Sample records for simulated martian environments

  1. Response of terrestrial microorganisms to a simulated Martian environment.

    PubMed Central

    Foster, T L; Winans, L; Casey, R C; Kirschner, L E

    1978-01-01

    Soil samples from Cape Canaveral were subjected to a simulated Martian environment and assayed periodically over 45 days to determine the effect of various environmental parameters on bacterial populations. The simulated environment was based on the most recent available data, prior to the Viking spacecraft, describing Martian conditions and consisted of a pressure of 7 millibars, an atmosphere of 99.9% CO2 and 0.1% O2, a freeze-thaw cycle of -65 degrees C for 16 h and 24 degrees C for 8 h, and variable moisture and nutrients. Reduced pressure had a significant effect, reducing growth under these conditions. Slight variations in gaseous composition of the simulated atmosphere had negligible effect on growth. The freeze-thaw cycle did not inhibit growth but did result in a slower rate of decline after growth had occurred. Dry samples exhibited no change during the 45-day experiment, indicating that the simulated Martian environment was not toxic to bacterial populations. Psychotrophic organisms responded more favorably to this environment than mesophiles, although both types exhibited increases of approximately 3 logs in 7 to 14 days when moisture and nutrients were available. PMID:646358

  2. Searching for Biosignatures in Martian Sedimentary Systems

    NASA Astrophysics Data System (ADS)

    Stevens, A. H.; McDonald, A.; Cockell, C. S.

    2018-04-01

    We present experiments designed to simulate an inhabited martian lacustrine system analogous to Gale Crater. We describe the microbes found to thrive in this simulated environment and identify issues detecting biomarkers in this context.

  3. An Electrostatic Precipitator System for the Martian Environment

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Mackey, P. J.; Hogue, M. D.; Johansen, M. R.; Phillips, J. R., III; Clements, J. S.

    2012-01-01

    Human exploration missions to Mars will require the development of technologies for the utilization of the planet's own resources for the production of commodities. However, the Martian atmosphere contains large amounts of dust. The extraction of commodities from this atmosphere requires prior removal of this dust. We report on our development of an electrostatic precipitator able to collect Martian simulated dust particles in atmospheric conditions approaching those of Mars. Extensive experiments with an initial prototype in a simulated Martian atmosphere showed efficiencies of 99%. The design of a second prototype with aerosolized Martian simulated dust in a flow-through is described. Keywords: Space applications, electrostatic precipitator, particle control, particle charging

  4. Survival of microorganisms in smectite clays: Implications for Martian exobiology

    NASA Astrophysics Data System (ADS)

    Moll, Deborah M.; Vestal, J. Robie

    1992-08-01

    Manned exploration of Mars may result in the contamination of that planet with terrestrial microbes, a situation requiring assessment of the survival potential of possible contaminating organisms. In this study, the survival of Bacillus subtilis, Azotobacter chroococcum, and the enteric bacteriophage MS2 was examined in clays representing terrestrial (Wyoming type montmorillonite) or Martian (Fe 3+-montmorillonite) soils exposed to terrestrial and Martian environmental conditions of temperature and atmospheric pressure and composition, but not to UV flux or oxidizing conditions. Survival of bacteria was determined by standard plate counts and biochemical and physiological measurements over 112 days. Extractable lipid phosphate was used to measure microbial biomass, and the rate of 14C-acetate incorporation into microbial lipids was used to determine physiological activity. MS2 survival was assayed by plaque counts. Both bacterial types survived terrestrial or Martian conditions in Wyoming montmorillonite better than Martian conditions in Fe 3+-montmorillonite. Decreased survival may have been caused by the lower pH of the Fe 3+-montmorillonite compared to Wyoming montmorillonite. MS2 survived simulated Mars conditions better than the terrestrial environment, likely due to stabilization of the virus caused by the cold and dry conditions of the simulated Martian environment. The survival of MS2 in the simulated Martian environment is the first published indication that viruses may be able to survive in Martian type soils. This work may have implications for planetary protection for future Mars missions.

  5. Radiation transport simulation of the Martian GCR surface flux and dose estimation using spherical geometry in PHITS compared to MSL-RAD measurements

    NASA Astrophysics Data System (ADS)

    Flores-McLaughlin, John

    2017-08-01

    Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO.

  6. Radiation transport simulation of the Martian GCR surface flux and dose estimation using spherical geometry in PHITS compared to MSL-RAD measurements.

    PubMed

    Flores-McLaughlin, John

    2017-08-01

    Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO. Copyright © 2017. Published by Elsevier Ltd.

  7. Effects of Mars Atmosphere on Arc Welds: Phase 2

    NASA Technical Reports Server (NTRS)

    Courtright, Z. S.

    2018-01-01

    Gas tungsten arc welding (GTAW) is a vital fusion welding process widely used throughout the aerospace industry. Its use may be critical for the repair or manufacture of systems, rockets, or facilities on the Martian surface. Aluminum alloy AA2219-T87 and titanium alloy Ti-6Al-4V butt welds have been investigated for weldability and weld properties in a simulated Martian gas environment. The resulting simulated Martian welds were compared to welds made in a terrestrial atmosphere, all of which used argon shielding gas. It was found that GTAW is a process that may be used in a Martian gas environment, not accounting for pressure and gravitational effects, as long as adequate argon shielding gas is used to protect the weld metal. Simulated Martian welds exhibited higher hardness in all cases and higher tensile strength in the case of AA2219-T87. This has been attributed to the absorption of carbon into the fusion zone, causing carbide precipitates to form. These precipitates may act to pin dislocations upon tensile testing of AA2219-T87. Dissolved carbon may have also led to carburization, which may have caused the increase in hardness within the fusion zone of the welds. Based on the results of this experiment and other similar experiments, GTAW appears to be a promising process for welding in a Martian gas environment. Additional funding and experimentation is necessary to determine the effects of the low pressure and low gravity environment found on Mars on GTAW.

  8. Survival of microorganisms in smectite clays - Implications for Martian exobiology

    NASA Technical Reports Server (NTRS)

    Moll, Deborah M.; Vestal, J. R.

    1992-01-01

    The survival of Baccillus subtilis, Azotobacter chroococcum, and the enteric bacteriophage MS2 has been examined in clays representing terrestrial (Wyoming type montmorillonite) and Martian (Fe3+ montmorillonite) soils exposed to terrestrial and Martian environmental conditions of temperature and atmospheric composition and pressure. An important finding is that MS2 survived simulated Mars conditions better than the terrestrial environment, probably owing to stabilization of the virus caused by the cold and dry conditions of the simulated Mars environment. This finding, the first published indication that viruses may be able to survive in Mars-type soils, may have important implications for future missions to Mars.

  9. Numerical simulation of the radiation environment on Martian surface

    NASA Astrophysics Data System (ADS)

    Zhao, L.

    2015-12-01

    The radiation environment on the Martian surface is significantly different from that on earth. Existing observation and studies reveal that the radiation environment on the Martian surface is highly variable regarding to both short- and long-term time scales. For example, its dose rate presents diurnal and seasonal variations associated with atmospheric pressure changes. Moreover, dose rate is also strongly influenced by the modulation from GCR flux. Numerical simulation and theoretical explanations are required to understand the mechanisms behind these features, and to predict the time variation of radiation environment on the Martian surface if aircraft is supposed to land on it in near future. The high energy galactic cosmic rays (GCRs) which are ubiquitous throughout the solar system are highly penetrating and extremely difficult to shield against beyond the Earth's protective atmosphere and magnetosphere. The goal of this article is to evaluate the long term radiation risk on the Martian surface. Therefore, we need to develop a realistic time-dependent GCR model, which will be integrated with Geant4 transport code subsequently to reproduce the observed variation of surface dose rate associated with the changing heliospheric conditions. In general, the propagation of cosmic rays in the interplanetary medium can be described by a Fokker-Planck equation (or Parker equation). In last decade,we witnessed a fast development of GCR transport models within the heliosphere based on accurate gas-dynamic and MHD backgrounds from global models of the heliosphere. The global MHD simulation produces a more realistic pattern of the 3-D heliospheric structure, as well as the interface between the solar system and the surrounding interstellar space. As a consequence, integrating plasma background obtained from global-dependent 3-D MHD simulation and stochastic Parker transport simulation, we expect to produce an accurate global physical-based GCR modulation model. Combined with the Geant4 transport code, this GCR model will provide valuable insight into the long-term dose rates variation on the Martian surface.

  10. Simulation of Martian surface conditions and dust transport

    NASA Astrophysics Data System (ADS)

    Nørnberg, P.; Merrison, J. P.; Finster, K.; Folkmann, F.; Gunnlaugsson, H. P.; Hansen, A.; Jensen, J.; Kinch, K.; Lomstein, B. Aa.; Mugford, R.

    2002-11-01

    The suspended atmospheric dust which is also found deposited over most of the Martian globe plays an important (possibly vital) role in shaping the surface environment. It affects the weather (solar flux), water transport and possibly also the electrical properties at the surface. The simulation facilities at Aarhus provide excellent tools for studying the properties of this Martian environment. Much can be learned from such simulations, supporting and often inspiring new investigations of the planet. Electrical charging of a Mars analogue dust is being studied within a wind tunnel simulation aerosol. Here electric fields are used to extract dust from suspension. Although preliminary the results indicate that a large fraction of the dust is charged to a high degree, sufficient to dominate adhesion/cohesion processes. A Mars analogue dust layer has been shown to be an excellent trap for moisture, causing increased humidity in the soil below. This allows the possibility for liquid water to be stable close to the surface (less than 10 cm). This is being investigated in an environment simulator where heat and moisture transport can be studied through layers of Mars analogue dust.

  11. A Study of Mars Dust Environment Simulation at NASA Johnson Space Center Energy Systems Test Area Resource Conversion Test Facility

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Liang Albert

    1999-01-01

    The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.

  12. S.A.M., the Italian Martian Simulation Chamber

    NASA Astrophysics Data System (ADS)

    Galletta, G.; Ferri, F.; Fanti, G.; D'Alessandro, M.; Bertoloni, G.; Pavarin, D.; Bettanini, C.; Cozza, P.; Pretto, P.; Bianchini, G.; Debei, S.

    2006-12-01

    The Martian Environment Simulator (SAM “Simulatore di Ambiente Marziano”) is a interdisciplinary project of Astrobiology done at University of Padua. The research is aimed to the study of the survival of the microorganisms exposed to the “extreme” planetary environment. The facility has been designed in order to simulate Mars’ environmental conditions in terms of atmospheric pressure, temperature cycles and UV radiation dose. The bacterial cells, contained into dedicated capsules, will be exposed to thermal cycles simulating diurnal and seasonal Martian cycles. The metabolism of the different biological samples will be analysed at different phases of the experiment, to study their survival and eventual activity of protein synthesis (mortality, mutations and capability of DNA reparing). We describe the experimental facility and provide the perspectives of the biological experiments we will perform in order to provide hints on the possibility of life on Mars either autochthonous or imported from Earth.

  13. Persistence of biomarker ATP and ATP-generating capability in bacterial cells and spores contaminating spacecraft materials under earth conditions and in a simulated martian environment.

    PubMed

    Fajardo-Cavazos, Patricia; Schuerger, Andrew C; Nicholson, Wayne L

    2008-08-01

    Most planetary protection research has concentrated on characterizing viable bioloads on spacecraft surfaces, developing techniques for bioload reduction prior to launch, and studying the effects of simulated martian environments on microbial survival. Little research has examined the persistence of biogenic signature molecules on spacecraft materials under simulated martian surface conditions. This study examined how endogenous adenosine-5'-triphosphate (ATP) would persist on aluminum coupons under simulated martian conditions of 7.1 mbar, full-spectrum simulated martian radiation calibrated to 4 W m(-2) of UV-C (200 to 280 nm), -10 degrees C, and a Mars gas mix of CO(2) (95.54%), N(2) (2.7%), Ar (1.6%), O(2) (0.13%), and H(2)O (0.03%). Cell or spore viabilities of Acinetobacter radioresistens, Bacillus pumilus, and B. subtilis were measured in minutes to hours, while high levels of endogenous ATP were recovered after exposures of up to 21 days. The dominant factor responsible for temporal reductions in viability and loss of ATP was the simulated Mars surface radiation; low pressure, low temperature, and the Mars gas composition exhibited only slight effects. The normal burst of endogenous ATP detected during spore germination in B. pumilus and B. subtilis was reduced by 1 or 2 orders of magnitude following, respectively, 8- or 30-min exposures to simulated martian conditions. The results support the conclusion that endogenous ATP will persist for time periods that are likely to extend beyond the nominal lengths of most surface missions on Mars, and planetary protection protocols prior to launch may require additional rigor to further reduce the presence and abundance of biosignature molecules on spacecraft surfaces.

  14. Comparative Measurements of Earth and Martian Entry Environments in the NASA Langley HYMETS Facility

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Bey, Kim S.; Gragg, Jeffrey G.; Brewer, Amy

    2011-01-01

    Arc-jet facilities play a major role in the development of heat shield materials for entry vehicles because they are capable of producing representative high-enthalpy flow environments. Arc-jet test data is used to certify material performance for a particular mission and to validate or calibrate models of material response during atmospheric entry. Materials used on missions entering Earth s atmosphere are certified in an arc-jet using a simulated air entry environment. Materials used on missions entering the Martian atmosphere should be certified in an arc-jet using a simulated Martian atmosphere entry environment, which requires the use of carbon dioxide. Carbon dioxide has not been used as a test gas in a United States arc-jet facility since the early 1970 s during the certification of materials for the Viking Missions. Materials certified for the Viking missions have been used on every entry mission to Mars since that time. The use of carbon dioxide as a test gas in an arc-jet is again of interest to the thermal protection system community for certification of new heat shield materials that can increase the landed mass capability for Mars bound missions beyond that of Viking and Pathfinder. This paper describes the modification, operation, and performance of the Hypersonic Materials Environmental Test System (HYMETS) arc-jet facility with carbon dioxide as a test gas. A basic comparison of heat fluxes, various bulk properties, and performance characteristics for various Earth and Martian entry environments in HYMETS is provided. The Earth and Martian entry environments consist of a standard Earth atmosphere, an oxygen-rich Earth atmosphere, and a simulated Martian atmosphere. Finally, a preliminary comparison of the HYMETS arc-jet facility to several European plasma facilities is made to place the HYMETS facility in a more global context of arc-jet testing capability.

  15. Magnetic levitation-based Martian and Lunar gravity simulator

    NASA Technical Reports Server (NTRS)

    Valles, J. M. Jr; Maris, H. J.; Seidel, G. M.; Tang, J.; Yao, W.

