Science.gov

Sample records for simulated main magnetic

  1. Optics Simulations for the NLC Main Linac

    SciTech Connect

    Woodley, Mark D

    2001-06-15

    Focusing in the NLC main linac will be provided mainly by hybrid permanent magnet quadrupoles which have limited variability in strength. When the energy profile of the linac changes, due to normal cycling of rf sources, mismatches in the beam optics can be generated if the quadrupole strengths are not rescaled to the new energy profile. These mismatches can lead to emittance dilution. In addition, betatron phase advance changes caused by the mismatch can adversely affect the beam trajectory, leading to emittance dilution from dispersion and wakefields. This paper describes the results of simulations of these processes, undertaken in an attempt to determine whether or not rescaling of the quadrupoles will be necessary in the NLC main linac.

  2. Topology of Saturn's main magnetic field

    NASA Astrophysics Data System (ADS)

    Acuna, M. H.; Connerney, J. E. P.; Ness, N. F.

    1981-08-01

    The reported analysis of Saturn's main magnetic field takes into account the data obtained by Voyager 1 during its close flyby of Saturn in November 1980. A magnetic field model for the analysis of Saturn's main field in which the distributed ring currents are explicitly modelled is constructed. The considered internal field parameters constitute a first approximation to Saturn's main field. Several model current systems that might be expected on physical grounds to be active in Saturn's magnetosphere are considered. It is pointed out that certain aspects of Saturn's main magnetic field relevant to the planet's interior have been discussed by Stevenson (1980). In particular, the unexpectedly small dipole moment seems to be consistent with the gravitational settling of helium, which leads to a much smaller electrically conducting and convecting region than would be expected of a homogeneous distribution of hydrogen and helium.

  3. The main magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    The main magnetic field of Jupiter has been measured by the Goddard Space Flight Center flux gate magnetometer on Pioneer 11. Analysis of the data yields a more detailed model than that obtained from Pioneer 10 results. In a spherical harmonic octupole representation the dipole term (with opposite polarity to earth's) has a magnitude of 4.28 G times the radial distance cubed at a tilt angle of 9.6 deg and a system 111 longitude of 232 deg. The quadrupole and octupole moments are 24% and 21% of the dipole, respectively. This leads to a significant deviation of the planetary magnetic field from a simple offset dipole topology at distances of less than three times the radial distance. The north polar field strength is 14 G, and in the Northern Hemisphere the 'footprint' of the Io associated flux tube traverses the magnetic polar region. Associated L shell splitting in the radiation belts, warping of the charged particle equatorial planes, and enhanced absorption effects due to the satellites Amalthea and Io are expected as a result of the field complexity.

  4. Three-dimensional simulations of near-surface convection in main-sequence stars. IV. Effect of small-scale magnetic flux concentrations on centre-to-limb variation and spectral lines

    NASA Astrophysics Data System (ADS)

    Beeck, B.; Schüssler, M.; Cameron, R. H.; Reiners, A.

    2015-09-01

    Context. Magnetic fields affect the local structure of the photosphere of stars. They can considerably influence the radiative properties near the optical surface, flow velocities, and the temperature and pressure profiles. This has an impact on observables such as limb darkening and spectral line profiles. Aims: We aim at understanding qualitatively the influence of small magnetic flux concentrations in unipolar plage regions on the centre-to-limb variation of the intensity and its contrast and on the shape of spectral line profiles in cool main-sequence stars. Methods: We analyse the bolometric and continuum intensity and its angular dependence of 24 radiative magnetohydrodynamic simulations of the near-surface layers of main-sequence stars with six different sets of stellar parameters (spectral types F to early M) and four different average magnetic field strengths (including the non-magnetic case). We also calculated disc-integrated profiles of three spectral lines. Results: The small magnetic flux concentrations formed in the magnetic runs of simulations have a considerable impact on the intensity and its centre-to-limb variation. In some cases, the difference in limb darkening between magnetic and non-magnetic runs is larger than the difference between the spectral types. Spectral lines are not only broadened owing to the Zeeman effect, but are also strongly affected by the modified thermodynamical structure and flow patterns. This indirect magnetic impact on the line profiles is often bigger than that of the Zeeman effect. Conclusions: The effects of the magnetic field on the radiation leaving the star can be considerable and is not restricted to spectral line broadening and polarisation by the Zeeman effect. The inhomogeneous structure of the magnetic field on small length scales and its impact on (and spatial correlation with) the local thermodynamical structure and the flow field near the surface influence the measurement of the global field properties

  5. Space shuttle main engine hardware simulation

    NASA Technical Reports Server (NTRS)

    Vick, H. G.; Hampton, P. W.

    1985-01-01

    The Huntsville Simulation Laboratory (HSL) provides a simulation facility to test and verify the space shuttle main engine (SSME) avionics and software system using a maximum complement of flight type hardware. The HSL permits evaluations and analyses of the SSME avionics hardware, software, control system, and mathematical models. The laboratory has performed a wide spectrum of tests and verified operational procedures to ensure system component compatibility under all operating conditions. It is a test bed for integration of hardware/software/hydraulics. The HSL is and has been an invaluable tool in the design and development of the SSME.

  6. Simulation of slow extraction in the Main Injector

    SciTech Connect

    Mishra, C.S.; Harfoush, F.A.; Johnstone, J.

    1993-08-01

    Recent modifications to the tracking code TEAPOT have allowed us to simulate both ramp and slow extraction in the Fermilab Main Injector at 120 GeV/c. This calculation includes all the magnetic field and alignment errors. Preliminary results from this calculation are presented here and compared with other calculations. Further studies to optimize the strength and ramp of the extraction elements are in progress.

  7. Active magnetic suspension in main magnetic field of electric motor

    NASA Astrophysics Data System (ADS)

    Urusov, I. D.; Galkin, V. I.; Likhoshvay, I. P.

    1985-10-01

    An active magnetic suspension for the rotor of an electric motor is considered, especially in small or miniature high-speed devices such as gyros, microturbomachines, and machine-tool spindle drives where it would eliminate the need for extra bearings and contribute to size and weight reduction. A disk-type rotor made of a ferromagnetic material is located horizontally inside the bore of a vertical stator so that weight and external loads compensate the magnetic pull upward. This pull is generated by the magnetic field in the air gap and can be automatically controlled by an electronic feedback circuit which regulates the stator input voltage depending on the rotor position along the stator bore, with a displacement transducer on the rotor indicating the position. The performance of such a suspension with automatic control in a 3-phase induction motor is analyzed on the basis of the system of differential equations describing the behavior of the electromechanical system during axial oscillations of the rotor, assuming a constant rotor speed during the transient periods.

  8. A simulated magnetic induction investigation of Europa

    NASA Astrophysics Data System (ADS)

    Bills, B. G.; Khurana, K. K.

    2013-12-01

    We will present results of a simulated magnetic induction experiment designed to measure the electrical conductivity structure within Europa, as seen from a series of spacecraft flyby encounters. As Europa moves in its orbit about Jupiter, it experiences a time varying magnetic field, which induces electrical currents in any conductive layers. These currents produce induced magnetic fields, whose spatio-temporal pattern is diagnostic of Europa's internal conductivity structure. The main frequencies at which the imposed magnetic field changes at Europa are low order integer linear combinations of Jupiter's rotation (9.925 hour period) and Europa's orbit (85.228 hour period). Longer period oscillations penetrate more deeply, as they have more time to diffuse into the interior. At each forcing period, we define the admittance as the amplitude ratio (induced/imposed) of the associated magnetic fields. Each measurement of the admittance constrains the conductance (product of conductivity and thickness) of the main internal conductor, at the appropriate period. With measurements at multiple periods, a low frequency magnetic tomography inversion becomes possible. A spacecraft orbiting Europa could almost certainly constrain ice shell thickness, and both the depth extent and salinity of the ocean. The main challenge of a flyby version of that experiment is to have a sampling cadence which adequately separates the main signal frequencies. The magnetometer on Galileo has already detected an induction signal which is consistent with the presence of a salty ocean. However, the low number of flybys restricts the ability of that data-set to say more. We have simulated a time series of magnetometer measurements which could be acquired by the Europa Clipper mission concept, along a hypothetical planning trajectory, which would involve a total of 45 encounters with Europa. This trajectory has been designed to satisfy numerous instrument requirements, including that it encounter

  9. Magnetic main sequence stars as progenitors of blue supergiants

    NASA Astrophysics Data System (ADS)

    Petermann, I.; Castro, N.; Langer, N.

    2015-01-01

    Blue supergiants (BSGs) to the right the main sequence band in the HR diagram can not be reproduced by standard stellar evolution calculations. We investigate whether a reduced convective core mass due to strong internal magnetic fields during the main sequence might be able to recover this population of stars. We perform calculations with a reduced mass of the hydrogen burning convective core of stars in the mass range 3-30 M ⊙ in a parametric way, which indeed lead to BSGs. It is expected that these BSGs would still show large scale magnetic fields in the order of 10 G.

  10. Retraining of the 1232 Main Dipole Magnets in the LHC

    SciTech Connect

    Verweij, A.; Auchmann, B.; Bednarek, M.; Bottura, L.; Charifoulline, Z.; Feher, S.; Hagen, P.; Modena, M.; Le Naour, S.; Romera, I.; Siemko, A.; Steckert, J.; Tock, J. Ph; Todesco, E.; Willering, G.; Wollmann, D.

    2016-01-05

    The Large Hadron Collider (LHC) contains eight main dipole circuits, each of them with 154 dipole magnets powered in series. These 15-m-long magnets are wound from Nb-Ti superconducting Rutherford cables, and have active quench detection triggering heaters to quickly force the transition of the coil to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. During the reception tests in 2002-2007, all these magnets have been trained up to at least 12 kA, corresponding to a beam energy of 7.1 TeV. After installation in the accelerator, the circuits have been operated at reduced currents of up to 6.8 kA, from 2010 to 2013, corresponding to a beam energy of 4 TeV. After the first long shutdown of 2013-2014, the LHC runs at 6.5 TeV, requiring a dipole magnet current of 11.0 kA. A significant number of training quenches were needed to bring the 1232 magnets up to this current. In this paper, the circuit behavior in case of a quench is presented, as well as the quench training as compared to the initial training during the reception tests of the individual magnets.

  11. Modeling and simulation of magnetic nanoparticle sensor.

    PubMed

    Makiranta, Jarkko; Lekkala, Jukka

    2005-01-01

    Sensitivity and detection limit of a magnetic nanoparticle sensor is modeled and simulated. A micro coil generates an alternating magnetic field which excites magnetic nanoparticles in its vicinity. A concentric sensing coil applies Faraday's law of induction measuring the excited magnetization of the magnetic particles at high frequency. A differential measurement compensates disturbances and the influence of the driving microcoil leaving only the signal caused by the magnetic particles. The sensing system can be used for detection of magnetic nanoparticle labels in immunological point of care diagnostics. The paper shows simulation results for a microcoil system capable of detecting a single superparamagnetic nanoparticle.

  12. Simulations of transition crossing in the main injector

    SciTech Connect

    Bhat, C.M.; MacLachlan, J.A.

    1995-05-01

    The design goal for the Fermilab Main Injector (FMI) is to accelerate a minimum of 6{times}10{sup 10} protons per bunch through the transition. We present here the results from simulation studies of the transition crossing in the FMI using the particle tracking code ESME.

  13. Simulations of space charge in the Fermilab Main Injector

    SciTech Connect

    Stern, E.; Amundson, J.; Spentzouris, P.; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2011-03-01

    The Fermilab Project X plan for future high intensity operation relies on the Main Injector as the engine for delivering protons in the 60-120 GeV energy range. Project X plans call for increasing the number of protons per Main Injector bunch from the current value of 1.0 x 10{sup 11} to 3.0 x 10{sup 11}. Space charge effects at the injection energy of 8 GeV have the potential to seriously disrupt operations. We report on ongoing simulation efforts with Synergia, MARYLIE/Impact, and IMPACT, which provide comprehensive capabilities for parallel, multi-physics modeling of beam dynamics in the Main Injector including 3D space-charge effects.

  14. Macroscopic simulation of isotropic permanent magnets

    NASA Astrophysics Data System (ADS)

    Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2016-03-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material.

  15. Analysis of the Space Shuttle main engine simulation

    NASA Technical Reports Server (NTRS)

    Deabreu-Garcia, J. Alex; Welch, John T.

    1993-01-01

    This is a final report on an analysis of the Space Shuttle Main Engine Program, a digital simulator code written in Fortran. The research was undertaken in ultimate support of future design studies of a shuttle life-extending Intelligent Control System (ICS). These studies are to be conducted by NASA Lewis Space Research Center. The primary purpose of the analysis was to define the means to achieve a faster running simulation, and to determine if additional hardware would be necessary for speeding up simulations for the ICS project. In particular, the analysis was to consider the use of custom integrators based on the Matrix Stability Region Placement (MSRP) method. In addition to speed of execution, other qualities of the software were to be examined. Among these are the accuracy of computations, the useability of the simulation system, and the maintainability of the program and data files. Accuracy involves control of truncation error of the methods, and roundoff error induced by floating point operations. It also involves the requirement that the user be fully aware of the model that the simulator is implementing.

  16. Main drive selection for the Windstorm Simulation Center

    SciTech Connect

    Lacy, J.M.; Earl, J.S.

    1998-02-01

    Operated by the Partnership for Natural Disaster Reduction, the Windstorm Simulation Center (WSC) will be a structural test center dedicated to studying the performance of civil structural systems subjected to hurricanes, tornadoes, and other storm winds. Within the WSC, a bank of high-power fans, the main drive, will produce the high velocity wind necessary to reproduce these storms. Several options are available for the main drive, each with advantages and liabilities. This report documents a study to identify and evaluate all candidates available, and to select the most promising system such that the best possible combination of real-world performance attributes is achieved at the best value. Four broad classes of candidate were identified: electric motors, turbofan aircraft engines, turboshaft aircraft engines, and turboshaft industrial engines. Candidate systems were evaluated on a basis of technical feasibility, availability, power, installed cost, and operating cost.

  17. Selecting magnet laminations recipes using the method of simulated annealing

    SciTech Connect

    Russell, A.D.; Baiod, R.; Brown, B.C.

    1997-05-01

    The Fermilab Main Injector project is building 344 dipoles using more than 7000 tons of steel. There were significant run-to-run variations in the magnetic properties of the steel. Differences in stress relief in the steel after stamping resulted in variations of gap height. To minimize magnet-to-magnet strength and field shape variations the laminations were shuffled based on the available magnetic and mechanical data and assigned to magnets using a computer program based on the method of simulated annealing. The lamination sets selected by the program have produced magnets which easily satisfy the design requirements. This paper discussed observed gap variations, the program structure and the strength uniformity results for the magnets produced.

  18. Simulation of magnetic coatings on textile fibers

    NASA Astrophysics Data System (ADS)

    Blachowicz, T.; Ehrmann, A.

    2016-08-01

    While the properties of conductive fibres and coatings on textiles can easily be measured and calculated, magnetic coatings of fibres, yarns and fabrics still lack descriptions of their physical properties. Since magnetic textiles can be used for a variety of applications, from magnetic filters to invisible water-marks to magnetic coils and sensors, simulations would be supportive to understand and utilize their properties. The article gives an overview of different coatings on textile fibres, varying the magnetic materials as well as the fibre composition, giving rise to the interactions between neighbouring coated fibres. In this way, it is possible to understand the strong shape anisotropy which must be taken into account when the magnetic properties of textiles are to be tailored. Additionally, the differences between several possible magnetic coating materials become visible. This study can help adjusting the magnetic properties of textile fabrics to a desired application.

  19. Magnetized plasma jets in experiment and simulation

    NASA Astrophysics Data System (ADS)

    Schrafel, Peter; Greenly, John; Gourdain, Pierre; Seyler, Charles; Blesener, Kate; Kusse, Bruce

    2013-10-01

    This research focuses on the initial ablation phase of a thing (20 micron) Al foil driven on the 1 MA-in-100 ns COBRA through a 5 mm diameter cathode in a radial configuration. In these experiments, ablated surface plasma (ASP) on the top of the foil and a strongly collimated axial plasma jet can be observed developing midway through current-rise. Our goal is to establish the relationship between the ASP and the jet. These jets are of interest for their potential relevance to astrophysical phenomena. An independently pulsed 200 μF capacitor bank with a Helmholtz coil pair allows for the imposition of a slow (150 μs) and strong (~1 T) axial magnetic field on the experiment. Application of this field eliminates significant azimuthal asymmetry in extreme ultraviolet emission of the ASP. This asymmetry is likely a current filamentation instability. Laser-backlit shadowgraphy and interferometry confirm that the jet-hollowing is correlated with the application of the axial magnetic field. Visible spectroscopic measurements show a doppler shift consistent with an azimuthal velocity in the ASP caused by the applied B-field. Computational simulations with the XMHD code PERSEUS qualitatively agree with the experimental results.

  20. Nonlinear simulations to optimize magnetic nanoparticle hyperthermia

    SciTech Connect

    Reeves, Daniel B. Weaver, John B.

    2014-03-10

    Magnetic nanoparticle hyperthermia is an attractive emerging cancer treatment, but the acting microscopic energy deposition mechanisms are not well understood and optimization suffers. We describe several approximate forms for the characteristic time of Néel rotations with varying properties and external influences. We then present stochastic simulations that show agreement between the approximate expressions and the micromagnetic model. The simulations show nonlinear imaginary responses and associated relaxational hysteresis due to the field and frequency dependencies of the magnetization. This suggests that efficient heating is possible by matching fields to particles instead of resorting to maximizing the power of the applied magnetic fields.

  1. Booster main magnet power supply, present operation and potential future upgrades

    SciTech Connect

    Bajon, E.; Bannon, M.; Marneris, I.; Danowski, G.; Sandberg, J.; Savatteri, S.

    2011-03-28

    The Brookhaven Booster Main Magnet Power Supply (MMPS) is a 24 pulse thyristor control supply, rated at 5500 Amps, +/-2000 Volts, or 3000 Amps, +/-6000 Volts. The power supply is fed directly from the power utility and the peak magnet power is 18 MWatts. This peak power is seen directly at the incoming ac line. This power supply has been in operation for the last 18 years. This paper will describe the present topology and operation of the power supply, the feedback control system and the different modes of operation of the power supply. Since the power supply has been in operation for the last 18 years, upgrading this power supply is essential. A new power supply topology has been studied where energy is stored in capacitor banks. DC to DC converters are used to convert the dc voltage stored in the capacitor banks to pulsed DC voltage into the magnet load. This enables the average incoming power from the ac line to be constant while the peak magnet power is pulsed to +/- 18 MWatts. Simulations and waveforms of this power supply will be presented.

  2. Simulation of Magnetic Field Guided Plasma Expansion

    NASA Astrophysics Data System (ADS)

    Ebersohn, Frans; Sheehan, J. P.; Gallimore, Alec; Shebalin, John

    2015-09-01

    Magnetic field guided expansion of a radio-frequency plasma was simulated with a quasi-one-dimensional particle-in-cell code. Two-dimensional effects were included in a one-dimensional particle-in-cell code by varying the cross-sectional area of the one dimensional domain and including forces due to the magnetic field. Acceleration of electrons by the magnetic field forces leads to the formation of potential structures which then accelerate the ions into a beam. Density changes due to the plasma expansion only weakly affect the ion acceleration. Rapidly diverging magnetic fields lead to more rapid acceleration and the electrons cool as they expand.

  3. Entropy conservation in simulations of magnetic reconnection

    SciTech Connect

    Birn, J.; Hesse, M.; Schindler, K.

    2006-09-15

    Entropy and mass conservation are investigated for the dynamic field evolution associated with fast magnetic reconnection, based on the 'Newton Challenge' problem [Birn et al., Geophys. Res. Lett. 32, L06105 (2005)]. In this problem, the formation of a thin current sheet and magnetic reconnection are initiated in a plane Harris-type current sheet by temporally limited, spatially varying, inflow of magnetic flux. Using resistive magnetohydrodynamic (MHD) and particle-in-cell (PIC) simulations, specifically the entropy and mass integrated along the magnetic flux tubes are compared between the simulations. In the MHD simulation these should be exactly conserved quantities, when slippage and Ohmic dissipation are negligible. It is shown that there is very good agreement between the conservation of these quantities in the two simulation approaches, despite the effects of dissipation, provided that the resistivity in the MHD simulation is strongly localized. This demonstrates that dissipation is highly localized in the PIC simulation also, and that heat flux across magnetic flux tubes has negligible effect as well, so that the entropy increase on a full flux tube remains small even during reconnection. The mass conservation also implies that the frozen-in flux condition of ideal MHD is a good integral approximation outside the reconnection site. This result lends support for using the entropy-conserving MHD approach not only before and after reconnection but even as a constraint connecting the two phases.

  4. Thermal conditions on the International Space Station: Effects of operations of the station Main Radiators on the Alpha Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Xie, Min; Burger, Joseph

    2016-04-01

    A thermal model of the Alpha Magnetic Spectrometer on the International Space Station (ISS) has been developed, and Thermal Desktop® (with RadCAD®) and SINDA/FLUINT software have been used to calculate the effects of the operations of the ISS Main Radiators on AMS temperatures. We find that the ISS Starboard Main Radiator has significant influence on temperatures on the port side of AMS. The simulation results are used in AMS thermal control operations.

  5. Geodynamics branch data base for main magnetic field analysis

    NASA Technical Reports Server (NTRS)

    Langel, Robert A.; Baldwin, R. T.

    1991-01-01

    The data sets used in geomagnetic field modeling at GSFC are described. Data are measured and obtained from a variety of information and sources. For clarity, data sets from different sources are categorized and processed separately. The data base is composed of magnetic observatory data, surface data, high quality aeromagnetic, high quality total intensity marine data, satellite data, and repeat data. These individual data categories are described in detail in a series of notebooks in the Geodynamics Branch, GSFC. This catalog reviews the original data sets, the processing history, and the final data sets available for each individual category of the data base and is to be used as a reference manual for the notebooks. Each data type used in geomagnetic field modeling has varying levels of complexity requiring specialized processing routines for satellite and observatory data and two general routines for processing aeromagnetic, marine, land survey, and repeat data.

  6. Accurate simulation of the electron cloud in the Fermilab Main Injector with VORPAL

    SciTech Connect

    Lebrun, Paul L.G.; Spentzouris, Panagiotis; Cary, John R.; Stoltz, Peter; Veitzer, Seth A.; /Tech-X, Boulder

    2011-01-01

    We present results from a precision simulation of the electron cloud (EC) in the Fermilab Main Injector using the code VORPAL. This is a fully 3d and self consistent treatment of the EC. Both distributions of electrons in 6D phase-space and E.M. field maps have been generated. This has been done for various configurations of the magnetic fields found around the machine have been studied. Plasma waves associated to the fluctuation density of the cloud have been analyzed. Our results are compared with those obtained with the POSINST code. The response of a Retarding Field Analyzer (RFA) to the EC has been simulated, as well as the more challenging microwave absorption experiment. Definite predictions of their exact response are difficult to obtain,mostly because of the uncertainties in the secondary emission yield and, in the case of the RFA, because of the sensitivity of the electron collection efficiency to unknown stray magnetic fields. Nonetheless, our simulations do provide guidance to the experimental program.

  7. Magnet reliability in the Fermilab Main Injector and implications for the ILC

    SciTech Connect

    Tartaglia, M.A.; Blowers, J.; Capista, D.; Harding, D.J.; Kiemschies, O.; Rahimzadeh-Kalaleh, S.; Tompkins, J.C.; /Fermilab

    2007-08-01

    The International Linear Collider reference design requires over 13000 magnets, of approximately 135 styles, which must operate with very high reliability. The Fermilab Main Injector represents a modern machine with many conventional magnet styles, each of significant quantity, that has now accumulated many hundreds of magnet-years of operation. We review here the performance of the magnets built for this machine, assess their reliability and categorize the failure modes, and discuss implications for reliability of similar magnet styles expected to be used at the ILC.

  8. Multiscale model approach for magnetization dynamics simulations

    NASA Astrophysics Data System (ADS)

    De Lucia, Andrea; Krüger, Benjamin; Tretiakov, Oleg A.; Kläui, Mathias

    2016-11-01

    Simulations of magnetization dynamics in a multiscale environment enable the rapid evaluation of the Landau-Lifshitz-Gilbert equation in a mesoscopic sample with nanoscopic accuracy in areas where such accuracy is required. We have developed a multiscale magnetization dynamics simulation approach that can be applied to large systems with spin structures that vary locally on small length scales. To implement this, the conventional micromagnetic simulation framework has been expanded to include a multiscale solving routine. The software selectively simulates different regions of a ferromagnetic sample according to the spin structures located within in order to employ a suitable discretization and use either a micromagnetic or an atomistic model. To demonstrate the validity of the multiscale approach, we simulate the spin wave transmission across the regions simulated with the two different models and different discretizations. We find that the interface between the regions is fully transparent for spin waves with frequency lower than a certain threshold set by the coarse scale micromagnetic model with no noticeable attenuation due to the interface between the models. As a comparison to exact analytical theory, we show that in a system with a Dzyaloshinskii-Moriya interaction leading to spin spirals, the simulated multiscale result is in good quantitative agreement with the analytical calculation.

  9. Aroostook Sunshine: An Educational Simulation about Life in Maine.

    ERIC Educational Resources Information Center

    Association of Aroostook Indians, Houlton, ME.

    Designed for instruction at the secondary level, this curriculum guide focuses on simulated classroom experiences in prejudice and minority race relations and content materials relative to Northeast Woodland American Indian history and culture. Knowledge of the following are cited as major unit objectives: (1) Indian cultural contributions; (2)…

  10. Uniform magnetization reversal in dual main-phase (Ce,Nd)2Fe14B sintered magnets with inhomogeneous microstructure

    NASA Astrophysics Data System (ADS)

    Zhang, Le-le; Li, Zhu-bai; Zhang, Xue-feng; Ma, Qiang; Liu, Yan-li; Li, Yong-feng; Zhao, Qian

    2017-02-01

    The element distribution and the magnetic properties were investigated in (Ce,Nd)-Fe-B sintered magnets prepared by mixing Nd13.5Fe80B6.5 and Ce9Nd4.5Fe80B6.5 powders with different mass ratios. Two main phases exist, but element diffusion is evident, and the chemical composition of the main phase is widely different from that of the master alloy. The Ce element tends to be expelled from the Ce-rich Re2Fe14B phase. Compared with the Ce-rich main phase, the Nd-rich Re2Fe14B phase is more stable in structure. Although the microstructure is inhomogeneous and the magnetocrystalline anisotropy is variable, the magnetization reversal is uniform in these dual main-phase magnets, which should ascribe to the existence of the exchange coupling, and magnetization reversal undergoes the nucleation of the reversed domain in irreversible magnetization. It is expected to further improve the coercivity by optimizing the distribution of the Nd-rich main phase in preparing the resource-saving (Ce,Nd)2Fe14B sintered magnets.

  11. ZDR - Simulation Studies of the NLC Main Linacs

    SciTech Connect

    Assmann, R.

    2005-01-26

    This study was published as part of the Next Linear Collider (NLC) Zeroth order Design Report (ZDR) [1]. It addresses the problems of transporting very small emittance beams in the main linacs of the NLC. Several mechanisms of emittance dilution and correction are calculated in detail. The results demonstrate the feasibility of the NLC main linac design under the assumption that the specified device tolerances are met. The full text of the ZDR is available on the WWW under http://www.slac.stanford.edu/accel/nlc/zdr/.

  12. The design and manufacture of the Fermilab Main Injector Dipole Magnet

    SciTech Connect

    Brown, B.C.; Chester, N.S.; Harding, D.J.; Martin, P.S.

    1992-03-01

    Fermilab's new Main Injector Ring (MIR) will replace the currently operating Main Ring to provide 150 GeV Proton and Antiproton beams for Tevetron injection, and rapid cycling, high intensity, 120 GeV Proton beams for Antiproton production. To produce and maintain the required high beam quality, high intensity, and high repetition rate, conventional dipole magnets with laminated iron core and water cooled copper conductor were chosen as the bending magnet. A new magnet design having low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction, is required to obtain the needed geometric aperture, dynamic aperture, and operational reliability. The current Main Injector Ring lattice design requires the use of 344 of these magnets. 216 of these magnets are to be 6 m long, and 128 are to be 4 m long.

  13. The design and manufacture of the Fermilab Main Injector Dipole Magnet

    SciTech Connect

    Brown, B.C.; Chester, N.S.; Harding, D.J.; Martin, P.S.

    1992-03-01

    Fermilab`s new Main Injector Ring (MIR) will replace the currently operating Main Ring to provide 150 GeV Proton and Antiproton beams for Tevetron injection, and rapid cycling, high intensity, 120 GeV Proton beams for Antiproton production. To produce and maintain the required high beam quality, high intensity, and high repetition rate, conventional dipole magnets with laminated iron core and water cooled copper conductor were chosen as the bending magnet. A new magnet design having low inductance, large copper cross section, and field uniformity sufficient for high intensity injection and efficient slow resonant extraction, is required to obtain the needed geometric aperture, dynamic aperture, and operational reliability. The current Main Injector Ring lattice design requires the use of 344 of these magnets. 216 of these magnets are to be 6 m long, and 128 are to be 4 m long.

  14. Simulations of Magnetically Driven Astrophysical Jets

    NASA Astrophysics Data System (ADS)

    Gisler, Galen; Barnes, Daniel; Gerwin, Richard; Lovelace, Richard

    1992-12-01

    Bipolar outflows in protostellar objects may be field-line-twisted magnetohydrodynamic jets. A poloidal magnetic field threading a conducting accretion disk is twisted by the rotation of the disk. The resulting magnetic tension in the axial direction drives material perpendicularly away from the disk, carrying energy, mass, and angular momentum away from the inner regions of the system. Detailed analytical calculations of twisted-field outflows exist already, and we present here realistic magnetohydrodynamic simulations of such jets. We use the semi-implicit code FLX, which was developed for magnetic fusion energy applications, in an (r,z) geometry. The boundary representing the disk is set rotating, and an Alfven pulse propagates along the axial direction. Dissipative boundary regions at the other end allow the outflow to exit the computational box unimpeded. The disk rotation may be Keplerian or solid-body, and the poloidal magnetic field may be either uniform or a distributed dipole. These are the first jet simulations done without specifying an axial velocity as a boundary condition. The axial velocity is determined by the rotation of the disk and the strength of the magnetic field, and the values achieved are in agreement with velocities observed in outflows from protostellar objects. Over much of the simulation domain the component of the current parallel to the magnetic field dominates over the perpendicular current, indicating that the system is evolving toward a helical force-free configuration. Even in the distributed dipole diverging field, the outflow remains fairly well collimated out to hundreds of stellar radii.

  15. Quench simulation program for superconducting accelerator magnets

    SciTech Connect

    Seog-Whan Kim

    2001-08-10

    In the design of superconducting magnets for accelerator and the quench protection systems, it is necessary to calculate the current, voltage and temperature during quench. The quench integral value (MIITs) is used to get a rough idea about the quench, but they need numerical calculations to obtain more detailed picture of the quench. A simulation program named KUENCH, which is not based on the MIITs calculation, was developed to calculate voltage, current and temperature of accelerator magnets during quenches. The software and calculation examples are introduced. The example also gives some important information about effects of copper content in the coil and quench protection heaters.

  16. Magnetohydrodynamic Numerical Simulations of Magnetic Reconnection in Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Tanuma, Syuniti

    2000-03-01

    reconnection, triggered by a supernova explosion, creates hot plasmas and magnetic islands (helical tubes), and how the magnetic islands confine the hot plasmas in Galaxy. The supernova shock is one of the possible mechanisms to trigger reconnection in Galaxy. We conclude that magnetic reconnection is able to heat the GRXE plasma if the magnetic field is localized in an intense flux tube with Blocal sim 30 muG. Part III This is the main part of the thesis. We examine the magnetic reconnection triggered by a supernova shock (or a point explosion) in interstellar medium, by performing 2D MHD numerical simulations with high spatial resolution. The magnetic reconnection starts long after the supernova shock (fast-mode MHD shock wave) passes a current sheet. The current sheet evolves as follows: (i) The tearing-mode instability is excited by the supernova shock. The current sheet becomes thin in the nonlinear phase of tearing instability. (ii) The current-sheet thinning is saturated when the current-sheet thickness becomes comparable to that of Sweet-Parker current sheet. After that, Sweet-Parker type reconnection starts, and the current-sheet length increases. (iii) The secondary tearing-mode instability occurs in the thin Sweet-Parker current sheet. (iv) As a result, further current-sheet thinning occurs, because gas density decreases in the current sheet. The anomalous resistivity sets in, and Petschek type reconnection starts. The interstellar gas is accelerated and heated. The magnetic energy is released quickly while magnetic islands are moving in the current sheet during Petschek type reconnection. (v) Magnetic reconnection stops because the gas pressure increases in the current sheet near left and right boundaries. The released magnetic energy is determined by the interstellar magnetic field strength, not by the energy of initial supernova nor distance between the supernova and the current sheet. We suggest that magnetic reconnection is a possible mechanism to generate X

  17. Molecular dynamics simulations of magnetized dusty plasmas

    NASA Astrophysics Data System (ADS)

    Piel, Alexander; Reichstein, Torben; Wilms, Jochen

    2012-10-01

    The combination of the electric field that confines a dust cloud with a static magnetic field generally leads to a rotation of the dust cloud. In weak magnetic fields, the Hall component of the ion flow exerts a drag force that sets the dust in rotation. We have performed detailed molecular-dynamics simulations of the dynamics of torus-shaped dust clouds in anodic plasmas. The stationary flow [1] is characterized by a shell structure in the laminar dust flow and by the spontaneous formation of a shear-flow around a stationary vortex. Here we present new results on dynamic phenomena, among them fluctuations due to a Kelvin-Helmholtz instability in the shear-flow. The simulations are compared with experimental results. [4pt] [1] T. Reichstein, A. Piel, Phys. Plasmas 18, 083705 (2011)

  18. Laboratory simulation of astrophysical magnetic turbulence

    NASA Astrophysics Data System (ADS)

    Gattamraju, Ravindra Kumar; Chatterjee, Gourab; Singh, Prahshant; Adak, Amitava; Lad, Amit D.; Schoeffler, K. M.; Silva, L. O.; Sengupta, Sudip; Kaw, P. K.; Das, Amita

    2015-11-01

    Giant magnetic fields (102-103 megagauss) are created when a relativistic intensity (>= 1018 W cm-2), ultrashort laser pulse interacts with plasma created on a solid. Here, we map out the temporal evolution of turbulence in magnetic field. We measure giant magnetic field on a micron scale spatial and femtosecond time resolution using pump-probe Cotton-Mouton polarimetry. The plasma created by an 800 nm laser is probed at density of ~1022 electrons/cc at 266 nm. This density is so far the highest at which plasma probing has been performed. Fourier spectra of the spatial polarigrams show power law behavior indicative of turbulence. Interestingly, the exponent of the power law changes from one value for the initial, fast electron dominated regime to another value at 10s of picoseconds, where ions dominate the behavior. This may be the first time such a transition of the mediation of turbulence has been captured. We present a model and particle-in-cell simulations which reproduce the data very well. Our results mimic observations of kinetic Alfven wave turbulence in earth's magnetosheath, solar flares and solar wind, indicating that we are now opening earth bound laboratory for simulating astrophysical magnetic environments.

  19. Magnetohydrodynamic simulations of global accretion disks with vertical magnetic fields

    SciTech Connect

    Suzuki, Takeru K.; Inutsuka, Shu-ichiro

    2014-04-01

    We report results of three-dimensional magnetohydrodynamical (MHD) simulations of global accretion disks threaded with weak vertical magnetic fields. We perform the simulations in the spherical coordinates with different temperature profiles and accordingly different rotation profiles. In the cases with a spatially constant temperature, because the rotation frequency is vertically constant in the equilibrium condition, general properties of the turbulence excited by magnetorotational instability are quantitatively similar to those obtained in local shearing box simulations. On the other hand, in the cases with a radially variable temperature profile, the vertical differential rotation, which is inevitable in the equilibrium condition, winds up the magnetic field lines in addition to the usual radial differential rotation. As a result, the coherent wound magnetic fields contribute to the Maxwell stress in the surface regions. We obtain nondimensional density and velocity fluctuations ∼0.1-0.2 at the midplane. The azimuthal power spectra of the magnetic fields show shallower slopes, ∼m {sup 0} – m {sup –1}, than those of velocity and density. The Poynting flux associated with the MHD turbulence drives intermittent and structured disk winds as well as sound-like waves toward the midplane. The mass accretion mainly occurs near the surfaces, and the gas near the midplane slowly moves outward in the time domain of the present simulations. The vertical magnetic fields are also dragged inward in the surface regions, while they stochastically move outward and inward around the midplane. We also discuss an observational implication of induced spiral structure in the simulated turbulent disks.

  20. Recent Electron-Cloud Simulation Results for the Main Damping Rings of the NLC and the TESLA Linear Colliders

    SciTech Connect

    Pivi, Mauro T F

    2003-05-19

    In the beam pipe of the Main Damping Ring (MDR) of the Next Linear Collider (NLC), ionization of residual gases and secondary emission give rise to an electron-cloud which stabilizes to equilibrium after few bunch trains. In this paper, we present recent computer simulation results for the main features of the electron cloud at the NLC and preliminary simulation results for the TESLA main damping rings, obtained with the code POSINST that has been developed at LBNL, and lately in collaboration with SLAC, over the past 7 years. Possible remedies to mitigate the effect are also discussed. We have recently included the possibility to simulate different magnetic field configurations in our code including solenoid, quadrupole, sextupole and wiggler.

  1. Recent electron-cloud simulation results for the main damping rings of the NLC and TESLA linear colliders

    SciTech Connect

    Pivi, M.; Raubenheimer, T.O.; Furman, M.A.

    2003-05-01

    In the beam pipe of the Main Damping Ring (MDR) of the Next Linear Collider (NLC), ionization of residual gases and secondary emission give rise to an electron-cloud which stabilizes to equilibrium after few bunch trains. In this paper, we present recent computer simulation results for the main features of the electron cloud at the NLC and preliminary simulation results for the TESLA main damping rings, obtained with the code POSINST that has been developed at LBNL, and lately in collaboration with SLAC, over the past 7 years. Possible remedies to mitigate the effect are also discussed. We have recently included the possibility to simulate different magnetic field configurations in our code including solenoid, quadrupole, sextupole and wiggler.

  2. Kinetic simulations of collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Aunai, N.; Dargent, J.; Lavraud, B.; Ciardi, A.; Drouin, M.; Smets, R.

    2016-12-01

    This paper focuses on magnetic reconnection and its role in magnetospheric physics, where collisions are inexistant. In this context, the presence of a very cold ion population of ionospheric origin is known to have an important contribution to the particle density at the magnetopause. However, besides this mass loading effect, consequences of their extremely low temperature, and therefore of their must smaller gyroscale, have not yet been addressed from a modeling viewpoint. This study presents two fully kinetic simulations with and without cold ions in the magnetosphere and highlights how their small Larmor radius can change signatures expected to be proxy of the X line in spacecraft measurements. In a second part, this paper addresses shortly the problem of the X line orientation in an asymmetric system. Using this time hybrid kinetic simulations, we show the X line aligned with the bisector of upstream magnetic field vectors results in faster reconnection rate. This have consequences regarding where reconnection at the magnetopause, although models here do not include large scale dynamics. We conclude with perspectives regarding future developments to address multi-scale magnetic reconnection dynamics at the magnetopause.

  3. Kinetic simulations of magnetized capacitively coupled discharges

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Shihab, Mohammed; Eremin, Denis; Brinkmann, Ralf Peter; Schulze, Julian; Mussenbrock, Thomas

    2012-10-01

    Capacitive high frequency discharges are of crucial importance in the context of plasma etching, deposition and surface modification. As these single or multiple frequency discharges are oftentimes operated at low pressures of less than a few pascal, a high plasma density is commonly achieved with the use of external magnetic fields. In this work kinetic simulations are used to investigate the effect of inhomogeneous external magnetic fields on the discharge dynamics in a strongly nonlocal pressure regime. We found that capacitively coupled discharges can be largely asymmetrized by applying strong magnetic fields in front of a given target electrode. This not only has an effect on the plasma density, but also on the ion energy distribution functions (IEDF) at the electrodes and on the acceleration of fast electrons in the plasma sheath regions. In consequence in the discharge currents a generation of higher harmonics of the driving frequency can be observed. We investigate these scenarios in terms of 1D-3V Particle in Cell simulations.

  4. RESISTIVE MAGNETOHYDRODYNAMIC SIMULATIONS OF RELATIVISTIC MAGNETIC RECONNECTION

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-06-20

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfvenic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the 'diamond-chain' structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  5. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-01-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  6. Simulating Coulomb collisions in a magnetized plasma

    SciTech Connect

    Hinton, Fred L.

    2008-04-15

    The problem of simulating ion-ion Coulomb collisions in a plasma in a strong magnetic field is considered. No assumption is made about the ion distribution function except that it is independent of the gyrophase angle, consistent with the assumption that the ion gyrofrequency is much larger than the ion-ion collision frequency. A Langevin method is presented which time-advances the components of a particle's velocity parallel and perpendicular to the magnetic field, without following the rapidly changing gyrophase. Although the standard Monte Carlo procedure, which uses random sampling, can be used, it is also possible to use a deterministic sampling procedure, where the samples are determined by the points which would be used in a numerical quadrature formula for moments of the Fokker-Planck Green's function. This should reduce the sampling noise compared with the Monte Carlo collision method.

  7. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-06-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfvénic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  8. Multiscale Simulations of Magnetic Island Coalescence

    NASA Technical Reports Server (NTRS)

    Dorelli, John C.

    2010-01-01

    We describe a new interactive parallel Adaptive Mesh Refinement (AMR) framework written in the Python programming language. This new framework, PyAMR, hides the details of parallel AMR data structures and algorithms (e.g., domain decomposition, grid partition, and inter-process communication), allowing the user to focus on the development of algorithms for advancing the solution of a systems of partial differential equations on a single uniform mesh. We demonstrate the use of PyAMR by simulating the pairwise coalescence of magnetic islands using the resistive Hall MHD equations. Techniques for coupling different physics models on different levels of the AMR grid hierarchy are discussed.

  9. Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications

    NASA Technical Reports Server (NTRS)

    Boghosian, Mary; Narvaez, Pablo; Herman, Ray

    2012-01-01

    The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.

  10. Numerical simulation of solar coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Dahlburg, Russell B.; Antiochos, Spiro K.; Zang, T. A.

    1990-01-01

    Many aspects of solar activity are believed to be due to the stressing of the coronal magnetic field by footpoint motions at the photosphere. The results are presented of a fully spectral numerical simulation which is the first 3-D time dependent simulation of footpoint stressing in a geometry appropriate for the corona. An arcade is considered that is initially current-free and impose a smooth footpoint motion that produces a twist in the field of approx 2 pi. The footprints were fixed and the evolution was followed until the field relaxes to another current-free state. No evidence was seen for any instability, either ideal or resistive and no evidence for current sheet formation. The most striking feature of the evolution is that in response to photospheric motions, the field expands rapidly upward to minimize the stress. The expansion has two important effects. First, it suppresses the development of dips in the field that could support dense, cool material. For the motions assumed, the magnetic field does not develop a geometry suitable for prominence formation. Second, the expansion inhibits ideal instabilities such as kinking. The results indicate that simple stearing of a single arcade is unlikely to lead to solar activity such as flares or prominences. Effects are discussed that might possibly lead to such activity.

  11. BOOSTER MAIN MAGNET POWER SUPPLY IMPROVEMENTS FOR NASA SPACE RADIATION LABORATORY AT BNL

    SciTech Connect

    MARNERIS,I.BROWN,K.A.GLENN,J.W.MCNERNEY,A., MORRIS, J., SANDBERG,J., SAVATTERI, S.

    2003-05-12

    The NASA Space Radiation Laboratory (NSRL), constructed at Brookhaven National Laboratory, under contract from NASA, is a new experimental facility, taking advantage of heavy-ion beams from the Brookhaven Alternating Gradient Synchrotron (AGS) Booster accelerator, to study radiation effect on humans, for prolonged space missions beyond the protective terrestrial magnetosphere. This paper describes the modifications and operation of the Booster Main Magnet Power Supply (MMPS) for NSRL applications. The requirement is to run up to 1 sec flattops as high as 5000 Amps with 25% duly cycle. The controls for the Main Magnet Power Supply were modified, including the Booster Main Magnet application program, to enable flattop operation with low ripple and spill control. An active filter (AF) consisting of a {+-}120 volts, {+-}700 Amps power supply transformer coupled through a filter choke, in series with the Main Magnet voltage, was added to the system to enable further ripple reduction during the flattops. We will describe the spill servo system, designed to provide a uniform beam current, during the flattop. Results from system commissioning will be presented.

  12. Reduction of Marine Magnetic Data for Modeling the Main Field of the Earth

    NASA Technical Reports Server (NTRS)

    Baldwin, R. T.; Ridgway, J. R.; Davis, W. M.

    1992-01-01

    The marine data set archived at the National Geophysical Data Center (NGDC) consists of shipborne surveys conducted by various institutes worldwide. This data set spans four decades (1953, 1958, 1960-1987), and contains almost 13 million total intensity observations. These are often less than 1 km apart. These typically measure seafloor spreading anomalies with amplitudes of several hundred nanotesla (nT) which, since they originate in the crust, interfere with main field modeling. The source for these short wavelength features are confined within the magnetic crust (i.e., sources above the Curie isotherm). The main field, on the other hand, is of much longer wavelengths and originates within the earth's core. It is desirable to extract the long wavelength information from the marine data set for use in modeling the main field. This can be accomplished by averaging the data along the track. In addition, those data which are measured during periods of magnetic disturbance can be identified and eliminated. Thus, it should be possible to create a data set which has worldwide data distribution, spans several decades, is not contaminated with short wavelengths of the crustal field or with magnetic storm noise, and which is limited enough in size to be manageable for the main field modeling. The along track filtering described above has proved to be an effective means of condensing large numbers of shipborne magnetic data into a manageable and meaningful data set for main field modeling. Its simplicity and ability to adequately handle varying spatial and sampling constraints has outweighed consideration of more sophisticated approaches. This filtering technique also provides the benefits of smoothing out short wavelength crustal anomalies, discarding data recorded during magnetically noisy periods, and assigning reasonable error estimates to be used in the least square modeling. A useful data set now exists which spans 1953-1987.

  13. Kinetic Vlasov simulations of collisionless magnetic reconnection

    SciTech Connect

    Schmitz, H.; Grauer, R.

    2006-09-15

    A fully kinetic Vlasov simulation of the Geospace Environment Modeling Magnetic Reconnection Challenge is presented. Good agreement is found with previous kinetic simulations using particle in cell (PIC) codes, confirming both the PIC and the Vlasov code. In the latter the complete distribution functions f{sub k} (k=i,e) are discretized on a numerical grid in phase space. In contrast to PIC simulations, the Vlasov code does not suffer from numerical noise and allows a more detailed investigation of the distribution functions. The role of the different contributions of Ohm's law are compared by calculating each of the terms from the moments of the f{sub k}. The important role of the off-diagonal elements of the electron pressure tensor could be confirmed. The inductive electric field at the X line is found to be dominated by the nongyrotropic electron pressure, while the bulk electron inertia is of minor importance. Detailed analysis of the electron distribution function within the diffusion region reveals the kinetic origin of the nongyrotropic terms.

  14. The Fermilab Main Injector Dipole construction techniques and prototype magnet measurements

    SciTech Connect

    Bleadon, M.E.; Brown, B.C.; Chester, N.S.; Desavouret, E.; Garvey, J.D.; Glass, H.D.; Harding, D.J.; Harfoush, F.A.; Holmes, S.D.; Humbert, J.C. )

    1992-01-01

    The Fermilab Main Injector Project will provide 120-150 GeV Proton and Antiproton Beams for Fermilab Fixed Target Physics and Colliding Beams Physics use. A dipole magnet has been designed and prototypes constructed for the principal bending magnets of this new accelerator. In this paper the design considerations and fabrication techniques are described. Measurement results on prototypes are reported, emphasizing the field uniformity achieved in both body field and end field at excitation levels from injection at 0.1 T to full field of 1.7 T.

  15. The Fermilab main injector dipole construction techniques and prototype magnet measurements

    SciTech Connect

    Bleadon, M.; Brown, B.; Chester, N.; Desavouret, E.; Garvey, J.; Glass, H.; Harding, D.; Harfoush, F.; Holmes, S.; Humbert, J.; Kerby, J.; Knauf, A.; Kobliska, G.; Lipski, A.; Martin, P.; Mazur, P.; Orris, D.; Ostiguy, J.; Peggs, S.; Pachnik, J.; Pewitt, E.; Satti, J.; Schmidt, E.; Sim, J.; Snowdon, S.; Walbridge, D.

    1991-09-01

    The Fermilab Main Injector Project will provide 120--150 GeV Proton and Antiproton Beams for Fermilab Fixed Target Physics and Colliding Beams Physics use. A dipole magnet has been designed and prototypes constructed for the principal bending magnets of this new accelerator. The design considerations and fabrication techniques are described. Measurement results on prototypes are reported, emphasizing the field uniformity achieved in both body field and end field at excitation levels from injection at 0.1 T to full field of 1.7 T. 6 refs., 5 figs., 3 tabs.

  16. Main magnetic field of Jupiter and its implications for future orbiter missions

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1975-01-01

    A very strong planetary magnetic field and an enormous magnetosphere with extremely intense radiation belts exist at Jupiter. Pioneer 10 and 11 fly-bys confirmed and extended the earlier ground based estimates of many of these characteristics but left unanswered or added to the list of several important and poorly understood features: the source mechanism and location of decametric emissions, and the absorption effects by the natural satellites Amalthea, Io, Europa and Ganymede. High inclination orbits (exceeding 60 deg) with low periapses (less than 2 Jupiter radii) are required to map the radiation belts and main magnetic field of Jupiter accurately so as to permit full investigation of these and associated phenomena.

  17. Study of road dust magnetic phases as the main carrier of potentially harmful trace elements.

    PubMed

    Bourliva, Anna; Papadopoulou, Lambrini; Aidona, Elina

    2016-05-15

    Mineralogical and morphological characteristics and heavy metal content of different fractions (bulk, non-magnetic fraction-NMF and magnetic fraction-MF) of road dusts from the city of Thessaloniki (Northern Greece) were investigated. Main emphasis was given on the magnetic phases extracted from these dusts. High magnetic susceptibility values were presented, whereas the MFs content of road dust samples ranged in 2.2-14.7 wt.%. Thermomagnetic analyses indicated that the dominating magnetic carrier in all road dust samples was magnetite, while the presence of hematite and iron sulphides in the investigated samples cannot be excluded. SEM/EDX analyses identified two groups of ferrimagnetic particles: spherules with various surface morphologies and textures and angular/aggregate particles with elevated heavy metal contents, especially Cr. The road dusts (bulk samples) were dominated by calcium, while the mean concentrations of trace elements decreased in the order Zn > Mn > Cu > Pb > Cr > Ni > V > Sn > As > Sb > Co > Mo > W > Cd. MFs exhibited significantly higher concentrations of trace elements compared to NMFs indicating that these potentially harmful elements (PHEs) are preferentially enriched in the MFs and highly associated with the ferrimagnetic particles. Hazard Index (HI) obtained for both adults and children through exposure to bulk dust samples were lower or close to the safe level (=1). On the contrary, the HIs for the magnetic phases indicated that both children and adults are experiencing potential health risk since HI for Cr was significantly higher than safe level. Cancer risk due to road dust exposure is low.

  18. Accurate simulation of the electron cloud in the Fermilab Main Injector with VORPAL

    SciTech Connect

    Lebrun, Paul L.G.; Spentzouris, Panagiotis; Cary, John R.; Stoltz, Peter; Veitzer, Seth A.; /Tech-X, Boulder

    2010-05-01

    Precision simulations of the electron cloud at the Fermilab Main Injector have been studied using the plasma simulation code VORPAL. Fully 3D and self consistent solutions that includes E.M. field maps generated by the cloud and the proton bunches have been obtained, as well detailed distributions of the electron's 6D phase space. We plan to include such maps in the ongoing simulation of the space charge effects in the Main Injector. Simulations of the response of beam position monitors, retarding field analyzers and microwave transmission experiments are ongoing.

  19. Status of Electron-Cloud Build-Up Simulations for the Main Injector

    SciTech Connect

    Furman, M. A.; Kourbanis, I.; Zwaska, R. M.

    2009-05-04

    We provide a brief status report on measurements and simulations of the electron cloud in the Fermilab Main Injector. Areas of agreement and disagreement are spelled out, along with their possible significance.

  20. Control and performance of the AGS and AGS Booster Main Magnet Power Supplies

    SciTech Connect

    Reece, R.K.; Casella, R.; Culwick, B.; Geller, J.; Marneris, I.; Sandberg, J.; Soukas, A.; Zhang, S.Y.

    1993-01-01

    Techniques for precision control of the main magnet power supplies for the AGS and AGS Booster synchrotron will be discussed. Both synchrotrons are designed to operate in a Pulse-to-Pulse Modulation (PPM) environment with a Supercycle Generator defining and distributing global timing events for the AGS Facility. Details of modelling, real-time feedback and feedforward systems, generation and distribution of real time field data, operational parameters and an overview of performance for both machines are included.

  1. Control and performance of the AGS and AGS Booster Main Magnet Power Supplies

    SciTech Connect

    Reece, R.K.; Casella, R.; Culwick, B.; Geller, J.; Marneris, I.; Sandberg, J.; Soukas, A.; Zhang, S.Y.

    1993-06-01

    Techniques for precision control of the main magnet power supplies for the AGS and AGS Booster synchrotron will be discussed. Both synchrotrons are designed to operate in a Pulse-to-Pulse Modulation (PPM) environment with a Supercycle Generator defining and distributing global timing events for the AGS Facility. Details of modelling, real-time feedback and feedforward systems, generation and distribution of real time field data, operational parameters and an overview of performance for both machines are included.

  2. 3D Design, Contruction, and Field Analysis of CIS Main Dipole Magnets

    NASA Astrophysics Data System (ADS)

    Berg, G. P. A.; Fox, W.; Friesel, D. L.; Rinckel, T.

    1997-05-01

    The lattice for CIS ( Cooler Injection Synchroton ) requires four laminated 90^circ main dipole magnets with bending radius ρ = 1.273 m, EFL = 2 m, and an edge angle of 12^circ. Optimum Cooler injection and injection in the planned 15 GeV LISS ring requires operation up to about 1.75 T. Initial operation of 1 Hz, with later upgrade to 5 Hz is planned. We will present 2D and 3D field calculations used to optimize the shape of laminations and endpacks of the magnet. Endpacks are designed to determine edge angle and to compensate hexapole components, in particular above 1.4 T where saturation becomes significant. The large dipole curvature required a new type of dipole construction. Each magnet consists of wedge shaped blocks fabricated from stamped lamination of cold rolled low carbon iron. B-stage (dry) epopy was used for bonding and insulation. The end blocks are machined to include the calculated 3D shape of the endpacks. All four magnets were mapped in the field range from 0.3 T - 1.8 T. Comparison of calculations and data in terms of B(I) curves, EFL, edge angle, and hexapole component as function of field excitation will be presented. The constructed magnets are well within expected specifications.

  3. Magnetic Activity Analysis for a Sample of G-type Main Sequence Kepler Targets

    NASA Astrophysics Data System (ADS)

    Mehrabi, Ahmad; He, Han; Khosroshahi, Habib

    2017-01-01

    The variation of a stellar light curve owing to rotational modulation by magnetic features (starspots and faculae) on the star’s surface can be used to investigate the magnetic properties of the host star. In this paper, we use the periodicity and magnitude of the light-curve variation as two proxies to study the stellar magnetic properties for a large sample of G-type main sequence Kepler targets, for which the rotation periods were recently determined. By analyzing the correlation between the two magnetic proxies, it is found that: (1) the two proxies are positively correlated for most of the stars in our sample, and the percentages of negative, zero, and positive correlations are 4.27%, 6.81%, and 88.91%, respectively; (2) negative correlation stars cannot have a large magnitude of light-curve variation; and (3) with the increase of rotation period, the relative number of positive correlation stars decreases and the negative correlation one increases. These results indicate that stars with shorter rotation period tend to have positive correlation between the two proxies, and a good portion of the positive correlation stars have a larger magnitude of light-curve variation (and hence more intense magnetic activities) than negative correlation stars.

  4. Numerical simulation of high-gradient magnetic filtration

    NASA Astrophysics Data System (ADS)

    Gusev, B. A.; Semenov, V. G.; Panchuk, V. V.

    2016-09-01

    We have reported on the results of a numerical simulation of high-gradient magnetic filtration of ultradisperse corrosion products from water coolants. These results have made it possible to establish optimal technical characteristics of high-gradient magnetic filters. The results have been used to develop test samples of high-gradient magnetic filters (HGMFs) with different magnetic systems to purify technological water media of atomic power plants from activated corrosion products.

  5. Main-Sequence CMEs as Magnetic Explosions: Compatibility with Observed Kinematics

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Sterling, Alphonse

    2004-01-01

    We examine the kinematics of 26 CMEs of the morphological main sequence of CMEs, those having the classic three-part bubble structure of (1) a bright front eveloping (2) a dark cavity within which rides (3) a bright blob/filamentary feature. Each CME is observed in Yohkoh/SXT images to originate from near the limb (> or equal to 0.7 R(sub Sun) from disk center). The basic data (from the SOHO LASCO CME Catalog) for the kinematics of each CME are the sequence of LASCO images of the CME, the time of each image, the measured radial distance of the front edge of the CME in each image, and the measured angular extent of the CME. About half of our CMEs (12) occur with a flare, and the rest (14) occur without a flare. While the average linear-fit speed of the flare CMEs (1000 km/s) is twice that of the non-flare CMEs (510 km/s), the flare CMEs and the non-flare CMEs are similar in that some have nearly flat velocity-height (radial extent) profiles (little acceleration), some have noticeably falling velocity profiles (noticeable deceleration), and the rest have velocity profiles that rise considerably through the outer corona (blatant acceleration). This suggests that in addition to sharing similar morphology, main-sequence CMEs all have basically the same driving mechanism. The observed radial progression of each of our 26 CMEs is fit by a simple model magnetic plasmoid that is in pressure balance with the radial magnetic field in the outer corona and that propels itself outward by magnetic expansion, doing no net work on its surroundings. On average over the 26 CMEs, this model fits the observations as well as the assumption of constant acceleration. This is compatible with main-sequence CMEs being magnetically driven, basically magnetic explosions, with the velocity profile in the outer corona being largely dictated by the initial Alfien speed in the CME (when the front is at approx. 3 (sub Sun), analogous to the mass of a main-sequence star dictating the luminosity.

  6. The MAIN Shirt: A Textile-Integrated Magnetic Induction Sensor Array

    PubMed Central

    Teichmann, Daniel; Kuhn, Andreas; Leonhardt, Steffen; Walter, Marian

    2014-01-01

    A system is presented for long-term monitoring of respiration and pulse. It comprises four non-contact sensors based on magnetic eddy current induction that are textile-integrated into a shirt. The sensors are technically characterized by laboratory experiments that investigate the sensitivity and measuring depth, as well as the mutual interaction between adjacent pairs of sensors. The ability of the device to monitor respiration and pulse is demonstrated by measurements in healthy volunteers. The proposed system (called the MAIN (magnetic induction) Shirt) does not need electrodes or any other skin contact. It is wearable, unobtrusive and can easily be integrated into an individual's daily routine. Therefore, the system appears to be a suitable option for long-term monitoring in a domestic environment or any other unsupervised telemonitoring scenario. PMID:24412900

  7. Magnetic Null Points in Kinetic Simulations of Space Plasmas

    NASA Astrophysics Data System (ADS)

    Olshevsky, Vyacheslav; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni

    2016-03-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3-9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.

  8. Magnetic flux ropes in 3-dimensional MHD simulations

    NASA Technical Reports Server (NTRS)

    Ogino, Tatsuki; Walker, Raymond J.; Ashour-Abdalla, Maha

    1990-01-01

    The interaction of the solar wind and the earth's magnetosphere is presently simulated by a 3D, time-dependent, global MHD method in order to model the magnetopause and magnetotail generation of magnetic flux ropes. It is noted that strongly twisted and localized magnetic flux tubes simular to magnetic flux ropes appear at the subpolar magnetopause when the IMF has a large azimuthal component, as well as a southward component. Plasmoids are generated in the magnetotail after the formation of a near-earth magnetic neutral line; the magnetic field lines have a helical structure that is connected from dawn to dusk.

  9. Microwave Transmission Through the Electron Cloud at the Fermilab Main Injector: Simulation and Comparison with Experiment

    SciTech Connect

    Lebrun, Paul L.G.; Veitzer, Seth Andrew; /Tech-X, Boulder

    2009-04-01

    Simulations of the microwave transmission properties through the electron cloud at the Fermilab Main Injector have been implemented using the plasma simulation code 'VORPAL'. Phase shifts and attenuation curves have been calculated for the lowest frequency TE mode, slightly above the cutoff frequency, in field free regions, in the dipoles and quadrupoles. Preliminary comparisons with experimental results for the dipole case are showed and will guide the next generation of experiments.

  10. Magnetic properties of nanocomposites formed by magnetic nanoparticles embedded in a non-magnetic matrix: a simulation approach.

    PubMed

    Serna, J Ceballos; Restrepo-Parra, E; Rojas, J C Riaño

    2012-06-01

    In this work, simulations of magnetic properties of nanocomposites formed by magnetic nanoparticles embedded in a non magnetic matrix are presented. These simulations were carried by means of the Monte Carlo Method and Heisenberg model. Properties as magnetization and Hysteresis loops were obtained varying different parameters as the nanoparticle size, distance between nanoparticles and temperature. The model employed includes interaction between ions belonging to each nanoparticle and also the interaction between nanoparticles. Results show that the magnetization and the coercive force decrease as a function of the nanoparticles distance.

  11. The main injector chromaticity correction sextupole magnets: Measurements and operating schemes

    SciTech Connect

    Bhat, C.M.; Bogacz, A.; Brown, B.C.; Harding, D.J.; Fang, S.J.; Martin, P.S.; Glass, H.D.; Sim, J.

    1995-05-01

    The Fermilab Main Injector (FMI) is a high intensity proton synchrotron which will be used to accelerate protons and antiprotons from 8.9 GeV/c to 150 GeV/c. The natural chromaticities of the machine for the horizontal and the vertical Planes are {minus}33.6 and {minus}33.9 respectively. The {Delta}p/p of the beam at injection is about 0.002. The chromaticity requirements of the FMI, are primarily decided by the {Delta}p/p = 0.002 of the beam at injection. This limits the final chromaticity of the FMI to be {plus_minus}5 units. To correct the chromaticity in the FMI two families of sextupole magnets will be installed in the lattice, one for each plane. A sextupole magnet suitable for the FMI needs has been designed and a number of them are being built. New chromaticity compensation schemes have been worked out in the light of recently proposed faster acceleration ramps. On an R/D sextupole magnet the low current measurements have been carried out to determine the electrical properties. Also, using a Morgan coil, measurements have been performed to determine the higher ordered multipole components up to 18-poles. An overview of these result are presented here.

  12. Probing intergalactic magnetic fields with simulations of electromagnetic cascades

    NASA Astrophysics Data System (ADS)

    Alves Batista, Rafael; Saveliev, Andrey; Sigl, Günter; Vachaspati, Tanmay

    2016-10-01

    We determine the effect of intergalactic magnetic fields on the distribution of high-energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called "Large Sphere Observer" method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q -statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S -statistics. Both methods provide a quantitative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B ≳10-15 G and magnetic coherence lengths Lc≳100 Mpc . We show that the S -statistics has a better performance than the Q -statistics when assessing magnetic helicity from the simulated halos.

  13. Experimental study of performance degradation of a model helicopter main rotor with simulated ice shapes

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.; Cross, E. J., Jr.; Cornell, C. C.

