOS) and is intended to be used from the early design phases up to phase B1 activities. ASTOS shall enable the user to perform detailed vehicle design tasks and assessment of GNC systems, covering all aspects of rapid configuration and scenario management, sizing of stages, trajectory-dependent estimation of structural masses, rigid and flexible body dynamics, navigation, guidance and control, worst case analysis, launch safety analysis, performance analysis, and reporting.

  6. KSC-07pd1288

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- Many former astronauts gathered at the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  7. Rapid Ascent Simulation at NASA-MSFC

    NASA Technical Reports Server (NTRS)

    Sisco, Jimmy D.

    2004-01-01

    The Environmental Test Facility (ETF), located at NASA-Marshall Space Flight Center, Huntsville, Alabama, has provided thermal vacuum testing for several major programs since the 1960's. The ETF consists of over 13 thermal vacuum chambers sized and configured to handle the majority of test payloads. The majority of tests require a hard vacuum with heating and cryogenics. NASA's Return-to-Flight program requested testing to simulate a launch from the ground to flight using vacuum, heating and cryogenics. This paper describes an effective method for simulating a launch.

  8. Application of statistical distribution theory to launch-on-time for space construction logistic support

    NASA Technical Reports Server (NTRS)

    Morgenthaler, George W.

    1989-01-01

    The ability to launch-on-time and to send payloads into space has progressed dramatically since the days of the earliest missile and space programs. Causes for delay during launch, i.e., unplanned 'holds', are attributable to several sources: weather, range activities, vehicle conditions, human performance, etc. Recent developments in space program, particularly the need for highly reliable logistic support of space construction and the subsequent planned operation of space stations, large unmanned space structures, lunar and Mars bases, and the necessity of providing 'guaranteed' commercial launches have placed increased emphasis on understanding and mastering every aspect of launch vehicle operations. The Center of Space Construction has acquired historical launch vehicle data and is applying these data to the analysis of space launch vehicle logistic support of space construction. This analysis will include development of a better understanding of launch-on-time capability and simulation of required support systems for vehicle assembly and launch which are necessary to support national space program construction schedules. In this paper, the author presents actual launch data on unscheduled 'hold' distributions of various launch vehicles. The data have been supplied by industrial associate companies of the Center for Space Construction. The paper seeks to determine suitable probability models which describe these historical data and that can be used for several purposes such as: inputs to broader simulations of launch vehicle logistic space construction support processes and the determination of which launch operations sources cause the majority of the unscheduled 'holds', and hence to suggest changes which might improve launch-on-time. In particular, the paper investigates the ability of a compound distribution probability model to fit actual data, versus alternative models, and recommends the most productive avenues for future statistical work.

  9. High Altitude Balloon Flight Path Prediction and Site Selection Based On Computer Simulations

    NASA Astrophysics Data System (ADS)

    Linford, Joel

    2010-10-01

    Interested in the upper atmosphere, Weber State University Physics department has developed a High Altitude Reconnaissance Balloon for Outreach and Research team, also known as HARBOR. HARBOR enables Weber State University to take a variety of measurements from ground level to altitudes as high as 100,000 feet. The flight paths of these balloons can extend as long as 100 miles from the launch zone, making the choice of where and when to fly critical. To ensure the ability to recover the packages in a reasonable amount of time, days and times are carefully selected using computer simulations limiting flight tracks to approximately 40 miles from the launch zone. The computer simulations take atmospheric data collected by National Oceanic and Atmospheric Administration (NOAA) to plot what flights might have looked like in the past, and to predict future flights. Using these simulations a launch zone has been selected in Duchesne Utah, which has hosted eight successful flights over the course of the last three years, all of which have been recovered. Several secondary launch zones in western Wyoming, Southern Idaho, and Northern Utah are also being considered.

  10. KSC-02pd0711

    NASA Image and Video Library

    2002-05-17

    KENNEDY SPACE CENTER, FLA. -- STS-111 Mission Specialist Philippe Perrin gets ready in his launch and entry suit for a simulated launch countdown at the pad. Perrin is with the French Space Agency. The simulation is part of STS-111 Terminal Countdown Demonstration Test activities for the STS-111 crew and Expedition 5. The payload on the mission to the International Space Station includes the Mobile Base System, an Orbital Replacement Unit and Multi-Purpose Logistics Module Leonardo. The Expedition 5 crew is traveling on Endeavour to replace the Expedition 4 crew on the Station. Launch of Endeavour is scheduled for May 30, 2002.

  11. End-To-End Simulation of Launch Vehicle Trajectories Including Stage Separation Dynamics

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy W.; Tartabini, Paul V.; Pamadi, Bandu N.

    2012-01-01

    The development of methodologies, techniques, and tools for analysis and simulation of stage separation dynamics is critically needed for successful design and operation of multistage reusable launch vehicles. As a part of this activity, the Constraint Force Equation (CFE) methodology was developed and implemented in the Program to Optimize Simulated Trajectories II (POST2). The objective of this paper is to demonstrate the capability of POST2/CFE to simulate a complete end-to-end mission. The vehicle configuration selected was the Two-Stage-To-Orbit (TSTO) Langley Glide Back Booster (LGBB) bimese configuration, an in-house concept consisting of a reusable booster and an orbiter having identical outer mold lines. The proximity and isolated aerodynamic databases used for the simulation were assembled using wind-tunnel test data for this vehicle. POST2/CFE simulation results are presented for the entire mission, from lift-off, through stage separation, orbiter ascent to orbit, and booster glide back to the launch site. Additionally, POST2/CFE stage separation simulation results are compared with results from industry standard commercial software used for solving dynamics problems involving multiple bodies connected by joints.

  12. Simulation of Ground Winds Time Series for the NASA Crew Launch Vehicle (CLV)

    NASA Technical Reports Server (NTRS)

    Adelfang, Stanley I.

    2008-01-01

    Simulation of wind time series based on power spectrum density (PSD) and spectral coherence models for ground wind turbulence is described. The wind models, originally developed for the Shuttle program, are based on wind measurements at the NASA 150-m meteorological tower at Cape Canaveral, FL. The current application is for the design and/or protection of the CLV from wind effects during on-pad exposure during periods from as long as days prior to launch, to seconds or minutes just prior to launch and seconds after launch. The evaluation of vehicle response to wind will influence the design and operation of constraint systems for support of the on-pad vehicle. Longitudinal and lateral wind component time series are simulated at critical vehicle locations. The PSD model for wind turbulence is a function of mean wind speed, elevation and temporal frequency. Integration of the PSD equation over a selected frequency range yields the variance of the time series to be simulated. The square root of the PSD defines a low-pass filter that is applied to adjust the components of the Fast Fourier Transform (FFT) of Gaussian white noise. The first simulated time series near the top of the launch vehicle is the inverse transform of the adjusted FFT. Simulation of the wind component time series at the nearest adjacent location (and all other succeeding next nearest locations) is based on a model for the coherence between winds at two locations as a function of frequency and separation distance, where the adjacent locations are separated vertically and/or horizontally. The coherence function is used to calculate a coherence weighted FFT of the wind at the next nearest location, given the FFT of the simulated time series at the previous location and the essentially incoherent FFT of the wind at the selected location derived a priori from the PSD model. The simulated time series at each adjacent location is the inverse Fourier transform of the coherence weighted FFT. For a selected design case, the equations, the process and the simulated time series at multiple vehicle stations are presented.

  13. Flight-Simulated Launch-Pad-Abort-to-Landing Maneuvers for a Lifting Body

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Rivers, Robert A.

    1998-01-01

    The results of an in-flight investigation of the feasibility of conducting a successful landing following a launch-pad abort of a vertically-launched lifting body are presented. The study attempted to duplicate the abort-to-land-ing trajectory from the point of apogee through final flare and included the steep glide and a required high-speed, low-altitude turn to the runway heading. The steep glide was flown by reference to ground-provided guidance. The low-altitude turn was flown visually with a reduced field- of-view duplicating that of the simulated lifting body. Results from the in-flight experiment are shown to agree with ground-based simulation results; however, these tests should not be regarded as a definitive due to performance and control law dissimilarities between the two vehicles.

  14. Rockot Launch Vehicle Commercial Operations for Grace and Iridium Program

    NASA Astrophysics Data System (ADS)

    Viertel, Y.; Kinnersley, M.; Schumacher, I.

    2002-01-01

    The GRACE mission and the IRIDIUM mission on ROCKOT launch vehicle are presented. Two identical GRACE satellites to measure in tandem the gravitational field of the earth with previously unattainable accuracy - it's called the Gravity Research and Climate Experiment, or and is a joint project of the U.S. space agency, NASA and the German Centre for Aeronautics and Space Flight, DLR. In order to send the GRACE twins into a 500x500 km , 89deg. orbit, the Rockot launch vehicle was selected. A dual launch of two Iridium satellites was scheduled for June 2002 using the ROCKOT launch vehicle from Plesetsk Cosmodrome in Northern Russia. This launch will inject two replacement satellites into a low earth orbit (LEO) to support the maintenance of the Iridium constellation. In September 2001, Eurockot successfully carried out a "Pathfinder Campaign" to simulate the entire Iridium mission cycle at Plesetsk. The campaign comprised the transport of simulators and related equipment to the Russian port-of-entry and launch site and also included the integration and encapsulation of the simulators with the actual Rockot launch vehicle at Eurockot's dedicated launch facilities at Plesetsk Cosmodrome. The pathfinder campaign lasted four weeks and was carried out by a joint team that also included Khrunichev, Russian Space Forces and Eurockot personnel on the contractors' side. The pathfinder mission confirmed the capability of Eurockot Launch Services to perform the Iridium launch on cost and on schedule at Plesetsk following Eurockot's major investment in international standard preparation, integration and launch facilities including customer facilities and a new hotel. In 2003, Eurockot will also launch the Japanese SERVI'S-1 satellite for USEF. The ROCKOT launch vehicle is a 3 stage liquid fuel rocket whose first 2 stages have been adapted from the Russian SS-19. A third stage, called "Breeze", can be repeatedly ignited and is extraordinarily capable of manoeuvre. Rockot can place payloads of up to 1900 kilograms in near- earth orbit. The rocket is 29 meters long with a diameter of 2.5 meters. The launch weight is about 107 tons. Satellite launches with Rockot are a service offered and carried out by Eurockot Launch Service GmbH. It is a European Russian joint venture which is 51% controlled by Astrium and 49 % by Khrunichev, Russia's leading launch vehicle firm. The Rockot vehicles can be launched from Plesetsk in northern Russia and Baikonur in Kazakhstan. EUROCKOT provides a wide choice of flight-proven adapters and multi-satellite platforms to the customer to allow such payloads to be accommodated. These range from the Russian Single Pyro Point Attachment System (SPPA)

  15. Risk Analysis of On-Orbit Spacecraft Refueling Concepts

    NASA Technical Reports Server (NTRS)

    Cirillo, William M.; Stromgren, Chel; Cates, Grant R.

    2010-01-01

    On-orbit refueling of spacecraft has been proposed as an alternative to the exclusive use of Heavy-lift Launch Vehicles to enable human exploration beyond Low Earth Orbit (LEO). In these scenarios, beyond LEO spacecraft are launched dry (without propellant) or partially dry into orbit, using smaller or fewer element launch vehicles. Propellant is then launched into LEO on separate launch vehicles and transferred to the spacecraft. Refueling concepts are potentially attractive because they reduce the maximum individual payload that must be placed in Earth orbit. However, these types of approaches add significant complexity to mission operations and introduce more uncertainty and opportunities for failure to the mission. In order to evaluate these complex scenarios, the authors developed a Monte Carlo based discrete-event model that simulates the operational risks involved with such strategies, including launch processing delays, transportation system failures, and onorbit element lifetimes. This paper describes the methodology used to simulate the mission risks for refueling concepts, the strategies that were evaluated, and the results of the investigation. The results of the investigation show that scenarios that employ refueling concepts will likely have to include long launch and assembly timelines, as well as the use of spare tanker launch vehicles, in order to achieve high levels of mission success through Trans Lunar Injection.

  16. Specification and correlation of the sine vibration environment for Viking '75

    NASA Technical Reports Server (NTRS)

    Snyder, R. E.; Trummel, M.; Wada, B. K.; Pohlen, J. C.

    1974-01-01

    Two Viking spacecraft will be individually launched on a new Titan IIIE/Centaur D-1T launch vehicle in August 1975. The method for the establishment of spacecraft sine vibration test levels prior to availability of any Titan IIIE/Centaur D-1T flight data by use of both computer simulations and data from previous Titan and Atlas Centaur vehicles is described. The specification level is compared with actual flight data obtained from a proof flight launch of the Titan IIIE/Centaur D-1T and a Viking dynamic simulator in January 1974. An objective of the proof flight launch was to obtain estimates of the flight loads and environments. The criteria used to minimize the structural weight that would result from an unmodified application of a sine test environment are described.

  17. KSC-05PD-0898

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Dozens of media are gathered at the slidewire basket landing area on Launch Pad 39B to interview and hear comments from the STS-114 crew: Mission Specialists Andrew Thomas, Wendy Lawrence and Stephen Robinson, Commander Eileen Collins, Mission Specialists Charles Camarda and Soichi Noguchi, and Pilot James Kelly. Noguchi is with the Japan Aerospace Exploration Agency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is designated the first Return to Flight mission, with a launch window extending from July 13 to July 31.

  18. KSC-05PD-0900

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Dozens of media are gathered at the slidewire basket landing area on Launch Pad 39B to interview and hear comments from the STS-114 crew: Mission Specialists Andrew Thomas, Wendy Lawrence and Stephen Robinson, Commander Eileen Collins, Mission Specialists Charles Camarda and Soichi Noguchi, and Pilot James Kelly. Noguchi is with the Japan Aerospace Exploration Agency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is designated the first Return to Flight mission, with a launch window extending from July 13 to July 31.

  19. Study on launch scheme of space-net capturing system.

    PubMed

    Gao, Qingyu; Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang

    2017-01-01

    With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme.

  20. KSC-05PD-0850

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Commander Eileen Collins gets ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. Behind her is Capt. George Hoggard, who is astronaut rescue team leader. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.

  1. KSC-05PD-0849

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Mission Specialist Stephen Robinson (right) practices driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. At left is Capt. George Hoggard, who is astronaut rescue team leader. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.

  2. Study on launch scheme of space-net capturing system

    PubMed Central

    Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang

    2017-01-01

    With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme. PMID:28877187

  3. LDSD POST2 Simulation and SFDT-1 Pre-Flight Launch Operations Analyses

    NASA Technical Reports Server (NTRS)

    Bowes, Angela L.; Davis, Jody L.; Dutta, Soumyo; Striepe, Scott A.; Ivanov, Mark C.; Powell, Richard W.; White, Joseph

    2015-01-01

    The Low-Density Supersonic Decelerator (LDSD) Project's first Supersonic Flight Dynamics Test (SFDT-1) occurred June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was utilized to develop trajectory simulations characterizing all SFDT-1 flight phases from drop to splashdown. These POST2 simulations were used to validate the targeting parameters developed for SFDT- 1, predict performance and understand the sensitivity of the vehicle and nominal mission designs, and to support flight test operations with trajectory performance and splashdown location predictions for vehicle recovery. This paper provides an overview of the POST2 simulations developed for LDSD and presents the POST2 simulation flight dynamics support during the SFDT-1 launch, operations, and recovery.

  4. Effects Of Gravitational Perturbation On The Expression Of Genes Regulating Metabolism In Jurkat Cells

    PubMed Central

    Singh, Kanika; Cubano, Luis; Lewis, Marian

    2015-01-01

    Gravitational perturbation altered gene expression and increased glucose consumption in spaceflown Jurkat cells. The purpose of this study was to determine if the acceleration experienced during launch was responsible for these changes. In ground-based studies, cells were subjected to typical launch centrifugal acceleration (3g of force for eight minutes) and centrifugal force of 90g for five minutes (commonly used to sediment cells) in a laboratory centrifuge. Controls consisted of static cultures. Gene expression was analyzed by RT-PCR. pH and glucose concentrations were evaluated to monitor metabolic changes. Comparison with controls indicated no significant change in pH or glucose use. Gene expression of Jurkat cells subjected to 3g or 90g of force was altered for only two genes out of seven tested. This research suggests that the changes observed in Jurkat cells flown on STS-95 were not a result of launch acceleration but to other conditions experienced during space flight. PMID:23875517

  5. Improving Fidelity of Launch Vehicle Liftoff Acoustic Simulations

    NASA Technical Reports Server (NTRS)

    Liever, Peter; West, Jeff

    2016-01-01

    Launch vehicles experience high acoustic loads during ignition and liftoff affected by the interaction of rocket plume generated acoustic waves with launch pad structures. Application of highly parallelized Computational Fluid Dynamics (CFD) analysis tools optimized for application on the NAS computer systems such as the Loci/CHEM program now enable simulation of time-accurate, turbulent, multi-species plume formation and interaction with launch pad geometry and capture the generation of acoustic noise at the source regions in the plume shear layers and impingement regions. These CFD solvers are robust in capturing the acoustic fluctuations, but they are too dissipative to accurately resolve the propagation of the acoustic waves throughout the launch environment domain along the vehicle. A hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) modeling framework has been developed to improve such liftoff acoustic environment predictions. The framework combines the existing highly-scalable NASA production CFD code, Loci/CHEM, with a high-order accurate discontinuous Galerkin (DG) solver, Loci/THRUST, developed in the same computational framework. Loci/THRUST employs a low dissipation, high-order, unstructured DG method to accurately propagate acoustic waves away from the source regions across large distances. The DG solver is currently capable of solving up to 4th order solutions for non-linear, conservative acoustic field propagation. Higher order boundary conditions are implemented to accurately model the reflection and refraction of acoustic waves on launch pad components. The DG solver accepts generalized unstructured meshes, enabling efficient application of common mesh generation tools for CHEM and THRUST simulations. The DG solution is coupled with the CFD solution at interface boundaries placed near the CFD acoustic source regions. Both simulations are executed simultaneously with coordinated boundary condition data exchange.

  6. Saturn Apollo Program

    NASA Image and Video Library

    1963-05-10

    The Marshall Space Flight Center (MSFC) played a crucial role in the development of the huge Saturn rockets that delivered humans to the moon in the 1960s. Many unique facilities existed at MSFC for the development and testing of the Saturn rockets. Affectionately nicknamed “The Arm Farm”, the Random Motion/ Lift-Off Simulator was one of those unique facilities. This facility was developed to test the swingarm mechanisms that were used to hold the rocket in position until lift-off. The Arm Farm provided the capability of testing the detachment and reconnection of various arms under brutally realistic conditions. The 18-acre facility consisted of more than a half dozen arm test positions and one position for testing access arms used by the Apollo astronauts. Each test position had two elements: a vehicle simulator for duplicating motions during countdown and launch; and a section duplicating the launch tower. The vehicle simulator duplicated the portion of the vehicle skin that contained the umbilical connections and personnel access hatches. Driven by a hydraulic servo system, the vehicle simulator produced relative motion between the vehicle and tower. On the Arm Farm, extreme environmental conditions (such as a launch scrub during an approaching Florida thunderstorm) could be simulated. The dramatic scenes that the Marshall engineers and technicians created at the Arm Farm permitted the gathering of crucial technical and engineering data to ensure a successful real time launch from the Kennedy Space Center.

  7. Saturn Apollo Program

    NASA Image and Video Library

    1967-07-28

    The Marshall Space Flight Center (MSFC) played a crucial role in the development of the huge Saturn rockets that delivered humans to the moon in the 1960s. Many unique facilities existed at MSFC for the development and testing of the Saturn rockets. Affectionately nicknamed “The Arm Farm”, the Random Motion/ Lift-Off Simulator was one of those unique facilities. This facility was developed to test the swingarm mechanisms that were used to hold the rocket in position until lift-off. The Arm Farm provided the capability of testing the detachment and reconnection of various arms under brutally realistic conditions. The 18-acre facility consisted of more than a half dozen arm test positions and one position for testing access arms used by the Apollo astronauts. Each test position had two elements: a vehicle simulator for duplicating motions during countdown and launch; and a section duplicating the launch tower. The vehicle simulator duplicated the portion of the vehicle skin that contained the umbilical connections and personnel access hatches. Driven by a hydraulic servo system, the vehicle simulator produced relative motion between the vehicle and tower. On the Arm Farm, extreme environmental conditions (such as a launch scrub during an approaching Florida thunderstorm) could be simulated. The dramatic scenes that the Marshall engineers and technicians created at the Arm Farm permitted the gathering of crucial technical and engineering data to ensure a successful real time launch from the Kennedy Space Center.

  8. The biological clock of Neurospora in a microgravity environment.

    PubMed

    Ferraro, J S; Fuller, C A; Sulzman, F M

    1989-01-01

    The circadian rhythm of conidiation in Neurospora crassa is thought to be an endogenously derived circadian oscillation; however, several investigators have suggested that circadian rhythms may, instead, be driven by some geophysical time cue(s). An experiment was conducted on space shuttle flight STS-9 in order to test this hypothesis; during the first 7-8 cycles in space, there were several minor alterations observed in the conidiation rhythm, including an increase in the period of the oscillation, an increase in the variability of the growth rate and a diminished rhythm amplitude, which eventually damped out in 25% of the flight tubes. On day seven of flight, the tubes were exposed to light while their growth fronts were marked. Some aspect of the marking process reinstated a robust rhythm in all the tubes which continued throughout the remainder of the flight. These results from the last 86 hours of flight demonstrated that the rhythm can persist in space. Since the aberrant rhythmicity occurred prior to the marking procedure, but not after, it was hypothesized that the damping on STS-9 may have resulted from the hypergravity pulse of launch. To test this hypothesis, we conducted investigations into the effects of altered gravitational forces on conidiation. Exposure to hypergravity (via centrifugation), simulated microgravity (via the use of a clinostat) and altered orientations (via alterations in the vector of a 1 g force) were used to examine the effects of gravity upon the circadian rhythm of conidiation.

  9. Application of CFE/POST2 for Simulation of Launch Vehicle Stage Separation

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Tartabini, Paul V.; Toniolo, Matthew D.; Roithmayr, Carlos M.; Karlgaard, Christopher D.; Samareh, Jamshid A.

    2009-01-01

    The constraint force equation (CFE) methodology provides a framework for modeling constraint forces and moments acting at joints that connect multiple vehicles. With implementation in Program to Optimize Simulated Trajectories II (POST 2), the CFE provides a capability to simulate end-to-end trajectories of launch vehicles, including stage separation. In this paper, the CFE/POST2 methodology is applied to the Shuttle-SRB separation problem as a test and validation case. The CFE/POST2 results are compared with STS-1 flight test data.

  10. ARTEMIS: Ares Real Time Environments for Modeling, Integration, and Simulation

    NASA Technical Reports Server (NTRS)

    Hughes, Ryan; Walker, David

    2009-01-01

    This slide presentation reviews the use of ARTEMIS in the development and testing of the ARES launch vehicles. Ares Real Time Environment for Modeling, Simulation and Integration (ARTEMIS) is the real time simulation supporting Ares I hardware-in-the-loop (HWIL) testing. ARTEMIS accurately models all Ares/Orion/Ground subsystems which interact with Ares avionics components from pre-launch through orbit insertion The ARTEMIS System integration Lab, and the STIF architecture is reviewed. The functional components of ARTEMIS are outlined. An overview of the models and a block diagram is presented.

  11. KSC-07pd1289

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- Many former astronauts gather at the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. In front are John Young (left) and Bob Crippen. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  12. Antares Rocket Test Launch

    NASA Image and Video Library

    2013-04-21

    The Orbital Sciences Corporation Antares rocket is seen as it launches from Pad-0A of the Mid-Atlantic Regional Spaceport (MARS) at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013. The test launch marked the first flight of Antares and the first rocket launch from Pad-0A. The Antares rocket delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth's orbit. Photo Credit: (NASA/Bill Ingalls)

  13. Simulating Operations at a Spaceport

    NASA Technical Reports Server (NTRS)

    Nevins, Michael R.

    2007-01-01

    SPACESIM is a computer program for detailed simulation of operations at a spaceport. SPACESIM is being developed to greatly improve existing spaceports and to aid in designing, building, and operating future spaceports, given that there is a worldwide trend in spaceport operations from very expensive, research- oriented launches to more frequent commercial launches. From an operational perspective, future spaceports are expected to resemble current airports and seaports, for which it is necessary to resolve issues of safety, security, efficient movement of machinery and people, cost effectiveness, timeliness, and maximizing effectiveness in utilization of resources. Simulations can be performed, for example, to (1) simultaneously analyze launches of reusable and expendable rockets and identify bottlenecks arising from competition for limited resources or (2) perform what-if scenario analyses to identify optimal scenarios prior to making large capital investments. SPACESIM includes an object-oriented discrete-event-simulation engine. (Discrete- event simulation has been used to assess processes at modern seaports.) The simulation engine is built upon the Java programming language for maximum portability. Extensible Markup Language (XML) is used for storage of data to enable industry-standard interchange of data with other software. A graphical user interface facilitates creation of scenarios and analysis of data.

  14. Simulator - Ride, Sally K.

    NASA Image and Video Library

    1983-05-24

    S83-32569 (23 May 1983) --- A preview of NASA?s next spaceflight is provided by this scene in the Johnson Space Center?s Shuttle mission simulator (SMS) with four-fifths of the crew in the same stations they will be in for launch and landing phases of the Challenger?s second space mission. They are (left-right) Astronauts Robert L. Crippen, crew commander; Frederick H. Hauck, pilot; John M. Fabian and Dr. Sally K. Ride, mission specialists. Dr. Norman E. Thagard, a third mission specialist, is to be seated in the mid-deck area below the flight deck for launch and landing phases. Launch is now scheduled for June 18.

  15. Simulation and Analyses of Stage Separation Two-Stage Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Neirynck, Thomas A.; Hotchko, Nathaniel J.; Tartabini, Paul V.; Scallion, William I.; Murphy, Kelly J.; Covell, Peter F.

    2005-01-01

    NASA has initiated the development of methodologies, techniques and tools needed for analysis and simulation of stage separation of next generation reusable launch vehicles. As a part of this activity, ConSep simulation tool is being developed which is a MATLAB-based front-and-back-end to the commercially available ADAMS(registered Trademark) solver, an industry standard package for solving multi-body dynamic problems. This paper discusses the application of ConSep to the simulation and analysis of staging maneuvers of two-stage-to-orbit (TSTO) Bimese reusable launch vehicles, one staging at Mach 3 and the other at Mach 6. The proximity and isolated aerodynamic database were assembled using the data from wind tunnel tests conducted at NASA Langley Research Center. The effects of parametric variations in mass, inertia, flight path angle, altitude from their nominal values at staging were evaluated. Monte Carlo runs were performed for Mach 3 staging to evaluate the sensitivity to uncertainties in aerodynamic coefficients.

  16. Simulation and Analyses of Stage Separation of Two-Stage Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Neirynck, Thomas A.; Hotchko, Nathaniel J.; Tartabini, Paul V.; Scallion, William I.; Murphy, K. J.; Covell, Peter F.

    2007-01-01

    NASA has initiated the development of methodologies, techniques and tools needed for analysis and simulation of stage separation of next generation reusable launch vehicles. As a part of this activity, ConSep simulation tool is being developed which is a MATLAB-based front-and-back-end to the commercially available ADAMS(Registerd TradeMark) solver, an industry standard package for solving multi-body dynamic problems. This paper discusses the application of ConSep to the simulation and analysis of staging maneuvers of two-stage-to-orbit (TSTO) Bimese reusable launch vehicles, one staging at Mach 3 and the other at Mach 6. The proximity and isolated aerodynamic database were assembled using the data from wind tunnel tests conducted at NASA Langley Research Center. The effects of parametric variations in mass, inertia, flight path angle, altitude from their nominal values at staging were evaluated. Monte Carlo runs were performed for Mach 3 staging to evaluate the sensitivity to uncertainties in aerodynamic coefficients.

  17. Orion Service Module Umbilical (OSMU) Testing Complete

    NASA Image and Video Library

    2016-10-19

    Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The test team gathered for an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.

  18. Orion Service Module Umbilical (OSMU) Testing Complete

    NASA Image and Video Library

    2016-10-19

    Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. Patrick Simpkins, director of Engineering, speaks to the test team during an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.

  19. Orion Service Module Umbilical (OSMU) Testing Complete

    NASA Image and Video Library

    2016-10-19

    Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The test team gathered with a special banner during an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.

  20. Orion Service Module Umbilical (OSMU) Testing Complete

    NASA Image and Video Library

    2016-10-19

    Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. One of the test team members signs a banner during an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.

  1. Orion Service Module Umbilical (OSMU) Testing Complete

    NASA Image and Video Library

    2016-10-19

    Testing of the Orion Service Module Umbilical (OSMU) was completed at the Launch Equipment Test Facility at NASA’s Kennedy Space Center in Florida. The OSMU was attached to Vehicle Motion Simulator 1 for a series of simulated launch tests to validate it for installation on the mobile launcher. The test team signed a special banner during an event to mark the end of testing. The mobile launcher tower will be equipped with a number of lines, called umbilicals that will connect to the Space Launch System rocket and Orion spacecraft for Exploration Mission-1 (EM-1). The OSMU will be located high on the mobile launcher tower and, prior to launch, will transfer liquid coolant for the electronics and air for the Environmental Control System to the Orion service module that houses these critical systems to support the spacecraft. Kennedy's Engineering Directorate is providing support to the Ground Systems Development and Operations Program for testing of the OSMU. EM-1 is scheduled to launch in 2018.

  2. KSC-07pd1287

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. Walking through the crowd is former astronaut Roy Bridges, who also is a former center director of KSC. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  3. Environmental Conditions and Threatened and Endangered Species Populations near the Titan, Atlas, and Delta Launch Complexes, Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Oddy, Donna M.; Stolen, Eric D.; Schmalzer, Paul A.; Hensley, Melissa A.; Hall, Patrice; Larson, Vickie L.; Turek, Shannon R.