    2005-01-01

    Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  16. Magnetic levitation-based Martian and Lunar gravity simulator.

    PubMed

    Valles, J M; Maris, H J; Seidel, G M; Tang, J; Yao, W

    2005-01-01

    Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  17. Laboratory simulations of Martian surface parameters and the biological response of terrestrial model organisms to 'extreme' environments

    NASA Astrophysics Data System (ADS)

    Rettberg, P.; Moller, R.; Pogoda de La Vega, U.; Rabbow, E.; Panitz, C.; Mohlmann, D.; Reitz, G.

    For the development of adequate instruments and methods for in situ life detection analysis and for the avoidance of contaminating of Mars by terrestrial life forms introduced to it's surface unintentionally, it is necessary to understand the potential and limits of life on Earth. Whereas it is possible to test most of the environmental parameters of Mars separately in the laboratory, like diurnal and seasonal temperature cyles, pressure, atmospheric composition, and to investigate their biological effects in detail, it is technically more difficult to simulate two or more parameters at the same time. The realistic simulation of a complete Martian surface environment is a considerable technical challenge. It is especially difficult to reproduce the Martian UV climate realistically. Up to now no total Mars simulation was performed in one single experiment which should include diurnal cycles of temperature, UV radiation and humidity in a simulated Martian atmosphere and at Martian pressure, with Martian soil analogues, dust particles, and ionising radiation. However, it is absolutely essential to investigate the biological effects of combined environmental parameters, because it is already known for some cases that biological effects might not necessarily be additive, but can be synergistic or antagonistic. A prominent example is the synergistic effect of vacuum and UV radiation on the survivability of B. subtilis spores. From several investigations in the last decades the Martian UV climate with it's energy-rich short-wavelength radiation down to 200 nm turned out to be the most important deleterious environmental parameter on Mars. Direct UV exposure caused a rapid and nearly complete inactivation of spores. However, thin layers of Martian soil analogue material, like simulated standard Mars JSC-1 or Fe-montmorillonite, are sufficient to shield spores from the deleterious effects of UV radiation. From these results it can be concluded that in spite of the destructive UV climate at least a part of a microbial population might be able to escape the inactiviation by UV radiation, if covered accidentally by Martian dust and soil particles. Up to now the molecular basis of the strong oxidizing properties of Martian soil found 1 by the Viking landers is not completely understood. This chemical reactivity capable of decomposing organic molecules was attributed to the presence of one or more as- yet-unidentified inorganic superoxides or peroxides in the Martian soil. The biological consequences of these photochemical reactions are not yet investigated in detail, although it is known that B. subtilis spores are able to withstand oxidative conditions to a certain degree. The determination of the survival of microorganisms under the physical and chemical `extremes' of Mars will provide detailed insights into the potential for contamination that will allow the development and improvement of planetary protection measures. 2

  18. Wind tunnel simulation of Martian sand storms

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1980-01-01

    The physics and geological relationships of particles driven by the wind under near Martian conditions were examined in the Martian Surface Wind Tunnel. Emphasis was placed on aeolian activity as a planetary process. Threshold speeds, rates of erosion, trajectories of windblown particles, and flow fields over various landforms were among the factors considered. Results of experiments on particles thresholds, rates of erosion, and the effects of electrostatics on particles in the aeolian environment are presented.

  19. The NASA environmental models of Mars

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.

    1991-01-01

    NASA environmental models are discussed with particular attention given to the Mars Global Reference Atmospheric Model (Mars-GRAM) and the Mars Terrain simulator. The Mars-GRAM model takes into account seasonal, diurnal, and surface topography and dust storm effects upon the atmosphere. It is also capable of simulating appropriate random density perturbations along any trajectory path through the atmosphere. The Mars Terrain Simulator is a software program that builds pseudo-Martian terrains by layering the effects of geological processes upon one another. Output pictures of the constructed surfaces can be viewed from any vantage point under any illumination conditions. Attention is also given to the document 'Environment of Mars, 1988' in which scientific models of the Martian atmosphere and Martian surface are presented.

  20. Bacillus subtilis spore survival and expression of germination-induced bioluminescence after prolonged incubation under simulated Mars atmospheric pressure and composition: implications for planetary protection and lithopanspermia

    NASA Technical Reports Server (NTRS)

    Nicholson, Wayne L.; Schuerger, Andrew C.

    2005-01-01

    Bacterial endospores in the genus Bacillus are considered good models for studying interplanetary transfer of microbes by natural or human processes. Although spore survival during transfer itself has been the subject of considerable study, the fate of spores in extraterrestrial environments has received less attention. In this report we subjected spores of a strain of Bacillus subtilis, containing luciferase resulting from expression of an sspB-luxAB gene fusion, to simulated martian atmospheric pressure (7-18 mbar) and composition (100% CO(2)) for up to 19 days in a Mars simulation chamber. We report here that survival was similar between spores exposed to Earth conditions and spores exposed up to 19 days to simulated martian conditions. However, germination-induced bioluminescence was lower in spores exposed to simulated martian atmosphere, which suggests sublethal impairment of some endogenous spore germination processes.

  1. Instrumentation and Methodology Development for Mars Mission

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Liang Albert

    2002-01-01

    The Mars environment comprises a dry, cold and low air pressure atmosphere with low gravity (0.38g) and high resistivity soil. The global dust storms that cover a large portion of Mars were observed often from Earth. This environment provides an idea condition for triboelectric charging. The extremely dry conditions on the Martian surface have raised concerns that electrostatic charge buildup will not be dissipated easily. If triboelectrically generated charge cannot be dissipated or avoided, then dust will accumulate on charged surfaces and electrostatic discharge may cause hazards for future exploration missions. The low surface temperature on Mars helps to prolong the charge decay on the dust particles and soil. To better understand the physics of Martian charged dust particles is essential to future Mars missions. We research and design two sensors, velocity/charge sensor and PZT momentum sensors, to detect the velocity distribution, charge distribution and mass distribution of Martian charged dust particles. These sensors are fabricated at NASA Kenney Space Center, Electromagnetic Physics Testbed. The sensors will be tested and calibrated for simulated Mars atmosphere condition with JSC MARS-1 Martian Regolith simulant in this NASA laboratory.

  2. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E.

    PubMed

    Wassmann, Marko; Moeller, Ralf; Rabbow, Elke; Panitz, Corinna; Horneck, Gerda; Reitz, Günther; Douki, Thierry; Cadet, Jean; Stan-Lotter, Helga; Cockell, Charles S; Rettberg, Petra

    2012-05-01

    In the space experiment "Molecular adaptation strategies of microorganisms to different space and planetary UV climate conditions" (ADAPT), bacterial endospores of the highly UV-resistant Bacillus subtilis strain MW01 were exposed to low-Earth orbit (LEO) and simulated martian surface conditions for 559 days on board the European Space Agency's exposure facility EXPOSE-E, mounted outside the International Space Station. The survival of B. subtilis MW01 spores from both assays (LEO and simulated martian conditions) was determined by a colony-formation assay after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few spore survivors were recovered from B. subtilis MW01 spores exposed in monolayers. However, if shielded from solar irradiation, about 8% of MW01 spores survived in LEO conditions, and 100% survived in simulated martian conditions, compared to the laboratory controls. The results demonstrate the effect of shielding against the high inactivation potential of extraterrestrial solar UV radiation, which limits the chances of survival of even the highly UV-resistant strain of B. subtilis MW01 in the harsh environments of outer space and the martian surface.

  3. ARC-2005-ACD05-0022-025

    NASA Image and Video Library

    2005-02-04

    Ames Mars Wind Tunnel Facility N-245: NASA is simulating small martian 'dust devils' and wind in a laboraotry to determine how they may affect the landscape and environment of the red planet. Dust Devils on Mars are often a great deal biggger than those on Earth and can at times cover the whole planet. Martian winds & dust devils, big and little, collectively are a great force that is constantly changing the planet's environment. shown here: is the control room for the Mars W.T. with Eric Eddlemon

  4. ARC-2005-ACD05-0022-017

    NASA Image and Video Library

    2005-02-04

    Ames Mars Wind Tunnel Facility N-245: NASA is simulating small martian 'dust devils' and wind in a laboraotry to determine how they may affect the landscape and environment of the red planet. Dust Devils on Mars are often a great deal biggger than those on Earth and can at times cover the whole planet. Martian winds & dust devils, big and little, collectively are a great force that is constantly changing the planet's environment. shown here: Silica Sand (Oklahoma 90) particles used in vortex generatory and Mars Wind Tunnel

  5. ARC-2005-ACD05-0022-019

    NASA Image and Video Library

    2005-02-04

    Ames Mars Wind Tunnel Facility N-245: NASA is simulating small martian 'dust devils' and wind in a laboraotry to determine how they may affect the landscape and environment of the red planet. Dust Devils on Mars are often a great deal biggger than those on Earth and can at times cover the whole planet. Martian winds & dust devils, big and little, collectively are a great force that is constantly changing the planet's environment. shown here: Carbondale Red Clay dust used in vortex generatory and Mars Wind Tunnel

  6. Extended Survival of Several Microorganisms and Relevant Amino Acid Biomarkers under Simulated Martian Surface Conditions as a Function of Burial Depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Adam; Pratt, L.M.; Vishnivetskaya, Tatiana A

    2011-01-01

    Recent orbital and landed missions have provided substantial evidence for ancient liquid water on the martian surface as well as evidence of more recent sedimentary deposits formed by water and/or ice. These observations raise serious questions regarding an independent origin and evolution of life on Mars. Future missions seek to identify signs of extinct martian biota in the form of biomarkers or morphological characteristics, but the inherent danger of spacecraft-borne terrestrial life makes the possibility of forward contamination a serious threat not only to the life detection experiments, but also to any extant martian ecosystem. A variety of cold andmore » desiccation-tolerant organisms were exposed to 40 days of simulated martian surface conditions while embedded within several centimeters of regolith simulant in order to ascertain the plausibility of such organisms survival as a function of environmental parameters and burial depth. Relevant amino acid biomarkers associated with terrestrial life were also analyzed in order to understand the feasibility of detecting chemical evidence for previous biological activity. Results indicate that stresses due to desiccation and oxidation were the primary deterrent to organism survival, and that the effects of UV-associated damage, diurnal temperature variations, and reactive atmospheric species were minimal. Organisms with resistance to desiccation and radiation environments showed increased levels of survival after the experiment compared to organisms characterized as psychrotolerant. Amino acid analysis indicated the presence of an oxidation mechanism that migrated downward through the samples during the course of the experiment and likely represents the formation of various oxidizing species at mineral surfaces as water vapor diffused through the regolith. Current sterilization protocols may specifically select for organisms best adapted to survival at the martian surface, namely species that show tolerance to radical-induced oxidative damage and low water activity environments. Additionally, any hypothetical martian ecosystems may have evolved similar physiological traits that allow sporadic metabolism during periods of increased water activity.« less

  7. Planetary geomorphology research: FY 1990-1991

    NASA Technical Reports Server (NTRS)

    Malin, M. C.

    1991-01-01

    Progress in the following research areas is discussed: (1) volatile ice sublimation in a simulated Martian polar environment; (2) a global synthesis of Venusian tectonics; (3) a summary of nearly a decade of field studies of eolian processes in cold volcanic deserts; and (4) a model for interpretation of Martian sediment distribution using Viking observations. Some conclusions from the research are presented.

  8. Biological contamination of Mars. I. Survival of terrestrial microorganisms in simulated Martian environments.

    PubMed

    Scher, S; Packer, E; Sagan, C

    1964-01-01

    It has been postulated that the accidental introduction of terrestrial microorganisms to other planets during the course of space exploration might impede or bias the detection of organic matter and possible indigenous organisms, and thereby confuse subsequent studies of extraterrestrial life. To assess the likelihood of biological contamination of Mars, we have applied the principle of natural selection on a laboratory scale. Terrestrial microorganisms were collected from a variety of environments, including regions of high alkalinity, low mean daily temperature, and low annual rainfall. The air-dried soils were then subjected to a simulated Martian environment involving 12-hour freeze-thaw cycles from about -60 degrees C to about +20 degrees C; atmospheres of 95 per cent nitrogen, 5 percent carbon dioxide and low moisture content: < or = 0.1 atm pressure; and a total ultraviolet dose at 2537 angstrom of 10(9) erg cm-2. In some experiments, organic supplements were provided. Survivors were scored on supplemented agar. Preliminary results indicate a wide variety of survivors, even when no organic supplements were introduced. Survivors included obligate and facultative anaerobic spore-formers and non-spore-forming facultative anaerobic bacteria. Diurnal freezing and thawing was continued for six months. There was no significant loss of viability after the first freeze-thaw cycle. An extensive literature survey shows that survival of terrestrial microorganisms under individual simulated Martian conditions has been known for decades. The present investigation shows the absence of pronounced synergistic effects inhibiting survival. The probable existence of organic matter and moisture on Mars, at least in restricted locales and times, makes it especially likely that terrestrial microorganisms can also reproduce on Mars. The demonstration that all samples of terrestrial soil tested contain a population of microorganisms which survive in simulated Martian environments strongly underscores the need for scrupulous sterilization of all spacecraft intended for Mars landing.

  9. Survival and death of the haloarchaeon Natronorubrum strain HG-1 in a simulated martian environment

    NASA Astrophysics Data System (ADS)

    Peeters, Z.; Vos, D.; ten Kate, I. L.; Selch, F.; van Sluis, C. A.; Sorokin, D. Yu.; Muijzer, G.; Stan-Lotter, H.; van Loosdrecht, M. C. M.; Ehrenfreund, P.

    2010-11-01

    Halophilic archaea are of interest to astrobiology due to their survival capabilities in desiccated and high salt environments. The detection of remnants of salty pools on Mars stimulated investigations into the response of haloarchaea to martian conditions. Natronorubrum sp. strain HG-1 is an extremely halophilic archaeon with unusual metabolic pathways, growing on acetate and stimulated by tetrathionate. We exposed Natronorubrum strain HG-1 to ultraviolet (UV) radiation, similar to levels currently prevalent on Mars. In addition, the effects of low temperature (4, -20, and -80 °C), desiccation, and exposure to a Mars soil analogue from the Atacama desert on the viability of Natronorubrum strain HG-1 cultures were investigated. The results show that Natronorubrum strain HG-1 cannot survive for more than several hours when exposed to UV radiation equivalent to that at the martian equator. Even when protected from UV radiation, viability is impaired by a combination of desiccation and low temperature. Desiccating Natronorubrum strain HG-1 cells when mixed with a Mars soil analogue impaired growth of the culture to below the detection limit. Overall, we conclude that Natronorubrum strain HG-1 cannot survive the environment currently present on Mars. Since other halophilic microorganisms were reported to survive simulated martian conditions, our results imply that survival capabilities are not necessarily shared between phylogenetically related species.