    1984-01-01

    An experimental study utilizing a remote controlled model helicopter has been conducted to measure the performance degradation due to simulated ice accretion on the leading edge of the main rotor for hover and forward flight. The 53.375 inch diameter main rotor incorporates a NACA 0012 airfoil with a generic ice shape corresponding to a specified natural ice condition. Thrust coefficients and torque coefficients about the main rotor were measured as a function of velocity, main rotor RPM, angle-of-incidence of the fuselage, collective pitch angle, and extent of spanwise ice accretion. An experimental airfoil data bank has been determined using a two-dimensional twenty-one inch NACA 0012 airfoil with scaled ice accretion shapes identical to that used on the model helicopter main rotor. The corresponding experimental data are discussed with emphasis on Reynolds number effects and ice accretion scale model testing.

  14. Comparison Of The Global Analytic Models Of The Main Geomagnetic Field With The Stratospheric Balloon Magnetic Data 335

    NASA Astrophysics Data System (ADS)

    Tsvetkov, Yu.; Filippov, S.; Frunze, A.

    2013-12-01

    Three global analytical models of a main geomagnetic field constructed by satellite data are used: model IGRF, Daily Mean Spherical Harmonic Models (DMSHM), and model EMM/2010, and also scalar data of geomagnetic field and its gradients, received in stratospheric balloon gradient magnetic surveys at altitudes of ~30 km. At these altitudes the regional magnetic field is formed from all sources of the Earth's crust. It enables to receive along lengthy routes of surveys the fullest data on regional and longwave-lenght magnetic anomalies. Model DMSHM is used at extracting of magnetic anomalies for elimination of a secular variation up to significant value 0,2 nT. The model can be constructed within the limits of ± 1 months from the moment stratospheric balloon surveys with beneficial day terms with magnetic activity up to Kp <20, that leads to an error of representation of main MFE equal ±5 нТл. It is possible at presence acting for the period of stratospheric balloon magnetic survey of the satellite, for example, Swarm. On stratospheric balloon data it is shown, that model EMM/2010 unsatisfactorily displays MFE at altitude of 30 km. Hence, the qualitative model of the constant (main and anomaly) magnetic field cannot be constructed only with use of satellite and ground data. The improved model constant MFE, constructed according to satellite and stratospheric balloon magnetic surveys, developed up to a degree and the order m=n=720, will have a reliable data about regional crust magnetic field, hence, and about deep magnetic structure of the Earth's crust. The use gradient magnetic surveys aboard stratospheric balloons allows to find the places alternating approximately through 3000 km in which there are no magnetic anomalies. In these places probably to supervise satellite magnetic models for a range of altitude of 20-40 km, timed to stratospheric balloon magnetic surveys.

  15. MHD Simulation of Plasma Flow through the VASIMR Magnetic Nozzle

    NASA Astrophysics Data System (ADS)

    Tarditi, A. G.; Shebalin, J. V.

    2003-10-01

    The VASIMR (Variable Specific Impulse Magnetoplasma Rocket, [1]) concept is currently in the experimental development phase at the Advanced Space Propulsion Laboratory, NASA Johnson Space Center. The current experimental effort is mainly focused on the demonstration of the efficient plasma production (light ion helicon source, [2]) and energy boosting (ion cyclotron resonance heating section). Two other critical issues, the plasma detachment process and the collimation of the plasma plume in the magnetic nozzle, are essential for the near term experimental development and are being addressed through an MHD simulation modeling effort with the NIMROD code [3,4]. The model follows the plasma flow up to few meters from the nozzle throat: at that distance the plasma exhaust parameters reach values comparable with the ionospheric plasma background [5]. Results from two-dimensional simulation runs (cylindrical geometry, assuming azimuthal symmetry) aimed in particular at testing the effectiveness of different open-end boundary condition schemes are presented. [1] F. R. Chang-Diaz, Scientific American, p. 90, Nov. 2000 [2] M. D. Carter, et al., Phys. Plasmas 9, 5097-5110, 2002 [3] http://www.nimrodteam.org [4] A. Tarditi et al., 28th Int. Electric Propulsion Conf., IEPC 2003, Toulouse, France, March 2003 [5] A. V. Ilin et al., Proc. 40th AIAA Aerospace Sciences Meeting, Reno, NV, Jan. 2002

  16. Short and long term simulations of relativistic, magnetized jets

    NASA Astrophysics Data System (ADS)

    Aloy, M. A.

    2004-12-01

    We will present a series of numerical simulations addressed to understand the morphology and dynamics of relativistic, magnetized, axisymmetric jets. Some of the simulations have been specifically set up to follow the long term evolution of extragalactic jets under idealized conditions. The simulations have been done with an extension of the GENESIS code (Aloy et al 1999a} suitable for relativistic magnetohydrodynamcs applications. The code is based on a Godunov-type scheme whose building block is a method of lines. The numerical algorithm can provide up to third order of accuracy and makes use of a constrained transport method in order to keep the divergence--free condition of the magnetic field.

  17. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Li, Qiulin; Liu, Wei; Xu, Ben; Hu, Shenyang; Li, Yulan

    2015-07-15

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  18. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties.

  19. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    DOE PAGES

    Li, Yi; Xu, Ben; Hu, Shenyang; ...

    2015-07-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domainsmore » on the magnetization reversal behavior and the magnetic properties.« less

  20. Roll Forming of AHSS: Numerical Simulation and Investigation of Effects of Main Process Parameters on Quality

    NASA Astrophysics Data System (ADS)

    Salonitis, Konstantinos; Paralikas, John; Chryssolouris, George

    The roll forming process is one of the main processes of producing straight profiles in many industrial sectors. The introduction of Advanced High Strength Steels (AHSS), such as the DP and TRIP-series, into the production of roll-formed profiles has emerged new challenges. The combination of a higher yield strength with a lower total elongation of AHSS, brings new challenges to the roll forming process. In the current study, the numerical simulation of a V-section profile has been implemented. The effect of the main process parameters, such as the roll forming line velocity, rolls inter-distance, roll gap and rolls diameter on quality characteristics is investigated.

  1. Experimental simulation of a magnetic refrigeration cycle in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Dilmieva, E. T.; Kamantsev, A. P.; Koledov, V. V.; Mashirov, A. V.; Shavrov, V. G.; Cwik, J.; Tereshina, I. S.

    2016-01-01

    The complete magnetic refrigeration cycle has been simulated on a sample of gadolinium in magnetic fields of a Bitter coil magnet up to 12 T. The total change of temperature of the sample during the cycle is a consequence of magnetic refrigeration, and the dependence of the magnetization of the sample on the magnetic field exhibits a hysteretic behavior. This makes it possible to determine the work done by the magnetic field on the sample during the magnetic refrigeration cycle and to calculate the coefficient of performance of the process. In a magnetic field of 2 T near the Curie temperature of gadolinium, the coefficient of performance of the magnetic refrigeration is found to be 92. With an increase in the magnetic field, the coefficient of performance of the process decreases sharply down to 15 in a magnetic field of 12 T. The reasons, for which the coefficient of performance of the magnetic refrigeration is significantly below the fundamental limitations imposed by the reversed Carnot theorem, have been discussed.

  2. Simulations of the electron cloud buildups and suppressions in Tevatron and main injector

    SciTech Connect

    Zhang, Xiaolong; Ostiguy, Jean-Francois; Chou, Weiren; /Fermilab

    2007-06-01

    To assess the effects of the electron cloud on Main Injector intensity upgrades, simulations of the cloud buildup were carried out using POSINST and compared with ECLOUD. Results indicate that even assuming an optimistic 1.3 maximum secondary electron yield, the electron cloud remains a serious concern for the planned future operational mode with 500 bunches, 3e11 proton per bunch. Electron cloud buildup can be mitigated in various ways. We consider a plausible scenario involving solenoids in straight section and a single clearing strip electrode (like SNEG in Tevatron) held at a potential of 500V. Simulations with parameters corresponding to Tevatron and Main Injector operating conditions at locations where special electron cloud detectors have been installed have been carried out and are in satisfactory agreement with preliminary measurements.

  3. MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS

    SciTech Connect

    Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano

    2016-03-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3–9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.

  4. Simulations of magnetic fields in isolated disc galaxies

    NASA Astrophysics Data System (ADS)

    Pakmor, Rüdiger; Springel, Volker

    2013-06-01

    Magnetic fields are known to be dynamically important in the interstellar medium of our own Galaxy, and they are ubiquitously observed in diffuse gas in the haloes of galaxies and galaxy clusters. Yet, magnetic fields have typically been neglected in studies of the formation of galaxies, leaving their global influence on galaxy formation largely unclear. Here we extend our magnetohydrodynamics (MHD) implementation in the moving-mesh code AREPO to cosmological problems which include radiative cooling and the formation of stars. In particular, we replace our previously employed divergence cleaning approach with a Powell eight-wave scheme, which turns out to be significantly more stable, even in very dynamic environments. We verify the improved accuracy through simulations of the magneto-rotational instability in accretion discs, which reproduce the correct linear growth rate of the instability. Using this new MHD code, we simulate the formation of isolated disc galaxies similar to the Milky Way using idealized initial conditions with and without magnetic fields. We find that the magnetic field strength is quickly amplified in the initial central starburst and the differential rotation of the forming disc, eventually reaching a saturation value. At this point, the magnetic field pressure in the interstellar medium becomes comparable to the thermal pressure, and a further efficient growth of the magnetic field strength is prevented. The additional pressure component leads to a lower star formation rate at late times compared to simulations without magnetic fields, and induces changes in the spiral arm structures of the gas disc. In addition, we observe highly magnetized fountain-like outflows from the disc. These results are robust with numerical resolution and are largely independent of the initial magnetic seed field strength assumed in the initial conditions, as the amplification process is rapid and self-regulated. Our findings suggest an important influence of

  5. OVERVIEW OF A RECONFIGURABLE SIMULATOR FOR MAIN CONTROL ROOM UPGRADES IN NUCLEAR POWER PLANTS

    SciTech Connect

    Ronald L. Boring

    2012-10-01

    This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plant modernization in the U.S. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

  6. HSX: Engineering Design and Fabrication of the main Magnet Coils, Vacuum Vessel and Support/Alignment Structure

    NASA Astrophysics Data System (ADS)

    Anderson, F. Simon B.; Anderson, D. T.; Almagri, A. F.; Matthews, P. G.; Probert, P. H.; Shohet, J. L.; Talmadge, J. N.

    1996-11-01

    The HSX device, with a magnetic field consisting of a SINGLE dominant HELICAL component, has a set of 48 twisted main magnetic field coils. Engineering analysis (ANSYS) has resulted in a set of construction and alignment constraints and goals for field accuracy and coil structural strength. Close proximity of the main coil set to the magnetic separatrix imposes space restrictions on the vacuum vessel. Fabrication of the vessel using explosive techniques, and the structural analysis for the stresses in the vacuum chamber will be discussed. Crucial to the integrity of the quasihelical magnetic field is the accurate positioning of the magnet coils and maintenance of the position during operation. The design and construct- ion of the completed support structure for HSX coils will also be presented. *** Work supported by U.S Dept. of Energy Grant DE-FG02-93ER54222

  7. Mesoscopic simulation for the structures of magnetic fluids

    NASA Astrophysics Data System (ADS)

    Li, Wuming; Li, Qiang

    2017-02-01

    The microstructures of magnetic fluids are simulated using a dissipative particle dynamics (DPD)-based method and are fundamentally important for controlling the macroscopic properties of magnetic fluids and understanding the corresponding rheological behaviors in diverse engineering applications. The cubic polynomial spline function often used as smoothing function in smoothed particle hydrodynamics (SPH) is employed as the conservative force potential function, which can provide a stronger conservative force weight function than the conventional weight function by choosing properly the cutoff radius between the dissipative particles. By employing the above method, the desired results are obtained for both stronger and weaker magnetic particle-particle interaction under the condition of varying the mass of the dissipative particles. In addition, the influences of the magnetic particle-particle interaction and of the magnetic particle area fraction on the microstructure of magnetic fluids are also investigated, respectively, and the obtained results agree qualitatively well with those in the literature obtained by other numerical approaches and experiments. The numerical solutions of the mean equilibrium velocities of the magnetic and dissipative particles are also calculated and approximate the corresponding theoretical values very well. Therefore the employed DPD-based method is highly effective in the simulation of the microstructure of magnetic fluids.

  8. The Carnot type magnetic refrigeration below 4.2 K - Computer simulation

    NASA Astrophysics Data System (ADS)

    Hashimoto, T.; Numazawa, T.; Maro, T.

    Cooling devices based on a utilization of the Carnot type magnetic refrigeration cycle are usually selected for the temperature range from 20 K to 1.8 K. However, the refrigeration power in the case of such devices is frequently limited by the heat transfer coefficient between the heat source and the magnetic working substance. Thus, in a magnetic refrigerator studied by Delpuech et al. (1981), the refrigeration power is mainly restricted by the heat transfer coefficient in the isothermal magnetization process at 4.2 K. The present investigation is concerned with the development of a method for achieving high refrigeration power on the basis of a study utilizing computer simulation. One of two methods considered for enhancing refrigeration power is related to the change in the magnetic field, while the other method involves an enlargement of the effective area of gadolinium-gallium-garnet (GGG) with the aid of deep grooves in the surface.

  9. Non-contact main cable NDE technique for suspension bridge using magnetic flux-based B-H loop measurements

    NASA Astrophysics Data System (ADS)

    Park, Seunghee; Kim, Ju-Won; Moon, Dae-Joong

    2015-04-01

    In this study, a noncontact main cable NDE method has been developed. This cable NDE method utilizes the direct current (DC) magnetization and a searching coil-based total flux measurement. A total flux sensor head prototype was fabricated that consists of an electro-magnet yoke and a searching coil sensor. To obtain a B-H loop, a magnetic field was generated by applying a cycle of low frequency direct current to the electro-magnet yoke. During the magnetization, a search coil sensor measures the electromotive force from magnetized cable. During the magnetization process, a search coil sensor was measured the magnetic flux density. Total flux was calculated by integrating the measured magnetic flux using a fluxmeter. A B-H loop is obtained by using relationship between a cycle of input DC voltage and measured total flux. The B-H loop can reflect the property of the ferromagnetic materials. Therefore, the cross-sectional loss of cable can be detected using variation of features from the B-H curve. To verify the feasibility of the proposed steel cable NDE method, a series of experimental studies using a main-cable mock-up specimen has been performed in this study.

  10. Magnetic Flyer Facility Correlation and UGT Simulation

    DTIC Science & Technology

    1978-05-01

    IYP Ol RE RICO covEtReD ~7PERORMIN OROAI~kTT~d NAE Alt AOORSS P)AM RLI E N PORO CT, TSK II. COTOL N iV O kPC NAME AND ACOR SS RRT OAT LM S ionRSU Ida...34Calculation of Magnetically Driven Flrer Behavior From Bank Discharge Data Records," KN-70-62(R), December 1970. 2. Private communication, Mr. Gene

  11. Quantum simulation of frustrated classical magnetism in triangular optical lattices.

    PubMed

    Struck, J; Ölschläger, C; Le Targat, R; Soltan-Panahi, P; Eckardt, A; Lewenstein, M; Windpassinger, P; Sengstock, K

    2011-08-19

    Magnetism plays a key role in modern technology and stimulates research in several branches of condensed matter physics. Although the theory of classical magnetism is well developed, the demonstration of a widely tunable experimental system has remained an elusive goal. Here, we present the realization of a large-scale simulator for classical magnetism on a triangular lattice by exploiting the particular properties of a quantum system. We use the motional degrees of freedom of atoms trapped in an optical lattice to simulate a large variety of magnetic phases: ferromagnetic, antiferromagnetic, and even frustrated spin configurations. A rich phase diagram is revealed with different types of phase transitions. Our results provide a route to study highly debated phases like spin-liquids as well as the dynamics of quantum phase transitions.

  12. Magnetic domain patterns on strong perpendicular magnetization of Co/Ni multilayers as spintronics materials: II. Numerical simulations.

    PubMed

    Kudo, Kazue; Suzuki, Masahiko; Kojima, Kazuki; Yasue, Tsuneo; Akutsu, Noriko; Diño, Wilson Agerico; Kasai, Hideaki; Bauer, Ernst; Koshikawa, Takanori

    2013-10-02

    Magnetic domains in ultrathin films form domain patterns, which strongly depend on the magnetic anisotropy. The magnetic anisotropy in Co/Ni multilayers changes with the number of layers. We provide a model to simulate the experimentally observed domain patterns. The model assumes a layer-dependent magnetic anisotropy. With the anisotropy parameter estimated from experimental data, we reproduce the magnetic domain patterns.

  13. Simulations of Magnetic Fields in Tidally Disrupted Stars

    NASA Astrophysics Data System (ADS)

    Guillochon, James; McCourt, Michael

    2017-01-01

    We perform the first magnetohydrodynamical simulations of tidal disruptions of stars by supermassive black holes. We consider stars with both tangled and ordered magnetic fields, for both grazing and deeply disruptive encounters. When the star survives disruption, we find its magnetic field amplifies by a factor of up to 20, but see no evidence for a self-sustaining dynamo that would yield arbitrary field growth. For stars that do not survive, and within the tidal debris streams produced in partial disruptions, we find that the component of the magnetic field parallel to the direction of stretching along the debris stream only decreases slightly with time, eventually resulting in a stream where the magnetic pressure is in equipartition with the gas. Our results suggest that the returning gas in most (if not all) stellar tidal disruptions is already highly magnetized by the time it returns to the black hole.

  14. Magnetized laboratory plasma jets: experiment and simulation.

    PubMed

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 MA, 100 ns current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μm Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ∼1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μs current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.

  15. Magnetic field simulation of magnetic phase detection sensor for steam generator tube in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Ryu, Kwon-sang; Son, Derac; Park, Duck-gun; Kim, Yong-il

    2010-05-01

    Magnetic phases and defects are partly produced in steam generator tubes by stress and heat, because steam generator tubes in nuclear power plants are used under high temperature, high pressure, and radioactivity. The magnetic phases induce an error in the detection of the defects in steam generator tubes by the conventional eddy current method. So a new method is needed for detecting the magnetic phases in the steam generator tubes. We designed a new U-type yoke which has two kinds of coils and simulated the signal by the magnetic phases and defects in the Inconnel 600 tube.

  16. RELATIVISTIC TWO-FLUID SIMULATIONS OF GUIDE FIELD MAGNETIC RECONNECTION

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2009-11-01

    The nonlinear evolution of relativistic magnetic reconnection in sheared magnetic configuration (with a guide field) is investigated by using two-dimensional relativistic two-fluid simulations. Relativistic guide field reconnection features the charge separation and the guide field compression in and around the outflow channel. As the guide field increases, the composition of the outgoing energy changes from enthalpy-dominated to Poynting-dominated. The inertial effects of the two-fluid model play an important role to sustain magnetic reconnection. Implications for the single-fluid magnetohydrodynamic approach and the physics models of relativistic reconnection are briefly addressed.

  17. Magnetic Forces Simulation of Bulk HTS over Permanent Magnetic Railway with Numerical Method

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Zhuang, Shujun

    2012-10-01

    Magnetic levitation forces of bulk high temperature superconductor (HTS) above two types permanent magnet railway (PMR) is simulated using finite element method (FEM). The models are formulated by H-formulation and resolving codes is developed using Finite Element Program Generator (FEPG). The E- J power law is used to describe the electrical field vs. current density nonlinear characteristic of HTS. The applied magnetic fields induced by the PMR are calculated by the standard analysis method with the equivalent surface current model. By the method, the calculation formulation of magnetic fields generated by Halbach PMR and symmetrical PMR is derived respectively. The simulation results show that the finite element dynamic mesh rebuilding problem of HTS magnetic levitation transportation system comprised of bulk HTS and PMR can be easily avoided by the methods.

  18. VERA-CS Modeling and Simulation of PWR Main Steam Line Break Core Response to DNB

    SciTech Connect

    Salko, Robert K; Sung, Yixing; Kucukboyaci, Vefa; Xu, Yiban; Cao, Liping

    2016-01-01

    The Virtual Environment for Reactor Applications core simulator (VERA-CS) being developed by the Consortium for the Advanced Simulation of Light Water Reactors (CASL) includes coupled neutronics, thermal-hydraulics, and fuel temperature components with an isotopic depletion capability. The neutronics capability employed is based on MPACT, a three-dimensional (3-D) whole core transport code. The thermal-hydraulics and fuel temperature models are provided by the COBRA-TF (CTF) subchannel code. As part of the CASL development program, the VERA-CS (MPACT/CTF) code system was applied to model and simulate reactor core response with respect to departure from nucleate boiling ratio (DNBR) at the limiting time step of a postulated pressurized water reactor (PWR) main steamline break (MSLB) event initiated at the hot zero power (HZP), either with offsite power available and the reactor coolant pumps in operation (high-flow case) or without offsite power where the reactor core is cooled through natural circulation (low-flow case). The VERA-CS simulation was based on core boundary conditions from the RETRAN-02 system transient calculations and STAR-CCM+ computational fluid dynamics (CFD) core inlet distribution calculations. The evaluation indicated that the VERA-CS code system is capable of modeling and simulating quasi-steady state reactor core response under the steamline break (SLB) accident condition, the results are insensitive to uncertainties in the inlet flow distributions from the CFD simulations, and the high-flow case is more DNB limiting than the low-flow case.

  19. Propulsion simulation for magnetically suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, Prakash B.; Beerman, Henry P.; Chen, James; Krech, Robert H.; Lintz, Andrew L.; Rosen, David I.

    1990-01-01

    The feasibility of simulating propulsion-induced aerodynamic effects on scaled aircraft models in wind tunnels employing Magnetic Suspension and Balance Systems. The investigation concerned itself with techniques of generating exhaust jets of appropriate characteristics. The objectives were to: (1) define thrust and mass flow requirements of jets; (2) evaluate techniques for generating propulsive gas within volume limitations imposed by magnetically-suspended models; (3) conduct simple diagnostic experiments for techniques involving new concepts; and (4) recommend experiments for demonstration of propulsion simulation techniques. Various techniques of generating exhaust jets of appropriate characteristics were evaluated on scaled aircraft models in wind tunnels with MSBS. Four concepts of remotely-operated propulsion simulators were examined. Three conceptual designs involving innovative adaptation of convenient technologies (compressed gas cylinders, liquid, and solid propellants) were developed. The fourth innovative concept, namely, the laser-assisted thruster, which can potentially simulate both inlet and exhaust flows, was found to require very high power levels for small thrust levels.

  20. A comprehensive set of simulations of high-velocity collisions between main-sequence stars

    NASA Astrophysics Data System (ADS)

    Freitag, Marc; Benz, Willy

    2005-04-01

    We report on a very large set of simulations of collisions between two main-sequence (MS) stars. These computations were carried out with the smoothed particle hydrodynamics method. Realistic stellar structure models for evolved MS stars were used. In order to sample an extended domain of initial parameters space (masses of the stars, relative velocity and impact parameter), more than 14000 simulations were carried out. We considered stellar masses ranging between 0.1 and 75 Msolar and relative velocities up to a few thousand km s-1. To limit the computational burden, a resolution of 1000-32000 particles per star was used. The primary goal of this study was to build a complete data base from which the result of any collision can be interpolated. This allows us to incorporate the effects of stellar collisions with an unprecedented level of realism into dynamical simulations of galactic nuclei and other dense stellar clusters. We make the data describing the initial condition and outcome (mass and energy loss, angle of deflection) of all our simulations available on the Internet. We find that the outcome of collisions depends sensitively on the stellar structure and that, in most cases, using polytropic models is inappropriate. Published fitting formulae for the collision outcomes, established from a limited set of collisions, prove of limited use because they do not allow robust extrapolation to other stellar structures or relative velocities.

  1. Numerical simulation methods of incompressible flows and an application to the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Chang, J. L. C.; Kwak, D.; Rogers, S. E.; Yang, R.-J.

    1988-01-01

    This paper discusses incompressible Navier-Stokes solution methods with an emphasis on the pseudocompressibility method. A steady-state flow solver based on the pseudocompressibility approach is then described. This flow solver code has been used to analyze the internal flow in the Space Shuttle main engine hot-gas manifold. Salient features associated with this three-dimensional realistic flow simulation are discussed. Numerical solutions relevant to the current engine analysis and the redesign effort are discussed along with experimental results. This example demonstrates the potential of computational fluid dynamics as a design tool for aerospace applications.

  2. Numerical simulation methods of incompressible flows and an application to the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Chang, J. L. C.; Kwak, D.; Rogers, S. E.; Yang, R.-J.

    1988-01-01

    Incompressible Navier-Stokes solution methods are discussed with an emphasis on the pseudocompressibility method. A steady-state flow solver based on the pseudocompressibility approach is then described. This flow-solver code was used to analyze the internal flow in the Space Shuttle main engine hot-gas manifold. Salient features associated with this three-dimensional realistic flow simulation are discussed. Numerical solutions relevant to the current engine analysis and the redesign effort are discussed along with experimental results. This example demonstrates the potential of computational fluid dynamics as a design tool for aerospace applications.

  3. Simulations of Electron Cloud Effects on the Beam Dynamics for theFNAL Main Injector Upgrade

    SciTech Connect

    Sonnad Kiran G.; Furman, Miguel; Vay, Jean-Luc; Venturini, Marco; Celata, Christine M.; Grote, David

    2006-04-15

    The Fermilab main injector (MI) is being considered for an upgrade as part of the high intensity neutrino source (HINS) effort. This upgrade will involve a significant increasing of the bunch intensity relative to its present value. Such an increase will place the MI in a regime in which electron-cloud effects are expected to become important. We have used the electrostatic particle-in-cell code WARP, recently augmented with new modeling capabilities and simulation techniques, to study the dynamics of beam-electron cloud interaction. This work in progress involves a systematic assessment of beam instabilities due to the presence of electron clouds.

  4. Enhanced magnetic particle transport by integration of a magnetic flux guide: Experimental verification of simulated behavior

    NASA Astrophysics Data System (ADS)

    Wirix-Speetjens, Roel; Fyen, Wim; Boeck, Jo De; Borghs, Gustaaf

    2006-04-01

    In the past, magnetic biosensors have shown to be promising alternatives for classical fluorescence-based microarrays, replacing the fluorescent label by a superparamagnetic particle. While on-chip detection of magnetic particles is firmly established, research groups continue to explore the unique ability of manipulating these particles by applying controlled magnetic forces. One of the challenging tasks in designing magnetic force generating structures remains the generation of large forces for a minimal current consumption. Previously, a simple transporting device for single magnetic particles has been demonstrated using a magnetic field that is generated by two tapered current carrying conductors [R. Wirix-Speetjens, W. Fyen, K. Xu, J. De Boeck, and G. Borghs, IEEE Trans. Magn. 41(10), 4128 (2005)]. We also developed a model to accurately predict the motion of a magnetic particle moving in the vicinity of a solid wall. Using this model, we now present a technique that enhances the magnetic force up to a factor of 3 using a magnetic flux guide. The larger magnetic force results in an average speed of the particle which increases with a factor of 3. These simulations show good agreement with experimental results.

  5. Universal main magnetic focus ion source: A new tool for laboratory research of astrophysics and Tokamak microplasma

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, V. P.; Nefiodov, A. V.; Levin, A. A.

    2017-01-01

    A novel room-temperature ion source for the production of atomic ions in electron beam within wide ranges of electron energy and current density is developed. The device can operate both as conventional Electron Beam Ion Source/Trap (EBIS/T) and novel Main Magnetic Focus Ion Source. The ion source is suitable for generation of the low-, medium- and high-density microplasma in steady state, which can be employed for investigation of a wide range of physical problems in ordinary university laboratory, in particular, for microplasma simulations relevant to astrophysics and ITER reactor. For the electron beam characterized by the incident energy Ee = 10 keV, the current density je ∼ 20 kA/cm2 and the number density ne ∼ 2 × 1013 cm‑3 were achieved experimentally. For Ee ∼ 60 keV, the value of electron number density ne ∼ 1014 cm‑3 is feasible. The efficiency of the novel ion source for laboratory astrophysics significantly exceeds that of other existing warm and superconducting EBITs.

  6. Magnetic levitation-based Martian and Lunar gravity simulator

    NASA Technical Reports Server (NTRS)

    Valles, J. M. Jr; Maris, H. J.; Seidel, G. M.; Tang, J.; Yao, W.

    2005-01-01

    Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  7. Magnetic levitation-based Martian and Lunar gravity simulator.

    PubMed

    Valles, J M; Maris, H J; Seidel, G M; Tang, J; Yao, W

    2005-01-01

    Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity.

  8. Simulation of fluid flow induced by opposing ac magnetic fields in a continuous casting mold

    SciTech Connect

    Chang, F.C.; Hull, J.R.; Beitelman, L.

    1995-07-01

    A numerical simulation was performed for a novel electromagnetic stirring system employing two rotating magnetic fields. The system controls stirring flow in the meniscus region of a continuous casting mold independently from the stirring induced within the remaining volume of the mold by a main electromagnetic stirrer (M-EMS). This control is achieved by applying to the meniscus region an auxiliary electromagnetic field whose direction of rotation is opposite to that of the main magnetic field produced by the M-EMS. The model computes values and spatial distributions of electromagnetic parameters and fluid flow in the stirred pools of mercury in cylindrical and square geometries. Also predicted are the relationships between electromagnetics and fluid flows pertinent to a dynamic equilibrium of the opposing stirring swirls in the meniscus region. Results of the numerical simulation compared well with measurements obtained from experiments with mercury pools.

  9. Magnetohydrodynamic simulations of the ejection of a magnetic flux rope

    NASA Astrophysics Data System (ADS)

    Pagano, P.; Mackay, D. H.; Poedts, S.

    2013-06-01

    Context. Coronal mass ejections (CME's) are one of the most violent phenomena found on the Sun. One model to explain their occurrence is the flux rope ejection model. In this model, magnetic flux ropes form slowly over time periods of days to weeks. They then lose equilibrium and are ejected from the solar corona over a few hours. The contrasting time scales of formation and ejection pose a serious problem for numerical simulations. Aims: We simulate the whole life span of a flux rope from slow formation to rapid ejection and investigate whether magnetic flux ropes formed from a continuous magnetic field distribution, during a quasi-static evolution, can erupt to produce a CME. Methods: To model the full life span of magnetic flux ropes we couple two models. The global non-linear force-free field (GNLFFF) evolution model is used to follow the quasi-static formation of a flux rope. The MHD code ARMVAC is used to simulate the production of a CME through the loss of equilibrium and ejection of this flux rope. Results: We show that the two distinct models may be successfully coupled and that the flux rope is ejected out of our simulation box, where the outer boundary is placed at 2.5 R⊙. The plasma expelled during the flux rope ejection travels outward at a speed of 100 km s-1, which is consistent with the observed speed of CMEs in the low corona. Conclusions: Our work shows that flux ropes formed in the GNLFFF can lead to the ejection of a mass loaded magnetic flux rope in full MHD simulations. Coupling the two distinct models opens up a new avenue of research to investigate phenomena where different phases of their evolution occur on drastically different time scales. Movies are available in electronic form at http://www.aanda.org

  10. Vlasov simulations of collisionless magnetic reconnection without background density

    NASA Astrophysics Data System (ADS)

    Schmitz, H.; Grauer, R.

    2008-02-01

    A standard starting point for the simulation of collisionless reconnection is the Harris equilibrium which is made up of a current sheet that separates two regions of opposing magnetic field. Magnetohydrodynamic simulations of collisionless reconnection usually include a homogeneous background density for reasons of numerical stability. While, in some cases, this is a realistic assumption, the background density may introduce new effects both due to the more involved structure of the distribution function or due to the fact that the Alfvèn speed remains finite far away from the current sheet. We present a fully kinetic Vlasov simulation of the perturbed Harris equilibrium using a Vlasov code. Parameters are chosen to match the Geospace Environment Modeling (GEM) Magnetic Reconnection Challenge but excluding the background density. This allows to compare with earlier simulations [Schmitz H, Grauer R. Kinetic Vlasov simulations of collisionless magnetic reconnection. Phys Plasmas 2006;13:092309] which include the background density. It is found that the absence of a background density causes the reconnection rate to be higher. On the other hand, the time until the onset of reconnection is hardly affected. Again the off diagonal elements of the pressure tensor are found to be important on the X-line but with modified importance for the individual terms.

  11. Thermal conditions on the International Space Station: Heat flux and temperature investigation of main radiators for the Alpha Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Xie, Min; Gao, Jianmin; Wu, Shaohua; Qin, Yukun

    2016-09-01

    The investigation on heat flux can clarify the thermal condition and explain temperature behavior on the main radiators of the Alpha Magnetic Spectrometer (AMS). In this paper, a detailed investigation of heat flux on the AMS main radiators is proposed. The heat transfer process of the AMS main radiators is theoretically analyzed. An updated thermal model of the AMS on the International Space Station (ISS) is developed to calculate the external heat flux density on the AMS main radiators. We conclude the ISS components and operations affect on the solar flux density of the AMS main radiators by reflecting or shading solar illumination. According to the energy conservation on the AMS main radiators, the temperature variation mainly depends on the solar flux change. The investigations are conducive to reference for the long-duration thermal control of the AMS, and knowledge for the thermal conditions on the ISS.

  12. Neodymium as the main feature of permanent magnets from hard disk drives (HDDs).

    PubMed

    München, Daniel Dotto; Veit, Hugo Marcelo

    2017-03-01

    As a way to manage neodymium-iron-boron (NdFeB) magnets wasted in end-of-life hard disk drives (HDDs), a waste characterization is needed prior to a recycling process. Due to their magnetic properties, NdFeB magnets are essential in technological applications nowadays, thus causing an increase in the industrial demand for rare earth metals. However, these metals have a short supply, since they are difficult to obtain from ores, creating a critical market. In this work, a study of the characterization of sintered neodymium-iron-boron magnets was undertaken by qualitatively and quantitatively uncovering the neodymium recovery potential from this type of electronic waste. From the collection and disassembly of hard disk drives, in which the magnet represents less than 3% of the total weight, an efficient demagnetization process was proceeded at 320°C. Then, the magnet was ground and screened for an X-ray diffraction (XRD) analysis, which showed the Nd2Fe14B tetragonal phase as the dominant constituent of the sample. An analysis was also carried out in a scanning electron microscope (SEM) and an inductively coupled plasma optical emission spectrometer (ICP-OES), where the magnet composition showed 21.5wt% of neodymium and 65.1wt% of iron, among other chemicals. This Nd content is higher than the one found in Nd ores, enhancing the recyclability and the importance of waste management.

  13. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    SciTech Connect

    Li, Yi; Xu, Ben; Hu, Shenyang Y.; Li, Yulan; Li, Qiulin; Liu, Wei

    2015-09-25

    Hysteresis loops and Magnetic Barkhausen Noise in a single crystal α-iron containing a nonmagnetic particle were simulated based on the Laudau-Lifshitz-Gilbert equation. The analyses of domain morphologies and hysteresis loops show that reversal magnetization process is control by nucleation of reversed domains at nonmagnetic particle when the particle size reaches a particle value. In such a situation, the value of nucleation field is determined by the size of nonmagnetic particles, and moreover, coercive field and Magnetic Barkhausen Noise signal are strongly affected by the nucleation field of reversed domains.

  14. SCATTERING OF THE f-MODE BY SMALL MAGNETIC FLUX ELEMENTS FROM OBSERVATIONS AND NUMERICAL SIMULATIONS

    SciTech Connect

    Felipe, T.; Braun, D.; Crouch, A.; Birch, A.

    2012-10-01

    The scattering of f-modes by magnetic tubes is analyzed using three-dimensional numerical simulations. An f-mode wave packet is propagated through a solar atmosphere embedded with three different flux tube models that differ in radius and total magnetic flux. A quiet-Sun simulation without a tube present is also performed as a reference. Waves are excited inside the flux tube and propagate along the field lines, and jacket modes are generated in the surroundings of the flux tube, carrying 40% as much energy as the tube modes. The resulting scattered wave is mainly an f-mode composed of a mixture of m = 0 and m = {+-}1 modes. The amplitude of the scattered wave approximately scales with the magnetic flux. A small amount of power is scattered into the p{sub 1}-mode. We have evaluated the absorption and phase shift from a Fourier-Hankel decomposition of the photospheric vertical velocities. They are compared with the results obtained from the ensemble average of 3400 small magnetic elements observed in high-resolution MDI Doppler datacubes. The comparison shows that the observed dependence of the phase shift with wavenumber can be matched reasonably well with the simulated flux tube model. The observed variation of the phase shifts with the azimuthal order m appears to depend on details of the ensemble averaging, including possible motions of the magnetic elements and asymmetrically shaped elements.

  15. Simulated magnetic field expulsion in neutron star cores

    NASA Astrophysics Data System (ADS)

    Elfritz, J. G.; Pons, J. A.; Rea, N.; Glampedakis, K.; Viganò, D.

    2016-03-01

    The study of long-term evolution of neutron star (NS) magnetic fields is key to understanding the rich diversity of NS observations, and to unifying their nature despite the different emission mechanisms and observed properties. Such studies in principle permit a deeper understanding of the most important parameters driving their apparent variety, e.g. radio pulsars, magnetars, X-ray dim isolated NSs, gamma-ray pulsars. We describe, for the first time, the results from self-consistent magnetothermal simulations considering not only the effects of the Hall-driven field dissipation in the crust, but also adding a complete set of proposed driving forces in a superconducting core. We emphasize how each of these core-field processes drive magnetic evolution and affect observables, and show that when all forces are considered together in vectorial form, the net expulsion of core magnetic flux is negligible, and will have no observable effect in the crust (consequently in the observed surface emission) on megayear time-scales. Our new simulations suggest that strong magnetic fields in NS cores (and the signatures on the NS surface) will persist long after the crustal magnetic field has evolved and decayed, due to the weak combined effects of dissipation and expulsion in the stellar core.

  16. Computer simulations of plasmoid evolution in the sheared magnetic field

    NASA Astrophysics Data System (ADS)

    Ichikawa, H.; Ugai, M.; Kondoh, K.

    2009-12-01

    Statistical studies of satellite observations have revealed the plasmoid evolution and the characteristics of them (Ieda, 1998, Machida, 2004). In our previous studies (Ugai et al., 2005; Ugai and Zheng, 2005), the plasmoid evolutions in the no-sheared magnetic field were studied using MagnetoHydroDynamic(MHD) simulations. However, the magnetic field in the solar corona and the geo-magnetotail are usually sheared. Then, we studies plasmoid evolution in sheared magnetic field using MHD simulation on the basis of spontaneous fast reconnection model, and analyze the characteristics of plasmoid. These results are compared with actual satellite observations. References Ieda, A., Machida, T., Mukai, T., Saito, Y., Yamamoto, T., Nishida, A., Terasawa, T., and Kokubun, S., Statistical analysis of the plasmoid evolution with Geotail observations, J. Geophys. Res., 103, 4453, 1998. S. Machida, A. Ieda and Y. Miyashita, Roles of the magnetic reconnection in the Earth's magnetotail during substorms:Geotail observations Physics of Magnetic Reconnection in High-Temperature Plasmas, pp.161-191 ISBN: 81-7736-089-2, 2004 M. Ugai, K. Kondoh and T.Shimizu, Spontaneous fast reconnection model in three dimensions, Phys. Plasmas, 12, 042 903, 2005 M. Ugai and L. Zheng, Conditions for the fast reconnection mechanism in three dimensions, Phys. Plasmas, 12, 092 312, 2005

  17. Magnetospheric Magnetic Reconnection with Southward IMF by a 3D EMPM Simulation

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Yan, X. Y.; Cai, D. S.; Lembege, B.

    2004-01-01

    We report our new simulation results on magnetospheric magnetic reconnection with southward IMF using a 3D EMPM model, with greater resolution and more particles using the parallelized 3D HPF TRISTAN code on VPP5000 supercomputer. Main parameters used in the new simulation are: domain size is 215 x 145 x 145, grid size = 0.5 Earth radius, initial particle number is 16 per cell, the IMF is southward. Arrival of southward IMF will cause reconnection in the magnetopause, thus allowing particles to enter into the inner magnetosphere. Sunward and tailward high particle flow are observed by satellites, and these phenomena are also observed in the simulation near the neutral line (X line) of the near-Earth magnetotail. This high particle flow goes along with the reconnected island. The magnetic reconnection process contributes to direct plasma entry between the magnetosheath to the inner magnetosphere and plasma sheet, in which the entry process eats the magnetosheath plasma to plasma sheet temperatures. We investigate magnetic, electric fields, density, and current during this magnetic reconnection with southward IMF. Further investigation with this simulation will provide insight into unsolved problems, such as the triggering of storms and substorms, and the storm-substorm relationship. New results will be presented at the meeting.

  18. Simulations of Filament Channel Formation in a Coronal Magnetic Field

    NASA Astrophysics Data System (ADS)

    Knizhnik, Kalman; DeVore, C. Richard; Antiochos, Spiro K.

    2016-05-01

    A major unanswered problem in solar physics has been explaining the presence of sheared filament channels above photospheric polarity inversion lines (PILs) and the simultaneous lack of structure in the ‘loop’ portion of the coronal magnetic field. The shear inherent in filament channels represents not only a form of magnetic energy, but also magnetic helicity. As a result, models of filament channel formation need to explain not only why helicity is observed above PILs, but also why it is apparently not observed anywhere else in the corona. Previous results (Knizhnik, Antiochos & DeVore, 2015) have suggested that any helicity injected into the coronal field inverse-cascades in scale, a process known as magnetic helicity condensation (Antiochos, 2013). In this work, we present high resolution numerical simulations of photospheric helicity injection into a coronal magnetic field that contains both a PIL and a coronal hole (CH). We show conclusively that the inverse cascade of magnetic helicity terminates at the PIL, resulting in the formation of highly sheared filament channels and a smooth, untwisted corona. We demonstrate that even though magnetic helicity is injected throughout the flux system, it accumulates only at the PIL, where it manifests itself in the form of highly sheared filament channels, while any helicity obtained by the CH is ejected out of the system. We show that the formation of filament channels is both qualitatively and quantitatively in agreement with observations and discuss the implications of our simulations for observations.This work was supported by the NASA Earth and Space Science Fellowship, LWS TR&T and H-SR Programs.

  19. High frequency variations of the main magnetic field: convergence of observations and theory (Petrus Peregrinus Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Jault, Dominique

    2013-04-01

    Understanding the main magnetic field variations has been hindered by the discrepancy between the periods (from months to years) of the simplest linear wave phenomena and the relatively long time intervals (10 to 100 years) over which magnetic field changes can be confidently monitored. A theoretical description of short-period waves within the Earth's fluid core is at hand. Quasi-geostrophic inertial waves (akin to Rossby waves in the atmosphere) are slightly modified in the presence of magnetic fields and torsional oscillations consist of differential motion between coaxial rigid cylindrical annuli. Torsional oscillations are sensitive to the whole magnetic field that they shear in the course of their propagation. From their modelling, we have thus gained an estimate for the magnetic field strength in the core interior. There is now ongoing work to extend the theoretical framework to longer times. Furthermore, data collected from the Swarm constellation of three satellites to be launched this year by ESA will permit to better separate the internal and external magnetic signals. We may thus dream to detect quasi-geostrophic inertial waves. As the spectral ranges of theoretical models and observations begin to overlap, we can now go beyond the understanding of the magnetic field variations as the juxtaposition of partial models, arranged as a set of nested Matryoshka dolls. This talk will give illustrations for this statement, among which the question of induction in the lower mantle.

  20. Magnetic properties for cobalt nanorings: Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Ye, Qingying; Chen, Shuiyuan; Zhong, Kehua; Huang, Zhigao

    2012-02-01

    In this paper, two structure models of cobalt nanoring cells (double-nanorings and four-nanorings, named as D-rings and F-rings, respectively) have been considered. Base on Monte Carlo simulation, the magnetic properties of the D-rings and F-rings, such as hysteresis loops, spin configuration, coercivity, etc., have been studied. The simulated results indicate that both D-rings and F-rings with different inner radius ( r) and separation of ring centers ( d) display interesting magnetization behavior and spin configurations (onion-, vortex- and crescent shape vortex-type states) in magnetization process. Moreover, it is found that the overlap between the nearest single nanorings connect can result in the deviation of the vortex-type states in the connected regions. Therefore, the appropriate d should be well considered in the design of nanoring device. The simulated results can be explained by the competition between exchange energy and dipolar energy in Co nanorings system. Furthermore, it is found that the simulated temperature dependence of the coercivity for the D-rings with different d can be well described by Hc= H0 exp[-( T/ T0) p].

  1. Magnetic reconnection in numerical simulations of the Bastille day flare

    NASA Astrophysics Data System (ADS)

    Vincent, A. P.; Charbonneau, P.

    2011-12-01

    If neither waves nor adiabatic heating due to compression are taken into account, coronal heating may be obtained in numerical simulations from current dissipation inside solar flares. To increase Joule heating locally we used a model for hyper resistivity (Klimas et al., 2004: Journal of Geophysical Research, 109, 2218-2231). Here the change in resistivity is due to small scale (less than 1Mm in our simulations) current density fluctuations. Whenever the current exceeds a cut-off value, magnetic resistivity jumps sharply to reach a maximum locally thus increasing magnetic gradients at the border of the flare. In this way, not only the current increases but also the maximum is slowly displaced and simulations of the full set of 3-D MHD equations show a progression westward as can be seen in SOHO-EIT images of the ''slinky''. In our simulations of the Bastille day flare, most of the reconnection events take place just above the transition and mostly follow the neutral line but it is Spitzer thermal diffusivity together with radiative cooling that illuminates magnetic arcades in a way similar to what can be seen in extreme ultra-violet animations of the slinky.

  2. Plasma transport in a simulated magnetic-divertor configuration

    SciTech Connect

    Strawitch, C. M.

    1981-03-01

    The transport properties of plasma on magnetic field lines that intersect a conducting plate are studied experimentally in the Wisconsin internal ring D.C. machine. The magnetic geometry is intended to simulate certain aspects of plasma phenomena that may take place in a tokamak divertor. It is found by a variety of measurements that the cross field transport is non-ambipolar; this may have important implications in heat loading considerations in tokamak divertors. The undesirable effects of nonambipolar flow make it preferable to be able to eliminate it. However, we find that though the non-ambipolarity may be reduced, it is difficult to eliminate entirely. The plasma flow velocity parallel to the magnetic field is found to be near the ion acoustic velocity in all cases. The experimental density and electron temperature profiles are compared to the solutions to a one dimensional transport model that is commonly used in divertor theory.

  3. Simulations of space charge neutralization in a magnetized electron cooler

    NASA Astrophysics Data System (ADS)

    Bruhwiler, David; Gerity, James; Hall, Christopher; McIntyre, Peter; Park, Chong Shik; Moens, Vince; Stancari, Giulio

    2016-10-01

    Magnetized electron cooling at relativistic energies and Ampere scale current is essential to achieve the proposed ion luminosities in a future electron-ion collider (EIC). Neutralization of the space charge in such a cooler can significantly increase the magnetized dynamic friction and, hence, the cooling rate. The Warp framework is being used to simulate magnetized electron beam dynamics during and after the build up of neutralizing ions, via ionization of residual gas in the cooler. The design follows previous experiments at Fermilab as a verification case. We also discuss the relevance to EIC designs. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Number DE-SC0015212.

  4. Simulation of groundwater conditions and streamflow depletion to evaluate water availability in a Freeport, Maine, watershed

    USGS Publications Warehouse

    Nielsen, Martha G.; Locke, Daniel B.

    2012-01-01

    In order to evaluate water availability in the State of Maine, the U.S. Geological Survey (USGS) and the Maine Geological Survey began a cooperative investigation to provide the first rigorous evaluation of watersheds deemed "at risk" because of the combination of instream flow requirements and proportionally large water withdrawals. The study area for this investigation includes the Harvey and Merrill Brook watersheds and the Freeport aquifer in the towns of Freeport, Pownal, and Yarmouth, Maine. A numerical groundwater- flow model was used to evaluate groundwater withdrawals, groundwater-surface-water interactions, and the effect of water-management practices on streamflow. The water budget illustrates the effect that groundwater withdrawals have on streamflow and the movement of water within the system. Streamflow measurements were made following standard USGS techniques, from May through September 2009 at one site in the Merrill Brook watershed and four sites in the Harvey Brook watershed. A record-extension technique was applied to estimate long-term monthly streamflows at each of the five sites. The conceptual model of the groundwater system consists of a deep, confined aquifer (the Freeport aquifer) in a buried valley that trends through the middle of the study area, covered by a discontinuous confining unit, and topped by a thin upper saturated zone that is a mixture of sandy units, till, and weathered clay. Harvey and Merrill Brooks flow southward through the study area, and receive groundwater discharge from the upper saturated zone and from the deep aquifer through previously unknown discontinuities in the confining unit. The Freeport aquifer gets most of its recharge from local seepage around the edges of the confining unit, the remainder is received as inflow from the north within the buried valley. Groundwater withdrawals from the Freeport aquifer in the study area were obtained from the local water utility and estimated for other categories. Overall

  5. Simulations of Energetic Particles Interacting with Dynamical Magnetic Turbulence

    NASA Astrophysics Data System (ADS)

    Hussein, M.; Shalchi, A.

    2016-02-01

    We explore the transport of energetic particles in interplanetary space by using test-particle simulations. In previous work such simulations have been performed by using either magnetostatic turbulence or undamped propagating plasma waves. In the current paper we simulate for the first time particle transport in dynamical turbulence. To do so we employ two models, namely the damping model of dynamical turbulence and the random sweeping model. We compute parallel and perpendicular diffusion coefficients and compare our numerical findings with solar wind observations. We show that good agreement can be found between simulations and the Palmer consensus range for both dynamical turbulence models if the ratio of turbulent magnetic field and mean field is δB/B0 = 0.5.

  6. SIMULATIONS OF ENERGETIC PARTICLES INTERACTING WITH DYNAMICAL MAGNETIC TURBULENCE

    SciTech Connect

    Hussein, M.; Shalchi, A. E-mail: husseinm@myumanitoba.ca

    2016-02-01

    We explore the transport of energetic particles in interplanetary space by using test-particle simulations. In previous work such simulations have been performed by using either magnetostatic turbulence or undamped propagating plasma waves. In the current paper we simulate for the first time particle transport in dynamical turbulence. To do so we employ two models, namely the damping model of dynamical turbulence and the random sweeping model. We compute parallel and perpendicular diffusion coefficients and compare our numerical findings with solar wind observations. We show that good agreement can be found between simulations and the Palmer consensus range for both dynamical turbulence models if the ratio of turbulent magnetic field and mean field is δB/B{sub 0} = 0.5.

  7. Variations in plasma parameters and magnetic field upon magnetopause crossing at the main phase maximum of the magnetic storm of November 14, 2012

    NASA Astrophysics Data System (ADS)

    Pulinets, M. S.; Kirpichev, I. P.; Antonova, E. E.

    2016-11-01

    Measurements of the plasma parameters and magnetic field upon magnetopause crossings by the THEMIS-A satellite during the large magnetic storm of November 14, 2012, are analyzed. The main specific feature of this event is the magnetopause crossing at the time of the magnetic-storm maximum. An imbalance of total pressure on the magnetopause reaching up to 40% has been observed. An abrupt turn of the magnetic field immediately on the magnetopause is recorded. Inside the magnetosphere, plasma motions have been observed, both along the magnetopause and inward, at velocities of 100-300 km/s. Variations in geomagnetic parameters are analyzed before and after the crossing. It is shown that specific features of the observed crossing may be associated with a sharp change in the magnetospheric current systems during the magnetospheric substorm.

  8. Radiation-magnetohydrodynamic simulations of the photoionization of magnetized globules

    NASA Astrophysics Data System (ADS)

    Henney, William J.; Arthur, S. Jane; de Colle, Fabio; Mellema, Garrelt

    2009-09-01

    We present the first three-dimensional radiation-magnetohydrodynamic simulations of the photoionization of a dense, magnetized molecular globule by an external source of ultraviolet radiation. We find that, for the case of a strong ionizing field, significant deviations from the non-magnetic evolution are seen when the initial magnetic field threading the globule has an associated magnetic pressure that is greater than 100 times the gas pressure. In such a strong-field case, the photoevaporating globule will adopt a flattened or `curled up' shape, depending on the initial field orientation, and magnetic confinement of the ionized photoevaporation flow can lead to recombination and subsequent fragmentation during advanced stages of the globule evolution. We find suggestive evidence that such magnetic effects may be important in the formation of bright, bar-like emission features in HII regions. We include simple but realistic fits to heating and cooling rates in the neutral and molecular gas in the vicinity of a high-mass star cluster, and show that the frequently used isothermal approximation can lead to an overestimate of the importance of gravitational instability in the radiatively imploded globule. For globules within 2 pc of a high-mass star cluster, we find that heating by stellar X-rays prevents the molecular gas from cooling below 50 K. Based in part on numerical simulations carried out using the Kan Balam supercomputer, operated by the Departamento de Supercómputo, Dirección General de Servicios de Cómputo Académico, Universidad Nacional Autónoma de México. E-mail: w.henney@astrosmo.unam.mx

  9. Simulation and Analysis of Magnetic Reconnection in an Experimental Geometry

    NASA Astrophysics Data System (ADS)

    Murphy, Nicholas Arnold; Sovinec, C. R.; Cassak, P. A.

    2009-01-01

    The process of magnetic reconnection is important in space, laboratory, and astrophysical plasmas. The Magnetic Reconnection Experiment (MRX) is designed to study controlled reconnection in collisional and marginally collisionless plasmas (Yamada et al. 1997). We present single and two-fluid simulations of MRX using the NIMROD extended MHD code (Sovinec et al. 2004). These simulations highlight the interrelationship between the small-scale physics of the reconnection layer and the global magnetic field geometry. The communication between small and large scales is dominated by pressure gradients that result from a pileup of reconnection outflow. Toroidicity leads to asymmetry in either the inflow direction or the outflow direction, depending on the experimental mode of operation. To explain effects observed during reconnection with asymmetry in the outflow direction, we present an extension of the Sweet-Parker model that takes into account asymmetric downstream pressure. This model is applicable to reconnection in coronal mass ejections, the Earth's magnetotail, and in circumstellar disks present in hot star winds. This research is supported by the NSF Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas.

  10. Simulating Magnetized Laboratory Plasmas with Smoothed Particle Hydrodynamics

    SciTech Connect

    Johnson, Jeffrey N.

    2009-01-01

    The creation of plasmas in the laboratory continues to generate excitement in the physics community. Despite the best efforts of the intrepid plasma diagnostics community, the dynamics of these plasmas remains a difficult challenge to both the theorist and the experimentalist. This dissertation describes the simulation of strongly magnetized laboratory plasmas with Smoothed Particle Hydrodynamics (SPH), a method born of astrophysics but gaining broad support in the engineering community. We describe the mathematical formulation that best characterizes a strongly magnetized plasma under our circumstances of interest, and we review the SPH method and its application to astrophysical plasmas based on research by Phillips [1], Buerve [2], and Price and Monaghan [3]. Some modifications and extensions to this method are necessary to simulate terrestrial plasmas, such as a treatment of magnetic diffusion based on work by Brookshaw [4] and by Atluri [5]; we describe these changes as we turn our attention toward laboratory experiments. Test problems that verify the method are provided throughout the discussion. Finally, we apply our method to the compression of a magnetized plasma performed by the Compact Toroid Injection eXperiment (CTIX) [6] and show that the experimental results support our computed predictions.

  11. Collisional PIC Simulations of Particles in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Peter, William

    2003-10-01

    Because of the long range of Coloumb forces, collisions with distant particles in plasmas are more important than collisions with near neighbors. In addition, many problems in space physics and magnetic confinement include regions of weak magnetic field where the MHD approximation breaks down. A particle-in-cell code based on the quiet direct simulation Monte-Carlo method(B. J. Albright, W. Daughton, D. Lemons, D. Winske, and M. E. Jones, Physics of Plasmas) 9, 1898 (2002). is being developed to study collisional (e.g., ν ˜ Ω) particle motion in magnetic fields. Primary application is to energetic particle loss in the radiation belts(K. Papadopoulos, COSPAR Meeting, Houston, TX, Oct., 2002.) at a given energy and L-shell. Other applications include trapping in rotating field-reversed configurations(N. Rostoker and A. Qerushi, Physics of Plasmas) 9, 3057 (2002)., and electron behavior in magnetic traps(V. Gorgadze, T. Pasquini, J. S. Wurtele, and J. Fajans, Bull. Am. Phys. Soc.) 47, 127 (2002).. The use of the random time-step method(W. Peter, Bull. Am. Phys. Soc.) 47, 52 (2002). to decrease simulation times by 1-2 orders of magnitude is also being studied.

  12. TWO-FLUID MAGNETOHYDRODYNAMIC SIMULATIONS OF RELATIVISTIC MAGNETIC RECONNECTION

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2009-05-10

    We investigate the large-scale evolution of a relativistic magnetic reconnection in an electron-positron pair plasma by a relativistic two-fluid magnetohydrodynamic (MHD) code. We introduce an interspecies friction force as an effective resistivity to dissipate magnetic fields. We demonstrate that magnetic reconnection successfully occurs in our two-fluid system, and that it involves Petschek-type bifurcated current layers in a later stage. We further observe a quasi-steady evolution thanks to an open boundary condition, and find that the Petschek-type structure is stable over the long time period. Simulation results and theoretical analyses exhibit that the Petschek outflow channel becomes narrower when the reconnection inflow contains more magnetic energy, as previously claimed. Meanwhile, we find that the reconnection rate goes up to {approx}1 in extreme cases, which is faster than previously thought. The role of the resistivity, implications for reconnection models in the magnetically dominated limit, and relevance to kinetic reconnection works are discussed.

  13. Simulations of a Detonation Wave in Transverse Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Cole, Lord; Karagozian, Ann; Cambier, Jean-Luc

    2010-11-01

    Numerical simulations of magneto-hydrodynamic (MHD) effects on detonation wave structures are performed, with applications to flow control and MHD power extraction in Pulse Detonation Engines (PDE) and their design variations. In contrast to prior studies of MHD interactions in PDEs,ootnotetextCambier, et al., AIAA-2008-4688 the effects of the finite relaxation length scale for ionization on the stability of the detonation wave are examined. Depending on the coupling parameters, the magnetic field can quench the detonation and effectively act as a barrier to its propagation. Conversely, an applied transient magnetic field can exert a force on a pre-ionized gas and accelerate it. The dynamics are subject to non-linear effects; a propagating transverse magnetic field will initially exert a small force if the gas has a low conductivity and the magnetic Reynolds number (Rem) is low. Nevertheless, the gas accelerated by the "piston" action of the field can pre-heat the ambient gas and increase its conductivity. As the wave progresses, Rem increases and the magnetic field becomes increasingly effective. The dynamics of this process are examined in detail with a high-order shock-capturing method and full kinetics of combustion and ionization. The complex chemical kinetics calculations are ported onto a GPU using the CUDA language, and computational performance is compared with standard CPU-based computations.

  14. Simulation of streamflow in the Pleasant, Narraguagus, Sheepscot, and Royal Rivers, Maine, using watershed models

    USGS Publications Warehouse

    Dudley, Robert W.; Nielsen, Martha G.

    2011-01-01

    The U.S. Geological Survey (USGS) began a study in 2008 to investigate anticipated changes in summer streamflows and stream temperatures in four coastal Maine river basins and the potential effects of those changes on populations of endangered Atlantic salmon. To achieve this purpose, it was necessary to characterize the quantity and timing of streamflow in these rivers by developing and evaluating a distributed-parameter watershed model for a part of each river basin by using the USGS Precipitation-Runoff Modeling System (PRMS). The GIS (geographic information system) Weasel, a USGS software application, was used to delineate the four study basins and their many subbasins, and to derive parameters for their geographic features. The models were calibrated using a four-step optimization procedure in which model output was evaluated against four datasets for calibrating solar radiation, potential evapotranspiration, annual and seasonal water balances, and daily streamflows. The calibration procedure involved thousands of model runs that used the USGS software application Luca (Let us calibrate). Luca uses the Shuffled Complex Evolution (SCE) global search algorithm to calibrate the model parameters. The calibrated watershed models performed satisfactorily, in that Nash-Sutcliffe efficiency (NSE) statistic values for the calibration periods ranged from 0.59 to 0.75 (on a scale of negative infinity to 1) and NSE statistic values for the evaluation periods ranged from 0.55 to 0.73. The calibrated watershed models simulate daily streamflow at many locations in each study basin. These models enable natural resources managers to characterize the timing and amount of streamflow in order to support a variety of water-resources efforts including water-quality calculations, assessments of water use, modeling of population dynamics and migration of Atlantic salmon, modeling and assessment of habitat, and simulation of anticipated changes to streamflow and water temperature

  15. Electron-Cloud Build-Up Simulations for the FNAL Main Injector

    SciTech Connect

    Furman, Miguel .A.

    2008-08-25

    We present a summary on ongoing simulation results for the electron-cloud (EC) buildup in the context of the proposed FNAL Main Injector (MI) intensity upgrade effort [1]. Most of the results presented here are for the field-free region at the location of the retarding field analyzer (RFA) electron detector [2-4]. The primary input variable we exercise is the peak secondary electron yield (SEY) {delta}{sub max}, which we let vary in the range 1.2 {le} {delta}{sub max} {le} 1.7. By combining our simulated results for the electron flux at the vacuum chamber wall with the corresponding RFA measurements we infer that 1.25 {approx}< {delta}{sub max} {approx}< 1.35 at this location. From this piece of information we estimate features of the EC distribution for various fill patterns, including the average electron number density n{sub e}. We then compare the behavior of the EC for a hypothetical RF frequency f{sub RF} = 212 MHz with the current 53 MHz for a given total beam population N{sub tot}. The density n{sub e} goes through a clear threshold as a function of N{sub tot} in a field-free region. As expected, the higher frequency leads to a weaker EC effect: the threshold in N{sub tot} is a factor {approx} 2 higher for f{sub RF} = 212 MHz than for 53 MHz, and ne is correspondingly lower by a factor {approx} 2 when N{sub tot} is above threshold. We briefly describe further work that needs to be carried out, sensitivities in the calculation, and puzzles in the results that remain to be addressed.

  16. MHD Simulations of the Plasma Flow in the Magnetic Nozzle

    NASA Technical Reports Server (NTRS)

    Smith, T. E. R.; Keidar, M.; Sankaran, K.; olzin, K. A.

    2013-01-01

    The magnetohydrodynamic (MHD) flow of plasma through a magnetic nozzle is simulated by solving the governing equations for the plasma flow in the presence of an static magnetic field representing the applied nozzle. This work will numerically investigate the flow and behavior of the plasma as the inlet plasma conditions and magnetic nozzle field strength are varied. The MHD simulations are useful for addressing issues such as plasma detachment and to can be used to gain insight into the physical processes present in plasma flows found in thrusters that use magnetic nozzles. In the model, the MHD equations for a plasma, with separate temperatures calculated for the electrons and ions, are integrated over a finite cell volume with flux through each face computed for each of the conserved variables (mass, momentum, magnetic flux, energy) [1]. Stokes theorem is used to convert the area integrals over the faces of each cell into line integrals around the boundaries of each face. The state of the plasma is described using models of the ionization level, ratio of specific heats, thermal conductivity, and plasma resistivity. Anisotropies in current conduction due to Hall effect are included, and the system is closed using a real-gas equation of state to describe the relationship between the plasma density, temperature, and pressure.A separate magnetostatic solver is used to calculate the applied magnetic field, which is assumed constant for these calculations. The total magnetic field is obtained through superposition of the solution for the applied magnetic field and the self-consistently computed induced magnetic fields that arise as the flowing plasma reacts to the presence of the applied field. A solution for the applied magnetic field is represented in Fig. 1 (from Ref. [2]), exhibiting the classic converging-diverging field pattern. Previous research was able to demonstrate effects such as back-emf at a super-Alfvenic flow, which significantly alters the shape of the

  17. Simulation of a main steam line break with steam generator tube rupture using trace

    SciTech Connect

    Gallardo, S.; Querol, A.; Verdu, G.