    1999-01-01

    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects. These could occur from direct impacts of launches or indirectly from habitat alterations. This report summarizes a three-year study (1 995-1 998) characterizing the environment, with particular attention to threatened and endangered species, near Delta, Atlas, and Titan launch facilities. Cape Canaveral has been modified by Air Force development and by 50 years of fire suppression. The dominant vegetation type around the Delta and Atlas launch complexes is coastal oak hammock forest. Oak scrub is the predominant upland vegetation type near the Titan launch complexes. Compositionally, these are coastal scrub communities that has been unburned for > 40 years and have developed into closed canopy, low-stature forests. Herbaceous vegetation around active and inactive facilities, coastal strand and dune vegetation near the Atlantic Ocean, and exotic vegetation in disturbed areas are common. Marsh and estuarine vegetation is most common west of the Titan complexes. Launch effects to vegetation include scorch, acid, and particulate deposition. Discernable, cumulative effects are limited to small areas near the launch complexes. Water quality samples were collected at the Titan, Atlas, and Delta launch complexes in September 1995 (wet season) and January 1996 (dry season). Samples were analyzed for heavy metals, chloride, total organic carbon, calcium, iron, magnesium, sodium, total alkalinity, pH, and conductivity. Differences between fresh, brackish, and saline surface waters were evident. The natural buffering capacity of the environment surrounding the CCAS launch complexes is adequate for neutralizing acid deposition in rainfall and launch deposition. Populations of the Florida Scrub-Jay (Aphelocoma coerulescens), a Federally-listed, threatened species, reside near the launch complexes. Thirty-seven to forty-one scrub-jay territories were located at Titan, Atlas, and Delta launch complexes between 1995 and 1997. No direct impacts to scrub-jays were observed as a result of normal launches. The explosion of the Delta rocket in January 1997 caused direct impacts to the habitat of several scrub-jays families, from fire and debris; however, no scrub-jay mortality was observed. Mortality exceeded reproductive output at all areas over the course of the study. Populations of the southeastern beach mouse (Peromyscus polionotus niveiventris) populations, a Federally listed, threatened species, reside near all the launch complexes. Hurricane Erin and several other tropical storms impacted several areas at the inception of the study in 1995 causing coastal habitat alterations as a result of salt-water intrusion. Both the habitat and the beach mice populations recovered during the course of the study. No direct impacts to southeastern beach mice were observed as a result of normal launch operations. Direct impacts were observed to the habitat as a result of the explosion of the Delta rocket in January 1997. This alteration of the habitat resulted in a shift in use with the mice moving on to the newly burned part of the site. Waterbirds use wetlands and aquatic systems near the launch complexes. Species include the Federally-listed, endangered Wood Stork (Mycferia americana) and several state-listed species of special concern including the Snowy Egret (Egretfa thula fhula), Reddish Egret (Egreffa rufescens rufescens), White Ibis (Eudocimus albus), Roseate Spoonbill (Ajaia ajaja), Tricolored Heron (Egreffa tricolor ruficolis), and Little Blue Heron (Egreffa caerulea). No impacts to these populations resulting from any launch operations were observed. Gopher tortoises (Gopherus polyphemus) also occur around the launch complexes. Most of those observed appeared to be in good condition; however, upper respiratory tract disease is known to occur in the population. Cape Canaveral Air Station, including areas near active launch colexes, remains important habitat for a variety of native plants and animals including threatened and endangered species. Direct negative effects of current launch systems appear limited. Additional monitoring of these populations and habitats is required to determine if subtle, long-term changes are occurring, to determine if new launch systems and facilities cause other effects, and to determine the effects of habitat restoration and management.

  4. Environmental Conditions and Threatened and Endangered Species Populations near the Titain, Atlas, and Delta Launch Complexes, Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Oddy, Donna M.; Stolen, Eric D.; Schmalzer, Paul A.; Hensley, Melissa A.; Hall, Patrice; Larson, Vickie L.; Turek, Shannon R.

    1999-01-01

    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects. These could occur from direct impacts of launches or indirectly from habitat alterations. This report summarizes a three-year study (1995-1998) characterizing the environment, with particular attention to threatened and endangered species, near Delta, Atlas, and Titan launch facilities. Cape Canaveral has been modified by Air Force development and by 50 years of fire suppression. The dominant vegetation type around the Delta and Atlas launch complexes is coastal oak hammock forest. Oak scrub is the predominant upland vegetation type near the Titan launch complexes. Compositionally, these are coastal scrub communities that has been unburned for greater than 40 years and have developed into closed canopy, low-stature forests. Herbaceous vegetation around active and inactive facilities, coastal strand and dune vegetation near the Atlantic Ocean, and exotic vegetation in disturbed areas are common. Marsh and estuarine vegetation is most common west of the Titan complexes. Launch effects to vegetation include scorch, acid, and particulate deposition. Discernable, cumulative effects are limited to small areas near the launch complexes. Water quality samples were collected at the Titan, Atlas, and Delta launch complexes in September 1995 (wet season) and January 1996 (dry season). Samples were analyzed for heavy metals, chloride, total organic carbon, calcium, iron, magnesium, sodium, total alkalinity, pH, and conductivity. Differences between fresh, brackish, and saline surface waters were evident. The natural buffering capacity of the environment surrounding the CCAS launch complexes is adequate for neutralizing acid deposition in rainfall and launch deposition. Populations of the Florida Scrub-Jay (Aphelocoma coerulescens), a Federally- listed, threatened species, reside near the launch complexes. Thirty-seven to forty-one scrub-jay territories were located at Titan, Atlas, and Delta launch complexes between 1995 and 1997. No direct impacts to scrub-jays were observed as a result of normal launches. The explosion of the Delta rocket in January 1997 caused direct impacts to the habitat of several scrub-jays families, from fire and debris; however, no scrub-jay mortality was observed. Mortality exceeded reproductive output at all areas over the course of the study. Populations of the southeastern beach mouse (Peromyscus polionotus niveiventris) populations, a Federally listed, threatened species, reside near all the launch complexes. Hurricane Erin and several other tropical storms impacted several areas at the inception of the study in 1995 causing coastal habitat alterations as a result of salt-water intrusion. Both the habitat and the beach mice populations recovered during the course of the study. No direct impacts to southeastern beach mice were observed as a result of normal launch operations. Direct impacts were observed to the habitat as a result of the explosion of the Delta rocket in January 1997. This alteration of the habitant resulted in a shift in use with the mice moving on to the newly burned part of the site. Waterbirds use wetlands and aquatic systems near the launch complexes. Species include the Federally-listed, endangered Wood Stork (Mycteria americana) and several state-listed species of special concern including the Snowy Egret (Egretta thula thula), Reddish Egret (Egretta rufescens rufescens), White Ibis (Eudocimus albus), Roseate Spoonbill (Ajaia ajaja), Tricolored Heron (Egretta tricolor ruficolis), and Little Blue Heron (Egretta caerulea). No impacts to these populations resulting from any launch operations were observed. Gopher tortoises (Gopherus polyphemus) also occur around the launch complexes. Most of those observed appeared to be in good condition; however, upper respiratory tract disease is known to occur in the population. Cape Canaveral Air Station, including areas near active launch complexes, remains important habitat for a variety of native plants and animals including threatened and endangered species. Direct negative effects of current launch systems appear limited. Additional monitoring of these populations and habitats is required to determine if subtle, long-term changes are occurring, to determine if new launch systems and facilities cause other effects, and to determine the effects of habitat restoration and management.

  5. Effects of microgravity or simulated launch on testicular function in rats

    NASA Technical Reports Server (NTRS)

    Amann, R. P.; Deaver, D. R.; Zirkin, B. R.; Grills, G. S.; Sapp, W. J.; Veeramachaneni, D. N. R.; Clemens, J. W.; Banerjee, S. D.; Folmer, J.; Gruppi, C. M.

    1992-01-01

    Reproductive toxicology and cellular and molecular biology approaches were used to evaluate testicular function in rats from Cosmos 2044. It is found that concentrations of testosterone in testicular tissue or peripheral blood plasma were reduced in flight rates to less than 20 percent of values for simulated-launch or vivarium controls. Spermatogenesis was essentially normal in flight rats, but production of testosterone was severely depressed.

  6. KSC-05PD-0851

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Commander Eileen Collins takes her turn at driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. Standing behind her is Capt. George Hoggard, who is astronaut rescue team leader. On the left is KSC videographer Glen Benson. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.

  7. KSC-05PD-0853

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Mission Specialist Soichi Noguchi drives an M- 113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. Behind him at left is Capt. George Hoggard, who is astronaut rescue team leader. Noguchi is with the Japan Aerospace Exploration Agency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.

  8. Time Domain Stability Margin Assessment Method

    NASA Technical Reports Server (NTRS)

    Clements, Keith

    2017-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.

  9. Time-Domain Stability Margin Assessment

    NASA Technical Reports Server (NTRS)

    Clements, Keith

    2016-01-01

    The baseline stability margins for NASA's Space Launch System (SLS) launch vehicle were generated via the classical approach of linearizing the system equations of motion and determining the gain and phase margins from the resulting frequency domain model. To improve the fidelity of the classical methods, the linear frequency domain approach can be extended by replacing static, memoryless nonlinearities with describing functions. This technique, however, does not address the time varying nature of the dynamics of a launch vehicle in flight. An alternative technique for the evaluation of the stability of the nonlinear launch vehicle dynamics along its trajectory is to incrementally adjust the gain and/or time delay in the time domain simulation until the system exhibits unstable behavior. This technique has the added benefit of providing a direct comparison between the time domain and frequency domain tools in support of simulation validation.

  10. Applying Monte Carlo Simulation to Launch Vehicle Design and Requirements Analysis

    NASA Technical Reports Server (NTRS)

    Hanson, J. M.; Beard, B. B.

    2010-01-01

    This Technical Publication (TP) is meant to address a number of topics related to the application of Monte Carlo simulation to launch vehicle design and requirements analysis. Although the focus is on a launch vehicle application, the methods may be applied to other complex systems as well. The TP is organized so that all the important topics are covered in the main text, and detailed derivations are in the appendices. The TP first introduces Monte Carlo simulation and the major topics to be discussed, including discussion of the input distributions for Monte Carlo runs, testing the simulation, how many runs are necessary for verification of requirements, what to do if results are desired for events that happen only rarely, and postprocessing, including analyzing any failed runs, examples of useful output products, and statistical information for generating desired results from the output data. Topics in the appendices include some tables for requirements verification, derivation of the number of runs required and generation of output probabilistic data with consumer risk included, derivation of launch vehicle models to include possible variations of assembled vehicles, minimization of a consumable to achieve a two-dimensional statistical result, recontact probability during staging, ensuring duplicated Monte Carlo random variations, and importance sampling.

  11. Sliding Mode Control of the X-33 Vehicle in Launch Mode

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri; Jackson, Mark; Hall, Charles; Krupp, Don; Hendrix, N. Douglas

    1998-01-01

    The "nested" structure of the control system for the X33 vehicle in launch mode is developed. Employing backstopping concepts, the outer loop (guidance) and the Inner loop (rates) continuous sliding mode controllers are designed. Simulations of the 3-DOF model of the X33 launch vehicle showed an accurate, robust, de-coupled tracking performance.

  12. Utilization of simulation tools in the HL-20 conceptual design process. [passenger-carrying lifting body portion of Personnel Launch System

    NASA Technical Reports Server (NTRS)

    Jackson, E. B.; Powell, Richard W.; Ragsdale, W. A.

    1991-01-01

    The role of simulations in the design of the HL-20, the crew-carrying unpowered lifting-body component of the NASA Personnel Launch System, is reviewed and illustrated with drawings and diagrams. Detailed consideration is given to the overall implementation of a real-time simulation of the HL-20 approach and landing phase, the baseline and experimental control laws used in the flight-control system, autoland guidance and control laws (vertical and lateral steering), the control-surface mixer and actuator model, and simulation results. The simulations allowed identification and correction of design problems with respect to the position of the landing gear and the original maximum L/D ratio of 3.2.

  13. Antares Rocket Test Launch

    NASA Image and Video Library

    2013-04-21

    NASA Deputy Administrator Lori Garver and other guests react after having watched the successful launch of the Orbital Sciences Corporation Antares rocket from the Mid-Atlantic Regional Spaceport (MARS) at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013. The test launch marked the first flight of Antares and the first rocket launch from Pad-0A. The Antares rocket delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth's orbit. Photo Credit: (NASA/Bill Ingalls)

  14. KSC-07pd1294

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- Former astronauts take their seats in the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. In the front row are (left to right) John Young, Rick Searfoss, Charles Bolden and Norm Thagard. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  15. Hybrid adaptive ascent flight control for a flexible launch vehicle

    NASA Astrophysics Data System (ADS)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the hybrid adaptive flight controller, development of a Newton's method based online parameter update that is modified to include a step size which regulates the rate of change in the parameter estimates, comparison of the modified Newton's method and recursive least squares online parameter update algorithms, modification of the neural network's input structure to accommodate for the nature of the nonlinearities present in a launch vehicle's ascent flight, examination of both tracking error based and modeling error based neural network weight update laws, and integration of feedback filters for the purpose of preventing harmful interaction between the flight control system and flexible structural modes. To validate the hybrid adaptive controller, a high-fidelity Ares I ascent flight simulator and a classical gain-scheduled proportional-integral-derivative (PID) ascent flight controller were obtained from the NASA Marshall Space Flight Center. The classical PID flight controller is used as a benchmark when analyzing the performance of the hybrid adaptive flight controller. Simulations are conducted which model both nominal and off-nominal flight conditions with structural flexibility of the vehicle either enabled or disabled. First, rigid body ascent simulations are performed with the hybrid adaptive controller under nominal flight conditions for the purpose of selecting the update laws which drive the indirect and direct adaptive components. With the neural network disabled, the results revealed that the recursive least squares online parameter update caused high frequency oscillations to appear in the engine gimbal commands. This is highly undesirable for long and slender launch vehicles, such as the Ares I, because such oscillation of the rocket nozzle could excite unstable structural flex modes. In contrast, the modified Newton's method online parameter update produced smooth control signals and was thus selected for use in the hybrid adaptive launch vehicle flight controller. In the simulations where the online parameter identification algorithm was disabled, the tracking error based neural network weight update law forced the network's output to diverge despite repeated reductions of the adaptive learning rate. As a result, the modeling error based neural network weight update law (which generated bounded signals) is utilized by the hybrid adaptive controller in all subsequent simulations. Comparing the PID and hybrid adaptive flight controllers under nominal flight conditions in rigid body ascent simulations showed that their tracking error magnitudes are similar for a period of time during the middle of the ascent phase. Though the PID controller performs better for a short interval around the 20 second mark, the hybrid adaptive controller performs far better from roughly 70 to 120 seconds. Elevating the aerodynamic loads by increasing the force and moment coefficients produced results very similar to the nominal case. However, applying a 5% or 10% thrust reduction to the first stage rocket motor causes the tracking error magnitude observed by the PID controller to be significantly elevated and diverge rapidly as the simulation concludes. In contrast, the hybrid adaptive controller steadily maintains smaller errors (often less than 50% of the corresponding PID value). Under the same sets of flight conditions with flexibility enabled, the results exhibit similar trends with the hybrid adaptive controller performing even better in each case. Again, the reduction of the first stage rocket motor's thrust clearly illustrated the superior robustness of the hybrid adaptive flight controller.

  16. Experiments to assess preheat in blast-wave-drive instability experiments

    NASA Astrophysics Data System (ADS)

    Krauland, Christine; Drake, Paul; Kuranz, Carolyn; Grosskopf, Michael; Boehly, Tom

    2009-11-01

    The use of multi-kilojoule, ns lasers to launch shock waves has become a standard method for initiating hydrodynamic experiments in Laboratory Astrophysics. However, the intense laser ablation that creates moving plasma also leads to the production of unwanted energetic x-rays and suprathermal electrons, both of which can be sources of material preheating. In principle, this preheat can alter the conditions of the experimental setup prior to the occurrence of the intended dynamics. At the University of Michigan, ongoing Rayleigh-Taylor instability experiments are defined by precise initial conditions, and potential deformation due to preheat could greatly affect their accuracy. An experiment devised and executed in an attempt to assess the preheat in this specific case will be presented, along with the quantitative analysis of the data obtained and comparison with 2D simulations.

  17. STS-37 MS Jerome Apt during water egress exercise in JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-37 Mission Specialist (MS) Jerome Apt, wearing launch and entry suit (LES) and launch and entry helmet (LEH), is suspended above pool via a parachute harness during water egress exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Apt simulates emergency egress from a Space Shuttle. The WETF's 25-ft pool served as a simulated ocean into which a parachute landing might be made.

  18. STS-37 MS Linda M. Godwin during water egress exercise in JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-37 Mission Specialist (MS) Linda M. Godwin, wearing launch and entry suit (LES) and launch and entry helmet (LEH), is suspended above pool via a parachute harness during water egress exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. Godwin simulates emergency egress from a Space Shuttle. The WETF's 25-ft pool served as a simulated ocean into which a parachute landing might be made.

  19. KSC-2011-2707

    NASA Image and Video Library

    2011-04-01

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center in Florida, the STS-134 crew takes a break from a simulated launch countdown and simulated pad emergency to take a group photo on the 195-foot level of Launch Pad 39A. From left are, Commander Mark Kelly, Pilot Greg H. Johnson, and Mission Specialists Michael Fincke, Andrew Feustel, Roberto Vittori, with the European Space Agency, and Greg Chamitoff. The simulations are part of a week-long Terminal Countdown Demonstration Test (TCDT). Endeavour's six crew members are targeted to launch April 19 at 7:48 p.m. EDT. They will deliver the Express Logistics Carrier-3, Alpha Magnetic Spectrometer-2 (AMS), a high-pressure gas tank, additional spare parts for the Dextre robotic helper and micrometeoroid debris shields to the International Space Station. This will be the final spaceflight for Endeavour. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Kim Shiflett

  20. STS-46 ESA MS Nicollier in life raft during water egress training at JSC WETF

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a one-person life raft during a launch emergency egress (bailout) simulation conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.

  1. STS-46 MS Chang-Diaz floats in life raft during water egress training at JSC

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Franklin R. Chang-Diaz, wearing launch and entry suit (LES) and launch and entry helmet (LEH), relies on a one-person life raft to get him to 'safety' during a launch emergency egress (bailout) simulation conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.

  2. KSC-06pd1081

    NASA Image and Video Library

    2006-06-15

    KENNEDY SPACE CENTER, FLA. - STS-121 Mission Specialist Stephanie Wilson signals all is well after donning her launch and entry suit in preparation for the simulated countdown she and other crew members will undertake. The crew is taking part in Terminal Countdown Demonstration Test activities, including the dress rehearsal for launch. Mission STS-121 is scheduled to be launched July 1. Photo credit: NASA/Kim Shiflett

  3. Simulation of Wind Profile Perturbations for Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    2004-01-01

    Ideally, a statistically representative sample of measured high-resolution wind profiles with wavelengths as small as tens of meters is required in design studies to establish aerodynamic load indicator dispersions and vehicle control system capability. At most potential launch sites, high- resolution wind profiles may not exist. Representative samples of Rawinsonde wind profiles to altitudes of 30 km are more likely to be available from the extensive network of measurement sites established for routine sampling in support of weather observing and forecasting activity. Such a sample, large enough to be statistically representative of relatively large wavelength perturbations, would be inadequate for launch vehicle design assessments because the Rawinsonde system accurately measures wind perturbations with wavelengths no smaller than 2000 m (1000 m altitude increment). The Kennedy Space Center (KSC) Jimsphere wind profiles (150/month and seasonal 2 and 3.5-hr pairs) are the only adequate samples of high resolution profiles approx. 150 to 300 m effective resolution, but over-sampled at 25 m intervals) that have been used extensively for launch vehicle design assessments. Therefore, a simulation process has been developed for enhancement of measured low-resolution Rawinsonde profiles that would be applicable in preliminary launch vehicle design studies at launch sites other than KSC.

  4. A hypervelocity launcher for simulated large fragment space debris impacts at 10 km/s

    NASA Technical Reports Server (NTRS)

    Tullos, R. J.; Gray, W. M.; Mullin, S. A.; Cour-Palais, B. G.

    1989-01-01

    The background, design, and testing of two explosive launchers for simulating large fragment space debris impacts are presented. The objective was to develop a launcher capable of launching one gram aluminum fragments at velocities of 10 km/s. The two launchers developed are based on modified versions of an explosive shaped charge, common in many military weapons. One launcher design has yielded a stable fragment launch of approximately one gram of aluminum at 8.93 km/s velocity. The other design yielded velocities in excess of 10 km/s, but failed to produce a cohesive fragment launch. This work is ongoing, and future plans are given.

  5. STS-26 crew during emergency egress exercise at LC 39 launch pad B

    NASA Image and Video Library

    1988-05-04

    S88-40898 (4 May 1988) --- Astronauts, members of the orbiter close-out crew and fire and rescue personnel participate in a simulated emergency egress exercise near the slide wire termination point bunker at Launch Pad 39B. The simulated exercise was performed to familiarize personnel with evacuation routes as well as emergency equipment and procedures. Reasons for conducting the emergency exercises include the need to validate recent post-Challenger upgrades to the launch pad's emergency escape system and the new procedures developed in preparation for STS-26. (NOTE: The astronaut pictured and many of the others who participated in the exercises are not members of STS-26 prime crew).

  6. Investigation of solid plume simulation criteria to produce flight plume effects on multibody configuration in wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Frost, A. L.; Dill, C. C.

    1986-01-01

    An investigation to determine the sensitivity of the space shuttle base and forebody aerodynamics to the size and shape of various solid plume simulators was conducted. Families of cones of varying angle and base diameter, at various axial positions behind a Space Shuttle launch vehicle model, were wind tunnel tested. This parametric evaluation yielded base pressure and force coefficient data which indicated that solid plume simulators are an inexpensive, quick method of approximating the effect of engine exhaust plumes on the base and forebody aerodynamics of future, complex multibody launch vehicles.

  7. Antares Rocket Test Launch

    NASA Image and Video Library

    2013-04-21

    NASA Administrator Charles Bolden and NASA Deputy Administrator Lori Garver and other guests react after having watched the successful launch of the Orbital Sciences Corporation Antares rocket from the Mid-Atlantic Regional Spaceport (MARS) at the NASA Wallops Flight Facility in Virginia, Sunday, April 21, 2013. The test launch marked the first flight of Antares and the first rocket launch from Pad-0A. The Antares rocket delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth's orbit. Photo Credit: (NASA/Bill Ingalls)

  8. STS-79 Commander William Readdy arrives at SLF

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-79 Commander William F. Readdy arrives at KSC's Shuttle Landing Facility with five fellow astronauts, ready to participate in the Terminal Countdown Demonstration Test (TCDT). The TCDT is a dress rehearsal for launch for the flight crew and launch team. Over the next several days, the astronauts will take part in training exercises at the launch pad that will culminate in a simulated launch countdown. The Space Shuttle Atlantis is being prepared for liftoff on STS-79 around September 12.

  9. KSC-07pd2717

    NASA Image and Video Library

    2007-10-08

    KENNEDY SPACE CENTER, FLA. -- STS-120 Mission Specialist Doug Wheelock has his helmet fitted on his launch and entry suit, preparing for launch. The fitting is part of terminal countdown demonstration test, or TCDT, activities the crew is undertaking at NASA's Kennedy Space Center. The TCDT also includes emergency egress procedures, equipment familiarization and a simulated launch countdown. Mission STS-120, which will carry the Italian-built U.S. Node 2 to the International Space Station, is targeted for launch on Oct. 23. Photo credit: NASA/Kim Shiflett

  10. KSC-07pd2719

    NASA Image and Video Library

    2007-10-08

    KENNEDY SPACE CENTER, FLA. -- STS-120 Mission Specialist Daniel Tani tries on his helmet with his launch and entry suit, preparing for launch. The fitting is part of terminal countdown demonstration test, or TCDT, activities the crew is undertaking at NASA's Kennedy Space Center. The TCDT also includes emergency egress procedures, equipment familiarization and a simulated launch countdown. Mission STS-120, which will carry the Italian-built U.S. Node 2 to the International Space Station, is targeted for launch on Oct. 23. Photo credit: NASA/Kim Shiflett

  11. KSC-07pd2715

    NASA Image and Video Library

    2007-10-08

    KENNEDY SPACE CENTER, FLA. -- STS-120 Mission Specialist Doug Wheelock tries on his launch and entry suit to prepare for launch. The fitting is part of terminal countdown demonstration test, or TCDT, activities the crew is undertaking at NASA's Kennedy Space Center. The TCDT also includes emergency egress procedures, equipment familiarization and a simulated launch countdown. Mission STS-120, which will carry the Italian-built U.S. Node 2 to the International Space Station, is targeted for launch on Oct. 23. Photo credit: NASA/Kim Shiflett

  12. KSC-07pd2718

    NASA Image and Video Library

    2007-10-08

    KENNEDY SPACE CENTER, FLA. -- STS-120 Mission Specialist Paolo Nespoli has his helmet fitted on his launch and entry suit, preparing for launch. The fitting is part of terminal countdown demonstration test, or TCDT, activities the crew is undertaking at NASA's Kennedy Space Center. The TCDT also includes emergency egress procedures, equipment familiarization and a simulated launch countdown. Mission STS-120, which will carry the Italian-built U.S. Node 2 to the International Space Station, is targeted for launch on Oct. 23. Photo credit: NASA/Kim Shiflett

  13. KSC-07pd2721

    NASA Image and Video Library

    2007-10-08

    KENNEDY SPACE CENTER, FLA. -- STS-120 Mission Specialist Stephanie Wilson tries on her launch and entry suit, preparing for launch. The fitting is part of terminal countdown demonstration test, or TCDT, activities the crew is undertaking at NASA's Kennedy Space Center. The TCDT also includes emergency egress procedures, equipment familiarization and a simulated launch countdown. Mission STS-120, which will carry the Italian-built U.S. Node 2 to the International Space Station, is targeted for launch on Oct. 23. Photo credit: NASA/Kim Shiflett

  14. KSC-07pd1292

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- A crowd of visitors to Kennedy Space Center's Visitor Complex eagerly wait to experience the newest attraction, the Shuttle Launch Experience. The attraction was officially open to the public following a ribbon breaking attended by NASA, Kennedy Space Center and State of Florida dignitaries. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  15. KSC-07pd1293

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- Former astronauts take their seats in the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. In the front row are (from left) Bob Crippen, John Young, Rick Searfoss, Charles Bolden and Norm Thagard. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  16. STS-100 crew take a group photo before walkou

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. - The STS-100 crew pauses for a photo before walkout and the ride to Launch Pad 39A for a simulated countdown. Standing, from left, are Mission Specialists Scott E. Parazynski, Umberto Guidoni, John L. Phillips, Yuri V. Lonchakov and Chris A. Hadfield; Commander Kent V. Rominger; and Pilot Jeffrey S. Ashby. The STS-100 crew is at KSC for Terminal Countdown Demonstration Test activities that include emergency escape training at the pad and the simulated launch countdown. The mission is carrying the Multi-Purpose Logistics Module Raffaello and the SSRMS, to the International Space Station. Raffaello carries six system racks and two storage racks for the U.S. Lab. The SSRMS is crucial to the continued assembly of the orbiting complex. Launch of mission STS-100 is scheduled for April 19 at 2:41 p.m. EDT from Launch Pad 39A.

  17. KSC-05PD-0847

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Mission Specialist Charles Camarda is getting ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. Behind him are Mission Specialist Stephen Robinson and Capt. George Hoggard, who is astronaut rescue team leader, and, at right, Commander Eileen Collins. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.

  18. KSC-05PD-0852

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, STS-114 Mission Specialist Soichi Noguchi is ready to practice driving an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. Behind him at left is Capt. George Hoggard, who is astronaut rescue team leader. Noguchi is with the Japan Aerospace Exploration Agency.The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.

  19. Heart rate and pulmonary function while wearing the launch-entry crew escape suit (LES) during + Gx acceleration and simulated Shuttle launch

    NASA Technical Reports Server (NTRS)

    Krutz, Robert W., Jr.; Bagian, James P.; Burton, Russell R.; Meeker, Larry J.

    1990-01-01

    Space shuttle crewmembers have been equipped with a launch-entry crew escape system (LES) since the Challenger accident in 1986. Some crewmembers, wearing the new pressure suit, have reported breathing difficulties and increased effort to achieve the desired range of motion. This study was conducted to quantify the reported increased physical workloads and breathing difficulty associated with wearing the LES. Both veteran astronauts and centrifuge panel members were exposed to various + Gx profiles (including simulated shuttle launch) + Gx on the USAF School of Aerospace Medicine (USAFSAM) human-use centrifuge. Maximum heart rate data showed no increased workload associated with arm and head movement in the LES when compared to the flight suit/helmet ensemble (LEH). However, the LES did impose a significant increase in breathing difficulty beginning at +2.5 Gx which was demonstrated by a decrease in forced vital capacity and subjected questionnaries.

  20. KSC-07pd1286

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex the Shuttle Launch Experience. Former astronauts John Young (left) and Bob Crippen (right) share their impressions with the audience. Seated on stage are Lt. Governor of Florida Jeff Kottkamp and Center Director Bill Parsons. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  1. Structural Dynamics Testing of Advanced Stirling Convertor Components

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Williams, Zachary Douglas

    2013-01-01

    NASA Glenn Research Center has been supporting the development of Stirling energy conversion for use in space. Lockheed Martin has been contracted by the Department of Energy to design and fabricate flight-unit Advanced Stirling Radioisotope Generators, which utilize Sunpower, Inc., free-piston Advanced Stirling Convertors. The engineering unit generator has demonstrated conversion efficiency in excess of 20 percent, offering a significant improvement over existing radioisotope-fueled power systems. NASA Glenn has been supporting the development of this generator by developing the convertors through a technology development contract with Sunpower, and conducting research and experiments in a multitude of areas, such as high-temperature material properties, organics testing, and convertor-level extended operation. Since the generator must undergo launch, several launch simulation tests have also been performed at the convertor level. The standard test sequence for launch vibration exposure has consisted of workmanship and flight acceptance levels. Together, these exposures simulate what a flight convertor will experience. Recently, two supplementary tests were added to the launch vibration simulation activity. First was a vibration durability test of the convertor, intended to quantify the effect of vibration levels up to qualification level in both the lateral and axial directions. Second was qualification-level vibration of several heater heads with small oxide inclusions in the material. The goal of this test was to ascertain the effect of the inclusions on launch survivability to determine if the heater heads were suitable for flight.

  2. Problem of intensity reduction of acoustic fields generated by gas-dynamic jets of motors of the rocket-launch vehicles at launch

    NASA Astrophysics Data System (ADS)

    Vorobyov, A. M.; Abdurashidov, T. O.; Bakulev, V. L.; But, A. B.; Kuznetsov, A. B.; Makaveev, A. T.

    2015-04-01

    The present work experimentally investigates suppression of acoustic fields generated by supersonic jets of the rocket-launch vehicles at the initial period of launch by water injection. Water jets are injected to the combined jet along its perimeter at an angle of 0° and 60°. The solid rocket motor with the rocket-launch vehicles simulator case is used at tests. Effectiveness of reduction of acoustic loads on the rocket-launch vehicles surface by way of creation of water barrier was proved. It was determined that injection angle of 60° has greater effectiveness to reduce pressure pulsation levels.