  10. Simulation of Viking biology experiments suggests smectites not palagonites, as martian soil analogues

    NASA Technical Reports Server (NTRS)

    Banin, A.; Margulies, L.

    1983-01-01

    An experimental comparison of palagonites and a smectite (montmorillonite) was performed in a simulation of the Viking Biology Labelled Release (LR) experiment in order to judge which mineral is a better Mars soil analog material (MarSAM). Samples of palagonite were obtained from cold weathering environments and volcanic soil, and the smectite was extracted from Wyoming Bentonite and converted to H or Fe types. Decomposition reaction kinetics were examined in the LR simulation, which on the Lander involved interaction of the martian soil with organic compounds. Reflectance spectroscopy indicated that smectites bearing Fe(III) in well-crystallized sites are not good MarSAMS. The palagonites did not cause the formate decomposition and C-14 emission detected in the LR, indicating that palagonites are also not good MarSAMS. Smectites, however, may be responsible for ion exchange, molecular adsorption, and catalysis in martian soil.

  11. The chemical effects of the Martian environment on power system component materials: A theoretical approach

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.

    1990-01-01

    In the foreseeable future, an expedition may be undertaken to explore the planet Mars. Some of the power source options being considered for such a mission are photovoltaics, regenerative fuel cells and nuclear reactors. In addition to electrical power requirements, environmental conditions en route to Mars, in the planetary orbit and on the Martian surface must be simulated and studied in order to anticipate and solve potential problems. Space power systems components such as photovoltaic arrays, radiators, and solar concentrators may be vulnerable to degradation in the Martian environment. Natural characteristics of Mars which may pose a threat to surface power systems include high velocity winds, dust, ultraviolet radiation, large daily variation in temperature, reaction to components of the soil, atmosphere and atmospheric condensates as well as synergistic combinations. Most of the current knowledge of the characteristics of the Martian atmosphere and soil composition was obtained from the Viking 1 and 2 missions in 1976. A theoretical study is presented which was used to assess the effects of the Martian atmospheric conditions on the power systems components. A computer program written at NASA-Lewis for combustion research that uses a free energy minimization technique was used to calculate chemical equilibrium for assigned thermodynamic states of temperature and pressure. The power system component materials selected for this study include: silicon dioxide, silicon, carbon, copper, and titanium. Combinations of environments and materials considered include: (1) Mars atmosphere with power surface material, (2) Mars atmosphere and dust component with power surface material, and (3) Mars atmosphere and hydrogen peroxide or superoxide or superoxide with power system material. The chemical equilibrium calculations were performed at a composition ratio (oxidant to reactant) of 100. The temperature for the silicon dioxide material and silicon, which simulate photovoltaic cells, were 300 and 400 K; for carbon, copper and titanium, which simulate radiator surfaces, 300, 500, and 1000 K. All of the systems were evaluated at pressures of 700, 800, and 900 Pa, which stimulate the Martian atmosphere.

  12. Flight Simulation of ARES in the Mars Environment

    NASA Technical Reports Server (NTRS)

    Kenney, P. Sean; Croom, Mark A.

    2011-01-01

    A report discusses using the Aerial Regional- scale Environmental Survey (ARES) light airplane as an observation platform on Mars in order to gather data. It would have to survive insertion into the atmosphere, fly long enough to meet science objectives, and provide a stable platform. The feasibility of such a platform was tested using the Langley Standard Real- Time Simulation in C++. The unique features of LaSRS++ are: full, six-degrees- of-freedom flight simulation that can be used to evaluate the performance of the aircraft in the Martian environment; capability of flight analysis from start to finish; support of Monte Carlo analysis of aircraft performance; and accepting initial conditions from POST results for the entry and deployment of the entry body. Starting with a general aviation model, the design was tweaked to maintain a stable aircraft under expected Martian conditions. Outer mold lines were adjusted based on experience with the Martian atmosphere. Flight control was modified from a vertical acceleration control law to an angle-of-attack control law. Navigation was modified from a vertical acceleration control system to an alpha control system. In general, a pattern of starting with simple models with well-understood behaviors was selected and modified during testing.

  13. Composition of Simulated Martian Brines and Implications for the Origin of Martian Salts

    NASA Technical Reports Server (NTRS)

    Bullock, M. A.; Moore, J. M.; Mellon, M. T.

    2004-01-01

    We report on laboratory experiments that have produced dilute brines under controlled conditions meant to simulate past and present Mars. We allowed an SNC-derived mineral mix to react with pure water under a simulated present-Mars atmosphere for seven months. We then subjected the same mineral mix to a similar aqueous environment for one year, but with a simulated Mars atmosphere that contained the added gases SO2, HCl and NO2. The addition of acidic gases was designed to mimic the effects of volcanic gases that may have been present in the martian atmosphere during periods of increased volcanic activity. The experiments were performed at one bar and at two different temperatures in order to simulate subsurface conditions where liquid water and rock are likely to interact on Mars. The dominant cations dissolved in the solutions we produced were Ca(2+), Mg(2+), Al(3+) and Na(+), while the major anions are dissolved C, F(-), SO4(2-) and Cl(-). Typical solution pH was 4.2 to 6.0 for experiments run with a Mars analog atmosphere, and 3.6-5.0 for experiments with acidic gases added. Abundance patterns of elements in the synthetic sulfate-chloride brines produced under acidic conditions were distinctly unlike those of terrestrial ocean water, terrestrial continental waters, and those measured in the martian fines at the Mars Pathfinder and Viking 1 and 2 landing sites. In particular, the S/Cl ratio in these experiments was about 200, compared with an average value of approx. 5 in martian fines. In contrast, abundance patterns of elements in the brines produced under a present day Mars analog atmosphere were quite similar to those measured in the martian fines at the Mars Pathfinder and Viking 1 and 2 landing sites. This suggests that salts present in the martian regolith may have formed over time as a result of the interaction of surface or subsurface liquid water with basalts in the presence of a martian atmosphere similar in composition to that of today, rather than in an atmosphere higher in acidic volatiles.

  14. Simulation of Martian surface-atmosphere interaction in a space-simulator: Technical considerations and feasibility

    NASA Technical Reports Server (NTRS)

    Moehlmann, D.; Kochan, H.

    1992-01-01

    The Space Simulator of the German Aerospace Research Establishment at Cologne, formerly used for testing satellites, is now, since 1987, the central unit within the research sub-program 'Comet-Simulation' (KOSI). The KOSI team has investigated physical processes relevant to comets and their surfaces. As a byproduct we gained experience in sample-handling under simulated space conditions. In broadening the scope of the research activities of the DLR Institute of Space Simulation an extension to 'Laboratory-Planetology' is planned. Following the KOSI-experiments a Mars Surface-Simulation with realistic minerals and surface soil in a suited environment (temperature, pressure, and CO2-atmosphere) is foreseen as the next step. Here, our main interest is centered on thermophysical properties of the Martian surface and energy transport (and related gas transport) through the surface. These laboratory simulation activities can be related to space missions as typical pre-mission and during-the-mission support of the experiments design and operations (simulation in parallel). Post mission experiments for confirmation and interpretation of results are of great value. The physical dimensions of the Space Simulator (cylinder of about 2.5 m diameter and 5 m length) allows for testing and qualification of experimental hardware under realistic Martian conditions.

  15. Modeling the Martian neutron and gamma-ray leakage fluxes using Geant4

    NASA Astrophysics Data System (ADS)

    Pirard, Benoit; Desorgher, Laurent; Diez, Benedicte; Gasnault, Olivier

    A new evaluation of the Martian neutron and gamma-ray (continuum and line) leakage fluxes has been performed using the Geant4 code. Even if numerous studies have recently been carried out with Monte Carlo methods to characterize planetary radiation environments, only a few however have been able to reproduce in detail the neutron and gamma-ray spectra observed in orbit. We report on the efforts performed to adapt and validate the Geant4-based PLAN- ETOCOSMICS code for use in planetary neutron and gamma-ray spectroscopy data analysis. Beside the advantage of high transparency and modularity common to Geant4 applications, the new code uses reviewed nuclear cross section data, realistic atmospheric profiles and soil layering, as well as specific effects such as gravity acceleration for low energy neutrons. Results from first simulations are presented for some Martian reference compositions and show a high consistency with corresponding neutron and gamma-ray spectra measured on board Mars Odyssey. Finally we discuss the advantages and perspectives of the improved code for precise simulation of planetary radiation environments.

  16. An ultraviolet simulator for the incident Martian surface radiation and its applications

    NASA Astrophysics Data System (ADS)

    Kolb, C.; Abart, R.; Bérces, A.; Garry, J. R. C.; Hansen, A. A.; Hohenau, W.; Kargl, G.; Lammer, H.; Patel, M. R.; Rettberg, P.; Stan-Lotter, H.

    2005-10-01

    Ultraviolet (UV) radiation can act on putative organic/biological matter at the Martian surface in several ways. Only absorbed, but not transmitted or reflected, radiation energy can be photo-chemically effective. The most important biological UV effects are due to photochemical reactions in nucleic acids, DNA or RNA, which constitute the genetic material of all cellular organisms and viruses. Protein or lipid effects generally play a minor role, but they are also relevant in some cases. UV radiation can induce wavelengths-specific types of DNA damage. At the same time it can also induce the photo-reversion reaction of a UV induced DNA photoproduct of nucleic acid bases, the pyrimidine dimers. Intense UVB and UVC radiation, experienced on early Earth and present-day Mars, has been revealed to be harmful to all organisms, including extremophile bacteria and spores. Moreover, the formation of oxidants, catalytically produced in the Martian environment through UV irradiation, may be responsible for the destruction of organic matter on Mars. Following this, more laboratory simulations are vital in order to investigate and understand UV effects on organic matter in the case of Mars. We have designed a radiation apparatus that simulates the anticipated Martian UV surface spectrum between 200 and 400 nm (UVC UVA). The system comprises a UV enhanced xenon arc lamp, special filter-sets and mirrors to simulate the effects of the Martian atmospheric column and dust loading. We describe the technical setup and performance of the system and discuss its uses for different applications. The design is focused on portability, therefore, the Mars-UV simulator represents a device for several different Mars simulation facilities with specific emphasis on Mars research topics.

  17. Perchlorates on Mars enhance the bacteriocidal effects of UV light.

    PubMed

    Wadsworth, Jennifer; Cockell, Charles S

    2017-07-06

    Perchlorates have been identified on the surface of Mars. This has prompted speculation of what their influence would be on habitability. We show that when irradiated with a simulated Martian UV flux, perchlorates become bacteriocidal. At concentrations associated with Martian surface regolith, vegetative cells of Bacillus subtilis in Martian analogue environments lost viability within minutes. Two other components of the Martian surface, iron oxides and hydrogen peroxide, act in synergy with irradiated perchlorates to cause a 10.8-fold increase in cell death when compared to cells exposed to UV radiation after 60 seconds of exposure. These data show that the combined effects of at least three components of the Martian surface, activated by surface photochemistry, render the present-day surface more uninhabitable than previously thought, and demonstrate the low probability of survival of biological contaminants released from robotic and human exploration missions.

  18. Ion funnel augmented Mars atmospheric pressure photoionization mass spectrometry for in situ detection of organic molecules.

    PubMed

    Johnson, Paul V; Hodyss, Robert; Beauchamp, J L

    2014-11-01

    Laser desorption is an attractive technique for in situ sampling of organics on Mars given its relative simplicity. We demonstrate that under simulated Martian conditions (~2.5 Torr CO(2)) laser desorption of neutral species (e.g., polycyclic aromatic hydrocarbons), followed by ionization with a simple ultraviolet light source such as a discharge lamp, offers an effective means of sampling organics for detection and identification with a mass spectrometer. An electrodynamic ion funnel is employed to provide efficient ion collection in the ambient Martian environment. This experimental methodology enables in situ sampling of Martian organics with minimal complexity and maximum flexibility.

  19. Structure and dynamics of the convective boundary layer on Mars as inferred from large-eddy simulations and remote-sensing measurements

    NASA Astrophysics Data System (ADS)

    Spiga, A.; Forget, F.; Lewis, S. R.; Hinson, D. P.

    2010-02-01

    The structure of the Martian convective boundary layer (BL) is decribed by means of a novel approach involving both modelling and data analysis. Mars Express radio-occultation (RO) temperature profiles are compared to large-eddy simulations (LESs) performed with the Martian mesoscale model. The model combines the Martian radiative transfer, soil and surface layer schemes designed at Laboratoire de Météorologie Dynamique (LMD) with the most recent version of the Weather Research and Forecast (WRF) fully compressible non-hydrostatic dynamical core. The key roles of the vertical resolution and, to lesser extent, of the domain horizontal extent have been investigated to ensure the robustness of the LES results. The dramatic regional variations of the BL depth are quantitatively reproduced by the Martian LES. Intense BL dynamics are found to underlie the measured depths (up to 9 km): vertical speed up to 20 m s-1, heat flux up to 2.7 K m s-1 and turbulent kinetic energy up to 26 m2 s-2. Under specific conditions, both the model and the measurements show a distinctive positive correlation between surface topography and BL depth. Our interpretation is that, in the tenuous CO2 Martian near-surface environment, the daytime BL is to first order controlled by the infrared radiative heating, fairly independent of elevation, which implies a simple correlation between the BL potential temperature and the inverse pressure ("pressure effect"). No prominent "pressure effect" is in action on Earth where sensible heat flux dominates the BL energy budget. Both RO observations and numerical simulations confirm the terrain-following behaviour of near-surface temperature on Mars induced by the dominant radiative influence. The contribution of the Martian sensible heat flux is not negligible and results in a given isotherm in the BL being comparatively closer to the ground at higher surface elevation. The strong radiative control of the Martian convective BL implies a generalised formulation for the BL dimensionless quantities. Based on this formulation and the variety of simulated BL depths by the LES, new similarity relationships for the Martian convective BL in quasi-steady midday conditions are derived. Rigorous comparisons between the Martian and terrestrial BL and fast computations of the mean Martian BL turbulent statistics are now made possible by such similarity laws.