    2012-07-01

    A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation of the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)

  18. Fokker-Planck formalism in magnetic resonance simulations.

    PubMed

    Kuprov, Ilya

    2016-09-01

    This paper presents an overview of the Fokker-Planck formalism for non-biological magnetic resonance simulations, describes its existing applications and proposes some novel ones. The most attractive feature of Fokker-Planck theory compared to the commonly used Liouville - von Neumann equation is that, for all relevant types of spatial dynamics (spinning, diffusion, stationary flow, etc.), the corresponding Fokker-Planck Hamiltonian is time-independent. Many difficult NMR, EPR and MRI simulation problems (multiple rotation NMR, ultrafast NMR, gradient-based zero-quantum filters, diffusion and flow NMR, off-resonance soft microwave pulses in EPR, spin-spin coupling effects in MRI, etc.) are simplified significantly in Fokker-Planck space. The paper also summarises the author's experiences with writing and using the corresponding modules of the Spinach library - the methods described below have enabled a large variety of simulations previously considered too complicated for routine practical use.

  19. Fokker-Planck formalism in magnetic resonance simulations

    NASA Astrophysics Data System (ADS)

    Kuprov, Ilya

    2016-09-01

    This paper presents an overview of the Fokker-Planck formalism for non-biological magnetic resonance simulations, describes its existing applications and proposes some novel ones. The most attractive feature of Fokker-Planck theory compared to the commonly used Liouville - von Neumann equation is that, for all relevant types of spatial dynamics (spinning, diffusion, stationary flow, etc.), the corresponding Fokker-Planck Hamiltonian is time-independent. Many difficult NMR, EPR and MRI simulation problems (multiple rotation NMR, ultrafast NMR, gradient-based zero-quantum filters, diffusion and flow NMR, off-resonance soft microwave pulses in EPR, spin-spin coupling effects in MRI, etc.) are simplified significantly in Fokker-Planck space. The paper also summarises the author's experiences with writing and using the corresponding modules of the Spinach library - the methods described below have enabled a large variety of simulations previously considered too complicated for routine practical use.

  20. Simulation and Characterization of the MINER{nu}A Dipole Magnets

    SciTech Connect

    Felix, J.; Castorena, J.; Higuera, A.; Urrutia, Z.; Zavala, G.

    2009-12-17

    The MINER{nu}A (Main INjector ExpeRiment for {nu} A) experiment (http://minerva.fnal.gov/) is a neutrino scattering experiment which uses the NuMI beamline at Fermilab. It seeks to measure low energy neutrino interactions both to support neutrino oscillation experiments and to study the strong dynamics of the nucleon and nucleus that affect these interactions. For energy calibration of the main detector, a tertiary test beam line was designed and commissioned. This test beam consisted of target, collimator, two TOF stations and four wire chamber stations. Two dipole trim magnets were used to form a spectrometer. Here we present the simulation and characterization of these dipole magnets.

  1. First discovery of a magnetic field in a main-sequence δ Scuti star: the Kepler star HD 188774

    NASA Astrophysics Data System (ADS)

    Neiner, C.; Lampens, P.

    2015-11-01

    The Kepler space mission provided a wealth of δ Sct-γ Dor hybrid candidates. While some may be genuine hybrids, others might be misclassified due to the presence of a binary companion or to rotational modulation caused by magnetism and related surface inhomogeneities. In particular, the Kepler δ Sct-γ Dor hybrid candidate HD 188774 shows a few low frequencies in its light and radial velocity curves, whose origin is unclear. In this work, we check for the presence of a magnetic field in HD 188774. We obtained two spectropolarimetric measurements with an Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) at Canada-France-Hawaii Telescope. The data were analysed with the least-squares deconvolution (LSD) method. We detected a clear magnetic signature in the Stokes V LSD profiles. The origin of the low frequencies detected in HD 188774 is therefore most probably the rotational modulation of surface spots possibly related to the presence of a magnetic field. Consequently, HD 188774 is not a genuine hybrid δ Sct-γ Dor star, but the first known magnetic main-sequence δ Sct star. This makes it a prime target for future asteroseismic and spot modelling. This result casts new light on the interpretation of the Kepler results for other δ Sct-γ Dor hybrid candidates.

  2. Terrestrial Microgravity Model and Threshold Gravity Simulation sing Magnetic Levitation

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successiblly simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.

  3. Terrestrial Microgravity Model and Threshold Gravity Simulation using Magnetic Levitation

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars. The paper will discuss experiments md modeling work to date in support of this project.

  4. Monte Carlo simulation of magnetic domain structure and magnetic properties near the morphotropic phase boundary.

    PubMed

    Wei, Songrui; Yang, Sen; Wang, Dong; Song, Xiaoping; Ke, Xiaoqin; Gao, Yipeng; Liao, Xiaoqi; Wang, Yunzhi

    2017-03-08

    The morphotropic phase boundary (MPB), which is the boundary separating a tetragonal phase from a rhombohedral phase by varying the composition or mechanical pressure in ferroelectrics, has been studied extensively for decades because it can lead to strong enhancement of piezoelectricity. Recently, a parallel ferromagnetic MPB was experimentally reported in the TbCo2-DyCo2 ferromagnetic system and this discovery proposes a new way to develop potential materials with giant magnetostriction. However, the role of magnetic domain switching and spin reorientation near the MPB region is still unclear. For the first time, we combine micromagnetic theory with Monte Carlo simulation to investigate the evolution of magnetic domain structures and the corresponding magnetization properties near the MPB region. It is demonstrated that the magnetic domain structure and the corresponding magnetization properties are determined by the interplay among anisotropy energy, magnetostatic energy and exchange energy. If the anisotropy energy barrier is large compared with the magnetostatic energy barrier and the exchange energy barrier, the MPB region is a T and R mixed structure and magnetic domain switching is the dominant mechanism. If the anisotropy energy barrier is small, the MPB region will also contain M phases and spin reorientation is the dominant mechanism. Our work could provide a guide for the design of advanced ferromagnetic materials with enhanced magnetostriction.

  5. Experimental study of quantum simulation for quantum chemistry with a nuclear magnetic resonance simulator.

    PubMed

    Lu, Dawei; Xu, Nanyang; Xu, Boruo; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-10-13

    Quantum computers have been proved to be able to mimic quantum systems efficiently in polynomial time. Quantum chemistry problems, such as static molecular energy calculations and dynamical chemical reaction simulations, become very intractable on classical computers with scaling up of the system. Therefore, quantum simulation is a feasible and effective approach to tackle quantum chemistry problems. Proof-of-principle experiments have been implemented on the calculation of the hydrogen molecular energies and one-dimensional chemical isomerization reaction dynamics using nuclear magnetic resonance systems. We conclude that quantum simulation will surpass classical computers for quantum chemistry in the near future.

  6. Probing turbulent, magnetized star formation with ALMA observations and next-generation AREPO simulations

    NASA Astrophysics Data System (ADS)

    Hull, Charles L. H.; Mocz, Philip; Burkhart, Blakesley K.; Miquel Girart, Josep; Goodman, Alyssa A.; Cortes, Paulo; Li, Zhi-Yun; Lai, Shih-Ping; Hernquist, Lars; Springel, Volker

    2017-01-01

    The first polarization data from ALMA have been delivered, and are both expanding and confounding our understanding of the role of magnetic fields in low-mass star formation. Here I will show the highest resolution and highest sensitivity polarization images ever made of a Class 0 protostellar source. These new ALMA observations of the source, known as Ser-emb 8, achieve 140 AU resolution, allowing us to probe polarization -- and thus magnetic field orientation -- in the innermost regions surrounding the protostar. The collapse of strongly magnetized dense gas is predicted to pinch the magnetic field into an hourglass shape that persists down to scales <100 AU. However, in contrast with more than 50 years of theory, the ALMA data definitively rule out an hourglass morphology and instead reveal a chaotic magnetic field that has not been inherited from the field in the interstellar medium surrounding the source. We have simulated the star formation process with cutting-edge, moving-mesh AREPO simulations on scales from a million AU (5 pc) down to 60 AU. We find that only in the case of a very strong magnetic field (~100 microgauss on 5 pc scales) is the field direction preserved from cloud to disk scales. When the field is weak, turbulence in the interstellar gas shapes the field on large scales, and the forming star system re-shapes the field again on small scales, divorcing the field from its history on larger scales. We conclude that this is what has happened in Ser-emb 8. The main distinction from the strong-field star formation model is that in the weak-field case it is turbulence -- not the magnetic field -- that shapes the material that forms the protostar.

  7. Turbulent fluctuations in the main core of TFTR plasmas with negative magnetic shear

    SciTech Connect

    Mazzucato, E.; Beer, M.; Bell, M.G.

    1997-04-01

    Turbulent fluctuations in plasmas with reversed magnetic shear have been investigated in TFTR. Under intense auxiliary heating, these plasmas are observed to bifurcate into two states with different transport properties. In the state with better confinement, it has been found that the level of fluctuations is very small throughout most of the region with negative shear. By contrast, the state with lower confinement is characterized by large bursts of fluctuations which suggest a competition between the driving and the suppression of turbulence. These results are consistent with the suppression of turbulence by the ExB velocity shear.

  8. Simulation study of magnetic reconnection in high magnetic Reynolds number plasmas

    NASA Astrophysics Data System (ADS)

    Nakabo, T.; Kusano, K.; Miyoshi, T.; Vekstein, G.

    2013-12-01

    Magnetic reconnection is an important process for dynamics in space and laboratory plasmas. Magnetic reconnection is basically dominated by magnetic diffusion at thin current sheet as proposed by Sweet (1958) and Parker (1963). According to their theory, the reconnection rate must be inversely proportional to the square root of the magnetic Reynolds number (S). In magnetosphere and the solar corona, however, in spite of high magnetic Reynolds number (>10^12), reconnection rate is measured to be about 10^-2 that is much higher than the Sweet and Parker's prediction. Although Petschek proposed that the slow mode shock may accelerate reconnection, numerical simulations suggested that the Petschek's type reconnection cannot be sustained with uniform resistivity. On the other hand, it is pointed out that in high magnetic Reynolds number, the thin current sheet becomes unstable to the so-called secondary tearing instability, which generates many plasmoids and drives a sort of fast reconnection. Although Baty (2012) recently investigated the possibility of Petschek-like structure in relatively high-S (~10^4) regime, it is still unclear whether and how the magnetic reconnection is able to be accelerated in higher-S regime (S>10^5). In this paper, we developed the high-resolution magnetohydrodynamics (MHD) simulation of magnetic reconnection for very high-S (S~10^4-10^6) aiming at revealing the acceleration mechanism of magnetic reconnection. We applied the HLLD Riemann solver, which was developed by Miyoshi and Kusano (2005), to the high resolution two-dimensional MHD simulation of current sheet dynamics. In our model, the initial state is given by the Harris sheet equilibrium plus perturbation. As a result, in the case for S=10^5, multiple X-line reconnection appears as a result of the secondary tearing instability and magnetic reconnection is accelerated through the formation of multiple magnetic islands as pointed out by the previous studies. Furthermore, we found that

  9. Simulating Magnetic Nanoparticle Behavior in Low-field MRI under Transverse Rotating Fields and Imposed Fluid Flow.

    PubMed

    Cantillon-Murphy, P; Wald, L L; Adalsteinsson, E; Zahn, M

    2010-09-01

    In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's time constant, τ. As the magnetic field frequency is increased, the nanoparticle's magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad/s. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid's temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4°C and 7°C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid's temperature in the MRI environment which is characterized by a large DC field, B(0). Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B(0). Results are presented for the expected temperature increase in small tumors (~1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002 to 0.01 solid volume fraction) and nanoparticle radii (1 to 10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful The goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B(0) field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations

  10. Simulating magnetic nanoparticle behavior in low-field MRI under transverse rotating fields and imposed fluid flow

    NASA Astrophysics Data System (ADS)

    Cantillon-Murphy, P.; Wald, L. L.; Adalsteinsson, E.; Zahn, M.

    2010-09-01

    In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle's time constant, τ. As the magnetic field frequency is increased, the nanoparticle's magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad s -1. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid's temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4 and 7 °C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid's temperature in the MRI environment which is characterized by a large DC field, B0. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B0. Results are presented for the expected temperature increase in small tumors ( ˜1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002-0.01 solid volume fraction) and nanoparticle radii (1-10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful the goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B0 field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations of the

  11. Simulating magnetic nanotubes using a chain of ellipsoid-rings model with a magnetization reversal process by fanning rotation.

    PubMed

    Wang, Jieqiong; Yang, Sen; Gong, Junfeng; Xu, Minwei; Adil, Murtaza; Wang, Yu; Zhang, Yin; Song, Xiaoping; Zeng, Hao

    2015-04-21

    Recently, magnetic nanotubes have attracted great attention owing to the advantages of tubular geometry. Of all the physical properties of magnetic nanotubes, the magnetic behavior plays a pivotal role in potential applications, particularly in biotechnology. Modeling magnetic nanotubes provides an effective way to determine the geometry dependent magnetic properties. In the present article, we model the nanotube as a chain of ellipsoid-rings; thus the magnetic behavior of nanotubes is simulated by the fanning rotation of magnetic moments. Based on this model, we further discuss the influence of tubular geometric parameters on the magnetic properties. The calculated magnetic properties of Fe, Co, Ni, Fe3O4 and CoFe2O4 nanotubes are all consistent with their experimental data. Consequently, our model provides an easy and general approach to magnetic nanotubes.

  12. Scaling of asymmetric magnetic reconnection: General theory and collisional simulations

    SciTech Connect

    Cassak, P. A.; Shay, M. A.

    2007-10-15

    A Sweet-Parker-type scaling analysis for asymmetric antiparallel reconnection (in which the reconnecting magnetic field strengths and plasma densities are different on opposite sides of the dissipation region) is performed. Scaling laws for the reconnection rate, outflow speed, the density of the outflow, and the structure of the dissipation region are derived from first principles. These results are independent of the dissipation mechanism. It is shown that a generic feature of asymmetric reconnection is that the X-line and stagnation point are not colocated, leading to a bulk flow of plasma across the X-line. The scaling laws are verified using two-dimensional resistive magnetohydrodynamics numerical simulations for the special case of asymmetric magnetic fields with symmetric density. Observational signatures and applications to reconnection in the magnetosphere are discussed.

  13. Can the earth's magnetic field be simulated in the laboratory?

    PubMed

    Müller, U; Stieglitz, R

    2000-09-01

    Today it is generally accepted that the Earth's magnetic field, as well as that of many other planets, is generated by buoyancy driven convection in the electrically conducting liquid cores of these rotating celestial bodies. The conversion of mechanical energy into electromagnetic energy is known as the dynamo effect. In contrast to technical dynamos, which utilize the rotational motion of a complex arrangement of wire coils and other materials of different electrical and magnetic properties, the geodynamo is based on a freely developing spiral flow in a practically homogeneous, electrically conducting liquid core domain, and is therefore termed a homogeneous dynamo. This report outlines some fundamental properties of the Earth's magnetic field. The structure of the spiral flow in the liquid interior of planets is explained with the help of some model experiments in rapidly rotating spherical shells, which were carried out by Busse and Carrigan (1974). Based on the main ideas of electromagnetism it is shown that spiral motion in well-conducting fluids, like liquid metals, can amplify seed magnetic fields to generate dynamo action. Starting from the conjectured flow structure in the Earth's interior, a conceptional and engineering design is described for a laboratory dynamo experiment. Some details of the construction of the test facility and first experimental results are presented and discussed.

  14. Changes in solar quiet magnetic variations since the Maunder Minimum: A comparison of historical observations and model simulations

    NASA Astrophysics Data System (ADS)

    Cnossen, Ingrid; Matzka, Jürgen

    2016-10-01

    Magnetic measurements going back to the eighteenth century offer a unique opportunity to study multicentennial changes in the upper atmosphere. We analyzed measurements from Rome and Mannheim from May 1782 to May 1783 and measurements from Greenwich, St. Helena, Cape of Good Hope, and Singapore from May 1841 to May 1842. A comparison of the daily magnetic variations in these historical data with modern-day observations from 2010 at nearby stations (where available) showed notable differences in the amplitude and/or phase of the X and Y components. Model simulations indicated that these can be explained at least to some extent by changes in the Earth's main magnetic field. Changes in the main field strength and the northwestward movement of the magnetic equator, in particular in the region of the South Atlantic Anomaly, have caused changes in the positioning, shape, and strength of the equivalent current vortices in the ionosphere that result in the magnetic perturbations on the ground. Differences in solar activity between the historical and modern epochs, which were all near solar minima, were too small to have a notable effect on the ground magnetic perturbations. However, in regions where main magnetic field changes have been relatively small for the last 400 years, e.g., in Singapore, the effects of a long-term increase in solar activity from Maunder Minimum conditions to normal solar minimum conditions (an increase in F10.7 of 35 solar flux units) were comparable to the effects of geomagnetic main field changes.

  15. Theory and simulations of electron vortices generated by magnetic pushing

    SciTech Connect

    Richardson, A. S.; Angus, J. R.; Swanekamp, S. B.; Schumer, J. W.; Ottinger, P. F.

    2013-08-15

    Vortex formation and propagation are observed in kinetic particle-in-cell (PIC) simulations of magnetic pushing in the plasma opening switch. These vortices are studied here within the electron-magnetohydrodynamic (EMHD) approximation using detailed analytical modeling. PIC simulations of these vortices have also been performed. Strong v×B forces in the vortices give rise to significant charge separation, which necessitates the use of the EMHD approximation in which ions are fixed and the electrons are treated as a fluid. A semi-analytic model of the vortex structure is derived, and then used as an initial condition for PIC simulations. Density-gradient-dependent vortex propagation is then examined using a series of PIC simulations. It is found that the vortex propagation speed is proportional to the Hall speed v{sub Hall}≡cB{sub 0}/4πn{sub e}eL{sub n}. When ions are allowed to move, PIC simulations show that the electric field in the vortex can accelerate plasma ions, which leads to dissipation of the vortex. This electric field contributes to the separation of ion species that has been observed to occur in pulsed-power experiments with a plasma-opening switch.

  16. Investigation on electronic and magnetic properties of Mn2NiAl by ab initio calculations and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.; Hlil, E. K.; Hamedoun, M.; Benyoussef, A.; Hourmatallah, A.; Rezzouk, A.; Bouslykhane, K.; Benzakour, N.

    2017-04-01

    Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the Mn2NiAl. Magnetic moment considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for Monte Carlo simulations to compute other magnetic parameters. Also, the magnetic properties of Mn2NiAl are studied using the Monte Carlo simulations. The variation of magnetization and magnetic susceptibility with the reduced temperature of Mn2NiAl are investigated. The transition temperature of this system is deduced for different values exchange interaction and crystal field. The thermal total magnetization has been obtained, and the magnetic hysteresis cycle is established. The total magnetic moment is superior to those obtained by the other method and is mainly determined by the antiparallel aligned MnI, MnII and Ni spin moments. The superparamagnetic phase is found at the neighborhood of transition temperature.

  17. Simulating Magnetic Nanoparticle Behavior in Low-field MRI under Transverse Rotating Fields and Imposed Fluid Flow

    PubMed Central

    Wald, L.L.; Adalsteinsson, E.; Zahn, M.

    2010-01-01

    In the presence of alternating-sinusoidal or rotating magnetic fields, magnetic nanoparticles will act to realign their magnetic moment with the applied magnetic field. The realignment is characterized by the nanoparticle’s time constant, τ. As the magnetic field frequency is increased, the nanoparticle’s magnetic moment lags the applied magnetic field at a constant angle for a given frequency, Ω, in rad/s. Associated with this misalignment is a power dissipation that increases the bulk magnetic fluid’s temperature which has been utilized as a method of magnetic nanoparticle hyperthermia, particularly suited for cancer in low-perfusion tissue (e.g., breast) where temperature increases of between 4°C and 7°C above the ambient in vivo temperature cause tumor hyperthermia. This work examines the rise in the magnetic fluid’s temperature in the MRI environment which is characterized by a large DC field, B0. Theoretical analysis and simulation is used to predict the effect of both alternating-sinusoidal and rotating magnetic fields transverse to B0. Results are presented for the expected temperature increase in small tumors (~1 cm radius) over an appropriate range of magnetic fluid concentrations (0.002 to 0.01 solid volume fraction) and nanoparticle radii (1 to 10 nm). The results indicate that significant heating can take place, even in low-field MRI systems where magnetic fluid saturation is not significant, with careful The goal of this work is to examine, by means of analysis and simulation, the concept of interactive fluid magnetization using the dynamic behavior of superparamagnetic iron oxide nanoparticle suspensions in the MRI environment. In addition to the usual magnetic fields associated with MRI, a rotating magnetic field is applied transverse to the main B0 field of the MRI. Additional or modified magnetic fields have been previously proposed for hyperthermia and targeted drug delivery within MRI. Analytical predictions and numerical simulations

  18. Thermo-electromagnetic properties of a magnetically shielded superconductor strip: theoretical foundations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Ma, G. T.; Rauh, H.

    2013-10-01

    Numerical simulations of thermo-electromagnetic properties of a thin type-II superconductor strip surrounded by open cavity soft-magnetic shields and exposed to an oscillating transverse magnetic field are performed by resorting to the quasistatic approximation of a vector potential approach in conjunction with the classical description of conduction of heat. The underlying definition of the superconducting constituent makes use of an extended ‘smoothed’ Bean model of the critical state, which includes the field and temperature dependence of the induced supercurrent as well. The delineation of the magnetic shields exploits the reversible-paramagnet approximation in the Langevin form, as appropriate for magnetizations with narrow Z-type loops, and considers induced eddy currents too. The coolant is envisaged as acting like a bath that instantly takes away surplus heat. Based on the Jacobian-free Newton-Krylov approach and the backward Euler scheme, the numerical analysis at hand is tailored to the problem of a high width/thickness aspect ratio of the superconductor strip. Assigning representative materials characteristics and conditions of the applied magnetic field, the main findings for a practically relevant magnet configuration include: (i) an overall rise of the maximum temperature of the superconductor strip tending to saturation in a superconducting thermo-electromagnetic steady state above the operating temperature, magnetic shielding lending increased stability and smoothing the temperature profile along the width of the superconductor strip; (ii) a washing out of the profile of the magnetic induction and a lowering of its strength, a relaxation of the profile of the supercurrent density and an increase of its strength, a tightening of the power loss density and a reduction of its strength, all inside the superconductor strip. The hysteretic ac loss suffered by the superconductor strip is seen to be cut back or, at most, to converge on that of an

  19. Reinventing atomic magnetic simulations with spin-orbit coupling

    SciTech Connect

    Perera, Meewanage Dilina N.; Eisenbach, Markus; Nicholson, Don M.; Stocks, George Malcolm; Landau, David P.

    2016-02-10

    We propose a powerful extension to the combined molecular and spin dynamics method that fully captures the coupling between the atomic and spin subsystems via spin-orbit interactions. Moreover, the foundation of this method lies in the inclusion of the local magnetic anisotropies that arise as a consequence of the lattice symmetry breaking due to phonons or crystallographic defects. By using canonical simulations of bcc iron with the system coupled to a phonon heat bath, we show that our extension enables the previously unachievable angular momentum exchange between the atomic and spin degrees of freedom.

  20. Inter-grain interaction in random magnetic anisotropy simulation in magnetic nanocrystals

    SciTech Connect

    Lee, S.-J.; Yanagihara, Hideto; Kita, Eiji; Inami, Nobuhito; Ono, Kanta; Mitsumata, Chiharu

    2015-05-07

    Effect of inter-grain exchange interaction on the coercive forces was analyzed with a numerical simulation in magnetic materials with random magnetic anisotropy. The magnetization of an assembly of magnetically interacting grains with randomly oriented uniaxial anisotropy was calculated using the Landau-Lifshitz-Gilbert equation. We supposed a single spin model where the magnetizations in a grain were aligned in the same direction, for simplicity. Calculations were carried out for an N×N×N system, where the number of grains on a side, N ranged from 16 to 128. The relation between the coercive forces H{sub C} and the grain size D is represented by H{sub C}∝D{sup k}. With the increase of N, k decreased gradually and tended to reach a saturated value around k = 4.5–5, which dose not correspond to the primitive theory of the random anisotropy model where k = 6. The deviation was discussed in terms of the inter-grain interaction, essentially proportional to the inverse of D.

  1. Main Characteristics of the VLF Magnetic Field Waves Recorded by the Search Coil Magnetometer Experiment Onboard the CUSP Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Pinçon, J.; Krasnoselskikh, V.; de Feraudy, H.; Rezeau, L.; Robert, P.; Pfaff, R. F.

    2003-12-01

    The CUSP rocket is a NASA Black Brant X sounding rocket dedicated to the exploration of the electrodynamic coupling, pulsations, and acceleration processes in the dayside cusp and the boundary layer interface. The launch occured on December 14, 2002, from Ny Åleysund, Spitzbergen (79° N) during Bz negative conditions. We present the magnetic field waves measurement collected in the frequency range [10 Hz - 10 kHz] by the three axis Search Coil Magnetometer (SCM) experiment onboard CUSP. The observations reveal the presence of intense field fluctuations corresponding to ELF hiss which is only seen on closed field lines and hence can be used to define the magnetic boundary of the cusp. Several data analysis techniques were applied to the 3 components of the magnetic field fluctuations associated with the ELF hiss to obtain information regarding the wave polarization and the wave vector directions. The magnetic field wave data are compared with simultaneous observations of electric field wave data to further enhance our understanding of these wave phenomena. The main results coming from this detailed study are presented and discussed.

  2. Monte Carlo simulations of kagome lattices with magnetic dipolar interactions

    NASA Astrophysics Data System (ADS)

    Plumer, Martin; Holden, Mark; Way, Andrew; Saika-Voivod, Ivan; Southern, Byron

    Monte Carlo simulations of classical spins on the two-dimensional kagome lattice with only dipolar interactions are presented. In addition to revealing the sixfold-degenerate ground state, the nature of the finite-temperature phase transition to long-range magnetic order is discussed. Low-temperature states consisting of mixtures of degenerate ground-state configurations separated by domain walls can be explained as a result of competing exchange-like and shape-anisotropy-like terms in the dipolar coupling. Fluctuations between pairs of degenerate spin configurations are found to persist well into the ordered state as the temperature is lowered until locking in to a low-energy state. Results suggest that the system undergoes a continuous phase transition at T ~ 0 . 43 in agreement with previous MC simulations but the nature of the ordering process differs. Preliminary results which extend this analysis to the 3D fcc ABC-stacked kagome systems will be presented.

  3. Optimization of metabolite detection by quantum mechanics simulations in magnetic resonance spectroscopy.

    PubMed

    Gambarota, Giulio

    2016-09-03

    Magnetic resonance spectroscopy (MRS) is a well established modality for investigating tissue metabolism in vivo. In recent years, many efforts by the scientific community have been directed towards the improvement of metabolite detection and quantitation. Quantum mechanics simulations allow for investigations of the MR signal behaviour of metabolites; thus, they provide an essential tool in the optimization of metabolite detection. In this review, we will examine quantum mechanics simulations based on the density matrix formalism. The density matrix was introduced by von Neumann in 1927 to take into account statistical effects within the theory of quantum mechanics. We will discuss the main steps of the density matrix simulation of an arbitrary spin system and show some examples for the strongly coupled two spin system.

  4. Simulating physiological conditions to evaluate nanoparticles for magnetic fluid hyperthermia (MFH) therapy applications

    NASA Astrophysics Data System (ADS)

    Chen, Shihwei; Chiang, Chen-li; Hsieh, Shuchen

    2010-01-01

    Magnetite nanoparticles with high self-heating capacity and low toxicity characteristics are a promising candidate for cancer hyperthermia treatment. In order to achieve minimum dosage to a patient, magnetic nanoparticles with high heating capacity are needed. In addition, the influence of physiological factors on the heat capacity of a material should be investigated in order to determine the feasibility. In this study, magnetite nanoparticles coated with lauric acid were prepared by co-precipitation of Fe 3+:Fe 2+ in a ratio of 2:1, 5:3, 3:2, and 4:3, and the pH was controlled using NaOH. Structural and magnetization characterization by means of X-ray diffractometry (XRD) and a superconducting quantum interference device (SQUID) revealed that the main species was Fe 3O 4 and further showed that most of the nanoparticles exhibited superparamagnetic properties. All of the magnetic nanoparticles showed a specific absorption rate (SAR) increase that was linear with the magnetic field strength and frequency of the alternating magnetic field. Among all, the magnetic nanoparticles prepared in a 3:2 ratio showed the highest SAR. To further test the influence of physiological factors on the 3:2 ratio magnetic nanoparticles, we simulated the environment with protein (bovine serum albumin, BSA), blood sugar (dextrose), electrolytes (commercial norm-saline) and viscosity (glycerol) to examine the heating capacity under these conditions. Our results showed that the SAR value was unaffected by the protein and blood sugar environments. On the other hand, the SAR value was significantly reduced in the electrolyte environment, due to precipitation and aggregation with sodium ions. For the simulated viscous environment with glycerol, the result showed that the SAR values reduced with increasing glycerol concentration. We have further tested the heating capacity contribution from the Néel mechanism by trapping the magnetic nanoparticles in a solid form of polydimethylsiloxane

  5. Magnetic Dissipation in Asymmetric Strong Guide 3D Simulations: Examples of Magnetic Diffusion and Reconnection

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Karimabadi, H.; Daughton, W. S.

    2013-12-01

    Interpretations of 2D simulations of magnetic reconnection are greatly simplified by using the flux function, usually the out of plane component of the vector potential. This theoretical device is no longer available when simulations are analyzed in 3-D. We illustrate the results of determining the locale rates of flux slippage in simulations by a technique based on Maxwell's equations. The technique recovers the usual results obtained for the flux function in 2D simulations, but remains viable in 3D simulations where there is no flux function. The method has also been successfully tested for full PIC simulations where reconnection is geometrically forbiddden. While such layers possess measurable flux slippages (diffusion) their level is not as strong as recorded in known 2D PIC reconnection sites using the same methodology. This approach will be used to explore the spatial incidence and strength of flux slippages across a 3D, asymmetric, strong guide field run discussed previously in the literature. Regions of diffusive behavior are illustrated where LHDI has been previously identified out on the separatrices, while much stronger flux slippages, typical of the X-regions of 2D simulations, are shown to occur elsewhere throughout the simulation. These results suggest that reconnection requires sufficiently vigorous flux slippage to be self sustaining, while non-zero flux slippage can and does occur without being at the reconnection site. A cross check of this approach is provided by the mixing ratio of tagged simulation particles of known spatial origin discussed by Daughton et al., 2013 (this meeting); they provide an integral measure of flux slippage up to the present point in the simulation. We will discuss the correlations between our Maxwell based flux slippage rates and the inferred rates of change of this mixing ratio (as recorded in the local fluid frame).

  6. Simulation of magnetic flux leakage: Application to tube inspection

    NASA Astrophysics Data System (ADS)

    Prémel, Denis; Fnaeich, E. A.; Djafa, S.; Pichon, L.; Trillon, A.; Bisiaux, B.

    2012-05-01

    The detection of flaws in steel pipes using Magnetic Flux Leakage (MFL) consists in detecting magnetic flux leaks outside the pipe, either with a magnetic sensor or with an induction coil, while the pipe is rotating. In the Vallourec group, many NDT units use MFL for testing ferromagnetic pipes. In order to improve the performances of flaw detection, CEA LIST and the Vallourec Research Aulnoye (VRA) group are collaborating on MFL modelling. The aim is to be able to perform parametric studies thanks to a fast 3D numerical model dedicated to MFL systems. A simplified 2D geometry has already been derived for the development of first simulation tools. When considering the B-H curve of ferromagnetic materials, the non-linear magnetostatic problem can be solved with the generalized boundary element method (BEMG), which comes to the evaluation of two equivalent scalar potentials: the surface charge density and the volume charge density. When applying the Galerkin method for the discretization of integral equations, the particularity of this numerical model lies in the implementation of high order basis functions for the interpolation of the scalar unknowns. This paper presents some first numerical results for the numerical validation of the semi-analytical model.

  7. Hybrid simulations of magnetic reconnection with kinetic ions and fluid electron pressure anisotropy

    DOE PAGES

    Le, A.; Daughton, W.; Karimabadi, H.; ...

    2016-03-16

    We present the first hybrid simulations with kinetic ions and recently developed equations of state for the electron fluid appropriate for reconnection with a guide field. The equations of state account for the main anisotropy of the electron pressure tensor.Magnetic reconnection is studied in two systems, an initially force-free current sheet and a Harris sheet. The hybrid model with the equations of state is compared to two other models, hybrid simulations with isothermal electrons and fully kinetic simulations. Including the anisotropicequations of state in the hybrid model provides a better match to the fully kinetic model. In agreement with fullymore » kinetic results, the main feature captured is the formation of an electron current sheet that extends several ion inertial lengths. This electron current sheet modifies the Hall magnetic field structure near the X-line, and it is not observed in the standard hybrid model with isotropic electrons. The saturated reconnection rate in this regime nevertheless remains similar in all three models. Here, implications for global modeling are discussed.« less

  8. Hybrid simulations of magnetic reconnection with kinetic ions and fluid electron pressure anisotropy

    SciTech Connect

    Le, A.; Daughton, W.; Karimabadi, H.; Egedal, J.

    2016-03-16

    We present the first hybrid simulations with kinetic ions and recently developed equations of state for the electron fluid appropriate for reconnection with a guide field. The equations of state account for the main anisotropy of the electron pressure tensor.Magnetic reconnection is studied in two systems, an initially force-free current sheet and a Harris sheet. The hybrid model with the equations of state is compared to two other models, hybrid simulations with isothermal electrons and fully kinetic simulations. Including the anisotropicequations of state in the hybrid model provides a better match to the fully kinetic model. In agreement with fully kinetic results, the main feature captured is the formation of an electron current sheet that extends several ion inertial lengths. This electron current sheet modifies the Hall magnetic field structure near the X-line, and it is not observed in the standard hybrid model with isotropic electrons. The saturated reconnection rate in this regime nevertheless remains similar in all three models. Here, implications for global modeling are discussed.

  9. Hybrid simulations of magnetic reconnection with kinetic ions and fluid electron pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Le, A.; Daughton, W.; Karimabadi, H.; Egedal, J.

    2016-03-01

    We present the first hybrid simulations with kinetic ions and recently developed equations of state for the electron fluid appropriate for reconnection with a guide field. The equations of state account for the main anisotropy of the electron pressure tensor. Magnetic reconnection is studied in two systems, an initially force-free current sheet and a Harris sheet. The hybrid model with the equations of state is compared to two other models, hybrid simulations with isothermal electrons and fully kinetic simulations. Including the anisotropic equations of state in the hybrid model provides a better match to the fully kinetic model. In agreement with fully kinetic results, the main feature captured is the formation of an electron current sheet that extends several ion inertial lengths. This electron current sheet modifies the Hall magnetic field structure near the X-line, and it is not observed in the standard hybrid model with isotropic electrons. The saturated reconnection rate in this regime nevertheless remains similar in all three models. Implications for global modeling are discussed.

  10. Propulsion simulator for magnetically-suspended wind tunnel models

    NASA Technical Reports Server (NTRS)

    Joshi, P. B.; Malonson, M. R.; Sacco, G. P.; Goldey, C. L.; Garbutt, Keith; Goodyer, M.

    1992-01-01

    In order to demonstrate the measurement of aerodynamic forces/moments, including the effects of exhaust jets in Magnetic Suspension and Balance System (MSBS) wind tunnels, two propulsion simulator models were developed at Physical Sciences Inc. (PSI). Both the small-scale model (1 in. diameter X 8 in. long) and the large-scale model (2.5 in. diameter X 15 in. long) employed compressed, liquefied carbon dioxide as a propellant. The small-scale simulator, made from a highly magnetizable iron alloy, was demonstrated in the 7 in. MSBS wind tunnel at the University of Southampton. It developed a maximum thrust of approximate 1.3 lbf with a 0.098 in. diameter nozzle and 0.7 lbf with a 0.295 in. diameter nozzle. The Southampton MSBS was able to control the simulator at angles-of attack up to 20 deg. The large-scale simulator was demonstrated to operate in both a steady-state and a pulse mode via a miniaturized solinoid valve. It developed a stable and repeatable thrust of 2.75 lbf over a period of 4s and a nozzle pressure ratio (NPR) of 5.

  11. Full Two-Fluid Collisionless Magnetic Reconnection Simulations

    NASA Astrophysics Data System (ADS)

    Gomez, D. O.; Andres, N.; Dmitruk, P.

    2015-12-01

    Magnetic reconnection is an important energy conversion process in space environments such as the solar corona or planetary magnetospheres. At the theoretical level of resistive one-fluid MHD, the Sweet-Parker model leads to extremely low reconnection rates for virtually all space physics applications. Kinetic plasma effects introduce new spatial and temporal scales into the theoretical description, which are expected to increase the reconnection rates. Within the theoretical framework of two-fluid MHD, we retain the effects of the Hall current and electron inertia and neglect dissipative effects such as viscosity and electric resistivity. This level of description brings two new spatial scales into play, namely, the ion and electron inertial scales. In absence of resistive dissipation, reconnection can only be attained by the action of electron inertia. We performed 2.5D two-fluid simulations using a pseudo-spectral code which yields exact conservation (to round-off errors) of the ideal invariants. Our simulations show that when the effects of electron inertia are retained, magnetic reconnection takes place. In a stationary regime, the reconnection rate is simply proportional to the ion inertial length, as also emerges from a scaling law derived from dimensional arguments.

  12. A multi-model plasma simulation of collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Datta, I. A. M.; Shumlak, U.; Ho, A.; Miller, S. T.

    2016-10-01

    Collisionless magnetic reconnection is a process relevant to many areas of plasma physics in which energy stored in magnetic fields within highly conductive plasmas is rapidly converted to plasma energy. A full understanding of this phenomenon, however, is currently incomplete as models developed to date have difficulty explaining the fast reconnection rates often seen in nature, such as in the case of solar flares. Therefore, this behavior represents an area of much research in which various plasma models have been tested in order to understand the proper physics explaining the reconnection process. In this research, the WARPXM code developed at the University of Washington is used to study the problem using a hybrid multi-model simulation employing Hall-MHD and two-fluid plasma models. The simulation is performed on a decomposed domain where different plasma models are solved in different regions, depending on a trade-off between each model's physical accuracy and associated computational expense in each region. The code employs a discontinuous Galerkin (DG) finite element spatial discretization coupled with a Runge-Kutta scheme for time advancement and uses boundary conditions to couple the different plasma models. This work is supported by a Grant from the United States Air Force Office of Scientific Research.

  13. Electron heating during magnetic reconnection: A simulation scaling study

    SciTech Connect

    Shay, M. A. Haggerty, C. C.; Phan, T. D.; Oieroset, M.; Drake, J. F.; Swisdak, M.; Cassak, P. A.; Wu, P.; Malakit, K.

    2014-12-15

    Electron bulk heating during magnetic reconnection with symmetric inflow conditions is examined using kinetic particle-in-cell simulations. Inflowing plasma parameters are varied over a wide range of conditions, and the increase in electron temperature is measured in the exhaust well downstream of the x-line. The degree of electron heating is well correlated with the inflowing Alfvén speed c{sub Ar} based on the reconnecting magnetic field through the relation ΔT{sub e}=0.033 m{sub i} c{sub Ar}{sup 2}, where ΔT{sub e} is the increase in electron temperature. For the range of simulations performed, the heating shows almost no correlation with inflow total temperature T{sub tot}=T{sub i}+T{sub e} or plasma β. An out-of-plane (guide) magnetic field of similar magnitude to the reconnecting field does not affect the total heating, but it does quench perpendicular heating, with almost all heating being in the parallel direction. These results are qualitatively consistent with a recent statistical survey of electron heating in the dayside magnetopause (Phan et al., Geophys. Res. Lett. 40, 4475, 2013), which also found that ΔT{sub e} was proportional to the inflowing Alfvén speed. The net electron heating varies very little with distance downstream of the x-line. The simulations show at most a very weak dependence of electron heating on the ion to electron mass ratio. In the antiparallel reconnection case, the largely parallel heating is eventually isotropized downstream due a scattering mechanism, such as stochastic particle motion or instabilities. The simulation size is large enough to be directly relevant to reconnection in the Earth's magnetosphere, and the present findings may prove to be universal in nature with applications to the solar wind, the solar corona, and other astrophysical plasmas. The study highlights key properties that must be satisfied by an electron heating mechanism: (1) preferential heating in the parallel direction; (2) heating

  14. Laboratory simulation of magnetic plasma arch eruptions on the Sun

    NASA Astrophysics Data System (ADS)

    Tripathi, Shreekrishna; Gekelman, W.

    2013-07-01

    Eruption of arched magnetoplasma structures is a fundamental process that drives solar energetic events on wide spatiotemporal scales in the solar atmosphere. The term arched magnetic flux rope (AMFR) is associated with such structures since they carry electrical current which generates a twisted magnetic structure. In the limit of a low electrical-current, the magnetic-field-line-twist becomes small and a magnetic flux rope resembles the structure of a magnetic flux tube. A laboratory plasma experiment has been constructed at UCLA which is capable of generating reproducible AMFR eruptions with a 0.5 Hz repetition rate and recording their spatiotemporal evolution using computer-controlled movable probes (n ~ 1013 cm-3, Te ~ 10 eV, L = 0.5 m, I = 100 A, B ~ 1 kG at footpoints). The experiment has been designed by careful scaling of the relevant solar plasma parameters and the boundary conditions can be controlled to simulate a variety of drive mechanisms that may exist on the Sun (e.g., mass flow vs current flow from the AMFR footpoints, slow vs fast buildup of the magnetic energy in the arch). The AMFR evolves in a large background magnetoplasma (n ~ 1012 cm-3, Te ~ 4 eV, B = 20-100 G). The relative magnitudes of the plasma parameters of the AMFR and the ambient magnetoplasma can be varied. Stereo images of the AMFR evolution are recorded by a fast CCD camera using a variety of pass-band filters. In this presentation, recent experimental results comparing a fast eruption (time scale t < 3. Alfven transit time in the arch) with a slow eruption (time scale t > 100. Alfven transit time in the arch) of the AMFR will be discussed. The highlights of the post-eruption AMFR are low frequency global kink mode oscillations (f ~ 200 kHz) that appear concurrently with high-frequency fast waves (f ~ 5 MHz) in the AMFR. References: (1) S. K. P. Tripathi and W. Gekelman, Phys. Rev. Lett. 105, 075005 (2010) (2) S. K. P. Tripathi and W. Gekelman, Solar Physics, Published online 8

  15. Magnetic microscopy and simulation of strain-mediated control of magnetization in Ni/PMN-PT nanostructures.

    PubMed

    Gilbert, Ian; Chavez, Andres C; Pierce, Daniel T; Unguris, John; Sun, Wei-Yang; Liang, Cheng-Yen; Carman, Gregory P

    2016-10-01

    Strain-mediated thin film multiferroics comprising piezoelectric/ferromagnetic heterostructures enable the electrical manipulation of magnetization with much greater efficiency than other methods; however, the investigation of nanostructures fabricated from these materials is limited. Here we characterize ferromagnetic Ni nanostructures grown on a ferroelectric PMN-PT substrate using scanning electron microscopy with polarization analysis (SEMPA) and micromagnetic simulations. The magnetization of the Ni nanostructures can be controlled with a combination of sample geometry and applied electric field, which strains the ferroelectric substrate and changes the magnetization via magnetoelastic coupling. We evaluate two types of simulations of ferromagnetic nanostructures on strained ferroelectric substrates: conventional micromagnetic simulations including a simple uniaxial strain, and coupled micromagnetic-elastodynamic simulations. Both simulations qualitatively capture the response of the magnetization changes produced by the applied strain, with the coupled solution providing more accurate representation.

  16. Magnetic microscopy and simulation of strain-mediated control of magnetization in PMN-PT/Ni nanostructures

    NASA Astrophysics Data System (ADS)

    Gilbert, Ian; Chavez, Andres C.; Pierce, Daniel T.; Unguris, John; Sun, Wei-Yang; Liang, Cheng-Yen; Carman, Gregory P.

    2016-10-01

    Strain-mediated thin film multiferroics comprising piezoelectric/ferromagnetic heterostructures enable the electrical manipulation of magnetization with much greater efficiency than other methods; however, the investigation of nanostructures fabricated from these materials is limited. Here we characterize ferromagnetic Ni nanostructures grown on a ferroelectric [Pb(Mg1/3Nb2/3)O3]0.68[PbTiO3]0.32 substrate using scanning electron microscopy with polarization analysis (SEMPA) and micromagnetic simulations. The magnetization of the Ni nanostructures can be controlled with a combination of sample geometry and applied electric field, which strains the ferroelectric substrate and changes the magnetization via magnetoelastic coupling. We evaluate two types of simulations of ferromagnetic nanostructures on strained ferroelectric substrates: conventional micromagnetic simulations including a simple uniaxial strain, and coupled micromagnetic-elastodynamic simulations. Both simulations qualitatively capture the response of the magnetization changes produced by the applied strain, with the coupled solution providing more accurate representation.

  17. Cluster expansion modeling and Monte Carlo simulation of alnico 5–7 permanent magnets

    SciTech Connect

    Nguyen, Manh Cuong Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-03-07

    The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 5–7. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 5–7 at atomistic and nano scales. The alnico 5–7 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at low temperature. The boundary between these two phases is quite sharp (∼2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on α-site and Ni and Co on β-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. A small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 5–7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. The results from our Monte Carlo simulations are consistent with available experimental results.

  18. Cluster expansion modeling and Monte Carlo simulation of alnico 5–7 permanent magnets

    DOE PAGES

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai -Zhuang; ...

    2015-03-05

    The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 5–7. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 5–7 at atomistic and nano scales. The alnico 5–7 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at lowmore » temperature. The boundary between these two phases is quite sharp (~2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on α-site and Ni and Co on β-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. In addition, a small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 5–7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. Furthermore, the results from our Monte Carlo simulations are consistent with available experimental results.« less

  19. Cluster expansion modeling and Monte Carlo simulation of alnico 5–7 permanent magnets

    SciTech Connect

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai -Zhuang; Ho, Kai -Ming

    2015-03-05

    The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 5–7. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 5–7 at atomistic and nano scales. The alnico 5–7 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at low temperature. The boundary between these two phases is quite sharp (~2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on α-site and Ni and Co on β-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. In addition, a small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 5–7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. Furthermore, the results from our Monte Carlo simulations are consistent with available experimental results.

  20. The virtual morphology and the main movements of the human neck simulations used for car crash studies

    NASA Astrophysics Data System (ADS)

    Ciunel, St.; Tica, B.

    2016-08-01

    The paper presents the studies made on a similar biomechanical system composed by neck, head and thorax bones. The models were defined in a CAD environment which includes Adams algorithm for dynamic simulations. The virtual models and the entire morphology were obtained starting with CT images made on a living human subject. The main movements analyzed were: axial rotation (left-right), lateral bending (left-right) and flexion- extension movement. After simulation was obtained the entire biomechanical behavior based on data tables or diagrams. That virtual model composed by neck and head can be included in complex system (as a car system) and supposed to several impact simulations (virtual crash tests). Also, our research team built main components of a testing device for dummy car crash neck-head system using anatomical data.

  1. Colloidal Suspensions of Rodlike Nanocrystals and Magnetic Spheres under an External Magnetic Stimulus: Experiment and Molecular Dynamics Simulation.

    PubMed

    May, Kathrin; Eremin, Alexey; Stannarius, Ralf; Peroukidis, Stavros D; Klapp, Sabine H L; Klein, Susanne

    2016-05-24

    Using experiments and molecular dynamics simulations, we explore magnetic field-induced phase transformations in suspensions of nonmagnetic rodlike and magnetic sphere-shaped particles. We experimentally demonstrate that an external uniform magnetic field causes the formation of small, stable clusters of magnetic particles that, in turn, induce and control the orientational order of the nonmagnetic subphase. Optical birefringence was studied as a function of the magnetic field and the volume fractions of each particle type. Steric transfer of the orientational order was investigated by molecular dynamics (MD) simulations; the results are in qualitative agreement with the experimental observations. By reproducing the general experimental trends, the MD simulation offers a cohesive bottom-up interpretation of the physical behavior of such systems, and it can also be regarded as a guide for further experimental research.

  2. A Navier-Stokes flow simulation of the Space Shuttle Main Engine Hot Gas Manifold

    NASA Technical Reports Server (NTRS)

    Yang, Ruey-Jen; Chang, James L. C.; Kwak, Dochan

    1987-01-01

    Incompressible viscous flow inside the turnaround duct, the fuel bowl, the transfer duct and the racetrack of the Space Shuttle Main Engine (SSME) Hot Gas Manifold (HGM) has been computed using the method of pseudo-compressibility together with an implicit, approximate-factorization algorithm. A multiple-zone method is used to make solution of flows in complex geometries easy. A model which predicts the pressure loading for the shield and the injector post arrangement without solving the complex flow field in the main injector region is proposed. The computed results show good qualitative agreement with experimental data.

  3. Diffusion microscopist simulator: a general Monte Carlo simulation system for diffusion magnetic resonance imaging.

    PubMed

    Yeh, Chun-Hung; Schmitt, Benoît; Le Bihan, Denis; Li-Schlittgen, Jing-Rebecca; Lin, Ching-Po; Poupon, Cyril

    2013-01-01

    This article describes the development and application of an integrated, generalized, and efficient Monte Carlo simulation system for diffusion magnetic resonance imaging (dMRI), named Diffusion Microscopist Simulator (DMS). DMS comprises a random walk Monte Carlo simulator and an MR image synthesizer. The former has the capacity to perform large-scale simulations of Brownian dynamics in the virtual environments of neural tissues at various levels of complexity, and the latter is flexible enough to synthesize dMRI datasets from a variety of simulated MRI pulse sequences. The aims of DMS are to give insights into the link between the fundamental diffusion process in biological tissues and the features observed in dMRI, as well as to provide appropriate ground-truth information for the development, optimization, and validation of dMRI acquisition schemes for different applications. The validity, efficiency, and potential applications of DMS are evaluated through four benchmark experiments, including the simulated dMRI of white matter fibers, the multiple scattering diffusion imaging, the biophysical modeling of polar cell membranes, and the high angular resolution diffusion imaging and fiber tractography of complex fiber configurations. We expect that this novel software tool would be substantially advantageous to clarify the interrelationship between dMRI and the microscopic characteristics of brain tissues, and to advance the biophysical modeling and the dMRI methodologies.

  4. Simulation of electric-field and spin-transfer-torque induced magnetization switching in perpendicular magnetic tunnel junctions

    SciTech Connect

    Zhang, Xiangli; Zhang, Zongzhi; Liu, Yaowen; Jin, Q. Y.

    2015-05-07

    Macrospin simulations are performed to model the magnetization switching driven by the combined action of electric-field and spin-polarized electric current (spin-transfer torque; STT) in MgO/CoFeB based magnetic tunnel junctions with interfacial perpendicular magnetic anisotropy. The results indicate that at low current case, the free layer magnetization shows a fast toggle-like switching, the final parallel or antiparallel magnetization state is determined by the electric-field effect, and the STT just helps or resists it to reach the final state depending on the current direction. However, with the increase of current strength, the contribution of STT effect gradually increases, which eventually achieves a deterministic magnetization switching state. Simulations further demonstrate that by appropriately tuning the parameters of applied electric-field and current the power consumption can be easily reduced by two orders of magnitude.

  5. Magnetic Storm Simulation With Multiple Ion Fluids: Algorithm

    NASA Astrophysics Data System (ADS)

    Toth, G.; Glocer, A.; Gombosi, T.

    2008-12-01

    We describe our progress in extending the capabilities of the BATS-R-US MHD code to model multiple ion fluids. We solve the full multiion equations with no assumptions about the relative motion of the ion fluids. We discuss the numerical difficulties and the algorithmic solutions: the use of a total ion fluid in combination with the individual ion fluids, the use of point-implicit source terms with analytic Jacobian, using a simple criterion to separate the single-ion and multiion regions in our magnetosphere applications, and an artificial friction term to limit the relative velocities of the ion fluids to reasonable values. This latter term is used to mimic the effect of two-stream instabilities in a crude manner. The new code is fully integrated into the Space Weather Modeling Framework and it has been coupled with the ionosphere, inner magnetosphere and polar wind models to simulate the May 4 1998 magnetic storm.

  6. Quantum Simulation of Frustrated Magnetism with Many Trapped Ions

    NASA Astrophysics Data System (ADS)

    Senko, Crystal

    2013-05-01

    A collection of trapped atomic ions is an excellent system for simulating quantum many-body physics, like magnetism, which may be difficult to access via classical computation or traditional condensed-matter experiments. Our large crystals of 10-20 ions comprise a platform to study a long-range quantum Ising model with tunable couplings in a 1D spin chain. State-dependent optical dipole forces exploit the Coulomb interaction to generate the spin-spin couplings, and fluorescence measurements on a camera are used to read out individual spin states. We investigated the spin order resulting from changing the range of antiferromagnetic interactions or the strength of an axial magnetic field, demonstrating our control over the amount of frustration present. We are turning to the study of dynamics in this system, with the aim of exploring topics including adiabaticity, spectroscopy of the Hamiltonian, the emergence of Kibble-Zurek-like behavior in a finite system, thermalization in an isolated quantum system, and nonequilibrium phase transitions. There is great promise in extending the system to 30+ spins, where computations become classically intractable. Co-authors are R. Islam, P. Richerme, W. C. Campbell, S. Korenblit, J. Smith, A. Lee, E. E. Edwards, C.-C. J. Wang, J. K. Freericks, and C. Monroe. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.

  7. MHD simulation of the inner-heliospheric magnetic field

    NASA Astrophysics Data System (ADS)

    Wiengarten, T.; Kleimann, J.; Fichtner, H.; Cameron, R.; Jiang, J.; Kissmann, R.; Scherer, K.

    2013-01-01

    Maps of the radial magnetic field at a heliocentric distance of 10 solar radii are used as boundary conditions in the MHD code CRONOS to simulate a three-dimensional inner-heliospheric solar wind emanating from the rotating Sun out to 1 AU. The input data for the magnetic field are the result of solar surface flux transport modeling using observational data of sunspot groups coupled with a current-sheet source surface model. Among several advancements, this allows for higher angular resolution than that of comparable observational data from synoptic magnetograms. The required initial conditions for the other MHD quantities are obtained following an empirical approach using an inverse relation between flux tube expansion and radial solar wind speed. The computations are performed for representative solar minimum and maximum conditions, and the corresponding state of the solar wind up to the Earth's orbit is obtained. After a successful comparison of the latter with observational data, they can be used to drive outer-heliospheric models.

  8. Numerical simulations of a shock interacting with multiple magnetized clouds

    NASA Astrophysics Data System (ADS)

    Alūzas, R.; Pittard, J. M.; Falle, S. A. E. G.; Hartquist, T. W.

    2014-10-01

    We present 2D adiabatic magnetohydrodynamic simulations of a shock interacting with groups of two or three cylindrical clouds. We study how the presence of a nearby cloud influences the dynamics of this interaction, and explore the resulting differences and similarities in the evolution of each cloud. The understanding gained from this small-scale study will help to interpret the behaviour of systems with many 10s or 100s of clouds. We observe a wide variety of behaviour in the interactions studied, which is dependent on the initial positions of the clouds and the orientation and strength of the magnetic field. We find (i) some clouds are stretched along their field lines, whereas others are confined by their field lines; (ii) upstream clouds may accelerate past downstream clouds (though magnetic tension can prevent this); (iii) clouds may also change their relative positions transverse to the direction of shock propagation as they `slingshot' past each other; (iv) downstream clouds may be offered some protection from the oncoming flow as a result of being in the lee of an upstream cloud; (v) the cycle of cloud compression and re-expansion is generally weaker when there are nearby neighbouring clouds; (vi) the plasma β in cloud material can vary rapidly as clouds collide with one another, but low values of β are always transitory. This work is relevant to studies of multiphase regions, where fast, low-density gas interacts with dense clouds, such as in circumstellar bubbles, supernova remnants, superbubbles and galactic winds.

  9. Numerical Simulations on Origin of Galilean Moons' Magnetic Anomalies

    NASA Technical Reports Server (NTRS)

    Jiao, LiQuo; Kuang, WeiJia; Ma, ShiZhuang

    2011-01-01

    Galileo mission detected the magnetic anomalies originated from Galilean moons. These anomalies are likely generated in the moons interiors, under the influence of a strong ambient Jovian field. Among various possible generation mechanisms of the anomalies, we focus on magneto-convection and dynamos in the interiors via numerical simulation. To mimic the electromagnetic environment of the moons, we introduce in our numerical model an external uniform magnetic field B(sub 0) with a fixed orientation but varying field strength. Our results show that a finite B(sub 0) can substantially alter the dynamo processes inside the core. When the ambient field strength B(sub 0) increases to approximately 40% of the field generated by the pure dynamo action, the convective state in the core changes significantly: the convective flow decreases by 80% in magnitude, but the differential rotation becomes stronger in much of the fluid layer, leading to a stronger field generated in the core. The field morphologies inside the core tend to align with the ambient field, while the flow patterns show the symmetry-breaking effect under the influence of B(sub 0). Furthermore, the generated field tends to be temporally more stable.

  10. Simulation of Magnetic Cloud Erosion and Deformation During Propagation

    NASA Astrophysics Data System (ADS)

    Manchester, W.; Kozyra, J. U.; Lepri, S. T.; Lavraud, B.; Jackson, B. V.

    2013-12-01

    We examine a three-dimensional (3-D) numerical magnetohydrodynamic (MHD) simulation describing a very fast interplanetary coronal mass ejection (ICME) propagating from the solar corona to 1 AU. In conjunction with it's high speed, the ICME evolves in ways that give it a unique appearance at 1AU that does not resemble a typical ICME. First, as the ICME decelerates in the solar wind, filament material at the back of the flux rope pushes its way forward through the flux rope. Second, diverging nonradial flows in front of the filament transport azimuthal flux of the rope to the sides of the ICME. Third, the magnetic flux rope reconnects with the interplanetary magnetic field (IMF). As a consequence of these processes, the flux rope partially unravels and appears to evolve to an entirely open configuration near its nose. At the same time, filament material at the base of the flux rope moves forward and comes in direct contact with the shocked plasma in the CME sheath. We find evidence such remarkable behavior has occurred when we examine a very fast CME that erupted from the Sun on 2005 January 20. In situ observations of this event near 1 AU show very dense cold material impacting the Earth following immediately behind the CME sheath. Charge state analysis shows this dense plasma is filament material, and the analysis of SMEI data provides the trajectory of this dense plasma from the Sun. Consistent with the simulation, we find the azimuthal flux (Bz) to be entirely unbalanced giving the appearance that the flux rope has completely eroded on the anti-sunward side.

  11. Multi-Zone Simulations of the Collisional Evolution of Main Belt Asteroids

    NASA Astrophysics Data System (ADS)

    Granata, V.; Marzari, F.; Davis, D. R.; Paolicchi, P.; Vanzani, V.

    2011-03-01

    We have adapted the planet building code, a multizone code, to study the collisional evolution of asteroids in the main belt. In this way the effects of resonances and Yarkowski's drift are statistically included and we can estimate the flux of bodies into NEO orbits.

  12. Variability of stellar granulation and convective blueshift with spectral type and magnetic activity. I. K and G main sequence stars

    NASA Astrophysics Data System (ADS)

    Meunier, N.; Lagrange, A.-M.; Mbemba Kabuiku, L.; Alex, M.; Mignon, L.; Borgniet, S.

    2017-01-01

    Context. In solar-type stars, the attenuation of convective blueshift by stellar magnetic activity dominates the RV (radial velocity) variations over the low amplitude signal induced by low mass planets. Models of stars that differ from the Sun will require a good knowledge of the attenuation of the convective blueshift to estimate its impact on the variations. Aims: It is therefore crucial to precisely determine not only the amplitude of the convective blueshift for different types of stars, but also the dependence of this convective blueshift on magnetic activity, as these are key factors in our model producing the RV. Methods: We studied a sample of main sequence stars with spectral types from G0 to K2 and focused on their temporally averaged properties: the activity level and a criterion allowing to characterise the amplitude of the convective blueshift. This criterion is derived from the dependence of the convective blueshift with the intensity at the bottom of a large set of selected spectral lines. Results: We find the differential velocity shifts of spectral lines due to convection to depend on the spectral type, the wavelength (this dependence is correlated with the Teff and activity level), and on the activity level. This allows us to quantify the dependence of granulation properties on magnetic activity for stars other than the Sun. We are indeed able to derive a significant dependence of the convective blueshift on activity level for all types of stars. The attenuation factor of the convective blueshift appears to be constant over the considered range of spectral types. We derive a convective blueshift which decreases towards lower temperatures, with a trend in close agreement with models for Teff lower than 5800 K, but with a significantly larger global amplitude. Differences also remain to be examined in detail for larger Teff. We finally compare the observed RV variation amplitudes with those that could be derived from our convective blueshift using

  13. Quasi-One-Dimensional Particle-in-Cell Simulation of Magnetic Nozzles

    NASA Technical Reports Server (NTRS)

    Ebersohn, Frans H.; Sheehan, J. P.; Gallimore, Alec D.; Shebalin, John V.

    2015-01-01

    A method for the quasi-one-dimensional simulation of magnetic nozzles is presented and simulations of a magnetic nozzle are performed. The effects of the density variation due to plasma expansion and the magnetic field forces on ion acceleration are investigated. Magnetic field forces acting on the electrons are found to be responsible for the formation of potential structures which accelerate ions. The effects of the plasma density variation alone are found to only weakly affect ion acceleration. Strongly diverging magnetic fields drive more rapid potential drops.

  14. Comparison between theory and simulations for the magnetization and the susceptibility of polydisperse ferrofluids.

    PubMed

    Szalai, I; Nagy, S; Dietrich, S

    2013-11-20

    The influence of polydispersity on the magnetization of ferrofluids is studied based on a previously published magnetization equation of state (Szalai and Dietrich, 2011 J. Phys.: Condens. Matter 23 326004) and computer simulations. The polydispersity of the particle diameter is described by the gamma distribution function. Canonical ensemble Monte Carlo simulations have been performed in order to test these theoretical results for the initial susceptibility and the magnetization. The results for the magnetic properties of the polydisperse systems turn out to be in quantitative agreement with our present simulation data. In addition, we find good agreement between our theory and experimental data for magnetite-based ferrofluids.

  15. Monte Carlo Simulations of the Post-Common-Envelope White-Dwarf Main-Sequence Binary Population

    SciTech Connect

    Camacho, Judit; Torres, Santiago; Garcia-Berro, Enrique; Schreiber, Matthias R.

    2010-12-22

    We present a detailed Monte Carlo simulator of the population of binary systems within the solar neighborhood. We have used the most up-to-date stellar evolutionary models, a complete treatment of the Roche lobe overflow episode, as well as a full implementation of the orbital evolution of the binary system. Preliminary results are presented for the population of white-dwarf main-sequence binaries, resulting from a common envelope episode. We also study the role played by the binding energy parameter, {lambda}, and by the common envelope efficiency, {alpha}{sub CE}. Finally, results are compared with the population of identified white-dwarf main-sequence binaries.

  16. Simulations and analytic models of relativistic magnetized jets

    NASA Astrophysics Data System (ADS)

    Tchekhovskoi, Alexandre Dmitrievich

    Astrophysical jets are tightly collimated streams that are often observed to move at velocities close to the speed of light. While many such systems are known, understanding and explaining how jets collimate and accelerate has been a long-standing challenge and is currently an area of active research. Finding analytic solutions for jets is extremely hard because the equations that describe the jets are highly nonlinear and difficult to solve analytically. Only in the last few years has it become possible to simulate ultrarelativistic jets computationally, which has led to unprecedented insights into their structure. We now think that many relativistic jets are produced by magnetic fields twisted by the rotation of a central compact object, which can be a black hole or a neutron star. In this thesis I present numerical and analytical studies of relativistic jets. In Chapter 2, I start with a discussion of a simple, idealized model that has the bare minimum of ingredients needed for the production of jets: regular magnetic field, spinning central compact object, and externally imposed collimation. The model assumes that magnetic field in the jet is so strong that plasma inertia is negligible and can be ignored. The simplicity of this model allows for a fully analytic description and an intuitive understanding of the results. Despite being simple, this model possesses non-trivial properties and has important applications to various astrophysical systems --- compact object binaries, gamma-ray bursts, and active galactic nuclei. Chapters 3 -- 7 add an extra level of realism (and sophistication) into jet models: they account for mass inertia of the jet fluid and study its effects on the jet structure. Chapter 4 discusses the effect of jet confinement on the acceleration of the jet. Chapter 5 shows that deconfinement can also have a dramatic effect on the jet. Chapter 6 studies how the structure of the jet changes if the central object driving the jet is a black hole

  17. Simulation of systematic errors in the SLC magnets

    SciTech Connect

    Jaeger, J.