  3. Use of DES Modeling for Determining Launch Availability for SLS

    NASA Technical Reports Server (NTRS)

    Watson, Michael; Staton, Eric; Cates, Grant; Finn, Ronald; Altino, Karen M.; Burns, K. Lee

    2014-01-01

    (1) NASA is developing a new heavy lift launch system for human and scientific exploration beyond Earth orbit comprising of the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and Ground Systems Development and Operations (GSDO); (2) The desire of the system is to ensure a high confidence of successfully launching the exploration missions, especially those that require multiple launches, have a narrow Earth departure window, and high investment costs; and (3) This presentation discusses the process used by a Cross-Program team to develop the Exploration Systems Development (ESD) Launch Availability (LA) Technical Performance Measure (TPM) and allocate it to each of the Programs through the use of Discrete Event Simulations (DES).

  4. 46 CFR 115.702 - Installation tests and inspections.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CERTIFICATION Repairs and Alterations § 115.702 Installation tests and inspections. Whenever a launching appliance, survival craft, rescue boat, fixed gas fire extinguishing system, machinery, fuel tank, or...

  5. 46 CFR 115.702 - Installation tests and inspections.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CERTIFICATION Repairs and Alterations § 115.702 Installation tests and inspections. Whenever a launching appliance, survival craft, rescue boat, fixed gas fire extinguishing system, machinery, fuel tank, or...

  6. 46 CFR 115.702 - Installation tests and inspections.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CERTIFICATION Repairs and Alterations § 115.702 Installation tests and inspections. Whenever a launching appliance, survival craft, rescue boat, fixed gas fire extinguishing system, machinery, fuel tank, or...

  7. 46 CFR 115.702 - Installation tests and inspections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CERTIFICATION Repairs and Alterations § 115.702 Installation tests and inspections. Whenever a launching appliance, survival craft, rescue boat, fixed gas fire extinguishing system, machinery, fuel tank, or...

  8. 46 CFR 115.702 - Installation tests and inspections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CERTIFICATION Repairs and Alterations § 115.702 Installation tests and inspections. Whenever a launching appliance, survival craft, rescue boat, fixed gas fire extinguishing system, machinery, fuel tank, or...

  9. 48 CFR 1852.228-78 - Cross-waiver of liability for NASA expendable launch vehicle launches.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... on return from space to develop further a payload's product or process except when such development..., simulation, or guidance and control equipment and related facilities or services. (6) Related entity means...

  10. Study on method to simulate light propagation on tissue with characteristics of radial-beam LED based on Monte-Carlo method.

    PubMed

    Song, Sangha; Elgezua, Inko; Kobayashi, Yo; Fujie, Masakatsu G

    2013-01-01

    In biomedical, Monte-carlo simulation is commonly used for simulation of light diffusion in tissue. But, most of previous studies did not consider a radial beam LED as light source. Therefore, we considered characteristics of a radial beam LED and applied them on MC simulation as light source. In this paper, we consider 3 characteristics of radial beam LED. The first is an initial launch area of photons. The second is an incident angle of a photon at an initial photon launching area. The third is the refraction effect according to contact area between LED and a turbid medium. For the verification of the MC simulation, we compared simulation and experimental results. The average of the correlation coefficient between simulation and experimental results is 0.9954. Through this study, we show an effective method to simulate light diffusion on tissue with characteristics for radial beam LED based on MC simulation.

  11. Effect of 25 cycles of launch pad exposure and simulated mission heating on space shuttle reusable surface insulation coated with reaction cured glass

    NASA Technical Reports Server (NTRS)

    Ransone, P. O.; Morrison, J. D.; Minster, J. E.

    1979-01-01

    Tiles of space shuttle reusable surface insulation coated with reaction cured glass were subjected to 25 cycles of launch pad exposure and simulated mission heating. The coating could not withstand the environment without cracking. Water absorption after cracking reached as high as 150 weight percent. Exposure of insulation fibers beneath the coating to contaminants dissolved in absorbed water initiated fiber degradation.

  12. STS-37 Mission Specialist (MS) Godwin floating in life raft in JSC WETF pool

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-37 Mission Specialist (MS) Linda M. Godwin, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a one-person life raft during a training session in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. She was simulating steps involved in emergency egress from a Space Shuttle. The WETF's 25-ft deep pool served as a simulated ocean into which a parachute landing might be made.

  13. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  14. A Robust Method to Integrate End-to-End Mission Architecture Optimization Tools

    NASA Technical Reports Server (NTRS)

    Lugo, Rafael; Litton, Daniel; Qu, Min; Shidner, Jeremy; Powell, Richard

    2016-01-01

    End-to-end mission simulations include multiple phases of flight. For example, an end-to-end Mars mission simulation may include launch from Earth, interplanetary transit to Mars and entry, descent and landing. Each phase of flight is optimized to meet specified constraints and often depend on and impact subsequent phases. The design and optimization tools and methodologies used to combine different aspects of end-to-end framework and their impact on mission planning are presented. This work focuses on a robust implementation of a Multidisciplinary Design Analysis and Optimization (MDAO) method that offers the flexibility to quickly adapt to changing mission design requirements. Different simulations tailored to the liftoff, ascent, and atmospheric entry phases of a trajectory are integrated and optimized in the MDAO program Isight, which provides the user a graphical interface to link simulation inputs and outputs. This approach provides many advantages to mission planners, as it is easily adapted to different mission scenarios and can improve the understanding of the integrated system performance within a particular mission configuration. A Mars direct entry mission using the Space Launch System (SLS) is presented as a generic end-to-end case study. For the given launch period, the SLS launch performance is traded for improved orbit geometry alignment, resulting in an optimized a net payload that is comparable to that in the SLS Mission Planner's Guide.

  15. The Impact of New Trends in Satellite Launches on the Orbital Debris Environment

    NASA Technical Reports Server (NTRS)

    Karacalioglu, Arif Goektug; Stupl, Jan

    2016-01-01

    The main goal of this study is to examine the impact of new trends in satellite launch activities on the orbital debris environment and collision risk. As a foundation for the study, we developed a deployment scenario for satellites and associated rocket bodies based on publicly announced future missions. The upcoming orbital injection technologies, such as the new launch vehicles dedicated for small spacecraft and propulsive interstages, are also considered in this scenario. We then used a simulation tool developed in-house to propagate the objects within this scenario using variable-sized time-steps as small as one second to detect conjunctions between objects. The simulation makes it possible to follow the short- and long-term effects of a particular satellite or constellation in the space environment. Likewise, the effects of changes in the debris environment on a particular satellite or constellation can be evaluated. It is our hope that the results of this paper and further utilization of the developed simulation tool will assist in the investigation of more accurate deorbiting metrics to replace the generic 25-year disposal guidelines, as well as to guide future launches toward more sustainable and safe orbits.

  16. STS-114: Discovery L-2 Countdown Status Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    George Diller of NASA Public Affairs hosted this briefing. Pete Nickolenko, NASA Test Director; Scott Higgenbotham, STS-114 Payload-Mission Manager; Cathy Winters, Shuttle Weather Officer were present. Pete reports his team has completed the avionics system check ups, servicing of the cryogenic tanks will take about seven hours that day, and will perform engine system checks and pad close outs come evening. Pete also summarized other standard close out activities: check ups of the Orbiter and ground communications network, rotary service, structure retraction, and external tank load (ETL). Pete reported that the mission will be 12 days with two weather contingency days, and end of mission landing scheduled at Kennedy Space Center (KSC) at approximately 11:00 in the morning, Eastern time on July 25th. Scott briefly reported that all hardware is on board Discovery, closed out, and ready to fly. Cathy reported that hurricane Dennis moved to the North and looking forward to launch. She mentioned of a new hurricane looming and will be named Emily, spotted some crosswinds which will migrate to the west, there is 30% probability weather prohibiting launch. Cathy further gave current weather forecast supported with charts: the Launch Forecast, Tanking Forecast, SRB (Shuttle Solid Rocket Booster) Forecast, CONUS and TAL Launch Sites Forecast, and with 24 hours and 48 hours turn around plan. Launch constraints, weather, crosswinds, cloud cover, ground imagery system, launch countdown, launch crews, mission management simulations, launch team simulations were topics covered with the News Media.

  17. Progress in Unsteady Turbopump Flow Simulations

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Chan, William; Kwak, Dochan; Williams, Robert

    2002-01-01

    This viewgraph presentation discusses unsteady flow simulations for a turbopump intended for a reusable launch vehicle (RLV). The simulation process makes use of computational grids and parallel processing. The architecture of the parallel computers used is discussed, as is the scripting of turbopump simulations.

  18. The Unitary Plan Wind Tunnel(UPWT) Test 1891 Space Launch System

    NASA Image and Video Library

    2014-10-15

    Stage Separation Test of the Space Launch System(SLS) in the Langley Unitary Plan Wind Tunnel (UPWT). The model used High Pressure air blown through the solid rocket boosters. (SRB) to simulate the booster separation motors (BSM) firing.

  19. The Unitary Plan Wind Tunnel(UPWT) Test 1891 Space Launch System

    NASA Image and Video Library

    2014-10-14

    Stage Separation Test of the Space Launch System(SLS) in the Langley Unitary Plan Wind Tunnel (UPWT). The model used High Pressure air blown through the solid rocket boosters. (SRB) to simulate the booster separation motors (BSM) firing.

  20. Development of a Pressure Box to Evaluate Reusable-Launch-Vehicle Cryogenic-Tank Panels

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Sikora, Joseph; Maguire, James F.; Winn, Peter M.

    1996-01-01

    A cryogenic pressure-box test machine has been designed and is being developed to test full-scale reusable-launch-vehicle cryogenic-tank panels. This machine is equipped with an internal pressurization system, a cryogenic cooling system, and a heating system to simulate the mechanical and thermal loading conditions that are representative of a reusable-launch-vehicle mission profile. The cryogenic cooling system uses liquid helium and liquid nitrogen to simulate liquid hydrogen and liquid oxygen tank internal temperatures. A quartz lamp heating system is used for heating the external surface of the test panels to simulate cryogenic-tank external surface temperatures during re-entry of the launch vehicle. The pressurization system uses gaseous helium and is designed to be controlled independently of the cooling system. The tensile loads in the axial direction of the test panel are simulated by means of hydraulic actuators and a load control system. The hoop loads in the test panel are reacted by load-calibrated turnbuckles attached to the skin and frame elements of the test panel. The load distribution in the skin and frames can be adjusted to correspond to the tank structure by using these turnbuckles. The seal between the test panel and the cryogenic pressure box is made from a reinforced Teflon material which can withstand pressures greater than 52 psig at cryogenic temperatures. Analytical results and tests on prototype test components indicate that most of the cryogenic-tank loading conditions that occur in flight can be simulated in the cryogenic pressure-box test machine.

  1. Manufacturing Process Simulation of Large-Scale Cryotanks

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Phillips, Steven; Griffin, Brian; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA's Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aid in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI.

  2. Simulation of launch and re-entry acceleration profiles for testing of shuttle and unmanned microgravity research payloads

    NASA Astrophysics Data System (ADS)

    Cassanto, J. M.; Ziserman, H. I.; Chapman, D. K.; Korszun, Z. R.; Todd, P.

    Microgravity experiments designed for execution in Get-Away Special canisters, Hitchhiker modules, and Reusable Re-entry Satellites will be subjected to launch and re-entry accelerations. Crew-dependent provisions for preventing acceleration damage to equipment or products will not be available for these payloads during flight; therefore, the effects of launch and re-entry accelerations on all aspects of such payloads must be evaluated prior to flight. A procedure was developed for conveniently simulating the launch and re-entry acceleration profiles of the Space Shuttle (3.3 and 1.7 × g maximum, respectively) and of two versions of NASA's proposed materials research Re-usable Re-entry Satellite (8 × g maximum in one case and 4 × g in the other). By using the 7 m centrifuge of the Gravitational Plant Physiology Laboratory in Philadelphia it was found possible to simulate the time dependence of these 5 different acceleration episodes for payload masses up to 59 kg. A commercial low-cost payload device, the “Materials Dispersion Apparatus” of Instrumentation Technology Associates was tested for (1) integrity of mechanical function, (2) retention of fluid in its compartments, and (3) integrity of products under simulated re-entry g-loads. In particular, the sharp rise from 1 g to maximum g-loading that occurs during re-entry in various unmanned vehicles was successfully simulated, conditions were established for reliable functioning of the MDA, and crystals of 5 proteins suspended in compartments filled with mother liquor were subjected to this acceleration load.

  3. KSC-97PC1613

    NASA Image and Video Library

    1997-11-05

    STS-87 Payload Specialist Leonid Kadenyuk, at right, of the National Space Agency of Ukraine (NSAU) is assisted into his orange launch and entry spacesuit ensemble by NASA Suit Technician Al Rochford, at left, before participating in Terminal Countdown Demonstration Test (TCDT) activities. The crew of the STS-87 mission is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay

  4. STS-87 Commander Kregel holds the crew patch in front of Columbia's entry hatch at LC 39B during TCD

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-87 Commander Kevin Kregel holds the crew patch in front of Columbia's entry hatch at Launch Pad 39B during Terminal Countdown Demonstration Test (TCDT) activities. The crew of the STS-87 mission is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  5. KSC-08pd3438

    NASA Image and Video Library

    2008-10-29

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialist Sandra Magnus is strapped into her seat in space shuttle Endeavour. She and other crew members will take part in a simulated launch countdown. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder

  6. KSC-08pd3437

    NASA Image and Video Library

    2008-10-29

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialist Shane Kimbrough is strapped into his seat in space shuttle Endeavour signaling he is ready for the simulated launch countdown. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder

  7. Simulation and Analysis of Launch Teams (SALT)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A SALT effort was initiated in late 2005 with seed funding from the Office of Safety and Mission Assurance Human Factors organization. Its objectives included demonstrating human behavior and performance modeling and simulation technologies for launch team analysis, training, and evaluation. The goal of the research is to improve future NASA operations and training. The project employed an iterative approach, with the first iteration focusing on the last 70 minutes of a nominal-case Space Shuttle countdown, the second iteration focusing on aborts and launch commit criteria violations, the third iteration focusing on Ares I-X communications, and the fourth iteration focusing on Ares I-X Firing Room configurations. SALT applied new commercial off-the-shelf technologies from industry and the Department of Defense in the spaceport domain.

  8. 18 CFR 1304.209 - Land-based structures/alterations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... steps, pathways, boat launching ramps, marine railways located in the access corridor, bank... (electric, water-intake lines, etc.) may be placed within the access corridor as follows: (1) Power lines...

  9. 18 CFR 1304.209 - Land-based structures/alterations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... steps, pathways, boat launching ramps, marine railways located in the access corridor, bank... (electric, water-intake lines, etc.) may be placed within the access corridor as follows: (1) Power lines...

  10. KSC-2011-1046

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Assistant Launch Orbiter Test Conductor Mark Taffet sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  11. KSC-2011-1042

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Shuttle Launch Director Mike Leinbach sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  12. KSC-2011-1041

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, STS-133 Assistant Launch Director Pete Nickolenko sits at his console in Firing Room 4 along with other launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  13. KSC-2011-1047

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Launch Orbiter Test Conductor John Kracsun sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  14. KSC-07pd1284

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. At the dais is Dan LeBlanc, chief operating officer of the KSC Visitor Complex. Seated on stage are (from left) Lt. Governor of Florida Jeff Kottkamp, Center Director Bill Parsons, and former astronauts John Young and Bob Crippen. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  15. CREW TRAINING (SIMULATOR) - STS-7 - JSC

    NASA Image and Video Library

    1983-05-25

    S83-32723 (23 May 1983) --- This scene in the Shuttle Mission Simulator (SMS) previews next month?s STS-7 flight in the space shuttle Challenger. Taken during a simulation session, the photo illustrates the seating arrangement for launch and landing phases of the Challenger?s second spaceflight and its first with five crew members. Pictured, left to right, are astronauts Robert L. Crippen, commander; Frederick H. Hauck, pilot; Sally K. Ride and John M. Fabian (almost totally obscured), mission specialists. Dr. Norman E. Thagard, a third mission specialist, will be seated in the middeck for launch and landing phases. Photo credit: NASA/Otis Imboden/National Geographic Society.

  16. STS-37 Mission Specialist (MS) Jerome Apt floats in raft in JSC's WETF pool

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-37 Mission Specialist (MS) Jerome Apt, wearing launch and entry suit (LES) and launch and entry helmet (LEH), propels his one-person life raft by splashing water during emergency egress exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Apt, floating in the life raft, was simulating the steps involved in emergency egress from a Space Shuttle. The WETF's 25-ft pool served as a simulated ocean into which a parachute landing might be made.

  17. STS-79 Commander Readdy and Pilot Wilcutt at slidewire

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Clad in their launch/entry suits, STS-79 Commander William F. Readdy (left) and Pilot Terrence W. Wilcutt test the fit of a slidewire basket on the emergency egress system at Launch Pad 39A. The six astronauts assigned to the fourth Shuttle-Mir docking flight are completing Terminal Countdown Demonstration Test (TCDT) activities. A dress rehearsal for launch, the TCDT includes emergency egress training at the launch pad and culminates with a simulated countdown. The Space Shuttle Atlantis is undergoing preparations for liftoff on STS-79 no earlier than Sept. 12.

  18. KSC-07pd2716

    NASA Image and Video Library

    2007-10-08

    KENNEDY SPACE CENTER, FLA. -- STS-120 Mission Specialist Paolo Nespoli tries on his gloves with his launch and entry suit, preparing for launch. Nespoli represents the European Space Agency. The fitting is part of terminal countdown demonstration test, or TCDT, activities the crew is undertaking at NASA's Kennedy Space Center. The TCDT also includes emergency egress procedures, equipment familiarization and a simulated launch countdown. Mission STS-120, which will carry the Italian-built U.S. Node 2 to the International Space Station, is targeted for launch on Oct. 23. Photo credit: NASA/Kim Shiflett

  19. STS-105 Commander Horowitz tries on gas mask at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001.

  20. KSC-2009-4470

    NASA Image and Video Library

    2009-08-05

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, STS-128 Mission Specialist Jose Hernandez takes his turn driving an M-113 armored personnel carrier. The crew is at Kennedy for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes emergency exit training and equipment familiarization, as well as a simulated launch countdown. Launch of Discovery is targeted for late August. Photo credit: NASA/Kim Shiflett

  1. KSC-2009-4471

    NASA Image and Video Library

    2009-08-05

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, STS-128 Mission Specialist Jose Hernandez has completed his turn driving an M-113 armored personnel carrier. The crew is at Kennedy for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes emergency exit training and equipment familiarization, as well as a simulated launch countdown. Launch of Discovery is targeted for late August. Photo credit: NASA/Kim Shiflett

  2. KSC-2009-4465

    NASA Image and Video Library

    2009-08-05

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, STS-128 Mission Specialist Nicole Stott has completed her turn at driving an M-113 armored personnel carrier. The crew is at Kennedy for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes emergency exit training and equipment familiarization, as well as a simulated launch countdown. Launch of Discovery is targeted for late August. Photo credit: NASA/Kim Shiflett

  3. KSC-2009-4466

    NASA Image and Video Library

    2009-08-05

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, STS-128 Mission Specialist Patrick Forrester has completed his turn at driving an M-113 armored personnel carrier. The crew is at Kennedy for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes emergency exit training and equipment familiarization, as well as a simulated launch countdown. Launch of Discovery is targeted for late August. Photo credit: NASA/Kim Shiflett

  4. KSC-2009-4468

    NASA Image and Video Library

    2009-08-05

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, STS-128 Mission Specialist John "Danny" Olivas has completed his turn driving an M-113 armored personnel carrier. The crew is at Kennedy for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes emergency exit training and equipment familiarization, as well as a simulated launch countdown. Launch of Discovery is targeted for late August. Photo credit: NASA/Kim Shiflett

  5. KSC-2009-4469

    NASA Image and Video Library

    2009-08-05

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, STS-128 Mission Specialist John "Danny" Olivas takes his turn driving an M-113 armored personnel carrier. The crew is at Kennedy for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes emergency exit training and equipment familiarization, as well as a simulated launch countdown. Launch of Discovery is targeted for late August. Photo credit: NASA/Kim Shiflett

  6. STS-46 Pilot Allen and Payload Specialist Malerba in life rafts at JSC's WEFT

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Pilot Andrew M. Allen (foreground) and Italian Payload Specialist Franco Malerba, wearing launch and entry suits (LESs) and launch and entry helmets (LEHs), float in one-person life rafts during a launch emergency egress (bailout) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. A SCUBA-equipped diver assists in the training activity.

  7. Manufacturing Process Simulation of Large-Scale Cryotanks

    NASA Technical Reports Server (NTRS)

    Babai, Majid; Phillips, Steven; Griffin, Brian

    2003-01-01

    NASA's Space Launch Initiative (SLI) is an effort to research and develop the technologies needed to build a second-generation reusable launch vehicle. It is required that this new launch vehicle be 100 times safer and 10 times cheaper to operate than current launch vehicles. Part of the SLI includes the development of reusable composite and metallic cryotanks. The size of these reusable tanks is far greater than anything ever developed and exceeds the design limits of current manufacturing tools. Several design and manufacturing approaches have been formulated, but many factors must be weighed during the selection process. Among these factors are tooling reachability, cycle times, feasibility, and facility impacts. The manufacturing process simulation capabilities available at NASA.s Marshall Space Flight Center have played a key role in down selecting between the various manufacturing approaches. By creating 3-D manufacturing process simulations, the varying approaches can be analyzed in a virtual world before any hardware or infrastructure is built. This analysis can detect and eliminate costly flaws in the various manufacturing approaches. The simulations check for collisions between devices, verify that design limits on joints are not exceeded, and provide cycle times which aide in the development of an optimized process flow. In addition, new ideas and concerns are often raised after seeing the visual representation of a manufacturing process flow. The output of the manufacturing process simulations allows for cost and safety comparisons to be performed between the various manufacturing approaches. This output helps determine which manufacturing process options reach the safety and cost goals of the SLI. As part of the SLI, The Boeing Company was awarded a basic period contract to research and propose options for both a metallic and a composite cryotank. Boeing then entered into a task agreement with the Marshall Space Flight Center to provide manufacturing simulation support. This paper highlights the accomplishments of this task agreement, while also introducing the capabilities of simulation software.

  8. Output-Based Adaptive Meshing Applied to Space Launch System Booster Separation Analysis

    NASA Technical Reports Server (NTRS)

    Dalle, Derek J.; Rogers, Stuart E.

    2015-01-01

    This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid code with comparisons to Overflow viscous CFD results and a wind tunnel test performed at NASA Langley Research Center's Unitary PlanWind Tunnel. The Space Launch System (SLS) launch vehicle includes two solid-rocket boosters that burn out before the primary core stage and thus must be discarded during the ascent trajectory. The main challenges for creating an aerodynamic database for this separation event are the large number of basis variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by the booster separation motors. The solid-rocket boosters are modified from their form when used with the Space Shuttle Launch Vehicle, which has a rich flight history. However, the differences between the SLS core and the Space Shuttle External Tank result in the boosters separating with much narrower clearances, and so reducing aerodynamic uncertainty is necessary to clear the integrated system for flight. This paper discusses an approach that has been developed to analyze about 6000 wind tunnel simulations and 5000 flight vehicle simulations using Cart3D in adaptive-meshing mode. In addition, a discussion is presented of Overflow viscous CFD runs used for uncertainty quantification. Finally, the article presents lessons learned and improvements that will be implemented in future separation databases.

  9. Ground cloud related weather modification effects. [heavy lift launch vehicles

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1980-01-01

    The principal concerns about inadvertent weather modification by the solar power satellite system rocket effluents are discussed, namely the possibility that the ground cloud might temporarily modify local weather and the cumulative effects of nearly 500 launches per year. These issues are discussed through the consideration of (1) the possible alteration of the microphysical processes of clouds in the general area due to rocket effluents and debris and cooling water entrained during the launch and (2) the direct dynamical and thermodynamical responses to the inputs of thermal energy and moisture from the rocket exhaust for given ambient meteorological conditions. The huge amount of thermal energy contained in the exhaust of the proposed launch vehicle would in some situations induce a saturated, wet convective cloud or enhance an existing convective activity. Nevertheless, the effects would be limited to the general area of the launch site. The observed long lasting high concentrations of cloud condensation nuclei produced during and after a rocket launch may appreciably affect the frequency of occurrence and persistence of fogs and haze. In view of the high mission frequency proposed for the vehicle launches, a potential exists for a cumulative effect.

  10. Spectral Indices in Simulations of Imbalanced Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Dennis, T. J.

    2017-12-01

    Three-dimensional (3D) simulations of imbalanced magnetohydrodynamic (MHD) turbulence based on reduced MHD equations have been performed. Alfven waves are launched from both ends of a long tube along the background uniform magnetic field so that turbulence develops due to collision between counter propagating Alfven waves in the interior region. Waves are launched randomly with specified correlation time Tc such that the length of the tube, L, is greater than (but of the same order of) VA Tc such that turbulence can fill most of the tube. While waves at both ends are launched with equal power, turbulence generated is imbalanced in general, with normalized cross-helicity gets close to -1 at one end and 1 at the other end. One fundamental unresolved problem in the theory of imbalanced turbulence is how turbulence spectral indices depend on the normalized cross-helicity. We will present turbulence spectral indices found in our latest simulations and discuss theoretical implications. This work is supported by a NASA grant NNX15AU61G.

  11. AIM being prepared for integrated testing and flight simulation

    NASA Image and Video Library

    2007-03-24

    Flight simulation No. 3 is on the schedule for the Pegasus XL launch vehicle, seen here in Building 1555 on North Vandenberg Air Force Base in California. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. AIM is scheduled to be mated to its launch vehicle, Orbital Sciences' Pegasus XL, during the second week of April, after which final inspections will be conducted. Launch is scheduled for April 25.

  12. STS-87 crew walkout for TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew of the STS-87 mission, scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from pad 39B at Kennedy Space Center (KSC), participated in the Terminal Countdown Demonstration Test (TCDT) at KSC. Simulating the walk-out from the Operations and Checkout Building before entering a van to take them to the launch pad are (left to right) Payload Specialist Leonid Kadenyuk of the National Space Agency of Ukraine; Mission Specialist Kalpana Chawla, Ph.D.; Pilot Steve Lindsey; Mission Specialist Winston Scott; Takao Doi, Ph.D., of the National Space Development Agency of Japan; and Commander Kevin Kregel. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  13. Calculating Launch Vehicle Flight Performance Reserve

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Pinson, Robin M.; Beard, Bernard B.

    2011-01-01

    This paper addresses different methods for determining the amount of extra propellant (flight performance reserve or FPR) that is necessary to reach orbit with a high probability of success. One approach involves assuming that the various influential parameters are independent and that the result behaves as a Gaussian. Alternatively, probabilistic models may be used to determine the vehicle and environmental models that will be available (estimated) for a launch day go/no go decision. High-fidelity closed-loop Monte Carlo simulation determines the amount of propellant used with each random combination of parameters that are still unknown at the time of launch. Using the results of the Monte Carlo simulation, several methods were used to calculate the FPR. The final chosen solution involves determining distributions for the pertinent outputs and running a separate Monte Carlo simulation to obtain a best estimate of the required FPR. This result differs from the result obtained using the other methods sufficiently that the higher fidelity is warranted.

  14. Environmental Test Program for the Mars Exploration Rover Project

    NASA Technical Reports Server (NTRS)

    Fisher, Terry C.; VanVelzer, Paul L.

    2004-01-01

    On June 10 and July 7, 2003 the National Aeronautics and Space Administration (NASA) launched two spacecraft from Cape Canaveral, Florida for a six (6) months flight to the Red Planet, Mars. The two Mars Exploration Rover spacecraft landed safely on the planet in January 2004. Prior to the successful launch, both of the spacecraft were involved in a comprehensive test campaign that included development, qualification, and protoflight test programs. Testing was performed to simulate the environments associated with launch, inter-planetary cruise, landing on the planet and Mars surface operations. Unique test requirements included operating the spacecraft while the chamber pressure was controlled to simulate the decent to the planet from deep space, high impact landing loads and rover operations on the surface of the planet at 8 Torr and -130 C. This paper will present an overview of the test program that included vibration, pyro-shock, landing loads, acoustic noise, thermal vacuum and solar simulation testing at the Jet Propulsion Laboratory (JPL) Environmental Test Laboratory facilities in Pasadena, California.

  15. Ares-I-X Vehicle Preliminary Range Safety Malfunction Turn Analysis

    NASA Technical Reports Server (NTRS)

    Beaty, James R.; Starr, Brett R.; Gowan, John W., Jr.

    2008-01-01

    Ares-I-X is the designation given to the flight test version of the Ares-I rocket (also known as the Crew Launch Vehicle - CLV) being developed by NASA. As part of the preliminary flight plan approval process for the test vehicle, a range safety malfunction turn analysis was performed to support the launch area risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could cause the vehicle trajectory to deviate from its normal flight path, and the effects of these failures were evaluated with an Ares-I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version 2 (POST2) simulation framework. The Ares-I-X simulation analysis provides output files containing vehicle state information, which are used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at Kennedy Space Center (KSC), and to develop the vehicle destruct criteria used by the flight test range safety officer. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study, and preliminary results are presented, determined by analysis of the trajectory deviation of the failure cases, compared with the expected vehicle trajectory.

  16. Bioburden release of Ariane 5 Fairing Acoustic Protection Panels

    NASA Astrophysics Data System (ADS)

    Stieglmeier, Michaela; Rohr, Thomas; Schmeitzky, Olivier; Rumler, Peter; Kminek, Gerhard

    The ESA-NASA ExoMars mission will be subject to strict Planetary Protection constrictions. The original ExoMars mission concept was based on an Ariane 5 launch system. Like all launch systems, the Ariane 5 fairing is lined with acoustic protection panels. These panels consist of an outer polyester/cotton fabric and an inner open celled foam. During launch the panels will be exposed to vibrations and a decrease in pressure. A release of possible external and/ or embedded microbes would cause a contamination of the satellite. Planetary Protection requirements for ExoMars imply the determination of the bioburden release from the Ariane 5 Fairing Acoustic Protection Panels (FAP-panels). Thus a study at ESTEC was performed comparing the bioburden release of a sterilized and non-sterilized panel by simulating a launch environment. Panels were mounted in test jigs above a sterile ground plate. Sterile stainless steel witness plates for the determination of bioburden release were mounted on the latter. The launch environment was simulated in two different tests. In a vacuum chamber the panels were exposed to a depressurization event. For the simulation of the vibrations the jigs were mounted in the Large European Acoustic Facility (LEAF) at ESTEC. After each test witness plates were demounted under sterile conditions and analyzed for microbial growth by incubating them in agar. Furthermore pieces of the outer fabric as well as the inner foam were taken and examined for embedded microbes. In total the amount of embedded microbes was very low and there was no significant difference between the sterilized and non-sterilized panel concerning the released bioburden. Thus sterilization of the Ariane 5 FAP-panels seems not necessary to comply with Planetary Protection constraints. Although the ExoMars project will use a different launch system in the new mission concept, the data acquired during these tests can be used for future scientific satellites launched with Ariane 5.