  20. Internship Tasks Associated With CIF Icy Regolith Excavation and Volatile Capture Under Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Ballesteros, Erik Nicholas

    2014-01-01

    Understanding the surface and atmosphere of Mars is critical to current and future development of exploration systems. Dealing with the Martian regolith-the top layer of soil-remains a significant challenge, and much research is still needed. Addressing this need, the Cryogenics Test Lab and Granular Mechanics and Regolith Operations Lab at NASA's Kennedy Space Center are partnering to develop an apparatus that utilizes simulated Martian regolith in an analogous atmospheric environment to gather data about how the material behaves when exposed to water vapor. Martian surface temperatures range from 128 K (-145 C) to 308 K (35 C), and the average pressure is approximately 4.5 Torr; which presents an environment where water can potentially exist in vapor, solid or liquid form. And based on prior Mars missions such as the Phoenix Lander, it is known that water-ice exists just below the surface. This test apparatus will attempt to recreate the conditions that contributed to the Martian ice deposits by exposing a sample to water vapor at low pressure and temperature; thereby forming ice inside the simulant via diffusion. From this, we can better understand the properties and behavior of the regolith, and have more knowledge concerning its ability to store water-and subsequently, how to dig up and extract that water-which will be crucial to sample gathering when the first manned Mars mission takes place.

  1. Numerical simulations of drainage flows on Mars

    NASA Technical Reports Server (NTRS)

    Parish, Thomas R.; Howard, Alan D.

    1992-01-01

    Data collected by Viking Landers have shown that the meteorology of the near surface Martian environment is analogous to desertlike terrestrial conditions. Geological evidence such as dunes and frost streaks indicate that the surface wind is a potentially important factor in scouring of the martian landscape. In particular, the north polar basin shows erosional features that suggest katabatic wind convergence into broad valleys near the margin of the polar cap. The pattern of katabatic wind drainage off the north polar cap is similar to that observed on Earth over Antarctica or Greenland. The sensitivity is explored of Martian drainage flows to variations in terrain slope and diurnal heating using a numerical modeling approach. The model used is a 2-D sigma coordinate primitive equation system that has been used for simulations of Antarctic drainage flows. Prognostic equations include the flux forms of the horizontal scalar momentum equations, temperature, and continuity. Parameterization of both longwave (terrestrial) and shortwave (solar) radiation is included. Turbulent transfer of heat and momentum in the Martian atmosphere remains uncertain since relevant measurements are essentially nonexistent.

  2. Effect of Shadowing on Survival of Bacteria under Conditions Simulating the Martian Atmosphere and UV Radiation▿ †

    PubMed Central

    Osman, Shariff; Peeters, Zan; La Duc, Myron T.; Mancinelli, Rocco; Ehrenfreund, Pascale; Venkateswaran, Kasthuri

    2008-01-01

    Spacecraft-associated spores and four non-spore-forming bacterial isolates were prepared in Atacama Desert soil suspensions and tested both in solution and in a desiccated state to elucidate the shadowing effect of soil particulates on bacterial survival under simulated Martian atmospheric and UV irradiation conditions. All non-spore-forming cells that were prepared in nutrient-depleted, 0.2-μm-filtered desert soil (DSE) microcosms and desiccated for 75 days on aluminum died, whereas cells prepared similarly in 60-μm-filtered desert soil (DS) microcosms survived such conditions. Among the bacterial cells tested, Microbacterium schleiferi and Arthrobacter sp. exhibited elevated resistance to 254-nm UV irradiation (low-pressure Hg lamp), and their survival indices were comparable to those of DS- and DSE-associated Bacillus pumilus spores. Desiccated DSE-associated spores survived exposure to full Martian UV irradiation (200 to 400 nm) for 5 min and were only slightly affected by Martian atmospheric conditions in the absence of UV irradiation. Although prolonged UV irradiation (5 min to 12 h) killed substantial portions of the spores in DSE microcosms (∼5- to 6-log reduction with Martian UV irradiation), dramatic survival of spores was apparent in DS-spore microcosms. The survival of soil-associated wild-type spores under Martian conditions could have repercussions for forward contamination of extraterrestrial environments, especially Mars. PMID:18083857

  3. Extraction of Water from Martian Regolith Simulant via Open Reactor Concept

    NASA Technical Reports Server (NTRS)

    Trunek, Andrew J.; Linne, Diane L.; Kleinhenz, Julie E.; Bauman, Steven W.

    2018-01-01

    To demonstrate proof of concept water extraction from simulated Martian regolith, an open reactor design is presented along with experimental results. The open reactor concept avoids sealing surfaces and complex moving parts. In an abrasive environment like the Martian surface, those reactor elements would be difficult to maintain and present a high probability of failure. A general lunar geotechnical simulant was modified by adding borax decahydrate (Na2B4O7·10H2O) (BDH) to mimic the 3 percent water content of hydrated salts in near surface soils on Mars. A rotating bucket wheel excavated the regolith from a source bin and deposited the material onto an inclined copper tray, which was fitted with heaters and a simple vibration system. The combination of vibration, tilt angle and heat was used to separate and expose as much regolith surface area as possible to liberate the water contained in the hydrated minerals, thereby increasing the efficiency of the system. The experiment was conducted in a vacuum system capable of maintaining a Martian like atmosphere. Evolved water vapor was directed to a condensing system using the ambient atmosphere as a sweep gas. The water vapor was condensed and measured. Processed simulant was captured in a collection bin and weighed in real time. The efficiency of the system was determined by comparing pre- and post-processing soil mass along with the volume of water captured.

  4. GPR detectability of rocks in a Martian-like shallow subsoil: A numerical approach

    NASA Astrophysics Data System (ADS)

    Valerio, Guido; Galli, Alessandro; Matteo Barone, Pier; Lauro, Sebastian E.; Mattei, Elisabetta; Pettinelli, Elena

    2012-03-01

    In this work, the ability of Ground Penetrating Radar (GPR) to detect rocks buried in composite soil is studied in connection with the planned ExoMars mission, as GPR will be used during this mission to scan the Martian subsurface to help define feasible sites for shallow drilling. A realistic model of the operating environment is implemented through a full-wave electromagnetic simulator, taking into account the antenna system and the signal features. The flexibility and efficiency of this numerical approach has allowed for the analysis of a great variety of configurations. The regolith is modeled based on data from recent explorations, while various kinds of embedded rocks are considered that have different geometrical and physical characteristics. The simulated results are compared with ad hoc GPR measurements performed on basalts buried in a mixture of glass beads, as an analogue of a dry sandy Martian soil. A very good agreement between theoretical and experimental results is found, thus validating the proposed numerical approach. This research has defined useful and reliable information concerning the prediction of scattering effects from buried objects in the environment where the ExoMars rover will operate.

  5. Transcriptomic responses of germinating Bacillus subtilis spores exposed to 1.5 years of space and simulated martian conditions on the EXPOSE-E experiment PROTECT.

    PubMed

    Nicholson, Wayne L; Moeller, Ralf; Horneck, Gerda

    2012-05-01

    Because of their ubiquity and resistance to spacecraft decontamination, bacterial spores are considered likely potential forward contaminants on robotic missions to Mars. Thus, it is important to understand their global responses to long-term exposure to space or martian environments. As part of the PROTECT experiment, spores of B. subtilis 168 were exposed to real space conditions and to simulated martian conditions for 559 days in low-Earth orbit mounted on the EXPOSE-E exposure platform outside the European Columbus module on the International Space Station. Upon return, spores were germinated, total RNA extracted, fluorescently labeled, and used to probe a custom Bacillus subtilis microarray to identify genes preferentially activated or repressed relative to ground control spores. Increased transcript levels were detected for a number of stress-related regulons responding to DNA damage (SOS response, SPβ prophage induction), protein damage (CtsR/Clp system), oxidative stress (PerR regulon), and cell envelope stress (SigV regulon). Spores exposed to space demonstrated a much broader and more severe stress response than spores exposed to simulated martian conditions. The results are discussed in the context of planetary protection for a hypothetical journey of potential forward contaminant spores from Earth to Mars and their subsequent residence on Mars.

  6. JMSS-1: a new Martian soil simulant

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaojia; Li, Xiongyao; Wang, Shijie; Li, Shijie; Spring, Nicole; Tang, Hong; Li, Yang; Feng, Junming

    2015-05-01

    It is important to develop Martian soil simulants that can be used in Mars exploration programs and Mars research. A new Martian soil simulant, called Jining Martian Soil Simulant (JMSS-1), was developed at the Lunar and Planetary Science Research Center at the Institute of Geochemistry, Chinese Academy of Sciences. The raw materials of JMSS-1 are Jining basalt and Fe oxides (magnetite and hematite). JMSS-1 was produced by mechanically crushing Jining basalt with the addition of small amounts of magnetite and hematite. The properties of this simulant, including chemical composition, mineralogy, particle size, mechanical properties, reflectance spectra, dielectric properties, volatile content, and hygroscopicity, have been analyzed. On the basis of these test results, it was demonstrated that JMSS-1 is an ideal Martian soil simulant in terms of chemical composition, mineralogy, and physical properties. JMSS-1 would be an appropriate choice as a Martian soil simulant in scientific and engineering experiments in China's Mars exploration in the future.

  7. Remote Sensing Observations and Numerical Simulation for Martian Layered Ejecta Craters

    NASA Astrophysics Data System (ADS)

    Li, L.; Yue, Z.; Zhang, C.; Li, D.

    2018-04-01

    To understand past Martian climates, it is important to know the distribution and nature of water ice on Mars. Impact craters are widely used ubiquitous indicators for the presence of subsurface water or ice on Mars. Remote sensing observations and numerical simulation are powerful tools for investigating morphological and topographic features on planetary surfaces, and we can use the morphology of layered ejecta craters and hydrocode modeling to constrain possible layering and impact environments. The approach of this work consists of three stages. Firstly, the morphological characteristics of the Martian layered ejecta craters are performed based on Martian images and DEM data. Secondly, numerical modeling layered ejecta are performed through the hydrocode iSALE (impact-SALE). We present hydrocode modeling of impacts onto targets with a single icy layer within an otherwise uniform basalt crust to quantify the effects of subsurface H2O on observable layered ejecta morphologies. The model setup is based on a layered target made up of a regolithic layer (described by the basalt ANEOS), on top an ice layer (described by ANEOS equation of H2O ice), in turn on top of an underlying basaltic crust. The bolide is a 0.8 km diameter basaltic asteroid hitting the Martian surface vertically at a velocity of 12.8 km/s. Finally, the numerical results are compared with the MOLA DEM profile in order to analyze the formation mechanism of Martian layered ejecta craters. Our simulations suggest that the presence of an icy layer significantly modifies the cratering mechanics, and many of the unusual features of SLE craters may be explained by the presence of icy layers. Impact cratering on icy satellites is significantly affected by the presence of subsurface H2O.

  8. The Radiation Environment on the Surface of Mars and its Implications for Human Exploration: Five Years of Measurements with the MSL/RAD instrument

    NASA Astrophysics Data System (ADS)

    Ehresmann, B.; Zeitlin, C. J.; Hassler, D.; Wimmer-Schweingruber, R. F.; Guo, J.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.

    2017-12-01

    NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale Crater on the surface of Mars for five years. Onboard Curiosity, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights into its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. On short time scales, the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the shielding effect of the Martian atmosphere, shapes and intensities of SEP spectra differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Even in the absence of SEP events, the surface environment is influenced by solar activity, which determines the strength of the interplanetary magnetic field and modulates GCR intensities. The GCR flux has risen considerably since Curiosity's landing as the solar cycle heads towards minimum. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface from GCRs and SEP events from the five years of MSL operations on Mars. We will present results that incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. The GCR results will be compared to simulation results. The SEP-induced fluxes on the surface will be compared to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit.

  9. The Mars oxidant experiment (MOx) for Mars '96

    NASA Technical Reports Server (NTRS)

    McKay, C. P.; Grunthaner, F. J.; Lane, A. L.; Herring, M.; Bartman, R. K.; Ksendzov, A.; Manning, C. M.; Lamb, J. L.; Williams, R. M.; Ricco, A. J.; hide

    1998-01-01

    The MOx instrument was developed to characterize the reactive nature of the martian soil. The objectives of MOx were: (1) to measure the rate of degradation of organics in the martian environment; (2) to determine if the reactions seen by the Viking biology experiments were caused by a soil oxidant and measure the reactivity of the soil and atmosphere: (3) to monitor the degradation, when exposed to the martian environment, of materials of potential use in future missions; and, finally, (4) to develop technologies and approaches that can be part of future soil analysis instrumentation. The basic approach taken in the MOx instrument was to place a variety of materials composed as thin films in contact with the soil and monitor the physical and chemical changes that result. The optical reflectance of the thin films was the primary sensing-mode. Thin films of organic materials, metals, and semiconductors were prepared. Laboratory simulations demonstrated the response of thin films to active oxidants.

  10. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    Twin mining robots from the University of Iowa dig in a supersized sandbox filled with BP-1, or simulated Martian soil, during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  11. Effects of the Crustal Magnetic Fields and Changes in the IMF Orientation on the Magnetosphere of Mars: MAVEN Observations and LATHYS Results.

    NASA Astrophysics Data System (ADS)

    Romanelli, N. J.; Modolo, R.; Leblanc, F.; Chaufray, J. Y.; Hess, S.; Brain, D.; Connerney, J. E. P.; Halekas, J. S.; McFadden, J. P.; Jakosky, B. M.

    2017-12-01

    The Mars Atmosphere and Volatile Evolution MissioN (MAVEN) is currently probing the very complex and dynamic Martian environment. Although the main structures resulting from the interaction between the solar wind (SW) and the induced magnetosphere of Mars can be described using a steady state picture, time-dependent physical processes play a key role modifying the response of this obstacle. These processes are the consequence of temporal variabilities in the internal and/or external electromagnetic fields and plasma properties. For instance, the rotation of the crustal magnetic fields (CF) constantly modifies the intrinsic magnetic field topology relative to the SW magnetized plasma flow. Moreover, changes in the interplanetary magnetic field (IMF) orientation are convected by the SW and also affect the structure of the magnetosphere.In this work we analyze magnetic field and plasma measurements provided by MAVEN on 23 December 2014 between 06:00 UT and 14:20 UT. During this time interval the spacecraft sampled the Martian magnetosphere twice, with highly similar trajectories. MAVEN measurements suggest that the external conditions remained approximately constant when the spacecraft was inside the magnetosphere for the first time. In contrast, MAVEN observed changes in the IMF orientation before visiting the magnetosphere for the second time. To investigate the response of the Martian plasma environment to the rotation of the CF and the change of the background magnetic field orientation, we perform numerical simulations making use of the LatHyS three dimensional multispecies hybrid model. These simulations include the rotation of the CF and use MAVEN observations to set the external SW conditions and the variation of the IMF. The simulation results are compared with the MAVEN MAG and Solar Wind Ion Analyzer observations obtained in the Martian magnetosphere and show a good agreement. Model results also show that the position of the bow shock varies locally depending on the position of the strongest CF sources. In addition, we determine the timescales over which the Martian magnetosphere adapts to changes in the IMF orientation. Finally, we perform estimations of the total planetary proton and oxygen escape fluxes at different times during this event.