    1983-08-08

    The distance (iron to iron) between a focusing and a defocusing magnet in the SLC-arcs is 6.7056 cm and the iron length of each of them is 2.52914 m. To represent these magnets by a hard-edge model in computer codes TRANSPORT or TURTLE the magnetic length rather than the core length of these magnets is of interest. In the present lattice the magnetic length for the field and the gradient of each of these magnets is assumed to be 2.5462 m.

  18. The energy budget of stellar magnetic fields: comparing non-potential simulations and observations

    NASA Astrophysics Data System (ADS)

    Lehmann, L. T.; Jardine, M. M.; Vidotto, A. A.; Mackay, D. H.; See, V.; Donati, J.-F.; Folsom, C. P.; Jeffers, S. V.; Marsden, S. C.; Morin, J.; Petit, P.

    2017-03-01

    The magnetic geometry of the surface magnetic fields of more than 55 cool stars have now been mapped using spectropolarimetry. In order to better understand these observations, we compare the magnetic field topology at different surface scale sizes of observed and simulated cool stars. For ease of comparison between the high-resolution non-potential magnetofrictional simulations and the relatively low-resolution observations, we filter out the small-scale field in the simulations using a spherical harmonics decomposition. We show that the large-scale field topologies of the solar-based simulations produce values of poloidal/toroidal fields and fractions of energy in axisymmetric modes which are similar to the observations. These global non-potential evolution model simulations capture key magnetic features of the observed solar-like stars through the processes of surface flux transport and magnetic flux emergence. They do not, however, reproduce the magnetic field of M-dwarfs or stars with dominantly toroidal field. Furthermore, we analyse the magnetic field topologies of individual spherical harmonics for the simulations and discover that the dipole is predominately poloidal, while the quadrupole shows the highest fraction of toroidal fields. Magnetic field structures smaller than a quadrupole display a fixed ratio between the poloidal and toroidal magnetic energies.

  19. GLOBAL SIMULATIONS OF THE MAGNETIC FIELD EVOLUTION IN BARRED GALAXIES UNDER THE INFLUENCE OF THE COSMIC-RAY-DRIVEN DYNAMO

    SciTech Connect

    Kulpa-Dybel, K.; Otmianowska-Mazur, K.; Kulesza-Zydzik, B.; Kowal, G.; Hanasz, M.; Woltanski, D.; Kowalik, K.

    2011-06-01

    We present three-dimensional global numerical simulations of the cosmic-ray (CR) driven dynamo in barred galaxies. We study the evolution of the interstellar medium of the barred galaxy in the presence of non-axisymmetric component of the potential, i.e., the bar. The magnetohydrodynamical dynamo is driven by CRs, which are continuously supplied to the disk by supernova (SN) remnants. No magnetic field is present at the beginning of simulations but one-tenth of SN explosions is a source of a small-scale randomly oriented dipolar magnetic field. In all models we assume that 10% of 10{sup 51} erg SN kinetic energy output is converted into CR energy. To compare our results directly with the observed properties of galaxies, we construct realistic maps of polarized radio emission. The main result is that the CR-driven dynamo can amplify weak magnetic fields up to a few {mu}G within a few Gyr in barred galaxies. The obtained e-folding time is equal to 300 Myr and the magnetic field reaches equipartition at time t {approx} 4.0 Gyr. Initially, the completely random magnetic field evolves into large-scale structures. An even (quadrupole-type) configuration of the magnetic field with respect to the galactic plane can be observed. Additionally, the modeled magnetic field configuration resembles maps of the polarized intensity observed in barred galaxies. Polarization vectors are distributed along the bar and between spiral arms. Moreover, the drift of magnetic arms with respect to the spiral pattern in the gas density distribution is observed during the entire simulation time.

  20. Numerical simulations of magnetohydrodynamic flows driven by a moving permanent magnet

    NASA Astrophysics Data System (ADS)

    Prinz, S.; Bandaru, V.; Kolesnikov, Y.; Krasnov, D.; Boeck, T.

    2016-08-01

    We present results from numerical reconstructions of magnetic obstacle experiments performed in liquid metal flows. The experimental setup consists of an open rectangular container filled with a thin layer of liquid metal (GaInSn). A permanent magnet is installed on a rail beneath the container and is moved with a constant velocity U0, which in turn induces a flow inside the liquid metal due to Lorentz forces. The setup allows experiments in a parameter range that is accessible by direct numerical simulations (DNS). We present results from realizations with four different parameter sets, covering flows with stable stationary vortex structures in the reference system of the moving magnet as well as time-dependent flow regimes. Although the liquid metal layer is very thin, the flow shows a highly three-dimensional character in the near and in the far wake of the magnetic obstacle. We conclude that the streamline visualization in the experiment (using gas bubbles at the surface of the liquid metal layer) is insufficient to picture the flow structure occurring in the liquid metal. To underpin our conclusions, we introduce a modified numerical model which aims to mimic the movement of these gas bubbles. Although this model is a strong simplification of the highly complicated behavior of bubbles at a fluid-fluid interface, it captures the main effects and provides a good reproduction of the experimental results. Furthermore, transient effects are investigated when the flow is initiated, i.e., when the magnet approaches the container and crosses its front wall. We conclude that the process of vortex formation is accompanied by a decrease of the streamwise component of the Lorentz force compared to the time when the fluid is still quiescent. This decrease occurs only for flows with stable vortex structures, which might be of interest for practical applications like Lorentz force velocimetry. The Lorentz forces obtained from our DNS are in good agreement with the values

  1. 3D Electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Deca, J.; Lapenta, G.; Divin, A. V.; Lembege, B.; Markidis, S.

    2013-12-01

    Unlike the Earth and Mercury, our Moon has no global magnetic field and is therefore not shielded from the impinging solar wind by a magnetosphere. However, lunar magnetic field measurements made by the Apollo missions provided direct evidence that the Moon has regions of small-scale crustal magnetic fields, ranging up to a few 100km in scale size with surface magnetic field strengths up to hundreds of nanoTeslas. More recently, the Lunar Prospector spacecraft has provided high-resolution observations allowing to construct magnetic field maps of the entire Moon, confirming the earlier results from Apollo, but also showing that the lunar plasma environment is much richer than earlier believed. Typically the small-scale magnetic fields are non-dipolar and rather tiny compared to the lunar radius and mainly clustered on the far side of the moon. Using iPic3D we present the first 3D fully kinetic and electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies. We study the behaviour of a dipole model with variable surface magnetic field strength under changing solar wind conditions and confirm that lunar crustal magnetic fields may indeed be strong enough to stand off the solar wind and form a mini-magnetosphere, as suggested by MHD and hybrid simulations and spacecraft observations. 3D-PIC simulations reveal to be very helpful to analyze the diversion/braking of the particle flux and the characteristics of the resulting particles accumulation. The particle flux to the surface is significantly reduced at the magnetic anomaly, surrounded by a region of enhanced density due to the magnetic mirror effect. Second, the ability of iPic3D to resolve all plasma components (heavy ions, protons and electrons) allows to discuss in detail the electron physics leading to the highly non-adiabatic interactions expected as well as the implications for solar wind shielding of the lunar surface, depending on the scale size (solar wind protons

  2. Simulation of MST tokamak discharges with resonant magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Cornille, B. S.; Sovinec, C. R.; Chapman, B. E.; Dubois, A.; McCollam, K. J.; Munaretto, S.

    2016-10-01

    Nonlinear MHD modeling of MST tokamak plasmas with an applied resonant magnetic perturbation (RMP) reveals degradation of flux surfaces that may account for the experimentally observed suppression of runaway electrons with the RMP. Runaway electrons are routinely generated in MST tokamak discharges with low plasma density. When an m = 3 RMP is applied these electrons are strongly suppressed, while an m = 1 RMP of comparable amplitude has little effect. The computations are performed using the NIMROD code and use reconstructed equilibrium states of MST tokamak plasmas with q (0) < 1 and q (a) = 2.2 . Linear computations show that the (1 , 1) -kink and (2 , 2) -tearing modes are unstable, and nonlinear simulations produce sawtoothing with a period of approximately 0.5 ms, which is comparable to the period of MHD activity observed experimentally. Adding an m = 3 RMP in the computation degrades flux surfaces in the outer region of the plasma, while no degradation occurs with an m = 1 RMP. The outer flux surface degradation with the m = 3 RMP, combined with the sawtooth-induced distortion of flux surfaces in the core, may account for the observed suppression of runaway electrons. Work supported by DOE Grant DE-FC02-08ER54975.

  3. Numerical simulation and performance improvement of a multi-polar concentric Halbach cylindrical magnet for magnetic refrigeration

    NASA Astrophysics Data System (ADS)

    You, Yonghua; Guo, Yue; Xiao, Shuifang; Yu, Shen; Ji, Hu; Luo, Xiaobing

    2016-05-01

    Multi-polar concentric Halbach cylinders of magnets could generate the magnetic field varying considerably in the annular gaps, thus were applied in the rotary magnetic refrigerators. In the current investigation, a six-polar concentric Halbach cylinder is developed based on the ideal concentric one by the numerical simulation with COMSOL Multiphysics. Cylinder radii are optimized and magnet material profiles are adjusted for a better overall performance (Λcool). Moreover, the segmentation on the concentric cylinder is conducted for an easy fabrication, and the edge effect of finite-length device is studied. With the present investigation, it is found that a larger external radius of external cylinder facilitates a larger flux density in the high field region (| B | bar high), while Λcool could be worse. Meanwhile, with the removal of magnet materials enclosed by the equipotential lines of magnetic vector potential, the magnetic flux density in low field region (| B | bar low) drops from 0.271 to 0.0136 T, and Λcool rises from 1.36 to 1.85 T0.7. Moreover, a proper segmentation would not degrade the difference between | B | bar high and | B | bar low, on the contrary, Λcool rises by about 20.2% due to magnet materials lack for efficiency replaced by soft irons. Finally, current 3D simulation indicates the edge effect on Λcool could be trivial.

  4. Domain wall trapping and influence of the asymmetry in magnetic nanoring studied by micromagnetic simulations.

    PubMed

    Wang, X H; Wang, W Z; Kong, T F; Lew, W S

    2011-03-01

    We have studied the magnetic switching behavior of permalloy asymmetric rings using micromagnetic simulations. The simulation results have revealed that a domain wall trapping feature is present at the narrow arm of the asymmetric ring. This trapping feature is obtained via precise control of the lateral geometric features, the ring asymmetry and the film thickness. Our results show that the trapped domain walls do not annihilate until the magnetization in the wide arm is reversed under a relatively large magnetic field. Furthermore, the magnetic field strength needed to annihilate the domain wall is found to be decreasing with larger asymmetry ratio.

  5. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Magnetohydrodynamics Simulation Module for the Global Solar Corona.

    PubMed

    Hayashi, K; Hoeksema, J T; Liu, Y; Bobra, M G; Sun, X D; Norton, A A

    Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.

  6. Simulation And Design Of A Reflection Magnet For The EAST Neutral Beam System

    SciTech Connect

    Zhen Liangli; Dong Huchun

    2011-09-26

    The simulation and design of a reflection magnet to be installed in the Experimental Advanced Superconducting Tokamak (EAST) neutral beam injection system are reported. A parametric design and simulation for the reflection magnet was carried out. For a deuterium beam with 42 cm as the bending radius, the intensity of reflection magnet field is about 1376 Gs at the energy of 80 keV. In order to determine position of the ion dump and the surface power load, a particle simulation with Monte Carlo was developed to study ion trajectories. In addition, the louver design is introduced.

  7. A magnetohydrodynamic simulation of the formation of magnetic flux tubes at the earth's dayside magnetopause

    NASA Technical Reports Server (NTRS)

    Ogino, Tatsuki; Walker, Raymond J.; Ashour-Abdalla, Maha

    1989-01-01

    Dayside magnetic reconnection was studied by using a three-dimensional global magnetohydrodynamic simulation of the interaction between the solar wind and the magnetosphere. Two different mechanisms were found for the formation of magnetic flux tubes at the dayside magnetopause, which depend on the orientation of the interplanetary magnetic field (IMF). The dayside magnetic flux tubes occur only when the IMF has a southward component. A strongly twisted and localized magnetic flux tube similar to magnetic flux ropes appears at the subsolar magnetopause when the IMF has a large B(y) component. When the B(y) component is small, twin flux tubes appear at the dayside magnetopause. Both types of magnetic flux tube are consistent with several observational features of flux transfer events and are generated by antiparallel magnetic reconnection.

  8. A magnetohydrodynamic simulation of the formation of magnetic flux tubes at the Earth's dayside magnetopause

    SciTech Connect

    Ogino, Tatsuki ); Walker, R.J.; Ashour-Abdalla, Maha )

    1989-02-01

    The authors have studied dayside magnetic reconnection by using a three-dimensional global magnetohydrodynamic simulation of the interaction between the solar wind and the magnetosphere. They found two different mechanisms for the formation of magnetic flux tubes at the dayside magnetopause which depend on the orientation of the interplanetary magnetic field (IMF). The dayside magnetic flux tubes occur only when the IMF has a southward component. A strongly twisted and localized magnetic flux tube similar to magnetic flux ropes appears at the subsolar magnetopause when the IMF has a large B{sub y} component. When the B{sub y} component is small, twin flux tubes appear at the dayside magnetopause. Both types of magnetic flux tube are consistent with several observational features of flux transfer events and are generated by antiparallel magnetic reconnection.

  9. Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation

    NASA Astrophysics Data System (ADS)

    Bromberg, Omer; Tchekhovskoy, Alexander

    2016-02-01

    Relativistic jets are associated with extreme astrophysical phenomena, like the core collapse of massive stars in gamma-ray bursts (GRBs) and the accretion on to supermassive black holes in active galactic nuclei. It is generally accepted that these jets are powered electromagnetically, by the magnetized rotation of a central compact object (black hole or neutron star). However, how the jets produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic, Poynting-flux-dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetized central object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a global, external kink mode that grows on long time-scales. It bodily twists the jet, reducing its propagation velocity. We show analytically that in flat density profiles, like the ones associated with galactic cores, the external mode grows and may stall the jet. In the steep profiles of stellar envelopes the external kink weakens as the jet propagates outward. (ii) a local, internal kink mode that grows over short time-scales and causes small-angle magnetic reconnection and conversion of about half of the jet electromagnetic energy flux into heat. We suggest that internal kink instability is the main dissipation mechanism responsible for powering GRB prompt emission.

  10. Comparisons of Simulated and Observed Stormtime Magnetic Intensities and Ion Plasma Parameters in the Ring Current

    NASA Astrophysics Data System (ADS)

    Chen, M. W.; Guild, T. B.; Lemon, C.; Roeder, J. L.; Le, G.; Schulz, M.

    2009-12-01

    Recent progress in ring current and plasma sheet modeling has shown the importance of a self-consistent treatment of particle transport and magnetic and electric fields in the inner magnetosphere. Models with and without self-consistency can lead to significantly different magnitudes and spatial distributions of plasma pressure and magnetic intensity during disturbed times. In this study we compare simulated and observed stormtime magnetic intensities (GOES and Polar/MFE) and ion densities (LANL/MPA and Polar/CAMMICE) to test how well self-consistent simulations can simultaneously reproduce these quantities. We simulate the ring current and plasma sheet for conditions corresponding to the 11 August 2000 storm using the self-consistent Rice Convection Model-Equilibrium (RCM-E) [Lemon et al., JGR, 2004] with a constant magnetopause location. Using the empirical IMF-dependent model of Tsyganenko and Mukai [JGR, 2003], we specify the plasma sheet pressure and density at 10 RE as the plasma boundary location in the RCM-E. The simulated ion densities at different magnetic local times agree fairly well with those from the re-analysis model of LANL/MPA densities of O’Brien and Lemon [Space Weather, 2007]. We compare the simulated magnetic intensity with the magnetic intensity measured by magnetometers on the GOES satellites at geosynchronous altitude (6.6 RE) and on the Polar satellite. Agreement between the simulated and observed magnetic intensities tends to agree better on the nightside than on the dayside in the inner magnetosphere. In particular, the model cannot account for observed drops in the dayside magnetic intensity during decreases in the solar wind pressure. We will modify the RCM-E to include a time-varying magnetopause location to simulate compressions and expansions associated with variations in the solar wind pressure. We investigate whether this will lead to improved agreement between the simulated and model magnetic intensities.

  11. Kinetic simulation of magnetic reconnection in the presence of shear

    SciTech Connect

    Francis, G.E.; Hewett, D.W.; Max, C.E.

    1988-09-05

    The basic physical processes associated with collisionless magnetic reconnection are investigated using the implicit PIC code AVANTI. The code is based on a 2.5-D fully electromagnetic direct implicit algorithm which has proven stable for arbitrary time step. This stability makes it possible to separate out the respective roles of the highly magnetized electrons and the un-magnetized ions for large ion-electron mass ratios. It is found that the inclusion of a guide magnetic field (magnetic shear) severely slows the initial stages of reconnection and damps out the electrostatic ringing if local values of the guide field are above a threshold determined by questions of electron mobility. 9 refs., 6 figs.

  12. Magnetic fields in protoplanetary discs: from MHD simulations to ALMA observations

    NASA Astrophysics Data System (ADS)

    Bertrang, G. H.-M.; Flock, M.; Wolf, S.

    2017-01-01

    Magnetic fields significantly influence the evolution of protoplanetary discs and the formation of planets, following the predictions of numerous magnetohydrodynamic (MHD) simulations. However, these predictions are yet observationally unconstrained. To validate the predictions on the influence of magnetic fields on protoplanetary discs, we apply 3D radiative transfer simulations of the polarized emission of aligned aspherical dust grains that directly link 3D global non-ideal MHD simulations to Atacama Large Millimeter/submillimeter Array (ALMA) observations. Our simulations show that it is feasible to observe the predicted toroidal large-scale magnetic field structures, not only in the ideal observations but also with high-angular resolution ALMA observations. Our results show further that high-angular resolution observations by ALMA are able to identify vortices embedded in outer magnetized disc regions.

  13. Main Cause of the Poloidal Plasma Motion Inside a Magnetic Cloud Inferred from Multiple-Spacecraft Observations

    NASA Astrophysics Data System (ADS)

    Zhao, Ake; Wang, Yuming; Chi, Yutian; Liu, Jiajia; Shen, Chenglong; Liu, Rui

    2017-04-01

    Although the dynamical evolution of magnetic clouds (MCs) has been one of the foci of interplanetary physics for decades, only few studies focus on the internal properties of large-scale MCs. Recent work by Wang et al. ( J. Geophys. Res. 120, 1543, 2015) suggested the existence of the poloidal plasma motion in MCs. However, the main cause of this motion is not clear. In order to find it, we identify and reconstruct the MC observed by the Solar Terrestrial Relations Observatory (STEREO)-A, Wind, and STEREO-B spacecraft during 19 - 20 November 2007 with the aid of the velocity-modified cylindrical force-free flux-rope model. We analyze the plasma velocity in the plane perpendicular to the MC axis. It is found that there was evident poloidal motion at Wind and STEREO-B, but this was not clear at STEREO-A, which suggests a local cause rather than a global cause for the poloidal plasma motion inside the MC. The rotational directions of the solar wind and MC plasma at the two sides of the MC boundary are found to be consistent, and the values of the rotational speeds of the solar wind and MC plasma at the three spacecraft show a rough correlation. All of these results illustrate that the interaction with ambient solar wind through viscosity might be one of the local causes of the poloidal motion. Additionally, we propose another possible local cause: the existence of a pressure gradient in the MC. The significant difference in the total pressure at the three spacecraft suggests that this speculation is perhaps correct.

  14. Three-dimensional finite element numerical simulation and physical experiment for magnetism-stress detecting in oil casing

    NASA Astrophysics Data System (ADS)

    Meng, Fanshun; Zhang, Jie; Yang, Chaoqun; Yu, Weizhe; Chen, Yuxi

    2015-08-01

    The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress's variation and magnetic induction intensity's variation is: Δδ = K* Δ B, K = 8.04×109, which is proved correct by physical experiment.

  15. NIMROD Simulations of Spheromak Formation, Magnetic Reconnection and Energy Confinement in SSPX

    NASA Astrophysics Data System (ADS)

    Hooper, E. B.; Sovinec, C. R.

    2005-10-01

    The SSPX spheromak is formed and driven by a coaxial electrostatic gun that injects current and magnetic flux. Magnetic fluctuations are associated with the conversion of toroidal to poloidal magnetic flux during formation. After formation, fluctuations that break axisymmetry degrade magnetic surfaces, and are anti-correlated with the core temperature and energy confinement time. We report NIMROD simulations extending earlier work^1 supporting the SSPX experiment through predictions of performance and providing insight. The simulations are in fairly good agreement with features observed in SSPX and underscore the importance of current profile control in mitigating magnetic fluctuation amplitudes and improving confinement. The simulations yield insight into magnetic reconnection and the relationship of fluctuations to field line stochasticity. We have added external circuit equations for the new 32 module capacitor bank in SSPX that will add flexibility in shaping the injector current pulses and substantially increase the injected currents and the magnetic energy. New NIMROD simulations of SSPX lead to higher temperature plasmas than in previous simulations. *Work supported by U.S. DOE, under Contr. No. W-7405-ENG-48 at U. Cal. LLNL and under grant FG02-01ER54661 at U. Wisc Madison. ^1C. R. Sovinec, B. I. Cohen, et al., Phys. Rev. Lett. 94, 035003 (2005); B. I. Cohen, E. B. Hooper, et al., Phys. Plasmas 12, 056106 (2005).

  16. Three dimensional simulation of melt flow in Czochralski crystal growth with steady magnetic fields

    NASA Astrophysics Data System (ADS)

    Cen, Xianrong; Li, Y. S.; Zhan, Jiemin

    2012-02-01

    Three-dimensional transient numerical simulations were carried out to investigate the melt convection and temperature fluctuations within an industrial Czochralski crucible. To study the magnetic damping effects on the growth process, a vertical magnetic field and a cusp magnetic field were considered. Due to our special interest in the melt convection, only local simulation was conducted. The melt flow was calculated by large-eddy simulation (LES) and the magnetic forces were implemented in the CFD code by solving a set of user-defined scalar (UDS) functions. In the absence of magnetic fields, the numerical results show that the buoyant plumes rise from the crucible to the free surface and the crystal-melt interface, which indicates that the heat and mass transfer phenomena in Si melt can be characterized by the turbulent flow patterns. In the presence of a vertical magnetic field, the temperature fluctuations in the melt are significantly damped, with the buoyant plumes forming regular cylindrical geometries. The cusp magnetic field could also markedly reduce the temperature fluctuations, but the buoyant plumes would break into smaller vortical structures, which gather around the crystal as well as in the center of the crucible bottom. With the present crucible configurations, it is found that the vertical magnetic field with an intensity of 128 mT can damp the temperature fluctuations more effectively than the 40 mT cusp magnetic field, especially in the region near the growing crystal.

  17. Accretion and Magnetic Reconnection in the Pre-Main Sequence Binary DQ Tau as Revealed through High-Cadence Optical Photometry

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Herczeg, Gregory; Johns-Krull, Christopher M.; Vodniza, Alberto

    2016-01-01

    Protostellar disks are integral to the formation and evolution of low-mass stars and planets. A paradigm for the star-disk interaction has been extensively developed through theory and observation in the case of single stars. Most stars, however, form in binaries or higher order systems where the distribution of disk material and mass flows are more complex. Pre-main sequence (PMS) binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces.The archetype for this theory is the eccentric, PMS binary DQ Tau. Moderate-cadence broadband photometry (~10 observations per orbital period) has shown pulsed brightening events near most periastron passages, just as numerical simulations would predict for a binary of similar orbital parameters. While this observed behavior supports the accretion stream theory, it is not exclusive to variable accretion rates. Magnetic reconnection events (flares) during the collision of stellar magnetospheres at periastron (when separated by 8 stellar radii) could produce the same periodic, broadband behavior when observed at a one-day cadence. Further evidence for magnetic activity comes from gyrosynchrotron, radio flares (typical of stellar flares) observed near multiple periastron passages. To reveal the physical mechanism seen in DQ Tau's moderate-cadence observations, we have obtained continuous, moderate-cadence, multi-band photometry over 10 orbital periods (LCOGT 1m network), supplemented with 32 nights of minute-cadence photometry centered on 4 separate periastron passages (WIYN 0.9m; APO ARCSAT). With detailed lightcurve morphologies we distinguish between the gradual rise and fall on multi-day time-scales predicted by the accretion stream theory and the hour time-scale, rapid-rise and exponential

  18. Particle-in-cell simulations of electron energization in laser-driven magnetic reconnection

    DOE PAGES

    Lu, San; Lu, Quanming; Guo, Fan; ...

    2016-01-25

    Electrons can be energized during laser-driven magnetic reconnection, and the energized electrons form three super-Alfvénic electron jets in the outflow region (Lu et al 2014 New J. Phys. 16 083021). In this paper, by performing two-dimensional particle-in-cell simulations, we find that the electrons can also be significantly energized before magnetic reconnection occurs. When two plasma bubbles with toroidal magnetic fields expand and squeeze each other, the electrons in the magnetic ribbons are energized through betatron acceleration due to the enhancement of the magnetic field, and an electron temperature anisotropymore » $${T}_{{\\rm{e}}\\perp }\\gt {T}_{{\\rm{e}}| | }$$ develops. Meanwhile, some electrons are trapped and bounced repeatedly between the two expanding/approaching bubbles and get energized through a Fermi-like process. Furthermore, the energization before magnetic reconnection is more significant (or important) than that during magnetic reconnection.« less

  19. Particle-in-cell simulations of electron energization in laser-driven magnetic reconnection

    SciTech Connect

    Lu, San; Lu, Quanming; Guo, Fan; Sheng, Zhengming; Wang, Huanyu; Wang, Shui

    2016-01-25

    Electrons can be energized during laser-driven magnetic reconnection, and the energized electrons form three super-Alfvénic electron jets in the outflow region (Lu et al 2014 New J. Phys. 16 083021). In this paper, by performing two-dimensional particle-in-cell simulations, we find that the electrons can also be significantly energized before magnetic reconnection occurs. When two plasma bubbles with toroidal magnetic fields expand and squeeze each other, the electrons in the magnetic ribbons are energized through betatron acceleration due to the enhancement of the magnetic field, and an electron temperature anisotropy ${T}_{{\\rm{e}}\\perp }\\gt {T}_{{\\rm{e}}| | }$ develops. Meanwhile, some electrons are trapped and bounced repeatedly between the two expanding/approaching bubbles and get energized through a Fermi-like process. Furthermore, the energization before magnetic reconnection is more significant (or important) than that during magnetic reconnection.

  20. General Relativistic Simulations of Magnetized Plasmas around Merging Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Giacomazzo, Bruno; Baker, John G.; Miller, M. Coleman; Reynolds, Christopher S.; van Meter, James R.

    2012-06-01

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of ~2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 104 larger than comparable calculations done in the force-free regime where such amplifications are not possible.

  1. Accretion to magnetized stars through the Rayleigh-Taylor instability: global 3D simulations

    NASA Astrophysics Data System (ADS)

    Kulkarni, A. K.; Romanova, M. M.

    2008-05-01

    We present results of 3D simulations of magnetohydrodynamics (MHD) instabilities at the accretion disc-magnetosphere boundary. The instability is Rayleigh-Taylor, and develops for a fairly broad range of accretion rates and stellar rotation rates and magnetic fields. It manifests itself in the form of tall, thin tongues of plasma that penetrate the magnetosphere in the equatorial plane. The shape and number of the tongues changes with time on the inner disc dynamical time-scale. In contrast with funnel flows, which deposit matter mainly in the polar region, the tongues deposit matter much closer to the stellar equator. The instability appears for relatively small misalignment angles, Θ <~ 30°, between the star's rotation and magnetic axes, and is associated with higher accretion rates. The hotspots and light curves during accretion through instability are generally much more chaotic than during stable accretion. The unstable state of accretion has possible implications for quasi-periodic oscillations and intermittent pulsations from accreting systems, as well as planet migration.

  2. Simulation study of the magnetized sheath of a dusty plasma

    SciTech Connect

    Foroutan, G.; Mehdipour, H.; Zahed, H.

    2009-10-15

    Numerical solutions of stationary multifluid equations are used to study the formation and properties of the magnetized sheath near the boundary of a dusty plasma. The impacts of the strength of the magnetic field, the dust and plasma number densities, and the electron temperature on the sheath structure and spatial distributions of various quantities are investigated. It is shown that for a given angle of incidence of the magnetic field, there is a threshold magnetic field intensity above which some kind of large regular inhomogeneities develop on the spatial profile of the dust particles. The sheath thickness, the electron and ion number densities, and the absolute dust charge are strongly affected by the variation in the dust number density. The sheath demonstrates a nonlinear dependence on the electron temperature; as the electron temperature rises, the sheath first is broadened and the absolute wall potential decreases but then at higher temperatures the sheath becomes narrower and the absolute wall potential increases.

  3. Simulation of runaway electrons, transport affected by J-TEXT resonant magnetic perturbation

    NASA Astrophysics Data System (ADS)

    Jiang, Z. H.; Wang, X. H.; Chen, Z. Y.; Huang, D. W.; Sun, X. F.; Xu, T.; Zhuang, G.

    2016-09-01

    The topology of a magnetic field and transport properties of runaway electrons can be changed by a resonant magnetic perturbation field. The J-TEXT magnetic topology can be effectively altered via static resonant magnetic perturbation (SRMP) and dynamic resonant magnetic perturbation (DRMP). This paper studies the effect of resonant magnetic perturbation (RMP) on the confinement of runaway electrons via simulating their drift orbits in the magnetic perturbation field and calculating the orbit losses for different runaway initial energies and different runaway electrons, initial locations. The model adopted is based on Hamiltonian guiding center equations for runaway electrons, and the J-TEXT magnetic turbulences and RMP are taken into account. The simulation indicates that the loss rate of runaway electrons is sensitive to the radial position of electrons. The loss of energetic runaway beam is dominated by the shrinkage of the confinement region. Outside the shrinkage region of the runaway electrons are lost rapidly. Inside the shrinkage region the runaway beam is confined very well and is less sensitive to the magnetic perturbation. The experimental result on the response of runaway transport to the application RMP indicates that the loss of runaway electrons is dominated by the shrinkage of the confinement region, other than the external magnetic perturbation.

  4. Numerical simulation of magnetic nanoparticles targeting in a bifurcation vessel

    NASA Astrophysics Data System (ADS)

    Larimi, M. M.; Ramiar, A.; Ranjbar, A. A.

    2014-08-01

    Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of super paramagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. The present paper is devoted to study on MDT (Magnetic Drug Targeting) technique by particle tracking in the presence of magnetic field in a bifurcation vessel. The blood flow in bifurcation is considered incompressible, unsteady and Newtonian. The flow analysis applies the time dependent, two dimensional, incompressible Navier-Stokes equations for Newtonian fluids. The Lagrangian particle tracking is performed to estimate particle behavior under influence of imposed magnetic field gradients along the bifurcation. According to the results, the magnetic field increased the volume fraction of particle in target region, but in vessels with high Reynolds number, the efficiency of MDT technique is very low. Also the results showed that in the bifurcation vessels with lower angles, wall shear stress is higher and consequently the risk of the vessel wall rupture increases.

  5. Digital quantum simulation of the statistical mechanics of a frustrated magnet.

    PubMed

    Zhang, Jingfu; Yung, Man-Hong; Laflamme, Raymond; Aspuru-Guzik, Alán; Baugh, Jonathan

    2012-06-06

    Many problems of interest in physics, chemistry and computer science are equivalent to problems defined on systems of interacting spins. However, most such problems require computational resources that are out of reach with classical computers. A promising solution to overcome this challenge is quantum simulation. Several 'analogue' quantum simulations of interacting spin systems have been realized experimentally, where ground states were prepared using adiabatic techniques. Here we report a 'digital' quantum simulation of thermal states; a three-spin frustrated magnet was simulated using a nuclear magnetic resonance quantum information processor, and we were able to explore the phase diagram of the system at any simulated temperature and external field. These results help to identify the challenges for performing quantum simulations of physical systems at finite temperatures, and suggest methods that may be useful in simulating thermal open quantum systems.

  6. Effects of the magnetic equilibrium on gyrokinetic simulations of tokamak microinstabilities

    SciTech Connect

    Wan, Weigang; Chen, Yang; Parker, Scott E.; Groebner, Richard J.

    2015-06-15

    The general geometry of the experimental tokamak magnetic equilibrium is implemented in the global gyrokinetic simulation code GEM. Compared to the general geometry, the well used Miller parameterization of the magnetic equilibrium is a good approximation in the core region and up to the top of the pedestal. Linear simulations indicate that results with the two geometries agree for r/a ≤ 0.9. However, in the edge region, the instabilities are sensitive to the magnetic equilibrium in both the L-mode and the H-mode plasmas. A small variation of the plasma shaping parameters leads to large changes to the edge instability.

  7. Monte Carlo simulation of a cesium atom beam in a magnetic field

    SciTech Connect

    Chen, Jiang Zhu, Hongwei; Ma, Yinguang; Li, Detian; Liu, Zhidong; Wang, Ji

    2015-03-07

    We present Monte Carlo simulations of the deflection of a beam of {sup 133}Cs atoms in a two wire magnetic field. Our results reveal the relationship between transmission rate of the atoms and incident parameters. Incident angle and position of the beam with maximum transmission are obtained from the simulations. The effect of the deflection field on the spatial distribution (beam profile) of {sup 133}Cs is derived. The method will help with the design of magnetic deflection experiments and to extract the magnetic properties from such experiments.

  8. Water pollution risk simulation and prediction in the main canal of the South-to-North Water Transfer Project

    NASA Astrophysics Data System (ADS)

    Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Cheng, Xi

    2014-11-01

    The middle route of the South-to-North Water Transfer Project (MRP) will divert water to Beijing Tuancheng Lake from Taocha in the Danjiangkou reservoir located in the Hubei province of China. The MRP is composed of a long canal and complex hydraulic structures and will transfer water in open channel areas to provide drinking water for Beijing, Shijiazhuang and other cities under extremely strict water quality requirements. A large number of vehicular accidents, occurred on the many highway bridges across the main canal would cause significant water pollution in the main canal. To ensure that water quality is maintained during the diversion process, the effects of pollutants on water quality due to sudden pollution accidents were simulated and analyzed in this paper. The MIKE11 HD module was used to calculate the hydraulic characteristics of the 42-km Xishi-to-Beijuma River channel of the MRP. Six types of hydraulic structures, including inverted siphons, gates, highway bridges, culverts and tunnels, were included in this model. Based on the hydrodynamic model, the MIKE11 AD module, which is one-dimensional advection dispersion model, was built for TP, NH3-N, CODMn and F. The validated results showed that the computed values agreed well with the measured values. In accordance with transportation data across the Dianbei Highway Bridge, the effects of traffic accidents on the bridge on water quality were analyzed. Based on simulated scenarios with three discharge rates (ranged from 12 m3/s to 17 m3/s, 40 m3/s, and 60 m3/s) and three pollution loading concentration levels (5 t, 10 t and 20 t) when trucks spill their contents (i.e., phosphate fertilizer, cyanide, oil and chromium solution) into the channel, emergency measures were proposed. Reasonable solutions to ensure the water quality with regard to the various types of pollutants were proposed, including treating polluted water, maintaining materials, and personnel reserves.

  9. Magnetohydrodynamic Simulations of Disk GalaxyFormation: the Magnetization of The Cold and Warm Medium

    SciTech Connect

    Wang, Peng; Abel, Tom; /KIPAC, Menlo Park /Santa Barbara, KITP

    2007-12-18

    Using magnetohydrodynamic (MHD) adaptive mesh refinement simulations, we study the formation and early evolution of disk galaxies with a magnetized interstellar medium. For a 10{sup 10} M{sub {circle_dot}} halo with initial NFW dark matter and gas profiles, we impose a uniform 10{sup -9} G magnetic field and follow its collapse, disk formation and evolution up to 1 Gyr. Comparing to a purely hydrodynamic simulation with the same initial condition, we find that a protogalactic field of this strength does not significantly influence the global disk properties. At the same time, the initial magnetic fields are quickly amplified by the differentially rotating turbulent disk. After the initial rapid amplification lasting {approx} 500 Myr, subsequent field amplification appears self-regulated. As a result, highly magnetized material begin to form above and below the disk. Interestingly, the field strengths in the self-regulated regime agrees well with the observed fields in the Milky Way galaxy both in the warm and the cold HI phase and do not change appreciably with time. Most of the cold phase shows a dispersion of order ten in the magnetic field strength. The global azimuthal magnetic fields reverse at different radii and the amplitude declines as a function of radius of the disk. By comparing the estimated star formation rate (SFR) in hydrodynamic and MHD simulations, we find that after the magnetic field strength saturates, magnetic forces provide further support in the cold gas and lead to a decline of the SFR.

  10. 3D Kinetic Simulation of Plasma Jet Penetration in Magnetic Field

    NASA Astrophysics Data System (ADS)

    Galkin, Sergei A.; Bogatu, I. N.; Kim, J. S.

    2009-11-01

    A high velocity plasmoid penetration through a magnetic barrier is a problem of a great experimental and theoretical interest. Our LSP PIC code 3D fully kinetic numerical simulations of high density (10^16 cm-3) high velocity (30-140 km/sec) plasma jet/bullet, penetrating through the transversal magnetic field, demonstrate three different regimes: reflection by field, penetration by magnetic field expulsion and penetration by magnetic self-polarization. The behavior depends on plasma jet parameters and its composition: hydrogen, carbon (A=12) and C60-fullerene (A=720) plasmas were investigated. The 3D simulation of two plasmoid head-on injections along uniform magnetic field lines is analyzed. Mini rail plasma gun (accelerator) modeling is also presented and discussed.

  11. Magnetic Field Evolution in Three-dimensional Simulations of the Stationary Accretion Shock Instability

    NASA Astrophysics Data System (ADS)

    Endeve, Eirik; Cardall, C.; Budiardja, R.; Beck, S.; Bejnood, A.; Mezzacappa, A.

    2011-01-01

    The stationary accretion shock instability (SASI) plays an important role in modern simulations of core-collapse supernovae. With the intent to study magnetic field generation and the possible impact of magnetic fields during the crucial nonlinear phase leading to the explosion of massive stars, we have carried out high-resolution, three-dimensional magnetohydrodynamic simulations of the SASI. Turbulent flows emerging from the operation of the spiral SASI mode result in exponential growth of the magnetic energy. From initial conditions in the range expected for slowly rotating progenitor stars, we find that saturation of the magnetic energy can occur within a typical explosion time scale. Implications for neutrino-powered supernovae and neutron star magnetization are considered.

  12. Fully Kinetic Simulations of Asymmetric Magnetic Reconnection at the Magnetopause with Different Configurations

    NASA Astrophysics Data System (ADS)

    Cazzola, Emanuele; Lapenta, Giovanni

    2015-04-01

    This work aim at presenting fully kinetic simulations of magnetic reconnection with the current sheet acrossed by asymmetric profiles in density and magnetic. Unlike traditional single layer o double mirrored layers, we here wanted to study the different behavior between a typical current sheet with continous profiles and a layer with a steep gradient profile. The former clearly represents those conditions standing at the nose of the magnetopause, where shocked solar wind encounters the magnetospheric plasma, which is currently widely studied given the imminent launch of the NASA MMS satellite's cluster completely devoted to the reconnection occurring in this area. The second layer, however, resembles the typical Riemann's problem conventionally used for studying formation and propagation of waves in aforementioned magnetospheric region. Additionally, steep gradient may also recall those conditions during the inflowing northward IMF, when a pure tangential discontinuity is present. We here mainly focus on this second configuration, where interesting features are observed from simulation. In fact, a very steep profile gradient seems to give origin to explosive multiple reconnection events all over the layer, which in turn lead to a rapid island merging and relevant energy release. Manifold analysis turns out to be addressed. First step concerns to better study the glaring and quick island merging, where presence of anti-reconnections may lead to the generation of vertical outflow jets and further particles heating. This latter point is intimately linked to the energetics of the process. Either ions and electrons normally increase energy thanks to the stored magnetic energy released by the reconnection event. However, it soon appears that separatrixes seem to play a more fundamental and spatially extensive role in increasing either ions or electrons thermal and bulk energy with respect to the reconnection region, which is the ultimate scale where magnetic

  13. Micromagnetic simulation of vortex-antivortex magnetization in permalloy nano particle

    NASA Astrophysics Data System (ADS)

    Purnama, B.; Muhammady, S.; Suharyana

    2017-02-01

    A process of vortex-antivortex magnetization reversal in a Permalloy nano particle with uniform polarity of magnetization has been investigated numerically. Micromagnetic simulation is performed using the Landau–Lifshitz–Gilbert equation. A short field pulse is applied in a film plane anti parallel to magnetization direction. Sequences of simulation of reversals mechanism are evaluated for thickness of nano particle. As the results in the case of thickness of 20 nm thin layer, magnetization reversal realizes through a creation-annihilation of Neel-Bloch wall pair. Contrarily, reversal mechanism via a creation-annihilation process of vortex-antivortex pair occurs for thickness of 60 nm thin layer. By analyzing barrier energy of the sample, we find that a maximum barrier energy reaches a threshold value (e.g., ∼ 2.6×106 erg/cm3 for Permalloy in this simulation).

  14. Simulation of a birdcage and a ceramic cavity HF-resonator for high magnetic fields in magnetic resonance imaging.

    PubMed

    Eriksen, E; Golombeck, M A; Junge, S; Dössel, O

    2002-01-01

    The aim of this work was the 3D-simulation of a dielectric resonator for high-field-MRI. A 12-rod-bird-cage-resonator was simulated in a first step, in order to verify the capability of the commercial simulation software MAFIA to simulate homogeneous, transversal B-fields in resonators. The second step was the simulation of frequency-independent dielectric ceramic resonators for static magnetic field strengths of 7 T and 12 T (294 MHz and 504 MHz respectively). The results were compared to the measured results of a manufactured TiO2- and a Al2O3-resonator. Only minor deviations showed up. These results led to the conclusion that dielectric resonators for high field MRI can be optimised using numerical field calculation software.

  15. Computer program simulating the quench of superconducting magnet systems

    SciTech Connect

    Eckert, D.; Lange, F.; Moebius, A.

    1981-09-01

    A computer program for testing coil and protection design of a composed magnet system is presented. Small high field magnets composed of two uniaxial cylindrical oils of different superconducting materials (e.g., NbTi and V/sub 3/Ga or Nb/sub 3/Sn) are considered. Each coil consists of several sections protected by shunts. The system is driven by one power supply. In order to take into account quench propagation due to thermal conduction and to rapid current increase, which is important in inductively coupled systems, a one-dimensional thermodiffusion equation is solved. Field and temperature dependence of the critical current of every layer of the magnet system are regarded. Current sharing as well as the temperature dependence of specific heat, of resistivity and of thermal conductivity are taken into account. 8 refs.

  16. Numerical simulation of inclination vibration in magnetic induction micromachines

    NASA Astrophysics Data System (ADS)

    Chen, J.-Y.; Zhou, J.-B.; Zhang, W.-M.; Meng, G.

    2008-02-01

    This paper studies the inclination vibration of an axial-flux magnetic induction micromachine which is supported by hydrostatic thrust bearings. A mechanical model for the rotor and the corresponding fluid-film bearing is combined with an electromagnetic force model to study the linear and nonlinear rotordynamics of the system. Results obtained for the stability show that magnetic induction micromachine would encounter severe instability problem at high speed operations. The model developed here could serve as a useful reference for design optimization and operation scheme.

  17. Numerical simulation of magnetic nanofluid natural convection in porous media

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Mohsen

    2017-02-01

    Free convection of magnetic nanofluid in a porous curved cavity is investigated. Influence of external magnetic source is taken into account. Innovative numerical approach, namely CVFEM, is applied. Impacts of Darcy number (Da), Rayleigh (Ra), Hartmann (Ha) numbers and volume fraction of Fe3O4 (ϕ) on hydrothermal characteristics are examined. Results indicate that heat transfer augmentation augments with rise of Ha and reduces with rise of Da , Ra . Lorentz forces make the nanofluid motion to decrease and enhance the thermal boundary layer thickness. Temperature gradient enhances with increase of Da , Ra , ϕ, but it reduces with rise of Ha.

  18. THREE-DIMENSIONAL SIMULATIONS OF GYROSYNCHROTRON EMISSION FROM MILDLY ANISOTROPIC NONUNIFORM ELECTRON DISTRIBUTIONS IN SYMMETRIC MAGNETIC LOOPS

    SciTech Connect

    Kuznetsov, Alexey A.; Nita, Gelu M.; Fleishman, Gregory D.

    2011-12-01

    Microwave emission of solar flares is formed primarily by incoherent gyrosynchrotron radiation generated by accelerated electrons in coronal magnetic loops. The resulting emission depends on many factors, including pitch-angle distribution of the emitting electrons and the source geometry. In this work, we perform systematic simulations of solar microwave emission using recently developed tools (GS Simulator and fast gyrosynchrotron codes) capable of simulating maps of radio brightness and polarization as well as spatially resolved emission spectra. A three-dimensional model of a symmetric dipole magnetic loop is used. We compare the emission from isotropic and anisotropic (of loss-cone type) electron distributions. We also investigate effects caused by inhomogeneous distribution of the emitting particles along the loop. It is found that the effect of the adopted moderate electron anisotropy is the most pronounced near the footpoints and it also depends strongly on the loop orientation. Concentration of the emitting particles at the looptop results in a corresponding spatial shift of the radio brightness peak, thus reducing effects of the anisotropy. The high-frequency ({approx}> 50 GHz) emission spectral index is specified mainly by the energy spectrum of the emitting electrons; however, at intermediate frequencies (around 10-20 GHz), the spectrum shape is strongly dependent on the electron anisotropy, spatial distribution, and magnetic field nonuniformity. The implications of the obtained results for the diagnostics of the energetic electrons in solar flares are discussed.

  19. Three-Dimensional Simulations of Electron Beams Focused by Periodic Permanent Magnets

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    1999-01-01

    A fully three-dimensional (3D) model of an electron beam focused by a periodic permanent magnet (PPM) stack has been developed. First, the simulation code MAFIA was used to model a PPM stack using the magnetostatic solver. The exact geometry of the magnetic focusing structure was modeled; thus, no approximations were made regarding the off-axis fields. The fields from the static solver were loaded into the 3D particle-in-cell (PIC) solver of MAFIA where fully 3D behavior of the beam was simulated in the magnetic focusing field. The PIC solver computes the time-integration of electromagnetic fields simultaneously with the time integration of the equations of motion of charged particles that move under the influence of those fields. Fields caused by those moving charges are also taken into account; thus, effects like space charge and magnetic forces between particles are fully simulated. The electron beam is simulated by a number of macro-particles. These macro-particles represent a given charge Q amounting to that of several million electrons in order to conserve computational time and memory. Particle motion is unrestricted, so particle trajectories can cross paths and move in three dimensions under the influence of 3D electric and magnetic fields. Correspondingly, there is no limit on the initial current density distribution of the electron beam, nor its density distribution at any time during the simulation. Simulation results including beam current density, percent ripple and percent transmission will be presented, and the effects current, magnetic focusing strength and thermal velocities have on beam behavior will be demonstrated using 3D movies showing the evolution of beam characteristics in time and space. Unlike typical beam optics models, this 3D model allows simulation of asymmetric designs such as non- circularly symmetric electrostatic or magnetic focusing as well as the inclusion of input/output couplers.

  20. Integrated simulation of magnetic-field-assist fast ignition laser fusion

    NASA Astrophysics Data System (ADS)

    Johzaki, T.; Nagatomo, H.; Sunahara, A.; Sentoku, Y.; Sakagami, H.; Hata, M.; Taguchi, T.; Mima, K.; Kai, Y.; Ajimi, D.; Isoda, T.; Endo, T.; Yogo, A.; Arikawa, Y.; Fujioka, S.; Shiraga, H.; Azechi, H.

    2017-01-01

    To enhance the core heating efficiency in fast ignition laser fusion, the concept of relativistic electron beam guiding by external magnetic fields was evaluated by integrated simulations for FIREX class targets. For the cone-attached shell target case, the core heating performance deteriorates by applying magnetic fields since the core is considerably deformed and most of the fast electrons are reflected due to the magnetic mirror formed through the implosion. On the other hand, in the case of a cone-attached solid ball target, the implosion is more stable under the kilo-tesla-class magnetic field. In addition, feasible magnetic field configuration is formed through the implosion. As a result, the core heating efficiency doubles by magnetic guiding. The dependence of core heating properties on the heating pulse shot timing was also investigated for the solid ball target.

  1. FEA Simulations of Magnets with Grain Oriented Steel

    SciTech Connect

    Witte H.

    2012-08-06

    One of the potential successors of the Large Hadron Collider is a Muon Col- lider. Muons are short-lived particles, which therefore require fast acceleration. One potential avenue is a very fast cycling cyclotron, where the bending is sup- plied by a combination of fixed-field superconducting magnets and fast ramping normal conducting iron-cored coils. Due to the high ramping rate (around 1 kHz) eddy current and hysteresis losses are a concern. One way to overcome these is by using grain-oriented soft-iron, which promises superior magnetic properties in the direction of the grains. This note summarizes efforts to include the anisotropic material properties of grain-oriented steel in finite element analysis to predict the behaviour of the dipole magnets for this accelerator. It was found that including anisotropic material properties has a detrimental effect on model convergence. During this study it was not possible to include grain oriented steel with an accuracy necessary to study the field quality of a dipole magnet.

  2. Hysteresis in magnetic shape memory composites: Modeling and simulation

    NASA Astrophysics Data System (ADS)

    Conti, Sergio; Lenz, Martin; Rumpf, Martin

    2016-04-01

    Magnetic shape memory alloys are characterized by the coupling between the reorientation of structural variants and the rearrangement of magnetic domains. This permits to control the shape change via an external magnetic field, at least in single crystals. Composite materials with single-crystalline particles embedded in a softer matrix have been proposed as a way to overcome the blocking of the reorientation at grain boundaries. We investigate hysteresis phenomena for small NiMnGa single crystals embedded in a polymer matrix for slowly varying magnetic fields. The evolution of the microstructure is studied within the rate-independent variational framework proposed by Mielke and Theil (1999). The underlying variational model incorporates linearized elasticity, micromagnetism, stray field and a dissipation term proportional to the volume swept by the twin boundary. The time discretization is based on an incremental minimization of the sum of energy and dissipation. A backtracking approach is employed to approximately ensure the global minimality condition. We illustrate and discuss the influence of the particle geometry (volume fraction, shape, arrangement) and the polymer elastic parameters on the observed hysteresis and compare with recent experimental results.

  3. BUOYANT MAGNETIC LOOPS IN A GLOBAL DYNAMO SIMULATION OF A YOUNG SUN

    SciTech Connect

    Nelson, Nicholas J.; Toomre, Juri; Brown, Benjamin P.; Brun, Allan Sacha

    2011-10-01

    The current dynamo paradigm for the Sun and Sun-like stars places the generation site for strong toroidal magnetic structures deep in the solar interior. Sunspots and starspots on Sun-like stars are believed to arise when sections of these magnetic structures become buoyantly unstable and rise from the deep interior to the photosphere. Here, we present the first three-dimensional global magnetohydrodynamic (MHD) simulation in which turbulent convection, stratification, and rotation combine to yield a dynamo that self-consistently generates buoyant magnetic loops. We simulate stellar convection and dynamo action in a spherical shell with solar stratification, but rotating three times faster than the current solar rate. Strong wreaths of toroidal magnetic field are realized by dynamo action in the convection zone. By turning to a dynamic Smagorinsky model for subgrid-scale turbulence, we here attain considerably reduced diffusion in our simulation. This permits the regions of strongest magnetic field in these wreaths to rise toward the top of the convection zone via a combination of magnetic buoyancy instabilities and advection by convective giant cells. Such a global simulation yielding buoyant loops represents a significant step forward in combining numerical models of dynamo action and flux emergence.

  4. Novel modeling and dynamic simulation of magnetic tunnel junctions for spintronic sensor development

    NASA Astrophysics Data System (ADS)

    Ji, Yu; Liu, Jie; Yang, Chunsheng

    2017-01-01

    Spintronic magnetic sensors with the integration of magnetic materials and microstructures have been enabling people to make use of the electron spin and charge properties in many applications. The high demand for such sensors has in turn spurred the technology developments in both novel materials and their atomic-level controls. Few works, however, have been carried out and reported thus far in modeling and simulation of these spintronic magnetic sensing units based on magnetic tunnel junction (MTJ) technology. Accordingly, this paper proposes a novel modeling approach as well as an iterative simulation methodology for MTJs. A more comprehensive electrical tunneling model is established for better interpreting the conductance and current generated by the electron tunneling, and this model can also facilitate the iterative simulation of the micromagnetic dynamics. Given the improved tunneling model as well as the updated dynamic simulation, the electric characteristics of an MTJ with an external magnetic field can be conveniently computed, which provides a reliable benchmark for the future development of novel spintronic magnetic sensors.

  5. Simulations of electron holographic observations of magnetic microstructure in exsolved titanomagnetites

    NASA Astrophysics Data System (ADS)

    Beleggia, M.; Kasama, T.; Harrison, R. J.; Feinberg, J. M.; Dunin-Borkowski, R.

    2008-12-01

    Titanomagnetite inclusions in slowly-cooled rocks can contain exsolution microstructures that consist of closely-spaced ferrimagnetic magnetite (Fe3O4) prisms separated by paramagnetic ulvöspinel (Fe2TiO4) lamellae. Off-axis electron holography has recently been used to image the magnetic remanent states of such inclusions, and to show that the prisms are mostly magnetostatically-interacting single domains. The overall magnetic microstructure is found to depend sensitively on the shapes, spacings and orientations of the prisms, as well as on the shape of the inclusion and on its magnetic history. In order to understand the observed magnetic microstructures, we have carried out analytical simulations of linear arrays of uniformly-magnetized magnetite prisms by making use of known expressions for demagnetization factors. By systematically varying the size and spacing of the magnetite prisms in the simulations, it is possible to chart the magnetic microstructures of such mineral assemblages in the form of a "magnetic microstructure phase diagram". Whereas shape anisotropy suggests that the long dimension of each prism should be its easy axis, if more than one element is considered then interactions change the energy balance of the combined magnetic state. We consider linear arrays of identical prisms that are magnetized either in antiparallel directions perpendicular to the line joining them or parallel to each other and to the line joining them. For two 100-nm-wide prisms that are separated by 10 nm in a specimen of thickness 20 nm, the simulations suggest that the transition between the two states occurs at a prism length of 122 nm. A more general treatment that includes the influence of magnetocrystalline anisotropy on the energy balance will be presented, and the simulations will be compared with experimental observations.

  6. Development of Modeling and Simulation for Magnetic Particle Inspection Using Finite Elements

    SciTech Connect

    Lee, Jun-Youl

    2003-01-01

    Magnetic particle inspection (MPI) is a widely used nondestructive inspection method for aerospace applications essentially limited to experiment-based approaches. The analysis of MPI characteristics that affect sensitivity and reliability contributes not only reductions in inspection design cost and time but also improvement of analysis of experimental data. Magnetic particles are easily attracted toward a high magnetic field gradient. Selection of a magnetic field source, which produces a magnetic field gradient large enough to detect a defect in a test sample or component, is an important factor in magnetic particle inspection. In this work a finite element method (FEM) has been employed for numerical calculation of the MPI simulation technique. The FEM method is known to be suitable for complicated geometries such as defects in samples. This thesis describes the research that is aimed at providing a quantitative scientific basis for magnetic particle inspection. A new FEM solver for MPI simulation has been developed in this research for not only nonlinear reversible permeability materials but also irreversible hysteresis materials that are described by the Jiles-Atherton model. The material is assumed to have isotropic ferromagnetic properties in this research (i.e., the magnetic properties of the material are identical in all directions in a single crystal). In the research, with a direct current field mode, an MPI situation has been simulated to measure the estimated volume of magnetic particles around defect sites before and after removing any external current fields. Currently, this new MPI simulation package is limited to solving problems with the single current source from either a solenoid or an axial directional current rod.

  7. Simulation of Magnetic Field Assisted Finishing (MFAF) Process Utilizing Smart MR Polishing Tool

    NASA Astrophysics Data System (ADS)

    Barman, Anwesa; Das, Manas

    2016-05-01

    Magnetic field assisted finishing process is an advanced finishing process. This process is capable of producing nanometer level surface finish. In this process magnetic field is applied to control the finishing forces using magnetorheological polishing medium. In the current study, permanent magnet is used to provide the required magnetic field in the finishing zone. The working gap between the workpiece and the magnet is filled with MR fluid which is used as the polishing brush to remove surface undulations from the top surface of the workpiece. In this paper, the distribution of magnetic flux density on the workpiece surface and behaviour of MR polishing medium during finishing are analyzed using commercial finite element packages (Ansys Maxwell® and Comsol®). The role of magnetic force in the indentation of abrasive particles on the workpiece surface is studied. A two-dimensional simulation study of the steady, laminar, and incompressible MR fluid flow behaviour during finishing process is carried out. The material removal and surface roughness modelling of the finishing process are also presented. The indentation force by a single active abrasive particle on the workpiece surface is modelled during simulation. The velocity profile of MR fluid with and without application of magnetic field is plotted. It shows non-Newtonian property without application of magnetic field. After that the total material displacement due to one abrasive particle is plotted. The simulated roughness profile is in a good agreement with the experimental results. The conducted study will help in understanding the fluid behavior and the mechanism of finishing during finishing process. Also, the modelling and simulation of the process will help in achieving better finishing performance.

  8. Simulation of Magnetic Field Assisted Finishing (MFAF) Process Utilizing Smart MR Polishing Tool

    NASA Astrophysics Data System (ADS)

    Barman, Anwesa; Das, Manas

    2017-02-01

    Magnetic field assisted finishing process is an advanced finishing process. This process is capable of producing nanometer level surface finish. In this process magnetic field is applied to control the finishing forces using magnetorheological polishing medium. In the current study, permanent magnet is used to provide the required magnetic field in the finishing zone. The working gap between the workpiece and the magnet is filled with MR fluid which is used as the polishing brush to remove surface undulations from the top surface of the workpiece. In this paper, the distribution of magnetic flux density on the workpiece surface and behaviour of MR polishing medium during finishing are analyzed using commercial finite element packages (Ansys Maxwell® and Comsol®). The role of magnetic force in the indentation of abrasive particles on the workpiece surface is studied. A two-dimensional simulation study of the steady, laminar, and incompressible MR fluid flow behaviour during finishing process is carried out. The material removal and surface roughness modelling of the finishing process are also presented. The indentation force by a single active abrasive particle on the workpiece surface is modelled during simulation. The velocity profile of MR fluid with and without application of magnetic field is plotted. It shows non-Newtonian property without application of magnetic field. After that the total material displacement due to one abrasive particle is plotted. The simulated roughness profile is in a good agreement with the experimental results. The conducted study will help in understanding the fluid behavior and the mechanism of finishing during finishing process. Also, the modelling and simulation of the process will help in achieving better finishing performance.

  9. Effect of transverse magnetic fields on a simulated in-line 6 MV linac

    NASA Astrophysics Data System (ADS)

    St. Aubin, J.; Steciw, S.; Fallone, B. G.

    2010-08-01

    The effects of a transverse magnetic field on an in-line side-coupled 6 MV linear accelerator are given. The results are directly applicable to a linac-MR system used for real-time image guided adaptive radiotherapy. Our previously designed end-to-end linac simulation incorporated the results from the axisymmetric 2D electron gun program EGN2w. However, since the magnetic fields being investigated are non-axisymmetric in nature for the work presented here, the electron gun simulation was performed using OPERA-3d/SCALA. The simulation results from OPERA-3d/SCALA showed excellent agreement with previous results. Upon the addition of external magnetic fields to our fully 3D linac simulation, it was found that a transverse magnetic field of 6 G resulted in a 45 ± 1% beam loss, and by 14 G, no electrons were incident on the target. Transverse magnetic fields on the linac simulation produced a highly asymmetric focal spot at the target, which translated into a 13% profile asymmetry at 6 G. Upon translating the focal spot with respect to the target coordinates, profile symmetry was regained at the expense of a lateral shift in the dose profiles. It was found that all points in the penumbra failed a 1%/1 mm acceptance criterion for fields between 4 and 6 G. However, it was also found that the lateral profile shifts were corrected by adjusting the jaw positions asymmetrically.

  10. Effect of a magnetic field in simulating the plume field of an anode layer Hall thruster

    SciTech Connect

    Choi, Yongjun; Boyd, Iain D.; Keidar, Michael

    2009-01-01

    In this study, we present axisymmetric simulations of xenon plasma plume flow fields from a D55 anode layer Hall thruster. A hybrid particle-fluid method is used for the simulations. The magnetic field surrounding the Hall thruster exit is included in the calculation. The plasma properties obtained from a hydrodynamic model are used as boundary conditions for the simulations. The electron properties are calculated using the Boltzmann model and a detailed fluid model, collisions of heavy particle are modeled with the direct simulation Monte Carlo method, and ion transport in the electric field uses the particle-in-cell technique. The accuracy of the simulation is assessed through comparison with various measured data. It is found that a magnetic field significantly affects the profile of the plasma in the detailed model. The plasma has a potential of 80 V at 10 mm from the thruster exit in the case of zero magnetic field, which decreases to 60 V when the magnetic field is included. Results predicted by the detailed model with the magnetic field are found to be in better agreement with experimental data.

  11. Simulation of the Magnetic Characteristics and Properties of the Neodymium Compensator of the Stiffness

    NASA Astrophysics Data System (ADS)

    Gurova, E. G.; Gurov, M. G.; Panchenko, Y. V.

    2016-08-01

    This research is devoted to consideration of the possibility to use the software ELCUT for development of the magnetic compensator of the stiffness based on neodymium magnets. The software represents precision enough apparatus to solve the issues of the magnetostatic. The solution of these issues is the most important phase at the stage of the designing and calculation of the magnetic compensator of the stiffness, so as at the beginning we need to find the traction force of the interaction between magnet and magnetic materials to provide necessary falling traction characteristic of the compensator. In this paper the simulated models of the neodymium magnets are shown; the view of the field are calculated, the plots of the distribution and directions of the magnetic field strength and induction vectors are presented. Results, which were obtained during of the simulation, further will be used for designing and creation of the magnetic compensator of the stiffness based on supermagnets. Research & Development is under the scholarship of the President of Russian Federation, order №184 from 10th of March 2015.

  12. Effect of physical variables on capture of magnetic nanoparticles in simulated blood vessels

    NASA Astrophysics Data System (ADS)

    Zhang, Minghui; Brazel, Christopher

    2011-11-01

    This study investigated how the percent capture of magnetic nanoparticles in a simulated vessel varies with physical variables. Magnetic nanoparticles (MNPs) can used as part of therapeutic or diagnostic materials for cancer patients. By capturing these devices with a magnetic field, the particles can be concentrated in an area of diseased tissue. In this study, flow of nanoparticles in simulated blood vessels was used to determine the affect of applying an external magnetic field. This study used maghemite nanoparticles as the MNPs and either water or Fetal Bovine Serum as the carrier fluid. A UV-Vis collected capture data. The percent capture of MNPs was positively influenced by five physical variables: larger vessel diameters, lower linear flow velocity, higher magnetic field strength, better dispersion, lower MNP concentration, and lower protein content in fluid. Free MNPs were also compared to micelles, with the free particles having more successful magnetic capture. Four factors contributed to these trends: the strength of the magnetic field's influence on the MNPs, the MNPs' interactions with other particles and the fluid, the momentum of the nanoparticles, and magnetic mass to total mass ratio of the flowing particles. Funded by NSF REU Site #1062611.