  17. KSC-05PD-0845

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. During Terminal Countdown Demonstration Test (TCDT) activities at NASAs Kennedy Space Center, the STS-114 crew takes part in training on an M-113, an armored personnel carrier that is used for speedy departure from the launch pad in an emergency. Seated in the M-113, left to right, are Commander Eileen Collins, Mission Specialist Stephen Robinson, Capt. George Hoggard, astronaut rescue team leader, Mission Specialists Andrew Thomas, Soichi Noguchi and Charles Camarda, and Pilot James Kelly. Noguchi is with the Japan Aerospace Exploration Agency. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.

  18. Atlas IIAS ascent trajectory design for the SOHO mission

    NASA Technical Reports Server (NTRS)

    Willen, Robert E.; Rude, Bradley J.

    1993-01-01

    In 1995, an Atlas IIAS launch vehicle will loft the Solar and Heliospheric Observatory (SOHO) as part of the International Solar and Terrestrial Physics program. The operational phase of the SOHO mission will be conducted from a `halo orbit' about the Sun-Earth interior libration point. Depending on the time of the year of launch, the optimal transfer requires a parking orbit of variable duration to satisfy widely varying inertial targets. A simulation capability has been developed that optimizes the launch vehicle ascent and spacecraft transfer phases of flight together, subject to both launch vehicle and spacecraft constraints. It will be shown that this `ground-up' simulation removes the need for an intermediate target vector at Centaur upper stage/spacecraft separation. Although providing only a modest gain in deliverable satellite mass, this capability substantially improves the mission integration process by removing the strict reliance on near-Earth target vectors. Trajectory data from several cases are presented and future applications of this capability are also discussed.

  19. KSC-2010-5293

    NASA Image and Video Library

    2010-10-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller

  20. KSC-2010-5290

    NASA Image and Video Library

    2010-10-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller

  1. KSC-2010-5292

    NASA Image and Video Library

    2010-10-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller

  2. KSC-2010-5291

    NASA Image and Video Library

    2010-10-21

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, testing of the Tilt-Up Umbilical Arm (TUUA) prototype's Environmental Control System Quick Disconnect takes place in the Launch Equipment Test Facility's 6,000-square-foot high bay. The prototype is used to demonstrate the safe disconnect and retraction of ground umbilical plates and associated hardware of a launch vehicle's upper stage and service module. The Environmental Control System consists of regulated air, which would be used to purge an inner tank and crew module. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, 600-ton test fixture, launch simulation towers and a cryogenic system. Photo credit: NASA/Jack Pfaller

  3. KSC-05PD-0807

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. After arrival at NASAs Kennedy Space Center, the STS-114 crew members are greeted by KSC officials. Seen from left are Deputy Director Woodrow Whitlow Jr., Commander Eileen Collins, Mission Specialists Charles Camarda (behind Collins) and Andrew Thomas, astronaut Jerry Ross, who is chief of the Vehicle Integration Test (VIT) office, VIT Lead for STS-114 Robert Hanley, Shuttle Launch Director Mike Leinbach and Center Director Jim Kennedy. Crew members are taking part in the Terminal Countdown Demonstration Test (TCDT) over the next three days. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.

  4. Mapping alteration using imagery from the Tiangong-1 hyperspectral spaceborne system: Example for the Jintanzi gold province, China

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Feng, Jilu; Rivard, Benoit; Xu, Xinliang; Zhou, Jun; Han, Ling; Yang, Junlu; Ren, Guangli

    2018-02-01

    The Tiangong-1 Hyperspectral Imager (HSI) is a relatively new spaceborne hyperspectral remote sensing system that was launched by the Chinese government on September 29th 2011. The system has 64 shortwave infrared (SWIR) spectral bands (1000-2500 nm) and imagery is at a spatial resolution of 20 m. This study represents an evaluation of Tiangong-1 data for the production of alteration mineral maps. Alteration mineral maps resulting from the analysis of Tiangong-1 HSI data and airborne SASI (Shortwave infrared Airborne Spectrographic Imager) data are compared for the Jintanzi area, Beishan, Gansu province, northwest China where gold bearing veins are documented. The results illustrate the detection of muscovite, kaolinite, chlorite, epidote, calcite and dolomite from Tiangong-1 HSI data and most anomalies seen in the airborne SASI data are captured. The Tiangong-1 data appears to be well suited for the detection of surface mineralogy in support of regional mapping and exploration. The data complements that which will be offered by the Chinese GF-5 Hyperspectral Imager and the German EnMAP system, both scheduled for launch in 2018.

  5. Macro Level Simulation Model Of Space Shuttle Processing

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The contents include: 1) Space Shuttle Processing Simulation Model; 2) Knowledge Acquisition; 3) Simulation Input Analysis; 4) Model Applications in Current Shuttle Environment; and 5) Model Applications for Future Reusable Launch Vehicles (RLV's). This paper is presented in viewgraph form.

  6. KSC-2009-4472

    NASA Image and Video Library

    2009-08-05

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, STS-128 Mission Specialist Christer Fuglesang takes his turn driving an M-113 armored personnel carrier. Fuglesang represents the European Space Agency. The crew is at Kennedy for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes emergency exit training and equipment familiarization, as well as a simulated launch countdown. Launch of Discovery is targeted for late August. Photo credit: NASA/Kim Shiflett

  7. KSC-2009-4473

    NASA Image and Video Library

    2009-08-05

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, STS-128 Mission Specialist Christer Fuglesang has completed his turn driving an M-113 armored personnel carrier. Fuglesang represents the European Space Agency. The crew is at Kennedy for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes emergency exit training and equipment familiarization, as well as a simulated launch countdown. Launch of Discovery is targeted for late August. Photo credit: NASA/Kim Shiflett

  8. Navier-Stokes simulation of plume/Vertical Launching System interaction flowfields

    NASA Astrophysics Data System (ADS)

    York, B. J.; Sinha, N.; Dash, S. M.; Anderson, L.; Gominho, L.

    1992-01-01

    The application of Navier-Stokes methodology to the analysis of Vertical Launching System/missile exhaust plume interactions is discussed. The complex 3D flowfields related to the Vertical Launching System are computed utilizing the PARCH/RNP Navier-Stokes code. PARCH/RNP solves the fully-coupled system of fluid, two-equation turbulence (k-epsilon) and chemical species equations via the implicit, approximately factored, Beam-Warming algorithm utilizing a block-tridiagonal inversion procedure.

  9. Simulating a binary system that experiences the grazing envelope evolution

    NASA Astrophysics Data System (ADS)

    Shiber, Sagiv; Soker, Noam

    2018-06-01

    We conduct three-dimensional hydrodynamical simulations, and show that when a secondary star launches jets while performing spiral-in motion into the envelope of a giant star, the envelope is inflated, some mass is ejected by the jets, and the common envelope phase is postponed. We simulate this grazing envelope evolution (GEE) under the assumption that the secondary star accretes mass from the envelope of the asymptotic giant branch (AGB) star and launches jets. In these simulations we do not yet include the gravitational energy that is released by the spiraling-in binary system. Neither do we include the spinning of the envelope. Considering these omissions, we conclude that our results support the idea that jets might play a crucial role in the common envelope evolution or in preventing it.

  10. Inviscid and Viscous CFD Analysis of Booster Separation for the Space Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Dalle, Derek J.; Rogers, Stuart E.; Chan, William M.; Lee, Henry C.

    2016-01-01

    This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid and Overflow viscous CFD codes. The discussion addresses the use of multiple data sources of computational aerodynamics, experimental aerodynamics, and trajectory simulations for this critical phase of flight. Comparisons are shown between Cart3D simulations and a wind tunnel test performed at NASA Langley Research Center's Unitary Plan Wind Tunnel, and further comparisons are shown between Cart3D and viscous Overflow solutions for the flight vehicle. The Space Launch System (SLS) is a new exploration-class launch vehicle currently in development that includes two Solid Rocket Boosters (SRBs) modified from Space Shuttle hardware. These SRBs must separate from the SLS core during a phase of flight where aerodynamic loads are nontrivial. The main challenges for creating a separation aerodynamic database are the large number of independent variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by exhaust plumes of the booster separation motors (BSMs), which are small rockets designed to push the boosters away from the core by firing partially in the direction opposite to the motion of the vehicle.

  11. KSC-08pd3435

    NASA Image and Video Library

    2008-10-29

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialist Donald Pettit signals okay as he gets into his seat in space shuttle Endeavour. He and other crew members will take part in a simulated launch countdown. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder

  12. KSC-08pd3429

    NASA Image and Video Library

    2008-10-29

    CAPE CANAVERAL, Fla. – In the White Room on Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Commander Chris Ferguson adjusts his headset before donning his helmet. He will enter space shuttle Endeavour to take part in a simulated launch countdown with the other crew members. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder

  13. KSC-08pd3430

    NASA Image and Video Library

    2008-10-29

    CAPE CANAVERAL, Fla. – In the White Room on Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Pilot Eric Boe waits to finish his suit-up. He and other crew members will take part in a simulated launch countdown after entering space shuttle Endeavour. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder

  14. KSC-08pd3436

    NASA Image and Video Library

    2008-10-29

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialist Heidemarie Stefanyshyn-Piper is strapped into her seat in space shuttle Endeavour. She and other crew members will take part in a simulated launch countdown. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder

  15. KSC-08pd3433

    NASA Image and Video Library

    2008-10-29

    CAPE CANAVERAL, Fla. – In the White Room on Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialist Shane Kimbrough gets help with his suit before entering space shuttle Endeavour. He and other crew members will take part in a simulated launch countdown. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder

  16. KSC-08pd3432

    NASA Image and Video Library

    2008-10-29

    CAPE CANAVERAL, Fla. – In the White Room on Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialist Donald Pettit adjusts his headset. He will enter space shuttle Endeavour to take part in a simulated launch countdown with the other crew members. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder

  17. KSC-05PD-0894

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. STS-114 Commander Eileen Collins places a mission patch on an M-113 armored personnel carrier during Terminal Countdown Demonstration Test (TCDT) activities. Looking on are Mission Specialists Andrew Thomas, Stephen Robinson and Soichi Noguchi, who is with the Japan Aerospace Exploration Agency.. The crew is at KSC for Terminal Countdown Demonstration Test (TCDT) activities. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. STS-114 is designated the first Return to Flight mission, with a launch window extending from July 13 to July 31.

  18. KSC-05PD-0811

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At Kennedy Space Centers Shuttle Landing Facility, Center Director Jim Kennedy talks with STS-114 Commander Eileen Collins after her arrival. She and the rest of the crew are at KSC to take part in the Terminal Countdown Demonstration Test (TCDT) over the next three days. The TCDT is held at KSC prior to each Space Shuttle flight. It provides the crew of each mission an opportunity to participate in simulated countdown activities. The test ends with a mock launch countdown culminating in a simulated main engine cutoff. The crew also spends time undergoing emergency egress training exercises at the launch pad. This is Collins fourth space flight and second as commander. STS-114 is the first Return to Flight mission to the International Space Station. The launch window extends July 13 through July 31.

  19. EDIN0613P weight estimating program. [for launch vehicles

    NASA Technical Reports Server (NTRS)

    Hirsch, G. N.

    1976-01-01

    The weight estimating relationships and program developed for space power system simulation are described. The program was developed to size a two-stage launch vehicle for the space power system. The program is actually part of an overall simulation technique called EDIN (Engineering Design and Integration) system. The program sizes the overall vehicle, generates major component weights and derives a large amount of overall vehicle geometry. The program is written in FORTRAN V and is designed for use on the Univac Exec 8 (1110). By utilizing the flexibility of this program while remaining cognizant of the limits imposed upon output depth and accuracy by utilization of generalized input, this program concept can be a useful tool for estimating purposes at the conceptual design stage of a launch vehicle.

  20. Launch Commit Criteria Monitoring Agent

    NASA Technical Reports Server (NTRS)

    Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau

    2005-01-01

    The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.

  1. KSC-07pd1291

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. Breaking the ribbon are (left to right) Dan LeBlanc, chief operating officer of the KSC Visitor Complex; Lt. Governor of Florida Jeff Kottkamp; former astronauts John Young and Bob Crippen; Center Director Bill Parsons; KSC Director of External Relations Lisa Malone; and former astronaut Buzz Aldrin. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  2. How supernovae launch galactic winds?

    NASA Astrophysics Data System (ADS)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  3. The Use of an Atmospheric Model for Study the Gas Dispersion at the Brazilian Space Launching Center

    NASA Astrophysics Data System (ADS)

    Fisch, G.; Iriart, P. G.; Andrade Schuch, D.; Couto Milanez, V.

    2015-09-01

    The present work aims to use an atmospheric mesoscale model (Weather Research and Forecasting model - WRF) coupled with its chemical module (CHEM) in order to study the simulation of the dispersion of exhausted gas released from a typical rockets (in this case the Satellite Vehicle Launcher characteristics was used) from the Alcântara Launch Center (ALC). For the initialization of the coupled model, the preprocessor PREP-Chem was assigned to the Reanalysis of the TROpospheric chemical composition (RETRO). However, as this repository has no pollutants at the ALC area, a new method of insertion of chemical data assigned to the exact geographical position where the VLS is launched was used with all emissions null unless at the Launcher pad. Also, the model was initialized with meteorological data extracted from the Global Forecasting System (GFS). The simulations were made for different 4 cases representatives of the diurnal (daytime and nighttime) and seasonal (dry and wet seasons) scales. Observational data (radiosondes and wind tower data) was used to validate the wind field. There are 3 grids nested with 9, 3 and 1 km spatial resolution and the model has 45 levels in the vertical (15 levels up to 2000 m). All the simulations showed approximately the same patterns as the wind flow are very persistent (this is a characteristic of the trade winds). Typically, the simulations showed that the CO concentration (the variable used to represent the gases exhausted by the solid motors) at the launch pad is 2 order of magnitude higher than at the gate (1 km far) and 4 order of magnitude higher than Alcantara village (20 km far). It can reach 30000 ppm at the launching pad after Ho + 1 mm. Also, it was computed that the launch pad must stay isolated by 1 5 mm before any other action for the complete dispersion and, consequently, for safety reasons. As the turbulent intensity is higher at 12 UTC (daytime conditions), the total time for the complete dispersion of the plume is reduced (around 40-45 mm) related to the nighttime conditions (60-75 mm). This is an ongoing work that aims to improve this model configuration to include a vertical distribution of the exhausted gases due to the normal launching and to include small scale features at the scale of 100 m. In the near future, this model should be operational for the launchings at ALC.

  4. Simulation and Analyses of Multi-Body Separation in Launch Vehicle Staging Environment

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Hotchko, Nathaniel J.; Samareh, Jamshid; Covell, Peter F.; Tartabini, Paul V.

    2006-01-01

    The development of methodologies, techniques, and tools for analysis and simulation of multi-body separation is critically needed for successful design and operation of next generation launch vehicles. As a part of this activity, ConSep simulation tool is being developed. ConSep is a generic MATLAB-based front-and-back-end to the commercially available ADAMS. solver, an industry standard package for solving multi-body dynamic problems. This paper discusses the 3-body separation capability in ConSep and its application to the separation of the Shuttle Solid Rocket Boosters (SRBs) from the External Tank (ET) and the Orbiter. The results are compared with STS-1 flight data.

  5. Real-Time Hardware-in-the-Loop Simulation of Ares I Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick; Matras, Alex; Walker, David; Wilson, Heath; Fulton, Chris; Alday, Nathan; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System Integration Laboratory is to test the vehicle avionics hardware and software in a hardware - in-the-loop environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time simulation backbone to stimulate all required Ares components for verification testing. ARTE_VIIS provides high -fidelity dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to ensure realistic test conditions. ARTEMIS has been designed to take advantage of the advances in underlying computational power now available to support hardware-in-the-loop testing to achieve real-time simulation with unprecedented model fidelity. A modular realtime design relying on a fully distributed computing architecture has been implemented.

  6. STS-56 MS1 Foale, in LES/LEH, floats during bailout exercises in JSC WETF

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist 1 (MS1) Michael Foale, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a single person life raft during launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Foale's body is covered with the life raft tarp. His head and the space shuttle search and rescue satellite aided tracking (SARSAT) antenna protrude above the tarp. This simulation prepares the astronauts for the event of an emergency egress and subsequent water landing during launch.

  7. Launch and Assembly Reliability Analysis for Mars Human Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cates, Grant R.; Stromgren, Chel; Cirillo, William M.; Goodliff, Kandyce E.

    2013-01-01

    NASA s long-range goal is focused upon human exploration of Mars. Missions to Mars will require campaigns of multiple launches to assemble Mars Transfer Vehicles in Earth orbit. Launch campaigns are subject to delays, launch vehicles can fail to place their payloads into the required orbit, and spacecraft may fail during the assembly process or while loitering prior to the Trans-Mars Injection (TMI) burn. Additionally, missions to Mars have constrained departure windows lasting approximately sixty days that repeat approximately every two years. Ensuring high reliability of launching and assembling all required elements in time to support the TMI window will be a key enabler to mission success. This paper describes an integrated methodology for analyzing and improving the reliability of the launch and assembly campaign phase. A discrete event simulation involves several pertinent risk factors including, but not limited to: manufacturing completion; transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to TMI. The model accommodates varying numbers of launches, including the potential for spare launches. Having a spare launch capability provides significant improvement to mission success.

  8. Software Architecture of the NASA Shuttle Ground Operations Simulator - SGOS

    NASA Technical Reports Server (NTRS)

    Cook, Robert P.; Lostroscio, Charles T.

    2005-01-01

    The SGOS executive and its subsystems have been an integral component of the Shuttle Launch Safety Program for almost thirty years. It is usable (via the LAN) by over 2000 NASA employees at the Kennedy Space Center and 11,000 contractors. SGOS supports over 800 models comprised of several hundred thousand lines of code and over 1,000 MCP procedures. Yet neither language has a for loop!! The simulation software described in this paper is used to train ground controllers and to certify launch countdown readiness.

  9. Software Architecture of the NASA Shuttle Ground Operations Simulator--SGOS

    NASA Technical Reports Server (NTRS)

    Cook Robert P.; Lostroscio, Charles T.

    2005-01-01

    The SGOS executive and its subsystems have been an integral component of the Shuttle Launch Safety Program for almost thirty years. it is usable (via the LAN) by over 2000 NASA employees at the Kennedy Space Center and 11,000 contractors. SGOS supports over 800 models comprised of several hundred thousand lines of code and over 1,00 MCP procedures. Yet neither language has a for loop!! The simulation software described in this paper is used to train ground controllers and to certify launch countdown readiness.

  10. Transonic pressure and load distributions for a group of simulated launch vehicles. [Langley 8-foot transonic pressure tunnel

    NASA Technical Reports Server (NTRS)

    Kelly, T. C.

    1980-01-01

    Pressure and load distributions for a related group of simulated launch vehicle configurations are presented. The configurations were selected so that the nose cone and interstage transition flare components were relatively close to one another and subject to mutual interference effects. Tests extended over a Mach number range from 0.40 to 1.20 at angles of attack from 0 deg to about 10 deg. The test Reynolds numbers, based on main stage diameter, were of the order of 0.00000098.

  11. Analysis of simulated hypervelocity impacts on a titanium fuel tank from the Salyut 7 space station

    NASA Astrophysics Data System (ADS)

    Jantou, V.; McPhail, D. S.; Chater, R. J.; Kearsley, A.

    2006-07-01

    The aim of this project was to gain a better understanding of the microstructural effects of hypervelocity impacts (HVI) in titanium alloys. We investigated a titanium fuel tank recovered from the Russian Salyut 7 space station, which was launched on April 19, 1982 before being destroyed during an un-controlled re-entry in 1991, reportedly scattering debris over parts of South America. Several sections were cut out from the tank in order to undergo HVI simulations using a two-stage light gas gun. In addition, a Ti-6Al-4V alloy was studied for further comparison. The crater morphologies produced were successfully characterised using microscope-based white light interferometry (Zygo ® Corp, USA), while projectile remnants were identified via secondary ion mass spectrometry (SIMS). Microstructural alterations were investigated using focused ion beam (FIB) milling and depth profiling, as well as transmission electron microscopy (TEM). There was evidence of a very high density of dislocations in the vicinity of the crater. The extent of the deformation was localised in a region of about one to two radii of the impact craters. No notable differences were observed between the titanium alloys used during the hypervelocity impact tests.

  12. KSC-2009-4467

    NASA Image and Video Library

    2009-08-05

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, STS-128 Mission Specialist Patrick Forrester takes his turn driving an M-113 armored personnel carrier. At left is Mission Specialist John "Danny" Olivas. The crew is at Kennedy for a launch dress rehearsal called the terminal countdown demonstration test, or TCDT, which includes emergency exit training and equipment familiarization, as well as a simulated launch countdown. Launch of Discovery is targeted for late August. Photo credit: NASA/Kim Shiflett

  13. KSC01pp0308

    NASA Image and Video Library

    2001-02-13

    STS-102 Commander James Wetherbee drives the M-113 armored carrier that the crew could use to exit the pad if an emergency ever occurred prior to launch. The STS-102 crew is at KSC to take part in Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, carrying as payload the Multi-Purpose Logistics Module Leonardo. Launch on mission STS-102 is scheduled for March 8

  14. KSC-06pd1744

    NASA Image and Video Library

    2006-08-07

    KENNEDY SPACE CENTER, FLA. - STS-115 Mission Specialist arrives at KSC's Shuttle Landing Facility aboard a T-38 jet aircraft. The STS-115 crew has flown to NASA's Kennedy Space Center to take part in Terminal Countdown Demonstration Test activities. The TCDT is a pre-launch preparation that includes practicing emergency egress from the pad, driving an M-113 armored personnel carrier, and simulating the launch countdown. Launch of STS-115 is currently scheduled for Aug. 27. Photo credit: NASA/George Shelton

  15. STS-47 Commander Gibson and MS Apt in JSC WETF for bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Commander Robert L. Gibson, wearing launch and entry suit (LES) and launch and entry helmet (LEH), listens to instructions before participating in launch emergency egress (bailout) exercises in JSC's Weightless Environment Trainining Facility (WETF) Bldg 29. Mission Specialist (MS) Jerome Apt, wearing LES and LES parachute, is seen in the background. This exercise is conducted in the WETF pool to simulate a water landing.

  16. STS-55 MS3 Harris listens to technician during JSC WETF egress exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist 3 (MS3) Bernard A. Harris, Jr, wearing launch and entry suit (LES), launch and entry helmet (LEH), and parachute, listens to technician Karen Porter's instructions prior to launch emergency egress (bailout) exercises. The session, held in JSC's Weightless Environment Training Facility (WETF) Bldg 29, used the facility's 25-foot deep pool to simulate the ocean as Harris and other crewmembers practiced water bailout procedures.

  17. KSC-04PD-2441

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. On Launch Pad 39A, a rescue force climbs into slidewire baskets on the Fixed Service Structure during an emergency egress scenario. The four-hour exercise simulated normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. It tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.

  18. Graphical User Interface for Simulink Integrated Performance Analysis Model

    NASA Technical Reports Server (NTRS)

    Durham, R. Caitlyn

    2009-01-01

    The J-2X Engine (built by Pratt & Whitney Rocketdyne,) in the Upper Stage of the Ares I Crew Launch Vehicle, will only start within a certain range of temperature and pressure for Liquid Hydrogen and Liquid Oxygen propellants. The purpose of the Simulink Integrated Performance Analysis Model is to verify that in all reasonable conditions the temperature and pressure of the propellants are within the required J-2X engine start boxes. In order to run the simulation, test variables must be entered at all reasonable values of parameters such as heat leak and mass flow rate. To make this testing process as efficient as possible in order to save the maximum amount of time and money, and to show that the J-2X engine will start when it is required to do so, a graphical user interface (GUI) was created to allow the input of values to be used as parameters in the Simulink Model, without opening or altering the contents of the model. The GUI must allow for test data to come from Microsoft Excel files, allow those values to be edited before testing, place those values into the Simulink Model, and get the output from the Simulink Model. The GUI was built using MATLAB, and will run the Simulink simulation when the Simulate option is activated. After running the simulation, the GUI will construct a new Microsoft Excel file, as well as a MATLAB matrix file, using the output values for each test of the simulation so that they may graphed and compared to other values.

  19. Corrosion Performance of Stainless Steels in a Simulated Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Vinje, Rubiela D.; MacDowell, Louis

    2004-01-01

    At the Kennedy Space Center, NASA relies on stainless steel (SS) tubing to supply the gases and fluids required to launch the Space Shuttle. 300 series SS tubing has been used for decades but the highly corrosive environment at the launch pad has proven to be detrimental to these alloys. An upgrade with higher alloy content materials has become necessary in order to provide a safer and long lasting launch facility. In the effort to find the most suitable material to replace the existing AISI 304L SS ([iNS S30403) and AISI 316L SS (UNS S31603) shuttle tubing, a study involving atmospheric exposure at the corrosion test site near the launch pads and electrochemical measurements is being conducted. This paper presents the results of an investigation in which stainless steels of the 300 series, 304L, 316L, and AISI 317L SS (UNS S31703) as well as highly alloyed stainless steels 254-SMO (UNS S32154), AL-6XN (N08367) and AL29-4C ([iNS S44735) were evaluated using direct current (DC) electrochemical techniques under conditions designed to simulate those found at the Space Shuttle Launch pad. The electrochemical results were compared to the atmospheric exposure data and evaluated for their ability to predict the long-term corrosion performance of the alloys.

  20. A Discrete Event Simulation Model for Evaluating Air Force Reusable Military Launch Vehicle Prelaunch Operations

    DTIC Science & Technology

    2006-03-01

    by 2018 . The Air Force will require the HLV OS to be highly responsive, with a goal of launching a pre-integrated payload with a 24 to 48 hour...136 Vita Captain Adam T. Stiegelmeier graduated high school from Sunshine Bible

  1. Osteoblast fibronectin mRNA, protein synthesis, and matrix are unchanged after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Gilbertson, V.

    1999-01-01

    The well-defined osteoblast line, MC3T3-E1 was used to examine fibronectin (FN) mRNA levels, protein synthesis, and extracellular FN matrix accumulation after growth activation in spaceflight. These osteoblasts produce FN extracellular matrix (ECM) known to regulate adhesion, differentiation, and function in adherent cells. Changes in bone ECM and osteoblast cell shape occur in spaceflight. To determine whether altered FN matrix is a factor in causing these changes in spaceflight, quiescent osteoblasts were launched into microgravity and were then sera activated with and without a 1-gravity field. Synthesis of FN mRNA, protein, and matrix were measured after activation in microgravity. FN mRNA synthesis is significantly reduced in microgravity (0-G) when compared to ground (GR) osteoblasts flown in a centrifuge simulating earth's gravity (1-G) field 2.5 h after activation. However, 27.5 h after activation there were no significant differences in mRNA synthesis. A small but significant reduction of FN protein was found in the 0-G samples 2.5 h after activation. Total FN protein 27.5 h after activation showed no significant difference between any of the gravity conditions, however, there was a fourfold increase in absolute amount of protein synthesized during the incubation. Using immunofluorescence, we found no significant differences in the amount or in the orientation of the FN matrix after 27.5 h in microgravity. These results demonstrate that FN is made by sera-activated osteoblasts even during exposure to microgravity. These data also suggest that after a total period of 43 h of spaceflight FN transcription, translation, or altered matrix assembly is not responsible for the altered cell shape or altered matrix formation of osteoblasts.

  2. Electromagnetic Cavity Effects from Transmitters Inside a Launch Vehicle Fairing

    NASA Technical Reports Server (NTRS)

    Trout, Dawn; Stanley, James; Wahid, Parveen

    2009-01-01

    This paper provides insight into the difficult analytical issue for launch vehicles and spacecraft that has applicability outside of the launch industry. Radiation from spacecraft or launch vehicle antennas located within enclosures in the launch vehicle generates an electromagnetic environment that is difficult to accurately predict. This paper discusses the test results of power levels produced by a transmitter within a representative scaled vehicle fairing model and provides preliminary modeling results at the low end of the frequency test range using a commercial tool. Initially, the walls of the fairing are aluminum and later, layered with materials to simulate acoustic blanketing structures that are typical in payload fairings. The effects of these blanketing materials on the power levels within the fairing are examined.

  3. KSC-07pd1290

    NASA Image and Video Library

    2007-05-25

    KENNEDY SPACE CENTER, FLA. -- NASA, Kennedy Space Center and State of Florida dignitaries helped launch the opening of the newest attraction at Kennedy Space Center's Visitor Complex, the Shuttle Launch Experience. Holding the ribbon for the breaking are (left to right) Dan LeBlanc, chief operating officer of the KSC Visitor Complex; Lt. Governor of Florida Jeff Kottkamp; former astronauts John Young and Bob Crippen; Center Director Bill Parsons; KSC Director of External Relations Lisa Malone; and former astronaut Buzz Aldrin. The attraction includes a simulated launch with the sights, sounds and sensations of launching into space. Find out more about the Visitor Complex and the Shuttle Launch Experience at http://www.kennedyspacecenter.com/visitKSC/attractions/index.asp. Photo credit: NASA/George Shelton

  4. Launch and Commissioning of the Deep Space Climate Observatory

    NASA Technical Reports Server (NTRS)

    Frey, Nicholas P.; Davis, Edward P.

    2016-01-01

    The Deep Space Climate Observatory (DSCOVR), formerly known as Triana, successfully launched on February 11th, 2015. To date, each of the five space-craft attitude control system (ACS) modes have been operating as expected and meeting all guidance, navigation, and control (GN&C) requirements, although since launch, several anomalies were encountered. While unplanned, these anomalies have proven to be invaluable in developing a deeper understanding of the ACS, and drove the design of three alterations to the ACS task of the flight software (FSW). An overview of the GN&C subsystem hardware, including re-furbishment, and ACS architecture are introduced, followed by a chronological discussion of key events, flight performance, as well as anomalies encountered by the GN&C team.

  5. Full-Envelope Launch Abort System Performance Analysis Methodology

    NASA Technical Reports Server (NTRS)

    Aubuchon, Vanessa V.

    2014-01-01

    The implementation of a new dispersion methodology is described, which dis-perses abort initiation altitude or time along with all other Launch Abort System (LAS) parameters during Monte Carlo simulations. In contrast, the standard methodology assumes that an abort initiation condition is held constant (e.g., aborts initiated at altitude for Mach 1, altitude for maximum dynamic pressure, etc.) while dispersing other LAS parameters. The standard method results in large gaps in performance information due to the discrete nature of initiation conditions, while the full-envelope dispersion method provides a significantly more comprehensive assessment of LAS abort performance for the full launch vehicle ascent flight envelope and identifies performance "pinch-points" that may occur at flight conditions outside of those contained in the discrete set. The new method has significantly increased the fidelity of LAS abort simulations and confidence in the results.