  12. Ionic Strength Is a Barrier to the Habitability of Mars.

    PubMed

    Fox-Powell, Mark G; Hallsworth, John E; Cousins, Claire R; Cockell, Charles S

    2016-06-01

    The thermodynamic availability of water (water activity) strictly limits microbial propagation on Earth, particularly in hypersaline environments. A considerable body of evidence indicates the existence of hypersaline surface waters throughout the history of Mars; therefore it is assumed that, as on Earth, water activity is a major limiting factor for martian habitability. However, the differing geological histories of Earth and Mars have driven variations in their respective aqueous geochemistry, with as-yet-unknown implications for habitability. Using a microbial community enrichment approach, we investigated microbial habitability for a suite of simulated martian brines. While the habitability of some martian brines was consistent with predictions made from water activity, others were uninhabitable even when the water activity was biologically permissive. We demonstrate experimentally that high ionic strength, driven to extremes on Mars by the ubiquitous occurrence of multivalent ions, renders these environments uninhabitable despite the presence of biologically available water. These findings show how the respective geological histories of Earth and Mars, which have produced differences in the planets' dominant water chemistries, have resulted in different physicochemical extremes which define the boundary space for microbial habitability. Habitability-Mars-Salts-Water activity-Life in extreme environments. Astrobiology 16, 427-442.

  13. Schumann Resonances on Mars - a Two-layer Ground Case

    NASA Astrophysics Data System (ADS)

    Kozakiewicz, J.; Kulak, A.; Mlynarczyk, J.

    2012-04-01

    Schumann resonances (SR) are global resonances of electromagnetic waves in the range of extremely low frequencies (ELF) propagating in a cavity formed by a planetary surface and a lower ionosphere. SR are induced by electrical discharges, which on Earth are associated mainly with lightning. They were predicted by Winfried Otto Schumann in 1952. SR are supposed to occur on Mars, although many properties of the Martian environment are still unknown. One of the most important problems in modeling SR on Mars is to estimate electrical properties of the Martian ground and their influence on ELF waves propagation. The Martian crust is composed mainly of basaltic materials. Water, which causes significant increase in electrical conductivity of rocks, does not exist in liquid state at the surface of Mars. Therefore the Martian ground is believed to be a low conductive one. However, it is possible that some liquid water may be present at various depths below the surface. In our previous study we have developed an analytical model, based on the characteristic electric and magnetic altitudes' formalism, that has allowed us to take into consideration the Martian ground. Using this new model, we found that basaltic ground of low conductivity greatly influenced the SR parameters. In this work, we carried out simulations in order to characterize an influence of vertical changes in ground properties on the parameters of the Martian ground-ionosphere waveguide. We have considered several cases of a two-layer ground, in which the lower layer was of higher conductivity than the upper one. The obtained results indicate how the SR parameters depend on electrical conductivity, permittivity, and depth of the layers. The results also point out the importance of studying SR on Mars and the need for further research in propagation of ELF waves in the Martian environment. SR can be used as a remote sensing tool for exploration of the Martian crust. Furthermore, they can be especially useful for groundwater detection.

  14. Exploring Fingerprints of the Extreme Thermoacidophile Metallosphaera sedula Grown on Synthetic Martian Regolith Materials as the Sole Energy Sources.

    PubMed

    Kölbl, Denise; Pignitter, Marc; Somoza, Veronika; Schimak, Mario P; Strbak, Oliver; Blazevic, Amir; Milojevic, Tetyana

    2017-01-01

    The biology of metal transforming microorganisms is of a fundamental and applied importance for our understanding of past and present biogeochemical processes on Earth and in the Universe. The extreme thermoacidophile Metallosphaera sedula is a metal mobilizing archaeon, which thrives in hot acid environments (optimal growth at 74°C and pH 2.0) and utilizes energy from the oxidation of reduced metal inorganic sources. These characteristics of M. sedula make it an ideal organism to further our knowledge of the biogeochemical processes of possible life on extraterrestrial planetary bodies. Exploring the viability and metal extraction capacity of M. sedula living on and interacting with synthetic extraterrestrial minerals, we show that M. sedula utilizes metals trapped in the Martian regolith simulants (JSC Mars 1A; P-MRS; S-MRS; MRS07/52) as the sole energy sources. The obtained set of microbiological and mineralogical data suggests that M. sedula actively colonizes synthetic Martian regolith materials and releases free soluble metals. The surface of bioprocessed Martian regolith simulants is analyzed for specific mineralogical fingerprints left upon M. sedula growth. The obtained results provide insights of biomining of extraterrestrial material as well as of the detection of biosignatures implementing in life search missions.

  15. Limits on the UV Photodecomposition of Carbonates on Mars

    NASA Technical Reports Server (NTRS)

    Quinn, Richard; Zent, Aaron P.; McKay, Christopher P.; DeVincenzi, Donald L. (Technical Monitor)

    2002-01-01

    The effect of UV (ultraviolet) light on the stability of calcium carbonate in a simulated martian atmosphere was experimentally investigated. Sample cells containing C-13 labeled calcite were irradiated with a Xe arc lamp in 10 mbar of simulated martian atmosphere and a quadrupole mass spectrometer was used to monitor the headspace gases for the production of (13)CO2. We found no experimental evidence of the UV photodecomposition of calcium carbonate in a simulated martian atmosphere. Extrapolating the lower limit of detection of our experimental system to an upper limit of carbonate decomposition on Mars yields a quantum efficiency of 3.5 x 10(exp -8) molecules/photon over the wavelength interval of 190-390 nm and a maximum UV photodecomposition rate of 1.2 x 10(exp -13) kg m(exp -2) s(exp -1) from a calcite surface. The maximum loss of bulk calcite due to this process would be 2.5 nm yr(exp -1). However, calcite is expected to be thermodynamically stable on the surface of Mars and potential UV photodecomposition reaction mechanisms indicate that while calcium carbonate may decompose under vacuum, it would be stable in a CO2 atmosphere. Given the expected stability of carbonate on Mars and our inability to detect carbonate decomposition, we conclude that it is unlikely that the apparent absence of carbonate on the martian surface is due to UV photo decomposition of calcite in the current environment.

  16. Mars analog minerals' spectral reflectance characteristics under Martian surface conditions

    NASA Astrophysics Data System (ADS)

    Poitras, J. T.; Cloutis, E. A.; Salvatore, M. R.; Mertzman, S. A.; Applin, D. M.; Mann, P.

    2018-05-01

    We investigated the spectral reflectance properties of minerals under a simulated Martian environment. Twenty-eight different hydrated or hydroxylated phases of carbonates, sulfates, and silica minerals were selected based on past detection on Mars through spectral remote sensing data. Samples were ground and dry sieved to <45 μm grain size and characterized by XRD before and after 133 days inside a simulated Martian surface environment (pressure 5 Torr and CO2 fed). Reflectance spectra from 0.35 to 4 μm were taken periodically through a sapphire (0.35-2.5 μm) and zinc selenide (2.5-4 μm) window over a 133-day period. Mineral stability on the Martian surface was assessed through changes in spectral characteristics. Results indicate that the hydrated carbonates studied would be stable on the surface of Mars, only losing adsorbed H2O while maintaining their diagnostic spectral features. Sulfates were less stable, often with shifts in the band position of the SO, Fe, and OH absorption features. Silicas displayed spectral shifts related to SiOH and hydration state of the mineral surface, while diagnostic bands for quartz were stable. Previous detection of carbonate minerals based on 2.3-2.5 μm and 3.4-3.9 μm features appears to be consistent with our results. Sulfate mineral detection is more questionable since there can be shifts in band position related to SO4. The loss of the 0.43 μm Fe3+ band in many of the sulfates indicate that there are fewer potential candidates for Fe3+ sulfates to permanently exist on the Martian surface based on this band. The gypsum sample changed phase to basanite during desiccation as demonstrated by both reflectance and XRD. Silica on Mars has been detected using band depth ratio at 1.91 and 1.96 μm and band minimum position of the 1.4 μm feature, and the properties are also used to determine their age. This technique continues to be useful for positive silica identifications, however, silica age appears to be less consistent with our laboratory data. These results will be useful in spectral libraries for characterizing Martian remote sensed data.

  17. Possible Phosphate Redistribution on the Martian Surface: Implication From Simulation Experiments

    NASA Astrophysics Data System (ADS)

    Dreibus, G.; Haubold, R.; Jagoutz, E.

    2001-12-01

    The chemical composition of Martian rocks and soils as measured with the APXS (Alpha Proton X-ray Spectrometer) of the Mars Pathfinder Mission are very different [1]. Surprisingly, only small differences of the phosphorous concentrations between soils and rocks were found. The P concentration of about 4000 ppm is similar to that measured in basaltic shergottites. Phosphates are the host mineral for the REE, Th and U. Leach experiments with slightly acidified brines on basaltic shergottites easily dissolved more than a half of the REEs and U whereas K remained insoluble. Therefore, we suggested the possibility of alteration and mobilization of phosphates in the Martian environment with the result of an enrichment of U, Th, and consequently P on the surface. However, the APXS measured no P enrichment in rocks and soil of the Martian crust, whereas a high Th concentration on the surface was measured with the gamma-spectroscopy from orbit by Mars-5 and Phobos-2 [2]. With leach experiments on terrestrial samples we studied the solubility of U and Th as in the case of shergottites, but also that of phosphorous. Furthermore, simulation experiments of reactions between slightly acidified calcium-phosphate solution and different terrestrial rock types were performed to clarify the redistribution of P at the Martian surface with its complex weathering history. Ref.: [1] Brueckner J. et al. (2001) Lunar Planet. Science. XXXII, 1293; [2] Surkov Yu. A. et al. (1989) Nature 341, 595.

  18. PELS (Planetary Environmental Liquid Simulator): a new type of simulation facility to study extraterrestrial aqueous environments.

    PubMed

    Martin, Derek; Cockell, Charles S

    2015-02-01

    Investigations of other planetary bodies, including Mars and icy moons such as Enceladus and Europa, show that they may have hosted aqueous environments in the past and may do so even today. Therefore, a major challenge in astrobiology is to build facilities that will allow us to study the geochemistry and habitability of these extraterrestrial environments. Here, we describe a simulation facility (PELS: Planetary Environmental Liquid Simulator) with the capability for liquid input and output that allows for the study of such environments. The facility, containing six separate sample vessels, allows for statistical replication of samples. Control of pressure, gas composition, UV irradiation conditions, and temperature allows for the precise replication of aqueous conditions, including subzero brines under martian atmospheric conditions. A sample acquisition system allows for the collection of both liquid and solid samples from within the chamber without breaking the atmospheric conditions, enabling detailed studies of the geochemical evolution and habitability of past and present extraterrestrial environments. The facility we describe represents a new frontier in planetary simulation-continuous flow-through simulation of extraterrestrial aqueous environments.

  19. Method to Remove Particulate Matter from Dusty Gases at Low Pressures

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Clements, J. Sid

    2012-01-01

    Future human exploration of Mars will rely on local Martian resources to reduce the mass, cost, and risk of space exploration launched from Earth. NASA's In Situ Resource Utilization (ISRU) Project seeks to produce mission consumables from local Martian resources, such as atmospheric gas. The Martian atmosphere, however, contains dust particles in the 2-to-10 -micrometer range. These dust particles must be removed before the Martian atmospheric gas can be processed. The low pressure of the Martian atmosphere, at 5 to 10 mbars, prevents the development of large voltages required for a standard electrostatic precipitator. If the voltage is increased too much, the corona transitions into a glow/streamer discharge unsuitable for the operation of a precipitator. If the voltage is not large enough, the dust particles are not sufficiently charged and the field is not strong enough to drive the particles to the collector. A method using electrostatic fields has been developed to collect dust from gaseous environments at low pressures, specifically carbon dioxide at pressures around 5 to 10 mbars. This method, commonly known as electrostatic precipitation, is a mature technology in air at one atmosphere. In this case, the high voltages required for the method to work can easily be achieved. However, in carbon dioxide at low pressures, such as those found on Mars, large voltages are not possible. The innovation reported here consists of two concentric cylindrical electrodes set at specific potential difference that generate an electric field that produces a corona capable of imparting an electrostatic charge to the incoming dust particles. The strength of the field is carefully balanced so as to produce a stable charging corona at 5 to 10 mbars, and is also capable of imparting a force to the particles that drives them to the collecting electrode. There are only two possible ways that dust can be removed from Martian atmospheric gas intakes: with this electrostatic precipitator design, and with the use of filters. However, filters require upstream compression of the gas to be treated because the atmospheric pressure on Mars is too close to vacuum to use a vacuum pump downstream to the filter to draw the gas through the filter. The electrostatic precipitator is the best and more efficient solution for this environment. No other precipitator designs have been developed for the environment of Mars due to the challenges of the low atmospheric pressure. Dust particles are charged using corona generation around the high-voltage discharge electrode, which ionizes gas molecules. Since the atmospheric gas intakes for the ISRU processing chambers will likely be cylindrical, cylindrical precipitator geometry was chosen. The electrostatic precipitator design presented here removes simulated Martian dust particles in the required range in a simulated Martian atmospheric environment. The current-voltage (I-V) characteristic curves taken for the nine precipitator configurations at 9 mbars of pressure showed that a cylindrical collecting electrode 7.0 cm in diameter with a concentric positive high voltage electrode 100 m thick provides the best range of voltage and charging corona current. This precipitator design is effective for the size of the dust particles expected in the Martian atmosphere. Mass determination, as well as microscopic images and particle size distributions of dust collected on a silicon wafer placed directly below the precipitator with the field on and off, showed excellent initial results.

  20. Growth of cyanobacteria on Martian Regolith Simulant after exposure to vacuum

    NASA Astrophysics Data System (ADS)

    Arai, Mayumi; Sato, Seigo; Ohmori, Masayuki; Tomita-Yokotani, Kaori; Hashimoto, Hirofumi; Yamashita, Masamichi

    Habitation on Mars is one of our challenges in this century. The growth of cyanobacteria on Martian Regolith Simulant (MRS) was studied with two species of terrestrial cyanobacteria, Nostoc, and one species of other cyanobacterium, Synechosystis. Their vacuum tolerances was examined in order to judge feasibility of the use of cyanobacteria to creat habitable environment on a distant planet. The viability of cyanobacteria tested was evaluated by the microscopic observation after staining by FDA (fluorescein diacetate). A part of them were also re-incubated again in a liquid culture medium, and viability and the chlorophyll production were examined in detail. Nostoc was found to grow for over 140 days with their having normal function of chlorophyll synthesis on the MRS. After the exposure to high vacuum environment (10-5 Pa) for a year, Nostoc sp. started growth. Chlorophyll was produced after this vacuum exposure as well. The A'MED (Arai's Mars Ecosystem Dome, A'MED) is designed to install on Mars for conducting agricultural production in it. We performed the fundamental experiment with MRS. These results show a possibility that cyanobacteria could adapt to MRS, and grow under the low pressure environment expected on Mars.