  13. General relativistic simulations of black-hole-neutron-star mergers: Effects of magnetic fields

    NASA Astrophysics Data System (ADS)

    Etienne, Zachariah B.; Liu, Yuk Tung; Paschalidis, Vasileios; Shapiro, Stuart L.

    2012-03-01

    As a neutron star (NS) is tidally disrupted by a black hole (BH) companion at the end of a black-hole-neutron-star (BHNS) binary inspiral, its magnetic fields will be stretched and amplified. If sufficiently strong, these magnetic fields may impact the gravitational waveforms, merger evolution and mass of the remnant disk. Formation of highly-collimated magnetic field lines in the disk+spinning BH remnant may launch relativistic jets, providing the engine for a short-hard GRB. We analyze this scenario through fully general relativistic, magnetohydrodynamic BHNS simulations from inspiral through merger and disk formation. Different initial magnetic field configurations and strengths are chosen for the NS interior for both nonspinning and moderately spinning (aBH/MBH=0.75) BHs aligned with the orbital angular momentum. Only strong interior (Bmax⁡˜1017G) initial magnetic fields in the NS significantly influence merger dynamics, enhancing the remnant disk mass by 100% and 40% in the nonspinning and spinning BH cases, respectively. However, detecting the imprint of even a strong magnetic field may be challenging for Advanced LIGO. Though there is no evidence of mass outflows or magnetic field collimation during the preliminary simulations we have performed, higher resolution, coupled with longer disk evolutions and different initial magnetic field configurations, may be required to definitively assess the possibility of BHNS binaries as short-hard gamma-ray burst progenitors.

  14. Computer simulation of magnetic field circuits in ATF

    SciTech Connect

    White, J.A.; Googe, J.M.; Nickels, L.E.

    1983-01-01

    The proposed design of the Advanced Toroidal Facility (ATF) contains several closely coupled magnetic field circuits that are being modeled using the SUPER*SCEPTRE computer program in order to predict their transient behavior. The results of this transient analysis study will be used to determine component values and/or special precautions that may be required for power supply and other circuit element protection due to the mutual coupling between circuits. ATF is a continuous-coil torsatron device using resistive coils in a pulsed mode of operation in which a current fluctuation in one coil induces voltages in the other circuit element protection due to the mutual coupling between circuits. ATF is a continuous-coil torsatron device using resistive coils in a pulsed mode of operation in which a current fluctuation in one coil induces voltages in the other circuit that may not be desirable. The model contains the solid-state power supplies' equivalent circuits, the resistance and self-inductance of each magnetic field coil, and the mutual inductances of every coil combination. The SUPER*SCEPTRE program allows for the direct input of all electrical components as well as the mutual inductances. The power supply voltages are entered as preprogrammed wave shapes designed to achieve the desired magnetic field strengths. The outputs of this program are tables and plots of voltages and currents associated with each circuit component.

  15. Simulation of magnetic drug targeting through tracheobronchial airways in the presence of an external non-uniform magnetic field using Lagrangian magnetic particle tracking

    NASA Astrophysics Data System (ADS)

    Pourmehran, O.; Rahimi-Gorji, M.; Gorji-Bandpy, M.; Gorji, T. B.

    2015-11-01

    Drug delivery technologies are an important area within biomedicine. Targeted drug delivery aims to reduce the undesired side effects of drug usage by directing or capturing the active agents near a desired site within the body. Herein, a numerical investigation of magnetic drug targeting (MDT) using aerosol drugs named polystyrene particle (PMS40) in human lung is presented considering one-way coupling on the transport and capture of the magnetic particle. A realistic 3D geometry based on CT scan images is provided for CFD simulation. An external non-uniform magnetic field is applied. Parametric investigation is conducted and the influence of particle diameter, magnetic source position, and magnetic number (Mn) on the deposition efficiency and particle behavior is reported. According to the results, the magnetic field increased deposition efficiency of particles in a target region, the efficiency of deposition and MDT technique has a direct relation with increasing the particle diameter for magnetic number of 1 Tesla (T) and lower (Mn≤1(T)). Also it can be seen that there is an inverse relation between the particle diameter and deposition efficiency when Mn is more than 1 (T).

  16. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2010-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked regions. Simulations show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields and particle acceleration. These magnetic fields contribute to the electron's transverse deflection behind the shock. The jitter'' radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. We will present detailed spectra for conditions relevant of various astrophysical sites of shock formation via the Weibel instability. In particular we will discuss the application to GRBs and SNRs

  17. Fast electron energy deposition in a magnetized plasma: Kinetic theory and particle-in-cell simulation

    SciTech Connect

    Robiche, J.; Rax, J.-M.; Bonnaud, G.; Gremillet, L.

    2010-03-15

    The collisional dynamics of a relativistic electron jet in a magnetized plasma are investigated within the framework of kinetic theory. The relativistic Fokker-Planck equation describing slowing down, pitch angle scattering, and cyclotron rotation is derived and solved. Based on the solution of this Fokker-Planck equation, an analytical formula for the root mean square spot size transverse to the magnetic field is derived and this result predicts a reduction in radial transport. Some comparisons with particle-in-cell simulation are made and confirm striking agreement between the theory and the simulation. For fast electron with 1 MeV typical kinetic energy interacting with a solid density hydrogen plasma, the energy deposition density in the transverse direction increases by a factor 2 for magnetic field of the order of 1 T. Along the magnetic field, the energy deposition profile is unaltered compared with the field-free case.

  18. Magnetic field simulation of wiggler on LUCX accelerator facility using Radia

    NASA Astrophysics Data System (ADS)

    Sutygina, Y. N.; Harisova, A. E.; Shkitov, D. A.

    2016-11-01

    A flat wiggler consisting of NdFeB permanent magnets was installed on a compact linear electron accelerator LUCX (KEK) in Japan. After installing the wiggler on LUCX, the experiments on the generation of undulator radiation (UR) in the terahertz wavelength range is planned. To perform the detailed calculations and optimization of UR characteristics, it is necessary to know the parameters of the magnetic field generated in the wiggler. In this paper extended simulation results of wiggler magnetic field over the entire volume between the poles are presented. The obtained in the Radia simulation magnetic field is compared with the field calculated by another code, which is based on the finite element method.

  19. 3-D RPIC Simulations of Relativistic Jets: Particle Acceleration, Magnetic Field Generation, and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.

    2006-01-01

    Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.

  20. Simulations of magnetic field gradients due to micro-magnets on a triple quantum dot circuit

    SciTech Connect

    Poulin-Lamarre, G.; Bureau-Oxton, C.; Kam, A.; Zawadzki, P.; Aers, G.; Studenikin, S.; Pioro-Ladrière, M.; Sachrajda, A. S.

    2013-12-04

    To quantify the effects of local magnetic fields on triple quantum dots, the Heisenberg Hamiltonian has been diagonalized for three electrons coupled via the exchange interaction. In particular, we have investigated different geometries of micro-magnets located on top of the triple dot in order to optimize the field gradient characteristics. In this paper, we focus on two geometries which are candidates for an addressable EDSR triple quantum dot device.

  1. Capture Efficiency of Biocompatible Magnetic Nanoparticles in Arterial Flow: A Computer Simulation for Magnetic Drug Targeting

    NASA Astrophysics Data System (ADS)

    Lunnoo, Thodsaphon; Puangmali, Theerapong

    2015-10-01

    The primary limitation of magnetic drug targeting (MDT) relates to the strength of an external magnetic field which decreases with increasing distance. Small nanoparticles (NPs) displaying superparamagnetic behaviour are also required in order to reduce embolization in the blood vessel. The small NPs, however, make it difficult to vector NPs and keep them in the desired location. The aims of this work were to investigate parameters influencing the capture efficiency of the drug carriers in mimicked arterial flow. In this work, we computationally modelled and evaluated capture efficiency in MDT with COMSOL Multiphysics 4.4. The studied parameters were (i) magnetic nanoparticle size, (ii) three classes of magnetic cores (Fe3O4, Fe2O3, and Fe), and (iii) the thickness of biocompatible coating materials (Au, SiO2, and PEG). It was found that the capture efficiency of small particles decreased with decreasing size and was less than 5 % for magnetic particles in the superparamagnetic regime. The thickness of non-magnetic coating materials did not significantly influence the capture efficiency of MDT. It was difficult to capture small drug carriers ( D<200 nm) in the arterial flow. We suggest that the MDT with high-capture efficiency can be obtained in small vessels and low-blood velocities such as micro-capillary vessels.

  2. Mean-field and direct numerical simulations of magnetic flux concentrations from vertical field

    NASA Astrophysics Data System (ADS)

    Brandenburg, A.; Gressel, O.; Jabbari, S.; Kleeorin, N.; Rogachevskii, I.

    2014-02-01

    Context. Strongly stratified hydromagnetic turbulence has previously been found to produce magnetic flux concentrations if the domain is large enough compared with the size of turbulent eddies. Mean-field simulations (MFS) using parameterizations of the Reynolds and Maxwell stresses show a large-scale negative effective magnetic pressure instability and have been able to reproduce many aspects of direct numerical simulations (DNS) regarding growth rate, shape of the resulting magnetic structures, and their height as a function of magnetic field strength. Unlike the case of an imposed horizontal field, for a vertical one, magnetic flux concentrations of equipartition strength with the turbulence can be reached, resulting in magnetic spots that are reminiscent of sunspots. Aims: We determine under what conditions magnetic flux concentrations with vertical field occur and what their internal structure is. Methods: We use a combination of MFS, DNS, and implicit large-eddy simulations (ILES) to characterize the resulting magnetic flux concentrations in forced isothermal turbulence with an imposed vertical magnetic field. Results: Using DNS, we confirm earlier results that in the kinematic stage of the large-scale instability the horizontal wavelength of structures is about 10 times the density scale height. At later times, even larger structures are being produced in a fashion similar to inverse spectral transfer in helically driven turbulence. Using ILES, we find that magnetic flux concentrations occur for Mach numbers between 0.1 and 0.7. They occur also for weaker stratification and larger turbulent eddies if the domain is wide enough. Using MFS, the size and aspect ratio of magnetic structures are determined as functions of two input parameters characterizing the parameterization of the effective magnetic pressure. DNS, ILES, and MFS show magnetic flux tubes with mean-field energies comparable to the turbulent kinetic energy. These tubes can reach a length of about

  3. Kinematic analysis and simulation of a substation inspection robot guided by magnetic sensor

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Luan, Yiqing; Wang, Haipeng; Li, Li; Li, Jianxiang

    2017-01-01

    In order to improve the performance of the magnetic navigation system used by substation inspection robot, the kinematic characteristics is analyzed based on a simplified magnetic guiding system model, and then the simulation process is executed to verify the reasonability of the whole analysis procedure. Finally, some suggestions are extracted out, which will be helpful to guide the design of the inspection robot system in the future.

  4. A three-dimensional model and numerical simulation regarding thermoseed mediated magnetic induction therapy conformal hyperthermia.

    PubMed

    Wang, Heng; Wu, Jianan; Zhuo, Zihan; Tang, Jintian

    2016-04-29

    In order to ensure the safety and effectiveness of magnetic induction hyperthermia in clinical applications, numerical simulations on the temperature distributions and extent of thermal damage to the targeted regions must be conducted in the preoperative treatment planning system. In this paper, three models, including a thermoseed thermogenesis model, tissue heat transfer model, and tissue thermal damage model, were established based on the four-dimensional energy field, temperature field, and thermal damage field distributions exhibited during hyperthermia. In addition, a numerical simulation study was conducted using the Finite Volume Method (FVM), and the accuracy and reliability of the magnetic induction hyperthermia model and its numerical calculations were verified using computer simulations and experimental results. Thus, this study promoted the application of computing methods to magnetic induction therapy and conformal hyperthermia, and improved the accuracy of the temperature field and tissue thermal damage distribution predictions.

  5. Particle-In-Cell Simulations of the Solar Wind Interaction with Lunar Crustal Magnetic Anomalies: Magnetic Cusp Regions

    NASA Technical Reports Server (NTRS)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.

    2012-01-01

    As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.

  6. Thermally activated magnetization reversal in monatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulations.

    PubMed

    Bauer, David S G; Mavropoulos, Phivos; Lounis, Samir; Blügel, Stefan

    2011-10-05

    We analyse the spontaneous magnetization reversal of supported monatomic chains of finite length due to thermal fluctuations via atomistic spin-dynamics simulations. Our approach is based on the integration of the Landau-Lifshitz equation of motion of a classical spin Hamiltonian in the presence of stochastic forces. The associated magnetization lifetime is found to obey an Arrhenius law with an activation barrier equal to the domain wall energy in the chain. For chains longer than one domain wall width, the reversal is initiated by nucleation of a reversed magnetization domain primarily at the chain edge followed by a subsequent propagation of the domain wall to the other edge in a random-walk fashion. This results in a linear dependence of the lifetime on the chain length, if the magnetization correlation length is not exceeded. We studied chains of uniaxial and triaxial anisotropy and found that a triaxial anisotropy leads to a reduction of the magnetization lifetime due to a higher reversal attempt rate, even though the activation barrier is not changed.

  7. Hybrid simulations of plasma transport by Kelvin-Helmholtz instability at the magnetopause: magnetic shear

    SciTech Connect

    Cowee, Misa M; Winske, Dan; Gary, S Peter

    2009-01-01

    Two-dimensional hybrid (kinetic ions, massless fluid electrons) simulations of the Kelvin Helmholtz Instability (KHI) for a magnetopause configuration with a magnetic shear across the boundary are carried out to examine how the transport of magnetosheath plasma into the magnetosphere is affected by the shear field. Low magnetic shear conditions where the magnetosheath magnetic field is within 30{sup o} of northward is included in the simulations because KHI is thought to be important for plasma transport only for northward or near-northward interplanetary magnetic field orientations. The simulations show that coherent vortices can grow for these near-northward angles, and that they are sometimes more coherent than for pure northward conditions because the turbulence which breaks-down these vortices is reduced when there are magnetic tension forces. With increasing magnetic shear angle, the growth rate is reduced, and the vortices do not grow to as large of size which reduces the plasma transport. By tracking the individual particle motions diffusion coefficients can be obtained for the system, where the diffusion is not classical in nature but instead has a time dependence resulting from both the increasingly large-scale vortex motion and the small-scale turbulence generated in the break-down of the instabilities. Results indicate that diffusion on the order of 10{sup 9} m{sup 2}/s could possibly be generated by KHI on the flanks of the magnetosphere.

  8. Monte Carlo simulation of magnetic multilayered structures with giant magnetoresistance effects

    NASA Astrophysics Data System (ADS)

    Prudnikov, V. V.; Prudnikov, P. V.; Romanovskiy, D. E.

    2016-02-01

    Description of giant magnetoresistance effects in magnetic multilayered structures with the use of the anisotropic Heisenberg model for determination of magnetic properties of thin ferromagnetic films forming these structures is given. Monte Carlo simulations of magnetic properties for structures, which are constructed from two ferromagnetic films divided by nonmagnetic film, are carried out. The temperature and magnetic field dependencies are considered for ferromagnetic and antiferromagnetic configurations of these structures. The calculation of the magnetoresistance is carried out for different thicknesses of the ferromagnetic films. It was shown, that the obtained temperature dependence for the magnetoresistance is agreed very well with experimental results, measured for the magnetic multilayered structures similar to structures, which are considered in our investigations.

  9. Simulation of stress-modulated magnetization precession frequency in Heusler-based spin torque oscillator

    NASA Astrophysics Data System (ADS)

    Huang, Houbing; Zhao, Congpeng; Ma, Xingqiao

    2017-03-01

    We investigated stress-modulated magnetization precession frequency in Heusler-based spin transfer torque oscillator by combining micromagnetic simulations with phase field microelasticity theory, by encapsulating the magnetic tunnel junction into multilayers structures. We proposed a novel method of using an external stress to control the magnetization precession in spin torque oscillator instead of an external magnetic field. The stress-modulated magnetization precession frequency can be linearly modulated by externally applied uniaxial in-plane stress, with a tunable range 4.4-7.0 GHz under the stress of 10 MPa. By comparison, the out-of-plane stress imposes negligible influence on the precession frequency due to the large out-of-plane demagnetization field. The results offer new inspiration to the design of spin torque oscillator devices that simultaneously process high frequency, narrow output band, and tunable over a wide range of frequencies via external stress.

  10. Laboratory simulation of arched magnetic flux rope eruptions in the solar atmosphere.

    PubMed

    Tripathi, S K P; Gekelman, W

    2010-08-13

    Dramatic eruption of an arched magnetic flux rope in a large ambient plasma has been studied in a laboratory experiment that simulates coronal loops. The eruption is initiated by laser generated plasma flows from the footpoints of the rope that significantly modify the magnetic-field topology and link the magnetic-field lines of the rope with the ambient plasma. Following this event, the flux rope erupts by releasing its plasma into the background. The resulting impulse excites intense magnetosonic waves that transfer energy to the ambient plasma and subsequently decay.

  11. Laboratory Simulation of Arched Magnetic Flux Rope Eruptions in the Solar Atmosphere

    SciTech Connect

    Tripathi, S. K. P.; Gekelman, W.

    2010-08-13

    Dramatic eruption of an arched magnetic flux rope in a large ambient plasma has been studied in a laboratory experiment that simulates coronal loops. The eruption is initiated by laser generated plasma flows from the footpoints of the rope that significantly modify the magnetic-field topology and link the magnetic-field lines of the rope with the ambient plasma. Following this event, the flux rope erupts by releasing its plasma into the background. The resulting impulse excites intense magnetosonic waves that transfer energy to the ambient plasma and subsequently decay.

  12. Thermodynamic simulation of a rotating Ericsson-cycle magnetic refrigerator without a regenerator

    NASA Astrophysics Data System (ADS)

    Hakuraku, Y.

    1987-09-01

    A magnetic Ericsson cycle, which consists of two isothermal stages and two isofield stages, is generally thought to require regenerators. However, a new concept makes it possible to realize magnetic refrigerators capable of executing an Ericsson-cycle without using regenerators. The basic principle lies in directly linking the two isofield changes by transferring heat between the isofield stages through heat paths rather than through regenerators. A fundamental configuration is proposed for a rotating magnetic refrigerator that operates based on this concept. A simulation of the thermodynamic cycle in this simplified refrigerator model shows that the system is theoretically feasible.

  13. Numerical simulation of the Hall effect in magnetized accretion disks with the Pluto code

    NASA Astrophysics Data System (ADS)

    Nakhaei, Mohammad; Safaei, Ghasem; Abbassi, Shahram

    2014-01-01

    We investigate the Hall effect in a standard magnetized accretion disk which is accompanied by dissipation due to viscosity and magnetic resistivity. By considering an initial magnetic field, using the PLUTO code, we perform a numerical magnetohydrodynamic simulation in order to study the effect of Hall diffusion on the physical structure of the disk. Current density and temperature of the disk are significantly modified by Hall diffusion, but the global structure of the disk is not substantially affected. The changes in the current densities and temperature of the disk lead to a modification in the disk luminosity and radiation.

  14. 3D hybrid simulations of the plasma penetration across a magnetic field

    NASA Astrophysics Data System (ADS)

    Omelchenko, Yuri

    2016-10-01

    The expansion of hot dense plasmas across ambient magnetic fields in physical systems with spatial scales comparable to the ion gyro and inertial lengths is of great interest to space physics and fusion. This work presents results from recent three-dimensional hybrid simulations (kinetic ions, fluid electrons) of experiments at the LAPD and Nevada Terawatt Facility where short-pulse lasers are used to ablate solid targets to produce plasmas that expand across external magnetic fields. The first simulation recreates flutelike density striations observed at the leading edge of the carbon plasma and predicts an early destruction of the magnetic cavity in agreement with experimental evidence. In the second simulation the plasma contains protons and carbon ions produced during the ablation of a polyethylene target. A mechanism is demonstrated that allows protons to penetrate the magnetic field in the form of a collimated flow while the carbon ion component forms a supporting magnetic structure. The role of ion kinetic and Hall effects in creating an electric field responsible for plasma transport is discussed and results are compared to experimental data. The hybrid simulations are performed with a massively parallel hybrid code, HYPERS that advances fields and particles asynchronously on time scales determined by local physical and geometric properties. Supported by US DOE Award DE-SC0012345.

  15. Investigating Magnetic Activity in the Galactic Centre by Global MHD Simulation

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji; Kakiuchi, Kensuke

    2017-01-01

    By performing a global magnetohydrodynamical (MHD) simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre (GC) region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches >~ 0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternative to the bar-potential-driven model for the parallelogram shape of the central molecular zone. In addition, Parker instability (magnetic buoyancy) creates vertical magnetic structure, which would correspond to observed molecular loops, and frequently excited vertical flows. Furthermore, the time-averaged net gas flow is directed outward, whereas the flows are highly time dependent, which would contribute to the outflow from the bulge.

  16. SPILADY: A parallel CPU and GPU code for spin-lattice magnetic molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ma, Pui-Wai; Dudarev, S. L.; Woo, C. H.

    2016-10-01

    Spin-lattice dynamics generalizes molecular dynamics to magnetic materials, where dynamic variables describing an evolving atomic system include not only coordinates and velocities of atoms but also directions and magnitudes of atomic magnetic moments (spins). Spin-lattice dynamics simulates the collective time evolution of spins and atoms, taking into account the effect of non-collinear magnetism on interatomic forces. Applications of the method include atomistic models for defects, dislocations and surfaces in magnetic materials, thermally activated diffusion of defects, magnetic phase transitions, and various magnetic and lattice relaxation phenomena. Spin-lattice dynamics retains all the capabilities of molecular dynamics, adding to them the treatment of non-collinear magnetic degrees of freedom. The spin-lattice dynamics time integration algorithm uses symplectic Suzuki-Trotter decomposition of atomic coordinate, velocity and spin evolution operators, and delivers highly accurate numerical solutions of dynamic evolution equations over extended intervals of time. The code is parallelized in coordinate and spin spaces, and is written in OpenMP C/C++ for CPU and in CUDA C/C++ for Nvidia GPU implementations. Temperatures of atoms and spins are controlled by Langevin thermostats. Conduction electrons are treated by coupling the discrete spin-lattice dynamics equations for atoms and spins to the heat transfer equation for the electrons. Worked examples include simulations of thermalization of ferromagnetic bcc iron, the dynamics of laser pulse demagnetization, and collision cascades.

  17. Design of the main racetrack microtron accelerator end magnets of the Institute of Physics of University of São Paulo

    NASA Astrophysics Data System (ADS)

    Kassab, L. R.; Martins, M. N.; Takahashi, J.; Gouffon, P.

    1999-03-01

    This work deals with the design of the Institute of Physics of the University of São Paulo (IFUSP) main racetrack microtron accelerator end magnets. This is the last stage of acceleration, comprised of an accelerating section (1.04 m) and two end magnets (0.1585 T), in which a 5.10 MeV beam, produced by a racetrack microtron booster has its energy raised up to 31.15 MeV after 28 accelerations. Poisson code was used to give the final configuration that includes auxiliary pole pieces (clamps) and auxiliary homogenizing gaps. The clamps create a reverse fringe field region and avoid the vertical defocusing and the horizontal displacement of the beam produced by extended fringe fields; Ptrace code was used to perform the trajectory calculations in the fringe field region. The auxiliary homogenizing gaps improve the field uniformity as they create a ``magnetic shower'' that provides uniformity of +/-0.3%, before the introduction of the correcting coils that will be attached to the pole faces. This method of correction, used in the IFUSP racetrack microtron booster magnets, enabled uniformity of +/-0.001% in an average field of 0.1 T and will also be employed for these end magnets.

  18. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Nordlund, A.; Frederiksen, J.; Mizuno, Y.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2011-01-01

    Using our new 3-D relativistic particle-in-cell (PIC) code, we investigated long-term particle acceleration associated with a relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations were performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. Acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value as predicted by hydrodynamic compression. Behind the bow shock, in the jet shock, strong electromagnetic fields are generated. These fields may lead to time dependent afterglow emission. In order to go beyond the standard synchrotron model used in astrophysical objects we have used PIC simulations and calculated radiation based on first principles. We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify the technique. We also used the technique to calculate emission from electrons based on simulations with a small system. We obtain spectra which are consistent with those generated from electrons propagating in turbulent magnetic fields. This turbulent magnetic field is similar to the magnetic field generated at an early nonlinear stage of the Weibel instability. A fully developed shock within a larger system may generate a jitter/synchrotron spectrum.

  19. Magnetospheric convection on the presence of interplanetary magnetic gield B{sub y}: A conceptual model and simulations

    SciTech Connect

    Khurana, K.K.; Walker, R.J.; Ogino, Tatsuki

    1996-03-01

    Existing observations from ISEE 3 and new observations from Galileo show that when the interplanetary magnetic field (IMF) has a B{sub y} component, a B{sub y} component also develops in the Earth`s magnetotail, but only in those quadrants in which the addition of the newly opened magnetic flux tubes occurs. The presence of B{sub y} on the closed field lines (which is in the same direction as the IMF B{sub y}) is also seen. The authors suggest that for a positive IMF B{sub y}, the magnetopause is open only in the north dawn and south dusk quadrants of the magnetotail. The continuity of magnetic field across the open boundary then requires that a B{sub y} component be present in the magnetosphere in these quadrants but not in the other two quadrants. They present a model of the magnetospheric convection that postulates cross-tail flows in the mantle/lobe system and the plasma sheet. They suggest that shear flows between the northern and southern halves of the plasma sheet generate a B{sub y} component on the closed magnetic field lines. The model is consistent with the two cell ionospheric convection models constructed from electric field observations by Heppner and Maynard. Results from global MHD simulations confirm the main features of the proposed model. 34 refs., 13 fig.

  20. Finite-Element Electromagnetic Simulation of a Volume Coil with Slotted End-Rings for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Vazquez, J. F.; Rodriguez, A. O.

    2008-08-01

    Radiofrequency volume coils are still a vital part to detect the magnetic resonance signal. This is mainly due to its highly uniform field over large regions of interest at expense of a relatively low signal-to-noise ratio. In this work, a new volume coil design with slotted end-rings is proposed for high field magnetic resonance imaging applications and, its electromagnetic properties studied via a numerical study. The slotted end-rings avoid breaking the coil structure into small segments degrading the coil performance and, improving the poor signal at the end-rings usually found in the traditional birdcage coil. Numerical simulations were evaluated by solving Maxwell's equations with the finite element method. Hence, both the electric and magnetic fields were evaluated and presented in the form of bi-dimensional images for the slotted end-ring coil and the birdcage coil for comparison purposes. From the magnetic field images of both coil designs, uniformity profiles were calculated at the midsection and the end-rings of the coil and compared. A substantial improvement can be appreciated at the end-rings for the slotted end-ring coil whereas for the midsection it had an acceptable enhancement. These encouraging results suggest that the slotted end-ring coil have an improved performance compared to the birdcage coil.

  1. B2N2O4: Prediction of a Magnetic Ground State for a Light Main-Group Molecule

    SciTech Connect

    Varga, Zoltan; Truhlar, Donald G.

    2015-09-08

    Cyclobutanetetrone, (CO)4, has a triplet ground state. Here we predict, based on electronic structure calculations, that the B2N2O4 molecule also has a triplet ground state and is therefore paramagnetic; the structure is an analogue of (CO)4 in which the carbon ring is replaced by a (BN)2 ring. Similar to (CO)4, the triplet ground-state structure of B2N2O4 is also thermodynamically unstable. Besides analysis of the molecular orbitals, we found that the partial atomic charges are good indicators for predicting magnetic ground states.

  2. Influences of magnetized hydroxyapatite on the growth behaviors of osteoblasts and the mechanism from molecular dynamics simulation.

    PubMed

    Yang, Weihu; Xi, Xingfeng; Fang, Jiajia; Liu, Peng; Cai, Kaiyong

    2013-10-01

    To investigate the influence of magnetized hydroxyapatite on the growth and differentiation of osteoblasts, hydroxyapatite (HA) and magnetized hydroxyapatite (mHA) were synthesized and characterized. The cell viability, differentiation, and morphologies of osteoblasts were investigated in vitro, respectively. The results showed that compared to HA, cells cultured with mHA had better cell viability, and both HA and mHA were beneficial to the early differentiation of osteoblasts. Furthermore, the interaction mechanism between mHA and osteoblasts was elucidated using a molecular dynamics simulation. The simulation results indicated that when cultured with osteoblasts, HA adsorbed bovine serum protein onto its surface from the medium immediately, which was beneficial to the adhesion and proliferation of osteoblasts. The main driving force for the adsorption of bovine serum was the electronic properties of HA crystal faces. The (211) crystal face of HA had the highest electron density among its all crystal faces, thus mainly contributing to the protein adsorption of HA. Nevertheless, the (211) crystal face of mHA still had a relatively higher electron density than that of HA, thus possessing better protein adsorption than that of HA, and in turn promoting the biological functions of osteoblasts.

  3. Gyrokinetic particle simulation of microturbulence for general magnetic geometry and experimental profiles

    SciTech Connect

    Xiao, Yong; Holod, Ihor; Wang, Zhixuan; Lin, Zhihong; Zhang, Taige

    2015-02-15

    Developments in gyrokinetic particle simulation enable the gyrokinetic toroidal code (GTC) to simulate turbulent transport in tokamaks with realistic equilibrium profiles and plasma geometry, which is a critical step in the code–experiment validation process. These new developments include numerical equilibrium representation using B-splines, a new Poisson solver based on finite difference using field-aligned mesh and magnetic flux coordinates, a new zonal flow solver for general geometry, and improvements on the conventional four-point gyroaverage with nonuniform background marker loading. The gyrokinetic Poisson equation is solved in the perpendicular plane instead of the poloidal plane. Exploiting these new features, GTC is able to simulate a typical DIII-D discharge with experimental magnetic geometry and profiles. The simulated turbulent heat diffusivity and its radial profile show good agreement with other gyrokinetic codes. The newly developed nonuniform loading method provides a modified radial transport profile to that of the conventional uniform loading method.

  4. MAGNETIC CYCLES IN GLOBAL LARGE-EDDY SIMULATIONS OF SOLAR CONVECTION

    SciTech Connect

    Ghizaru, Mihai; Charbonneau, Paul; Smolarkiewicz, Piotr K.

    2010-06-01

    We report on a global magnetohydrodynamical simulation of the solar convection zone, which succeeds in generating a large-scale axisymmetric magnetic component, antisymmetric about the equatorial plane and undergoing regular polarity reversals on decadal timescales. We focus on a specific simulation run covering 255 years, during which 8 polarity reversals are observed, with a mean period of 30 years. Time-latitude slices of the zonally averaged toroidal magnetic component at the base of the convecting envelope show a well-organized toroidal flux system building up in each solar hemisphere, peaking at mid-latitudes and migrating toward the equator in the course of each cycle, in remarkable agreement with inferences based on the sunspot butterfly diagram. The simulation also produces a large-scale dipole moment, varying in phase with the internal toroidal component, suggesting that the simulation may be operating as what is known in mean-field theory as an {alpha}{Omega} dynamo.

  5. Numerical simulation on edge localized mode control capability of resonant magnetic perturbation in the KSTAR tokamak

    NASA Astrophysics Data System (ADS)

    Kim, Doohyun; Han, Hyunsun; Kim, Ki Min; Park, Jong Kyu; Jeon, Young Mu; Na, Yong-Su; Hong, Sang Hee

    2010-09-01

    Numerical simulations are carried out to investigate the applicability of resonant magnetic perturbation (RMP) to KSTAR plasmas for a possible control of edge localized mode (ELM) to suppress or mitigate its damages to divertor materials. For the verification of the feasibility of RMP application, magnetic island configurations, resonant normal fields, magnetic island widths and Chirikov parameters are calculated for two types of KSTAR operation scenarios: steady state and hybrid. Field error correction (FEC) coils in KSTAR are considered to produce externally perturbed magnetic fields for RMP, and the directions of coil currents determine the toroidal mode n and the parity (even or odd). The RMP configurations are described by vacuum superposition of the equilibrium magnetic fields and the perturbed ones induced by FEC coils. The numerical simulations for n = 2 toroidal mode in both operation scenarios show that when the pitches of the equilibrium and perturbed magnetic fields are well aligned, magnetic islands are formed for a series of m poloidal modes and the adjacent islands are overlapped to generate a stochastic layer in the edge region. Even parity turns out to be more effective in making the magnetic islands overlapped to become stochastic field lines in the steady-state operation, while odd parity in the hybrid operation. The formation of the stochastic layer is verified by the calculated Chirikov parameters, which also give basic information on the current requirement of FEC coils. Additionally, lobe structures of stochastic field lines are found in the edge region extended to the divertor plate in the hybrid scenario. Based on the standard vacuum criteria for RMP, the simulation results indicate that the FEC coils will be feasible for control of ELMs and mitigation of divertor heat load by RMP in both steady-state and hybrid operation scenarios.

  6. Computer simulation study of dynamics and domain structures in different magnetic systems

    NASA Astrophysics Data System (ADS)

    Yan, Ming

    Spin wave modes in Permalloy stripes with transverse applied field were studied both by micromagnetic simulations and by solving the linearized equation of motion. In high field regime, localized spin wave modes are observed. In low field regime, crossover spin wave modes of mixed Damon-Eshbach and backward volume character are observed. The lowest frequency localized modes completely soften when the magnetization is saturated at very high external field. The hysteresis loops in both easy and hard axes are calculated in simulations for a FeCo thin film rectangle. The reversal process in the easy axis is studied by applying a tipping pulse. With a large applied field in the easy axis, two resonance modes are observed. The higher frequency mode is concentrated at the central part of the rectangle while the lower frequency one is located at the corners. For a Permalloy thin film square, spin wave modes excited from the Kittel structure were studied. Systematic but complex spin wave modes are observed. Unconventional two dimensional magnetic vortex structures, which have the same exchange energy and surface charge density but different volume charge density compared to the conventional vortex structures, are observed at the cross-section area of two Permalloy thin film wires in simulations. Isolated anti-vortex structures are also observed in the same geometry but with a different initial condition. Logic gates are designed using magnetic elements through magnetostatic interaction. Two setups can operate the AND function in simulations. The effect on the magnetization of the magnetic field produced by the electric current passing through the magnetic sample were studied in simulations. The circular field due to the electric current may cause a vortex structure or even change the chirality of the vortex depending on the current density, the material and size of the sample.

  7. Lattice Monte Carlo Simulation Study Atomic Structure of Alnico 5-7 Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-03-01

    The fluctuations and increases in price and the issues in supply recently of rare earth metals re-heated the sought for non-rare earth permanent magnets. Alnico permanent magnets have been considered as promising replacements for rare earth-based permanent magnets due to the superiors in the magnetic performance at high temperature and the abundances of the constituent elements. Using lattice Monte Carlo simulation in combination with cluster expansion method we study the atomic structure of alnico 5-7 permanent magnets. We observed the phase separation into FeCo-rich and NiAl-rich phases in alnico 5-7 at low temperature, which is consistent with experiment. The phase boundary between these two phases is quite sharp. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al sitting on ?-site and Ni and Co sitting on ?-site. The degree of order of NiAl-rich phase is quite higher than that of FeCo-rich phase and it decreases with temperature slower than that of FeCo-rich phase. We also observed a small and increasing with annealing temperature magnetic moment in NiAl-rich phase, implying that the magnetic properties of alnico 5-7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase.

  8. Numerical Simulation on Applicability of Resonant Magnetic Perturbation to KSTAR Tokamak

    NASA Astrophysics Data System (ADS)

    Kim, Doohyun; Han, Hyunsun; Kim, Ki Min; Hong, Sang Hee

    2009-11-01

    A numerical simulation is carried out to investigate the perturbed magnetic field configurations for a feasibility study on the resonant magnetic perturbation(RMP) to mitigate ELM damages to the divertor in KSTAR tokamak. The perturbed magnetic fields are described by vacuum superposition of equilibrium fields and fluctuating fields induced from the in- vessel control coils (IVCCs) will be installed in KSTAR. The equilibrium and induced fields are calculated using Grad- Shafranov equation and Biot-Savart law, respectively. For visualizing the magnetic field configurations, a field line tracing code has been developed using the 4th-order Runge-Kutta method. Magnetic field perturbations and island configurations can be found with this tracing code by describing poloidal positions of field lines as the increment of toroidal angle. And the Chirikov parameter is calculated to verify the generation of stochastic layer by overlap of magnetic islands. From this numerical work, it is confirmed that stochastic magnetic field lines are formed when the IVCC magnetic fields are generated, and the effect of RMP on KSTAR operation is discussed.

  9. Design and simulation of a 800 Mbit/s data link for magnetic resonance imaging wearables.

    PubMed

    Vogt, Christian; Buthe, Lars; Petti, Luisa; Cantarella, Giuseppe; Munzenrieder, Niko; Daus, Alwin; Troster, Gerhard

    2015-08-01

    This paper presents the optimization of electronic circuitry for operation in the harsh electro magnetic (EM) environment during a magnetic resonance imaging (MRI) scan. As demonstrator, a device small enough to be worn during the scan is optimized. Based on finite element method (FEM) simulations, the induced current densities due to magnetic field changes of 200 T s(-1) were reduced from 1 × 10(10) A m(-2) by one order of magnitude, predicting error-free operation of the 1.8V logic employed. The simulations were validated using a bit error rate test, which showed no bit errors during a MRI scan sequence. Therefore, neither the logic, nor the utilized 800 Mbit s(-1) low voltage differential swing (LVDS) data link of the optimized wearable device were significantly influenced by the EM interference. Next, the influence of ferro-magnetic components on the static magnetic field and consequently the image quality was simulated showing a MRI image loss with approximately 2 cm radius around a commercial integrated circuit of 1×1 cm(2). This was successively validated by a conventional MRI scan.

  10. Verification of Spin Magnetic Attitude Control System using air-bearing-based attitude control simulator

    NASA Astrophysics Data System (ADS)

    Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.

    2016-09-01

    This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.

  11. Tomography based numerical simulation of the demagnetizing field in soft magnetic composites

    SciTech Connect

    Arzbacher, S.; Petrasch, J.; Amann, P.; Weidenfeller, B.; Loerting, T.; Ostermann, A.

    2015-04-28

    The magneto-static behaviour of soft magnetic composites (SMCs) is investigated using tomography based direct numerical simulation. The microgeometry crucially affects the magnetic properties of the composite since a geometry dependent demagnetizing field is established inside the composite, which lowers the magnetic permeability. We determine the magnetic field information inside the SMC using direct numerical simulation of the magnetic field based on high resolution micro-computed tomography data of the SMC's microstructure as well as artificially generated data made of statistically homogeneous systems of identical fully penetrable spheres and prolate spheroids. Quasi-static electromagnetic behaviour and linear material response are assumed. The 3D magnetostatic Maxwell equations are solved using Whitney finite elements. Simulations show that clustering and percolation behaviour determine the demagnetizing factor of SMCs rather than the particle shape. The demagnetizing factor correlates with the slope of a 2-point probability function at its origin, which is related to the specific surface area of the SMC. Comparison with experimental results indicates that the relatively low permeability of SMCs cannot be explained by demagnetizing effects alone and suggests that the permeability of SMC particles has to be orders of magnitude smaller than the bulk permeability of the particle material.

  12. Developing Glassy Magnets from Simulated Composition of Martian Soil for Exploration Applications

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Ray, C. S.; Rogers, J. R.

    2004-01-01

    The long-term exploration goals of NASA include developing human habitation on Mars and conducting scientific investigations on Mars and other planetary bodies. In situ resource processing is a key objective in this area. We focus on the possibility of making magnetic glasses in situ for potential applications development. The paper will focus on ongoing work at NASA Marshall Space Flight Center on making magnetic glass from Mars soil simulants and its characterization. Analysis of the glass morphology, strength, chemistry and resulting magnetic properties will provide a fundamental understanding of the synthesized material that can be used for potential applications development. in an effort to characterize the magnetic properties of the Mars glasses, a series of tests were performed at NASA MSFC. Preliminary tests indicated that the glasses were attracted to a magnet and also had a small amount of residual magnetism. They were opaque (almost black in color). As the first step, a sample of Mars 1 glass (approx.1 mm x 1 mm x 5 mm length) was machined, weighed and its hysteresis curve was measured using a Vibration Sample Magnetometer (VSM). Next, a small furnace was designed and built and the sample was baked in a graphite (reducing agent) crucible at 800 C in an Argon atmosphere for 3 hours in the presence of a uniform, transverse (transverse to the 5mm length of the sample) magnetic field of 0.37 Tesla. The treated sample showed reddening on the outside and showed substantially increased residual magnetism. This sample was again analyzed in the VSM. The data clearly showed that some chemical change occurred during the heat treatment (color change) and that both the glasses have useful magnetic properties. Although no orientation effects of the magnetic field were considered, the data showed the following: 1. Both glass samples are primarily soft magnets and display ferromagnetic behavior (hysteresis, saturation, etc.) 2. The treated glass has improved saturation

  13. Computer simulation of magnetization-controlled shunt reactors for calculating electromagnetic transients in power systems

    SciTech Connect

    Karpov, A. S.

    2013-01-15

    A computer procedure for simulating magnetization-controlled dc shunt reactors is described, which enables the electromagnetic transients in electric power systems to be calculated. It is shown that, by taking technically simple measures in the control system, one can obtain high-speed reactors sufficient for many purposes, and dispense with the use of high-power devices for compensating higher harmonic components.

  14. Simulation investigation of a Ku-band radial line oscillator operating at low guiding magnetic field

    SciTech Connect

    Dang, Fangchao Zhang, Xiaoping; Zhong, Huihuang; Li, Yangmei; Qi, Zumin

    2014-06-15

    A novel radial line oscillator operating at Ku-band with low guiding magnetic field is proposed in this paper. By using an oversized radial structure, the power handling capacity is enhanced significantly. Based on the small-signal theory, the π/2 mode in radial TM{sub 01} mode is selected as the working mode. Furthermore, a radial uniform guiding magnetic field, made up of four solenoids, is designed. As indicated in 2.5-dimensional fully electromagnetic particle-in-cell simulation, high power microwaves with a power of 2.2 GW and a frequency of 14.25 GHz are generated with over 40% efficiency when the electron beam voltage is 300 kV, the beam current 18 kA, and the guiding magnetic field is only 0.6 T. There is no angular non-asymmetric mode discovered in three-dimensional simulation.

  15. Simulation investigation of a Ku-band radial line oscillator operating at low guiding magnetic field

    NASA Astrophysics Data System (ADS)

    Dang, Fangchao; Zhang, Xiaoping; Zhong, Huihuang; Li, Yangmei; Qi, Zumin

    2014-06-01

    A novel radial line oscillator operating at Ku-band with low guiding magnetic field is proposed in this paper. By using an oversized radial structure, the power handling capacity is enhanced significantly. Based on the small-signal theory, the π/2 mode in radial TM01 mode is selected as the working mode. Furthermore, a radial uniform guiding magnetic field, made up of four solenoids, is designed. As indicated in 2.5-dimensional fully electromagnetic particle-in-cell simulation, high power microwaves with a power of 2.2 GW and a frequency of 14.25 GHz are generated with over 40% efficiency when the electron beam voltage is 300 kV, the beam current 18 kA, and the guiding magnetic field is only 0.6 T. There is no angular non-asymmetric mode discovered in three-dimensional simulation.

  16. Study of magnetic properties for co double-nanorings: Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Ye, Qingying; Chen, Shuiyuan; Liu, Jingyao; Huang, Chao; Huang, Shengkai; Huang, Zhigao

    2016-06-01

    In this paper, cobalt double-nanorings (Co D-N-rings) structure model was constructed. Based on Monte-Carlo simulation (MC) method combining with Fast Fourier Transformation and Micromagnetism (FFTM) method, the magnetic properties of Co D-N-rings with different geometric dimensions have been studied. The simulated results indicate that, the magnetization steps in hysteresis loops is the result of the special spin configurations (SCs), i.e., onion-type state and vortex-type state, which are very different from that in many other nanostructures, such as nanometer thin-films, nanotubes, etc. Besides, Co D-N-rings with different geometric dimensions present interesting magnetization behavior, which is determined by the change of both SCs and exchange interaction in Co D-N-rings.

  17. The simulation of magnetic resonance elastography through atherosclerosis.

    PubMed

    Thomas-Seale, L E J; Hollis, L; Klatt, D; Sack, I; Roberts, N; Pankaj, P; Hoskins, P R

    2016-06-14

    The clinical diagnosis of atherosclerosis via the measurement of stenosis size is widely acknowledged as an imperfect criterion. The vulnerability of an atherosclerotic plaque to rupture is associated with its mechanical properties. The potential to image these mechanical properties using magnetic resonance elastography (MRE) was investigated through synthetic datasets. An image of the steady state wave propagation, equivalent to the first harmonic, can be extracted directly from finite element analysis. Inversion of this displacement data yields a map of the shear modulus, known as an elastogram. The variation of plaque composition, stenosis size, Gaussian noise, filter thresholds and excitation frequency were explored. A decreasing mean shear modulus with an increasing lipid composition was identified through all stenosis sizes. However the inversion algorithm showed sensitivity to parameter variation leading to artefacts which disrupted both the elastograms and quantitative trends. As noise was increased up to a realistic level, the contrast was maintained between the fully fibrous and lipid plaques but lost between the interim compositions. Although incorporating a Butterworth filter improved the performance of the algorithm, restrictive filter thresholds resulted in a reduction of the sensitivity of the algorithm to composition and noise variation. Increasing the excitation frequency improved the techniques ability to image the magnitude of the shear modulus and identify a contrast between compositions. In conclusion, whilst the technique has the potential to image the shear modulus of atherosclerotic plaques, future research will require the integration of a heterogeneous inversion algorithm.

  18. Modeling of the corrected D st * index temporal profile on the main phase of the magnetic storms generated by different types of solar wind

    NASA Astrophysics Data System (ADS)

    Nikolaeva, N. S.; Yermolaev, Yu. I.; Lodkina, I. G.

    2015-03-01

    A modeling of the corrected (taking into account the magnetopause currents [9]) D st * index during the main phase of magnetic storms generated by four types of the solar wind (SW), namely MC (10 storms), CIR (28 storms), Sheath (21 storms), and Ejecta (31 storms), is performed similarly to our previous work on the simple D st index [8]. The "Catalog of large-scale solar wind phenomena during 1976-2000" ([1], ftp://ftp.iki.rssi.ru/pub/omni/) prepared on the basis of the OMNI database, was used for the identification of SW types. The time behavior of D st * is approximated by a linear dependence on the integral electric field (sum E y ), dynamic pressure ( P d ), and fluctuation level (s B) of the interplanetary magnetic field (IMF). Three types of D st * modeling are performed: (1) by individual values of the approximation coefficients; (2) by approximation coefficients averaged over SW type, and (3) in the same way as in (2) but with allowance for the D st *-index values preceding the beginning of the main phase of the magnetic storm. The results of modeling the corrected D st * index are compared to modeling of the usual D st index. In the conditions of a strong statistical scatter of the approximation coefficients, the use of D st instead of D st * insignificantly influences the accuracy of the modeling and correlation coefficient.

  19. NUMERICAL SIMULATION OF SOLAR MICROFLARES IN A CANOPY-TYPE MAGNETIC CONFIGURATION

    SciTech Connect

    Jiang, R.-L.; Fang, C.; Chen, P.-F.

    2012-06-01

    Microflares are small activities in the solar low atmosphere; some are in the low corona while others are in the chromosphere. Observations show that some of the microflares are triggered by magnetic reconnection between the emerging flux and a pre-existing background magnetic field. We perform 2.5-dimensional, compressible, resistive magnetohydrodynamic simulations of the magnetic reconnection with gravity considered. The background magnetic field is a canopy-type configuration that is rooted at the boundary of the solar supergranule. By changing the bottom boundary conditions in the simulation, a new magnetic flux emerges at the center of the supergranule and reconnects with the canopy-type magnetic field. We successfully simulate the coronal and chromospheric microflares whose current sheets are located at the corona and the chromosphere, respectively. The microflare with a coronal origin has a larger size and a higher temperature enhancement than the microflare with a chromospheric origin. In the microflares with coronal origins, we also found a hot jet ({approx}1.8 Multiplication-Sign 10{sup 6} K), which is probably related to the observational extreme ultraviolet or soft X-ray jets, and a cold jet ({approx}10{sup 4} K), which is similar to the observational H{alpha}/Ca surges. However, there is only a H{alpha}/Ca bright point in the microflares that have chromospheric origins. The study of parameter dependence shows that the size and strength of the emerging magnetic flux are the key parameters that determine the height of the reconnection location, and they further determine the different observational features of the microflares.

  20. Non-magnetic photospheric bright points in 3D simulations of the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Steiner, O.; Freytag, B.

    2016-11-01

    Context. Small-scale bright features in the photosphere of the Sun, such as faculae or G-band bright points, appear in connection with small-scale magnetic flux concentrations. Aims: Here we report on a new class of photospheric bright points that are free of magnetic fields. So far, these are visible in numerical simulations only. We explore conditions required for their observational detection. Methods: Numerical radiation (magneto-)hydrodynamic simulations of the near-surface layers of the Sun were carried out. The magnetic field-free simulations show tiny bright points, reminiscent of magnetic bright points, only smaller. A simple toy model for these non-magnetic bright points (nMBPs) was established that serves as a base for the development of an algorithm for their automatic detection. Basic physical properties of 357 detected nMBPs were extracted and statistically evaluated. We produced synthetic intensity maps that mimic observations with various solar telescopes to obtain hints on their detectability. Results: The nMBPs of the simulations show a mean bolometric intensity contrast with respect to their intergranular surroundings of approximately 20%, a size of 60-80 km, and the isosurface of optical depth unity is at their location depressed by 80-100 km. They are caused by swirling downdrafts that provide, by means of the centripetal force, the necessary pressure gradient for the formation of a funnel of reduced mass density that reaches from the subsurface layers into the photosphere. Similar, frequently occurring funnels that do not reach into the photosphere, do not produce bright points. Conclusions: Non-magnetic bright points are the observable manifestation of vertically extending vortices (vortex tubes) in the photosphere. The resolving power of 4-m-class telescopes, such as the DKIST, is needed for an unambiguous detection of them. The movie associated to Fig. 1 is available at http://www.aanda.org

  1. Monte Carlo Simulation of Magnetization Recovery in Two-Dimensional Ferromagnetic System after Ultrafast Pump Pulses

    NASA Astrophysics Data System (ADS)

    Fang, WenXiao; En, YunFei; Zhou, Bin; Huang, QinWen; Liu, Xin; Chen, YiQiang

    2012-12-01

    The magnetization recovery of a two-dimensional ferromagnetic system after excitation by intensive ultrafast pump pulses is investigated by a Monte Carlo method with a focus on the evolution of domain structure and the magnetization in the equilibrium state. Our simulations can explain the effect of the pumping fluence on the recovery process. In particular, they reveal the importance of domain formation in the recently reported accumulation effect already found by the pump-probe magnetization hysteresis loop measurement of a metallic ferromagnetic film. In the framework of the model, it is predicted that by repeating pump pulses a sufficient number of times, the magnetization of the two-dimensional ferromagnetic system can be eliminated when the pump fluence is above a critical value.

  2. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases

    PubMed Central

    Huang, Xu-Guang

    2016-01-01

    The chiral magnetic and chiral separation effects—quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma—have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084

  3. Monte Carlo simulations of diluted magnetic semiconductors using ab initio exchange parameters.

    PubMed

    Nayak, S K; Ogura, M; Hucht, A; Akai, H; Entel, P

    2009-02-11

    Co doped ZnO (Zn(1-x)Co(x)O) is studied as a prototype material for transition metal doped II-VI diluted magnetic semiconductors (DMSs) from first-principles and Monte Carlo simulations. The exchange interactions are calculated using the Korringa-Kohn-Rostoker (KKR) Green's function method. The exchange coupling constants thus obtained are treated in the classical Heisenberg model and the magnetic phase transitions are studied by the Monte Carlo technique. Our results show that the defect free substitutional DMSs of Zn(1-x)Co(x)O do not sustain magnetization at low concentration. At high concentration, we find layered magnetic structures. Ferromagnetism, with Curie temperature below room temperature, is stable at intermediate Co concentrations. First-principles studies with the generalized gradient approximation (GGA) and the GGA together with the Hubbard U are discussed with respect to structural and electronic properties of ZnO.

  4. Simulating Magnetic Reconnection Experiment (MRX) with a Guide Field using Fluid Code, HiFi

    NASA Astrophysics Data System (ADS)

    Budner, Tamas; Chen, Yangao; Meier, Eric; Ji, Hantao; MRX Team

    2015-11-01

    Magnetic reconnection is a phenomenon that occurs in plasmas when magnetic field lines effectively ``break'' and reconnect resulting in a different topological configuration. In this process, energy that was once stored in the magnetic field is transfered into the thermal velocity of the particles, effectively heating the plasma. MRX at the Princeton Plasma Physics Laboratory creates the conditions under which reconnection can occur by initially ramping the current in two adjacent coils and then rapidly decreasing with and without a guide magnetic field along the reconnecting current. We simulate this experiment using a fluid code called HiFi, an implicit and adaptive high order spectral element modeling framework, and compare our results to experimental data from MRX. The purpose is to identify physics behind the observed reconnection process for the field line break and the resultant plasma heating.

  5. High resolution numerical relativity simulations for the merger of binary magnetized neutron stars

    NASA Astrophysics Data System (ADS)

    Kiuchi, Kenta; Kyutoku, Koutarou; Sekiguchi, Yuichiro; Shibata, Masaru; Wada, Tomohide

    2014-08-01

    We perform high-resolution magnetohydrodynamics simulations of binary neutron star mergers in numerical relativity on the Japanese supercomputer K. The neutron stars and merger remnants are covered by a grid spacing of 70 m, which yields the highest-resolution results among those derived so far. By an in-depth resolution study, we clarify several amplification mechanisms of magnetic fields during the binary neutron star merger for the first time. First, the Kelvin-Helmholtz instability developed in the shear layer at the onset of the merger significantly amplifies the magnetic fields. A hypermassive neutron star (HMNS) formed after the merger is then subject to the nonaxisymmetric magnetorotational instability, which amplifies the magnetic field in the HMNS. These two amplification mechanisms cannot be found with insufficient-resolution runs. We also show that the HMNS eventually collapses to a black hole surrounded by an accretion torus which is strongly magnetized at birth.

  6. Monte Carlo simulation for thermal assisted reversal process of micro-magnetic torus ring with bistable closure domain structure

    NASA Astrophysics Data System (ADS)

    Terashima, Kenichi; Suzuki, Kenji; Yamaguchi, Katsuhiko

    2016-04-01

    Monte Carlo simulations were performed for temperature dependences of closure domain parameter for a magnetic micro-torus ring cluster under magnetic field on limited temperature regions. Simulation results show that magnetic field on tiny limited temperature region can reverse magnetic closure domain structures when the magnetic field is applied at a threshold temperature corresponding to intensity of applied magnetic field. This is one of thermally assisted switching phenomena through a self-organization process. The results show the way to find non-wasteful pairs between intensity of magnetic field and temperature region for reversing closure domain structure by temperature dependence of the fluctuation of closure domain parameter. Monte Carlo method for this simulation is very valuable to optimize the design of thermally assisted switching devices.

  7. Novel Applications of Magnetic Fields for Fluid Flow Control and for Simulating Variable Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.

    2005-01-01

    . The use of strong magnetic fields for terrestrially simulating variable gravity environments and applications supporting the NASA Exploration Initiative will also be briefly discussed.

  8. Magnetic spectral signatures in the terrestrial plasma depletion layer: Hybrid simulations

    NASA Astrophysics Data System (ADS)

    Lu, Q. M.; Guo, F.; Wang, S.

    2006-04-01

    The electromagnetic ion cyclotron waves in the terrestrial plasma depletion layer (PDL) are characterized by three different spectral categories. They are LOW, where the ion cyclotron waves have a continuous spectrum with main power below 0.5Ωp (Ωp is the proton gyrofrequency); CON, where the main power in the continuous spectrum of the waves can extend from ˜0.1 up to 1.0Ωp; and BIF, where a diminution around 0.5Ωp occurs between two activity peaks in the spectrum. These magnetic fluctuations in the PDL are considered to be the combined effects of two types of ion cyclotron waves: proton cyclotron waves and helium cyclotron waves, which are excited by the H+ and He2+ temperature anisotropies, respectively. In this paper, with one-dimensional (1-D) hybrid simulations we investigate the nonlinear evolution of the ion cyclotron waves excited by the H+ and He2+ temperature anisotropies. The proton cyclotron waves with the dominant frequency (the amplitude at that frequency is largest in the spectrum) larger than 0.5Ωp are first excited, and then the helium cyclotron waves with the dominant frequency smaller than 0.5Ωp are excited. The frequencies of the proton cyclotron waves decrease in their corresponding nonlinear stage. For β∥p = 0.1 (where β∥p is the parallel proton plasma beta), the dominant frequency of the proton cyclotron waves remains around 0.62Ωp because of the He2+ absorption around the helium gyrofrequency. Therefore, after the helium cyclotron waves with the dominant frequency around 0.25Ωp are excited, there exist two activity peaks in the spectrum. At the quasi-equilibrium stage, the amplitude of the proton cyclotron waves is very small because of the He2+ absorption, and a continuous spectrum with main power below 0.5Ωp is formed. When β∥p = 0.3, the effect of the He2+ absorption is very small and can be neglected. The frequencies of the proton cyclotron waves decrease in their nonlinear evolution. After the helium cyclotron waves

  9. Large-Eddy Simulation of Conductive Flows at Low Magnetic Reynolds Number

    NASA Technical Reports Server (NTRS)

    Knaepen, B.; Moin, P.

    2003-01-01

    In this paper we study the LES method with dynamic procedure in the context of conductive flows subject to an applied external magnetic field at low magnetic Reynolds number R(sub m). These kind of flows are encountered in many industrial applications. For example, in the steel industry, applied magnetic fields can be used to damp turbulence in the casting process. In nuclear fusion devices (Tokamaks), liquid-lithium flows are used as coolant blankets and interact with the surrounding magnetic field that drives and confines the fusion plasma. Also, in experimental facilities investigating the dynamo effect, the flow consists of liquid-sodium for which the Prandtl number and, as a consequence, the magnetic Reynolds number is low. Our attention is focused here on the case of homogeneous (initially isotropic) decaying turbulence. The numerical simulations performed mimic the thought experiment described in Moffatt in which an initially homogeneous isotropic conductive flow is suddenly subjected to an applied magnetic field and freely decays without any forcing. Note that this flow was first studied numerically by Schumann. It is well known that in that case, extra damping of turbulence occurs due to the Joule effect and that the flow tends to become progressively independent of the coordinate along the direction of the magnetic field. Our comparison of filtered direct numerical simulation (DNS) predictions and LES predictions show that the dynamic Smagorinsky model enables one to capture successfully the flow with LES, and that it automatically incorporates the effect of the magnetic field on the turbulence. Our paper is organized as follows. In the next section we summarize the LES approach in the case of MHD turbulence at low R(sub m) and recall the definition of the dynamic Smagorinsky model. In Sec. 3 we describe the parameters of the numerical experiments performed and the code used. Section 4 is devoted to the comparison of filtered DNS results and LES results

  10. Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Jordanovic, J.; Beleggia, M.; Schiøtz, J.; Frandsen, C.

    2015-07-01

    We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the particles are small enough to consist of a single magnetic domain each, their magnetic interactions can be described by a spin model in which each particle is assigned a macroscopic "superspin." Thus, the magnetic behaviour of these lattices may be compared to magnetic crystals with nanoparticle superspins taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder, which will always be present in realistic assemblies, pins longitudinal domain walls when the external field is reversed, and makes a gradual reversal of the magnetization by migration of longitudinal domain walls possible, in agreement with previous experimental results.

  11. GENERAL RELATIVISTIC SIMULATIONS OF MAGNETIZED PLASMAS AROUND MERGING SUPERMASSIVE BLACK HOLES

    SciTech Connect

    Giacomazzo, Bruno; Baker, John G.; Van Meter, James R.; Coleman Miller, M.; Reynolds, Christopher S.

    2012-06-10

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of {approx}2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 10{sup 4} larger than comparable calculations done in the force-free regime where such amplifications are not possible.

  12. Numerical simulation of dielectric bubbles coalescence under the effects of uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Hadidi, Amin; Jalali-Vahid, Davood

    2016-06-01

    In this research, the co-axial coalescence of a pair of gas bubbles rising in a viscous liquid column under the effects of an external uniform magnetic field is simulated numerically. Considered fluids are dielectric, and applied magnetic field is uniform. Effects of different strengths of magnetic field on the interaction of in-line rising bubbles and coalescence between them were investigated. For numerical modeling of the problem, a computer code was developed to solve the governing equations which are continuity, Navier-Stokes equation, magnetic field equation and level set and reinitialization of level set equations. The finite volume method is used for the discretization of the continuity and momentum equations using SIMPLE scheme where the finite difference method is used to discretization of the magnetic field equations. Also a level set method is used to capture the interface of two phases. The results are compared with available numerical and experimental results in the case of no-magnetic field effect which show a good agreement. It is found that uniform magnetic field accelerates the coalescence of the bubbles in dielectric fluids and enhances the rise velocity of the coalesced bubble.

  13. Magnetic field evolution in magnetar crusts through three-dimensional simulations

    PubMed Central

    Gourgouliatos, Konstantinos N.; Wood, Toby S.; Hollerbach, Rainer

    2016-01-01

    Current models of magnetars require extremely strong magnetic fields to explain their observed quiescent and bursting emission, implying that the field strength within the star’s outer crust is orders of magnitude larger than the dipole component inferred from spin-down measurements. This presents a serious challenge to theories of magnetic field generation in a proto-neutron star. Here, we present detailed modeling of the evolution of the magnetic field in the crust of a neutron star through 3D simulations. We find that, in the plausible scenario of equipartition of energy between global-scale poloidal and toroidal magnetic components, magnetic instabilities transfer energy to nonaxisymmetric, kilometer-sized magnetic features, in which the local field strength can greatly exceed that of the global-scale field. These intense small-scale magnetic features can induce high-energy bursts through local crust yielding, and the localized enhancement of Ohmic heating can power the star’s persistent emission. Thus, the observed diversity in magnetar behavior can be explained with mixed poloidal−toroidal fields of comparable energies. PMID:27035962

  14. Simulations of super-structure domain walls in two dimensional assemblies of magnetic nanoparticles

    SciTech Connect

    Jordanovic, J.; Frandsen, C.; Beleggia, M.; Schiøtz, J.

    2015-07-28

    We simulate the formation of domain walls in two-dimensional assemblies of magnetic nanoparticles. Particle parameters are chosen to match recent electron holography and Lorentz microscopy studies of almost monodisperse cobalt nanoparticles assembled into regular, elongated lattices. As the particles are small enough to consist of a single magnetic domain each, their magnetic interactions can be described by a spin model in which each particle is assigned a macroscopic “superspin.” Thus, the magnetic behaviour of these lattices may be compared to magnetic crystals with nanoparticle superspins taking the role of the atomic spins. The coupling is, however, different. The superspins interact only by dipolar interactions as exchange coupling between individual nanoparticles may be neglected due to interparticle spacing. We observe that it is energetically favorable to introduce domain walls oriented along the long dimension of nanoparticle assemblies rather than along the short dimension. This is unlike what is typically observed in continuous magnetic materials, where the exchange interaction introduces an energetic cost proportional to the area of the domain walls. Structural disorder, which will always be present in realistic assemblies, pins longitudinal domain walls when the external field is reversed, and makes a gradual reversal of the magnetization by migration of longitudinal domain walls possible, in agreement with previous experimental results.