  6. KSC-08pd3428

    NASA Image and Video Library

    2008-10-29

    CAPE CANAVERAL, Fla. – In the White Room on Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialist Sandra Magnus (right) gets ready to enter space shuttle Endeavour. At left is a member of the Closeout Crew, Travis Thompson. The crew will take part in a simulated launch countdown. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder

  7. KSC-08pd3439

    NASA Image and Video Library

    2008-10-29

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 Mission Specialists (top to bottom) Heidemarie Stefanyshyn-Piper, Shane Kimbrough and Sandra Magnus are strapped in their seats in space shuttle Endeavour. They and other crew members will take part in a simulated launch countdown. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder

  8. KSC-08pd3443

    NASA Image and Video Library

    2008-10-29

    CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in On Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 crew members climb into a slidewire basket on the 195-foot level of the fixed service structure. They have taken part in a simulated countdown in space shuttle Endeavour. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder

  9. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Lewandowski, Edward J.; Callahan, John

    2006-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical RPS launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources was designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  10. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  11. Ares I-X: On the Threshold of Exploration

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Askins, Bruce

    2009-01-01

    Ares I-X, the first flight of the Ares I crew launch vehicle, is less than a year from launch. Ares I-X will test the flight characteristics of Ares I from liftoff to first stage separation and recovery. The flight also will demonstrate the computer hardware and software (avionics) needed to control the vehicle; deploy the parachutes that allow the first stage booster to land in the ocean safely; measure and control how much the rocket rolls during flight; test and measure the effects of first stage separation; and develop and try out new ground handling and rocket stacking procedures in the Vehicle Assembly Building (VAB) and first stage recovery procedures at Kennedy Space Center (KSC) in Florida. All Ares I-X major elements have completed their critical design reviews, and are nearing final fabrication. The first stage--four-segment solid rocket booster from the Space Shuttle inventory--incorporates new simulated forward structures to match the Ares I five-segment booster. The upper stage, Orion crew module, and launch abort system will comprise simulator hardware that incorporates developmental flight instrumentation for essential data collection during the mission. The upper stage simulator consists of smaller cylindrical segments, which were transported to KSC in fall 2008. The crew module and launch abort system simulator were shipped in December 2008. The first stage hardware, active roll control system (RoCS), and avionics components will be delivered to KSC in 2009. This paper will provide detailed statuses of the Ares I-X hardware elements as NASA's Constellation Program prepares for this first flight of a new exploration era in the summer of 2009.

  12. Payload Performance Analysis for a Reusable Two-Stage-to-Orbit Vehicle

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.; Beaty, James R.; Lepsch, Roger A.; Gilbert, Michael G.

    2015-01-01

    This paper investigates a unique approach in the development of a reusable launch vehicle where, instead of designing the vehicle to be reusable from its inception, as was done for the Space Shuttle, an expendable two stage launch vehicle is evolved over time into a reusable launch vehicle. To accomplish this objective, each stage is made reusable by adding the systems necessary to perform functions such as thermal protection and landing, without significantly altering the primary subsystems and outer mold line of the original expendable vehicle. In addition, some of the propellant normally used for ascent is used instead for additional propulsive maneuvers after staging in order to return both stages to the launch site, keep loads within acceptable limits and perform a soft landing. This paper presents a performance analysis that was performed to investigate the feasibility of this approach by quantifying the reduction in payload capability of the original expendable launch vehicle after accounting for the mass additions, trajectory changes and increased propellant requirements necessary for reusability. Results show that it is feasible to return both stages to the launch site with a positive payload capability equal to approximately 50 percent of an equivalent expendable launch vehicle. Further discussion examines the ability to return a crew/cargo capsule to the launch site and presents technical challenges that would have to be overcome.

  13. Statistical and Probabilistic Extensions to Ground Operations' Discrete Event Simulation Modeling

    NASA Technical Reports Server (NTRS)

    Trocine, Linda; Cummings, Nicholas H.; Bazzana, Ashley M.; Rychlik, Nathan; LeCroy, Kenneth L.; Cates, Grant R.

    2010-01-01

    NASA's human exploration initiatives will invest in technologies, public/private partnerships, and infrastructure, paving the way for the expansion of human civilization into the solar system and beyond. As it is has been for the past half century, the Kennedy Space Center will be the embarkation point for humankind's journey into the cosmos. Functioning as a next generation space launch complex, Kennedy's launch pads, integration facilities, processing areas, launch and recovery ranges will bustle with the activities of the world's space transportation providers. In developing this complex, KSC teams work through the potential operational scenarios: conducting trade studies, planning and budgeting for expensive and limited resources, and simulating alternative operational schemes. Numerous tools, among them discrete event simulation (DES), were matured during the Constellation Program to conduct such analyses with the purpose of optimizing the launch complex for maximum efficiency, safety, and flexibility while minimizing life cycle costs. Discrete event simulation is a computer-based modeling technique for complex and dynamic systems where the state of the system changes at discrete points in time and whose inputs may include random variables. DES is used to assess timelines and throughput, and to support operability studies and contingency analyses. It is applicable to any space launch campaign and informs decision-makers of the effects of varying numbers of expensive resources and the impact of off nominal scenarios on measures of performance. In order to develop representative DES models, methods were adopted, exploited, or created to extend traditional uses of DES. The Delphi method was adopted and utilized for task duration estimation. DES software was exploited for probabilistic event variation. A roll-up process was used, which was developed to reuse models and model elements in other less - detailed models. The DES team continues to innovate and expand DES capabilities to address KSC's planning needs.

  14. STS-107 Mission Specialist Kalpana Chawla during TCDT at LC-39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-107 Mission Specialist Kalpana Chawla is shown during the crew's Terminal Countdown Demonstration Test activities on Launch Pad 39A. The TCDT also includes a simulated launch countdown. STS-107 is a mission devoted to research and will include more than 80 experiments that will study Earth and space science, advanced technology development, and astronaut health and safety. Launch is planned for Jan. 16, 2003, between 10 a.m. and 2 p.m. EST aboard Space Shuttle Columbia. .

  15. KSC-07pd2722

    NASA Image and Video Library

    2007-10-08

    KENNEDY SPACE CENTER, FLA. -- STS-120 Mission Specialist Stephanie Wilson has her helmet adjusted during fitting of her launch and entry suit. The fitting is part of terminal countdown demonstration test, or TCDT, activities the crew is undertaking at NASA's Kennedy Space Center. The TCDT also includes emergency egress procedures, equipment familiarization and a simulated launch countdown. Mission STS-120, which will carry the Italian-built U.S. Node 2 to the International Space Station, is targeted for launch on Oct. 23. Photo credit: NASA/Kim Shiflett

  16. KSC-07pd2720

    NASA Image and Video Library

    2007-10-08

    KENNEDY SPACE CENTER, FLA. -- STS-120 Mission Specialist Daniel Tani has his helmet adjusted during fitting of his launch and entry suit. The fitting is part of terminal countdown demonstration test, or TCDT, activities the crew is undertaking at NASA's Kennedy Space Center. The TCDT also includes emergency egress procedures, equipment familiarization and a simulated launch countdown. Mission STS-120, which will carry the Italian-built U.S. Node 2 to the International Space Station, is targeted for launch on Oct. 23. Photo credit: NASA/Kim Shiflett

  17. KSC-06pd1745

    NASA Image and Video Library

    2006-08-07

    KENNEDY SPACE CENTER, FLA. - STS-115 Commander Brent Jett introduces his crew to waiting media at KSC's Shuttle Landing Facility after their arrival from Houston. The STS-115 crew has flown to NASA's Kennedy Space Center to take part in Terminal Countdown Demonstration Test activities. The TCDT is a pre-launch preparation that includes practicing emergency egress from the pad, driving an M-113 armored personnel carrier, and simulating the launch countdown. Launch of STS-115 is currently scheduled for Aug. 27. Photo credit: NASA/George Shelton

  18. KSC-01pp1330

    NASA Image and Video Library

    2001-07-19

    KENNEDY SPACE CENTER, Fla. -- At Launch Pad 39A, STS-105 Commander Scott Horowitz puts on a gas mask as part of Terminal Countdown Demonstration Test activities, which also include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch is scheduled no earlier than Aug. 9, 2001

  19. STS-42 crewmembers in LESs prepare for egress exercises in JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-42 Discovery, Orbiter Vehicle (OV) 103, crewmembers, (left to right) Commander Ronald J. Grabe, Payload Specialist Roberta L. Bondar, and Pilot Stephen S. Oswald, participate in launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The crewmembers are outfitted in their launch and entry suits (LESs) and launch and entry helmets (LEHs) as they prepare for the simulated water landing using the WETF's 25 ft deep pool as the ocean.

  20. KSC-2011-1049

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS-133 launch team members rehearse procedures for the liftoff of space shuttle Discovery's final mission in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  1. KSC-2011-1051

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS-133 launch team members rehearse procedures for the liftoff of space shuttle Discovery's final mission in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  2. Ares I-X Upper Stage Simulator Residual Stress Analysis

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Brust, Frederick W.; Phillips, Dawn R.; Cheston, Derrick

    2008-01-01

    The structural analyses described in the present report were performed in support of the NASA Engineering and Safety Center (NESC) Critical Initial Flaw Size (CIFS) assessment for the Ares I-X Upper Stage Simulator (USS) common shell segment. An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The Ares system of space launch vehicles is the US National Aeronautics and Space Administration s plan for replacement of the aging space shuttle. The new Ares space launch system is somewhat of a combination of the space shuttle system and the Saturn launch vehicles used prior to the shuttle. Here, a series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on fatigue and fracture life. The results of this effort served as one of the critical load inputs required to perform a CIFS assessment of the same segment.

  3. Ares I-X Range Safety Simulation Verification and Analysis Independent Validation and Verification

    NASA Technical Reports Server (NTRS)

    Merry, Carl M.; Tarpley, Ashley F.; Craig, A. Scott; Tartabini, Paul V.; Brewer, Joan D.; Davis, Jerel G.; Dulski, Matthew B.; Gimenez, Adrian; Barron, M. Kyle

    2011-01-01

    NASA s Ares I-X vehicle launched on a suborbital test flight from the Eastern Range in Florida on October 28, 2009. To obtain approval for launch, a range safety final flight data package was generated to meet the data requirements defined in the Air Force Space Command Manual 91-710 Volume 2. The delivery included products such as a nominal trajectory, trajectory envelopes, stage disposal data and footprints, and a malfunction turn analysis. The Air Force s 45th Space Wing uses these products to ensure public and launch area safety. Due to the criticality of these data, an independent validation and verification effort was undertaken to ensure data quality and adherence to requirements. As a result, the product package was delivered with the confidence that independent organizations using separate simulation software generated data to meet the range requirements and yielded consistent results. This document captures Ares I-X final flight data package verification and validation analysis, including the methodology used to validate and verify simulation inputs, execution, and results and presents lessons learned during the process

  4. KSC-2011-1050

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, United Space Alliance Safety Engineer Dwayne Thompson, left, and NASA Safety Engineer Dallas McCarter rehearse procedures for the liftoff of space shuttle Discovery's final mission with other STS-133 launch team members in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  5. STS-113 TCDT emergency exit training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - STS-113 Mission Specialist John Herrington (left) and cosmonaut Nikolai Budarin (center) listen to instructions from a trainer on the emergency egress system on Launch Pad 39A. They are other crew members are taking part in Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour as well as the Expedition 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.

  6. KSC-07pd0511

    NASA Image and Video Library

    2007-02-23

    KENNEDY SPACE CENTER, FLA. -- Mission STS-117 Mission Specialist Danny Olivas has donned his launch suit for a fit check, part of the pre-launch preparations during terminal countdown demonstration test (TCDT) activities. The mission crew is at KSC for the TCDT, which includes a simulated launch countdown. The STS-117 mission is No. 21 to the International Space Station. Mission payloads aboard Atlantis include the S3/S4 integrated truss structure, a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Launch is scheduled for no earlier than March 15. Photo credit: NASA/Kim Shiflett.

  7. KSC-07pd0510

    NASA Image and Video Library

    2007-02-23

    KENNEDY SPACE CENTER, FLA. -- Mission STS-117 Mission Specialist James Reilly has donned his launch suit for a fit check, part of the pre-launch preparations during terminal countdown demonstration test (TCDT) activities. The mission crew is at KSC for the TCDT, which includes a simulated launch countdown.The STS-117 mission is No. 21 to the International Space Station. Mission payloads aboard Atlantis include the S3/S4 integrated truss structure, a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Launch is scheduled for no earlier than March 15. Photo credit: NASA/Kim Shiflett.

  8. KSC-07pd0520

    NASA Image and Video Library

    2007-02-23

    KENNEDY SPACE CENTER, FLA. -- Mission STS-117 Pilot Lee Archambault checks the fit of his launch suit and helmet, part of pre-launch preparations during terminal countdown demonstration test (TCDT) activities. The mission crew is at KSC for the TCDT, which includes a simulated launch countdown. The STS-117 mission is No. 21 to the International Space Station. Mission payloads aboard Atlantis include the S3/S4 integrated truss structure, a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Launch is scheduled for no earlier than March 15. Photo credit: NASA/Kim Shiflett.

  9. KSC-07pd0516

    NASA Image and Video Library

    2007-02-23

    KENNEDY SPACE CENTER, FLA. -- Mission STS-117 Commander Rick Sturckow checks the fit of his launch suit and helmet, part of pre-launch preparations during terminal countdown demonstration test (TCDT) activities. The mission crew is at KSC for the TCDT, which includes a simulated launch countdown. The STS-117 mission is No. 21 to the International Space Station. Mission payloads aboard Atlantis include the S3/S4 integrated truss structure, a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Launch is scheduled for no earlier than March 15. Photo credit: NASA/Kim Shiflett.

  10. KSC-07pd0512

    NASA Image and Video Library

    2007-02-23

    KENNEDY SPACE CENTER, FLA. -- Mission STS-117 Mission Specialist Danny Olivas has donned his launch suit for a fit check, part of the pre-launch preparations during terminal countdown demonstration test (TCDT) activities. The mission crew is at KSC for the TCDT, which includes a simulated launch countdown. The STS-117 mission is No. 21 to the International Space Station. Mission payloads aboard Atlantis include the S3/S4 integrated truss structure, a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Launch is scheduled for no earlier than March 15. Photo credit: NASA/Kim Shiflett.

  11. KSC-07pd0514

    NASA Image and Video Library

    2007-02-23

    KENNEDY SPACE CENTER, FLA. -- Mission STS-117 Mission Specialist James Reilly has donned his launch suit and helmet for a fit check, part of the pre-launch preparations during terminal countdown demonstration test (TCDT) activities. The mission crew is at KSC for the TCDT, which includes a simulated launch countdown. The STS-117 mission is No. 21 to the International Space Station. Mission payloads aboard Atlantis include the S3/S4 integrated truss structure, a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Launch is scheduled for no earlier than March 15. Photo credit: NASA/Kim Shiflett.

  12. KSC-07pd0518

    NASA Image and Video Library

    2007-02-23

    KENNEDY SPACE CENTER, FLA. -- Mission STS-117 Mission Specialist Steven Swanson checks the fit of his launch suit and helmet, part of pre-launch preparations during terminal countdown demonstration test (TCDT) activities. The mission crew is at KSC for the TCDT, which includes a simulated launch countdown. The STS-117 mission is No. 21 to the International Space Station. Mission payloads aboard Atlantis include the S3/S4 integrated truss structure, a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Launch is scheduled for no earlier than March 15. Photo credit: NASA/Kim Shiflett.

  13. KSC-07pd0519

    NASA Image and Video Library

    2007-02-23

    KENNEDY SPACE CENTER, FLA. -- Mission STS-117 Commander Rick Sturckow checks the fit of his launch suit and helmet, part of pre-launch preparations during terminal countdown demonstration test (TCDT) activities. The mission crew is at KSC for the TCDT, which includes a simulated launch countdown. The STS-117 mission is No. 21 to the International Space Station. Mission payloads aboard Atlantis include the S3/S4 integrated truss structure, a third set of solar arrays and batteries. The crew of six astronauts will install the truss to continue assembly of the station. Launch is scheduled for no earlier than March 15. Photo credit: NASA/Kim Shiflett.

  14. KSC-01pp1344

    NASA Image and Video Library

    2001-07-20

    KENNEDY SPACE CENTER, Fla. -- STS-105 Pilot Rick Sturckow waits for his helmet during suit check before heading to Launch Pad 39A. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001

  15. KSC-01pp1345

    NASA Image and Video Library

    2001-07-20

    KENNEDY SPACE CENTER, Fla. -- STS-105 Commander Scott Horowitz finishes with suit check before heading to Launch Pad 39A. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities includes emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001

  16. KSC-2011-1048

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA Test Director Robert Holl sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  17. KSC-2011-1052

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, United Space Alliance Guidance and Navigation Engineer Jennifer Guida sits at her console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  18. KSC-2011-1043

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA Test Director Charlie Blackwell-Thompson sits at her console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  19. KSC-2011-1054

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, NASA Orbiter Project Engineer Todd Campbell sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  20. KSC-2011-1044

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, Bart Pannullo, the vehicle processing engineer for space shuttle Discovery, sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  1. KSC-2011-1045

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- In the Launch Control Center at NASA's Kennedy Space Center in Florida, STS-133 NASA Test Director Stephen Payne sits at his console in Firing Room 4 along with other STS-133 launch team members to rehearse procedures for the liftoff of space shuttle Discovery's final mission. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  2. STS-102 crew meets with media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Commander James Wetherbee talks about the mission during a media event at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  3. Launch Vehicle Stage Adapter from Start to Stack

    NASA Image and Video Library

    2016-10-16

    See how a test version of the launch vehicle stage adapter (LVSA) for NASA's new rocket, the Space Launch System, is designed, built and stacked in a test stand at the agency's Marshall Space Flight Center in Huntsville, Alabama. The LVSA was moved to a 65-foot-tall test stand Oct. 12 at Marshall. The test version LVSA will be stacked with other test pieces of the upper part of the SLS rocket and pushed, pulled and twisted as part of an upcoming test series to ensure each structure can withstand the incredible stresses of launch. The LVSA joins the core stage simulator, which was loaded into the test stand Sept. 21. The other three qualification articles and the Orion simulator will complete the stack later this fall. Testing is scheduled to begin in early 2017. SLS will be the world’s most powerful rocket, and with the Orion spacecraft, take astronauts to deep-space destinations, including the Journey to Mars. More information on the upcoming test series can be found here: http://go.nasa.gov/2dS8yXB

  4. Atmospheric Ascent Guidance for Rocket-Powered Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Dukeman, Greg A.

    2002-01-01

    An advanced ascent guidance algorithm for rocket- powered launch vehicles is developed. This algorithm cyclically solves the calculus-of-variations two-point boundary-value problem starting at vertical rise completion through main engine cutoff. This is different from traditional ascent guidance algorithms which operate in a simple open-loop mode until high dynamic pressure (including the critical max-Q) portion of the trajectory is over, at which time guidance operates under the assumption of negligible aerodynamic acceleration (i.e., vacuum dynamics). The initial costate guess is corrected based on errors in the terminal state constraints and the transversality conditions. Judicious approximations are made to reduce the order and complexity of the state/costate system. Results comparing guided launch vehicle trajectories with POST open-loop trajectories are given verifying the basic formulation of the algorithm. Multiple shooting is shown to be a very effective numerical technique for this application. In particular, just one intermediate shooting point, in addition to the initial shooting point, is sufficient to significantly reduce sensitivity to the guessed initial costates. Simulation results from a high-fidelity trajectory simulation are given for the case of launch to sub-orbital cutoff conditions as well as launch to orbit conditions. An abort to downrange landing site formulation of the algorithm is presented.

  5. Java-based Graphical User Interface for MAVERIC-II

    NASA Technical Reports Server (NTRS)

    Seo, Suk Jai

    2005-01-01

    A computer program entitled "Marshall Aerospace Vehicle Representation in C II, (MAVERIC-II)" is a vehicle flight simulation program written primarily in the C programming language. It is written by James W. McCarter at NASA/Marshall Space Flight Center. The goal of the MAVERIC-II development effort is to provide a simulation tool that facilitates the rapid development of high-fidelity flight simulations for launch, orbital, and reentry vehicles of any user-defined configuration for all phases of flight. MAVERIC-II has been found invaluable in performing flight simulations for various Space Transportation Systems. The flexibility provided by MAVERIC-II has allowed several different launch vehicles, including the Saturn V, a Space Launch Initiative Two-Stage-to-Orbit concept and a Shuttle-derived launch vehicle, to be simulated during ascent and portions of on-orbit flight in an extremely efficient manner. It was found that MAVERIC-II provided the high fidelity vehicle and flight environment models as well as the program modularity to allow efficient integration, modification and testing of advanced guidance and control algorithms. In addition to serving as an analysis tool for techno logy development, many researchers have found MAVERIC-II to be an efficient, powerful analysis tool that evaluates guidance, navigation, and control designs, vehicle robustness, and requirements. MAVERIC-II is currently designed to execute in a UNIX environment. The input to the program is composed of three segments: 1) the vehicle models such as propulsion, aerodynamics, and guidance, navigation, and control 2) the environment models such as atmosphere and gravity, and 3) a simulation framework which is responsible for executing the vehicle and environment models and propagating the vehicle s states forward in time and handling user input/output. MAVERIC users prepare data files for the above models and run the simulation program. They can see the output on screen and/or store in files and examine the output data later. Users can also view the output stored in output files by calling a plotting program such as gnuplot. A typical scenario of the use of MAVERIC consists of three-steps; editing existing input data files, running MAVERIC, and plotting output results.

  6. KSC-2009-3120

    NASA Image and Video Library

    2009-05-11

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the framework known as the "birdcage" lowers the Ares I-X simulator crew module-launch abort system, or CM-LAS, onto the simulator service module-service adapter stack. Ares I-X is the flight test for the Ares I. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I. The launch of the 327-foot-tall, full-scale Ares I-X is targeted for August 2009. Photo credit: NASA/Kim Shiflett

  7. KSC-2009-3122

    NASA Image and Video Library

    2009-05-11

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the framework known as the "birdcage" lowers the Ares I-X simulator crew module-launch abort system, or CM-LAS, onto the simulator service module-service adapter stack. Ares I-X is the flight test for the Ares I. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I. The launch of the 327-foot-tall, full-scale Ares I-X is targeted for August 2009. Photo credit: NASA/Kim Shiflett

  8. KSC-2009-3121

    NASA Image and Video Library

    2009-05-11

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the framework known as the "birdcage" lowers the Ares I-X simulator crew module-launch abort system, or CM-LAS, onto the simulator service module-service adapter stack. Ares I-X is the flight test for the Ares I. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I. The launch of the 327-foot-tall, full-scale Ares I-X is targeted for August 2009. Photo credit: NASA/Kim Shiflett

  9. KSC-2009-3124

    NASA Image and Video Library

    2009-05-11

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a technician checks the mating from the inside of the Ares I-X simulator crew module-launch abort system, or CM-LAS, with the simulator service module-service adapter stack. Ares I-X is the flight test for the Ares I. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I. The launch of the 327-foot-tall, full-scale Ares I-X is targeted for August 2009. Photo credit: NASA/Kim Shiflett

  10. KSC-2009-3123

    NASA Image and Video Library

    2009-05-11

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the framework known as the "birdcage" lowers the Ares I-X simulator crew module-launch abort system, or CM-LAS, onto the simulator service module-service adapter stack. Ares I-X is the flight test for the Ares I. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I. The launch of the 327-foot-tall, full-scale Ares I-X is targeted for August 2009. Photo credit: NASA/Kim Shiflett

  11. STS-44 Atlantis, OV-104, crewmembers participate in FB-SMS training at JSC

    NASA Image and Video Library

    1991-04-22

    S91-35303 (22 April 1991) --- Astronauts Frederick D. Gregory (left) and Terrence T. Henricks (right), STS-44 commander and pilot, respectively, are joined near their launch and entry stations by F. Story Musgrave, mission specialist. The three pause while rehearsing some of the activities that will be performed during the scheduled ten-day November flight. Musgrave will be in a rear cabin station during launch and entry phases of the flight deck of the fixed-base Shuttle Mission Simulator (SMS) in the Johnson Space Center's mission simulation and training facility.

  12. KSC-2009-5270

    NASA Image and Video Library

    2009-10-01

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, volunteers portraying astronauts are helped with the launch-and-entry suits. The volunteers are taking part in a Mode II-IV exercise that allows teams to practice an emergency response at Launch Pad 39A, including helicopter evacuation to local hospitals. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing and medical trauma teams at three central Florida hospitals. The Space Shuttle Program and U.S. Air Force are conducting the emergency simulation. Photo credit: NASA/Troy Cryder

  13. Simulation Environment for Orion Launch Abort System Control Design Studies

    NASA Technical Reports Server (NTRS)

    McMinn, J. Dana; Jackson, E. Bruce; Christhilf, David M.

    2007-01-01

    The development and use of an interactive environment to perform control system design and analysis of the proposed Crew Exploration Vehicle Launch Abort System is described. The environment, built using a commercial dynamic systems design package, includes use of an open-source configuration control software tool and a collaborative wiki to coordinate between the simulation developers, control law developers and users. A method for switching between multiple candidate control laws and vehicle configurations is described. Aerodynamic models, especially in a development program, change rapidly, so a means for automating the implementation of new aerodynamic models is described.

  14. Integration of Dynamic Models in Range Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    This work addresses the various model interactions in real-time to make an efficient internet based decision making tool for Shuttle launch. The decision making tool depends on the launch commit criteria coupled with physical models. Dynamic interaction between a wide variety of simulation applications and techniques, embedded algorithms, and data visualizations are needed to exploit the full potential of modeling and simulation. This paper also discusses in depth details of web based 3-D graphics and applications to range safety. The advantages of this dynamic model integration are secure accessibility and distribution of real time information to other NASA centers.

  15. Results of two tests in the MSFC 14 by 14-inch trisonic wind tunnel, FA 27 (TWT-655) and FA 28 (TWT-656)

    NASA Technical Reports Server (NTRS)

    Braddock, W. F.

    1979-01-01

    Wind tunnel tests were conducted in a 14- inch wind tunnel with a 0.004 scale model of the space shuttle launch vehicle in order to (1) determine the cause and possible aerodynamic alterations required to eliminate the Orbiter rolling moment couple; (2) determine configuration alterations to alleviate the forward Orbiter external tank loads; and (3) provide data to verify previous data.

  16. Mars Science Laboratory Launch-Arrival Space Study: A Pork Chop Plot Analysis

    NASA Technical Reports Server (NTRS)

    Cianciolo, Alicia Dwyer; Powell, Richard; Lockwood, Mary Kae

    2006-01-01

    Launch-Arrival, or "pork chop", plot analysis can provide mission designers with valuable information and insight into a specific launch and arrival space selected for a mission. The study begins with the array of entry states for each pair of selected Earth launch and Mars arrival dates, and nominal entry, descent and landing trajectories are simulated for each pair. Parameters of interest, such as maximum heat rate, are plotted in launch-arrival space. The plots help to quickly identify launch and arrival regions that are not feasible under current constraints or technology and also provide information as to what technologies may need to be developed to reach a desired region. This paper provides a discussion of the development, application, and results of a pork chop plot analysis to the Mars Science Laboratory mission. This technique is easily applicable to other missions at Mars and other destinations.

  17. Detached Eddy Simulation Results for a Space Launch System Configuration at Liftoff Conditions and Comparison with Experiment

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Ghaffari, Farhad

    2015-01-01

    Computational simulations for a Space Launch System configuration at liftoff conditions for incidence angles from 0 to 90 degrees were conducted in order to generate integrated force and moment data and longitudinal lineloads. While the integrated force and moment coefficients can be obtained from wind tunnel testing, computational analyses are indispensable in obtaining the extensive amount of surface information required to generate proper lineloads. However, beyond an incidence angle of about 15 degrees, the effects of massive flow separation on the leeward pressure field is not well captured with state of the art Reynolds Averaged Navier-Stokes methods, necessitating the employment of a Detached Eddy Simulation method. Results from these simulations are compared to the liftoff force and moment database and surface pressure data derived from a test in the NASA Langley 14- by 22-Foot Subsonic Wind Tunnel.

  18. A space debris simulation facility for spacecraft materials evaluation

    NASA Technical Reports Server (NTRS)

    Taylor, Roy A.

    1987-01-01

    A facility to simulate the effects of space debris striking an orbiting spacecraft is described. This facility was purchased in 1965 to be used as a micrometeoroid simulation facility. Conversion to a Space Debris Simulation Facility began in July 1984 and it was placed in operation in February 1985. The facility consists of a light gas gun with a 12.7-mm launch tube capable of launching 2.5-12.7 mm projectiles with a mass of 4-300 mg and velocities of 2-8 km/sec, and three target tanks of 0.067 m, 0.53 a m and 28.5 a m. Projectile velocity measurements are accomplished via pulsed X-ray, laser diode detectors, and a Hall photographic station. This facility is being used to test development structural configurations and candidate materials for long duration orbital spacecraft. A summary of test results are also described.

  19. Multi-walled boron nitride nanotubes as self-excited launchers.

    PubMed

    Li, Yifan; Zhou, Yi; Wu, Yan; Huang, Chengchi; Wang, Long; Zhou, Xuyan; Zhao, Zhenyang; Li, Hui

    2017-07-27

    A self-excited launcher consisting of multi-walled boron nitride nanotubes (BNNTs) has been investigated using molecular dynamics simulation. The results show that, after a period of high frequency oscillation, the innermost BNNT can be spontaneously ejected along its central axis at a relatively fast speed. The launching is caused by the energy transfer between the nanotubes and without absorbing energy from the external environment. Most self-excited launchers could launch their innermost nanotube, although an inappropriate structure of the nanotubes contributes to a blocked or failed launch. In addition, a launch angle corrector and a nanotube receiver associated with a self-excited launcher are also manufactured to precisely control the launch angle and distance of the BNNTs. This study provides the possibility to fabricate and design self-excited launchers using multi-walled nanotubes.

  20. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  1. Refractory Materials for Flame Deflector Protection

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark R.; Peruisich, Stephen A.

    2010-01-01

    Fondu Fyre (FF) is currently the only refractory material qualified for use in the flame trench at KSC's Shuttle Launch Pads 39A and 3913. However, the material is not used as it was qualified and has undergone increasingly frequent and severe degradation due to the launch blasts. This degradation is costly as well as dangerous for launch infrastructure, crew and vehicle. The launch environment at KSC is unique. The refractory material is subject to the normal seacoast environment, is completely saturated with water before launch, and is subjected to vibrations and aggressive heat/blast conditions during launch. This report presents results comparing two alternate materials, Ultra-Tek FS gun mix and Kruzite GR Plus, with Fondu Fyre. The materials were subjected to bulk density, porosity, compression strength, modulus of rupture and thermal shock tests. In addition, test specimens were exposed to conditions meant to simulate the launch environment at KSC to help better understand how the materials will perform once installed.