  1. Crew activities, science, and hazards of manned missions to Mars

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.

    1988-01-01

    The crew scientific and nonscientific activities that will occur at each stage of a mission to Mars are examined. Crew activities during the interplanetary flight phase will include simulations, maintenance and monitoring, communications, upgrading procedures and operations, solar activity monitoring, cross-training and sharpening of skills, physical conditioning, and free-time activities. Scientific activities will address human physiology, human psychology, sociology, astronomy, space environment effects, manufacturing, and space agriculture. Crew activities on the Martian surface will include exploration, construction, manufacturing, food production, maintenance and training, and free time. Studies of Martian geology and atmosphere, of the life forms that may exist there, and of the Martian moons will occur on the planet's surface. Crew activities and scientific studies that will occur in Mars orbit, and the hazards relevant to each stage of the mission, are also addressed.

  2. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.

    2012-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  3. Growth of the acidophilic iron-sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions

    NASA Astrophysics Data System (ADS)

    Bauermeister, Anja; Rettberg, Petra; Flemming, Hans-Curt

    2014-08-01

    The question of life on Mars has been in focus of astrobiological research for several decades, and recent missions in orbit or on the surface of the planet are constantly expanding our knowledge on Martian geochemistry. For example, massive stratified deposits have been identified on Mars containing sulfate minerals and iron oxides, which suggest the existence of acidic aqueous conditions in the past, similar to acidic iron- and sulfur-rich environments on Earth. Acidophilic organisms thriving in such habitats could have been an integral part of a possibly widely extinct Martian ecosystem, but remains might possibly even exist today in protected subsurface niches. The chemolithoautotrophic strain Acidithiobacillus ferrooxidans was selected as a model organism to study the metabolic capacities of acidophilic iron-sulfur bacteria, especially regarding their ability to grow with in situ resources that could be expected on Mars. The experiments were not designed to accurately simulate Martian physical conditions (except when certain single parameters such as oxygen partial pressure were considered), but rather the geochemical environment that can be found on Mars. A. ferrooxidans could grow solely on the minerals contained in synthetic Mars regolith mixtures with no added nutrients, using either O2 as an external electron acceptor for iron oxidation, or H2 as an external electron donor for iron reduction, and thus might play important roles in the redox cycling of iron on Mars. Though the oxygen partial pressure of the Martian atmosphere at the surface was not sufficient for detectable iron oxidation and growth of A. ferrooxidans during short-term incubation (7 days), alternative chemical O2-generating processes in the subsurface might yield microhabitats enriched in oxygen, which principally are possible under such conditions. The bacteria might also contribute to the reductive dissolution of Fe3+-containing minerals like goethite and hematite, which are characterized by a high thermodynamic stability. Even in a desiccated environment, A. ferrooxidans survived for one week under simulated Martian shallow subsurface conditions (6 hPa, -20 °C, 0.13% O2) in the form of dried biofilms without loss of viability. Low temperature and low oxygen pressure were favorable to survival. Thus, the acidophilic iron-sulfur bacterium A. ferrooxidans may be considered a plausible candidate of a potential Martian food web based on its metabolic capacities. As an autotroph it would be located at the base of such a food web, providing organic carbon.

  4. JSC Mars-1 Martian Soil Simulant: Melting Experiments and Electron Microprobe Studies

    NASA Technical Reports Server (NTRS)

    Carpenter, P.; Sebille, L.; Boles, W.; Chadwell, M.; Schwarz, L.

    2003-01-01

    JSC Mars-1 has been developed as a Martian regolith simulant, and is the <1 mm size fraction of a palagonitic tephra (a glassy volcanic ash altered at low temperatures) from Pu'u Nene cinder cone on the Island of Hawaii. The Mars-1 simulant forms the basis for numerous terrestrial studies which aim to evaluate the suitability of Martian soil for materials processing. Martian soil may be sintered to form building materials for construction, and also melted or reacted to extract metals for various uses, as well as oxygen for life support.

  5. A Hardware-in-the-Loop Simulator for Software Development for a Mars Airplane

    NASA Technical Reports Server (NTRS)

    Slagowski, Stefan E.; Vican, Justin E.; Kenney, P. Sean

    2007-01-01

    Draper Laboratory recently developed a Hardware-In-The-Loop Simulator (HILSIM) to provide a simulation of the Aerial Regional-scale Environmental Survey (ARES) airplane executing a mission in the Martian environment. The HILSIM was used to support risk mitigation activities under the Planetary Airplane Risk Reduction (PARR) program. PARR supported NASA Langley Research Center's (LaRC) ARES proposal efforts for the Mars Scout 2011 opportunity. The HILSIM software was a successful integration of two simulation frameworks, Draper's CSIM and NASA LaRC's Langley Standard Real-Time Simulation in C++ (LaSRS++).

  6. Plasma and wave properties downstream of Martian bow shock: Hybrid simulations and MAVEN observations

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei; Winske, Dan; Cowee, Misa; Bougher, Stephen W.; Andersson, Laila; Connerney, Jack; Epley, Jared; Ergun, Robert; McFadden, James P.; Ma, Yingjuan; Toth, Gabor; Curry, Shannon; Nagy, Andrew; Jakosky, Bruce

    2015-04-01

    Two-dimensional hybrid simulation codes are employed to investigate the kinetic properties of plasmas and waves downstream of the Martian bow shock. The simulations are two-dimensional in space but three dimensional in field and velocity components. Simulations show that ion cyclotron waves are generated by temperature anisotropy resulting from the reflected protons around the Martian bow shock. These proton cyclotron waves could propagate downward into the Martian ionosphere and are expected to heat the O+ layer peaked from 250 to 300 km due to the wave-particle interaction. The proton cyclotron wave heating is anticipated to be a significant source of energy into the thermosphere, which impacts atmospheric escape rates. The simulation results show that the specific dayside heating altitude depends on the Martian crustal field orientations, solar cycles and seasonal variations since both the cyclotron resonance condition and the non/sub-resonant stochastic heating threshold depend on the ambient magnetic field strength. The dayside magnetic field profiles for different crustal field orientation, solar cycle and seasonal variations are adopted from the BATS-R-US Mars multi-fluid MHD model. The simulation results, however, show that the heating of O+ via proton cyclotron wave resonant interaction is not likely in the relatively weak crustal field region, based on our simplified model. This indicates that either the drift motion resulted from the transport of ionospheric O+, or the non/sub-resonant stochastic heating mechanism are important to explain the heating of Martian O+ layer. We will investigate this further by comparing the simulation results with the available MAVEN data. These simulated ion cyclotron waves are important to explain the heating of Martian O+ layer and have significant implications for future observations.

  7. Activity and stability of a complex bacterial soil community under simulated Martian conditions

    NASA Astrophysics Data System (ADS)

    Hansen, Aviaja Anna; Merrison, Jonathan; Nørnberg, Per; Aagaard Lomstein, Bente; Finster, Kai

    2005-04-01

    A simulation experiment with a complex bacterial soil community in a Mars simulation chamber was performed to determine the effect of Martian conditions on community activity, stability and survival. At three different depths in the soil core short-term effects of Martian conditions with and without ultraviolet (UV) exposure corresponding to 8 Martian Sol were compared. Community metabolic activities and functional diversity, measured as glucose respiration and versatility in substrate utilization, respectively, decreased after UV exposure, whereas they remained unaffected by Martian conditions without UV exposure. In contrast, the numbers of culturable bacteria and the genetic diversity were unaffected by the simulated Martian conditions both with and without UV exposure. The genetic diversity of the soil community and of the colonies grown on agar plates were evaluated by denaturant gradient gel electrophoresis (DGGE) on DNA extracts. Desiccation of the soil prior to experimentation affected the functional diversity by decreasing the versatility in substrate utilization. The natural dominance of endospores and Gram-positive bacteria in the investigated Mars-analogue soil may explain the limited effect of the Mars incubations on the survival and community structure. Our results suggest that UV radiation and desiccation are major selecting factors on bacterial functional diversity in terrestrial bacterial communities incubated under simulated Martian conditions. Furthermore, these results suggest that forward contamination of Mars is a matter of great concern in future space missions.

  8. The LatHyS database for planetary plasma environment investigations: Overview and a case study of data/model comparisons

    NASA Astrophysics Data System (ADS)

    Modolo, R.; Hess, S.; Génot, V.; Leclercq, L.; Leblanc, F.; Chaufray, J.-Y.; Weill, P.; Gangloff, M.; Fedorov, A.; Budnik, E.; Bouchemit, M.; Steckiewicz, M.; André, N.; Beigbeder, L.; Popescu, D.; Toniutti, J.-P.; Al-Ubaidi, T.; Khodachenko, M.; Brain, D.; Curry, S.; Jakosky, B.; Holmström, M.

    2018-01-01

    We present the Latmos Hybrid Simulation (LatHyS) database, which is dedicated to the investigations of planetary plasma environment. Simulation results of several planetary objects (Mars, Mercury, Ganymede) are available in an online catalogue. The full description of the simulations and their results is compliant with a data model developped in the framework of the FP7 IMPEx project. The catalogue is interfaced with VO-visualization tools such AMDA, 3DView, TOPCAT, CLweb or the IMPEx portal. Web services ensure the possibilities of accessing and extracting simulated quantities/data. We illustrate the interoperability between the simulation database and VO-tools using a detailed science case that focuses on a three-dimensional representation of the solar wind interaction with the Martian upper atmosphere, combining MAVEN and Mars Express observations and simulation results.

  9. Pulmonary Toxicity Study of Lunar and Martian Dust Simulants Intratracheally Instilled in Mice

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-Wing; James, John T.; Latch, John A.; Holian, A.; McCluskey, R.

    2000-01-01

    NASA is contemplating sending humans to Mars and the Moon for further exploration. The properties of Hawaiian and Californian volcanic ashes allow them to be used to simulate Martian and lunar dusts, respectively. NASA laboratories use these dust simulants to test performance of hardware destined for Martian or lunar environments. Workers in these test facilities are exposed to low levels of these dusts. The present study was conducted to investigate the toxicity of these dust simulants. Particles of respirable-size ranges of lunar simulant (LS), Martian simulant (MS), TiO2 (negative control) and quartz (positive control) were each intratracheally instilled (saline as vehicle) to groups of 4 mice (C57BL, male, 2-3 month old) at a single treatment of 1 (Hi dose) or 0.1 (Lo dose) mg/mouse. The lungs were harvested at the end of 7 days or 90 days for histopathological examination. Lungs of the LS-Lo groups had no evidence of inflammation, edema or fibrosis. The LS-Hi-7d group had mild to moderate acute inflammation, and neutrophilic and lymphocytic infiltration; the LS-Hi-90d group showed signs of chronic inflammation and some fibrosis. Lungs of the MS-Lo-7d group revealed mild inflammation and neutrophilic and lymphocytic infiltration; the MS-Lo-90d group showed mild fibrosis and particle-laden macrophages (PLM). Lungs of the MS-Hi-7d group demonstrated mild to moderate inflammation and large foci of PLM; the MS-Hi-90d group showed chronic mild to moderate inflammation and fibrosis. To mimic the effects of the oxidative and reactive properties of Martian soil surface, groups of mice were exposed to ozone (3 hour at 0.5 ppm) prior to MS dust instillation. Lung lesions in the MS group were more severe with the pretreatment. The results for the negative and positive controls were consistent with the known pulmonary toxicity of these compounds. The overall severity of toxic insults to the lungs were TiO2

  10. The viability of photovoltaics on the Martian surface

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1994-01-01

    The viability of photovoltaics (PV) on the Martian surface may be determined by their ability to withstand significant degradation in the Martian environment. Probably the greatest threat is posed by fine dust particles which are continually blown about the surface of the planet. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted in the Martian Surface Wind Tunnel (MARSWIT) at NASA Ames Research Center. The effects of dust composition, particle size, wind velocity, angle of attack, and protective coatings on the transmittance of light through PV coverglass were determined. Both initially clear and initially dusted samples were subjected both to clear winds and simulated dust storms in the MARSWIT. It was found that wind velocity, particle size, and angle of attack are important parameters affecting occlusion of PV surfaces, while dust composition and protective coatings were not. Neither induced turbulence nor direct current biasing up to 200 volts were effective abatement techniques. Abrasion diffused the light impinging on the PV cells, but did not reduce total coverglass transmittance by more than a few percent.

  11. Lunar and Planetary Science XXXV: Mars: Gullies, Fluids, and Rocks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars: Gullies, Fluids, and Rocks" included the following reports:Gullies on Mars and Constraints Imposed by Mars Global Surveyor Data; Gullies on Mars: Origin by Snow and Ice Melting and Potential for Life Based on Possible Analogs from Devon Island, High Arctic; Formation of Recent Martian Gullies by Avalanches of CO2 Frost; Martian Slope Streaks and Gullies: Origins as Dry Granular Flows; Depths and Geologic Setting of Northern Hemisphere Gullies (and Comparison to Their Southern Counterparts); Mars as a Salt-, Acid-, and Gas-Hydrate World; Composition of Simulated Martian Brines and Implications for the Origin of Martian Salts; Evaporation Rates of Brine on Mars; Hydrogeology of the Valles Marineris-Chaotic Terrain Transition Zone, Mars; Measured Fluid Flow in an Active H2O-CO2 Geothermal Well as an Analog to Fluid Flow in Fractures on Mars: Preliminary Report; Understanding Rock Breakdown on Earth and Mars: Geomorphological Concepts and Facet Mapping Methods; Classification and Distribution of Mars Pathfinder Rocks Using Quantitative Morphologic Indices; and Systematic Rock Classification in a Data-poor Environment: Application to Mars.