  15. Magnetic field evolution in magnetar crusts through three-dimensional simulations.

    PubMed

    Gourgouliatos, Konstantinos N; Wood, Toby S; Hollerbach, Rainer

    2016-04-12

    Current models of magnetars require extremely strong magnetic fields to explain their observed quiescent and bursting emission, implying that the field strength within the star's outer crust is orders of magnitude larger than the dipole component inferred from spin-down measurements. This presents a serious challenge to theories of magnetic field generation in a proto-neutron star. Here, we present detailed modeling of the evolution of the magnetic field in the crust of a neutron star through 3D simulations. We find that, in the plausible scenario of equipartition of energy between global-scale poloidal and toroidal magnetic components, magnetic instabilities transfer energy to nonaxisymmetric, kilometer-sized magnetic features, in which the local field strength can greatly exceed that of the global-scale field. These intense small-scale magnetic features can induce high-energy bursts through local crust yielding, and the localized enhancement of Ohmic heating can power the star's persistent emission. Thus, the observed diversity in magnetar behavior can be explained with mixed poloidal-toroidal fields of comparable energies.

  16. Analysis and simulation of a magnetic bearing suspension system for a laboratory model annular momentum control device

    NASA Technical Reports Server (NTRS)

    Groom, N. J.; Woolley, C. T.; Joshi, S. M.

    1981-01-01

    A linear analysis and the results of a nonlinear simulation of a magnetic bearing suspension system which uses permanent magnet flux biasing are presented. The magnetic bearing suspension is part of a 4068 N-m-s (3000 lb-ft-sec) laboratory model annular momentum control device (AMCD). The simulation includes rigid body rim dynamics, linear and nonlinear axial actuators, linear radial actuators, axial and radial rim warp, and power supply and power driver current limits.

  17. Defining and identifying three-dimensional magnetic reconnection in resistive magnetohydrodynamic simulations of Earth's magnetosphere

    SciTech Connect

    Dorelli, John C.; Bhattacharjee, A.

    2008-05-15

    Magnetic reconnection is thought to be the primary mode by which the solar wind couples to the terrestrial magnetosphere, driving phenomena such as magnetic storms and aurorae. While the theory of two-dimensional reconnection is well developed and has been applied with great success to axisymmetric and toroidal systems such as laboratory plasma experiments and fusion devices, it is difficult to justify the application of two-dimensional theory to nontoroidal plasma systems such as Earth's magnetosphere. Unfortunately, the theory of three-dimensional magnetic reconnection is much less well developed, and even defining magnetic reconnection has turned out to be controversial. In this paper, recent progress in the use of magnetohydrodynamics (MHD) to address the physics of three-dimensional reconnection in Earth's magnetosphere is reviewed. The paper consists of two parts. In the first part, various definitions of three-dimensional reconnection are reviewed, with the goal of mapping these definitions to sets of physical phenomena that have been identified as 'reconnection' in various contexts. In the second part of the paper, MHD simulation results for the magnetosphere are presented, and two qualitatively distinct types of reconnection phenomena are identified: (1) Steady separator reconnection under generic northward interplanetary magnetic field (IMF) conditions, involving plasma flow across magnetic separatrices, and (2) time-dependent reconnection under generic southward IMF conditions, involving a locally detectable change in the magnetic field topology. It is concluded that magnetic reconnection phenomena at Earth's dayside magnetopause are adequately captured by two distinct definitions: The Vasyliunas definition [V. M. Vasyliunas, Rev. Geophys 13, 303 (1975)], which identifies magnetic reconnection with plasma flow across magnetic separatrices, and the Greene definition [J. Greene, Phys. Fluids B 5, 2355 (1993)], which identifies magnetic reconnection with a

  18. Magnetic Levitation of MC3T3 Osteoblast Cells as a Ground-Based Simulation of Microgravity.

    PubMed

    Hammer, Bruce E; Kidder, Louis S; Williams, Philip C; Xu, Wayne Wenzhong

    2009-11-01

    Diamagnetic samples placed in a strong magnetic field and a magnetic field gradient experience a magnetic force. Stable magnetic levitation occurs when the magnetic force exactly counter balances the gravitational force. Under this condition, a diamagnetic sample is in a simulated microgravity environment. The purpose of this study is to explore if MC3T3-E1 osteoblastic cells can be grown in magnetically simulated hypo-g and hyper-g environments and determine if gene expression is differentially expressed under these conditions. The murine calvarial osteoblastic cell line, MC3T3-E1, grown on Cytodex-3 beads, were subjected to a net gravitational force of 0, 1 and 2 g in a 17 T superconducting magnet for 2 days. Microarray analysis of these cells indicated that gravitational stress leads to up and down regulation of hundreds of genes. The methodology of sustaining long-term magnetic levitation of biological systems are discussed.

  19. Direct simulation of single bubble motion under vertical magnetic field: Paths and wakes

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Ni, Ming-Jiu

    2014-10-01

    Motion of single Ar bubbles rising in GaInSn under vertical magnetic fields is studied numerically using a volume-of-fluid method and adaptive mesh refinement technique for two-phase interface treatment; a consistent and conservative scheme calculates induced current density and Lorentz force. Numerical results are compared with published experimental data [C. Zhang, S. Eckert, and G. Gerbeth, "Experimental study of single bubble motion in a liquid metal column exposed to a DC magnetic field," Int. J. Multiphase Flow 31, 824-842 (2005)], where bubble diameters range from 2.5 to 6.4 mm, producing Reynolds numbers that vary between 2000 and 4000. Maximum experimental magnetic field strength was set to 0.3 T because of experimental restrictions, although we increased it to 0.5 T for firm conclusions. Apart from terminal rising velocity comparisons, we focused on variations in bubble motion paths and wake structures under magnetic fields, which cannot be observed experimentally because liquid metal is opaque. Magnetic field effects on bubble trajectory are exerted through vortex structure modification, which reinforced the conjecture that path instability is mainly attributed to wake instability. In bubble motion without magnetic fields, vortex threads in the bubble wake wrap around each other while vortex filaments incline parallel to the field with increasing magnetic intensity. Additionally, high magnetic fields will induce secondary bubble path instabilities, which contribute to the high Reynolds number flow that instabilities develop around the bubble, producing an asymmetrical Lorentz force distribution. This instability vanishes under higher magnetic intensities because flow instability is suppressed. Rising bubble aspect ratios decrease considerably under magnetic fields and may also contribute to smaller vorticities at the bubble surface. A close relationship between fluctuations in rising velocity and shape variations is found.

  20. Does the duration of the magnetic storm recovery phase depend on the development rate in its main phase? 2. A new method

    NASA Astrophysics Data System (ADS)

    Yermolaev, Yu. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Yu.

    2016-05-01

    In contrast to our previous work (Yermolaev et al., 2015), in which we used the magnetic storm recovery phase duration, the exponential time of the recovery phase of magnetic storms generated by three interplanetary driver types (CIR, Sheath, and ICME) is introduced in the present work. The dependence of these times on the storm development rate | Dst min|/Δ T (where Δ T is the storm main phase duration) is studied. A similar physical result has been achieved despite the different data analysis method used: the times of the storm recovery and development rates correlate for storms induced by CIR and Sheath compression regions, and any relation between these parameters is absent for storms induced by ICME.

  1. Study of the internal magnetic field of Mercury through 3D hybrid simulations

    NASA Astrophysics Data System (ADS)

    Leclercq, Ludivine; Marcel Chanteur, Gerard; Modolo, Ronan; Leblanc, Francois; Schmidt, Carl; Langlais, Benoît; Thebault, Erwan

    2016-10-01

    In 1974, Mariner 10 discovered the intrinsic magnetic field of Mercury which interacts with the solar wind, leading to the formation of a magnetosphere. In spite of the recent MESSENGER observations, this magnetosphere remains quite unknown, especially in the Southern hemisphere. In order to improve our understanding of the Hermean magnetosphere, and to prepare the Bepi-Colombo mission (ESA/JAXA), we simulated the magnetized environment of Mercury using the model named LatHyS (LATMOS Hybrid Simulation). LatHyS is a 3D parallel multi-species hybrid code which has been applied to Mars, Titan and Ganymede, which has recently be improved by the implementation of a multi-grid method allowing to refine the spatial resolution near the planetary object (40 km in the case of Mercury). In order to investigate the Hermean environment, several hybrid simulations have been performed considering different internal field models, and results are compared with MESSENGER observations.

  2. Simulation of magnetic island dynamics under resonant magnetic perturbation with the TEAR code and validation of the results on T-10 tokamak data

    SciTech Connect

    Ivanov, N. V.; Kakurin, A. M.

    2014-10-15

    Simulation of the magnetic island evolution under Resonant Magnetic Perturbation (RMP) in rotating T-10 tokamak plasma is presented with intent of TEAR code experimental validation. In the T-10 experiment chosen for simulation, the RMP consists of a stationary error field, a magnetic field of the eddy current in the resistive vacuum vessel and magnetic field of the externally applied controlled halo current in the plasma scrape-off layer (SOL). The halo-current loop consists of a rail limiter, plasma SOL, vacuum vessel, and external part of the circuit. Effects of plasma resistivity, viscosity, and RMP are taken into account in the TEAR code based on the two-fluid MHD approximation. Radial distribution of the magnetic flux perturbation is calculated with account of the externally applied RMP. A good agreement is obtained between the simulation results and experimental data for the cases of preprogrammed and feedback-controlled halo current in the plasma SOL.

  3. Changes in magnetic remanence during simulated deep sedimentary burial

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham J.; Jackson, Mike

    1993-05-01

    Macroscopic hydrostatic compaction of granular rocks causes grain-scale differential stresses as the externally applied load is transmitted through grain contacts. We have compacted rock analogues containing calcite and one of two types of magnetite, bonded with Portland cement. The first type of magnetite is chemically precipitated to give grain sizes in the range 20 nm to 2 μm; these particles were stress-free before compaction. The second type of magnetite was crushed and sieved to a mean grain size of 40 μm; these particles began the experiments in a pre-stressed state. Compaction under confining pressures up to 220 MPa (equivalent to sedimentary compaction at up to 8 km depth) produced strong irreversible changes in the coercivity (and to some extent in other hysteresis parameters) of the samples with initially stress-free magnetite. In contrast, the pre-stressed magnetite exhibited only minimal changes. Composite isothermal remanent magnetisations with orthogonal components in the coercivity ranges 0-30 mT and 30-600 mT were applied prior to compaction. For both sets of samples, the low coercivity component was preferentially progressively demagnetised with increasing compaction stress. This was most efficient for the initially stress-free magnetite. The high coercivity component showed weaker decreases and some spurious increases but there was essentially no change for the samples with pre-stressed magnetite. The changes in magnetic properties of the chemically precipitated magnetite are attributed to the development of dislocation-related impediments to domain wall translation. In contrast, the defect density of the pre-stressed magnetite was acquired under higher differential stresses when it was initially crushed and this was unmodified by the lower experimental stresses. These results may be relevant to the changes expected during rapid sedimentary burial in the absence of pore fluids at low geothermal gradients. One might predict that sedimentary

  4. MAGNETIC CYCLES IN A CONVECTIVE DYNAMO SIMULATION OF A YOUNG SOLAR-TYPE STAR

    SciTech Connect

    Brown, Benjamin P.; Miesch, Mark S.; Browning, Matthew K.; Brun, Allan Sacha

    2011-04-10

    Young solar-type stars rotate rapidly and many are magnetically active. Some appear to undergo magnetic cycles similar to the 22 yr solar activity cycle. We conduct simulations of dynamo action in rapidly rotating suns with the three-dimensional magnetohydrodynamic anelastic spherical harmonic (ASH) code to explore dynamo action achieved in the convective envelope of a solar-type star rotating at five times the current solar rotation rate. We find that dynamo action builds substantial organized global-scale magnetic fields in the midst of the convection zone. Striking magnetic wreaths span the convection zone and coexist with the turbulent convection. A surprising feature of this wreath-building dynamo is its rich time dependence. The dynamo exhibits cyclic activity and undergoes quasi-periodic polarity reversals where both the global-scale poloidal and toroidal fields change in sense on a roughly 1500 day timescale. These magnetic activity patterns emerge spontaneously from the turbulent flow and are more organized temporally and spatially than those realized in our previous simulations of the solar dynamo. We assess in detail the competing processes of magnetic field creation and destruction within our simulations that contribute to the global-scale reversals. We find that the mean toroidal fields are built primarily through an {Omega}-effect, while the mean poloidal fields are built by turbulent correlations which are not well represented by a simple {alpha}-effect. During a reversal the magnetic wreaths propagate toward the polar regions, and this appears to arise from a poleward propagating dynamo wave. As the magnetic fields wax and wane in strength and flip in polarity, the primary response in the convective flows involves the axisymmetric differential rotation which varies on similar timescales. Bands of relatively fast and slow fluid propagate toward the poles on timescales of roughly 500 days and are associated with the magnetic structures that propagate

  5. Magnetic Cycles in a Convective Dynamo Simulation of a Young Solar-type Star

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin P.; Miesch, Mark S.; Browning, Matthew K.; Brun, Allan Sacha; Toomre, Juri

    2011-04-01

    Young solar-type stars rotate rapidly and many are magnetically active. Some appear to undergo magnetic cycles similar to the 22 yr solar activity cycle. We conduct simulations of dynamo action in rapidly rotating suns with the three-dimensional magnetohydrodynamic anelastic spherical harmonic (ASH) code to explore dynamo action achieved in the convective envelope of a solar-type star rotating at five times the current solar rotation rate. We find that dynamo action builds substantial organized global-scale magnetic fields in the midst of the convection zone. Striking magnetic wreaths span the convection zone and coexist with the turbulent convection. A surprising feature of this wreath-building dynamo is its rich time dependence. The dynamo exhibits cyclic activity and undergoes quasi-periodic polarity reversals where both the global-scale poloidal and toroidal fields change in sense on a roughly 1500 day timescale. These magnetic activity patterns emerge spontaneously from the turbulent flow and are more organized temporally and spatially than those realized in our previous simulations of the solar dynamo. We assess in detail the competing processes of magnetic field creation and destruction within our simulations that contribute to the global-scale reversals. We find that the mean toroidal fields are built primarily through an Ω-effect, while the mean poloidal fields are built by turbulent correlations which are not well represented by a simple α-effect. During a reversal the magnetic wreaths propagate toward the polar regions, and this appears to arise from a poleward propagating dynamo wave. As the magnetic fields wax and wane in strength and flip in polarity, the primary response in the convective flows involves the axisymmetric differential rotation which varies on similar timescales. Bands of relatively fast and slow fluid propagate toward the poles on timescales of roughly 500 days and are associated with the magnetic structures that propagate in the

  6. Simulation and experiments of stacks of high temperature superconducting coated conductors magnetized by pulsed field magnetization with multi-pulse technique

    NASA Astrophysics Data System (ADS)

    Zou, Shengnan; Zermeño, Víctor M. R.; Baskys, A.; Patel, A.; Grilli, Francesco; Glowacki, B. A.

    2017-01-01

    High temperature superconducting bulks or stacks of coated conductors (CCs) can be magnetized to become trapped field magnets (TFMs). The magnetic fields of such TFMs can break the limitation of conventional magnets (<2 T), so they show potential for improving the performance of many electrical applications that use permanent magnets like rotating machines. Towards practical or commercial use of TFMs, effective in situ magnetization is one of the key issues. The pulsed field magnetization (PFM) is among the most promising magnetization methods in virtue of its compactness, mobility and low cost. However, due to the heat generation during the magnetization, the trapped field and flux acquired by PFM usually cannot achieve the full potential of a sample (acquired by the field cooling or zero field cooling method). The multi-pulse technique was found to effectively improve the trapped field by PFM in practice. In this work, a systematic study on the PFM with successive pulses is presented. A 2D electromagnetic-thermal coupled model with comprehensive temperature dependent parameters is used to simulate a stack of CCs magnetized by successive magnetic pulses. An overall picture is built to show how the trapped field and flux evolve with different pulse sequences and the evolution patterns are analyzed. Based on the discussion, an operable magnetization strategy of PFM with successive pulses is suggested to provide more trapped field and flux. Finally, experimental results of a stack of CCs magnetized by typical pulse sequences are presented for demonstration.

  7. Magnetic Cycles in a Dynamo Simulation of Fully Convective M-star Proxima Centauri

    NASA Astrophysics Data System (ADS)

    Yadav, Rakesh K.; Christensen, Ulrich R.; Wolk, Scott J.; Poppenhaeger, Katja

    2016-12-01

    The recent discovery of an Earth-like exoplanet around Proxima Centauri has shined a spot light on slowly rotating fully convective M-stars. When such stars rotate rapidly (period ≲20 days), they are known to generate very high levels of activity that is powered by a magnetic field much stronger than the solar magnetic field. Recent theoretical efforts are beginning to understand the dynamo process that generates such strong magnetic fields. However, the observational and theoretical landscape remains relatively uncharted for fully convective M-stars that rotate slowly. Here, we present an anelastic dynamo simulation designed to mimic some of the physical characteristics of Proxima Centauri, a representative case for slowly rotating fully convective M-stars. The rotating convection spontaneously generates differential rotation in the convection zone that drives coherent magnetic cycles where the axisymmetric magnetic field repeatedly changes polarity at all latitudes as time progress. The typical length of the “activity” cycle in the simulation is about nine years, in good agreement with the recently proposed activity cycle length of about seven years for Proxima Centauri. Comparing our results with earlier work, we hypothesis that the dynamo mechanism undergoes a fundamental change in nature as fully convective stars spin down with age.

  8. Locating magnetic reconnection x-lines in 3D PIC simulations

    NASA Astrophysics Data System (ADS)

    Olson, D. K.; Dorelli, J.; Daughton, W. S.; Karimabadi, H.

    2013-12-01

    In a three-dimensional PIC simulation of turbulent magnetic reconnection, a reconnection 'X-line' can be identified as a separator in the magnetic topology. From this x-line, it is possible to compute the reconnection rate by evaluating the line integral of the electric field along the separator. This technique is used in a reconnection simulation of a symmetric Harris sheet driven by inflow at the upstream boundaries with a strong guide field (such that the magnetic field is non-vanishing everywhere and there are no magnetic nulls). The results of this analysis are compared to the General Magnetic Reconnection theory (GMR) [Hesse and Schindler, 1998], showing that in this symmetric case GMR agrees with our topological approach to finding the location of the x-line. The parallel electric field is non-trivial along the entire length of the x-line, however, suggesting that the reconnection diffusion region cannot be identified by local measures of the breakdown of ideal MHD alone. We discuss the implications of these results for NASA's upcoming Magnetospheric Multiscale mission.

  9. Helioseismic Holography of Simulated Sunspots: Magnetic and Thermal Contributions to Travel Times

    NASA Astrophysics Data System (ADS)

    Felipe, T.; Braun, D. C.; Crouch, A. D.; Birch, A. C.

    2016-10-01

    Wave propagation through sunspots involves conversion between waves of acoustic and magnetic character. In addition, the thermal structure of sunspots is very different than that of the quiet Sun. As a consequence, the interpretation of local helioseismic measurements of sunspots has long been a challenge. With the aim of understanding these measurements, we carry out numerical simulations of wave propagation through sunspots. Helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. We use additional numerical experiments to determine, separately, the influence of the thermal structure of the sunspot and the direct effect of the sunspot magnetic field. We use the ray approximation to show that the travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level in the simulations) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it would suggest a path toward inversions for sunspot structure.

  10. Generation of shear Alfven waves by a rotating magnetic field source: Three-dimensional simulations

    SciTech Connect

    Karavaev, A. V.; Gumerov, N. A.; Papadopoulos, K.; Shao, Xi; Sharma, A. S.; Gekelman, W.; Wang, Y.; Van Compernolle, B.; Pribyl, P.; Vincena, S.

    2011-03-15

    The paper discusses the generation of polarized shear Alfven waves radiated from a rotating magnetic field source created via a phased orthogonal two-loop antenna. A semianalytical three-dimensional cold two-fluid magnetohydrodynamics model was developed and compared with recent experiments in the University of California, Los Angeles large plasma device. Comparison of the simulation results with the experimental measurements and the linear shear Alfven wave properties, namely, spatiotemporal wave structure, a dispersion relation with nonzero transverse wave number, the magnitude of the wave dependences on the wave frequency, show good agreement. From the simulations it was found that the energy of the Alfven wave generated by the rotating magnetic field source is distributed between the kinetic energy of ions and electrons and the electromagnetic energy of the wave as: {approx}1/2 is the energy of the electromagnetic field, {approx}1/2 is the kinetic energy of the ion fluid, and {approx}2.5% is the kinetic energy of electron fluid for the experiment. The wave magnetic field power calculated from the experimental data and using a fluid model differ by {approx}1% and is {approx}250 W for the experimental parameters. In both the experiment and the three-dimensional two-fluid magnetohydrodynamics simulations the rotating magnetic field source was found to be very efficient for generating shear Alfven waves.

  11. GRMHD/RMHD Simulations and Stability of Magnetized Spine-Sheath Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Hardee, Philip; Mizuno, Yosuke; Nishikawa, Ken-Ichi

    2007-01-01

    A new general relativistic magnetohydrodynamics (GRMHD ) code "RAISHIN" used to simulate jet generation by rotating and non-rotating black holes with a geometrically thin Keplarian accretion disk finds that the jet develops a spine-sheath structure in the rotating black hole case. Spine-sheath structure and strong magnetic fields significantly modify the Kelvin-Helmholtz (KH) velocity shear driven instability. The RAISHIN code has been used in its relativistic magnetohydrodynamic (RMHD) configuration to study the effects of strong magnetic fields and weakly relativistic sheath motion, cl2, on the KH instability associated with a relativistic, Y = 2.5, jet spine-sheath interaction. In the simulations sound speeds up to ? c/3 and Alfven wave speeds up to ? 0.56 c are considered. Numerical simulation results are compared to theoretical predictions from a new normal mode analysis of the RMHD equations. Increased stability of a weakly magnetized system resulting from c/2 sheath speeds and stabilization of a strongly magnetized system resulting from d 2 sheath speeds is found.

  12. Three-dimensional numerical simulation of current collection by a probe in a magnetized plasma

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Vashi, B. I.; Leung, L. C.

    1994-01-01

    A three-dimensional numerical model for current collection in a magnetized plasma is reported. The model is based on an electrostatic particle-in-cell code. The model yields self-consistent sheath structure including distributions of plasma and the electric potential around the body and the collection of electrons. The analytical theory of current collection by a body in a magnetized plasma yields an upper bound for the collected current determined by the conservation of energy and canonical angular momentum. The theory shows that the collected charged particles come from a cylindrical volume aligned with the magnetic shadow of the body; the maximum radius r(sub o) of this volume is determined by the body size, body potential, and the ambient magnetic field. This theory does not deal with the sheath structure around the body. The condition for the actual current to approach the upper-bound value has been a matter of debate. Our simulations reveal when and why the collected current becomes equal to its upper-bound value. Sheath size in the radial direction perpendicular to the axial ambient magnetic field is determined by the current-limiting radius r(sub o). Our simulation yields time-average current in good agreement with its upper bound. This feature of the current collection is explained as follows: Once electrons enter the sheath, some of them are freely accelerated perpendicular to the magnetic field because they are demagnetized by the large gradients in the perpendicular electric fields. Simulations show a large perpendicular acceleration, producing perpendicular energy as large as that determined by the potential on the body, especially in the region where perpendicular electric fields (E perpendicular) are the strongest. An analysis shows that the demagnetization of electrons occurs above a threshold potential on the body. This threshold condition follows from the breakdown of the adiabaticity of the electron dynamics inside the sheath.

  13. Combined simulation of a micro permanent magnetic linear contactless displacement sensor.

    PubMed

    Gao, Jing; Müller, Wolfgang F O; Greiner, Felix; Eicher, Dirk; Weiland, Thomas; Schlaak, Helmut F

    2010-01-01

    The permanent magnetic linear contactless displacement (PLCD) sensor is a new type of displacement sensor operating on the magnetic inductive principle. It has many excellent properties and has already been used for many applications. In this article a Micro-PLCD sensor which can be used for microelectromechanical system (MEMS) measurements is designed and simulated with the CST EM STUDIO(®) software, including building a virtual model, magnetostatic calculations, low frequency calculations, steady current calculations and thermal calculations. The influence of some important parameters such as air gap dimension, working frequency, coil current and eddy currents etc. is studied in depth.

  14. Particle-in-cell simulations of ambipolar and nonambipolar diffusion in magnetized plasmas

    SciTech Connect

    Lafleur, T.; Boswell, R. W.

    2012-05-15

    Using a two-dimensional particle-in-cell simulation, we investigate cross-field diffusion in low-pressure magnetized plasmas both in the presence and absence of conducting axial boundaries. With no axial boundary, the cross-field diffusion is observed to be ambipolar, as expected. However, when axial boundaries are added, the diffusion becomes distinctly nonambipolar. Electrons are prevented from escaping to the transverse walls and are preferentially removed from the discharge along the magnetic field lines, thus allowing quasi-neutrality to be maintained via a short-circuit effect at the axial boundaries.

  15. Rescaled Local Interaction Simulation Approach for Shear Wave Propagation Modelling in Magnetic Resonance Elastography

    PubMed Central

    Packo, P.; Staszewski, W. J.; Uhl, T.

    2016-01-01

    Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808

  16. Particle-in-cell simulations on spontaneous thermal magnetic field fluctuations

    SciTech Connect

    Simões, F. J. R. Jr.; Pavan, J.; Gaelzer, R.; Ziebell, L. F.; Yoon, P. H.

    2013-10-15

    In this paper an electromagnetic particle code is used to investigate the spontaneous thermal emission. Specifically we perform particle-in-cell simulations employing a non-relativistic isotropic Maxwellian particle distribution to show that thermal fluctuations are related to the origin of spontaneous magnetic field fluctuation. These thermal fluctuations can become seed for further amplification mechanisms and thus be considered at the origin of the cosmological magnetic field, at microgauss levels. Our numerical results are in accordance with theoretical results presented in the literature.

  17. Simulation of micro-magnet stray-field dynamics for spin qubit manipulation

    SciTech Connect

    Neumann, R.; Schreiber, L. R.

    2015-05-21

    High-fidelity control and unprecedented long dephasing times in silicon-based single spin qubits have recently confirmed the prospects of solid-state quantum computation. We investigate the feasibility of using a micro-magnet stray field for all-electrical, addressable spin qubit control in a Si/SiGe double quantum dot. For a micro-magnet geometry optimized for high Rabi-frequency, addressability, and robustness to fabrication misalignment as previously demonstrated by Yoneda et al. [Phys. Rev. Lett. 113, 267601 (2014)], we simulate the qubit decoherence due to magnetic stray-field fluctuations, which may dominate in nuclear spin-free systems, e.g., quantum dots in Si/SiGe, Si-MOS structures and (bilayer) graphene. With calculated Rabi-frequencies of 15 MHz, a qubit addressability error below 10{sup −3} is achievable. Magnetic fluctuations from a micro-magnet limits the spin relaxation time to T{sub 1} ≳ 3 s, while pure spin dephasing is negligible. Our results show that micro-magnets are a promising tool for spin qubit computation in nuclear spin-free systems.

  18. Effects of self-generated magnetic fields on hohlraum simulation at NIF

    NASA Astrophysics Data System (ADS)

    Farmer, W. A.; Strozzi, D. J.; Hinkel, D. E.; Rosen, M. D.; Jones, O. S.; Koning, J. M.; Marinak, M. M.

    2016-10-01

    Non-parallel density and pressure gradients that develop during matter ablation on a laser irradiated target lead to self-generated magnetic fields through the well-known Biermann-battery effect. For laser intensities present during ICF relevant scenarios on NIF, megagauss fields can develop. The presence of large magnetic fields leads to a non-negligible Hall parameter, defined as the product of the electron cyclotron frequency and the electrion-ion collision time. When the Hall parameter is of order unity or greater, a significant reduction in the cross-field heat flux occurs. Large magnetic fields are limited by the inclusion of the Nernst term, which advects the magnetic fields in the direction of the heat flux (or from the ablation front into the denser wall). This advection combined with resistive diffusion of the magnetic field limits the strength of the self-generated field within the hohlraum. We report changes in simulation results obtained when using the MHD package in the radiation-hydrodynamics code, HYDRA, which models the evolutions of the magnetic fields. This work was supported by the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Structural, mechanical and magnetic properties studies on high-energy Kr-ion irradiated Fe3O4 material (main corrosion layer of Fe-based alloys)

    NASA Astrophysics Data System (ADS)

    Sun, Jianrong; Wang, Zhiguang; Zhang, Hongpeng; Song, Peng; Chang, Hailong; Cui, Minghuan; Pang, Lilong; Zhu, Yabin; Li, Fashen

    2014-12-01

    The Fe-based (T91 and RAFM) alloys are considered as the promising candidate structural materials for DEMO and the first fusion power plant, and these two kinds of steels suffered more serious corrosion attack at 450 °C in liquid PbBi metal. So in order to further clarify the applicability of Fe-based structural materials in nuclear facilities, we should study not only the alloys itself but also its corrosion layers; and in order to simplify the discussion and clarify the irradiation effects of the different corrosion layer, we abstract the Fe3O4 (main corrosion layer of Fe-based alloys) to study the structural, micro-mechanical and magnetic properties under 2.03 GeV Kr-ion irradiation. The initial crystallographic structure of the Fe3O4 remains unaffected after irradiation at low damage levels, but as the Kr-ion fluence increases and the defects accumulate, the macroscopic magnetic properties (Ms, Hc, etc.) and micro-mechanical properties (nano-hardness and Young's modulus) are sensitive to high-energy Kr-ion irradiation and exhibit excruciating uniform changing regularities with varying fluences (firstly increases, then decreases). And these magnetism, hardening and softening phenomena can be interpreted very well by the effects related to the stress and defects (the production, accumulation and free) induced by high-energy ions irradiation.

  20. Developing Glassy Magnets from Simulated Composition of Martian Soil for Exploration Applications

    NASA Technical Reports Server (NTRS)

    Ramachandran, Narayanan; Ray, Chandra; Rogers, Jan

    2004-01-01

    The long-term exploration goals of NASA include developing human habitation on Mars and conducting scientific investigations on Mars and other planetary bodies. In situ resource processing is a key objective in this area We focus OR the possibility of making magnetic glasses in situ for potential applications development. The paper will focus on ongoing work at NASA Marshall Space Flight Center on making magnetic glass h m Mars soil simulants and its characterization. Analysis of the glass morphology, strength, chemistry and resulting magnetic properties will provide a fi.mdamenta1 understanding ofthe synthesized materiai that can be used for pomtiai appiications cieveiopment. In an effort to characterize the magnetic properbes of the Mars glasses, a series of tests were performed at NASA MSFC. Preliminary tests indicated that the glasses were attracted to a magnet and also had a small amount of residual magnetism. They were opaque (almost black in color). As the first step, a sample of Mars 1 glass (-lm x lmm x 5 mm length) was machined, weighed and its hysteresis curve was measured using a Vibration Sample Magnetometer 0. Next, a small furnace was designed and built and the sample was baked in a graphite (reducing agent) crucible at 800 C in an Argon atmosphere for 3 hours in the presence of a uniform, transverse (transverse to the 5mm length of the sample) magnetic field of 0.37 Tesla. The treated sample showed reddening on the outside and showed substantially increased residual magnetism. This sample was again analyzed in the VSM. The data clearly showed that some chemical change occurred during the heat treatment (color change) and that both the glasses have useful magnetic properties. Although no orientation effects of the magnetic field were considered, the data showed the following: 1. Both glass samples are primarily soft magnets and display ferromagnetic behavior (hysteresis, saturation, etc.) 2. The treated glass has improved saturation magnetism (order

  1. Dynamic Modeling and Simulation Study for the Galileo Spacecraft Pulsed-Mode Spinup/400 N Main Engine Burn/Spindown Maneuvers

    NASA Technical Reports Server (NTRS)

    Ih, Che-Hang Charles; McMahon, Elihu M.

    1996-01-01

    Two Galileo dynamic models were developed to simulate the spinup/400-N main engine burn/spindown maneuvers for the critical events of Jupiter Orbit Insertion (JOI) and Perijove Raise Maneuver (PRM). The dynamic interaction among the spin thruster pulsing frequency science/magnetometer (SCI/MAG) boom flexible modes, and the propellant slosh modes were studied.

  2. Systematic parameter study of a nonlinear electromagnetic energy harvester with matched magnetic orientation: Numerical simulation and experimental investigation

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Wang, Ya

    2017-02-01

    This paper reports the systematic parameter study of a tristable nonlinear electromagnetic energy harvester for ambient low-frequency vibration. Numerical simulations and experimental investigations are performed on the harvester which consists of a cantilever beam, a tip coil, two tip magnets and two external side magnets. The external side magnets are deployed symmetrically along a concave surface parallel to the trajectory of the cantilever tip with a controllable distance so that the magnetic orientation of the tip magnets are matched with that of the side magnets. Therefore, instead of the ternary position parameters (d, h, α), a binary parameters pair (d0, d) is used to characterize the position of the side magnets and the performance of the energy harvester. The magnetic force and magnetic field on the cantilever tip therefore depend on the relative distance in the tip displacement direction between the tip magnets and side magnets, but is independent of the position of the side magnets on the concave surface. The magnetic force (field)-distance relationship is measured experimentally and curve fitted to obtain explicit expressions, in order to characterize the magnetic force (field) when the side magnets are placed at varied positions along the concave surface. Numerical simulation is, then, performed to predict the electromagnetic voltage output and the bandwidth of the energy harvester. The simulation results coincided with the measured data. Significant broadband response is obtained experimentally and the maximum RMS power output is 40.2 mW at 0.45g of excitation. The proposed structure showcasing the matched magnetic orientation is characterized by the binary parameters pair (d0, d) and the systematic parametric approach could contribute to the design and study of nonlinear broadband energy harvesters.

  3. Magnetic properties of core-shell (1/2-3/2) nanoparticle: Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Dakir, O.; El Kenz, A.; Benyoussef, A.

    2015-05-01

    In this work, a Monte Carlo simulation, based on standard Metropolis algorithm, has been applied to investigate magnetic properties of a ferrimagnetic nanoparticle, with a cubic shape and core-shell structure. The nanoparticle is constituted of spin-1/2 in the core surrounded by spin-3/2 in the shell. It has been shown that the exchange coupling plays an important role on the phase diagrams. Some interesting features have been observed for the temperature dependence of total magnetization curves of particle. In particular, the effects of the interface coupling and the shell coupling on both the compensation temperature and the magnetization profiles are investigated. In addition, the effect of the single ion anisotropy as well as the hysteresis loops behavior has also been discussed in detail.

  4. Measurement of contact angles in a simulated microgravity environment generated by a large gradient magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Ming; Chen, Rui-Qing; Wu, Zi-Qing; Zhu, Jing; Shi, Jian-Yu; Lu, Hui-Meng; Shang, Peng; Yin, Da-Chuan

    2016-09-01

    The contact angle is an important parameter that is essential for studying interfacial phenomena. The contact angle can be measured using commercially available instruments. However, these well-developed instruments may not function or may be unsuitable for use in some special environments. A simulated microgravity generated by a large gradient magnetic field is such an environment in which the current measurement instruments cannot be installed. To measure the contact angle in this environment, new tools must be designed and manufactured to be compatible with the size and physical environment. In this study, we report the development and construction of a new setup that was specifically designed for use in a strong magnetic field to measure the contact angle between a levitated droplet and a solid surface. The application of the setup in a large gradient magnetic field was tested, and the contact angles were readily measured.

  5. Explosive Turbulent Magnetic Reconnection: A New Approach of MHD-Turbulent Simulation

    NASA Astrophysics Data System (ADS)

    Hoshino, Masahiro; Yokoi, Nobumitsu; Higashimori, Katsuaki

    2013-04-01

    Turbulent flows are often observed in association with magnetic reconnection in space and astrophysical plasmas, and it is often hypothesized that the turbulence can contribute to the fast magnetic reconnection through the enhancement of magnetic dissipation. In this presentation, we demonstrate that an explosive turbulent reconnection can happen by using a new turbulent MHD simulation, in which the evolution of the turbulent transport coefficients are self-consistently solved together with the standard MHD equations. In our model, the turbulent electromotive force defined by the correlation of turbulent fluctuations between v and B is added to the Ohm's law. We discuss that the level of turbulent can control the topology of reconnection, namely the transition from the Sweet-Parker reconnection to the Petscheck reconnection occurs when the level of fluctuations becomes of order of the ambient physical quantities, and show that the growth of the turbulent Petscheck reconnection becomes much faster than the conventional one.

  6. Particle-in-Cell Simulations of Collisionless Magnetic Reconnection with a Non-Uniform Guide Field

    NASA Astrophysics Data System (ADS)

    Wilson, Fiona; Neukirch, Thomas; Hesse, Michael

    2016-04-01

    Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov-Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and the results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.

  7. Particle-in-cell simulations of collisionless magnetic reconnection with a non-uniform guide field

    NASA Astrophysics Data System (ADS)

    Wilson, F.; Neukirch, T.; Hesse, M.; Harrison, M. G.; Stark, C. R.

    2016-03-01

    Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov-Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and the results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.

  8. Particle-in-cell simulations of laser beat-wave magnetization of dense plasmas

    SciTech Connect

    Welch, D. R.; Genoni, T. C.; Thoma, C.; Rose, D. V.; Hsu, S. C.

    2014-03-15

    The interaction of two lasers with a difference frequency near that of the ambient plasma frequency produces beat waves that can resonantly accelerate thermal electrons. These beat waves can be used to drive electron current and thereby embed magnetic fields into the plasma [Welch et al., Phys. Rev. Lett. 109, 225002 (2012)]. In this paper, we present two-dimensional particle-in-cell simulations of the beat-wave current-drive process over a wide range of angles between the injected lasers, laser intensities, and plasma densities. We discuss the application of this technique to the magnetization of dense plasmas, motivated in particular by the problem of forming high-β plasma targets in a standoff manner for magneto-inertial fusion. The feasibility of a near-term experiment embedding magnetic fields using lasers with micron-scale wavelengths into a ∼10{sup 18} cm{sup −3}-density plasma is assessed.

  9. Computer Simulations and Theoretical Studies of Complex Systems: from complex fluids to frustrated magnets

    NASA Astrophysics Data System (ADS)

    Choi, Eunsong

    Computer simulations are an integral part of research in modern condensed matter physics; they serve as a direct bridge between theory and experiment by systemactically applying a microscopic model to a collection of particles that effectively imitate a macroscopic system. In this thesis, we study two very differnt condensed systems, namely complex fluids and frustrated magnets, primarily by simulating classical dynamics of each system. In the first part of the thesis, we focus on ionic liquids (ILs) and polymers--the two complementary classes of materials that can be combined to provide various unique properties. The properties of polymers/ILs systems, such as conductivity, viscosity, and miscibility, can be fine tuned by choosing an appropriate combination of cations, anions, and polymers. However, designing a system that meets a specific need requires a concrete understanding of physics and chemistry that dictates a complex interplay between polymers and ionic liquids. In this regard, molecular dynamics (MD) simulation is an efficient tool that provides a molecular level picture of such complex systems. We study the behavior of Poly (ethylene oxide) (PEO) and the imidazolium based ionic liquids, using MD simulations and statistical mechanics. We also discuss our efforts to develop reliable and efficient classical force-fields for PEO and the ionic liquids. The second part is devoted to studies on geometrically frustrated magnets. In particular, a microscopic model, which gives rise to an incommensurate spiral magnetic ordering observed in a pyrochlore antiferromagnet is investigated. The validation of the model is made via a comparison of the spin-wave spectra with the neutron scattering data. Since the standard Holstein-Primakoff method is difficult to employ in such a complex ground state structure with a large unit cell, we carry out classical spin dynamics simulations to compute spin-wave spectra directly from the Fourier transform of spin trajectories. We

  10. Comparison of empirical magnetic field models and global MHD simulations: The near-tail currents

    NASA Technical Reports Server (NTRS)

    Pulkkinen, T. I.; Baker, D. N.; Walker, R. J.; Raeder, J.; Ashour-Abdalla, M.

    1995-01-01

    The tail currents predicted by empirical magnetic field models and global MHD simulations are compared. It is shown that the near-Earth currents obtained from the MHD simulations are much weaker than the currents predicted by the Tsyganenko models, primarily because the ring current is not properly represented in the simulations. On the other hand, in the mid-tail and distant tail the lobe field strength predicted by the simulations is comparable to what is observed at about 50 R(sub E) distance, significantly larger than the very low lobe field values predicted by the Tsyganenko models at that distance. Ways to improve these complementary approaches to model the actual magnetospheric configuration are discussed.

  11. A global magnetohydrodynamic simulation of the magnetosheath and magnetosphere when the interplanetary magnetic field is northward

    NASA Technical Reports Server (NTRS)

    Ogino, Tatsuki; Walker, Raymond I.; Ashour-Abdalla, Maha

    1992-01-01

    We have used a new high-resolution global magnetohydrodynamic simulation model to investigate the configuration of the magnetosphere when the interplanetary magnetic field (IMF) is northward. For northward IMF the magnetospheric configuration is dominated by magnetic reconnection at the tail lobe magnetopause tailward of the polar cusp. This results in a local thickening of the plasma sheet equatorward of the region of reconnection and the establishment of a convection system with two cells in each lobe. In the magnetosheath the plasma density and pressure decrease near the subsolar magnetopause, forming a depletion region. Along the flanks of the magnetosphere the magnetosheath flow is accelerated to values larger than the solar wind velocity. The magnetopause shape from the simulations is consistent with the empirically determined shape.

  12. Combined Molecular Dynamics-Spin Dynamics Simulation of α-Iron in an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Mudrick, Mark; Perera, Dilina; Landau, David P.

    Using an atomistic model that treats both translational and spin degrees of freedom, combined molecular and spin dynamics simulations have been performed to study dynamic properties of α-iron. Atomic interactions are described by an empirical many-body potential while spin-spin interactions are handled with a Heisenberg-like Hamiltonian with a coordinate dependent exchange interaction. Each of these interactions are parameterized by first-principles calculations. These simulations numerically solve equations of motion using an algorithm based on the second-order Suzuki-Trotter decomposition for the time evolution operator. Through calculation of the Fourier transform of space-displaced time-displaced correlation functions, vibrational and magnetic excitations have been studied. The application of an external magnetic field up to 10-T has now been included and has been shown to increase the characteristic frequencies of the single-spin-wave excitations. Two-spin-wave interactions have also been investigated.

  13. Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case

    NASA Astrophysics Data System (ADS)

    Béthune, William; Lesur, Geoffroy; Ferreira, Jonathan

    2017-04-01

    Context. The planet-forming region of protoplanetary disks is cold, dense, and therefore weakly ionized. For this reason, magnetohydrodynamic (MHD) turbulence is thought to be mostly absent, and another mechanism has to be found to explain gas accretion. It has been proposed that magnetized winds, launched from the ionized disk surface, could drive accretion in the presence of a large-scale magnetic field. Aims: The efficiency and the impact of these surface winds on the disk structure is still highly uncertain. We present the first global simulations of a weakly ionized disk that exhibits large-scale magnetized winds. We also study the impact of self-organization, which was previously demonstrated only in non-stratified models. Methods: We perform numerical simulations of stratified disks with the PLUTO code. We compute the ionization fraction dynamically, and account for all three non-ideal MHD effects: ohmic and ambipolar diffusions, and the Hall drift. Simplified heating and cooling due to non-thermal radiation is also taken into account in the disk atmosphere. Results: We find that disks can be accreting or not, depending on the configuration of the large-scale magnetic field. Magnetothermal winds, driven both by magnetic acceleration and heating of the atmosphere, are obtained in the accreting case. In some cases, these winds are asymmetric, ejecting predominantly on one side of the disk. The wind mass loss rate depends primarily on the average ratio of magnetic to thermal pressure in the disk midplane. The non-accreting case is characterized by a meridional circulation, with accretion layers at the disk surface and decretion in the midplane. Finally, we observe self-organization, resulting in axisymmetric rings of density and associated pressure "bumps". The underlying mechanism and its impact on observable structures are discussed.

  14. Numerical simulations of impulsively generated Alfvén waves in solar magnetic arcades

    SciTech Connect

    Chmielewski, P.; Murawski, K.; Musielak, Z. E.; Srivastava, A. K.

    2014-09-20

    We perform numerical simulations of impulsively generated Alfvén waves in an isolated solar arcade, which is gravitationally stratified and magnetically confined. We study numerically the propagation of Alfvén waves along the magnetic structure that extends from the lower chromosphere, where the waves are generated, to the solar corona, and analyze the influence of the arcade size and the width of the initial pulses on the wave propagation and reflection. Our model of the solar atmosphere is constructed by adopting the temperature distribution based on the semi-empirical VAL-C model and specifying the curved magnetic field lines that constitute the asymmetric magnetic arcade. The propagation and reflection of Alfvén waves in this arcade is described by 2.5-dimensional magnetohydrodynamic equations that are numerically solved by the FLASH code. Our numerical simulations reveal that the Alfvén wave amplitude decreases as a result of a partial reflection of Alfvén waves in the solar transition region, and that the waves that are not reflected leak through the transition region and reach the solar corona. We also find the decrement of the attenuation time of Alfvén waves for wider initial pulses. Moreover, our results show that the propagation of Alfvén waves in the arcade is affected by the spatial dependence of the Alfvén speed, which leads to phase mixing that is stronger for more curved and larger magnetic arcades. We discuss the processes that affect the Alfvén wave propagation in an asymmetric solar arcade and conclude that besides phase mixing in the magnetic field configuration, the plasma properties of the arcade, the size of the initial pulse, and the structure of the solar transition region all play a vital role in the Alfvén wave propagation.

  15. The simulation of a propulsive jet and force measurement using a magnetically suspended wind tunnel model

    NASA Technical Reports Server (NTRS)

    Garbutt, K. S.; Goodyer, M. J.

    1994-01-01

    Models featuring the simulation of exhaust jets were developed for magnetic levitation in a wind tunnel. The exhaust gas was stored internally producing a discharge of sufficient duration to allow nominal steady state to be reached. The gas was stored in the form of compressed gas or a solid rocket propellant. Testing was performed with the levitated models although deficiencies prevented the detection of jet-induced aerodynamic effects. Difficulties with data reduction led to the development of a new force calibration technique, used in conjunction with an exhaust simulator and also in separate high incidence aerodynamic tests.

  16. FLASH MHD simulations of experiments that study shock-generated magnetic fields

    NASA Astrophysics Data System (ADS)

    Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Graziani, C.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K.

    2015-12-01

    We summarize recent additions and improvements to the high energy density physics capabilities in FLASH, highlighting new non-ideal magneto-hydrodynamic (MHD) capabilities. We then describe 3D Cartesian and 2D cylindrical FLASH MHD simulations that have helped to design and analyze experiments conducted at the Vulcan laser facility. In these experiments, a laser illuminates a carbon rod target placed in a gas-filled chamber. A magnetic field diagnostic (called a Bdot) employing three very small induction coils is used to measure all three components of the magnetic field at a chosen point in space. The simulations have revealed that many fascinating physical processes occur in the experiments. These include megagauss magnetic fields generated by the interaction of the laser with the target via the Biermann battery mechanism, which are advected outward by the vaporized target material but decrease in strength due to expansion and resistivity; magnetic fields generated by an outward expanding shock via the Biermann battery mechanism; and a breakout shock that overtakes the first wave, the contact discontinuity between the target material and the gas, and then the initial expanding shock. Finally, we discuss the validation and predictive science we have done for this experiment with FLASH.

  17. Magnetic nulls in three-dimensional kinetic simulations of space plasmas

    NASA Astrophysics Data System (ADS)

    Olshevsky, Vyacheslav; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni

    2016-04-01

    We present a survey of magnetic nulls and associated energy dissipation in different three-dimensional kinetic particle-in-cell simulations of space plasmas. The configurations under study include: a traditional Harris current sheet and current sheets with asymmetric density distribution, dipolar and quadrupolar planetary magnetospheres, lunar magnetic anomalies, and decaying turbulence. Nulls are detected in the simulation snapshots by the topological degree method. In all runs except the quadrupolar magnetospere the dominating majority of nulls are of spiral topological type. When supported by strong currents, these nulls indicate the regions of strong energy dissipation. Dissipation, often accompanied by the changes in magnetic topology, is caused by plasma instabilities in the current channels or on their interfaces. Radial nulls show less activity, they can be created or destroyed in pairs, via topological bifurcations. Although such events demonstrate energy release, they are rather rare and short-living. An important implication of our study to observations is that magnetic topology should not be considered independently of other plasma properties such as currents.

  18. Magnetohydrodynamic Simulations of Hypersonic Flow over a Cylinder Using Axial- and Transverse-Oriented Magnetic Dipoles

    PubMed Central

    Guarendi, Andrew N.; Chandy, Abhilash J.

    2013-01-01

    Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field. PMID:24307870

  19. Parallel simulation of HGMS of weakly magnetic nanoparticles in irrotational flow of inviscid fluid.

    PubMed

    Hournkumnuard, Kanok; Dolwithayakul, Banpot; Chantrapornchai, Chantana

    2014-01-01

    The process of high gradient magnetic separation (HGMS) using a microferromagnetic wire for capturing weakly magnetic nanoparticles in the irrotational flow of inviscid fluid is simulated by using parallel algorithm developed based on openMP. The two-dimensional problem of particle transport under the influences of magnetic force and fluid flow is considered in an annular domain surrounding the wire with inner radius equal to that of the wire and outer radius equal to various multiples of wire radius. The differential equations governing particle transport are solved numerically as an initial and boundary values problem by using the finite-difference method. Concentration distribution of the particles around the wire is investigated and compared with some previously reported results and shows the good agreement between them. The results show the feasibility of accumulating weakly magnetic nanoparticles in specific regions on the wire surface which is useful for applications in biomedical and environmental works. The speedup of parallel simulation ranges from 1.8 to 21 depending on the number of threads and the domain problem size as well as the number of iterations. With the nature of computing in the application and current multicore technology, it is observed that 4-8 threads are sufficient to obtain the optimized speedup.

  20. Alignment of Velocity and Magnetic Fluctuations in Simulations of Anisotropic MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Bhattacharjee, A.

    2007-11-01

    There has been recent theoretical interest in the effect of the alignment of velocity and magnetic fluctuations in three-dimensional (3D) MHD turbulence with a large-scale magnetic field [Boldyrev 2005, 2006]. This theory predicts that the angle θ between the velocity and magnetic fluctuation vectors has a scaling of θ&1/4circ;, where λ is the spatial scale of the fluctuations. There have also been simulations on 3D forced MHD turbulence that supports this prediction [Mason et al. 2006, 2007]. The scaling has also been tested against observations of solar wind turbulence [Podesta et al. 2007]. We report here simulation results based on decaying 2D turbulence. The scaling of θ&1/4circ; and Iroshnikov-Kraichnan scaling has also been observed within a range of time interval and spatial scales, despite the fact that Boldyrev's theory was developed for fully 3D turbulence in the presence of a strong external field. As the external field is reduced in magnitude and becomes comparable to the magnitude of magnetic fluctuations or lower, the scale-dependent alignment is weakened. Implications for observations of solar wind turbulence will be discussed.

  1. Parallel Simulation of HGMS of Weakly Magnetic Nanoparticles in Irrotational Flow of Inviscid Fluid

    PubMed Central

    Hournkumnuard, Kanok

    2014-01-01

    The process of high gradient magnetic separation (HGMS) using a microferromagnetic wire for capturing weakly magnetic nanoparticles in the irrotational flow of inviscid fluid is simulated by using parallel algorithm developed based on openMP. The two-dimensional problem of particle transport under the influences of magnetic force and fluid flow is considered in an annular domain surrounding the wire with inner radius equal to that of the wire and outer radius equal to various multiples of wire radius. The differential equations governing particle transport are solved numerically as an initial and boundary values problem by using the finite-difference method. Concentration distribution of the particles around the wire is investigated and compared with some previously reported results and shows the good agreement between them. The results show the feasibility of accumulating weakly magnetic nanoparticles in specific regions on the wire surface which is useful for applications in biomedical and environmental works. The speedup of parallel simulation ranges from 1.8 to 21 depending on the number of threads and the domain problem size as well as the number of iterations. With the nature of computing in the application and current multicore technology, it is observed that 4–8 threads are sufficient to obtain the optimized speedup. PMID:24955411

  2. Success of a simulation approach for magnetic nanosystems: Power of physical laws

    NASA Astrophysics Data System (ADS)

    Liu, Z.-S.; Sechovský, V.; Diviš, M.

    2014-05-01

    The new quantum simulation model and the self-consistent algorithm (SCA) for magnetic nanosystems, that we proposed 2 years ago, were extended to study the magnetic properties of a nanowire consisting of 3d ions which are coupled ferromagnetically. To test the applicability of the algorithm, our simulations in the present work were started from a magnetic structure in which all spins in the whole nanosample were randomly oriented (defined as the random magnetic configuration for later use) as other authors have been doing with Monte Carlo or micromagnetism method, and such calculated results were all reasonable. Especially, the free energies evaluated at the chosen temperatures were found to attenuate spontaneously and quickly, as the program ran, towards the minima according to the principle of lowest free energy as expected. This suggests that the computational algorithm is able to lead the code to converge rapidly to the equilibrium state automatically without the need to minimize the total (free) energy of the system elaborately that must be done if the Monte Carlo or micromagnetism method is used, demonstrating the great power of natural laws.

  3. Evidence of magnetic field switch-off in Particle In Cell simulations of collisionless magnetic reconnection with guide field

    NASA Astrophysics Data System (ADS)

    Innocenti, M. E.; Goldman, M. V.; Newman, D. L.; Markidis, S.; Lapenta, G.

    2015-12-01

    The long term evolution of large domain Particle In Cell simulations of collisionless magnetic reconnection is investigated following observations that show two possible outcomes for collisionless reconnection: towards a Petschek-like configuration (Gosling 2007) or towards multiple X points (Eriksson et al. 2014). In the simulations presented here and described in [Innocenti2015*], a mixed scenario develops. At earlier time, plasmoids are emitted, disrupting the formation of Petschek-like structures. Later, an almost stationary monster plasmoid forms, preventing the emission of other plasmoids. A situation reminding of Petschek's switch-off then ensues. Switch-off is obtained through a slow shock / rotational discontinuity (SS/RD) compound structure, with the rotation discontinuity downstreamthe slow shock. Two external slow shocks located in correspondence of the separatrices reduce the in plane tangential component of the magnetic field, but not to zero. Two transitions reminding of rotational discontinuities in the internal part of the exhausts then perform the final switch-off. Both the slow shocks and the rotational discontinuities are characterized as such through the analysis of their Rankine-Hugoniot jump conditions. A moderate guide field is used to suppress the development of the firehose instability in the exhaust that prevented switch off in [Liu2012]. Compound SS/RD structures, with the RD located downstream the SS, have been observed in both the solar wind and the magnetosphere in Wind and Geotail data respectively [Whang1998, Whang2004]. Ion trajectiories across the SS/RD structure are followed and the kinetic origin of the SS/RD structure is investigated. * Innocenti, Goldman, Newman, Markidis, Lapenta, Evidence of magnetic field switch-off in collisionless magnetic reconnection, accepted in Astrophysical Journal Letters, 2015 Acknowledgements: NERSC, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of

  4. Simulations of Gyrosynchrotron Microwave Emission from an Oscillating 3D Magnetic Loop

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. A.; Van Doorsselaere, T.; Reznikova, V. E.

    2015-04-01

    Radio observations of solar flares often reveal various periodic or quasi-periodic oscillations. Most likely, these oscillations are caused by magnetohydrodynamic (MHD) oscillations of flaring loops which modulate the emission. Interpreting the observations requires comparing them with simulations. We simulated the gyrosynchrotron radio emission from a semicircular (toroidal-shaped) magnetic loop containing sausage-mode MHD oscillations. The aim was to detect the observable signatures specific to the considered MHD mode and to study their dependence on the various source parameters. The MHD waves were simulated using a linear three-dimensional model of a magnetized plasma cylinder; both standing and propagating waves were considered. The curved loop was formed by replicating the MHD solutions along the plasma cylinder and bending the cylinder; this model allowed us to study the effect of varying the viewing angle along the loop. The radio emission was simulated using a three-dimensional model, and its spatial and temporal variations were analyzed. We considered several loop orientations and different parameters of the magnetic field, plasma, and energetic electrons in the loop. In the model with low plasma density, the intensity oscillations at all frequencies are synchronous (with the exception of a narrow spectral region below the spectral peak). In the model with high plasma density, the emission at low frequencies (where the Razin effect is important) oscillates in anti-phase with the emissions at higher frequencies. The oscillations at high and low frequencies are more pronounced in different parts of the loop (depending on the loop orientation). The layers where the line-of-sight component of the magnetic field changes sign can produce additional peculiarities in the oscillation patterns.

  5. Thermal relaxation of a two dimensional plasma in a dc magnetic field. Part 2: Numerical simulation

    NASA Technical Reports Server (NTRS)

    Hsu, J. Y.; Joyce, G.; Montgomery, D.

    1974-01-01

    The thermal relaxation process for a spatially uniform two dimensional plasma in a uniform dc magnetic field is simulated numerically. Thermal relaxation times are defined in terms of the time necessary for the numerically computer Boltzman H-function to decrease through a given part of the distance to its minimum value. Dependence of relaxation time on two parameters is studied: number of particles per Debye square and ratio of gyrofrequency to plasma frequency.

  6. Analyzing large data sets from XGC1 magnetic fusion simulations using apache spark

    SciTech Connect

    Churchill, R. Michael

    2016-11-21

    Apache Spark is explored as a tool for analyzing large data sets from the magnetic fusion simulation code XGCI. Implementation details of Apache Spark on the NERSC Edison supercomputer are discussed, including binary file reading, and parameter setup. Here, an unsupervised machine learning algorithm, k-means clustering, is applied to XGCI particle distribution function data, showing that highly turbulent spatial regions do not have common coherent structures, but rather broad, ring-like structures in velocity space.

  7. Numerical Simulations of Torsional Alfvén Waves in Axisymmetric Solar Magnetic Flux Tubes

    NASA Astrophysics Data System (ADS)

    Wójcik, D.; Murawski, K.; Musielak, Z. E.; Konkol, P.; Mignone, A.

    2017-02-01

    We numerically investigate Alfvén waves propagating along an axisymmetric and non-isothermal solar flux tube embedded in the solar atmosphere. The tube magnetic field is current-free and diverges with height, and the waves are excited by a periodic driver along the tube magnetic field lines. The main results are that the two wave variables, the velocity and magnetic field perturbations in the azimuthal direction, behave differently as a result of gradients of the physical parameters along the tube. To explain these differences in the wave behavior, the time evolution of the wave variables and the resulting cutoff period for each wave variable are calculated and used to determine regions in the solar chromosphere where strong wave reflection may occur.

  8. Simulation Study of Magnetic Fields generated by the Electromagnetic Filamentation Instability driven by Pair Loading

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hededal, C.; Hardee, P.; Mizuno, Y.; Fishman, G. J.

    2007-01-01

    Using a 3-D relativistic particle-in-cell (RPIC) code, we have investigated particle acceleration associated with a relativistic electron-positron (cold) jet propagating into ambient electron-positron and electron-ion plasmas without initial magnetic fields in order to investigate the nonlinear stage of the Weibel instability. We have also performed simulations with broad Lorentz factor distribution of jet electrons and positrons, which are assumed to be created by the photon annihilation. The growth time and nonlinear saturation levels depend on the initial jet parallel velocity distributions and ambient plasma. Simulations show that the Weibel instability created in the collisionless shocks accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The nonlinear fluctuation amplitude of densities, currents, electric, and magnetic fields in the electron-ion ambient plasma are larger than those in the electron-positron ambient plasma. We have shown that plasma instabilities driven by these streaming electron-positron pairs are responsible for the excitation of near-equipartition, turbulent magnetic fields. These fields maintain a strong saturated level on timescales much longer than the electron skin depth at least for the duration of the simulations. Our results reveal the importance of the electromagnetic filamentation instability in ensuring an effective coupling between electron-positron pairs and ions, and may help explain the origin of large upstream fields in GRB shock.

  9. 3-D RPIC simulations of relativistic jets: Particle acceleration, magnetic field generation, and emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.

  10. 2D/3D quench simulation using ANSYS for epoxy impregnated Nb3Sn high field magnets

    SciTech Connect

    Ryuji Yamada et al.

    2002-09-19

    A quench program using ANSYS is developed for the high field collider magnet for three-dimensional analysis. Its computational procedure is explained. The quench program is applied to a one meter Nb{sub 3}Sn high field model magnet, which is epoxy impregnated. The quench simulation program is used to estimate the temperature and mechanical stress inside the coil as well as over the whole magnet. It is concluded that for the one meter magnet with the presented cross section and configuration, the thermal effects due to the quench is tolerable. But we need much more quench study and improvements in the design for longer magnets.

  11. PIC/MCC simulation for magnetized capacitively coupled plasmas driven by combined dc/rf sources

    NASA Astrophysics Data System (ADS)

    Yang, Shali; Zhang, Ya; Jiang, Wei; Wang, Hongyu; Wang, Shuai

    2016-09-01

    Hybrid dc/rf capacitively coupled plasma (CCP) sources have been popular in substrate etching due to their simplicity in the device structure and better plasma property. In this work, the characteristics of magnetized capacitively coupled plasmas driven by combined dc/rf sources are described by a one-dimensional Particle-in-cell/Monte Carlo collision (PIC/MCC) model. The simulation is using a rf source of 13.56MHz in argon and at a low pressure of 50mTorr. The effects of dc voltage and magnetic field on the plasmas are examined for 200-400V and 0-200Gs. It is found that, to some extent, dc voltage will increase the plasma density, but plasma density drops with increasing dc voltage. The magnetic field will enhance the plasma density significantly, due to the magnetic field will increase the electron life time and decrease the loss to the electrodes. In the bulk plasma, electron temperature is increased with the magnetic field but decreased with the dc voltage. The electron temperature in sheath is higher than in bulk plasma, due to stochastic heating in sheath is greater than Ohmic heating in bulk plasma under low gas pressure. National Natural Science Foundation of China (11405067, 11105057, 11305032, 11275039).

  12. Optimization of Nanocomposite Materials for Permanent Magnets: Micromagnetic Simulations of the Effects of Intergrain Exchange and the Shapes of Hard Grains

    NASA Astrophysics Data System (ADS)

    Erokhin, Sergey; Berkov, Dmitry

    2017-01-01

    In this paper, we perform a detailed numerical analysis of remagnetization processes in nanocomposite magnetic materials consisting of magnetically hard grains (i.e., grains made of a material with a high magnetocrystalline anisotropy) embedded into a magnetically soft phase. Such materials are widely used for the production of permanent magnets because they combine high remanence with large coercivity. We perform simulations of nanocomposites with Sr-ferrite as the hard phase and Fe or Ni as the soft phase, concentrating our efforts on analyzing the effects of (i) the imperfect intergrain exchange and (ii) the nonspherical shape of hard grains. We demonstrate that—in contrast to common belief—the maximal energy product is achieved not for systems with a perfect intergrain exchange, but for materials where this exchange is substantially weakened. We also show that the main parameters of the hysteresis loop—remanence, coercivity, and the energy product—exhibit nontrivial dependencies on the shape of hard grains and provide detailed explanations for our results. Simulation predictions obtained in this work open new ways for the optimization of materials for permanent magnets.

  13. SImulator of GAlaxy Millimetre/submillimetre Emission (SÍGAME): CO emission from massive z = 2 main-sequence galaxies

    NASA Astrophysics Data System (ADS)

    Olsen, Karen P.; Greve, Thomas R.; Brinch, Christian; Sommer-Larsen, Jesper; Rasmussen, Jesper; Toft, Sune; Zirm, Andrew

    2016-04-01

    We present SÍGAME (SImulator of GAlaxy Millimetre/submillimetre Emission), a new numerical code designed to simulate the 12CO rotational line spectrum of galaxies. Using sub-grid physics recipes to post-process the outputs of smoothed particle hydrodynamics (SPH) simulations, a molecular gas phase is condensed out of the hot and partly ionized SPH gas. The gas is subjected to far-UV radiation fields and cosmic ray ionization rates which are set to scale with the local star formation rate volume density. Level populations and radiative transport of the CO lines are solved with the 3D radiative transfer code LIME. We have applied SÍGAME to cosmological SPH simulations of three disc galaxies at z = 2 with stellar masses in the range ˜0.5-2 × 1011 M⊙ and star formation rates ˜40-140 M⊙ yr-1. Global CO luminosities and line ratios are in agreement with observations of disc galaxies at z ˜ 2 up to and including J = 3-2 but falling short of the few existing J=5-4 observations. The central 5 kpc regions of our galaxies have CO 3 - 2/1 - 0 and 7 - 6/1 - 0 brightness temperature ratios of ˜0.55-0.65 and ˜0.02-0.08, respectively, while further out in the disc the ratios drop to more quiescent values of ˜0.5 and <0.01. Global CO-to-H2 conversion (αCO) factors are {˜eq } 1.5 {{M_{⊙}} pc^{-2} (K km s^{-1})^{-1}}, i.e. ˜2-3 times below the typically adopted values for disc galaxies, and αCO increases with radius, in agreement with observations of nearby galaxies. Adopting a top-heavy Giant Molecular Cloud (GMC) mass spectrum does not significantly change the results. Steepening the GMC density profiles leads to higher global line ratios for Jup ≥ 3 and CO-to-H2 conversion factors [{˜eq } 3.6 {{M_{⊙}} pc^{-2} (K km s^{-1})^{-1}}].