  2. Simulation Assisted Risk Assessment Applied to Launch Vehicle Conceptual Design

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Go, Susie; Gee, Ken; Lawrence, Scott

    2008-01-01

    A simulation-based risk assessment approach is presented and is applied to the analysis of abort during the ascent phase of a space exploration mission. The approach utilizes groupings of launch vehicle failures, referred to as failure bins, which are mapped to corresponding failure environments. Physical models are used to characterize the failure environments in terms of the risk due to blast overpressure, resulting debris field, and the thermal radiation due to a fireball. The resulting risk to the crew is dynamically modeled by combining the likelihood of each failure, the severity of the failure environments as a function of initiator and time of the failure, the robustness of the crew module, and the warning time available due to early detection. The approach is shown to support the launch vehicle design process by characterizing the risk drivers and identifying regions where failure detection would significantly reduce the risk to the crew.

  3. STS-87 Mission Specialist Chawla talks to the media during TCDT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Kalpana Chawla, Ph.D., a mission specialist of the STS-87 crew, participates in a news briefing at Launch Pad 39B during the Terminal Countdown Demonstration Test (TCDT) at Kennedy Space Center (KSC). First-time Shuttle flier Dr. Chawla reported for training as an astronaut at Johnson Space Center in 1995. She has a doctorate in aerospace engineering from the University of Colorado. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay. STS-87 is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from pad 39B at KSC.

  4. Laser-launched flyers with organic working fluids

    NASA Astrophysics Data System (ADS)

    Mulford, Roberta; Swift, Damian

    2003-10-01

    The TRIDENT laser has been used to launch flyers by depositing IR energy in a thin layer of material - the working fluid - sandwiched between the flyer and a transparent substrate. We have investigated the use of working fluids based on organics, chosen as they are quite efficient absorbers of IR energy and should also convert heat to mechanical work more efficiently than materials such as carbon. A thermodynamically complete equation of state was developed for one of the fluids investigated experimentally - a carbohydrate solution - by chemical equilibrium calculations using the CHEETAH program. Continuum mechanics simulations were made of the flyer launch process, modeling the effect of the laser as energy deposition in the working fluid, and taking into account the compression and recoil of the substrate. We compare the simulations with a range of experiments and demonstrate the optimization of substrate and fluid thickness for a given flyer thickness and speed.

  5. KSC-08pd3431

    NASA Image and Video Library

    2008-10-29

    CAPE CANAVERAL, Fla. – In the White Room on Launch Pad 39A at NASA's Kennedy Space Center in Florida, STS-126 crew members enjoy talking with the Closeout Crew as they suit up. In the foreground is Mission Specialist Heidemarie Stefanyshyn-Piper; behind her is Pilot Eric Boe. They and other crew members will take part in a simulated launch countdown after entering space shuttle Endeavour. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Troy Cryder

  6. KSC-08pd3425

    NASA Image and Video Library

    2008-10-29

    CAPE CANAVERAL, Fla. – Dressed in their launch-and-entry suits, the STS-126 crew members eagerly exit the Operations and Checkout Building at NASA's Kennedy Space Center in Florida. They will head to Launch Pad 39A for a simulated countdown in space shuttle Endeavour. Clockwise from left are Pilot Eric Boe, Mission Specialists Steve Bowen, Shane Kimbrough, Sandra Magnus, Heidemarie Stefanyshyn-Piper and Donald Pettit, and Commander Chris Ferguson. The crew is at Kennedy to take part in the Terminal Countdown Demonstration Test, which includes equipment familiarization, emergency exit training and the simulated countdown. On the STS-126 mission, space shuttle Endeavour's crew will deliver equipment and supplies to the International Space Station in preparation for expansion from a three- to six-person resident crew aboard the complex. The mission also will include four spacewalks to service the station’s Solar Alpha Rotary Joints. Endeavour is targeted to launch Nov. 14. Photo credit: NASA/Kim Shiflett

  7. KSC-00pp0076

    NASA Image and Video Library

    2000-01-14

    STS-99 Mission Specialist Mamoru Mohri (Ph.D.) takes his seat inside Space Shuttle Endeavour for a practice launch countdown during Terminal Countdown Demonstration Test (TCDT) activities for the mission. Mohri is with the National Space Development Agency (NASDA) of Japan. The TCDT includes a simulation of the final launch countdown. STS-99 is the Shuttle Radar Topography Mission, which will chart a new course, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay to produce unrivaled 3-D images of the Earth's surface. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. Launch of Endeavour on the 11-day mission is scheduled for Jan. 31 at 12:47 p.m. EST

  8. Weld Residual Stress and Distortion Analysis of the ARES I-X Upper Stage Simulator (USS)

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury; Dawicke, David; Cheston, Derrick; Phillips, Dawn

    2008-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The Ares system of space launch vehicles is the US National Aeronautics and Space Administration s plan for replacement of the aging space shuttle. The new Ares space launch system is somewhat of a combination of the space shuttle system and the Saturn launch vehicles used prior to the shuttle. Here, a series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on fatigue and fracture life. While the main focus of this paper is a discussion of the weld modeling procedures and results for the USS, a short summary of the CIFS assessment is provided.

  9. KSC-97PC1603

    NASA Image and Video Library

    1997-11-04

    Kalpana Chawla, Ph.D., a mission specialist of the STS-87 crew, participates in a news briefing at Launch Pad 39B during the Terminal Countdown Demonstration Test (TCDT) at Kennedy Space Center (KSC). First-time Shuttle flier Dr. Chawla reported for training as an astronaut at Johnson Space Center in 1995. She has a doctorate in aerospace engineering from the University of Colorado. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay. STS-87 is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia from pad 39B at KSC

  10. Improvements To Progressive Wave Tube Performance Through Closed-Loop Control

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2000-01-01

    This report documents recent improvements to the acoustic and thermal control systems of the Thermal Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research Center, Hampton, Virginia. A brief summary of past acoustic performance is given first to serve as a basis for comparison with the new performance data using a multiple-input, closed-loop, narrow-band controller. Performance data in the form of test section acoustic power spectral densities and coherence are presented in three of six facility configurations for a variety of input spectra. Tested spectra include uniform, two cases of pink noise, three cases of narrow-band random, a simulated launch payload bay environment for an expendable launch vehicle, and a simulated external acoustic load for the aft section of a reusable launch vehicle. In addition, a new closed-loop temperature controller and thermocouple data acquisition system are described.

  11. Ares I-X Flight Test Vehicle: Stack 5 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Danel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA's Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the first modal test that was performed on the top section of the vehicle referred to as Stack 5, which consisted of the spacecraft adapter, service module, crew module and launch abort system simulators. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 5 modal test.

  12. KSC-2010-5310

    NASA Image and Video Library

    2010-10-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann

  13. KSC-2010-5308

    NASA Image and Video Library

    2010-10-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility is prepared to conduct a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann

  14. KSC-2010-5311

    NASA Image and Video Library

    2010-10-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann

  15. KSC-2010-5309

    NASA Image and Video Library

    2010-10-27

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the 600-Ton Test Fixture outside the Launch Equipment Test Facility conducts a 500,000-pound pull test of a bridge crane lifting element, which is used to lift space shuttles in the Vehicle Assembly Building. The fixture proofload tests, in tension and compression, a variety of ground support equipment, including slings, lifting beams and other critical lifting hardware that require periodic proofloading. Since 1977, the facility has supported NASA’s Launch Services, shuttle, International Space Station, and Constellation programs, as well as commercial providers. The facility recently underwent a major upgrade to support even more programs, projects and customers. It houses a 6,000-square-foot high bay, cable fabrication and molding shop, pneumatics shop, machine and weld shop and full-scale control room. Outside, the facility features a water flow test loop, vehicle motion simulator, launch simulation towers and a cryogenic system. Photo credit: NASA/Jim Grossmann

  16. KSC-08pd0554

    NASA Image and Video Library

    2008-02-25

    KENNEDY SPACE CENTER, FLA. -- The crew of mission STS-123 provides a photo opportunity in front of the Astrovan for spectators before heading out to NASA Kennedy Space Center's Launch Pad 39A. From left are Mission Specialists Rick Linnehan, Takao Doi, Robert L. Behnken and Mike Foreman, Pilot Gregory H. Johnson, Mission Specialist Garrett Reisman and Commander Dominic Gorie. The crew is taking part in a simulated launch countdown, the culmination of the terminal countdown demonstration test, or TCDT. The TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Space shuttle Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on the 16-day STS-123 mission to the International Space Station. Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett

  17. STS-92 crew leave the O&C for Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-92 crew exits the Operations and Checkout Building on their way to the Astrovan and Launch Pad 39A for a simulated countdown. Walking left to right are (foreground) Mission Specialists Koichi Wakata of Japan, Peter J.K. 'Jeff' Wisoff and Leroy Chiao; and Pilot Pamela Ann Melroy. Behind them are Mission Specialists Michael E. Lopez-Alegria and William S. McArthur Jr.; and Commander Brian Duffy. The crew is taking part in Terminal Countdown Demonstration Test activities that provide emergency egress training, opportunities to inspect the mission payload, and the simulated countdown. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  18. Model implementation for dynamic computation of system cost for advanced life support

    NASA Technical Reports Server (NTRS)

    Levri, J. A.; Vaccari, D. A.

    2004-01-01

    Life support system designs for long-duration space missions have a multitude of requirements drivers, such as mission objectives, political considerations, cost, crew wellness, inherent mission attributes, as well as many other influences. Evaluation of requirements satisfaction can be difficult, particularly at an early stage of mission design. Because launch cost is a critical factor and relatively easy to quantify, it is a point of focus in early mission design. The method used to determine launch cost influences the accuracy of the estimate. This paper discusses the appropriateness of dynamic mission simulation in estimating the launch cost of a life support system. This paper also provides an abbreviated example of a dynamic simulation life support model and possible ways in which such a model might be utilized for design improvement. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  19. The Impact of New Trends in Satellite Launches on Orbital Debris Environment

    NASA Technical Reports Server (NTRS)

    Karacalioglu, Arif Goktug; Stupl, Jan

    2016-01-01

    The main goal of this study is to examine the impact of new trends in satellite launch activities on the orbital debris environment and collision risk. Starting from the launch of the first artificial satellite in 1957, space borne technology has become an indispensable part of our lives. More than 6,000 satellites have been launched into Earth orbit. Though the annual number of satellites launched stayed flat for many decades, the trend has recently changed. The satellite market has been undergoing a major evolution with new space companies replacing the traditional approach of deploying a few large, complex and costly satellites with an approach to use a multitude of smaller, less complex and cheaper satellites. This new approach creates a sharp increase in the number of satellites and so the historic trends are no longer representative. As a foundation for this study, a scenario for satellite deployments based on the publicly announced future satellite missions has been developed. These constellation-deploying companies include, but are not limited to, Blacksky, CICERO, EROS, Landmapper, Leosat, Northstar, O3b, OmniEarth, OneWeb, Orbcomm, OuterNet, PlanetIQ, Planet Labs, Radarsat, RapidEye Next Generation, Sentinel, Skybox, SpaceX, and Spire. Information such as the annual number of launches, the number of orbital planes to be used by the constellation, as well as apogee, perigee, inclination, spacecraft mass and area were included or approximated. Besides the production of satellites, a widespread ongoing effort to enhance orbital injection capabilities will allow delivery of more spacecraft more accurately into Earth orbits. A long list of companies such as Microcosm, Rocket Lab, Firefly Space Systems, Sierra Nevada Corporation and Arca Space Corporation are developing new launch vehicles dedicated for small satellites. There are other projects which intend to develop interstages with propulsive capabilities which will allow the deployment of satellites into their desired orbits beyond the restrictions of the launch vehicle used. These near future orbital injection technologies are also covered in the developed scenario. Using the above-mentioned background information, this study aims to examine how the orbital debris environment will be affected from the new dynamics of the emerging space markets. We developed a simulation tool that is capable of propagating the objects in a given deployment scenario with variable-sized time-steps as small as one second. Over the course of the run, the software also detects collisions; additional debris objects are then created according to the NASA breakup model and are fed back into the simulation framework. Examining the simulation results, the total number of particles to accumulate in different orbits can be monitored and the number of conjunctions can be tracked to assess the collision risks. The simulation makes it possible to follow the short- and long-term effects of a particular satellite or constellation on the space environment. Likewise, the effects of changes in the debris environment on a particular satellite or constellation can be evaluated. It is authors hope that the results of this paper and further utilization of the developed simulation tool will assist in the investigation of more accurate deorbiting metrics to replace the generic 25-year disposal guidelines, as well as to guide future launches toward more sustainable and safe orbits.

  20. Astronauts Grissom and Young in Gemini Mission Simulator

    NASA Image and Video Library

    1964-05-22

    S64-25295 (March 1964) --- Astronauts Virgil I. (Gus) Grissom (right) and John W. Young, prime crew for the first manned Gemini mission (GT-3), are shown inside a Gemini mission simulator at McDonnell Aircraft Corp., St. Louis, MO. The simulator will provide Gemini astronauts and ground crews with realistic mission simulation during intensive training prior to actual launch.

  1. Computational Fluid Dynamics Demonstration of Rigid Bodies in Motion

    NASA Technical Reports Server (NTRS)

    Camarena, Ernesto; Vu, Bruce T.

    2011-01-01

    The Design Analysis Branch (NE-Ml) at the Kennedy Space Center has not had the ability to accurately couple Rigid Body Dynamics (RBD) and Computational Fluid Dynamics (CFD). OVERFLOW-D is a flow solver that has been developed by NASA to have the capability to analyze and simulate dynamic motions with up to six Degrees of Freedom (6-DOF). Two simulations were prepared over the course of the internship to demonstrate 6DOF motion of rigid bodies under aerodynamic loading. The geometries in the simulations were based on a conceptual Space Launch System (SLS). The first simulation that was prepared and computed was the motion of a Solid Rocket Booster (SRB) as it separates from its core stage. To reduce computational time during the development of the simulation, only half of the physical domain with respect to the symmetry plane was simulated. Then a full solution was prepared and computed. The second simulation was a model of the SLS as it departs from a launch pad under a 20 knot crosswind. This simulation was reduced to Two Dimensions (2D) to reduce both preparation and computation time. By allowing 2-DOF for translations and 1-DOF for rotation, the simulation predicted unrealistic rotation. The simulation was then constrained to only allow translations.

  2. Simulating Vibrations in a Complex Loaded Structure

    NASA Technical Reports Server (NTRS)

    Cao, Tim T.

    2005-01-01

    The Dynamic Response Computation (DIRECT) computer program simulates vibrations induced in a complex structure by applied dynamic loads. Developed to enable rapid analysis of launch- and landing- induced vibrations and stresses in a space shuttle, DIRECT also can be used to analyze dynamic responses of other structures - for example, the response of a building to an earthquake, or the response of an oil-drilling platform and attached tanks to large ocean waves. For a space-shuttle simulation, the required input to DIRECT includes mathematical models of the space shuttle and its payloads, and a set of forcing functions that simulates launch and landing loads. DIRECT can accommodate multiple levels of payload attachment and substructure as well as nonlinear dynamic responses of structural interfaces. DIRECT combines the shuttle and payload models into a single structural model, to which the forcing functions are then applied. The resulting equations of motion are reduced to an optimum set and decoupled into a unique format for simulating dynamics. During the simulation, maximum vibrations, loads, and stresses are monitored and recorded for subsequent analysis to identify structural deficiencies in the shuttle and/or payloads.

  3. Constraining physical parameters of ultra-fast outflows in PDS 456 with Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Odaka, H.; Done, C.; Gandhi, P.; Takahashi, T.

    2014-07-01

    Deep absorption lines with extremely high velocity of ˜0.3c observed in PDS 456 spectra strongly indicate the existence of ultra-fast outflows (UFOs). However, the launching and acceleration mechanisms of UFOs are still uncertain. One possible way to solve this is to constrain physical parameters as a function of distance from the source. In order to study the spatial dependence of parameters, it is essential to adopt 3-dimensional Monte Carlo simulations that treat radiation transfer in arbitrary geometry. We have developed a new simulation code of X-ray radiation reprocessed in AGN outflow. Our code implements radiative transfer in 3-dimensional biconical disk wind geometry, based on Monte Carlo simulation framework called MONACO (Watanabe et al. 2006, Odaka et al. 2011). Our simulations reproduce FeXXV and FeXXVI absorption features seen in the spectra. Also, broad Fe emission lines, which reflects the geometry and viewing angle, is successfully reproduced. By comparing the simulated spectra with Suzaku data, we obtained constraints on physical parameters. We discuss launching and acceleration mechanisms of UFOs in PDS 456 based on our analysis.

  4. STS-102 Pilot Kelly talks to media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Pilot James Kelly answers a question from the media during an interview session at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  5. STS-102 MS Richards talks to media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Mission Specialist Paul Richards answers a question from the media during an interview session at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  6. STS-102 MS Thomas talks to media at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- STS-102 Mission Specialist Andrew Thomas answers a question from the media during an interview session at the slidewire basket landing near Launch Pad 39B. He and other crew members are at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Discovery will also be transporting the Expedition Two crew to the Space Station, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  7. Antares Rocket Test Launch

    NASA Image and Video Library

    2013-04-21

    NASA Deputy Administrator Lori Garver talks with CEO and President of Orbital Sciences Corporation David Thompson, left, Executive Vice President and Chief Technical Officer, Orbital Sciences Corporation Antonio Elias, second from left, and Executive Director, Va. Commercial Space Flight Authority Dale Nash, background, in the Range Control Center at the NASA Wallops Flight Facility after the successful launch of the Orbital Sciences Antares rocket from the Mid-Atlantic Regional Spaceport (MARS) in Virginia, Sunday, April 21, 2013. The test launch marked the first flight of Antares and the first rocket launch from Pad-0A. The Antares rocket delivered the equivalent mass of a spacecraft, a so-called mass simulated payload, into Earth's orbit. Photo Credit: (NASA/Bill Ingalls)

  8. STS-113 TCDT emergency exit training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - As part of Terminal Countdown Demonstration Test (TCDT) activities, the STS-113 and Expedition 6 crews receive training in emergency exit from the orbiter on Launch Pad 39A. Shown are (from left) Mission Commander James Wetherbee and cosmonaut Nikolai Budarin and astronaut Donald Pettit of the Expedition 6 crew. The TCDT also includes a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour as well as the Expedition 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.

  9. The Expedition Three crew poses for photo at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses in front of Space Shuttle Discovery on Launch Pad 39A. From left are cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov and Commander Frank Culbertson. Along with the STS-105 crew, they are taking part in Terminal Countdown Demonstration Test activities, which include emergency egress from the pad, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  10. STS-113 TCDT emergency exit training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - As part of Terminal Countdown Demonstration Test (TCDT) activities, the STS-113 and Expedition 6 crews receive training in emergency exit from the orbiter on Launch Pad 39A. Shown are (from left) Expedition 6 Commander Ken Bowersox; STS-113 Pilot Paul Lockhart; astronaut Donald Pettit; Mission Specialist Michael Lopez-Alegria, Commander James Wetherbee and Mission Specialist John Herrington; and cosmonaut Nikolai Budarin. The TCDT also includes a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.

  11. STS-113 TCDT emergency exit training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - On Launch Pad 39A, a trainer (right) explains use of the slidewire basket, part of the emergency egress system, to Expedition 6 astronaut Donald Pettit (left) and STS-113 Mission Specialists Michael Lopez-Alegria (center) and John Herrington (right). . They are other crew members are taking part in Terminal Countdown Demonstration Test (TCDT) activities, which also include a simulated launch countdown. The 16th assembly flight to the International Space Station, STS-113 will carry the Port 1 (P1) truss aboard Space Shuttle Endeavour as well as the Expedition 6 crew, who will replace Expedition 5 on the Station. Mission STS-113 is scheduled to launch Nov. 10, 2002.

  12. KSC-01pp1354

    NASA Image and Video Library

    2001-07-20

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew join hands for a photo on Launch Pad 39A. From left are cosmonaut Vladimir Nikolaevich Dezhurov, Commander Frank Culbertson and cosmonaut Mikhail Tyurin. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001

  13. Modelling of deep gaps created by giant planets in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Kanagawa, Kazuhiro D.; Tanaka, Hidekazu; Muto, Takayuki; Tanigawa, Takayuki

    2017-12-01

    A giant planet embedded in a protoplanetary disk creates a gap. This process is important for both theory and observation. Using results of a survey for a wide parameter range with two-dimensional hydrodynamic simulations, we constructed an empirical formula for the gap structure (i.e., the radial surface density distribution), which can reproduce the gap width and depth obtained by two-dimensional simulations. This formula enables us to judge whether an observed gap is likely to be caused by an embedded planet or not. The propagation of waves launched by the planet is closely connected to the gap structure. It makes the gap wider and shallower as compared with the case where an instantaneous wave damping is assumed. The hydrodynamic simulations show that the waves do not decay immediately at the launching point of waves, even when the planet is as massive as Jupiter. Based on the results of hydrodynamic simulations, we also obtained an empirical model of wave propagation and damping in cases of deep gaps. The one-dimensional gap model with our wave propagation model is able to reproduce the gap structures in hydrodynamic simulations well. In the case of a Jupiter-mass planet, we also found that the waves with a smaller wavenumber (e.g., m = 2) are excited and transport the angular momentum to a location far away from the planet. The wave with m = 2 is closely related with a secondary wave launched by a site opposite from the planet.

  14. KSC-01PP1663

    NASA Image and Video Library

    2001-11-07

    KENNEDY SPACE CENTER, Fla. -- STS-108 Mission Specialist Linda A. Godwin is ready to take her turn driving an M-113 armored personnel carrier. She and other crew members are taking part in Terminal Countdown Demonstration Test activities, which include emergency exit from the launch pad and a simulated launch countdown. The 11-day mission will carry the replacement Expedition 4 crew to the International Space Station, as well as the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. STS-108 is scheduled to launch Nov. 29 on Space Shuttle Endeavour

  15. KSC-01PP1653

    NASA Image and Video Library

    2001-11-07

    KENNEDY SPACE CENTER, Fla. -- STS-108 Mission Specialist Daniel M. Tani is ready to practice driving an M-113 armored personnel carrier. He and other crew members are taking part in Terminal Countdown Demonstration Test activities, which include emergency exit from the launch pad and a simulated launch countdown. STS-108 is a Utilization Flight that will carry the replacement Expedition 4 crew to the International Space Station, as well as the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. The l1-day mission is scheduled for launch Nov. 29 on Space Shuttle Endeavour

  16. KSC01padig082

    NASA Image and Video Library

    2001-02-13

    The STS-102 crew pose in front of an armored carrier that is used for emergency egress training. In the event of an emergency at the pad prior to launch, the carrier could be used to transport the crew to a nearby bunker or farther. The STS-102 crew is at KSC to take part in Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, carrying as payload the Multi-Purpose Logistics Module Leonardo. Launch on mission STS-102 is scheduled for March 8

  17. KSC-98pc445

    NASA Image and Video Library

    1998-03-31

    The crew of STS-90 participate in Terminal Countdown Demonstration Test (TCDT) activities at KSC's Launch Pad 39B. The TCDT is held at KSC prior to each Space Shuttle flight to provide crews with the opportunity to participate in simulated countdown activities. Here, Payload Specialist Jay Buckey, M.D., is assisted with his orange launch and re-entry suit by a USA technician. Columbia is targeted for launch of STS-90 on April 16 at 2:19 p.m. EDT and will be the second mission of 1998. The mission is scheduled to last nearly 17 days

  18. STS-55 Payload Specialist Schlegel with technicians during JSC WETF bailout

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, Payload Specialist 2 Hans Schlegel, wearing launch and entry suit (LES), launch and entry helmet (LEH), and parachute, discusses procedures with technicians Karen Porter and Todd Bailey prior to launch emergency egress (bailout) exercises. The session, held in JSC's Weightless Environment Training Facility (WETF) Bldg 29, used the facility's 25-foot deep pool to simulate the ocean as Schlegel and other crewmembers practiced water bailout procedures. Schlegel represents the DLR for the upcoming Spacelab Deutsche 2 (SL-D2) mission.

  19. STS-55 backup Payload Specialist Thiele with technician in JSC's WETF

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-55 Columbia, Orbiter Vehicle (OV) 102, backup German Payload Specialist Dr. P. Gerhard Thiele, wearing launch and entry suit (LES), launch and entry helmet (LEH), and parachute, seated on the poolside waits his turn to participate in launch emergency egress (bailout) exercises. The session, held in JSC's Weightless Environment Training Facility (WETF) Bldg 29, used the facility's 25-foot deep pool to simulate the ocean as Thiele and other crewmembers practiced water bailout procedures. Thiele represents the DLR for the upcoming Spacelab Deutsche 2 (SL-D2) mission.

  20. Zvezda Launch Coverage

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Footage shows the Proton Rocket (containing the Zvezda module) ready for launch at the Baikonur Cosmodrome in Kazakhstan, Russia. The interior and exterior of Zvezda are seen during construction. Computerized simulations show the solar arrays deploying on Zvezda in space, the maneuvers of the module as it approaches and connects with the International Space Station (ISS), the installation of the Z1 truss on the ISS and its solar arrays deploying, and the installations of the Destiny Laboratory, Remote Manipulator System, and Kibo Experiment Module. Live footage then shows the successful launch of the Proton Rocket.

  1. International Human Mission to Mars: Analyzing A Conceptual Launch and Assembly Campaign

    NASA Technical Reports Server (NTRS)

    Cates, Grant; Stromgren, Chel; Arney, Dale; Cirillo, William; Goodliff, Kandyce

    2014-01-01

    In July of 2013, U.S. Congressman Kennedy (D-Mass.) successfully offered an amendment to H.R. 2687, the National Aeronautics and Space Administration Authorization Act of 2013. "International Participation—The President should invite the United States partners in the International Space Station program and other nations, as appropriate, to participate in an international initiative under the leadership of the United States to achieve the goal of successfully conducting a crewed mission to the surface of Mars." This paper presents a concept for an international campaign to launch and assemble a crewed Mars Transfer Vehicle. NASA’s “Human Exploration of Mars: Design Reference Architecture 5.0” (DRA 5.0) was used as the point of departure for this concept. DRA 5.0 assumed that the launch and assembly campaign would be conducted using NASA launch vehicles. The concept presented utilizes a mixed fleet of NASA Space Launch System (SLS), U.S. commercial and international launch vehicles to accomplish the launch and assembly campaign. This concept has the benefit of potentially reducing the campaign duration. However, the additional complexity of the campaign must also be considered. The reliability of the launch and assembly campaign utilizing SLS launches augmented with commercial and international launch vehicles is analyzed and compared using discrete event simulation.

  2. Investigation on Improvements in Lightning Retest Criteria for Spacecraft

    NASA Technical Reports Server (NTRS)

    Terseck, Alex; Trout, Dawn

    2016-01-01

    Spacecraft are generally protected from a direct strike by launch the vehicle and ground structures, but protocols to evaluate the impact of nearby strikes are not consistent. Often spacecraft rely on the launch vehicle constraints to trigger a retest, but launch vehicles can typically evaluate the impact of a strike within minutes while spacecraft evaluation times can be on the order of hours or even days. For launches at the Kennedy Space Center where lightning activity is among the highest in the United States, this evaluation related delay could be costly with the possibility of missing the launch window altogether. This paper evaluated available data from local lightning measurements systems and computer simulations to predict the coupled effect from various nearby strikes onto a typical payload umbilical. Recommendations are provided to reduce the typical trigger criteria and costly delays.

  3. Landsat-D TM application to porphyry copper exploration

    NASA Technical Reports Server (NTRS)

    Abrams, M.; Brown, D.; Sadowski, R.; Lepley, L.

    1982-01-01

    For a number of years Landsat data have been used to locate areas of iron oxide occurrences which might be associated with hydrothermal alteration zones. However, the usefulness of the Landsat data was restricted because of certain limitations of the spectral information provided by Landsat. A new generation multispectral scanner will, therefore, be carried by the fourth Landsat, which is to be launched in July, 1982. This instrument, called the Thematic Mapper (TM), will have seven channels and provide data with 30 m spatial resolution. Two of the spectral channels (1.6 micron and 2.2 micron) should allow detection of hydrous minerals. Possible applications of Landsat-D TM data for copper exploration were studied on the basis of a comparison of Landsat data with simulated TM data acquired using an aircraft scanner instrument. Three porphyr copper deposits in Arizona were selected for the study. It is concluded that the new Landsat-D TM scanner will provide Exploration geologists with a new improved tool for surveying mineral resources on a global basis.

  4. KSC-2009-3119

    NASA Image and Video Library

    2009-05-11

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the framework known as the "birdcage" lifts the Ares I-X simulator crew module-launch abort system, or CM-LAS. The CM-LAS stack will be mated with the simulator service module-service adapter stack. Ares I-X is the flight test for the Ares I. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I. The launch of the 327-foot-tall, full-scale Ares I-X is targeted for August 2009. Photo credit: NASA/Kim Shiflett

  5. ISS Robotic Student Programming

    NASA Technical Reports Server (NTRS)

    Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.

    2016-01-01

    The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.

  6. STS-110 M.S. Smith, Ross, and Walheim in Atlantis during TCDT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- (Left to right) STS-110 Mission Specialists Steven Smith, Jerry Ross and Rex Walheim settle into their seats aboard Space Shuttle Atlantis prior to a simulated launch countdown. The simulation is part of Terminal Countdown Demonstration Test activities. TCDT also includes emergency egress training and is held at KSC prior to each Space Shuttle flight. Scheduled for launch April 4, the 11-day mission will feature Shuttle Atlantis docking with the International Space Station (ISS) and delivering the S0 truss, the centerpiece-segment of the primary truss structure that will eventually extend over 300 feet.

  7. Aerodynamic Testing of the Orion Launch Abort Tower Separation with Jettison Motor Jet Interactions

    NASA Technical Reports Server (NTRS)

    Rhode, Matthew N.; Chan, David T.; Niskey, Charles J.; Wilson, Thomas M.

    2011-01-01

    The aerodynamic database for the Orion Launch Abort System (LAS) was developed largely from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamics (CFD) simulations. The LAS contains three solid rocket motors used in various phases of an abort to provide propulsion, steering, and Launch Abort Tower (LAT) jettison from the Crew Module (CM). This paper describes a pair of wind tunnel experiments performed at transonic and supersonic speeds to determine the aerodynamic effects due to proximity and jet interactions during LAT jettison from the CM at the end of an abort. The tests were run using two different scale models at angles of attack from 150deg to 200deg , sideslip angles from -10deg to +10deg , and a range of powered thrust levels from the jettison motors to match various jet simulation parameters with flight values. Separation movements between the CM and LAT included axial and vertical translations as well as relative pitch angle between the two bodies. The paper details aspects of the model design, nozzle scaling methodology, instrumentation, testing procedures, and data reduction. Sample data are shown to highlight trends seen in the results.