  12. Pulmonary Toxicity of Simulated Lunar and Martian Dusts Intratracheally Instilled into Mice

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-Wing; James, John; Holian, Andrij; Latch, Judith N.; Balis, John; Muro-Cacho, Carlos; Cowper, Shawn; McCluskey, Richard

    2000-01-01

    The National Aeronautics and Space Administration (NASA) is contemplating sending humans to Mars and to the Moon for further exploration. Equipment designated for these extraterrestrial bases will require testing in simulated Martian or lunar environments. The properties of Hawaiian and San Francisco Mountain volcanic ashes make them suitable to be used in these test environments as Martian and lunar dust simulants, respectively. The present toxicity study was conducted to address NASA's concern about the health risk of dust exposures in the test facilities. In addition, the results obtained on these simulants can be used to design a toxicity study of actual moon dust and Martian dust, which will probably be available in a few years. Respirable portions of lunar soil simulant (LSS) and Martian soil simulant (MSS) were separated from their respective raw materials. These soil simulants, together- with fine titanium dioxide (negative control for fibrogenesis in mice), and crystalline silica (positive control) were each intratracheally instilled in saline to groups of 4 male mice (C57BL/6J, 2-3 months old) at 0.1 mg/mouse (LD) or lmg/mouse (HD). The lungs were harvested 7 or 90 days after the single dust treatment for histopathological examination. Lungs of the LSS-LD groups on either the 7- or 90-day study showed no evidence of inflammation, edema, or fibrosis. Clumps of particles and an increased number of macrophages, visible in the lungs examined after 7 days, were absent after 90 days. The LSS-HD-7d group showed mild to moderate alveolitis with neutrophilic and lymphocytic infiltration, and mild perivascular and peribronchiolar inflammation. The LSS-HD-90d group showed signs of chronic inflammation: septal thickening, mild perivascular and peribronchiolar inflammation, mild alveolitis and some fibrosis. Foci of particle-laden macrophages (PLMs) were still visible. Lungs of the MSS-LD-7d group revealed mild focal intraalveolar inflammation with neutrophilic and lymphocytic infiltration, and mild perivascular and peribronchiolar inflammation. The MSS-LD-90d group showed PLMs and scattered foci of mild fibrosis. The MSS-HD-7d group showed large foci of PLMs, intraalveolar debris, mild to moderate focal alveolitis, and mild to moderate perivascular and peribronchiolar inflammation. The MSS-HD-90d group showed focal chronic mild to moderate alveolitis and fibrosis. To mimic the oxidative and reactive properties of Martian surface dust in the test animals, groups of 4 mice were exposed to ozone (0.5 ppm for 3 hours) prior to instillation of the MSS. Lung lesions in the MSS groups were more severe with the ozone pretreatment. The O3-MSS-HD-90d group had wide spread intraalveolar debris, focal moderate alveolitis and fibrosis. The results for the titanium dioxide and quartz controls were consistent with the known pulmonary toxicity of these compounds. The overall severity of toxic injury to the lungs was TiO2

  13. Preservation of Biomarkers from Cyanobacteria Mixed with Mars-Like Regolith Under Simulated Martian Atmosphere and UV Flux.

    PubMed

    Baqué, Mickael; Verseux, Cyprien; Böttger, Ute; Rabbow, Elke; de Vera, Jean-Pierre Paul; Billi, Daniela

    2016-06-01

    The space mission EXPOSE-R2 launched on the 24th of July 2014 to the International Space Station is carrying the BIOMEX (BIOlogy and Mars EXperiment) experiment aimed at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions. In order to prepare the analyses of the returned samples, ground-based simulations were carried out in Planetary and Space Simulation facilities. During the ground-based simulations, Chroococcidiopsis cells mixed with two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) were exposed to a Martian simulated atmosphere combined or not with UV irradiation corresponding to the dose received during a 1-year-exposure in low Earth orbit (or half a Martian year on Mars). Cell survival and preservation of potential biomarkers such as photosynthetic and photoprotective pigments or DNA were assessed by colony forming ability assays, confocal laser scanning microscopy, Raman spectroscopy and PCR-based assays. DNA and photoprotective pigments (carotenoids) were detectable after simulations of the space mission (570 MJ/m(2) of UV 200-400 nm irradiation and Martian simulated atmosphere), even though signals were attenuated by the treatment. The fluorescence signal from photosynthetic pigments was differently preserved after UV irradiation, depending on the thickness of the samples. UV irradiation caused a high background fluorescence of the Martian mineral analogues, as revealed by Raman spectroscopy. Further investigation will be needed to ensure unambiguous identification and operations of future Mars missions. However, a 3-month exposure to a Martian simulated atmosphere showed no significant damaging effect on the tested cyanobacterial biosignatures, pointing out the relevance of the latter for future investigations after the EXPOSE-R2 mission. Data gathered during the ground-based simulations will contribute to interpret results from space experiments and guide our search for life on Mars.

  14. Preservation of Biomarkers from Cyanobacteria Mixed with Mars­Like Regolith Under Simulated Martian Atmosphere and UV Flux

    NASA Astrophysics Data System (ADS)

    Baqué, Mickael; Verseux, Cyprien; Böttger, Ute; Rabbow, Elke; de Vera, Jean-Pierre Paul; Billi, Daniela

    2016-06-01

    The space mission EXPOSE-R2 launched on the 24th of July 2014 to the International Space Station is carrying the BIOMEX (BIOlogy and Mars EXperiment) experiment aimed at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions. In order to prepare the analyses of the returned samples, ground-based simulations were carried out in Planetary and Space Simulation facilities. During the ground-based simulations, Chroococcidiopsis cells mixed with two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) were exposed to a Martian simulated atmosphere combined or not with UV irradiation corresponding to the dose received during a 1-year-exposure in low Earth orbit (or half a Martian year on Mars). Cell survival and preservation of potential biomarkers such as photosynthetic and photoprotective pigments or DNA were assessed by colony forming ability assays, confocal laser scanning microscopy, Raman spectroscopy and PCR-based assays. DNA and photoprotective pigments (carotenoids) were detectable after simulations of the space mission (570 MJ/m2 of UV 200-400 nm irradiation and Martian simulated atmosphere), even though signals were attenuated by the treatment. The fluorescence signal from photosynthetic pigments was differently preserved after UV irradiation, depending on the thickness of the samples. UV irradiation caused a high background fluorescence of the Martian mineral analogues, as revealed by Raman spectroscopy. Further investigation will be needed to ensure unambiguous identification and operations of future Mars missions. However, a 3-month exposure to a Martian simulated atmosphere showed no significant damaging effect on the tested cyanobacterial biosignatures, pointing out the relevance of the latter for future investigations after the EXPOSE-R2 mission. Data gathered during the ground-based simulations will contribute to interpret results from space experiments and guide our search for life on Mars.

  15. Preliminary Testing of a Pressurized Space Suit and Candidate Fabrics Under Simulated Mars Dust Storm and Dust Devil Conditions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; deLeon, Pablo G.; Lee, Pascal; McCue, Terry R.; Hodgson, Edward W.; Thrasher, Jeff

    2010-01-01

    In August 2009 YAP Films (Toronto) received permission from all entities involved to create a documentary film illustrating what it might be like to be on the surface of Mars in a space suit during a dust storm or in a dust devil. The science consultants on this project utilized this opportunity to collect data which could be helpful to assess the durability of current space suit construction to the Martian environment. The NDX?1 prototype planetary space suit developed at the University of North Dakota was used in this study. The suit features a hard upper torso garment, and a soft lower torso and boots assembly. On top of that, a nylon-cotton outer layer is used to protect the suit from dust. Unmanned tests were carried out in the Martian Surface Wind Tunnel (MARSWIT) at the NASA Ames Research Center, with the suit pressurized to 10 kPa gauge. These tests blasted the space suit upper torso and helmet, and a collection of nine candidate outer layer fabrics, with wind-borne simulant for five different 10 minute tests under both terrestrial and Martian surface pressures. The infiltration of the dust through the outer fabric of the space suit was photographically documented. The nine fabric samples were analyzed under light and electron microscopes for abrasion damage. Manned tests were carried out at Showbiz Studios (Van Nuys, CA) with the pressure maintained at 20?2 kPa gauge. A large fan-created vortex lifted Martian dust simulant (Fullers Earth or JSC Mars?1) off of the floor, and one of the authors (Lee) wearing the NDX?1 space suit walked through it to judge both subjectively and objectively how the suit performed under these conditions. Both the procedures to scale the tests to Martian conditions and the results of the infiltration and abrasion studies will be discussed.

  16. Preliminary Testing of a Pressurized Space Suit and Candidate Fabrics Under Simulated Mars Dust Storm and Dust Devil Conditions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; deLeon, Pablo G.; Lee, Pascal; McCue, Terry R.; Hodgson, Edward W.; Thrasher, Jeff

    2010-01-01

    In August 2009 YAP Films (Toronto) received permission from all entities involved to create a documentary film illustrating what it might be like to be on the surface of Mars in a space suit during a dust storm or in a dust devil. The science consultants on this project utilized this opportunity to collect data which could be helpful to assess the durability of current space suit construction to the Martian environment. The NDX-1 prototype planetary space suit developed at the University of North Dakota was used in this study. The suit features a hard upper torso garment, and a soft lower torso and boots assembly. On top of that, a nylon-cotton outer layer is used to protect the suit from dust. Unmanned tests were carried out in the Martian Surface Wind Tunnel (MARSWIT) at the NASA Ames Research Center, with the suit pressurized to 10 kPa gauge. These tests blasted the space suit upper torso and helmet, and a collection of nine candidate outer layer fabrics, with wind-borne simulant for five different 10 min tests under both terrestrial and Martian surface pressures. The infiltration of the dust through the outer fabric of the space suit was photographically documented. The nine fabric samples were analyzed under light and electron microscopes for abrasion damage. Manned tests were carried out at Showbiz Studios (Van Nuys, California) with the pressure maintained at 20 2 kPa gauge. A large fan-created vortex lifted Martian dust simulant (Fullers Earth or JSC Mars-1) off of the floor, and one of the authors (Lee) wearing the NDX-1 space suit walked through it to judge both subjectively and objectively how the suit performed under these conditions. Both the procedures to scale the tests to Martian conditions and the results of the infiltration and abrasion studies will be discussed.

  17. 1-D Photochemical Modeling of the Martian Atmosphere: Seasonal Variations

    NASA Astrophysics Data System (ADS)

    Boxe, C.; Emmanuel, S.; Hafsa, U.; Griffith, E.; Moore, J.; Tam, J.; Khan, I.; Cai, Z.; Bocolod, B.; Zhao, J.; Ahsan, S.; Tang, N.; Bartholomew, J.; Rafi, R.; Caltenco, K.; Smith, K.; Rivas, M.; Ditta, H.; Alawlaqi, H.; Rowley, N.; Khatim, F.; Ketema, N.; Strothers, J.; Diallo, I.; Owens, C.; Radosavljevic, J.; Austin, S. A.; Johnson, L. P.; Zavala-Gutierrez, R.; Breary, N.; Saint-Hilaire, D.; Skeete, D.; Stock, J.; Blue, S.; Gurung, D.; Salako, O.

    2016-12-01

    High school and undergraduate students, representative of academic institutions throughout USA's Tri-State Area (New York, New Jersey, Connecticut), utilize Caltech/JPL's one-dimensional atmospheric, photochemical models. These sophisticated models, were built over the course of the last four decades, describing all planetary bodies in our Solar System and selected extrasolar planets. Specifically, students employed the Martian one-dimensional photochemical model to assess the seasonal variability of molecules in its atmosphere. Students learned the overall model construct, running a baseline simulation, and fluctuating parameters (e.g., obliquity, orbital eccentricity) which affects the incoming solar radiation on Mars, temperature and pressure induce by seasonal variations. Students also attain a `real-world' experience that exemplifies the required level of coding competency and innovativeness needed for building an environment that can simulate observations and forecast. Such skills permeate STEM-related occupations that model systems and/or predict how that system may/will behave.

  18. Physiological and technological considerations for Mars mission extravehicular activity

    NASA Technical Reports Server (NTRS)

    Waligora, James M.; Sedej, Melaine M.

    1986-01-01

    The nature of the suit is a function of the needs of human physiology, the ambient environment outside the suit, and the type of activity to be accomplished while in the suit. The physiological requirements that must be provided for in the Martian Extravehicular Activity (EVA) suit will be reviewed. The influence of the Martian environment on the EVA suit and EVA capabilities is elaborated, and the Martian environment is compared with the lunar environment. The differences that may influence the EVA design are noted. The type, nature, and duration of activities to be done in transit to Mars and on the Martian surface will be evaluated and the impact of these activities on the requirements for EVA systems will be discussed. Furthermore, the interaction between Martian surface transportation systems and EVA systems will be covered. Finally, options other than EVA will be considered such as robotics, nonanthropometric suits, and vehicles with anthropometric extremities or robotic end effectors.

  19. The ultraviolet environment of Mars: biological implications past, present, and future.

    PubMed

    Cockell, C S; Catling, D C; Davis, W L; Snook, K; Kepner, R L; Lee, P; McKay, C P

    2000-08-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  20. The ultraviolet environment of Mars: biological implications past, present, and future

    NASA Technical Reports Server (NTRS)

    Cockell, C. S.; Catling, D. C.; Davis, W. L.; Snook, K.; Kepner, R. L.; Lee, P.; McKay, C. P.

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  1. Geopolymers from lunar and Martian soil simulants

    NASA Astrophysics Data System (ADS)

    Alexiadis, Alessio; Alberini, Federico; Meyer, Marit E.

    2017-01-01

    This work discusses the geopolymerization of lunar dust simulant JSC LUNAR-1A and Martian dust simulant JSC MARS-1A. The geopolymerization of JSC LUNAR-1A occurs easily and produces a hard, rock-like, material. The geopolymerization of JSC MARS-1A requires milling to reduce the particle size. Tests were carried out to measure, for both JSC LUNAR-1A and JSC MARS-1A geopolymers, the maximum compressive and flexural strengths. In the case of the lunar simulant, these are higher than those of conventional cements. In the case of the Martian simulant, they are close to those of common building bricks.

  2. Large-Eddy Simulations of Dust Devils and Convective Vortices

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Barth, Erika; Gu, Zhaolin; Hoffmann, Fabian; Ito, Junshi; Jemmett-Smith, Bradley; Klose, Martina; Nishizawa, Seiya; Raasch, Siegfried; Rafkin, Scot; Takemi, Tetsuya; Tyler, Daniel; Wei, Wei

    2016-11-01

    In this review, we address the use of numerical computations called Large-Eddy Simulations (LES) to study dust devils, and the more general class of atmospheric phenomena they belong to (convective vortices). We describe the main elements of the LES methodology. We review the properties, statistics, and variability of dust devils and convective vortices resolved by LES in both terrestrial and Martian environments. The current challenges faced by modelers using LES for dust devils are also discussed in detail.

  3. Living and working on Mars

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.

    1988-01-01

    The maintenance of a permanent base on Mars is discussed, focusing on the utilization of resources from the Martian environment. The availability of water and oxygen on the planet is assessed. The use of an airshell for compressing the atmosphere, the resources which could be extracted from Martian dirt, and the possibility of terraforming, or altering the Martian environment, are examined.