  14. Hydrodynamic simulations of the interaction between an AGB star and a main-sequence companion in eccentric orbits

    NASA Astrophysics Data System (ADS)

    Staff, Jan E.; De Marco, Orsola; Macdonald, Daniel; Galaviz, Pablo; Passy, Jean-Claude; Iaconi, Roberto; Low, Mordecai-Mark Mac

    2016-02-01

    The Rotten Egg Nebula has at its core a binary composed of a Mira star and an A-type companion at a separation >10 au. It has been hypothesized to have formed by strong binary interactions between the Mira and a companion in an eccentric orbit during periastron passage ˜800 yr ago. We have performed hydrodynamic simulations of an asymptotic giant branch (AGB) star interacting with companions with a range of masses in orbits with a range of initial eccentricities and periastron separations. For reasonable values of the eccentricity, we find that Roche lobe overflow can take place only if the periods are ≪100 yr. Moreover, mass transfer causes the system to enter a common envelope phase within several orbits. Since the central star of the Rotten Egg nebula is an AGB star, we conclude that such a common envelope phase must have lead to a merger, so the observed companion must have been a tertiary companion of a binary that merged at the time of nebula ejection. Based on the mass and time-scale of the simulated disc formed around the companion before the common envelope phase, we analytically estimate the properties of jets that could be launched. Allowing for super-Eddington accretion rates, we find that jets similar to those observed are plausible, provided that the putative lost companion was relatively massive.

  15. Numerical simulation of the temperature field in magnetic hyperthermia with Fe-Cr-Nb-B magnetic particles

    NASA Astrophysics Data System (ADS)

    Astefanoaei, Iordana; Stancu, Alexandru; Chiriac, Horia

    2017-02-01

    This paper analyzes the optimum dosage of the Fe-Cr-Nb-B particles used in magnetic hyperthermia to obtain a uniform therapeutic temperature field within a large malignant tissue. The ferrofluid injection was modeled for two configurations of the injection sites symmetrically distributed within tumor volume. The particles transport within tissues during the injection process was also considered. The spatial distributions of the particles as a result of the injection of the ferrofluid volume in these injection sites configurations were studied. The temperature field developed within tissues in the presence of the magnetic field was computed using a numerical model developed via Comsol Multiphysics. The volumetric flow rate of the ferrofluid volume injected within the tumor influences strongly the temperature within the tumor. Symmetric arrangement of the injection sites for the ferrofluid insertion within tissues improves the spatial distribution of the temperature within the tumor. Ferrofluid injection in four injection sites with smaller volumetric flow rate was the best uniform therapeutic temperature field focused within the tumor volume we found in our simulations. Also as a plus, a smaller quantity of Fe-Cr-Nb-B particles is needed in this hypothetical therapeutic case.

  16. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    SciTech Connect

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.

    2012-04-26

    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is limited by

  17. Thermal Modeling of the Main Rings of Saturn through random distribution particle arrays and ray-tracing simulations

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto; Spilker, Linda; Déau, Estelle

    2016-10-01

    Saturn's rings are a complex collection of icy particles with diameters from 1 m to few meters. Their natural window of study is the infrared because its temperatures are between 40K and 120K. The main driver of the temperature of these rings is the direct solar radiation as well as the solar radiation reflected off Saturn's atmosphere. The second most important energy source is the infrared radiation coming from Saturn itself. The study of the variations of temperatures of the rings, or, in general, their thermal behavior, may provide important information on their composition, their structure and their dynamics. Models that consider these and other energy sources are able to explain, to a first approximation, the observed temperature variations of the rings. The challenge for these models is to accurately describe the variation of illumination on the rings, i. e., how the illuminated and non-illuminated regions of the ring particles change at the different observation geometries. This shadowing mainly depends on the optical depth, as well as the general structure of the rings.In this work, We show a semi-analytical model that considers the main energy sources of the rings and their average properties (e.g., optical depth, particle size range and vertical distribution). In order to deal with the shadowing at specific geometries, the model uses the ray-tracing technique. The goal is to describe the ring temperatures observed by the Composite Infrared Spectrometer, CIRS, onboard the Cassini spacecraft, which is in orbit around Saturn since 2004. So far, the model is able to reproduce some of the general features of specific regions of the A, B and C rings.

  18. Tokamak magneto-hydrodynamics and reference magnetic coordinates for simulations of plasma disruptions

    SciTech Connect

    Zakharov, Leonid E.; Li, Xujing

    2015-06-15

    This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L. E. Zakharov [Plasma Science and Technology 17(2), 97–104 (2015)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasma electric conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.

  19. Spin Dynamics simulations of the dynamic properties of classical models for magnetic materials

    NASA Astrophysics Data System (ADS)

    Bunker, Alex; Landau, D. P.

    1998-03-01

    The Spin Dynamics simulation technique, which has had considerable success for the study of critical properties of classical Heisenberg antiferromagnets(A. Bunker, K. Chen, and D. P. Landau Phys. Rev. B) \\underline54, 9259 (1996), has been used to determine more general properties for a wider range of materials. A general spin dynamics program has been developed which can determine the dynamic structure factor, S(q,ω), in the [100], [110], and [111] directions for a wide range of classical magnetic models at any temperature desired. We have simulated the magnetic dynamics in the ordered phase of the isotropic Heisenberg model with both ferromagnetic and antiferromagnetic coupling on L×L×L BCC and SC lattices. Outside of the critical regime relatively small lattice sizes of L = 12, 24 could be used. From our simulation we have determined the stiffness coefficient and the spin relaxation rate which were compared to both experimental(J. Als-Nielsen in Phase Transitions and Critical Phenomena), ed. C. Domb, M. S. Green, Academic Press, (1976) and theoretical results. We have performed the same simulation with anisotropy appropriate for MnF2 and FeF_2. Research supported in part by the NSF

  20. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Oka, M.; Hartmann, D. H.; Fishman, J. F.

    2009-01-01

    Plasma instabilities (e.g., Buneman, Weibel and other two-stream instabilities) excited in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a new 3-D relativistic particle-in-cell code, we have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. The simulation has been performed using a long simulation system in order to study the nonlinear stages of the Weibel instability, the particle acceleration mechanism, and the shock structure. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic (HD) like shock structure. In the leading shock, electron density increases by a factor of <_ 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. We discuss the possible implication of our simulation results within the AGN and GRB context. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique. The same technique will be used to calculate radiation from accelerated electrons (positrons) in turbulent magnetic fields generated by Weibel instability.

  1. Revealing the sub-structures of the magnetic reconnection separatrix via particle-in-cell simulation

    SciTech Connect

    Zhou, M.; Deng, X. H.; Pang, Y.; Xu, X. J.; Yao, M.; Huang, S. Y.; Yuan, Z. G.; Li, H. M.; Wang, D. D.; Wang, Y. H.

    2012-07-15

    Magnetic separatrix is an important boundary layer separating the inflow and outflow regions in magnetic reconnection. In this article, we investigate the sub-structures of the separatrix region by using two-and-half dimensional electromagnetic particle-in-cell simulation. The separatrix region can be divided into two sub-regions in terms of the ion and electron frozen-in conditions. Far from the neutral sheet, ions and electrons are magnetized in magnetic fields. Approaching the neutral sheet, ion frozen-in condition is broken in a narrow region ({approx}c/{omega}{sub pi}) at the edge of a density cavity, while electrons are frozen-in to magnetic fields. In this region, electric field E{sub z} is around zero, and the convective term -(v{sub i} Multiplication-Sign B) is balanced by the Hall term in the generalized Ohm's law because ions carry the perpendicular current. Inside the density cavity, both ion and electron frozen-in conditions are broken. The region consists of two sub-ion or electron-scale layers, which contain intense electric fields. Formation of the two sub-layers is due to the complex electron flow pattern around the separatrix region. In the layer, E{sub z} is balanced by a combination of Hall term and the divergence of electron pressure tensor, with the Hall term being dominant. Our preliminary simulation result shows that the separatrix region in guide field reconnection also contains two sub-regions: the inner region and the outer region. However, the inner region contains only one current layer in contrast with the case without guide field.

  2. Numerical simulation of filling a magnetic flux tube with a cold plasma: Anomalous plasma effects

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra; Leung, W. C.

    1995-01-01

    Large-scale models of plasmaspheric refilling have revealed that during the early stage of the refilling counterstreaming ion beams are a common feature. However, the instability of such ion beams and its effect on refilling remain unexplored. In order to learn the basic effects of ion beam instabilities on refilling, we have performed numerical simulations of the refilling of an artificial magnetic flux tube. (The shape and size of the tube are assumed so that the essential features of the refilling problem are kept in the simulation and at the same time the small scale processes driven by the ion beams are sufficiently resolved.) We have also studied the effect of commonly found equatorially trapped warm and/or hot plasma on the filling of a flux tube with a cold plasma. Three types of simulation runs have been performed.

  3. Self-Consistent, 2D Magneto-Hydrodynamic Simulations of Magnetically Driven Flyer Plates

    NASA Astrophysics Data System (ADS)

    Lemke, Raymond W.

    2002-11-01

    The intense magnetic field generated in the 20 MA Z-machine is used to accelerate flyer plates to high velocity for equation of state experiments. A peak magnetic drive pressure on the order of 2 Mbar can be generated, which accelerates an approximately 0.2 g aluminum disc to 21 km/s [1]. We have used 2D magneto-hydrodynamic (MHD) simulation to investigate the physics of accelerating flyer plates using multi-megabar magnetic drive pressures. A typical shock physics load is formed by a rectangular slab cathode enclosed by a hollow rectangular duct (the anode). The anode and cathode are connected (shorted) at one end. The electrodes are highly compressible at multi-megabar pressures. Electrode deformation that occurs during the rise time of the current pulse causes significant inductance increase, which reduces the peak current (drive pressure) relative to a static geometry. This important dynamic effect is modeled self-consistently by driving the MHD simulation with a circuit model of Z. Comparison of simulation results with highly accurate velocity interferometry measurements shows that the drive pressure waveform is affected by current losses and short circuiting in the machine, in conjunction with time varying load inductance. The understanding gained from these comparisons has allowed us to optimize shock physics loads using simulation. In this way a load was designed to produce a flyer velocity of 28 km/s, which was achieved experimentally on Z. We have identified paths to producing a flyer velocity of 40 km/s and peak isentropic pressure of 10 Mbar on the refurbished Z-machine [2]. Details of the modeling, the physics and comparisons with experiment are presented. [1] M. D. Knudson et al., Phys. Rev. Letters 87 (22), 22550-1 (2002). [2] R. W. Lemke et al., to be published in Proc. of the Int. Conf. on High Power Particle Beams and Dense Z-Pinches, Albuquerque, NM, June 23-28, 2002.

  4. MHD simulations of magnetized laser-plasma interaction for laboratory astrophysics

    NASA Astrophysics Data System (ADS)

    Khiar, Benjamin; Ciardi, Andrea; Vinci, Tommaso; Revet, Guilhem; Fuchs, Julien; Higginson, Drew

    2015-11-01

    Laser-driven plasmas coupled with externally applied strong, steady-state, magnetic fields have applications that range from ICF to astrophysical studies of jet collimation, accretion shock dynamics in young stars and streaming instabilities in space plasmas. We have recently included the modelling of laser energy deposition in our three-dimensional, resistive two-temperature MHD code GORGON. The model assumes linear inverse-bremsstrahlung absorption and the laser propagation is done in the geometrical optics approximation. We present full scale numerical simulations of actual experiments performed on the ELFIE installation at LULI, including plasma generated from single and multiple laser plasmas embedded in a magnetic field of strength up to 20 T, and experiments and astrophysical simulations that have shown the viability of poloidal magnetic fields to directly result in the collimation of outflows and the formation of jets in astrophysical accreting systems, such as in young stellar objects. The authors acknowledge the support from the Ile-de-France DIM ACAV, from the LABEX Plas@par and from the ANR grant SILAMPA.

  5. Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies.

    PubMed

    Deca, J; Divin, A; Lapenta, G; Lembège, B; Markidis, S; Horányi, M

    2014-04-18

    We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs.

  6. MAGNETIC-ISLAND CONTRACTION AND PARTICLE ACCELERATION IN SIMULATED ERUPTIVE SOLAR FLARES

    SciTech Connect

    Guidoni, S. E.; DeVore, C. R.; Karpen, J. T.; Lynch, B. J.

    2016-03-20

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magnetohydrodynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.

  7. Magnetic and Thermal Contributions to Helioseismic Travel times in Simulated Sunspots

    NASA Astrophysics Data System (ADS)

    Braun, Douglas; Felipe, Tobias; Birch, Aaron; Crouch, Ashley D.

    2016-05-01

    The interpretation of local helioseismic measurements of sunspots has long been a challenge, since waves propagating through sunspots are potentially affected by both mode conversion and changes in the thermal structure of the spots. We carry out numerical simulations of wave propagation through a variety of models which alternately isolate either the thermal or magnetic structure of the sunspot or include both of these. We find that helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. Using insight from ray theory, we find that travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level of the measurements) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it suggests a path towards inversions for sunspot structure. This research has been funded by the Spanish MINECO through grant AYA2014-55078-P, by the NASA Heliophysics Division through NNX14AD42G and NNH12CF23C, and the NSF Solar Terrestrial program through AGS-1127327.

  8. Magnetic Turbulence and Line Broadening in Simulations of Lyman-Alpha Absorption

    NASA Astrophysics Data System (ADS)

    Gurvich, Alex; Burkhart, Blakesley K.; Bird, Simeon

    2016-01-01

    We use the Illustris cosmological AREPO simulations to study the effects of gas turbulence and magnetic fields on measurements from the Lyman-Alpha forest. We generate simulated Lyman-Alpha spectra and plot the distributions of Column Density (CDD) and Doppler Width (b) both by adhering to the canonical method of fitting Voigt profiles to absorption lines and by directly measuring the column density and equivalent widths from snapshot data .We investigate the effects of additional unresolved gas turbulence in Illustris by adding an additional broadening term to the line profiles to mimic turbulent broadening. When we do this, we find a measurable effect in the CDD and an offset in the mean of the b distribution corresponding to the additional turbulence. We also compare different MHD runs in AREPO we find that the CDD can measurably differentiate between magnetic seed field at redshifts as low as z=0.1, but we do not find that the b distribution is affected at a detectable level. Our work suggests that the effects of turbulence and magnetic fields from z=2-0.1 can potentially be measured with these diagnostics. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  9. Quantifying the Chiral Magnetic Effect in Isobaric Heavy Ion Collisions Using Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Lilleskov, Elias; Liao, Jinfeng; Jiang, Yin; Shi, Shuzhe

    2016-09-01

    The quark-gluon plasma created in heavy ion collisions is an exotic state of matter in which many unusual phenomena are manifested. One such phenomenon is the ``Chiral-Magnetic Effect'' (CME), wherein the powerful magnetic fields generated by colliding ions spin-polarize chiral quarks, causing a net transport effect in the direction of the fields. The CME predicts specific charge-dependent correlation observables, for which experimental evidence was reported, although the evidence is subject to background contamination. Isobaric collision experiments have been planned for 2018 at RHIC, which will study this effect by comparing 96Ru-96Ru and 96Zr-96Zr collisions. The two colliding systems are expected to have nearly identical bulk properties (including background contamination), yet about 10% difference in their magnetic fields due to different nuclear charges. This provides a unique opportunity to disentangle the CME observable and background effects. By simulating this effect using anomalous hydrodynamic simulations, we make a quantitative prediction for the CME-induced signal for several centralities in each of these two colliding systems. Our results suggest a significant enough difference in the signal to be experimentally detected- on the order of 15-20%. Thanks to the Indiana University REU program for their support.

  10. Collaborative Simulation and Testing of the Superconducting Dipole Prototype Magnet for the FAIR Project

    NASA Astrophysics Data System (ADS)

    Zhu, Yinfeng; Zhu, Zhe; Xu, Houchang; Wu, Weiyue

    2012-08-01

    The superconducting dipole prototype magnet of the collector ring for the Facility for Antiproton and Ion Research (FAIR) is an international cooperation project. The collaborative simulation and testing of the developed prototype magnet is presented in this paper. To evaluate the mechanical strength of the coil case during quench, a 3-dimensional (3D) electromagnetic (EM) model was developed based on the solid97 magnetic vector element in the ANSYS commercial software, which includes the air region, coil and yoke. EM analysis was carried out with a peak operating current at 278 A. Then, the solid97 element was transferred into the solid185 element, the coupled analysis was switched from electromagnetic to structural, and the finite element model for the coil case and glass-fiber reinforced composite (G10) spacers was established by the ANSYS Parametric Design Language based on the 3D model from the CATIA V5 software. However, to simulate the friction characteristics inside the coil case, the conta173 surface-to-surface contact element was established. The results for the coil case and G10 spacers show that they are safe and have sufficient strength, on the basis of testing in discharge and quench scenarios.

  11. Magnetic-Island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares

    NASA Technical Reports Server (NTRS)

    Guidoni, S. E.; Devore, C. R.; Karpen, J. T.; Lynch, B. J.

    2016-01-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magneto hydro dynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.

  12. Magnetic-island Contraction and Particle Acceleration in Simulated Eruptive Solar Flares

    NASA Astrophysics Data System (ADS)

    Guidoni, S. E.; DeVore, C. R.; Karpen, J. T.; Lynch, B. J.

    2016-03-01

    The mechanism that accelerates particles to the energies required to produce the observed high-energy impulsive emission in solar flares is not well understood. Drake et al. proposed a mechanism for accelerating electrons in contracting magnetic islands formed by kinetic reconnection in multi-layered current sheets (CSs). We apply these ideas to sunward-moving flux ropes (2.5D magnetic islands) formed during fast reconnection in a simulated eruptive flare. A simple analytic model is used to calculate the energy gain of particles orbiting the field lines of the contracting magnetic islands in our ultrahigh-resolution 2.5D numerical simulation. We find that the estimated energy gains in a single island range up to a factor of five. This is higher than that found by Drake et al. for islands in the terrestrial magnetosphere and at the heliopause, due to strong plasma compression that occurs at the flare CS. In order to increase their energy by two orders of magnitude and plausibly account for the observed high-energy flare emission, the electrons must visit multiple contracting islands. This mechanism should produce sporadic emission because island formation is intermittent. Moreover, a large number of particles could be accelerated in each magnetohydrodynamic-scale island, which may explain the inferred rates of energetic-electron production in flares. We conclude that island contraction in the flare CS is a promising candidate for electron acceleration in solar eruptions.

  13. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, J. F.

    2009-01-01

    Plasma instabilities excited in collisionless shocks are responsible for particle acceleration. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electron's transverse deflection behind the shock. The jitter'' radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. New spectra based on simulations will be presented.

  14. Plasma dynamics on current-carrying magnetic flux tubes. II - Low potential simulation

    NASA Technical Reports Server (NTRS)

    Swift, Daniel W.

    1992-01-01

    The evolution of plasma in a current-carrying magnetic flux tube of variable cross section is investigated using a one-dimensional numerical simulation. The flux tube is narrow at the two ends and broad in the middle. The middle part of the flux tube is loaded with a hot, magnetically trapped population, and the two ends have a more dense, gravitationally bound population. A potential difference larger than the gravitational potential but less than the energy of the hot population is applied across the domain. The general result is that the potential change becomes distributed along the anode half of the domain, with negligible potential change on the cathode half. The potential is supported by the mirror force of magnetically trapped particles. The simulations show a steady depletion of plasma on the anode side of the flux tube. The current steadily decreases on a time scale of an ion transit time. The results may provide an explanation for the observed plasma depletions on auroral field lines carrying upward currents.

  15. Full kinetic simulations of plasma flow interactions with meso- and microscale magnetic dipoles

    SciTech Connect

    Ashida, Y.; Yamakawa, H.; Usui, H.; Miyake, Y.; Shinohara, I.; Funaki, I.; Nakamura, M.

    2014-12-15

    We examined the plasma flow response to meso- and microscale magnetic dipoles by performing three-dimensional full particle-in-cell simulations. We particularly focused on the formation of a magnetosphere and its dependence on the intensity of the magnetic moment. The size of a magnetic dipole immersed in a plasma flow can be characterized by a distance L from the dipole center to the position where the pressure of the local magnetic field becomes equal to the dynamic pressure of the plasma flow under the magnetohydrodynamics (MHD) approximation. In this study, we are interested in a magnetic dipole whose L is smaller than the Larmor radius of ions r{sub iL} calculated with the unperturbed dipole field at the distance L from the center. In the simulation results, we confirmed the clear formation of a magnetosphere consisting of a magnetopause and a tail region in the density profile, although the spatial scale is much smaller than the MHD scale. One of the important findings in this study is that the spatial profiles of the plasma density as well as the current flows are remarkably affected by the finite Larmor radius effect of the plasma flow, which is different from the Earth's magnetosphere. The magnetopause found in the upstream region is located at a position much closer to the dipole center than L. In the equatorial plane, we also found an asymmetric density profile with respect to the plasma flow direction, which is caused by plasma gyration in the dipole field region. The ion current layers are created in the inner region of the dipole field, and the electron current also flows in the region beyond the ion current layer because ions with a large inertia can closely approach the dipole center. Unlike the ring current structure of the Earth's magnetosphere, the current layers in the microscale dipole fields are not circularly closed around the dipole center. Since the major current is caused by the particle gyrations, the current is independently determined

  16. Numerical Simulations of a 20-kW Class Hall Thruster Using the Magnetic-Field-Aligned-Mesh Code Hall2De

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Kamhawi, Hani; Vannoord, Jonathan L.

    2011-01-01

    This paper reports on numerical simulations of the NASA-300M, a 20-kW class Hall thruster developed at the NASA Glenn Research Center (GRC). The numerical simulations have been performed with a 2-D axisymmetric, magnetic field-aligned-mesh (MFAM) plasma solver developed at the Jet Propulsion Laboratory (JPL). The main objective of the collaborative effort is to combine physics-based simulation, plasma diagnostics and recent findings on erosion physics to design and demonstrate a high-power, high-performance Hall thruster that exceeds the life of state-of-the-art Hall thrusters by more than one order of magnitude. The thruster simulations have been carried out at a discharge voltage of 500 V and discharge current of 40 A. The results indicate that although the impact energy of ions may attain values that are comparable to the discharge voltage along the downstream portions of the channel, a withdrawn ionization region and significant ion focusing combine to sustain erosion rates below 1 mm/kh. A more extensive evaluation of the baseline NASA-300M configuration and re-design of this thruster with magnetically shielded walls constitute the main focus of our work in the coming months.

  17. Variations of the ionospheric plasma concentration in the region of the main ionospheric trough during the magnetic storm of December 18-19, 1978, in connection with measurements of the interplanetary magnetic field

    SciTech Connect

    Gdalevich, G.L.; Afonin, V.V.; Eliseev, A.Y.; Kolomiitsev, O.P.; Ozerov, V.D.; Soboleva, T.N.

    1986-07-01

    Data from the Kosmos-900 satellite are used to examine variations of the ion concentration in the region of the main ionospheric trough at altitudes of about 500 km during the storm of December 18-19, 1978. These variations of ion densities are compared with the variations of the parameters of the interplanetary medium, in particular, with the E /sub y/ = -VB /sub z/ component of the interplanetary electric field. The results of the comparison are discussed. A scheme is proposed for the formation and motion of the trough during magnetic disturbances.

  18. Numerical simulation of a helical shape electric arc in the external axial magnetic field

    NASA Astrophysics Data System (ADS)

    Urusov, R. M.; Urusova, I. R.

    2016-10-01

    Within the frameworks of non-stationary three-dimensional mathematical model, in approximation of a partial local thermodynamic equilibrium, a numerical calculation was made of characteristics of DC electric arc burning in a cylindrical channel in the uniform external axial magnetic field. The method of numerical simulation of the arc of helical shape in a uniform external axial magnetic field was proposed. This method consists in that that in the computational algorithm, a "scheme" analog of fluctuations for electrons temperature is supplemented. The "scheme" analogue of fluctuations increases a weak numerical asymmetry of electrons temperature distribution, which occurs randomly in the course of computing. This asymmetry can be "picked up" by the external magnetic field that continues to increase up to a certain value, which is sufficient for the formation of helical structure of the arc column. In the absence of fluctuations in the computational algorithm, the arc column in the external axial magnetic field maintains cylindrical axial symmetry, and a helical form of the arc is not observed.

  19. Theory and simulation of the magnetic island-induced TAE mode

    NASA Astrophysics Data System (ADS)

    Cook, Carson; Hegna, Chris; Spong, Don; Hirshman, Steve

    2013-10-01

    In this work, we develop the theory of the shear Alfven continuum in the presence of a magnetic island in a toroidal equilibrium. The shear Alfven spectrum of a magnetically confined plasma influences the stability properties of the system. Discrete Alfven eigenmodes are of particular interest to fusion plasmas. The frequencies of these modes lie in the gaps of the Alfven continuum, and thus the modes do not experience continuum damping and can be driven unstable by energetic particles. The effects of magnetic islands on the ellipticity-induced Alfven eigenmode and the beta-induced Alfven eigenmode have been studied in some detail (see e.g. Biancalani et al., Plasma Phys. Control. Fusion53, 025009 (2011)). However, the effects of islands on the toroidicity-induced Alfven eigenmode (TAE) has not been investigated. The magnetic island-induced TAE (MiTAE) gap will be discussed along with the discrete MiTAE mode. Numerical simulation results using the SIESTA equilibrium code will be presented and compared to theory. Using the Hessian matrix from a SIESTA equilibrium, the Alfven eigenmodes and frequencies can be computed. A simple toroidal equilibrium with an island will be studied and the computed MiTAE structure and frequency will be compared to the analytical prediction. Research supported by the U. S. DOE under grants DE-FG02-99ER54546 and DE-SC0006103.

  20. On the Origin of Near-Radial Magnetic Fields in the Heliosphere: Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Riley, Pete; Gosling, T. J.

    2007-01-01

    Deviations from the direction of the "Parker spiral" can be found in in situ measurements of the interplanetary magnetic field on essentially all scales. One intriguing subset is the intervals of near-radial magnetic field, lasting for many hours. Some such intervals are obviously associated with coronal mass ejections, while others appear to be embedded within the ambient solar wind. Most occur on declining speed profiles, such that, when mapped back to the Sun, an entire radial field interval appears to have been launched at approximately the same time. It has been proposed that these events are the result of abrupt, semipermanent speed decreases on these field lines close to the Sun, and that such speed changes might be due to interchange reconnection. In this study, we use a three-dimensional, time-dependent magnetohydrodynamic model to assess to what extent this can account for near-radial magnetic fields observed relatively far out in the heliosphere. We find that sudden speed drops on the trailing portions of high-speed flows can produce strongly underwound (that is near radial) field lines in the heliosphere, although significantly larger speed gradients are required than are typically observed. Moreover, the simulations also reproduce the decreases in density, temperature, and magnetic field strength that are also commonly observed within these events. The question of what produces the abrupt speed drops remains to be answered.

  1. Statistical Analysis of Main and Interaction Effects on Cu(II) and Cr(VI) Decontamination by Nitrogen–Doped Magnetic Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Hu, Xinjiang; Wang, Hui; Liu, Yunguo

    2016-10-01

    A nitrogen–doped magnetic graphene oxide (NMGO) was synthesized and applied as an adsorbent to remove Cu(II) and Cr(VI) ions from aqueous solutions. The individual and combined effects of various factors (A: pH, B: temperature, C: initial concentration of metal ions, D: CaCl2, and E: humic acid [HA]) on the adsorption were analyzed by a 25‑1 fractional factorial design (FFD). The results from this study indicated that the NMGO had higher adsorption capacities for Cu(II) ions than for Cr(VI) ions under most conditions, and the five selected variables affected the two adsorption processes to different extents. A, AC, and C were the very important factors and interactions for Cu(II) adsorption. For Cr(VI) adsorption, A, B, C, AB, and BC were found to be very important influencing variables. The solution pH (A) was the most important influencing factor for removal of both the ions. The main effects of A–E on the removal of Cu(II) were positive. For Cr(VI) adsorption, the main effects of A and D were negative, while B, C, and E were observed to have positive effects. The maximum adsorption capacities for Cu(II) and Cr(VI) ions over NMGO were 146.365 and 72.978 mg/g, respectively, under optimal process conditions.

  2. Statistical Analysis of Main and Interaction Effects on Cu(II) and Cr(VI) Decontamination by Nitrogen–Doped Magnetic Graphene Oxide

    PubMed Central

    Hu, Xinjiang; Wang, Hui; Liu, Yunguo

    2016-01-01

    A nitrogen–doped magnetic graphene oxide (NMGO) was synthesized and applied as an adsorbent to remove Cu(II) and Cr(VI) ions from aqueous solutions. The individual and combined effects of various factors (A: pH, B: temperature, C: initial concentration of metal ions, D: CaCl2, and E: humic acid [HA]) on the adsorption were analyzed by a 25−1 fractional factorial design (FFD). The results from this study indicated that the NMGO had higher adsorption capacities for Cu(II) ions than for Cr(VI) ions under most conditions, and the five selected variables affected the two adsorption processes to different extents. A, AC, and C were the very important factors and interactions for Cu(II) adsorption. For Cr(VI) adsorption, A, B, C, AB, and BC were found to be very important influencing variables. The solution pH (A) was the most important influencing factor for removal of both the ions. The main effects of A–E on the removal of Cu(II) were positive. For Cr(VI) adsorption, the main effects of A and D were negative, while B, C, and E were observed to have positive effects. The maximum adsorption capacities for Cu(II) and Cr(VI) ions over NMGO were 146.365 and 72.978 mg/g, respectively, under optimal process conditions. PMID:27694891

  3. A study on the main periodicities in interplanetary magnetic field Bz component and geomagnetic AE index during HILDCAA events using wavelet analysis

    NASA Astrophysics Data System (ADS)

    Souza, A. M.; Echer, E.; Bolzan, M. J. A.; Hajra, R.

    2016-11-01

    The interplanetary and geomagnetic characteristics of High-Intensity Long-Duration Continuous AE Activity (HILDCAA) events are studied using wavelet analysis technique. The Morlet wavelet transform was applied to the 1 min interplanetary magnetic field (IMF) Bz component and the geomagnetic AE index during HILDCAA events. We have analyzed the AE data for the events occurring between 1975 and 2011, and the IMF Bz data (both in GSE and GSM) for the events between 1995 and 2011. We analyzed the scalograms and the global wavelet spectrum of the parameters. For 50% of all HILDCAA events, the main periodicities of the AE index are generally between 4 and 12 h. For the Bz component, the main periodicities were found to be less than 8 h for 56% of times in GSM system and for 54% of times in GSE system. It is conjectured that the periodicities might be associated with the Alfvén waves which have typical periods between 1 and 10 h. The results are discussed in the light of self organized criticality theory where the physical events have the capacity of releasing a considerable amount of energy in a short interval of time.

  4. Magnetic properties of double perovskite Sr2RuHoO6: Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Nid-bahami, A.; El Kenz, A.; Benyoussef, A.; Bahmad, L.; Hamedoun, M.; El Moussaoui, H.

    2016-11-01

    In this paper, we have studied the double perovskite complex Sr2RuHoO6 (SRHO) using the Mean-Field Approximation (MFA) and Monte Carlo Simulation (MCS). Firstly, we study the ground state of the phase diagrams depending on the exchange couplings and the crystal fields, on the other hand the magnetic properties has been studied. The obtained results by MFA were compared with those obtained using a MCS. Secondly, we have presented the results for finite sizes analysis, of the magnetization and the susceptibility as a function of reduced temperature. Finally, we obtain the critical reduced temperature and critical values of the exponents υ = 0 . 602 ± 0 . 011 , γ = 1 . 179 ± 0 . 022 and β = 0 . 296 ± 0 . 018 which these values are nearest to that of 3D Ising model (υ = 0 ṡ 632 , γ = 1 ṡ 23 and β = 0 ṡ 325).

  5. The magnetic topology of the plasmoid flux rope in a MHD-simulation of magnetotail reconnection

    NASA Astrophysics Data System (ADS)

    Birn, J.; Hesse, M.

    On the basis of a 3D MHD simulation, the magnetic topology of a plasmoid that forms by a localized reconnection process in a magnetotail configuration (including a net dawn-dusk magnetic field component B sub y N is discussed. As a consequence of B sub y N not equalling 0, the plasmoid assumes a helical flux rope structure rather than an isolated island or bubble structure. Initially all field lines of the plasmoid flux rope remain connected with the earth, while at later times a gradually increasing amount of flux tubes becomes separated, connecting to either the distant boundary or to the flank boundaries. In this stage, topologically different flux tubes become tangled and wrapped around each other, consistent with predictions on the basis of an ad hoc plasmoid model.

  6. The magnetic topology of the plasmoid flux rope in a MHD-simulation of magnetotail reconnection

    NASA Astrophysics Data System (ADS)

    Birn, J.; Hesse, M.

    On the basis of a three-dimensional MHD simulation we discuss the magnetic topology of a plasmoid that forms by a localized reconnection process in a magnetotail configuration including a net dawn-dusk magnetic field component ByN. As a consequence of ByN ≠ 0 the plasmoid assumes a helical flux rope structure rather than an isolated island or bubble structure. Initially all field lines of the plasmoid flux rope remain connected with the Earth, while at later times a gradually increasing amount of flux tubes becomes separated, connecting to either the distant boundary or to the flank boundaries. In this stage topologically different flux tubes become tangled and wrapped around each other, consistent with predictions on the basis of an ad-hoc plasmoid model.

  7. The magnetic topology of the plasmoid flux rope in a MHD simulation of magnetotail reconnection

    NASA Astrophysics Data System (ADS)

    Birn, J.; Hesse, M.

    On the basis of a three-dimensional MHD simulation we discuss the magnetic topology of a plasmoid that forms by a localized reconnection process in a magnetotail configuration including a net dawn-dusk magnetic field component B sub yN. As a consequence of B sub yN ne 0 the plasmoid gets a helical flux rope structure rather than an isolated island or bubble structure. Initially all field lines of the plasmoid flux rope remain connected with the Earth, while at later times a gradually increasing number of flux tubes becomes separated, connecting to either the distant boundary or to the flank boundaries. In this stage topologically different flux tubes become tangled and wrapped around each other, consistent with predictions on the basis of ad hoc plasmoid models.

  8. Numerical Simulations of Solar Spicule Jets at a Magnetic Null-Point

    NASA Astrophysics Data System (ADS)

    Smirnova, V.; Konkol, P. M.; Solov'ev, A. A.; Murawski, K.

    2016-11-01

    Two-dimensional numerical simulations of jet-like structures in the solar atmosphere are performed. These structures result from a pressure pulse that is launched at the null point of a potential magnetic arcade. The plasma jet exhibits a double structure with two components: (a) dense, cool, and short vertical stream and (b) a less dense, hot and tall part of the jet. The upper part of the hot and tall jet may represent a direct response of the system to the pressure pulse launched at the null point, and the second, slower cool and dense part of the jet is formed later through the stretching up of the stream as a result of plasma evacuation from the top of the magnetic arcade. Numerical results show that jet-like structures mimic some properties of both type I and type II spicules, according to the classification provided by De Pontieu et al. ( Publ. Astron. Soc. Japan 59, S655, 2007).

  9. Simulations on shifting medium and its application in wireless power transfer system to enhance magnetic coupling

    NASA Astrophysics Data System (ADS)

    Li, Wenwen; Zhang, Yingyi; Yao, Chen; Tang, Houjun

    2016-05-01

    Shifting medium is a kind of an anisotropic but homogeneous metamaterial designed by transformation optics. An object or free space enclosed by the shifting medium could be moved to a certain distance away from the original position. In this paper, we propose a cone-shaped shifting medium shell to move an internal coil to the given position. In this way, the two coils in a wireless power transfer system could be equivalently moved closer; thus, their magnetic coupling is enhanced. The theoretical models and numerical simulations are presented and analyzed to validate the effects of the shifting medium shell. Both ohmic loss and magnetic loss are also considered for practical concerns. Finally, we discuss the simplification of such a shifting medium to facilitate its fabrication.

  10. Ideal magnetohydrodynamic simulations of low beta compact toroid injection into a hot strongly magnetized plasma

    SciTech Connect

    Liu, Wei; Hsu, Scott; Li, Hui

    2009-01-01

    We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.

  11. The magnetic topology of the plasmoid flux rope in a MHD simulation of magnetotail reconnection

    SciTech Connect

    Birn, J.; Hesse, M.

    1989-01-01

    On the basis of a three-dimensional MHD simulation we discuss the magnetic topology of a plasmoid that forms by a localized reconnection process in a magnetotail configuration including a net dawn-dusk magnetic field component B/sub yN/. As a consequence of b/sub yN/ /ne/ 0 the plasmid gets a helical flux rope structure rather than an isolated island or bubble structure. Initially all field lines of the plasmid flux rope remain connected with the Earth, while at later times a gradually increasing amount of flux tubes becomes separated, connecting to either the distant boundary or to the flank boundaries. In this stage topologically different flux tubes become tangled and wrapped around each other, consistent with predictions on the basis of ad-hoc plasmid models. 10 refs., 8 figs.

  12. Chiral Magnetic Effect and Anomalous Transport from Real-Time Lattice Simulations

    SciTech Connect

    Müller, Niklas; Schlichting, Sören; Sharma, Sayantan

    2016-09-30

    Here, we present a first-principles study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian S U ( N c ) and Abelian U ( 1 ) gauge fields. By investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the chiral magnetic and chiral separation effect leads to the formation of a propagating wave. Furthermore, we analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark masses.

  13. Chiral Magnetic Effect and Anomalous Transport from Real-Time Lattice Simulations

    DOE PAGES

    Müller, Niklas; Schlichting, Sören; Sharma, Sayantan

    2016-09-30

    Here, we present a first-principles study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian S U ( N c ) and Abelian U ( 1 ) gauge fields. By investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the chiral magnetic and chiral separation effect leads to the formation of a propagating wave. Furthermore, we analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on themore » amount of explicit chiral symmetry breaking due to finite quark masses.« less

  14. Simulations of microwave electron heating on field-reversed configuration driven by rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, Xiaokang; Petrov, Yuri; Koehn, Alf; Cohen, Sam; Ceccherini, Francesco; Galeotti, Laura; Dettrick, Sean; Binderbauer, Michl

    2016-10-01

    The rotating magnetic field-driven field-reversed configuration (FRC), such as Rotamak or PFRC experiment, was recently proposed as a test bench at Tri Alpha Energy to experimentally pioneer the study of microwave electron heating. In order to provide guidelines to the choice of microwave frequency and antenna position, as well as the desired target plasma profile, extensive simulations have been conducted with use of the GENRAY-C ray-tracing code for a wide range of frequencies from smaller than fundamental electron cyclotron resonant (ECR) frequency up to more than 30 harmonics of ECR. Based on the operational parameters of Rotamak plasma, simulations indicate that microwaves at a frequency around 10 GHz can heat electrons inside the separatrix layer. The physics of heating mechanism is similar for both the Rotamak and the C-2U FRC plasma, meaning that the magnitude of magnetic field goes down along the direction of ray propagation, therefore the rays, after the O-X-B mode conversion, encounter a basin of high harmonic EC resonances and mostly damp the power in the vicinity of the upper-hybrid resonance layer Detailed simulation results and plans for a future test bench will be presented.

  15. A comparison of numerical simulations and analytical theory of the dynamics of interacting magnetic vortices

    SciTech Connect

    Asmat-Uceda, Martin; Buchanan, Kristen S.; Cheng, Xuemei; Wang, Xiao; Clarke, David J.; Tchernyshyov, Oleg

    2015-03-28

    Magnetostatic interactions between vortices in closely spaced planar structures are important for applications including vortex-based magnonic crystals and spin torque oscillator networks. Analytical theories that include magnetostatic interaction effects have been proposed but have not yet been rigorously tested. Here, we compare micromagnetic simulations of the dynamics of magnetic vortices confined in three disks in an equilateral triangle configuration to analytical theories that include coupling. Micromagnetic simulations show that the magnetostatic coupling between the disks leads to splitting of the gyrotropic resonance into three modes and that the frequency splitting increases with decreasing separation. The temporal profiles of the magnetization depend on the vortex polarities and chiralities; however, the frequencies depend only on the polarity combinations and will fall into one of two categories: all polarities equal or one polarity opposite to the others, where the latter leads to a larger frequency splitting. Although the magnitude of the splitting observed in the simulations is larger than what is expected based on purely dipolar interactions, a simple analytical model that assumes dipole-dipole coupling captures the functional form of the frequency splitting and the motion patterns just as well as more complex models.

  16. Electrostatic particle-in-cell simulation of heat flux mitigation using magnetic fields

    NASA Astrophysics Data System (ADS)

    Lüskow, Karl Felix; Kemnitz, S.; Bandelow, G.; Duras, J.; Kahnfeld, D.; Matthias, P.; Schneider, R.; Konigorski, D.

    2016-10-01

    The particle-in-cell (PIC) method was used to simulate heat flux mitigation experiments with partially ionised argon. The experiments demonstrate the possibility of reducing heat flux towards a target using magnetic fields. Modelling using the PIC method is able to reproduce the heat flux mitigation qualitatively. This is driven by modified electron transport. Electrons are magnetised and react directly to the external magnetic field. In addition, an increase of radial turbulent transport is also needed to explain the experimental observations in the model. Close to the target an increase of electron density is created. Due to quasi-neutrality, ions follow the electrons. Charge exchange collisions couple the dynamics of the neutrals to the ions and reduce the flow velocity of neutrals by radial momentum transport and subsequent losses. By this, the dominant heat-transport channel by neutrals gets reduced and a reduction of the heat deposition, similar to the experiment, is observed. Using the simulation a diagnostic module for optical emission is developed and its results are compared with spectroscopic measurements and photos from the experiment. The results of this study are in good agreement with the experiment. Experimental observations such as a shrank bright emission region close to the nozzle exit, an additional emission in front of the target and an overall change in colour to red are reproduced by the simulation.

  17. Emergence of Granular-sized Magnetic Bubbles through the Solar Atmosphere. I. Spectropolarimetric Observations and Simulations

    NASA Astrophysics Data System (ADS)

    Ortiz, Ada; Bellot Rubio, Luis R.; Hansteen, Viggo H.; de la Cruz Rodríguez, Jaime; Rouppe van der Voort, Luc

    2014-02-01

    We study a granular-sized magnetic flux emergence event that occurred in NOAA 11024 in 2009 July. The observations were made with the CRISP spectropolarimeter at the Swedish 1 m Solar Telescope achieving a spatial resolution of 0.''14. Simultaneous full Stokes observations of the two photospheric Fe I lines at 630.2 nm and the chromospheric Ca II 854.2 nm line allow us to describe in detail the emergence process across the solar atmosphere. We report here on three-dimensional (3D) semi-spherical bubble events, where instead of simple magnetic footpoints, we observe complex semi-circular feet straddling a few granules. Several phenomena occur simultaneously, namely, abnormal granulation, separation of opposite-polarity legs, and brightenings at chromospheric heights. However, the most characteristic signature in these events is the observation of a dark bubble in filtergrams taken in the wings of the Ca II 854.2 nm line. There is a clear coincidence between the emergence of horizontal magnetic field patches and the formation of the dark bubble. We can infer how the bubble rises through the solar atmosphere as we see it progressing from the wings to the core of Ca II 854.2 nm. In the photosphere, the magnetic bubble shows mean upward Doppler velocities of 2 km s-1 and expands at a horizontal speed of 4 km s-1. In about 3.5 minutes it travels some 1100 km to reach the mid chromosphere, implying an average ascent speed of 5.2 km s-1. The maximum separation attained by the magnetic legs is 6.''6. From an inversion of the observed Stokes spectra with the SIR code, we find maximum photospheric field strengths of 480 G and inclinations of nearly 90° in the magnetic bubble interior, along with temperature deficits of up to 250 K at log τ = -2 and above. To aid the interpretation of the observations, we carry out 3D numerical simulations of the evolution of a horizontal, untwisted magnetic flux sheet injected in the convection zone, using the Bifrost code. The

  18. Emergence of granular-sized magnetic bubbles through the solar atmosphere. I. Spectropolarimetric observations and simulations

    SciTech Connect

    Ortiz, Ada; Hansteen, Viggo H.; Van der Voort, Luc Rouppe; Bellot Rubio, Luis R.; De la Cruz Rodríguez, Jaime

    2014-02-01

    We study a granular-sized magnetic flux emergence event that occurred in NOAA 11024 in 2009 July. The observations were made with the CRISP spectropolarimeter at the Swedish 1 m Solar Telescope achieving a spatial resolution of 0.''14. Simultaneous full Stokes observations of the two photospheric Fe I lines at 630.2 nm and the chromospheric Ca II 854.2 nm line allow us to describe in detail the emergence process across the solar atmosphere. We report here on three-dimensional (3D) semi-spherical bubble events, where instead of simple magnetic footpoints, we observe complex semi-circular feet straddling a few granules. Several phenomena occur simultaneously, namely, abnormal granulation, separation of opposite-polarity legs, and brightenings at chromospheric heights. However, the most characteristic signature in these events is the observation of a dark bubble in filtergrams taken in the wings of the Ca II 854.2 nm line. There is a clear coincidence between the emergence of horizontal magnetic field patches and the formation of the dark bubble. We can infer how the bubble rises through the solar atmosphere as we see it progressing from the wings to the core of Ca II 854.2 nm. In the photosphere, the magnetic bubble shows mean upward Doppler velocities of 2 km s{sup –1} and expands at a horizontal speed of 4 km s{sup –1}. In about 3.5 minutes it travels some 1100 km to reach the mid chromosphere, implying an average ascent speed of 5.2 km s{sup –1}. The maximum separation attained by the magnetic legs is 6.''6. From an inversion of the observed Stokes spectra with the SIR code, we find maximum photospheric field strengths of 480 G and inclinations of nearly 90° in the magnetic bubble interior, along with temperature deficits of up to 250 K at log τ = –2 and above. To aid the interpretation of the observations, we carry out 3D numerical simulations of the evolution of a horizontal, untwisted magnetic flux sheet injected in the convection zone, using the

  19. Effects of stored feed cropping systems and farm size on the profitability of Maine organic dairy farm simulations.

    PubMed

    Hoshide, A K; Halloran, J M; Kersbergen, R J; Griffin, T S; DeFauw, S L; LaGasse, B J; Jain, S

    2011-11-01

    United States organic dairy production has increased to meet the growing demand for organic milk. Despite higher prices received for milk, organic dairy farmers have come under increasing financial stress due to increases in concentrated feed prices over the past few years, which can make up one-third of variable costs. Market demand for milk has also leveled in the last year, resulting in some downward pressure on prices paid to dairy farmers. Organic dairy farmers in the Northeast United States have experimented with growing different forage and grain crops to maximize on-farm production of protein and energy to improve profitability. Three representative organic feed systems were simulated using the integrated farm system model for farms with 30, 120, and 220 milk cows. Increasing intensity of equipment use was represented by organic dairy farms growing only perennial sod (low) to those with corn-based forage systems, which purchase supplemental grain (medium) or which produce and feed soybeans (high). The relative profitability of these 3 organic feed systems was strongly dependent on dairy farm size. From results, we suggest smaller organic dairy farms can be more profitable with perennial sod-based rather than corn-based forage systems due to lower fixed costs from using only equipment associated with perennial forage harvest and storage. The largest farm size was more profitable using a corn-based system due to greater economies of scale for growing soybeans, corn grain, winter cereals, and corn silages. At an intermediate farm size of 120 cows, corn-based forage systems were more profitable if perennial sod was not harvested at optimum quality, corn was grown on better soils, or if milk yield was 10% higher. Delayed harvest decreased the protein and energy content of perennial sod crops, requiring more purchased grain to balance the ration and resulting in lower profits. Corn-based systems were less affected by lower perennial forage quality, as corn silage

  20. Comparative study of displacement cascades simulated with 'magnetic' potentials and Mendelev-type potential in α-Fe

    NASA Astrophysics Data System (ADS)

    Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi

    2017-04-01

    Different interatomic potentials produce displacement cascades with different features, and hence they significantly influence the results obtained from the displacement cascade simulations. The displacement cascade simulations in α-Fe have been carried out by molecular dynamics with three 'magnetic' potentials (MP) and Mendelev-type potential in this paper. Prior to the cascade simulations, the 'magnetic' potentials are hardened to suit for cascade simulations. We find that the peak time, maximum of defects, cascade volume and cascade density with 'magnetic' potentials are smaller than those with Mendelev-type potential. There is no significant difference within statistical uncertainty in the defect production efficiency with Mendelev-type potential and the second 'magnetic' potential at the same cascade energy, but remarkably smaller than those with the first and third 'magnetic' potential. Self interstitial atom (SIA) clustered fractions with 'magnetic' potentials are smaller than that with Mendelev-type potential, especially at the higher energy, due to the larger interstitial formation energies which result from the 'magnetic' potentials. The defect clustered fractions, which are input data for radiation damage accumulation models, may influence the prediction of microstructural evolution under radiation.

  1. Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME)

    NASA Astrophysics Data System (ADS)

    Shiota, D.; Kataoka, R.

    2016-02-01

    Coronal mass ejections (CMEs) are the most important drivers of various types of space weather disturbance. Here we report a newly developed magnetohydrodynamic (MHD) simulation of the solar wind, including a series of multiple CMEs with internal spheromak-type magnetic fields. First, the polarity of the spheromak magnetic field is set as determined automatically according to the Hale-Nicholson law and the chirality law of Bothmer and Schwenn. The MHD simulation is therefore capable of predicting the time profile of the southward interplanetary magnetic field at the Earth, in relation to the passage of a magnetic cloud within a CME. This profile is the most important parameter for space weather forecasts of magnetic storms. In order to evaluate the current ability of our simulation, we demonstrate a test case: the propagation and interaction process of multiple CMEs associated with the highly complex active region NOAA 10486 in October to November 2003, and present the result of a simulation of the solar wind parameters at the Earth during the 2003 Halloween storms. We succeeded in reproducing the arrival at the Earth's position of a large amount of southward magnetic flux, which is capable of causing an intense magnetic storm. We find that the observed complex time profile of the solar wind parameters at the Earth could be reasonably well understood by the interaction of a few specific CMEs.

  2. Quantifying Turbulent Kinetic Energy in an Aortic Coarctation with Large Eddy Simulation and Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Lantz, Jonas; Ebbers, Tino; Karlsson, Matts

    2012-11-01

    In this study, turbulent kinetic energy (TKE) in an aortic coarctation was studied using both a numerical technique (large eddy simulation, LES) and in vivo measurements using magnetic resonance imaging (MRI). High levels of TKE are undesirable, as kinetic energy is extracted from the mean flow to feed the turbulent fluctuations. The patient underwent surgery to widen the coarctation, and the flow before and after surgery was computed and compared to MRI measurements. The resolution of the MRI was about 7 × 7 voxels in axial cross-section while 50x50 mesh cells with increased resolution near the walls was used in the LES simulation. In general, the numerical simulations and MRI measurements showed that the aortic arch had no or very low levels of TKE, while elevated values were found downstream the coarctation. It was also found that TKE levels after surgery were lowered, indicating that the diameter of the constriction was increased enough to decrease turbulence effects. In conclusion, both the numerical simulation and MRI measurements gave very similar results, thereby validating the simulations and suggesting that MRI measured TKE can be used as an initial estimation in clinical practice, while LES results can be used for detailed quantification and further research of aortic flows.

  3. NIMROD Code Simulation of Plasma Exhaust Expansion in the VASIMR Magnetic Nozzle

    NASA Astrophysics Data System (ADS)

    Tarditi, Alfonso G.

    2001-10-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR, [1]) engine is an advanced propulsion concept that uses radio frequency waves to accelerate a propellant (typically a Hydrogen or Helium plasma) at much higher speeds than can be reached by any conventional chemical rocket. The high exhaust speed results in a very efficient spacecraft design, as much less propellant mass is required to achieve the same acceleration of a vehicle in space. An experimental VASIMR prototype is currently under development at the Advanced Space Propulsion Laboratory, NASA Johnson Space Center. A magnetic nozzle is used to convert the thermal plasma energy into thrust along the longitudinal direction. A 3D, two-fluid simulation has been developed with the NIMROD code [2,3] to study the details of this process and the properties of the plasma detachment from the nozzle. The code has been customized with the introduction of a plasma source term and open-end boundary conditions for a cylindrical geometry. In the simulation, a source injects plasma in the nozzle-shaped external magnetic field. The initial plasma pulse expands in the vacuum region following the field lines and eventually evolves into a steady state profile where the plasma flow that crosses the open-end boundaries is balanced by the flow injected at the source. The NIMROD runs have been benchmarked with 2D simulations with a particle trajectory code. Initial comparisons with experimental probe measurements are also presented. The results of these test runs are being used to optimize the design parameters of the engine plasma acceleration section and of the magnetic nozzle field profile. [1] F. R. Chang-Diaz, Scientific American, p. 90, Nov. 2000. [2] A. H. Glasser, et al., Plasma Phys. Control. Fusion, 41, A74 (1999). [3] C. R. Sovinec, Int. Sherwood Fusion Theory Conf., Los Angeles, CA (USA), March 2000

  4. Realistic mass ratio magnetic reconnection simulations with the Multi Level Multi Domain method

    NASA Astrophysics Data System (ADS)

    Innocenti, Maria Elena; Beck, Arnaud; Lapenta, Giovanni; Markidis, Stefano

    2014-05-01

    Space physics simulations with the ambition of realistically representing both ion and electron dynamics have to be able to cope with the huge scale separation between the electron and ion parameters while respecting the stability constraints of the numerical method of choice. Explicit Particle In Cell (PIC) simulations with realistic mass ratio are limited in the size of the problems they can tackle by the restrictive stability constraints of the explicit method (Birdsall and Langdon, 2004). Many alternatives are available to reduce such computation costs. Reduced mass ratios can be used, with the caveats highlighted in Bret and Dieckmann (2010). Fully implicit (Chen et al., 2011a; Markidis and Lapenta, 2011) or semi implicit (Vu and Brackbill, 1992; Lapenta et al., 2006; Cohen et al., 1989) methods can bypass the strict stability constraints of explicit PIC codes. Adaptive Mesh Refinement (AMR) techniques (Vay et al., 2004; Fujimoto and Sydora, 2008) can be employed to change locally the simulation resolution. We focus here on the Multi Level Multi Domain (MLMD) method introduced in Innocenti et al. (2013) and Beck et al. (2013). The method combines the advantages of implicit algorithms and adaptivity. Two levels are fully simulated with fields and particles. The so called "refined level" simulates a fraction of the "coarse level" with a resolution RF times bigger than the coarse level resolution, where RF is the Refinement Factor between the levels. This method is particularly suitable for magnetic reconnection simulations (Biskamp, 2005), where the characteristic Ion and Electron Diffusion Regions (IDR and EDR) develop at the ion and electron scales respectively (Daughton et al., 2006). In Innocenti et al. (2013) we showed that basic wave and instability processes are correctly reproduced by MLMD simulations. In Beck et al. (2013) we applied the technique to plasma expansion and magnetic reconnection problems. We showed that notable computational time savings

  5. Turbulence in a Global Magnetohydrodynamic Simulation of the Earth's Magnetosphere during Northward and Southward Interplanetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    El-Alaoui, M.; Richard, R. L.; Ashour-Abdalla, M.; Walker, R. J.; Goldstein, M. L.

    2012-01-01

    We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity.

  6. Simulation of Satellite Observations of Induced Magnetic Fields using Scripted Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Ribaudo, J. T.; Constable, C.; Parker, R. L.

    2009-12-01

    Scripted finite element methods allow flexible investigations of the influence of asymmetric external source fields and 3-dimensional (3D) internal electrical conductivity structure in the problem of global geomagnetic depth sounding. Our forward modeling is performed in the time and frequency domains via FlexPDE, a commercial finite element modeling package, and the technique has been validated against known solutions to 3D steady state and time-dependent problems. The induction problem is formulated in terms of the magnetic vector potential and electric scalar potential, and mesh density is managed both explicitly and through adaptive mesh refinement. We investigate the effects of 3D Earth conductivity on both satellite and ground-based magnetic field observations in the form of a geographically varying conductance map of the crust and oceans overlying a radially symmetric core and mantle. This map is used in conjunction with a novel boundary condition based on Ampere's Law to model variable near-surface induction without the computational expense of a 3D crust/ocean mesh and is valid for magnetic signals in the frequency range of interest for satellite induction studies. The simulated external magnetic field is aligned with Earth's magnetic pole, rather than its rotational pole, and increases in magnitude along the Earth/Sun axis. Earth rotates through this field with a period of 24 hours. Electromagnetic c-responses estimated from satellite data under the assumption that the primary and induced fields are dipolar in structure are known to be biased with respect to local time. We investigate the influence of Earth's rotation through the non-uniform external field on these c-responses, to determine whether this can explain the observed local time bias.

  7. Simulations of ion acceleration at non-relativistic shocks. II. Magnetic field amplification

    SciTech Connect

    Caprioli, D.; Spitkovsky, A.

    2014-10-10

    We use large hybrid simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient, we find that the upstream magnetic field is significantly amplified. The total amplification factor is larger than 10 for shocks with Alfvénic Mach number M = 100, and scales with the square root of M. The spectral energy density of excited magnetic turbulence is determined by the energy distribution of accelerated particles, and for moderately strong shocks (M ≲ 30) agrees well with the prediction of resonant streaming instability, in the framework of quasilinear theory of diffusive shock acceleration. For M ≳ 30, instead, Bell's non-resonant hybrid (NRH) instability is predicted and found to grow faster than resonant instability. NRH modes are excited far upstream by escaping particles, and initially grow without disrupting the current, their typical wavelengths being much shorter than the current ions' gyroradii. Then, in the nonlinear stage, most unstable modes migrate to larger and larger wavelengths, eventually becoming resonant in wavelength with the driving ions, which start diffuse. Ahead of strong shocks we distinguish two regions, separated by the free-escape boundary: the far upstream, where field amplification is provided by the current of escaping ions via NRH instability, and the shock precursor, where energetic particles are effectively magnetized, and field amplification is provided by the current in diffusing ions. The presented scalings of magnetic field amplification enable the inclusion of self-consistent microphysics into phenomenological models of ion acceleration at non-relativistic shocks.

  8. Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase I: Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.

    2011-01-01

    In a proof-of-principle effort to demonstrate the feasibility of magnetically shielded (MS) Hall thrusters, an existing laboratory thruster has been modified with the guidance of physics-based numerical simulation. When operated at a discharge power of 6-kilowatts the modified thruster has been designed to reduce the total energy and flux of ions to the channel insulators by greater than 1 and greater than 3 orders of magnitude, respectively. The erosion rates in this MS thruster configuration are predicted to be at least 2-4 orders of magnitude lower than those in the baseline (BL) configuration. At such rates no detectable erosion is expected to occur.

  9. THE STAR FORMATION RATE OF TURBULENT MAGNETIZED CLOUDS: COMPARING THEORY, SIMULATIONS, AND OBSERVATIONS

    SciTech Connect

    Federrath, Christoph; Klessen, Ralf S.

    2012-12-20

    The role of turbulence and magnetic fields is studied for star formation in molecular clouds. We derive and compare six theoretical models for the star formation rate (SFR)-the Krumholz and McKee (KM), Padoan and Nordlund (PN), and Hennebelle and Chabrier (HC) models, and three multi-freefall versions of these, suggested by HC-all based on integrals over the log-normal distribution of turbulent gas. We extend all theories to include magnetic fields and show that the SFR depends on four basic parameters: (1) virial parameter {alpha}{sub vir}; (2) sonic Mach number M; (3) turbulent forcing parameter b, which is a measure for the fraction of energy driven in compressive modes; and (4) plasma {beta}=2M{sub A}{sup 2}/M{sup 2} with the Alfven Mach number M{sub A}. We compare all six theories with MHD simulations, covering cloud masses of 300 to 4 Multiplication-Sign 10{sup 6} M{sub Sun} and Mach numbers M=3-50 and M{sub A}=1-{infinity}, with solenoidal (b = 1/3), mixed (b = 0.4), and compressive turbulent (b = 1) forcings. We find that the SFR increases by a factor of four between M=5 and 50 for compressive turbulent forcing and {alpha}{sub vir} {approx} 1. Comparing forcing parameters, we see that the SFR is more than 10 times higher with compressive than solenoidal forcing for M=10 simulations. The SFR and fragmentation are both reduced by a factor of two in strongly magnetized, trans-Alfvenic turbulence compared to hydrodynamic turbulence. All simulations are fit simultaneously by the multi-freefall KM and multi-freefall PN theories within a factor of two over two orders of magnitude in SFR. The simulated SFRs cover the range and correlation of SFR column density with gas column density observed in Galactic clouds, and agree well for star formation efficiencies SFE = 1%-10% and local efficiencies {epsilon} = 0.3-0.7 due to feedback. We conclude that the SFR is primarily controlled by interstellar turbulence, with a secondary effect coming from magnetic fields.

  10. The Star Formation Rate of Turbulent Magnetized Clouds: Comparing Theory, Simulations, and Observations

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Klessen, Ralf S.

    2012-12-01

    The role of turbulence and magnetic fields is studied for star formation in molecular clouds. We derive and compare six theoretical models for the star formation rate (SFR)—the Krumholz & McKee (KM), Padoan & Nordlund (PN), and Hennebelle & Chabrier (HC) models, and three multi-freefall versions of these, suggested by HC—all based on integrals over the log-normal distribution of turbulent gas. We extend all theories to include magnetic fields and show that the SFR depends on four basic parameters: (1) virial parameter αvir (2) sonic Mach number {M}; (3) turbulent forcing parameter b, which is a measure for the fraction of energy driven in compressive modes; and (4) plasma \\beta =2 {M}_A^2/ {M}^2 with the Alfvén Mach number {M}_A. We compare all six theories with MHD simulations, covering cloud masses of 300 to 4 × 106 M ⊙ and Mach numbers {M}=3-50 and {M}_A=1-∞, with solenoidal (b = 1/3), mixed (b = 0.4), and compressive turbulent (b = 1) forcings. We find that the SFR increases by a factor of four between {M}=5 and 50 for compressive turbulent forcing and αvir ~ 1. Comparing forcing parameters, we see that the SFR is more than 10 times higher with compressive than solenoidal forcing for {M}=10 simulations. The SFR and fragmentation are both reduced by a factor of two in strongly magnetized, trans-Alfvénic turbulence compared to hydrodynamic turbulence. All simulations are fit simultaneously by the multi-freefall KM and multi-freefall PN theories within a factor of two over two orders of magnitude in SFR. The simulated SFRs cover the range and correlation of SFR column density with gas column density observed in Galactic clouds, and agree well for star formation efficiencies SFE = 1%-10% and local efficiencies epsilon = 0.3-0.7 due to feedback. We conclude that the SFR is primarily controlled by interstellar turbulence, with a secondary effect coming from magnetic fields.

  11. Protein unfolding transitions in an intrinsically unstable annexin domain: molecular dynamics simulation and comparison with nuclear magnetic resonance data.