  8. Simulator - Ride, Sally K.

    NASA Image and Video Library

    1983-05-24

    S83-32568 (23 May 1983) --- Astronaut Sally K. Ride, STS-7 mission specialist, straps herself into a seat in the Shuttle Mission Simulator (SMS) in Johnson Space Center?s Mission Simulation and Training Facility. Dr. Ride and the other STS-7 crew members continue their simulations in the motion base simulator in preparation for their flight in the space shuttle Challenger. Launch is scheduled for June 18. Troy Stewart, suit technician, assisted Dr. Ride. Photo credit: NASA

  9. STS-52 Commander Wetherbee, in LES/LEH, during JSC WETF bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Commander James D. Wetherbee, fully outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), prepares for emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The WETF's 25-ft deep pool will be used to simulate a water landing.

  10. Saturn Apollo Program

    NASA Image and Video Library

    1967-01-01

    This photo shows the Saturn V first stage being lowered to the ground following a successful test to determine the effects of continual vibrations simulating the effects of an actual launch. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  11. The Propulsive Small Expendable Deployer System (ProSEDS)

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.

    2002-01-01

    This Annual Report covers the following main topics: 1) Updated Reference Mission. The reference ProSEDS (Propulsive Small Expendable Deployer System) mission is evaluated for an updated launch date in the Summer of 2002 and for the new 80-s current operating cycle. Simulations are run for nominal solar activity condition at the time of launch and for extreme conditions of dynamic forcing. Simulations include the dynamics of the system, the electrodynamics of the bare tether, the neutral atmosphere and the thermal response of the tether. 2) Evaluation of power delivered by the tether system. The power delivered by the tethered system during the battery charging mode is computed under the assumption of minimum solar activity for the new launch date. 3) Updated Deployment Control Profiles and Simulations. A number of new deployment profiles were derived based on the latest results of the deployment ground tests. The flight profile is then derived based on the friction characteristics obtained from the deployment tests of the F-1 tether. 4) Analysis/estimation of deployment flight data. A process was developed to estimate the deployment trajectory of the endmass with respect to the Delta and the final libration amplitude from the data of the deployer turn counters. This software was tested successfully during the ProSEDS mission simulation at MSFC (Marshall Space Flight Center) EDAC (Environments Data Analysis Center).

  12. Launching a Dream. A Teachers Guide to a Simulated Space Shuttle Mission.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Cleveland, OH. Lewis Research Center.

    This publication is about imagination, teamwork, creativity, and a host of other ingredients required to carry out a dream. It is about going into space--going into space as part of a simulated space shuttle mission. The publication highlights two simulated shuttle missions cosponsored by the National Aeronautics and Space Administration (NASA)…

  13. Radar cross-section measurements and simulation of a tethered satellite. The small expendable deployer system end-mass payload

    NASA Technical Reports Server (NTRS)

    Cravey, Robin L.; Fralick, Dion T.; Vedeler, Erik

    1995-01-01

    The first Small Expendable Deployer System (SEDS-1), a tethered satellite system, was developed by NASA and launched March 29, 1993 as a secondary payload on a United State Air Force (USAF) Delta-2 launch vehicle. The SEDS-1 successfully deployed an instrumented end-mass payload (EMP) on a 20-km nonconducting tether from the second stage of the Delta 2. This paper describes the effort of NASA Langley Research Center's Antenna and Microwave Research Branch to provide assistance to the SEDS Investigators Working Group (IWG) in determining EMP dynamics by analyzing the mission radar skin track data. The radar cross section measurements taken and simulations done for this study are described and comparisons of the measured data with the simulated data for the EMP at 6 GHz are presented.

  14. Hybrids - Best of both worlds. [liquid and solid propellants mated for safe reliable and low cost launch vehicles

    NASA Technical Reports Server (NTRS)

    Goldberg, Ben E.; Wiley, Dan R.

    1991-01-01

    An overview is presented of hybrid rocket propulsion systems whereby combining solids and liquids for launch vehicles could produce a safe, reliable, and low-cost product. The primary subsystems of a hybrid system consist of the oxidizer tank and feed system, an injector system, a solid fuel grain enclosed in a pressure vessel case, a mixing chamber, and a nozzle. The hybrid rocket has an inert grain, which reduces costs of development, transportation, manufacturing, and launch by avoiding many safety measures that must be taken when operating with solids. Other than their use in launch vehicles, hybrids are excellent for simulating the exhaust of solid rocket motors for material development.

  15. Expedition Three crew poses for photo on Fixed Service structure

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses on the Fixed Service Structure at Launch Pad 39A. From left are cosmonaut Mikhail Tyurin, commander Frank Culbertson and cosmonaut Vladimir Nikolaevich Dezhurov. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  16. STS-105 crew poses for photo at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses at Launch Pad 39A after training exercises. Pictured (left to right), Mission Specialists Patrick Forrester and Daniel Barry, Commander Scott Horowitz and Pilot Rick Sturckow. They are taking part in Terminal Countdown Demonstration Test activities, along with the Expedition Three crew. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  17. Expedition Three crew clasp hands for photo at pad

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew join hands for a photo on Launch Pad 39A. From left are cosmonaut Vladimir Nikolaevich Dezhurov, Commander Frank Culbertson and cosmonaut Mikhail Tyurin. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  18. Expedition Three crew poses for photo at pad

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The Expedition Three crew poses for a photo on Launch Pad 39A. From left are cosmonaut Vladimir Nikolaevich Dezhurov, Commander Frank Culbertson and cosmonaut Mikhail Tyurin. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001

  19. STS-92 Mission Specialist Chiao has his launch and entry suit adjusted

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the Operations and Checkout Building, STS-92 Mission Specialist Leroy Chiao has his launch and entry suit adjusted during fit check. Chiao and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. This mission will be Chiao's third Shuttle flight. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  20. KSC-07pd3374

    NASA Image and Video Library

    2007-11-19

    KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis STS-122 Pilot Alan Poindexter takes part in a press conference at the slidewire basket landing on Launch Pad 39A. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  1. KSC-07pd3376

    NASA Image and Video Library

    2007-11-19

    KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis STS-122 Mission Specialist Stanley Love takes part in a press conference at the slidewire basket landing on Launch Pad 39A. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  2. KSC-07pd3375

    NASA Image and Video Library

    2007-11-19

    KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis STS-122 Mission Specialist Leland Melvin takes part in a press conference at the slidewire basket landing on Launch Pad 39A. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  3. STS-105 and Expedition Three crews get slidewire training at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- During emergency egress training on Launch Pad 39A, Expedition Three cosmonaut Vladimir Nikolaevich Dezhurov, STS-105 Mission Specialist Patrick Forrester, and cosmonaut Mikhail Tyurin watch while other crew members descend in a slidewire basket. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities, which include the emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  4. STS-97 crew meets with the media at Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2000-01-01

    STS-97 Mission Specialist Marc Garneau (right) answers a question from the media. At left is Mission Specialist Joe Tanner. They and the other crew members are meeting with the media before beginning emergency egress training at Launch Pad 39B. The training is part of Terminal Countdown Demonstration Test activities that include a simulated launch countdown. Mission STS-97 is the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections. STS-97 is scheduled to launch Nov. 30 at 10:05 p.m. EST.

  5. Time Domain Tool Validation Using ARES I-X Flight Data

    NASA Technical Reports Server (NTRS)

    Hough, Steven; Compton, James; Hannan, Mike; Brandon, Jay

    2011-01-01

    The ARES I-X vehicle was launched from NASA's Kennedy Space Center (KSC) on October 28, 2009 at approximately 11:30 EDT. ARES I-X was the first test flight for NASA s ARES I launch vehicle, and it was the first non-Shuttle launch vehicle designed and flown by NASA since Saturn. The ARES I-X had a 4-segment solid rocket booster (SRB) first stage and a dummy upper stage (US) to emulate the properties of the ARES I US. During ARES I-X pre-flight modeling and analysis, six (6) independent time domain simulation tools were developed and cross validated. Each tool represents an independent implementation of a common set of models and parameters in a different simulation framework and architecture. Post flight data and reconstructed models provide the means to validate a subset of the simulations against actual flight data and to assess the accuracy of pre-flight dispersion analysis. Post flight data consists of telemetered Operational Flight Instrumentation (OFI) data primarily focused on flight computer outputs and sensor measurements as well as Best Estimated Trajectory (BET) data that estimates vehicle state information from all available measurement sources. While pre-flight models were found to provide a reasonable prediction of the vehicle flight, reconstructed models were generated to better represent and simulate the ARES I-X flight. Post flight reconstructed models include: SRB propulsion model, thrust vector bias models, mass properties, base aerodynamics, and Meteorological Estimated Trajectory (wind and atmospheric data). The result of the effort is a set of independently developed, high fidelity, time-domain simulation tools that have been cross validated and validated against flight data. This paper presents the process and results of high fidelity aerospace modeling, simulation, analysis and tool validation in the time domain.

  6. Open-Loop Pitch Table Optimization for the Maximum Dynamic Pressure Orion Abort Flight Test

    NASA Technical Reports Server (NTRS)

    Stillwater, Ryan A.

    2009-01-01

    NASA has scheduled the retirement of the space shuttle orbiter fleet at the end of 2010. The Constellation program was created to develop the next generation of human spaceflight vehicles and launch vehicles, known as Orion and Ares respectively. The Orion vehicle is a return to the capsule configuration that was used in the Mercury, Gemini, and Apollo programs. This configuration allows for the inclusion of an abort system that safely removes the capsule from the booster in the event of a failure on launch. The Flight Test Office at NASA's Dryden Flight Research Center has been tasked with the flight testing of the abort system to ensure proper functionality and safety. The abort system will be tested in various scenarios to approximate the conditions encountered during an actual Orion launch. Every abort will have a closed-loop controller with an open-loop backup that will direct the vehicle during the abort. In order to provide the best fit for the desired total angle of attack profile with the open-loop pitch table, the table is tuned using simulated abort trajectories. A pitch table optimization program was created to tune the trajectories in an automated fashion. The program development was divided into three phases. Phase 1 used only the simulated nominal run to tune the open-loop pitch table. Phase 2 used the simulated nominal and three simulated off nominal runs to tune the open-loop pitch table. Phase 3 used the simulated nominal and sixteen simulated off nominal runs to tune the open-loop pitch table. The optimization program allowed for a quicker and more accurate fit to the desired profile as well as allowing for expanded resolution of the pitch table.

  7. CLVTOPS Liftoff and Separation Analysis Validation Using Ares I-X Flight Data

    NASA Technical Reports Server (NTRS)

    Burger, Ben; Schwarz, Kristina; Kim, Young

    2011-01-01

    CLVTOPS is a multi-body time domain flight dynamics simulation tool developed by NASA s Marshall Space Flight Center (MSFC) for a space launch vehicle and is based on the TREETOPS simulation tool. CLVTOPS is currently used to simulate the flight dynamics and separation/jettison events of the Ares I launch vehicle including liftoff and staging separation. In order for CLVTOPS to become an accredited tool, validation against other independent simulations and real world data is needed. The launch of the Ares I-X vehicle (first Ares I test flight) on October 28, 2009 presented a great opportunity to provide validation evidence for CLVTOPS. In order to simulate the Ares I-X flight, specific models were implemented into CLVTOPS. These models include the flight day environment, reconstructed thrust, reconstructed mass properties, aerodynamics, and the Ares I-X guidance, navigation and control models. The resulting simulation output was compared to Ares I-X flight data. During the liftoff region of flight, trajectory states from the simulation and flight data were compared. The CLVTOPS results were used to make a semi-transparent animation of the vehicle that was overlaid directly on top of the flight video to provide a qualitative measure of the agreement between the simulation and the actual flight. During ascent, the trajectory states of the vehicle were compared with flight data. For the stage separation event, the trajectory states of the two stages were compared to available flight data. Since no quantitative rotational state data for the upper stage was available, the CLVTOPS results were used to make an animation of the two stages to show a side-by-side comparison with flight video. All of the comparisons between CLVTOPS and the flight data show good agreement. This paper documents comparisons between CLVTOPS and Ares I-X flight data which serve as validation evidence for the eventual accreditation of CLVTOPS.

  8. KSC-01PP1658

    NASA Image and Video Library

    2001-11-07

    KENNEDY SPACE CENTER, Fla. - Astronaut E. Michael Fincke is ready to practice driving an M-113 armored personnel carrier. Fincke is a backup crew member for the International Space Station Expedition 4 crew, who are flying on Space Shuttle Endeavour as part of mission STS-108. Both the mission crew and Expedition 4 crews are at KSC for Terminal Countdown Demonstration Test activities. The TCDT includes emergency exit from the launch pad and a simulated launch countdown. The 11-day mission will also carry the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. STS-108 is scheduled to launch Nov. 29

  9. KSC-08pd1166

    NASA Image and Video Library

    2008-05-07

    CAPE CANAVERAL, Fla. -- STS-124 Mission Specialist Karen Nyberg waits to begin training on the M113 armored personnel carrier on Launch Pad 39B. She and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett

  10. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Three members of the STS-102 crew hurry to the slidewire baskets for emergency egress training. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. In addition, the Expedition Two crew will be on the mission, to replace Expedition One, who will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  11. Aerodynamic Characteristics of Tube-Launched Tandem Wing Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Rosid, Nurhayyan H.; Irsyad Lukman, E.; Fadlillah, M. Ahmad; Agoes Moelyadi, M.

    2018-04-01

    Tube Launched UAV with expandable tandem-wing configuration becomes one of the most interesting topic to be investigated. Folding wing mechanism is used due to the requirements that the UAV should be folded into tubular launcher. This paper focuses on investigating the aerodynamics characteristics because of the effects of folding wing mechanism, tandem wing configuration, and rapid deploying process from tube launcher. The aerodynamic characteristics investigation is conducted using computational fluid dynamics (CFD) at low Reynolds numbers (Re < 200000). The results of the simulation are used for the development of ITB Tube-launched UAV prototype and for future studies.

  12. Human Factors Vehicle Displacement Analysis: Engineering In Motion

    NASA Technical Reports Server (NTRS)

    Atencio, Laura Ashley; Reynolds, David; Robertson, Clay

    2010-01-01

    While positioned on the launch pad at the Kennedy Space Center, tall stacked launch vehicles are exposed to the natural environment. Varying directional winds and vortex shedding causes the vehicle to sway in an oscillating motion. The Human Factors team recognizes that vehicle sway may hinder ground crew operation, impact the ground system designs, and ultimately affect launch availability . The objective of this study is to physically simulate predicted oscillation envelopes identified by analysis. and conduct a Human Factors Analysis to assess the ability to carry out essential Upper Stage (US) ground operator tasks based on predicted vehicle motion.

  13. KSC-01pp1677

    NASA Image and Video Library

    2001-11-09

    KENNEDY SPACE CENTER, Fla. -- STS-108 Commander Dominic L. Gorie gets help with his helmet during suit and pre-pack fit check. Gorie and other crew members are preparing to take part in a simulated launch countdown, part of Terminal Countdown Demonstration Test activities. The TCDT also includes emergency exit training from the orbiter and launch pad. STS-108 is a Utilization Flight that will carry the replacement Expedition 4 crew to the International Space Station, as well as the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. The l1-day mission is scheduled for launch Nov. 29 on Space Shuttle Endeavour

  14. KSC-01pp1678

    NASA Image and Video Library

    2001-11-09

    KENNEDY SPACE CENTER, Fla. -- STS-108 Pilot Mark E. Kelly undergoes suit and pre-pack fit check prior to taking part in a simulated launch countdown. Kelly and other crew members are at KSC for Terminal Countdown Demonstration Test activities that also include emergency exit training from the orbiter and launch pad. STS-108 is a Utilization Flight that will carry the replacement Expedition 4 crew to the International Space Station, as well as the Multi-Purpose Logistics Module Raffaello, filled with supplies and equipment. The l1-day mission is scheduled for launch Nov. 29 on Space Shuttle Endeavour.

  15. KSC-2011-1055

    NASA Image and Video Library

    2011-01-07

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, STS-133 launch team members rehearse procedures for the liftoff of space shuttle Discovery's final mission in Firing Room 4. The team at Kennedy also participated in launch simulations with personnel at NASA's Johnson Space Center in Houston. Seen on display overhead are the five orbiter tribute wall hangings. Discovery's next launch opportunity to the International Space Station on the STS-133 mission is planned for no earlier than Feb. 24. For more information on STS-133, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts133/. Photo credit: NASA/Kim Shiflett

  16. STS-50 Payload Specialist DeLucas floats in life raft during JSC WETF bailout

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-50 Columbia, Orbiter Vehicle (OV) 102, United States Microgravity Laboratory 1 (USML-1) Payload Specialist Lawrence J. DeLucas, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a single person life raft during launch emergency egress (bailout) exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. During the exercises, the WETF's 25-foot deep pool was used to simulate the ocean. Crewmembers were dropped from their parachute harnesses into the pool, inflated their life rafts, and used survival equipment to protect themselves from the elements and signal for help.

  17. STS-114: Discovery Launch Readiness Press Conference

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Michael Griffin, NASA Administrator; Wayne Hale, Space Shuttle Deputy Program Manager; Mike Wetmore, Director of Shuttle Processing; and 1st Lieutenant Mindy Chavez, Launch Weather Officer-United States Air Force 45th Weather Squadron are in attendance for this STS-114 Discovery launch readiness press conference. The discussion begins with Wayne Hale bringing to the table a low level sensor device for everyone to view. He talks in detail about all of the extensive tests that were performed on these sensors and the completion of these ambient tests. Chavez presents her weather forecast for the launch day of July 26th 2005. Michael Griffin and Wayne Hale answer questions from the news media pertaining to the sensors and launch readiness. The video ends with footage of Pilot Jim Kelly and Commander Eileen Collins conducting test flights in a Shuttle Training Aircraft (STA) that simulates Space Shuttle landing.

  18. KSC-07pd3344

    NASA Image and Video Library

    2007-11-18

    KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Rex Walheim, at right, practices driving an M-113 armored personnel carrier as the instructor beside him monitors his performance. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  19. KSC-07pd3336

    NASA Image and Video Library

    2007-11-18

    KENNEDY SPACE CENTER, FLA. -- STS-122 Commander Stephen Frick takes time out from driving practice of the M-113 armored personnel carrier to pose for a photo. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  20. KSC-07pd3338

    NASA Image and Video Library

    2007-11-18

    KENNEDY SPACE CENTER, FLA. -- STS-122 Pilot Alan Poindexter takes time out from driving practice of the M-113 armored personnel carrier to pose for a photo. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  1. KSC-07pd3340

    NASA Image and Video Library

    2007-11-18

    KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Leland Melvin takes time out from driving practice of the M-113 armored personnel carrier to pose for a photo. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  2. KSC-07pd3345

    NASA Image and Video Library

    2007-11-18

    KENNEDY SPACE CENTER, FLA. -- STS-122 Mission Specialist Hans Schlegel, of the European Space Agency, takes time out from driving practice of the M-113 armored personnel carrier to pose for a photo. The practice near Launch Pad 39B is part of training on emergency egress procedures. An M-113 will be available to transport the crew to safety in the event of a contingency on the pad before their launch. The crew is participating in Terminal Countdown Demonstration Test activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  3. Scale Model Experiments on Sound Propagation From a Mach 2.5 Cold Nitrogen Jet Flowing Through a Rigid-Walled Duct With a J-Deflector

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Vu, Bruce

    2003-01-01

    The Launch Systems Testbed (LST) represents the evolution of vibroacoustics research and development work performed at NASA John F. Kennedy Space Center (KSC) over the last 15 years. The LST is located at the Launch Equipment Test Facility (LETF) in the KSC industrial complex. The LETF is operated by Sierra Lobo, Inc., as a member of University-Affiliated Technology Development Contract (USTDC) to KSC Spaceport and Engineering and Technology Directorate (YA), with ASRC Aerospace Corporation as a the prime contractor. Trajectory Simulation Mechanism (TSM) is a major component of the LST, developed specifically to simulate nonstationary acoustic loads on launch pad structures, vehicles, and payloads. TSM enhances the capabilities within LST for simulating launch environments of future vehicles. The scaled launch environments will be used to predict the full-scale launch environment via an appropriate scaling procedure. Air Force Research Laboratory (AFRL) has tasked NASA KSC to perform a basic technology test program in support of developing a low-cost clean pad (incorporating passive mitigation techniques) for future launch vehicles. The overall goal of the program is to develop innovative launch exhaust management systems, which effectively reduce launch acoustic environment with innovative duct designs, while eliminating traditional sound suppression water systems. Passive techniques, such as nontraditional duct geometries, resonators, and diffusers, etc., will be investigated. The overall goals are to advance innovative concepts for a clean pad while developing ideas to reduce transmitted sound via investigation and modeling of jet exhaust acoustic and flow field characteristics. The series of tests outlined in this report represent baseline tests and are geared towards defining the acoustic load environment on the TSM pad for open and closed duct configurations. This report summarizes the cold jet acoustic testing for Mach 2.5 supersonic nitrogen jet issuing from a nozzle with 1-inch exit diameter. Acoustic data, including spectral sound power and Overall Sound Pressure Level (OASPL), are obtained both for a free jet and with the jet flowing through a rigid-walled duct with a J-deflector. The relative performance of closed duct and open duct is evaluated. The results show that the closed duct is superior to the partially open duct, and results in about 3-decibel (dB) noise reduction (near the duct axis) relative to the free jet. The location of the nozzle exit plane (NEP) relative to the duct inlet plane (DIP) has a significant effect on the acoustic field. The results suggest that the location of NEP at 10 inches above the DIP results in reduced acoustic loads relative to 5 inches above the duct inlet and 1 inch into the duct inlet.

  4. Learning About Ares I from Monte Carlo Simulation

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Hall, Charlie E.

    2008-01-01

    This paper addresses Monte Carlo simulation analyses that are being conducted to understand the behavior of the Ares I launch vehicle, and to assist with its design. After describing the simulation and modeling of Ares I, the paper addresses the process used to determine what simulations are necessary, and the parameters that are varied in order to understand how the Ares I vehicle will behave in flight. Outputs of these simulations furnish a significant group of design customers with data needed for the development of Ares I and of the Orion spacecraft that will ride atop Ares I. After listing the customers, examples of many of the outputs are described. Products discussed in this paper include those that support structural loads analysis, aerothermal analysis, flight control design, failure/abort analysis, determination of flight performance reserve, examination of orbit insertion accuracy, determination of the Upper Stage impact footprint, analysis of stage separation, analysis of launch probability, analysis of first stage recovery, thrust vector control and reaction control system design, liftoff drift analysis, communications analysis, umbilical release, acoustics, and design of jettison systems.

  5. Effect of gaseous and solid simulated jet plumes on a 040A space shuttle launch configuration at Mach numbers from 1.6 to 2.2

    NASA Technical Reports Server (NTRS)

    Lanfranco, M. J.; Sparks, V. W.; Kavanaugh, A. T.

    1973-01-01

    An experimental investigation was conducted in a 9- by 7-foot supersonic wind tunnel to determine the effect of plume-induced flow separation and aspiration effects due to operation of both the orbiter and the solid rocket motors on a 0.019-scale model of the launch configuration of the space shuttle vehicle. Longitudinal and lateral-directional stability data were obtained at Mach numbers of 1.6, 2.0, and 2.2 with and without the engines operating. The plumes exiting from the engines were simulated by a cold gas jet supplied by an auxiliary 200 atmosphere air supply system, and by solid body plume simulators. Comparisons of the aerodynamic effects produced by these two simulation procedures are presented. The data indicate that the parameters most significantly affected by the jet plumes are the pitching moment, the elevon control effectiveness, the axial force, and the orbiter wing loads.

  6. Time Accurate CFD Simulations of the Orion Launch Abort Vehicle in the Transonic Regime

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Rojahn, Josh

    2011-01-01

    Significant asymmetries in the fluid dynamics were calculated for some cases in the CFD simulations of the Orion Launch Abort Vehicle through its abort trajectories. The CFD simulations were performed steady state with symmetric boundary conditions and geometries. The trajectory points at issue were in the transonic regime, at 0 and 5 angles of attack with the Abort Motors with and without the Attitude Control Motors (ACM) firing. In some of the cases the asymmetric fluid dynamics resulted in aerodynamic side forces that were large enough that would overcome the control authority of the ACMs. MSFC s Fluid Dynamics Group supported the investigation into the cause of the flow asymmetries with time accurate CFD simulations, utilizing a hybrid RANS-LES turbulence model. The results show that the flow over the vehicle and the subsequent interaction with the AB and ACM motor plumes were unsteady. The resulting instantaneous aerodynamic forces were oscillatory with fairly large magnitudes. Time averaged aerodynamic forces were essentially symmetric.

  7. Time Accurate CFD Simulations of the Orion Launch Abort Vehicle in the Transonic Regime

    NASA Technical Reports Server (NTRS)

    Rojahn, Josh; Ruf, Joe

    2011-01-01

    Significant asymmetries in the fluid dynamics were calculated for some cases in the CFD simulations of the Orion Launch Abort Vehicle through its abort trajectories. The CFD simulations were performed steady state and in three dimensions with symmetric geometries, no freestream sideslip angle, and motors firing. The trajectory points at issue were in the transonic regime, at 0 and +/- 5 angles of attack with the Abort Motors with and without the Attitude Control Motors (ACM) firing. In some of the cases the asymmetric fluid dynamics resulted in aerodynamic side forces that were large enough that would overcome the control authority of the ACMs. MSFC's Fluid Dynamics Group supported the investigation into the cause of the flow asymmetries with time accurate CFD simulations, utilizing a hybrid RANS-LES turbulence model. The results show that the flow over the vehicle and the subsequent interaction with the AB and ACM motor plumes were unsteady. The resulting instantaneous aerodynamic forces were oscillatory with fairly large magnitudes. Time averaged aerodynamic forces were essentially symmetric.

  8. Time-Accurate Computational Fluid Dynamics Simulation of a Pair of Moving Solid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Strutzenberg, Louise L.; Williams, Brandon R.

    2011-01-01

    Since the Columbia accident, the threat to the Shuttle launch vehicle from debris during the liftoff timeframe has been assessed by the Liftoff Debris Team at NASA/MSFC. In addition to engineering methods of analysis, CFD-generated flow fields during the liftoff timeframe have been used in conjunction with 3-DOF debris transport methods to predict the motion of liftoff debris. Early models made use of a quasi-steady flow field approximation with the vehicle positioned at a fixed location relative to the ground; however, a moving overset mesh capability has recently been developed for the Loci/CHEM CFD software which enables higher-fidelity simulation of the Shuttle transient plume startup and liftoff environment. The present work details the simulation of the launch pad and mobile launch platform (MLP) with truncated solid rocket boosters (SRBs) moving in a prescribed liftoff trajectory derived from Shuttle flight measurements. Using Loci/CHEM, time-accurate RANS and hybrid RANS/LES simulations were performed for the timeframe T0+0 to T0+3.5 seconds, which consists of SRB startup to a vehicle altitude of approximately 90 feet above the MLP. Analysis of the transient flowfield focuses on the evolution of the SRB plumes in the MLP plume holes and the flame trench, impingement on the flame deflector, and especially impingment on the MLP deck resulting in upward flow which is a transport mechanism for debris. The results show excellent qualitative agreement with the visual record from past Shuttle flights, and comparisons to pressure measurements in the flame trench and on the MLP provide confidence in these simulation capabilities.

  9. Joint Ordnance Test Procedure (JOTP)-010 Safety and Suitability for Service Assessment Testing for Shoulder Launched Munitions

    DTIC Science & Technology

    2016-05-09

    electromagnetic environment for which they are designed to be used. These tests are performed on a powered weapon during simulated normal operation and are...010B SAFETY AND SUITABILITY FOR SERVICE ASSESSMENT TESTING FOR SHOULDER LAUNCHED MUNITIONS Joint Services Munition Safety Test Working Group JOTP...12 6.8 Test Sample Quantities .......................................................... 13 7. PRE- AND POST - TEST INSPECTIONS

  10. STS-46 crewmembers during water egress training in JSC's WETF Bldg 29

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier (left) and backup Italian Payload Specialist Umberto Guidoni, seated at the pool's side, relax before participating in a launch emergency egress (bailout) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The two participants are wearing launch and entry suits (LESs) during the pretest briefing.

  11. STS-47 backup payload specialists participate in JSC WETF bailout exercise

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, backup payload specialists (left to right) Chiaki Naito-Mukai, Takao Doi, and Stan Koszelak, wearing launch and entry suits, sit on the poolside in JSC's Weightless Environment Training Facility (WETF) Bldg 29. These alternates are waiting to participate launch emergency egress (bailout) exercises. The training is conducted in the WETF pool to simulate a water landing.

  12. STS-46 Payload Specialist Malerba in JSC's WETF pool during egress training

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 Atlantis, Orbiter Vehicle (OV) 104, Italian Payload Specialist Franco Malerba, wearing launch and entry suit (LES) and clamshell helmet, laughes as he floats in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. Malerba's flotation vest (life jacket) and two SCUBA-equipped divers keep him afloat after he was dropped into the pool during a launch emergency egress simulation.

  13. Saturn V First Stage Leaves the Dynamic Test Stand

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This photo shows the Saturn V first stage being lowered to the ground following a successful test to determine the effects of continual vibrations simulating the effects of an actual launch. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  14. STS-52 Commander Wetherbee floats in life raft during JSC bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Commander James D. Wetherbee, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft during emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The bailout exercises utilize the WETF's 25-foot deep pool as the ocean for this water landing simulation.

  15. An Analysis of the Space Transportation System Launch Rate Capability Utilizing Q-GERT Simulation Techniques.

    DTIC Science & Technology

    1982-12-01

    VAPE was modeled to determine this launch rate and to determine the processing times for an Orbiter at VAPe . This informa- 21 tion was then used in the...year (node 79 and activity ?1). ETa are then selected to be sent to either KSC or VAPE (node 80). This decision is made (using Ur 8) on the basis of

  16. Interior and exterior ballistics coupled optimization with constraints of attitude control and mechanical-thermal conditions

    NASA Astrophysics Data System (ADS)

    Liang, Xin-xin; Zhang, Nai-min; Zhang, Yan

    2016-07-01

    For solid launch vehicle performance promotion, a modeling method of interior and exterior ballistics associated optimization with constraints of attitude control and mechanical-thermal condition is proposed. Firstly, the interior and external ballistic models of the solid launch vehicle are established, and the attitude control model of the high wind area and the stage of the separation is presented, and the load calculation model of the drag reduction device is presented, and thermal condition calculation model of flight is presented. Secondly, the optimization model is established to optimize the range, which has internal and external ballistic design parameters as variables selected by sensitivity analysis, and has attitude control and mechanical-thermal conditions as constraints. Finally, the method is applied to the optimal design of a three stage solid launch vehicle simulation with differential evolution algorithm. Simulation results are shown that range capability is improved by 10.8%, and both attitude control and mechanical-thermal conditions are satisfied.