    PubMed

    Huynh, Tru; Smith, Jeremy C; Sanson, Alain

    2002-08-01

    Unfolding transitions of an intrinsically unstable annexin domain and the unfolded state structure have been examined using multiple approximately 10-ns molecular dynamics simulations. Three main basins are observed in the configurational space: native-like state, compact partially unfolded or intermediate compact state, and the unfolded state. In the native-like state fluctuations are observed that are nonproductive for unfolding. During these fluctuations, after an initial loss of approximately 20% of the core residue native contacts, the core of the protein transiently completely refolds to the native state. The transition from the native-like basin to the partially unfolded compact state involves approximately 75% loss of native contacts but little change in the radius of gyration or core hydration properties. The intermediate state adopts for part of the time in one of the trajectories a novel highly compact salt-bridge stabilized structure that can be identified as a conformational trap. The intermediate-to-unfolded state transition is characterized by a large increase in the radius of gyration. After an initial relaxation the unfolded state recovers a native-like topology of the domain. The simulated unfolded state ensemble reproduces in detail experimental nuclear magnetic resonance data and leads to a convincing complete picture of the unfolded domain.

  12. The expansion of polarization charge layers into magnetized vacuum - Theory and computer simulations

    NASA Technical Reports Server (NTRS)

    Galvez, Miguel; Borovsky, Joseph E.

    1991-01-01

    The formation and evolution of polarization charge layers on cylindrical plasma streams moving in vacuum are investigated using analytic theory and 2D electrostatic particle-in-cell computer simulations. It is shown that the behavior of the electron charge layer goes through three stages. An early time expansion is driven by electrostatic repulsion of electrons in the charge layer. At the intermediate stage, the simulations show that the electron-charge-layer expansion is halted by the positively charged plasma stream. Electrons close to the stream are pulled back to the stream and a second electron expansion follows in time. At the late stage, the expansion of the ion charge layer along the magnetic field lines accompanies the electron expansion to form an ambipolar expansion. It is found that the velocities of these electron-ion expansions greatly exceed the velocities of ambipolar expansions which are driven by plasma temperatures.

  13. Three-Dimensional Signatures of Intermittent Magnetic Reconnection in Global Simulations of Dayside Magnetosphere Dynamics

    NASA Technical Reports Server (NTRS)

    Kuznetsova, M.M.; Sibeck, D.; Hesse, M.; Rastatter, L.; Toth, G.

    2008-01-01

    We performed high resolution global MHD simulations of THEMIS dayside crossings events in May -June 2007. We found that magnetopause surface is not in steady-state even during extended periods of steady solar wind conditions. The so-called tilted reconnection lines become unstable due to formation of pressure bubbles, strong core field flux tubes, vortices, and traveling magnetic field cavities. The topology of FTEs differ from that in two dimension cartoons representing obliquely oriented quasi-2D flux rope. The structure of FTE is changing at spatial scales of 1 -2 Re. Closely located space probes can observe completely different signatures. Branches of bent flux rope can move in opposite directions. THEMIS and Cluster observations are consistent with signatures predicted by simulations.

  14. The Production of Jets From Magnetic Accretion Disks: Simulation of the Blandford-Payne Mechanism

    NASA Technical Reports Server (NTRS)

    Meier, David L.

    1995-01-01

    We have performed magnetohydrodynamic (MRD) simulations of the production of jets from magnetized accretion disks with a factor of 5 greater extent in space and time, and with more models, than any study published so far. We find that jets are produced by such disks in a broad range of parameter space, and by at least two different mechanisms. We also are able to follow the propagation of the jet well beyond the accretion disk into the region of hydrodynamic collimation. The code used is our MHD simulation code FLOW (K. Lind, D. Payne, D. Meier, and R. Blandford, 1989), converted to run on Caltech's massively parallel Intel Touchstone Delta supercomputer. Some of these models may be directly applicable to observed radio sources.

  15. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations.

    PubMed

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells.

  16. Information flow and protein dynamics: the interplay between nuclear magnetic resonance spectroscopy and molecular dynamics simulations

    PubMed Central

    Pastor, Nina; Amero, Carlos

    2015-01-01

    Proteins participate in information pathways in cells, both as links in the chain of signals, and as the ultimate effectors. Upon ligand binding, proteins undergo conformation and motion changes, which can be sensed by the following link in the chain of information. Nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations represent powerful tools for examining the time-dependent function of biological molecules. The recent advances in NMR and the availability of faster computers have opened the door to more detailed analyses of structure, dynamics, and interactions. Here we briefly describe the recent applications that allow NMR spectroscopy and MD simulations to offer unique insight into the basic motions that underlie information transfer within and between cells. PMID:25999971

  17. Micromagnetic simulations on the grain shape effect in Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Yi, Min; Gutfleisch, Oliver; Xu, Bai-Xiang

    2016-07-01

    Micromagnetic simulations were performed to study the effect of grain shape and defect layer in Nd-Fe-B magnets. It was found that the coercivity can be increased by a factor of ˜2 by changing the grain shape from the triangular prism to the spheroid. Both the anisotropy field contribution and the shape contribution to the coercivity, and thus also the final coercivity, were found to decrease in the order: spheroid > circular prism > hexagonal prism > square prism > triangular prism. Sputtered columnar grains and hot-deformed platelet grains with a constant volume were also considered. Results show that the coercivity initially increases with the aspect ratio and then nearly saturates above the ratio of ˜4. Simulations of multigrain ensembles showed that depending on the grain shape, compared to the case of single grain, a further decrease of ˜10%-45% in the coercivity is induced by magnetostatic coupling.

  18. Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations

    SciTech Connect

    Samulyak, Roman V.; Parks, Paul

    2013-08-31

    The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy. High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.

  19. Resistive magnetohydrodynamic simulations of X-line retreat during magnetic reconnection

    SciTech Connect

    Murphy, N. A.

    2010-11-15

    To investigate the impact of current sheet motion on the reconnection process, we perform resistive magnetohydrodynamic simulations of two closely located reconnection sites that move apart from each other as reconnection develops. This simulation develops less quickly than an otherwise equivalent single perturbation simulation but eventually exhibits a higher reconnection rate. The unobstructed outflow jets are faster and longer than the outflow jets directed toward the magnetic island that forms between the two current sheets. The X-line and flow stagnation point are located near the trailing end of each current sheet very close to the obstructed exit. The speed of X-line retreat ranges from {approx}0.02-0.06, while the speed of stagnation point retreat ranges from {approx}0.03-0.07 in units of the initial upstream Alfven velocity. Early in time, the flow stagnation point is located closer to the center of the current sheet than the X-line, but later on the relative positions of these two points switch. Consequently, late in time, there is significant plasma flow across the X-line in the opposite direction of X-line retreat. Throughout the simulation, the velocity at the X-line does not equal the velocity of the X-line. Motivated by these results, an expression for the rate of X-line retreat is derived in terms of local parameters evaluated at the X-line. This expression shows that X-line retreat is due to both advection by the bulk plasma flow and diffusion of the normal component of the magnetic field.

  20. Electronic and magnetic properties of TbNi4Si: Ab initio calculations, mean field approximation and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Bensadiq, A.; Zaari, H.; Benyoussef, A.; El Kenz, A.

    2016-09-01

    Using the density functional theory, the electronic structure; density of states, band structure and exchange couplings of Tb Ni4 Si compound have been investigated. Magnetic and magnetocaloric properties of this material have been studied using Monte Carlo Simulation (MCS) and Mean Field Approximation (MFA) within a three dimensional Ising model. We calculated the isothermal magnetic entropy change, adiabatic temperature change and relative cooling power (RCP) for different external magnetic field and temperature. The highest obtained isothermal magnetic entropy change is of -14.52 J kg-1 K-1 for a magnetic field of H=4 T. The adiabatic temperature reaches a maximum value equal to 3.7 K and the RCP maximum value is found to be 125.12 J kg-1 for a field magnetic of 14 T.

  1. Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.

    2016-09-01

    We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing-Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing-Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.

  2. Role of Loss of Equilibrium and Magnetic Reconnection in Coronal Eruptions: Resistive and Hall MHD simulations

    NASA Astrophysics Data System (ADS)

    Yang, H.; Bhattacharjee, A.; Forbes, T. G.

    2008-12-01

    It has long been suggested that eruptive phenomena such as coronal mass ejections, prominence eruptions, and large flares might be caused by a loss of equilibrium in a coronal flux rope (Van Tend and Kuperus, 1978). Forbes et al. (1994) developed an analytical two-dimensional model in which eruptions occur due to a catastrophic loss of equilibrium and relaxation to a lower-energy state containing a thin current sheet. Magnetic reconnection then intervenes dynamically, leading to the release of magnetic energy and expulsion of a plasmoid. We have carried out high-Lundquist-number simulations to test the loss-of equilibrium mechanism, and demonstrated that it does indeed occur in the quasi-ideal limit. We have studied the subsequent dynamical evolution of the system in resistive and Hall MHD models for single as well as multiple arcades. The typical parallel electric fields are super-Dreicer, which makes it necessary to include collisionless effects via a generalized Ohm's law. It is shown that the nature of the local dissipation mechanism has a significant effect on the global geometry and dynamics of the magnetic configuration. The presence of Hall currents is shown to alter the length of the current sheet and the jets emerging from the reconnection site, directed towards the chromosphere. Furthermore, Hall MHD effects break certain symmetries of resistive MHD dynamics, and we explore their observational consequences.

  3. Magnetized jets and shocks in radial foil Z-pinches: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Lebedev, S. V.; Suzuki-Vidal, F.; Pickworth, L. A.; Swadling, G. F.; Burdiak, G.; Skidmore, J.; Hall, G. N.; Bennett, M.; Bland, S. N.; Chittenden, J. P.; de Grouchy, P.; Derrick, J.; Hare, J.; Parker, T.; Sciortino, F.; Suttle, L.; Ciardi, A.; Rodriguez, R.; Gil, J. M.; Espinosa, G.; Hansen, E.; Frank, A.; Music, J.

    2014-10-01

    Different variations of the radial foil Z-pinch configuration have been investigated in the recent years on the MAGPIE generator (1.4 MA, 250 ns), particularly using over-massed aluminum foils with thicknesses of ~15 μm. This setup is characterized by a highly collimated, supersonic jet on the axis of the foil surrounded by low-density ablated plasma, both moving with the same axial velocity of ~60 km/s. Latest results show that the formation and collimation of the jet is directly related to toroidal magnetic field advected with the flow. We present new experimental results that include Thomson scattering measurements of plasma flow velocity and temperature, and a first study on the effect of foil material on jet formation. The effect of advected toroidal magnetic field in the plasma flow is clearly evidenced using a new experimental configuration that produces counter-streaming jets. The results are characterized by the formation of shocks in which the effect of magnetic field and radiative cooling are significant. The setup also allows controlling the polarity of the advected fields at the interaction point between the counter-streaming flows, and results from experiments and numerical simulations will be presented and discussed.

  4. GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations

    NASA Astrophysics Data System (ADS)

    Wu, Benjamin; Tan, Jonathan C.; Nakamura, Fumitaka; Van Loo, Sven; Christie, Duncan; Collins, David

    2017-02-01

    We investigate giant molecular cloud collisions and their ability to induce gravitational instability and thus star formation. This mechanism may be a major driver of star formation activity in galactic disks. We carry out a series of 3D, magnetohydrodynamics (MHD), adaptive mesh refinement simulations to study how cloud collisions trigger formation of dense filaments and clumps. Heating and cooling functions are implemented based on photo-dissociation region models that span the atomic-to-molecular transition and can return detailed diagnostic information. The clouds are initialized with supersonic turbulence and a range of magnetic field strengths and orientations. Collisions at various velocities and impact parameters are investigated. Comparing and contrasting colliding and non-colliding cases, we characterize morphologies of dense gas, magnetic field structure, cloud kinematic signatures, and cloud dynamics. We present key observational diagnostics of cloud collisions, especially: relative orientations between magnetic fields and density structures, like filaments; 13CO(J = 2-1), 13CO(J = 3-2), and 12CO(J = 8-7) integrated intensity maps and spectra; and cloud virial parameters. We compare these results to observed Galactic clouds.

  5. Simulation of RF Cavity Dark Current In Presence of Helical Magnetic Field

    SciTech Connect

    Romanov, Gennady; Kashikhin, Vladimir; /Fermilab

    2012-05-01

    In order to produce muon beam of high enough quality to be used for a Muon Collider, its large phase space must be cooled several orders of magnitude. This task can be accomplished by ionization cooling. Ionization cooling consists of passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF cavities within a multi-Tesla solenoidal focusing channel. But first high power tests of RF cavity with beryllium windows in solenoidal magnetic field showed a dramatic drop in accelerating gradient due to RF breakdowns. It has been concluded that external magnetic fields parallel to RF electric field significantly modifies the performance of RF cavities. However, magnetic field in Helical Cooling Channel has a strong dipole component in addition to solenoidal one. The dipole component essentially changes electron motion in a cavity compare to pure solenoidal case, making dark current less focused at field emission sites. The simulation of dark current dynamic in HCC performed with CST Studio Suit is presented in this paper.

  6. SIMULATIONS OF PROMINENCE FORMATION IN THE MAGNETIZED SOLAR CORONA BY CHROMOSPHERIC HEATING

    SciTech Connect

    Xia, C.; Chen, P. F.; Keppens, R.

    2012-04-01

    Starting from a realistically sheared magnetic arcade connecting the chromospheric, transition region to coronal plasma, we simulate the in situ formation and sustained growth of a quiescent prominence in the solar corona. Contrary to previous works, our model captures all phases of the prominence formation, including the loss of thermal equilibrium, its successive growth in height and width to macroscopic dimensions, and the gradual bending of the arched loops into dipped loops, as a result of the mass accumulation. Our 2.5 dimensional, fully thermodynamically and magnetohydrodynamically consistent model mimics the magnetic topology of normal-polarity prominences above a photospheric neutral line, and results in a curtain-like prominence above the neutral line through which the ultimately dipped magnetic field lines protrude at a finite angle. The formation results from concentrated heating in the chromosphere, followed by plasma evaporation and later rapid condensation in the corona due to thermal instability, as verified by linear instability criteria. Concentrated heating in the lower atmosphere evaporates plasma from below to accumulate at the top of coronal loops and supply mass to the later prominence constantly. This is the first evaporation-condensation model study where we can demonstrate how the formed prominence stays in a force balanced state, which can be compared to the Kippenhahn-Schlueter type magnetohydrostatic model, all in a finite low-beta corona.

  7. Simulation of RF Cavity Dark Current in Presence of Helical Magnetic Field

    SciTech Connect

    Romanov, Gennady; Kashikhin, Vladimir; /Unlisted

    2010-09-01

    In order to produce muon beam of high enough quality to be used for a Muon Collider, its large phase space must be cooled several orders of magnitude. This task can be accomplished by ionization cooling. Ionization cooling consists of passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF cavities within a multi-Tesla solenoidal focusing channel. But first high power tests of RF cavity with beryllium windows in solenoidal magnetic field showed a dramatic drop in accelerating gradient due to RF breakdowns. It has been concluded that external magnetic fields parallel to RF electric field significantly modifies the performance of RF cavities. However, magnetic field in Helical Cooling Channel has a strong dipole component in addition to solenoidal one. The dipole component essentially changes electron motion in a cavity compare to pure solenoidal case, making dark current less focused at field emission sites. The simulation of dark current dynamic in HCC performed with CST Studio Suit is presented in this paper.

  8. Studying dissolved organic carbon export from the Penobscot Watershed in to Gulf of Maine using Regional Hydro-Ecological Simulation System (RHESSys)

    NASA Astrophysics Data System (ADS)

    Rouhani, S. F. B. B.; Schaaf, C.; Douglas, E. M.; Choate, J. S.; Yang, Y.; Kim, J.

    2014-12-01

    The movement of Dissolved Organic Carbon (DOC) from terrestrial system into aquatic system plays an important role for carbon sequestration in ecosystems and affects the formation of soil organic matters.Carbon cycling, storage, and transport to marine systems have become critical issues in global-change science, especially with regard to northern latitudes (Freeman et al., 2001; Benner et al., 2004). DOC, as an important composition of the carbon cycling, leaches from the terrestrial watersheds is a large source of marine DOC. The Penobscot River basin in north-central Maine is the second largest watershed in New England, which drains in to Gulf of Maine. Approximately 89% of the watershed is forested (Griffith and Alerich, 1996).Studying temporal and spatial changes in DOC export can help us to understand terrestrial carbon cycling and to detect any shifts from carbon sink to carbon source or visa versa in northern latitude forested ecosystems.Despite for the importance of understanding carbon cycling in terrestrial and aquatic biogeochemistry, the Doc export, especially the combination of DOC production from bio-system and DOC transportation from the terrestrial in to stream has been lightly discussed in most conceptual or numerical models. The Regional Hydro-Ecological Simulation System (RHESSys), which has been successfully applied in many study sites, is a physical process based terrestrial model that has the ability to simulate both the source and transportation of DOC by combining both hydrological and ecological processes. The focus of this study is on simulating the DOC concentration and flux from the land to the water using RHESSys in the Penobscot watershed. The simulated results will be compared with field measurement of DOC from the watershed to explore the spatial and temporal DOC export pattern. This study will also enhance our knowledge to select sampling locations properly and also improve our understanding on DOC production and transportation in

  9. Modeling and simulation of magnetic resonance imaging based on intermolecular multiple quantum coherences

    NASA Astrophysics Data System (ADS)

    Cai, Congbo; Dong, Jiyang; Cai, Shuhui; Cheng, En; Chen, Zhong

    2006-11-01

    Intermolecular multiple quantum coherences (iMQCs) have many potential applications since they can provide interaction information between different molecules within the range of dipolar correlation distance, and can provide new contrast in magnetic resonance imaging (MRI). Because of the non-localized property of dipolar field, and the non-linear property of the Bloch equations incorporating the dipolar field term, the evolution behavior of iMQC is difficult to deduce strictly in many cases. In such cases, simulation studies are very important. Simulation results can not only give a guide to optimize experimental conditions, but also help analyze unexpected experimental results. Based on our product operator matrix and the K-space method for dipolar field calculation, the MRI simulation software was constructed, running on Windows operation system. The non-linear Bloch equations are calculated by a fifth-order Cash-Karp Runge-Kutta formulism. Computational time can be efficiently reduced by separating the effects of chemical shifts and strong gradient field. Using this software, simulation of different kinds of complex MRI sequences can be done conveniently and quickly on general personal computers. Some examples were given. The results were discussed.

  10. Simulating quantum spin models using Rydberg-excited atomic ensembles in magnetic microtrap arrays

    NASA Astrophysics Data System (ADS)

    Whitlock, Shannon; Glaetzle, Alexander W.; Hannaford, Peter

    2017-04-01

    We propose a scheme to simulate lattice spin models based on strong, long-range interacting Rydberg atoms stored in a large-spacing array of magnetic microtraps. Each spin is encoded in a collective spin state involving a single nS or (n+1)S Rydberg atom excited from an ensemble of ground-state alkali atoms prepared via Rydberg blockade. After the excitation laser is switched off, the Rydberg spin states on neighbouring lattice sites interact via general XXZ spin–spin interactions. To read out the collective spin states we propose a single Rydberg atom triggered avalanche scheme in which the presence of a single Rydberg atom conditionally transfers a large number of ground-state atoms in the trap to an untrapped state which can be readily detected by site-resolved absorption imaging. Such a quantum simulator should allow the study of quantum spin systems in almost arbitrary one-dimensional and two-dimensional configurations. This paves the way towards engineering exotic spin models, such as spin models based on triangular-symmetry lattices which can give rise to frustrated-spin magnetism.

  11. Computer Simulation of Magnetic Resonance Angiography Imaging: Model Description and Validation

    PubMed Central

    Klepaczko, Artur; Szczypiński, Piotr; Dwojakowski, Grzegorz; Strzelecki, Michał; Materka, Andrzej

    2014-01-01

    With the development of medical imaging modalities and image processing algorithms, there arises a need for methods of their comprehensive quantitative evaluation. In particular, this concerns the algorithms for vessel tracking and segmentation in magnetic resonance angiography images. The problem can be approached by using synthetic images, where true geometry of vessels is known. This paper presents a framework for computer modeling of MRA imaging and the results of its validation. A new model incorporates blood flow simulation within MR signal computation kernel. The proposed solution is unique, especially with respect to the interface between flow and image formation processes. Furthermore it utilizes the concept of particle tracing. The particles reflect the flow of fluid they are immersed in and they are assigned magnetization vectors with temporal evolution controlled by MR physics. Such an approach ensures flexibility as the designed simulator is able to reconstruct flow profiles of any type. The proposed model is validated in a series of experiments with physical and digital flow phantoms. The synthesized 3D images contain various features (including artifacts) characteristic for the time-of-flight protocol and exhibit remarkable correlation with the data acquired in a real MR scanner. The obtained results support the primary goal of the conducted research, i.e. establishing a reference technique for a quantified validation of MR angiography image processing algorithms. PMID:24740285

  12. Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes

    SciTech Connect

    Leake, James E.; Linton, Mark G.; Török, Tibor

    2013-12-01

    We present results from three-dimensional visco-resistive magnetohydrodynamic simulations of the emergence of a convection zone magnetic flux tube into a solar atmosphere containing a pre-existing dipole coronal field, which is orientated to minimize reconnection with the emerging field. We observe that the emergence process is capable of producing a coronal flux rope by the transfer of twist from the convection zone, as found in previous simulations. We find that this flux rope is stable, with no evidence of a fast rise, and that its ultimate height in the corona is determined by the strength of the pre-existing dipole field. We also find that although the electric currents in the initial convection zone flux tube are almost perfectly neutralized, the resultant coronal flux rope carries a significant net current. These results suggest that flux tube emergence is capable of creating non-current-neutralized stable flux ropes in the corona, tethered by overlying potential fields, a magnetic configuration that is believed to be the source of coronal mass ejections.

  13. Calculation of Neoclassical Toroidal Viscosity with a Particle Simulation in the Tokamak Magnetic Breaking Experiments

    SciTech Connect

    Kimin Kim, et al

    2013-04-23

    Accurate calculation of perturbed distribution function δf and perturbed magnetic fi eld δB is essential to achieve prediction of non-ambipolar transport and neoclassical toroidal viscosity (NTV) in perturbed tokamaks. This paper reports a study of the NTV with a δf particle code (POCA) and improved understanding of magnetic braking in tokamak experiments. POCA calculates the NTV by computing f with guiding-center orbit motion and using B from the ideal perturbed equilibrium code (IPEC). POCA simulations are compared with experimental estimations for NTV, which are measured from angular momentum balance (DIII-D) and toroidal rotational damping rate (NSTX). The calculation shows good agreement in total NTV torque for the DIII-D discharge, where an analytic neoclassical theory also gives a consistent result thanks to relatively large aspect-ratio and slow toroidal rotations. In NSTX discharges, where the aspect-ratio is small and the rotation is fast, the theory only gives a qualitative guide for predicting NTV. However, the POCA simulation largely improves the quantitative NTV prediction for NSTX. It is discussed that a self- consistent calculation of δ B using general perturbed equilibria is eventually necessary since a non-ideal plasma response can change the perturbed eld and thereby the NTV torque.

  14. Numerical simulation of cathode plasma dynamics in magnetically insulated vacuum transmission lines

    SciTech Connect

    Thoma, C.; Genoni, T. C.; Welch, D. R.; Rose, D. V.; Clark, R. E.; Miller, C. L.; Stygar, W. A.; Kiefer, M. L.

    2015-03-15

    A novel algorithm for the simulation of cathode plasmas in particle-in-cell codes is described and applied to investigate cathode plasma evolution in magnetically insulated transmission lines (MITLs). The MITL electron sheath is modeled by a fully kinetic electron species. Electron and ion macroparticles, both modeled as fluid species, form a dense plasma which is initially localized at the cathode surface. Energetic plasma electron particles can be converted to kinetic electrons to resupply the electron flux at the plasma edge (the “effective” cathode). Using this model, we compare results for the time evolution of the cathode plasma and MITL electron flow with a simplified (isothermal) diffusion model. Simulations in 1D show a slow diffusive expansion of the plasma from the cathode surface. But in multiple dimensions, the plasma can expand much more rapidly due to anomalous diffusion caused by an instability due to the strong coupling of a transverse magnetic mode in the electron sheath with the expanding resistive plasma layer.

  15. Numerical simulations of Hall-effect plasma accelerators on a magnetic-field-aligned mesh.

    PubMed

    Mikellides, Ioannis G; Katz, Ira

    2012-10-01

    The ionized gas in Hall-effect plasma accelerators spans a wide range of spatial and temporal scales, and exhibits diverse physics some of which remain elusive even after decades of research. Inside the acceleration channel a quasiradial applied magnetic field impedes the current of electrons perpendicular to it in favor of a significant component in the E×B direction. Ions are unmagnetized and, arguably, of wide collisional mean free paths. Collisions between the atomic species are rare. This paper reports on a computational approach that solves numerically the 2D axisymmetric vector form of Ohm's law with no assumptions regarding the resistance to classical electron transport in the parallel relative to the perpendicular direction. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations on a computational mesh that is aligned with the applied magnetic field. This approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction and encompasses the cathode boundary where the lines of force can become nonisothermal. It also allows for the self-consistent solution of the plasma conservation laws near the anode boundary, and for simulations in accelerators with complex magnetic field topologies. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for the ion drag in the momentum equation due to ion-neutral (charge-exchange) and ion-ion collisions. The density of the atomic species is determined using an algorithm that eliminates the statistical noise associated with discrete-particle methods. Numerical simulations are presented that illustrate the impact of the above-mentioned features on our understanding of the plasma in these accelerators.

  16. Development of a database-driven system for simulating water temperature in the lower Yakima River main stem, Washington, for various climate scenarios

    USGS Publications Warehouse

    Voss, Frank; Maule, Alec

    2013-01-01

    A model for simulating daily maximum and mean water temperatures was developed by linking two existing models: one developed by the U.S. Geological Survey and one developed by the Bureau of Reclamation. The study area included the lower Yakima River main stem between the Roza Dam and West Richland, Washington. To automate execution of the labor-intensive models, a database-driven model automation program was developed to decrease operation costs, to reduce user error, and to provide the capability to perform simulations quickly for multiple management and climate change scenarios. Microsoft© SQL Server 2008 R2 Integration Services packages were developed to (1) integrate climate, flow, and stream geometry data from diverse sources (such as weather stations, a hydrologic model, and field measurements) into a single relational database; (2) programmatically generate heavily formatted model input files; (3) iteratively run water temperature simulations; (4) process simulation results for export to other models; and (5) create a database-driven infrastructure that facilitated experimentation with a variety of scenarios, node permutations, weather data, and hydrologic conditions while minimizing costs of running the model with various model configurations. As a proof-of-concept exercise, water temperatures were simulated for a "Current Conditions" scenario, where local weather data from 1980 through 2005 were used as input, and for "Plus 1" and "Plus 2" climate warming scenarios, where the average annual air temperatures used in the Current Conditions scenario were increased by 1degree Celsius (°C) and by 2°C, respectively. Average monthly mean daily water temperatures simulated for the Current Conditions scenario were compared to measured values at the Bureau of Reclamation Hydromet gage at Kiona, Washington, for 2002-05. Differences ranged between 1.9° and 1.1°C for February, March, May, and June, and were less than 0.8°C for the remaining months of the year

  17. Simulator of Galaxy Millimeter/Submillimeter Emission (SíGAME): The [C ii]-SFR Relationship of Massive z = 2 Main Sequence Galaxies

    NASA Astrophysics Data System (ADS)

    Olsen, Karen P.; Greve, Thomas R.; Narayanan, Desika; Thompson, Robert; Toft, Sune; Brinch, Christian

    2015-11-01

    We present SÍGAME simulations of the [C II] 157.7 μm fine structure line emission from cosmological smoothed particle hydrodynamics simulations of seven main sequence galaxies at z = 2. Using sub-grid physics prescriptions the gas in our simulations is modeled as a multi-phased interstellar medium comprised of molecular gas residing in giant molecular clouds, an atomic gas phase associated with photo-dissociation regions (PDRs) at the cloud surfaces, and a diffuse, ionized gas phase. Adopting logotropic cloud density profiles and accounting for heating by the local FUV radiation field and cosmic rays by scaling both with local star formation rate (SFR) volume density, we calculate the [C II] emission using a photon escape probability formalism. The [C II] emission peaks in the central ≲ 1 kpc of our galaxies as do the SFR radial profiles, with most [C II] (≳ 70%) originating in the molecular gas phase, whereas further out (≳ 2 kpc), the atomic/PDR gas dominates (≳ 90%) the [C II] emission, no longer tracing ongoing star formation. Throughout, the ionized gas contribution is negligible (≲ 3%). The [C II] luminosity versus SFR ([C II]-SFR) relationship, integrated as well as spatially resolved (on scales of 1 kpc), delineated by our simulated galaxies is in good agreement with the corresponding relations observed locally and at high redshifts. In our simulations, the molecular gas dominates the [C II] budget at SFR≳ 20 {M}⊙ yr-1 (ΣSFR ≳ 0.5 {M}⊙ yr-1 kpc-2), while atomic/PDR gas takes over at lower SFRs, suggesting a picture in which [C II] predominantly traces the molecular gas in high-density/pressure regions where star formation is ongoing, and otherwise reveals the atomic/PDR gas phase.

  18. Three-Dimensional Finite Element Magnetic Field Computations and Performance Simulation of Brushless DC Motor Drives with Skewed Permanent Magnet Mounts.

    NASA Astrophysics Data System (ADS)

    Alhamadi, Mohd A. Wahed

    1992-01-01

    A three dimensional finite element (3D-FE) method for the computation of global distributions of 30 magnetic fields in electric machines containing permanent magnets is presented. The formulation of this 3D-FE method is based on a coupled magnetic vector potential - magnetic scalar potential (CMVP-MSP) approach. In this CMVP-MSP method, the modeling and formulations of permanent magnet volumes, suited to first and second order MVP 3D-FE environments as well as first order MSP 3D-FE environment, are developed in this dissertation. The development of the necessary 3D-FE grids and algorithms for the application of the CMVP -MSP method to an example brushless dc motor, whose field is three dimensional due to the skewed permanent magnet mounts on its rotor, is also given here. It should be mentioned that the entire volume of the case-study machine from one end to another is considered in the global magnetic field computations. A complete set of results of application of the CMVP-MSP method to the computation of the global 3D field distributions and associated motor parameters under no-load and load conditions are presented in this dissertation. In addition, a complete simulation of the dynamic performance of the motor drive system using the parameters obtained from the 3D-FE field solutions are presented for no-load and various other load conditions. All the above mentioned results are experimentally verified by corresponding oscillograms obtained in the laboratory. These results are also compared with results obtained from motor parameters based on various 2D-FE approaches, showing that for certain types of skewed permanent magnet mounts, 3D-FE based parameters can make significant qualitative and quantitative improvements in motor-drive simulation results.

  19. Modeling of magnetic reconnection in the magnetotail using global MHD simulation with an effective resistivity model

    NASA Astrophysics Data System (ADS)

    Den, M.; Horiuchi, R.; Fujita, S.; Tanaka, T.

    2011-12-01

    Magnetic reconnection is considered to play an important role in space phenomena such as substorm in the Earth's magnetosphere. Tanaka and Fujita reproduced substorm evolution process by numerical simulation with the global MHD code [1]. In the MHD framework, the dissipation model is introduced for modeling of the kinetic effects. They found that the normalized reconnection viscosity, one of the dissipation model employed there, gave a large effect for the dipolarization, central phenomenon in the substorm development process, though that viscosity was assumed to be a constant parameter. It is well known that magnetic reconnection is controlled by microscopic kinetic mechanism. Frozen-in condition is broken due to particle kinetic effects and collisionless reconnection is triggered when current sheet is compressed as thin as ion kinetic scales under the influence of external driving flow [2, 3]. Horiuchi and his collaborators showed that reconnection electric field generated by microscopic physics evolves inside ion meandering scale so as to balance the flux inflow rate at the inflow boundary, which is controlled by macroscopic physics [2]. That is, effective resistivity generated through this process can be expressed by balance equation between micro and macro physics. In this paper, we perform substorm simulation by using the global MHD code developed by Tanaka [3] with this effective resistivity instead of the empirical resistivity model. We obtain the AE indices from simulation data, in which substorm onset can be seen clearly, and investigate the relationship between the substorm development and the effective resistivity model. [1] T. Tanaka, A, Nakamizo, A. Yoshikawa, S. Fujita, H. Shinagawa, H. Shimazu, T. Kikuchi, and K. K. Hashimoto, J. Geophys. Res. 115 (2010) A05220,doi:10.1029/2009JA014676. [2] W. Pei, R. Horiuchi, and T. Sato, Physics of Plasmas,Vol. 8 (2001), pp. 3251-3257. [3] A. Ishizawa, and R. Horiuchi, Phys. Rev. Lett., Vol. 95, 045003 (2005). [4

  20. CFD simulation of an unbaffled stirred tank reactor driven by a magnetic rod: assessment of turbulence models.

    PubMed

    Li, Jiajia; Deng, Baoqing; Zhang, Bing; Shen, Xiuzhong; Kim, Chang Nyung

    2015-01-01

    A simulation of an unbaffled stirred tank reactor driven by a magnetic stirring rod was carried out in a moving reference frame. The free surface of unbaffled stirred tank was captured by Euler-Euler model coupled with the volume of fluid (VOF) method. The re-normalization group (RNG) k-ɛ model, large eddy simulation (LES) model and detached eddy simulation (DES) model were evaluated for simulating the flow field in the stirred tank. All turbulence models can reproduce the tangential velocity in an unbaffled stirred tank with a rotational speed of 150 rpm, 250 rpm and 400 rpm, respectively. Radial velocity is underpredicted by the three models. LES model and RNG k-ɛ model predict the better tangential velocity and axial velocity, respectively. RNG k-ɛ model is recommended for the simulation of the flow in an unbaffled stirred tank with magnetic rod due to its computational effort.

  1. Formulation and simulation of the generalized ion viscous stress tensor in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Addae-Kagyah, Michael K.

    2007-12-01

    across magnetic islands are analyzed and modeled. Analogous simulations involving the Braginskii (local or diffusive) form of pi∥ are also executed using similar plasma parameters and magnetic configurations. Comparative studies of the simulation results are made, with the view of verifying and validating the physical capabilities and merits of the newly formulated pi ∥ as a robust and accurate closure that should be incorporated into the modeling of plasma systems of all degrees of collisionality. In the simulations, the parallel viscosity diagnosed for 1 keV plasma ≈159246.15 m 2s-1, and the parallel flow profile flattening observed when the ratio of parallel to perpendicular diffusivity, nu∥/nu⊥≈10 6, is very large. Planned future refinement of this work, in scope, theory, and applications, is also discussed.

  2. Test of Shi et al. Method to Infer the Magnetic Reconnection Geometry from Spacecraft Data: MHD Simulation with Guide Field and Antiparallel Kinetic Simulation

    NASA Technical Reports Server (NTRS)

    Denton, R.; Sonnerup, B. U. O.; Swisdak, M.; Birn, J.; Drake, J. F.; Heese, M.

    2012-01-01

    When analyzing data from an array of spacecraft (such as Cluster or MMS) crossing a site of magnetic reconnection, it is desirable to be able to accurately determine the orientation of the reconnection site. If the reconnection is quasi-two dimensional, there are three key directions, the direction of maximum inhomogeneity (the direction across the reconnection site), the direction of the reconnecting component of the magnetic field, and the direction of rough invariance (the "out of plane" direction). Using simulated spacecraft observations of magnetic reconnection in the geomagnetic tail, we extend our previous tests of the direction-finding method developed by Shi et al. (2005) and the method to determine the structure velocity relative to the spacecraft Vstr. These methods require data from four proximate spacecraft. We add artificial noise and calibration errors to the simulation fields, and then use the perturbed gradient of the magnetic field B and perturbed time derivative dB/dt, as described by Denton et al. (2010). Three new simulations are examined: a weakly three-dimensional, i.e., quasi-two-dimensional, MHD simulation without a guide field, a quasi-two-dimensional MHD simulation with a guide field, and a two-dimensional full dynamics kinetic simulation with inherent noise so that the apparent minimum gradient was not exactly zero, even without added artificial errors. We also examined variations of the spacecraft trajectory for the kinetic simulation. The accuracy of the directions found varied depending on the simulation and spacecraft trajectory, but all the directions could be found within about 10 for all cases. Various aspects of the method were examined, including how to choose averaging intervals and the best intervals for determining the directions and velocity. For the kinetic simulation, we also investigated in detail how the errors in the inferred gradient directions from the unmodified Shi et al. method (using the unperturbed gradient

  3. Compensation of magnetic field distortions from paramagnetic instruments by added diamagnetic material: measurements and numerical simulations.

    PubMed

    Müller-Bierl, Bernd; Graf, Hansjörg; Steidle, Günter; Schick, Fritz

    2005-01-01

    In minimally invasive procedures guided by magnetic resonance (MR) imaging instruments usually are made of titanium or titanium alloys (e.g., nitinol), because other more MR-compatible materials often cannot provide sufficient mechanical properties. Artifacts depending on susceptibility arise in MR images due to incorrect spatial encoding and intravoxel dephasing and thereby hamper the surgeon's view onto the region of interest. To overcome the artifact problem, compensation of the paramagnetic properties by diamagnetic coating or filling of the instruments has been proposed in the literature. We used a numerical modeling procedure to estimate the effect of compensation. Modeling of the perturbation of the static magnetic field close to the instruments reflects the underlying problem and is much faster and cost efficient than manufacturing prototypes and measuring artifact behavior of these prototypes in the MR scanner. A numerical model based on the decomposition of the susceptibility distribution in elementary dipoles was developed by us. The program code was written object oriented to allow for both maximum computational speed and minimum random access memory. We used System International units throughout the modeling for the magnetic field, allowing absolute quantification of the magnetic field disturbance. The field outside a simulated needlelike instrument, modeled by a paramagnetic cylinder (out of titan, chi =181.1) of length 8.0 mm and of diameter 1.0 mm, coated with a diamagnetic layer (out of bismuth, chi=-165.0) of thickness 0, 0.1, 0.2, 0.3, and 0.4 mm, was found to be best compensated if the cross-sectional area of the cylinder, multiplied by the absolute susceptibility value of the cylinder material, is equal to the cross-sectional area of the coating, multiplied by the absolute susceptibility value of the coating material. At the extremity of the coated cylinder an uncompensated field distortion was found to remain. We studied various tip shapes and

  4. Homologous and cannibalistic coronal mass ejections from twisted magnetic flux rope simulations

    NASA Astrophysics Data System (ADS)

    Chatterjee, Piyali; Fan, Yuhong

    We present results from magnetohydrodynamic simulations of the development of homologous sequence of coronal mass ejections (CMEs) and demonstrate their so-called cannibalistic behavior. These CMEs originate from the repeated formations and partial eruptions of kink unstable flux ropes as a result of continued emergence of a twisted flux rope across the lower boundary into a pre-existing coronal potential arcade field. Our simulation shows that a CME erupting into the open magnetic field created by a preceding CME has a higher speed. The second of the three successive CMEs in one of the simulations is cannibalistic, catching up and merging with the first into a single fast CME before exiting the domain. All the CMEs including the leading merged CME, attained speeds of about 1000 km s-1 as they exit the domain. The reformation of a twisted flux rope after each CME eruption during the sustained flux emergence can naturally explain the X-ray observations of repeated reformations of sigmoids and "sigmoid-under-cusp" configurations at a low-coronal source of homologous CMEs. We also investigate the initiation mechanism and ejecta topology of these energetic CMEs as a function of the twist parameter of the flux rope.

  5. Simulation of RF power and multi-cusp magnetic field requirement for H- ion sources

    NASA Astrophysics Data System (ADS)

    Pathak, Manish; Senecha, V. K.; Kumar, Rajnish; Ghodke, Dharmraj. V.

    2016-12-01

    A computer simulation study for multi-cusp RF based H- ion source has been carried out using energy and particle balance equation for inductively coupled uniformly dense plasma considering sheath formation near the boundary wall of the plasma chamber for RF ion source used as high current injector for 1 Gev H- Linac project for SNS applications. The average reaction rates for different reactions responsible for H- ion production and destruction have been considered in the simulation model. The RF power requirement for the caesium free H- ion source for a maximum possible H- ion beam current has been derived by evaluating the required current and RF voltage fed to the coil antenna using transformer model for Inductively Coupled Plasma (ICP). Different parameters of RF based H- ion source like excited hydrogen molecular density, H- ion density, RF voltage and current of RF antenna have been calculated through simulations in the presence and absence of multicusp magnetic field to distinctly observe the effect of multicusp field. The RF power evaluated for different H- ion current values have been compared with the experimental reported results showing reasonably good agreement considering the fact that some RF power will be reflected from the plasma medium. The results obtained have helped in understanding the optimum field strength and field free regions suitable for volume emission based H- ion sources. The compact RF ion source exhibits nearly 6 times better efficiency compare to large diameter ion source.

  6. Quantifying uncertainty in Transcranial Magnetic Stimulation - A high resolution simulation study in ICBM space.

    PubMed

    Toschi, Nicola; Keck, Martin E; Welt, Tobias; Guerrisi, Maria

    2012-01-01

    Transcranial Magnetic Stimulation offers enormous potential for noninvasive brain stimulation. While it is known that brain tissue significantly "reshapes" induced field and charge distributions, most modeling investigations to-date have focused on single-subject data with limited generality. Further, the effects of the significant uncertainties which exist in the simulation (i.e. brain conductivity distributions) and stimulation (e.g. coil positioning and orientations) setup have not been quantified. In this study, we construct a high-resolution anisotropic head model in standard ICBM space, which can be used as a population-representative standard for bioelectromagnetic simulations. Further, we employ Monte-Carlo simulations in order to quantify how uncertainties in conductivity values propagate all the way to induced field and currents, demonstrating significant, regionally dependent dispersions in values which are commonly assumed "ground truth". This framework can be leveraged in order to quantify the effect of any type of uncertainty in noninvasive brain stimulation and bears relevance in all applications of TMS, both investigative and therapeutic.

  7. Effect of magnetic islands on profiles, flows, turbulence and transport in nonlinear gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Bañón Navarro, A.; Bardóczi, L.; Carter, T. A.; Jenko, F.; Rhodes, T. L.

    2017-03-01

    Neoclassical tearing modes have deleterious effects on plasma confinement and, if they grow large enough, they can lead to discharge termination. Therefore, they impose a major barrier in the development of operating scenarios of present-day tokamaks. Gyrokinetics offers a path toward studying multi-scale interactions with turbulence and the effect on plasma confinement. As a first step toward this goal, we have implemented static magnetic islands in nonlinear gyrokinetic simulations with the GENE code. We investigate the effect of the islands on profiles, flows, turbulence and transport and the scaling of these effects with respect to island size. We find a clear threshold island width, below which the islands have little or no effect while beyond this point the islands significantly perturb flows, increase turbulence and transport. Additionally, we study the effect of radially asymmetric islands on shear flows for the first time. We find that island induced shear flows can regulate turbulent fluctuation levels in the vicinity of the island separatrices. Throughout this work, we focus on experimentally relevant quantities, such as rms levels of density and electron temperature fluctuations, as well as amplitude and phasing of turbulence modulation. These simulations aim to provide guidelines for interpreting experimental results by comparing qualitative trends in the simulations with those obtained in tokamak experiments.

  8. Simulation of ground-water flow and application to the design of a contaminant removal system, Loring Air Force Base, Maine

    USGS Publications Warehouse

    Starn, J.J.

    1997-01-01

    The fractured-bedrock aquifer underlying the former Fire Training Area at Loring Air Force Base, Maine, has been contaminated with petroleum products as a result of fire training activities. A numerical model of the ground-water-flow system near the Fire Training Area was developed to provide information for the design and operation of a contaminant removal system. The goals of the simulation modeling were to (1) determine the maximum pumping rate that could be sustained, giventhe constraint that water levels not rise above a specified altitude, and (2) determine the effect of seasonal variation in recharge on the ability of a transient pumping scenario to capture contaminants. A steady-state simulation model of ground-water flow was used to determine the optimal pumping rate at the site. The optimal pumping rate was 8,570 ft3/d (44 gal/min). Monthly recharge rates wereestimated for use in a transient simulation model. During a typical year, most recharge probably occurs during two periods-one during snowmelt in early spring and another, possibly less significant period, during the late fall. The transient response of the water table to 8.5 inches of recharge in April, 2 inches of recharge in October, and 0.25 inches of recharge per month for each remaining month wassimulated. Fluctuations in ground-water levels caused by simulated seasonal variation of recharge would have minimal effect on the operation of thecontaminant removal system because the system is not pumped when recharge is lowest, ground-water velocities are lowest, and ground-water flow past the trench is minimal.

  9. Rayleigh-Taylor-unstable accretion to and variability of magnetized stars: Global three-dimensional magnetohydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Kulkanarni, Akshay Kishor

    We present results of three-dimensional (3D) simulations of magnetohydrodynamic (MHD) instabilities at the accretion disk-magnetosphere boundary in accreting magnetized stars. The instability is Rayleigh-Taylor, and develops for a fairly broad range of accretion rates and stellar rotation rates and magnetic fields. It manifests itself in the form of tall, thin tongues of plasma that penetrate the magnetosphere in the equatorial plane, instead of flowing around the magnetosphere as in the canonical accretion picture. The shape and number of the tongues changes with time on the inner-disk dynamical timescale. In contrast with funnel flows, which deposit matter mainly in the polar region, the tongues deposit matter much closer to the stellar equator. The instability appears for relatively small misalignment angles, theta ≲ 30°, between the star's rotation and magnetic axes, and is associated with relatively high accretion rates. We then calculate the photometric variability due to emission from the hot spots that the accreting matter produces on the stellar surface. For neutron stars, we take relativistic effects into account in calculating the observed energy flux. Our goal is to compare the features of the lightcurve during stable and unstable accretion, and to look for possible quasi-periodic oscillations (QPOs), which produce broad peaks in the Fourier power spectra of these objects. The lightcurves during stable accretion show periodicity at the star's frequency and sometimes twice that, due to the presence of two funnel streams that produce antipodal hotspots near the magnetic poles. On the other hand, lightcurves during unstable accretion are more chaotic due to the stochastic behaviour of the tongues, and produce noisier power spectra. However, the power spectra do show some signs of quasi-periodic variability. Most importantly, the rotation frequency of the tongues and the resulting hotspots is close to the inner-disk orbital frequency, except in the most

  10. Late-stage magma flow in a shallow felsic reservoir: Merging the anisotropy of magnetic susceptibility record with numerical simulations in La Gloria Pluton, central Chile

    NASA Astrophysics Data System (ADS)

    GutiéRrez, F.; PayacáN, I.; Gelman, S. E.; Bachmann, O.; Parada, M. A.

    2013-05-01

    La Gloria Pluton is a 10 Myr old epizonal intrusion located in the southern Andes. We present anisotropy of magnetic susceptibility data that indicate a magnetic fabric that is mainly oblate. We find that lineations are weak and have a N-NW trend with a nearly horizontal dip, while foliations are more pronounced, have NW trends, and have dips that vary from vertical at the walls of the intrusion to horizontal at the center and under the roof of the chamber. To interpret these magmatic fabrics, we developed a time-dependent 2-D magmatic fluid dynamic numerical simulation. Our model is calibrated with MELTS and accounts for the coupled processes of cooling, crystallization, and degassing of a magma chamber. Simulations indicate that the resulting convective flow pattern in the crystallizing reservoir is consistent with the magnetic fabric, which is largely produced in the shear zone between the convecting liquid-dominated core and the growing solidification fronts adjacent to the walls. The magnetic fabric records the last increment of strain induced by convective magmatic flow in the cooling reservoir during crystallization at the rheological magma locking point along solidification fronts. Despite the small size of the pluton, the core of the chamber remains thermally insulated from the colder host rocks, surviving up to 20 kyr above the solidus, which allows enough time for the extraction of residual leucogranitic melt and partial late magmatic reactive recrystallization. The results of the simulations are also consistent with the previously determined compositional and mineralogical zonation patterns in the pluton.

  11. The simulation of low core loss high speed permanent magnet motor based on soft-magnetic ferrite

    NASA Astrophysics Data System (ADS)

    Wang, Xinghua; Fang, Xue; Guo, Yingjie; Wang, Xiuhe

    2006-11-01

    High core loss is the most outstanding problem in high speed permanent magnet motors. To solve this problem, water cooling or oil cooling is usually adopted, which increase the complexity and cost. Considering the characters of high permeability, high resistivity, low loss and low cost for soft magnetic ferrite, this paper proposes a novel high speed PM motor based on soft magnetic ferrite. Soft magnetic ferrite ring is used as stator core, rare earth PM ring serves as the rotor poles, and the slotless configuration with long effective air gap is adopted. The size matching design between the stator magnetic ring and the PM magnetic ring can make themselves work in their best operating points respectively, lower core loss and higher power density will be ensured in the motor. The results of magnetic field analysis, core loss analysis and the prototype test prove that the core loss can be greatly reduced, which verifies that the high speed PM BLDC motor based on soft magnetic ferrite is feasible.

  12. Magnetic phase transitions and monopole excitations in spin ice under uniaxial pressure: A Monte Carlo simulation

    SciTech Connect

    Xie, Y. L. Yan, Z. B.; Liu, J.-M.; Lin, L.

    2015-05-07

    In this work, we explore the spin ice model under uniaxial pressure using the Monte Carlo simulation method. For the known spin ices, the interaction correction (δ) introduced by the uniaxial pressure varies in quite a wide range from positive to negative. When δ is positive, the ground state characterized by the ferromagnetic spin chains is quite unstable, and in real materials it serves as intermediate state connecting the ice state and the long range ordered dipolar spin ice ground state. In the case of negative δ, the system relaxes from highly degenerate ice state to ordered ferromagnetic state via a first order phase transition. Furthermore, the domain walls in such ferromagnetic state are the hotbed of the excitations of magnetic monopoles, thus indicating that the uniaxial pressure can greatly increase the monopole density.

  13. Observation of Time-Invariant Coherence in a Nuclear Magnetic Resonance Quantum Simulator.

    PubMed

    Silva, Isabela A; Souza, Alexandre M; Bromley, Thomas R; Cianciaruso, Marco; Marx, Raimund; Sarthour, Roberto S; Oliveira, Ivan S; Lo Franco, Rosario; Glaser, Steffen J; deAzevedo, Eduardo R; Soares-Pinto, Diogo O; Adesso, Gerardo

    2016-10-14

    The ability to live in coherent superpositions is a signature trait of quantum systems and constitutes an irreplaceable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum superpositions. It was recently predicted that, in a composite quantum system exposed to dephasing noise, quantum coherence in a transversal reference basis can stay protected for an indefinite time. This can occur for a class of quantum states independently of the measure used to quantify coherence, and it requires no control on the system during the dynamics. Here, such an invariant coherence phenomenon is observed experimentally in two different setups based on nuclear magnetic resonance at room temperature, realizing an effective quantum simulator of two- and four-qubit spin systems. Our study further reveals a novel interplay between coherence and various forms of correlations, and it highlights the natural resilience of quantum effects in complex systems.

  14. Monte Carlo simulations of a kagome lattice with magnetic dipolar interactions

    NASA Astrophysics Data System (ADS)

    Holden, M. S.; Plumer, M. L.; Saika-Voivod, I.; Southern, B. W.

    2015-06-01

    The results of extensive Monte Carlo simulations of classical spins on the two-dimensional kagome lattice with only dipolar interactions are presented. In addition to revealing the sixfold-degenerate ground state, the nature of the finite-temperature phase transition to long-range magnetic order is discussed. Low-temperature states consisting of mixtures of degenerate ground-state configurations separated by domain walls can be explained as a result of competing exchange-like and shape-anisotropy-like terms in the dipolar coupling. Fluctuations between pairs of degenerate spin configurations are found to persist well into the ordered state as the temperature is lowered until locking in to a low-energy state.

  15. Simulation Study of Magnetic Fields Generated by the Electromagnetic Filamentation Instability

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C. B.; Mizuno, Y.; Fishman, G. J.

    2007-01-01

    We have investigated the effects of plasma instabilities driven by rapid e(sup plus or minus) pair cascades, which arise in the environment of GRB sources as a result of back-scattering of a seed fraction of the original spectrum. The injection of e(sup plus or minus) pairs induces strong streaming motions in the ambient medium. One therefore expects the pair-enriched medium ahead of the forward shock to be strongly sheared on length scales comparable to the radiation front thickness. Using three-dimensional particle-in-cell simulations, we show that plasma instabilities driven by these streaming e(sup plus or minus) pairs are responsible for the excitation of near-equipartition, turbulent magnetic fields. Our results reveal the importance of the electromagnetic filamentation instability in ensuring an effective coupling between e(sup plus or minus) pairs and ions, and may help explain the origin of large upstream fields in GRB shocks.

  16. Observation of Time-Invariant Coherence in a Nuclear Magnetic Resonance Quantum Simulator

    NASA Astrophysics Data System (ADS)

    Silva, Isabela A.; Souza, Alexandre M.; Bromley, Thomas R.; Cianciaruso, Marco; Marx, Raimund; Sarthour, Roberto S.; Oliveira, Ivan S.; Lo Franco, Rosario; Glaser, Steffen J.; deAzevedo, Eduardo R.; Soares-Pinto, Diogo O.; Adesso, Gerardo

    2016-10-01

    The ability to live in coherent superpositions is a signature trait of quantum systems and constitutes an irreplaceable resource for quantum-enhanced technologies. However, decoherence effects usually destroy quantum superpositions. It was recently predicted that, in a composite quantum system exposed to dephasing noise, quantum coherence in a transversal reference basis can stay protected for an indefinite time. This can occur for a class of quantum states independently of the measure used to quantify coherence, and it requires no control on the system during the dynamics. Here, such an invariant coherence phenomenon is observed experimentally in two different setups based on nuclear magnetic resonance at room temperature, realizing an effective quantum simulator of two- and four-qubit spin systems. Our study further reveals a novel interplay between coherence and various forms of correlations, and it highlights the natural resilience of quantum effects in complex systems.

  17. Magnetohydrodynamic Simulation of the Earth's Magnetotail Response to the Interplanetary Magnetic Field Variations

    NASA Astrophysics Data System (ADS)

    Jauer, Paulo Ricardo; Echer, Ezequiel; Alves, Maria Virginia

    In the present work, a study of the dynamical response of the macroscopic parameters, den-sity, pressure, and velocity, of the Earth's magnetotail, was carried out. The goal of this work was to study the variation of such parameters as a response to the different topologies of the Interplanetary Magnetic Field (IMF) present in some of the geoeffective solar wind magnetic structures. We used Magnetohydrodynamic simulation in order to approach this problem. The bi-dimensional Magnetohydrodynamic code was originally developed by Ogino et al. (1986), being restricted to the formation of the terrestrial magnetosphere with a stationary IMF. After we performed the necessary modifications in the original code, the magnetospheric dynamics was observed. Based on that, we investigated the response of the different regions of the magne-tosphere (specially the magnetotail) to different IMF conditions. Four different configurations of the IMF were analyzed when interacting with the Earth's magnetosphere. Among these different topologies, one could find a representative for a positive shock, i.e, a shock with a pos-itive Bz , another for a negative shock, i.e, a shock with a negative Bz , an idealized HILDCAA event with a Bz squared fluctuation similar to an Alfvénic one, and, finally, a structure similar to a Magnetic Cloud. The considered changes in the IMF configuration favored the observation of different physical processes. Among these processes, it was possible to observe the forma-tion of the Near-Earth Neutral Line for the IMF configuration representative of a negative Bz (negative shock). Furthermore, a plasmoid release was observed, which is associated with one of the most dynamics phenomena in the terrestrial magnetosphere: the substorm.

  18. FOUR-FLUID MODEL AND NUMERICAL SIMULATIONS OF MAGNETIC STRUCTURES IN THE HELIOSHEATH

    SciTech Connect

    Avinash, K.; Cox, Sean M.; Shaikh, Dastgeer; Zank, G. P.

    2009-04-10

    The first part of this paper extends the three-fluid model of Avinash and Zank for magnetic structures in the heliosheath to a four-fluid model consisting of electrons, pick-up ions (PUIs), solar wind ions (SWIs), and neutral hydrogen. The PUIs are generated by neutrals via charge exchange with SWI. Since the kinetic pressure of PUI is nearly three to four times the pressure of SWI, these are more suited to mediate small-scale structures in the heliosheath such as magnetic holes (MH)/humps etc. The constant energy exchange between these two fluids drives them nonadiabatic. The PUIs are isothermal ({gamma} = 1) while SWIs are nonadiabatic with an index {gamma} {approx} 1.25. The four-fluid model captures these effects via a modified equation of state for PUI and SWI. The phase space of time-independent solutions in terms of the Mach numbers of PUI and SWI is constructed to delineate the parameter space which allows structure formation in the heliosheath. The second part of the paper examines the stability of the time-independent solutions computed in the first part by evolving them via a full system of Hall-MHD equations. The simulation results show that these solutions are not quite stable. As the structure propagates it develops growing oscillations in the wings. Concomitantly, there are changes in the amplitude and width of the structure. This instability could be due to local changes in the velocity of the structure and reflects an exchange between the kinetic and magnetic parts of the total energy. Our results about the presence of growing oscillations in the wings of solitary wave solutions are consistent with the recent analysis of MHs in the heliosheth by Burlaga et al. Their analysis also shows evidence for the presence of oscillations and instabilities in the wings of MHs in the heliosheath.

  19. Particle-in-cell simulations of Magnetic Field Generation, Evolution, and Reconnection in Laser-driven Plasmas

    NASA Astrophysics Data System (ADS)

    Matteucci, Jack; Moissard, Clément; Fox, Will; Bhattacharjee, Amitava

    2016-10-01

    The advent of high-energy-density physics facilities has introduced the opportunity to experimentally investigate magnetic field dynamics relevant to both ICF and astrophysical plasmas. Recent experiments have demonstrated magnetic reconnection between colliding plasma plumes, where the reconnecting magnetic fields were self-generated in the plasma by the Biermann battery effect. In this study, we simulate these experiments from first principles using 2-D and 3-D particle-in-cell simulations. Simulations self-consistently demonstrate magnetic field generation by the Biermann battery effect, followed by advection by the Hall effect and ion flow. In 2-D simulations, we find in both the collisionless case and the semi-collisional case, defined by eVi × B >> Rei /ne (where Rei is the electron ion momentum transfer) that quantitative agreement with the generalized Ohm's law is only obtained with the inclusion of the pressure tensor. Finally, we document that significant field is destroyed at the reconnection site by the Biermann term, an inverse, `anti-Biermann' effect, which has not been considered previously in analysis of the experiment. The role of the anti-Biermann effect will be compared to standard reconnection mechanisms in 3-D reconnection simulations. This research used resources of the ORLC Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. DoE under Contract No. DE-AC05-00OR22725.

  20. Destruction of large-scale magnetic field in non-linear simulations of the shear dynamo

    NASA Astrophysics Data System (ADS)

    Teed, Robert J.; Proctor, Michael R. E.

    2016-05-01

    The Sun's magnetic field exhibits coherence in space and time on much larger scales than the turbulent convection that ultimately powers the dynamo. In the past the α-effect (mean-field) concept has been used to model the solar cycle, but recent work has cast doubt on the validity of the mean-field ansatz under solar conditions. This indicates that one should seek an alternative mechanism for generating large-scale structure. One possibility is the recently proposed `shear dynamo' mechanism where large-scale magnetic fields are generated in the presence of a simple shear. Further investigation of this proposition is required, however, because work has been focused on the linear regime with a uniform shear profile thus far. In this paper we report results of the extension of the original shear dynamo model into the non-linear regime. We find that whilst large-scale structure can initially persist into the saturated regime, in several of our simulations it is destroyed via large increase in kinetic energy. This result casts doubt on the ability of the simple uniform shear dynamo mechanism to act as an alternative to the α-effect in solar conditions.

  1. Measuring Properties of Magnetic Reconnection in Nonlinear Resistive and Two-Fluid Toroidal Simulations of Sawteeth

    NASA Astrophysics Data System (ADS)

    Beidler, Matthew; Cassak, Paul; Jardin, Stephen; Ferraro, Nathaniel

    2015-11-01

    The sawtooth crash in tokamaks limits the core temperature, harms confinement, and seeds disruptions. A predictive capability of its ramifications has been elusive. Extended-MHD physics is needed to properly analyze the magnetic reconnection that occurs during the crash phase, but it has only recently been integrated into codes using a toroidal geometry. In this study, we employ the three-dimensional toroidal, extended-MHD code M3D-C1 to study reconnection during the sawtooth crash. We study the nonlinear evolution of a test equilibrium in a non-reduced field representation for resistive-MHD and the two-fluid model. We find that the toroidal mode growth rates for the two-fluid reconnection process exhibit a nonlinear acceleration and greatly exceed that of a similar resistive MHD model, more closely in line with experimental results. Furthermore, by sampling the two-fluid simulation data in the plane perpendicular to the helical (m,n) =(1,1) mode, we present the first observation of the quadrupole out-of-plane magnetic field appearing during sawtooth reconnection with the Hall term. We also explore how reconnection as viewed in the helically perpendicular plane varies toroidally, which affects the symmetry of the reconnection geometry and the local diamagnetic effects.

  2. Geophysical monitoring of simulated graves with resistivity, magnetic susceptibility, conductivity and GPR in Colombia, South America.

    PubMed

    Molina, Carlos Martin; Pringle, Jamie K; Saumett, Miguel; Evans, Gethin T

    2016-04-01

    In most Latin American countries there are significant numbers of both missing people and forced disappearances, ∼71,000 Colombia alone. Successful detection of buried human remains by forensic search teams can be difficult in varying terrain and climates. Three clandestine burials were simulated at two different depths commonly encountered in Latin America. In order to gain critical knowledge of optimum geophysical detection techniques, burials were monitored using: ground penetrating radar, magnetic susceptibility, bulk ground conductivity and electrical resistivity up to twenty-two months post-burial. Radar survey results showed good detection of modern 1/2 clothed pig cadavers throughout the survey period on 2D profiles, with the 250MHz antennae judged optimal. Both skeletonised and decapitated and burnt human remains were poorly imaged on 2D profiles with loss in signal continuity observed throughout the survey period. Horizontal radar time slices showed good anomalies observed over targets, but these decreased in amplitude over the post-burial time. These were judged due to detecting disturbed grave soil rather than just the buried targets. Magnetic susceptibility and electrical resistivity were successful at target detection in contrast to bulk ground conductivity surveys which were unsuccessful. Deeper burials were all harder to image than shallower ones. Forensic geophysical surveys should be undertaken at suspected burial sites.

  3. Sub-solar Magnetopause Observation and Simulation of a Tripolar Guide-Magnetic Field Perturbation

    NASA Astrophysics Data System (ADS)

    Eriksson, S.; Cassak, P.; Retino, A.; Mozer, F.

    2015-12-01

    The Polar satellite recorded two reconnection exhausts within 6 min on 1 April 2001 at a rather symmetric sub-solar magnetopause that displayed different out-of-plane signatures for similar solar wind conditions. The first case was reported by Mozer et al. [2002] and displayed a bipolar guide field supporting a quadrupole Hall field consistent with a single X-line. The second case, however, shows the first known example of a tripolar guide-field perturbation at Earth's magnetopause reminiscent of the types of solar wind exhausts that Eriksson et al. [2014; 2015] have reported to be in agreement with multiple X-lines. A dedicated particle-in-cell simulation is performed for the prevailing conditions across the magnetopause. We propose an explanation in terms of asymmetric Hall magnetic fields due to a presence of a magnetic island between two X-lines, and discuss how higher resolution MMS observations can be used to further study this problem at the magnetopause.

  4. SQUIDs vs. Faraday coils for ultlra-low field nuclear magnetic resonance: experimental and simulation comparison

    SciTech Connect

    Matlashov, Andrei N; Espy, Michelle A; Kraus, Robert H; Sayukov, Igor M; Schultz, Larry J; Urbaitis, Algis V; Volegov, Petr L; Wurden, Caroline J

    2010-01-01

    Nuclear magnetic resonance (NMR) methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. Recently it has become possible to perform NMR and MRI in ultra-low field (ULF) regime that requires measurement field strengths only of the order of 1 Gauss. These techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. Our group at LANL has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airports security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR/MRI technique. We describe an experimental and computer simulation comparison of the world's first multichannel SQUID based