  17. Watch 60-Seconds of Major SLS Hardware Being Moved and Put in the Test Stand at NASA Marshall

    NASA Image and Video Library

    2016-10-13

    A test version of the launch vehicle stage adapter (LVSA) for NASA’s new rocket, the Space Launch System, is moved to a 65-foot-tall test stand at the agency’s Marshall Space Flight Center in Huntsville, Alabama. The test version LVSA will be stacked with other test pieces of the upper part of the SLS rocket and pushed, pulled and twisted as part of an upcoming test series to ensure each structure can withstand the incredible stresses of launch. The LVSA joins the core stage simulator, which was loaded into the test stand Sept. 21. The other three qualification articles and the Orion simulator will complete the stack later this fall. SLS will be the world’s most powerful rocket, and with the Orion spacecraft, take astronauts to deep-space destinations, including the Journey to Mars. More information on the upcoming test series can be found here: http://go.nasa.gov/2dS8yXB

  18. SLS Rocket Hardware Moved to NASA Marshall Stand for Upcoming Test Series (30-second timelapse)

    NASA Image and Video Library

    2016-10-13

    A test version of the launch vehicle stage adapter (LVSA) for NASA’s new rocket, the Space Launch System, is moved to a 65-foot-tall test stand at the agency’s Marshall Space Flight Center in Huntsville, Alabama. The test version LVSA will be stacked with other test pieces of the upper part of the SLS rocket and pushed, pulled and twisted as part of an upcoming test series to ensure each structure can withstand the incredible stresses of launch. The LVSA joins the core stage simulator, which was loaded into the test stand Sept. 21. The other three qualification articles and the Orion simulator will complete the stack later this fall. SLS will be the world’s most powerful rocket, and with the Orion spacecraft, take astronauts to deep-space destinations, including the Journey to Mars. More information on the upcoming test series can be found here: http://go.nasa.gov/2dS8yXB

  19. Guidance, Navigation and Control (GN and C) Design Overview and Flight Test Results from NASA's Max Launch Abort System (MLAS)

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lanzi, Raymond J.; Ward, Philip R.

    2010-01-01

    The National Aeronautics and Space Administration Engineering and Safety Center designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft launch abort system already in development. The NESC was tasked with both formulating a conceptual objective system design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on July 8, 2009. The entire flight test duration was 88 seconds during which time multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. This paper provides an overview of the guidance navigation and control technical approaches employed on this rapid prototyping activity; describes the methodology used to design the MLAS flight test vehicle; and lessons that were learned during this rapid prototyping project are also summarized.

  20. A study of two statistical methods as applied to shuttle solid rocket booster expenditures

    NASA Technical Reports Server (NTRS)

    Perlmutter, M.; Huang, Y.; Graves, M.

    1974-01-01

    The state probability technique and the Monte Carlo technique are applied to finding shuttle solid rocket booster expenditure statistics. For a given attrition rate per launch, the probable number of boosters needed for a given mission of 440 launches is calculated. Several cases are considered, including the elimination of the booster after a maximum of 20 consecutive launches. Also considered is the case where the booster is composed of replaceable components with independent attrition rates. A simple cost analysis is carried out to indicate the number of boosters to build initially, depending on booster costs. Two statistical methods were applied in the analysis: (1) state probability method which consists of defining an appropriate state space for the outcome of the random trials, and (2) model simulation method or the Monte Carlo technique. It was found that the model simulation method was easier to formulate while the state probability method required less computing time and was more accurate.

  1. POGO ground simulation test of H-I launch vehicle's second stage

    NASA Astrophysics Data System (ADS)

    Ono, Yoshio; Kohsetsu, Yuji; Shibukawa, Kiwao

    This paper describes a POGO ground simulation test of the Japanese new second stage for the H-I launch vehicle. It was the final prelaunch verification test of a POGO prevention of the H-I. This test was planned to examine POGO stability and was conducted in a Captive Firing Test (CFT) by mounting a flight-type second stage by a soft suspension system on the CFT test stand which gave the vehicle a pseudo inflight boundary condition of free-free in terms of the vehicle's structural dynamics. There was no indication that implied POGO from the data measured during the CFT. Consequently, this test suggested that the new second stage of the H-I was POGO free. Therefore, it was decided that the first test flight (TF no. 1) of the H-I would be made without a POGO Suppression Device. TF no. 1 was launched successfully on August 13, 1986, and its telemetry data showed no evidence of POGO phenomenon.

  2. KSC-08pd0553

    NASA Image and Video Library

    2008-02-25

    KENNEDY SPACE CENTER, FLA. -- The crew of mission STS-123 waves to spectators as they head for the Astrovan to take them to NASA Kennedy Space Center's Launch Pad 39A. In front, from left, are Pilot Gregory H. Johnson, Mission Specialist Garrett Reisman and Commander Dominic Gorie. Behind them, from left, are Mission Specialists Robert L. Behnken, Takao Doi, Mike Foreman and Rick Linnehan. The crew is taking part in a simulated launch countdown, the culmination of the terminal countdown demonstration test, or TCDT. The TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Space shuttle Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on the 16-day STS-123 mission to the International Space Station. Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett

  3. KSC-08pd0552

    NASA Image and Video Library

    2008-02-25

    KENNEDY SPACE CENTER, FLA. -- The crew of mission STS-123 eagerly leave the Operations and Checkout Building on their way to NASA Kennedy Space Center's Launch Pad 39A. In front, from left, are Pilot Gregory H. Johnson, Mission Specialist Garrett Reisman and Commander Dominic Gorie. Behind them, from left, are Mission Specialists Robert L. Behnken, Takao Doi, Mike Foreman and Rick Linnehan. The crew is taking part in a simulated launch countdown, the culmination of the terminal countdown demonstration test, or TCDT. The TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. Space shuttle Endeavour is targeted to launch March 11 at 2:28 a.m. EDT on the 16-day STS-123 mission to the International Space Station. Endeavour and its crew will deliver the first section of the Japan Aerospace Exploration Agency's Kibo laboratory and the Canadian Space Agency's two-armed robotic system, Dextre. Photo credit: NASA/Kim Shiflett

  4. STS-92 crew leave the O&C for Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The STS-92 crew exits the Operations and Checkout Building on their way to the Astrovan and Launch Pad 39A for a simulated countdown. On the left, front to back, are Pilot Pamela Ann Melroy and Mission Specialists Leroy Chiao, Peter J.K. '''Jeff''' Wisoff, and Koichi Wakata of Japan. On the right, front to back, are Commander Brian Duffy and Mission Specialists William S. McArthur Jr. and Michael E. Lopez-Alegria. The crew is taking part in Terminal Countdown Demonstration Test activities that provide emergency egress training, opportunities to inspect the mission payload, and the simulated countdown. STS-92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  5. Flight simulation for flight control computer S/N 0104-1 (ASTP)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flight control computer (FCC) 0104-I has been designated the prime unit for the SA-210 launch vehicle. The results of the final flight simulation for FCC S/N 0104-I are documented. These results verify satisfactory implementation of the design release and proper interfacing of the FCC with flight-type control sensor elements and simulated thrust vector control system.

  6. Simulation Tools Prevent Signal Interference on Spacecraft

    NASA Technical Reports Server (NTRS)

    2014-01-01

    NASA engineers use simulation software to detect and prevent interference between different radio frequency (RF) systems on a rocket and satellite before launch. To speed up the process, Kennedy Space Center awarded SBIR funding to Champaign, Illinois-based Delcross Technologies LLC, which added a drag-and-drop feature to its commercial simulation software, resulting in less time spent preparing for the analysis.

  7. KSC-2009-3118

    NASA Image and Video Library

    2009-05-11

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the framework known as the "birdcage" is placed over the Ares I-X simulator crew module-launch abort system, or CM-LAS. The birdcage will be used to lift the CM-LAS to mate the stack with the simulator service module-service adapter stack. Ares I-X is the flight test for the Ares I. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I. The launch of the 327-foot-tall, full-scale Ares I-X is targeted for August 2009. Photo credit: NASA/Kim Shiflett

  8. KSC-2009-5278

    NASA Image and Video Library

    2009-10-01

    CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, volunteers portraying astronauts are transported to helicopters as part of a Mode II-IV exercise that allows teams to practice an emergency response at Launch Pad 39A, including helicopter evacuation to local hospitals. The exercise allows teams to practice an emergency response at Launch Pad 39A, including helicopter evacuation to local hospitals. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing and medical trauma teams at three central Florida hospitals. The Space Shuttle Program and U.S. Air Force are conducting the emergency simulation. Photo credit: NASA/Troy Cryder

  9. KSC-2009-2652

    NASA Image and Video Library

    2009-04-14

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers place a crane and straps on the Ares I-X simulated launch abort system to lift and rotate it for assembly with the crew module simulator. Ares I-X is the flight test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  10. KSC-2009-2651

    NASA Image and Video Library

    2009-04-14

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers prepare the crane that will lift and rotate the Ares I-X simulated launch abort system (center) for assembly with the crew module simulator. Ares I-X is the flight test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  11. KSC-2009-2660

    NASA Image and Video Library

    2009-04-14

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers keep close watch on the Ares I-X simulated launch abort system, or LAS, as it is lowered onto the crew module simulator for assembly. Ares I-X is the flight test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  12. KSC-2009-2658

    NASA Image and Video Library

    2009-04-14

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers keep close watch on the Ares I-X simulated launch abort system, or LAS, as it is lowered toward the crew module simulator. Ares I-X is the flight test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  13. KSC-2009-2657

    NASA Image and Video Library

    2009-04-14

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the Ares I-X simulated launch abort system, or LAS, (left of center) is being moved to the crew module simulator (center) for assembly. Ares I-X is the flight test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  14. KSC-2009-2659

    NASA Image and Video Library

    2009-04-14

    CAPE CANAVERAL, Fla. – In high bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, workers keep close watch on the Ares I-X simulated launch abort system, or LAS, as it is lowered toward the crew module simulator. Ares I-X is the flight test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. Ares I is the essential core of a safe, reliable, cost-effective space transportation system that eventually will carry crewed missions back to the moon, on to Mars and out into the solar system. Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Jack Pfaller

  15. Aerodynamic Characteristics of a Model of an Inflatable-Sphere Launching Vehicle under Simulated Conditions of Mach Number and Altitude

    NASA Technical Reports Server (NTRS)

    Robinson, Ross B.; Morris, Odell A.

    1960-01-01

    An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel to determine the aerodynamic characteristics in pitch of a two-stage-rocket model configuration which simulated the last two stages of the launching vehicle for an inflatable sphere. Tests were made through an angle-of-attack range from -6 deg to 18 deg at dynamic pressures of 102 and 255 pounds per square foot with corresponding Mach numbers of 1.89 and 1.98 for the model both with and without a bumper arrangement designed to protect the rocket casing from the outer shell of the vehicle.

  16. Constraint Force Equation Methodology for Modeling Multi-Body Stage Separation Dynamics

    NASA Technical Reports Server (NTRS)

    Toniolo, Matthew D.; Tartabini, Paul V.; Pamadi, Bandu N.; Hotchko, Nathaniel

    2008-01-01

    This paper discusses a generalized approach to the multi-body separation problems in a launch vehicle staging environment based on constraint force methodology and its implementation into the Program to Optimize Simulated Trajectories II (POST2), a widely used trajectory design and optimization tool. This development facilitates the inclusion of stage separation analysis into POST2 for seamless end-to-end simulations of launch vehicle trajectories, thus simplifying the overall implementation and providing a range of modeling and optimization capabilities that are standard features in POST2. Analysis and results are presented for two test cases that validate the constraint force equation methodology in a stand-alone mode and its implementation in POST2.

  17. Bacterial spores in granite survive hypervelocity launch by spallation: implications for lithopanspermia.

    PubMed

    Fajardo-Cavazos, Patricia; Langenhorst, Falko; Melosh, H Jay; Nicholson, Wayne L

    2009-09-01

    Bacterial spores are considered good candidates for endolithic life-forms that could survive interplanetary transport by natural impact processes, i.e., lithopanspermia. Organisms within rock can only embark on an interplanetary journey if they survive ejection from the surface of the donor planet and the associated extremes of compressional shock, heating, and acceleration. Previous simulation experiments have measured each of these three stresses more or less in isolation of one another, and results to date indicate that spores of the model organism Bacillus subtilis can survive each stress applied singly. Few simulations, however, have combined all three stresses simultaneously. Because considerable experimental and theoretical evidence supports a spallation mechanism for launch, we devised an experimental simulation of launch by spallation using the Ames Vertical Gun Range (AVGR). B. subtilis spores were applied to the surface of a granite target that was impacted from above by an aluminum projectile fired at 5.4 km/s. Granite spall fragments were captured in a foam recovery fixture and then recovered and assayed for shock damage by transmission electron microscopy and for spore survival by viability assays. Peak shock pressure at the impact site was calculated to be 57.1 GPa, though recovered spall fragments were only very lightly shocked at pressures of 5-7 GPa. Spore survival was calculated to be on the order of 10(-5), which is in agreement with results of previous static compressional shock experiments. These results demonstrate that endolithic spores can survive launch by spallation from a hypervelocity impact, which lends further evidence in favor of lithopanspermia theory.

  18. 18 CFR 1304.209 - Land-based structures/alterations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... steps, pathways, boat launching ramps, marine railways located in the access corridor, bank... (electric, water-intake lines, etc.) may be placed within the access corridor as follows: (1) Power lines, poles, electrical panel, and wiring must be installed: (i) In a way that would not be hazardous to the...

  19. Magnetic Field Is the Dominant Factor to Induce the Response of Streptomyces avermitilis in Altered Gravity Simulated by Diamagnetic Levitation

    PubMed Central

    Shang, Peng; Zhou, Xianlong; Ashforth, Elizabeth; Zhuo, Ying; Chen, Difei; Ren, Biao; Liu, Zhiheng; Zhang, Lixin

    2011-01-01

    Background Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to simulate an altered gravity environment, as in space. In this study, using Streptomyces avermitilis as the test organism, we investigate whether changes in magnetic field and altered gravity induce changes in morphology and secondary metabolism. We find that a strong magnetic field (12T) inhibit the morphological development of S. avermitilis in solid culture, and increase the production of secondary metabolites. Methodology/Principal Findings S. avermitilis on solid medium was levitated at 0 g*, 1 g* and 2 g* in an altered gravity environment simulated by diamagnetic levitation and under a strong magnetic field, denoted by the asterix. The morphology was obtained by electromicroscopy. The production of the secondary metabolite, avermectin, was determined by OD245 nm. The results showed that diamagnetic levitation could induce a physiological response in S. avermitilis. The difference between 1 g* and the control group grown without the strong magnetic field (1 g), showed that the magnetic field was a more dominant factor influencing changes in morphology and secondary metabolite production, than altered gravity. Conclusion/Significance We have discovered that magnetic field, rather than altered gravity, is the dominant factor in altered gravity simulated by diamagnetic levitation, therefore care should to be taken in the interpretation of results when using diamagnetic levitation as a technique to simulate altered gravity. Hence, these results are significant, and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena. PMID:22039402

  20. STS 51-L crewmembers during training session in flight deck simulation

    NASA Technical Reports Server (NTRS)

    1985-01-01

    S85-46207 (December 1985) --- Shuttle Mission Simulator (SMS) scene of astronauts Michael J. Smith, Ellison S. Onizuka, Judith A. Resnik, and Francis R. (Dick) Scobee in their launch and entry positions on the flight deck. The photo was taken by Bill Bowers.

  1. Space Shuttle Propulsion Systems Plume Modeling and Simulation for the Lift-Off Computational Fluid Dynamics Model

    NASA Technical Reports Server (NTRS)

    Strutzenberg, L. L.; Dougherty, N. S.; Liever, P. A.; West, J. S.; Smith, S. D.

    2007-01-01

    This paper details advances being made in the development of Reynolds-Averaged Navier-Stokes numerical simulation tools, models, and methods for the integrated Space Shuttle Vehicle at launch. The conceptual model and modeling approach described includes the development of multiple computational models to appropriately analyze the potential debris transport for critical debris sources at Lift-Off. The conceptual model described herein involves the integration of propulsion analysis for the nozzle/plume flow with the overall 3D vehicle flowfield at Lift-Off. Debris Transport Analyses are being performed using the Shuttle Lift-Off models to assess the risk to the vehicle from Lift-Off debris and appropriately prioritized mitigation of potential debris sources to continue to reduce vehicle risk. These integrated simulations are being used to evaluate plume-induced debris environments where the multi-plume interactions with the launch facility can potentially accelerate debris particles toward the vehicle.

  2. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control System Plumes

    NASA Technical Reports Server (NTRS)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  3. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control Plumes

    NASA Technical Reports Server (NTRS)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  4. Crew Exploration Vehicle Launch Abort Controller Performance Analysis

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Raney, David L.

    2007-01-01

    This paper covers the simulation and evaluation of a controller design for the Crew Module (CM) Launch Abort System (LAS), to measure its ability to meet the abort performance requirements. The controller used in this study is a hybrid design, including features developed by the Government and the Contractor. Testing is done using two separate 6-degree-of-freedom (DOF) computer simulation implementations of the LAS/CM throughout the ascent trajectory: 1) executing a series of abort simulations along a nominal trajectory for the nominal LAS/CM system; and 2) using a series of Monte Carlo runs with perturbed initial flight conditions and perturbed system parameters. The performance of the controller is evaluated against a set of criteria, which is based upon the current functional requirements of the LAS. Preliminary analysis indicates that the performance of the present controller meets (with the exception of a few cases) the evaluation criteria mentioned above.

  5. Expedition Three Commander Culbertson talks to media at Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- At the slidewire landing site, Launch Pad 39A, Expedition Three Commander Frank Culbertson responds to a question during a media interview. With him are cosmonauts Vladimir Nikolaevich Dezhurov (center) and Mikhail Tyurin (right), who are with the Russian Aviation and Space Agency. They and the STS-105 crew are at KSC to take part in Terminal Countdown Demonstration Test activities, which include emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  6. STS-105 crew poses for photo on Fixed Service Structure

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses on the Fixed Service Structure at Launch Pad 39A. From left are Mission Specialist Patrick Forrester, Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Dan Barry. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  7. STS-105 and Expedition Three crews pose together for photo on Fixed Service Structure

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 crew poses on the Fixed Service Structure at Launch Pad 39A. From left are Mission Specialist Patrick Forrester, Commander Scott Horowitz, Pilot Rick Sturckow and Mission Specialist Dan Barry. The STS-105 and Expedition Three crews are at Kennedy Space Center participating in a Terminal Countdown Demonstration Test, a dress rehearsal for launch. The activities include emergency egress training, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The Expedition Two crew members currently on the Station will return to Earth on Discovery. The mission is scheduled to launch no earlier than Aug. 9, 2001.

  8. STS-102 crew poses on the FSS at Launch Pad 39B during TCDT

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Relaxing after emergency escape training on the 195-foot level of the Fixed Service Structure, Launch Pad 39B, are(left to right) STS-102 Mission Specialists Andrew Thomas and Paul Richards and Commander James Wetherbee. The crew is at KSC for Terminal Countdown Demonstration Test activities, which include the emergency training and a simulated launch countdown. STS-102 is the eighth construction flight to the International Space Station, with Space Shuttle Discovery carrying the Multi-Purpose Logistics Module Leonardo. Also flying on the mission are the Expedition Two crew, who will replace the Expedition One crew on Space Station. Expedition One will return to Earth with Discovery. Launch on mission STS-102 is scheduled for March 8.

  9. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A daruma doll is seen amongst the NASA GPM Mission launch team in the Spacecraft Test and Assembly Building 2 (STA2) during the all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory, Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. One eye of the daruma doll is colored in when a goal is set, in this case a successful launch of GPM, and the second eye is colored in at the completion of the goal. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  10. STS-92 Mission Specialist Wakata has his launch and entry suit adjusted

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During pre-pack and fit check in the Operations and Checkout Building, STS-92 Mission Specialist Koichi Wakata of Japan gets an adjustment on his launch and entry suit. This mission is Wakata's second Shuttle flight. He and the rest of the crew are at KSC for Terminal Countdown Demonstration Test activities. The TCDT provides emergency egress training, simulated countdown exercises and opportunities to inspect the mission payload. STS- 92 is scheduled to launch Oct. 5 at 9:38 p.m. EDT from Launch Pad 39A on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.

  11. KSC-07pd3373

    NASA Image and Video Library

    2007-11-19

    KENNEDY SPACE CENTER, FLA. -- Space shuttle Atlantis STS-122 Commander Steve Frick responds to a question from the media during a press conference at the slidewire basket landing on Launch Pad 39A. The STS-122 crew is at NASA's Kennedy Space Center to take part in terminal countdown demonstration test, or TCDT, activities, a standard part of launch preparations. The TCDT provides astronauts and ground crews with equipment familiarization, emergency egress training and a simulated launch countdown. On mission STS-122, Atlantis will deliver the European Space Agency's Columbus module to the International Space Station. Columbus is a multifunctional, pressurized laboratory that will be permanently attached to U.S. Node 2, called Harmony, and will expand the research facilities aboard the station. Launch is targeted for Dec. 6. Photo credit: NASA/Kim Shiflett

  12. Parametric Testing of Launch Vehicle FDDR Models

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Bajwa, Anupa; Berg, Peter; Thirumalainambi, Rajkumar

    2011-01-01

    For the safe operation of a complex system like a (manned) launch vehicle, real-time information about the state of the system and potential faults is extremely important. The on-board FDDR (Failure Detection, Diagnostics, and Response) system is a software system to detect and identify failures, provide real-time diagnostics, and to initiate fault recovery and mitigation. The ERIS (Evaluation of Rocket Integrated Subsystems) failure simulation is a unified Matlab/Simulink model of the Ares I Launch Vehicle with modular, hierarchical subsystems and components. With this model, the nominal flight performance characteristics can be studied. Additionally, failures can be injected to see their effects on vehicle state and on vehicle behavior. A comprehensive test and analysis of such a complicated model is virtually impossible. In this paper, we will describe, how parametric testing (PT) can be used to support testing and analysis of the ERIS failure simulation. PT uses a combination of Monte Carlo techniques with n-factor combinatorial exploration to generate a small, yet comprehensive set of parameters for the test runs. For the analysis of the high-dimensional simulation data, we are using multivariate clustering to automatically find structure in this high-dimensional data space. Our tools can generate detailed HTML reports that facilitate the analysis.

  13. A New Aerodynamic Data Dispersion Method for Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T.

    2011-01-01

    A novel method for implementing aerodynamic data dispersion analysis is herein introduced. A general mathematical approach combined with physical modeling tailored to the aerodynamic quantity of interest enables the generation of more realistically relevant dispersed data and, in turn, more reasonable flight simulation results. The method simultaneously allows for the aerodynamic quantities and their derivatives to be dispersed given a set of non-arbitrary constraints, which stresses the controls model in more ways than with the traditional bias up or down of the nominal data within the uncertainty bounds. The adoption and implementation of this new method within the NASA Ares I Crew Launch Vehicle Project has resulted in significant increases in predicted roll control authority, and lowered the induced risks for flight test operations. One direct impact on launch vehicles is a reduced size for auxiliary control systems, and the possibility of an increased payload. This technique has the potential of being applied to problems in multiple areas where nominal data together with uncertainties are used to produce simulations using Monte Carlo type random sampling methods. It is recommended that a tailored physics-based dispersion model be delivered with any aerodynamic product that includes nominal data and uncertainties, in order to make flight simulations more realistic and allow for leaner spacecraft designs.

  14. Prediction of corridor effect from the launching of the satellite power system. [air pollutant concentration into narrow band of latitude

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Whitten, R. C.; Woodward, H. T.; Capone, L. A.; Riegel, C. A.

    1982-01-01

    A diagnostic model is developed to define the parameters which control the corridor effect of contaminants deposited in a narrow latitudinal band of the earth's atmosphere by numerous launches of the STS and heavy lift launch vehicles for construction of satellite solar power systems. Identified factors included the pollution injection rate, the ambient background levels of the pollutant species, and the transport properties related to the dilution rate of the chemicals. If the chemical life of the pollutant was shorter or the same length of time as the transport time, alterations in the chemical production and loss rates were found to be parameters necessarily added to the model. A comparison with NASA Ames Research Center two-dimensional model results indicate that the corridor effect was possile with operations above 60 km in the case of H2O, H2, and NO production.

  15. Observation and simulation of the ionosphere disturbance waves triggered by rocket exhausts

    NASA Astrophysics Data System (ADS)

    Lin, Charles C. H.; Chen, Chia-Hung; Matsumura, Mitsuru; Lin, Jia-Ting; Kakinami, Yoshihiro

    2017-08-01

    Observations and theoretical modeling of the ionospheric disturbance waves generated by rocket launches are investigated. During the rocket passage, time rate change of total electron content (rTEC) enhancement with the V-shape shock wave signature is commonly observed, followed by acoustic wave disturbances and region of negative rTEC centered along the trajectory. Ten to fifteen min after the rocket passage, delayed disturbance waves appeared and propagated along direction normal to the V-shape wavefronts. These observation features appeared most prominently in the 2016 North Korea rocket launch showing a very distinct V-shape rTEC enhancement over enormous areas along the southeast flight trajectory despite that it was also appeared in the 2009 North Korea rocket launch with the eastward flight trajectory. Numerical simulations using the physical-based nonlinear and nonhydrostatic coupled model of neutral atmosphere and ionosphere reproduce promised results in qualitative agreement with the characteristics of ionospheric disturbance waves observed in the 2009 event by considering the released energy of the rocket exhaust as the disturbance source. Simulations reproduce the shock wave signature of electron density enhancement, acoustic wave disturbances, the electron density depletion due to the rocket-induced pressure bulge, and the delayed disturbance waves. The pressure bulge results in outward neutral wind flows carrying neutrals and plasma away from it and leading to electron density depletions. Simulations further show, for the first time, that the delayed disturbance waves are produced by the surface reflection of the earlier arrival acoustic wave disturbances.

  16. Simulated JWST/NIRISS Spectroscopy of Anticipated TESS Planets and Selected Super-Earths Discovered from K2 and Ground-Based Surveys

    NASA Astrophysics Data System (ADS)

    Louie, Dana; Albert, Loic; Deming, Drake

    2017-01-01

    The 2018 launch of James Webb Space Telescope (JWST), coupled with the 2017 launch of the Transiting Exoplanet Survey Satellite (TESS), heralds a new era in Exoplanet Science, with TESS projected to detect over one thousand transiting sub-Neptune-sized planets (Ricker et al, 2014), and JWST offering unprecedented spectroscopic capabilities. Sullivan et al (2015) used Monte Carlo simulations to predict the properties of the planets that TESS is likely to detect, and published a catalog of 962 simulated TESS planets. Prior to TESS launch, the re-scoped Kepler K2 mission and ground-based surveys such as MEarth continue to seek nearby Earth-like exoplanets orbiting M-dwarf host stars. The exoplanet community will undoubtedly employ JWST for atmospheric characterization follow-up studies of promising exoplanets, but the targeted planets for these studies must be chosen wisely to maximize JWST science return. The goal of this project is to estimate the capabilities of JWST’s Near InfraRed Imager and Slitless Spectrograph (NIRISS)—operating with the GR700XD grism in Single Object Slitless Spectrography (SOSS) mode—during observations of exoplanets transiting their host stars. We compare results obtained for the simulated TESS planets, confirmed K2-discovered super-Earths, and exoplanets discovered using ground-based surveys. By determining the target planet characteristics that result in the most favorable JWST observing conditions, we can optimize the choice of target planets in future JWST follow-on atmospheric characterization studies.

  17. The Interaction of the Space Shuttle Launch and Entry Suits and Sustained Weightless on Astronaut Egress Locomotion

    NASA Technical Reports Server (NTRS)

    Greenisen, M. C.; Bishop, P. A.; Sothmann, M.

    2008-01-01

    The purpose of this study was to determine the consequences of extended periods of weightlessness during space missions on astronauts f ability to perform a simulated contingency egress while wearing either of the Launch and Entry suits immediately after space flight. In our previous lab-based study of simulated contingency egress, we found only 4 of 12 non-astronauts wearing the Launch and Entry Suit (LES) successfully completed the simulated egress. However, 4 of 4 of the previous failures (when tested wearing the LES), were then successful in completing the test wearing the Advanced Crew Escape Suit (ACES). Therefore, this study tested 21 Astronaut Volunteers wearing either the LES or ACES while performing a simulated egress on a treadmill (TM) onboard the Crew Transportation Vehicle immediately after space flight at either the Kennedy Space Center or Edwards AFB. Astronauts walked for 400 meters at 1.6m/sec with g-suit inflation level set to preflight testing levels, visor down, breathing from the suit emergency O2 supply. Metabolic, heartrate, and perceived exertion data were collected during these post-flight tests. Exactly the same preflight simulated egress tests on a TM were performed in the lab at NASA/JSC by each crewmember at L-60. Preflight testing found 2 of the 21 crewmembers were unable to complete the simulated contingency egress. Postflight, 9 crew (8 ACES, 1 LES) completed the simulated contingency egress of 400 meters at 1.6m/sec. and 12 failed to meet that standard (7 ACES, 5 LES). Preflight physiological response tests failed to identify crew capable of performing the egress vs. those who failed. However, 18 of the 21 crew did make at least 2.67 minutes into the postflight egress testing. At that point in time, heartrate was higher (P <=.20) for the failures compared to the finishers. These findings indicate that NASA fs switch to the ACES for space flight crews should be expedited.

  18. The use of tethers for payload orbital transfer. Continuation of investigation of electrodynamic stabilization and control of long orbiting tethers, volume 2

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Martinez-Sanchez, M.; Arnold, D.

    1982-01-01

    The SKYHOOK program was used to do simulations of two cases of the use of the tether for payload orbital transfer. The transport of a payload along the tether from a heavy lower platform to an upper launching platform is considered. A numerical example of the Shuttle launching a payload using an orbital tether facility is described.

  19. STS-52 backup Payload Specialist Tryggvason during JSC bailout exercises

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, backup Payload Specialist Bjarni V. Tryggvason, wearing launch and entry suit (LES), checks his launch and entry helmet (LEH) fitting prior to participating in emergency egress (bailout) training exercises in JSC's Weightless Environment Training Facility (WETF) Bldg 29. The WETF's 25-ft deep pool will serve as the ocean during this water landing simulation. Tryggvason represents the Canadian Space Agency (CSA).

  20. Dynamics of Nonlinear Excitation of the High-Order Mode in a Single-Mode Step-Index Optical Fiber

    NASA Astrophysics Data System (ADS)

    Burdin, V.; Bourdine, A.

    2018-04-01

    This work is concerned with approximate model of higher-order mode nonlinear excitation in a singlemode silica optical fiber. We present some results of simulation for step-index optical fiber under femtosecond optical pulse launching, which confirm ability of relatively stable higher-order mode excitation in such singlemode optical fiber over sufficiently narrow range of launched optical power variation.

Top