  4. Building a prototype of a Martian base in Poland, an architectural design overview and progress report

    NASA Astrophysics Data System (ADS)

    Kozicki, Janek

    This talk focuses on recent advances in the construction of a prototype 1000 m2 Martian out-post for 8 inhabitants. The architectural design for such a Martian base has been presented previously on COSPAR 2008, the presentation being entitled ,,Architectural design proposal for a Martian base to continue NASA Mars Design Reference Mission". The presentation was welcomed with warm interest by various institutions, some of which offered help in building a prototype such as providing the building site or funding. This year's oral presentation will focus on a progress report and will briefly describe the architectural design. The architectural design is inspired by terrestrial pneumatic architecture. It has small volume, can be easily transported and provides a large habitable space. An architectural solution analo-gous to a terrestrial house with a studio and a workshop was assumed. The spatial placement of the following zones was carefully considered: residential, agricultural and science, as well as garage and workshop. Further attention was paid to transportation routes and a control and communications center. The issues of a life support system, energy, food, water and waste recycling were also discussed. This Martian base was designed to be crewed by a team of eight people to stay on Mars for at least one and a half year. An Open Plan architectural solution was assumed, with a high level of modularity. Walls of standardized sizes with zip-fasteners allow free rearrangement of the interior to adapt to a new situation. The prototype of such a Polish-origin Martian outpost will be used in a manner similar to MDRS or FMARS but to a larger extent. The prototype's design itself will be tested and corrected to achieve a design which can be used on Mars. The procedure of unfolding the pneumatic modules and floor leveling will be tested. The 1000 m2 interior will be used for various simulation exercises: socio-psychological testing, interior arrangement experiments, agricultural simulations, growing plants in Martian conditions and other kinds of tests. The presented prototype focuses on the ergonomic and psychological aspects of longer stay in a Martian environment. It provides the Martian crew with a comfortable habitable space larger than DRM modules. The practical proposal is to send this base to Mars in a DRM transpor-tation module after prototype testing is completed. The author hopes that this or other similar Martian base designs will help in establishing a permanent presence of humans on Mars.

  5. MAVEN observations of complex magnetic field topology in the Martian magnetotail

    NASA Astrophysics Data System (ADS)

    DiBraccio, Gina A.; Espley, Jared R.; Luhmann, Janet G.; Curry, Shannon M.; Gruesbeck, Jacob R.; Connerney, John E. P.; Soobiah, Yasir; Xu, Shaosui; Mitchell, David M.; Harada, Yuki; Halekas, Jasper S.; Brain, David A.; Dong, Chuanfei; Hara, Takuya; Jakosky, Bruce M.

    2017-04-01

    MAVEN observations have revealed an unexpectedly complex magnetic field configuration in the magnetotail of Mars. This planetary magnetotail forms as the solar wind interacts with the Martian upper atmosphere and the interplanetary magnetic field (IMF) drapes around the planet. This interaction is classically defined as an induced magnetosphere similar to the plasma environments of Venus and comets. However, unlike at these induced magnetic environments, Mars is complicated by the existence of crustal magnetic fields, which are able to reconnect with the IMF to produce open magnetic fields. Preliminary magnetohydrodynamic simulation results have suggested that this magnetic reconnection may be responsible for creating a hybrid magnetotail configuration between intrinsic and induced magnetospheres. This hybrid tail is composed of the closed planetary fields, draped IMF, and two distinct lobes of open magnetic fields. More importantly, these open lobes appear to be twisted by roughly 45°, either clockwise or counterclockwise, from the ecliptic plane with a strong dependence on the east-west component of the IMF and negligible influence from crustal field orientation. To explore this unexpected twisted-tail configuration, we analyze MAVEN Magnetometer (MAG) and Solar Wind Ion Analyzer (SWIA) data to examine magnetic field topology in the Martian magnetotail. We compare the average magnetic field orientation, directed toward and away from the planet, for a variety of solar wind parameters at various downtail distances. We conclude that the east-west IMF component strongly affects the magnetotail structure, as predicted by simulations. Furthermore, these data reveal that the tail lobes are indeed twisted, which we infer based on model results, to be regions of open magnetic fields that are likely reconnected crustal fields. These MAVEN observations confirm that the Martian magnetotail has a hybrid configuration between an intrinsic and induced magnetosphere, shifting the paradigm of Mars as we have understood it thus far.

  6. The western Qaidam Basin as a potential Martian environmental analogue: An overview

    NASA Astrophysics Data System (ADS)

    Anglés, Angélica; Li, Yiliang

    2017-05-01

    The early Martian environment is interpreted as warmer and wetter, before a significant change in its global climatic conditions irreversibly led to the current hyperarid environments. This transition is one of the most intriguing processes of Martian history. The extreme climatic change is preserved in the salt deposits, desiccated landscapes, and geomorphological structures that were shaped by the evaporation of water. However, until a manned journey to Mars is feasible, many Martian materials, morphological structures, and much of its evolutionary history will continue to be poorly understood. In this regard, searching and investigating Martian analogues are still meaningful. To find an Earth environment with a whole set of Martian structures distributed at a scale comparable to Mars is even more important to test landing crafts and provide optimized working parameters for rovers. The western Qaidam Basin in North Tibetan Plateau is such a Martian analogue. The area harbors one of the most extreme hyperarid environments on Earth and contains a series of ancient lakes that evaporated at different evolutionary stages during the rise of the Tibetan Plateau. Large quantities of salts and geomorphological features formed during the transition of warmer-and-wet to colder-and-dry conditions provide unique references to study the modern Martian surface and interpret the orbital data. We present numerous similarities and results of investigations that suggest the Qaidam Basin as a potential analogue to study modern geomorphic processes on Mars, and suggest that this is an essential site to test future Mars sample return missions.

  7. Simulation of the UV-radiation at the Martian surface

    NASA Astrophysics Data System (ADS)

    Kolb, C.; Stimpfl, P.; Krenn, H.; Lammer, H.; Kargl, G.; Abart, R.; Patel, M. R.

    The UV-radiation at the Martian surface is for several reasons of importance. UV radiation can cause specific damages in the DNA-containing living systems and is involved in the formation of catalytically produced oxidants such as superoxide ions and peroxides. These are capable to oxidize and subsequently destroy organic matter. Lab simulations are necessary to investigate and understand the effects of organic matter removal at the Martian surface. We designed a radiation apparatus which simulates the solar spectrum at the Martian surface between 200 and 700 nm. The system consists of an UV-enhanced xenon arc lamp and special exchangeable filter-sets and mirrors for simulating the effects of the Martian atmospheric column and dust loading. A special collimating system bundles the final parallel beam so that the intensity at the target spot is independent from the distance between the ray source and the sample. The system was calibrated by means of an optical photo-spectrometer to align the ray output with the theoretical target spectrum and to ensure spectral homogeneity. We present preliminary data on calibration and performance of our system, which is integrated in the Austrian Mars simulation facility.

  8. Micro-ARES, an electric-field sensor for ExoMars 2016: Electric fields modelling, sensitivity evaluations and end-to-end tests.

    NASA Astrophysics Data System (ADS)

    Déprez, Grégoire; Montmessin, Franck; Witasse, Olivier; Lapauw, Laurent; Vivat, Francis; Abbaki, Sadok; Granier, Philippe; Moirin, David; Trautner, Roland; Hassen-Khodja, Rafik; d'Almeida, Éric; Chardenal, Laurent; Berthelier, Jean-Jacques; Esposito, Francesca; Debei, Stefano; Rafkin, Scott; Barth, Erika

    2014-05-01

    For the past few years, LATMOS has been involved in the development of micro-ARES, an electric field sensor part of the science payload (DREAMS) of the ExoMars 2016 Schiaparelli entry, descent and landing demonstrator. It is dedicated to the very first measurement and characterization of the Martian atmospheric electricity which is suspected to be at the very basis of various phenomenon such as dust lifting, formation of oxidizing agents or Schumann resonances. Although the data collection will be restricted to a few days of operations, these first results will be of importance to understand the Martian dust cycle, the electrical environment and possibly relevant to atmospheric chemistry. The instrument, a compact version of the ARES instrument for the ExoMars Humboldt payload, is composed of an electronic board, with an amplification line and a real-time data processing DSP, which handles the electric signal measured between the spherical electrode (located at the top of a 27-cm high antenna) that adjusts itself to the local atmospheric potential, and the lander chassis, connected to the mechanical ground. Since the electric fields on Mars have never been measured before, we can rely on two sources in order to know their expected order of magnitude. The first one is the measurement of the atmospheric electric fields on Earth, at the surface (in dust storms or the so-called dust-devils) or in the high atmosphere (closer to the Martian temperature and pressure conditions). The second one is the computer simulation of the phenomenon, that we obtained by combining two models. On the one hand, the mesoscale PRAMS model, developed at SwRI, which has the ability to simulate the dust transportation, and on the other hand the implementation made at LATMOS of Farell's 2005 dust-triboelectricity equations. Those models allowed us to simulate electric fields up to tens or even hundreds of kilo-volts per meter inside dust devils, which corresponds to the observations made on Earth and transposed to the Martian atmospheric parameters. Knowing the expected electric fields and simulating them, the next step in order to evaluate the performance of the instrument is to determine its sensitivity by modelling the response of the instrument. The last step is to confront the model of the instrument, and the expected results for a given signal with the effective outputs of the electric board with the same signal as an input. To achieve this end-to-end test, we use a signal generator followed by an electrical circuit reproducing the electrode behaviour in the Martian environment, in order to inject a realistic electric signal in the processing board and finally compare the produced formatted data with the expected ones.

  9. Lunar and Martian Sub-surface Habitat Structure Technology Development and Application

    NASA Technical Reports Server (NTRS)

    Boston, Penelope J.; Strong, Janet D.

    2005-01-01

    NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Subsidace structures such as caves and lava tubes offer readily available and existing in-situ habitat options. Sub-surface dwellings can provide complete radiation, micro-meteorite and exhaust plume shielding and a moderate and constant temperature environment; they are, therefore, excellent pre-existing habitat risk mitigation elements. Technical challenges to subsurface habitat structure development include surface penetration (digging and mining equipment), environmental pressurization, and psychological environment enhancement requirements. Lunar and Martian environments and elements have many beneficial similarities. This will allow for lunar testing and design development of subsurface habitat structures for Martian application; however, significant differences between lunar and Martian environments and resource elements will mandate unique application development. Mars is NASA's ultimate exploration goal and is known to have many very large lava tubes. Other cave types are plausible. The Moon has unroofed rilles and lava tubes, but further research will, in the near future, define the extent of Lunar and Martian differences and similarities. This paper will discuss Lunar and Martian subsurface habitation technology development challenges and opportunities.

  10. The Mars Simulation Laboratory, University of Aarhus

    NASA Astrophysics Data System (ADS)

    Merrison, J. P.; Field, D.; Finster, K.; Lomstein, B. Aa.; Nørnberg, P.; Ramsing, N. B.; Uggerhøj, E.

    2001-08-01

    Present day Mars presents an extremely hostile environment to organic material. The average temperature is low (-50C), the atmospheric pressure is also low (7mbar) and there is little water over most of the planet. Chemically the surface is extremely oxidising and no signs of organic material have been detected. There is also a strong component of ultra violet radiation in the Martian sun light, lethal to most organisms. At Aarhus University we have constructed a Mars simulation environment which reproduces the physical, chemical and mineralogical conditions on Mars. It is hoped to set limits on where organic matter (or even life) might exist on Mars, for example at some depth under the surface, beneath the polar ice or within rocks. It is also possible to adjust the conditions in the simulation to investigate the most extreme environments in which organisms can be preserved or still function.

  11. Achieving bioinspired flapping wing hovering flight solutions on Mars via wing scaling.

    PubMed

    Bluman, James E; Pohly, Jeremy; Sridhar, Madhu; Kang, Chang-Kwon; Landrum, David Brian; Fahimi, Farbod; Aono, Hikaru

    2018-05-29

    Achieving atmospheric flight on Mars is challenging due to the low density of the Martian atmosphere. Aerodynamic forces are proportional to the atmospheric density, which limits the use of conventional aircraft designs on Mars. Here, we show using numerical simulations that a flapping wing robot can fly on Mars via bioinspired dynamic scaling. Trimmed, hovering flight is possible in a simulated Martian environment when dynamic similarity with insects on earth is achieved by preserving the relevant dimensionless parameters while scaling up the wings three to four times its normal size. The analysis is performed using a well-validated two-dimensional Navier-Stokes equation solver, coupled to a three-dimensional flight dynamics model to simulate free flight. The majority of power required is due to the inertia of the wing because of the ultra-low density. The inertial flap power can be substantially reduced through the use of a torsional spring. The minimum total power consumption is 188 W/kg when the torsional spring is driven at its natural frequency. © 2018 IOP Publishing Ltd.

  12. The Electric Environment of Martian Dust Devils

    NASA Astrophysics Data System (ADS)

    Barth, E. L.; Farrell, W. M.; Rafkin, S. C.

    2017-12-01

    While Martian dust devils have been monitored through decades of observations, we have yet to study their possible electrical effects from in situ instrumentation. However, evidence for the existence of active electrodynamic processes on Mars is provided by laboratory studies of analog material and field campaigns of dust devils on Earth. We have enabled our Mars regional scale atmospheric model (MRAMS) to estimate an upper limit on electric fields generated through dust devil circulations by including charged particles as defined from the Macroscopic Triboelectric Simulation (MTS) code. MRAMS is used to investigate the complex physics of regional, mesoscale, and microscale atmospheric phenomena on Mars; it is a 3-D, nonhydrostatic model, which permits the simulation of atmospheric flows with large vertical accelerations, such as dust devils. MTS is a 3-D particle code which quantifies charging associated with swirling, mixing dust grains; grains of pre-defined sizes and compositions are placed in a simulation box and allowed to move under the influence of winds and gravity. Our MRAMS grid cell size makes our results most applicable to dust devils of a few hundred meters in diameter. We have run a number of simulations to understand the sensitivity of the electric field strength to the particle size and abundance and the amount of charge on each dust grain. We find that Efields can indeed develop in Martian dust convective features via dust grain filtration effects. The overall value of these E-fields is strongly dependent upon dust grain size, dust load, and lifting efficiency, and field strengths can range from 100s of mV/m to 10s of kV/m.

  13. The optical depth sensor (ODS) for column dust opacity measurements and cloud detection on martian atmosphere

    NASA Astrophysics Data System (ADS)

    Toledo, D.; Rannou, P.; Pommereau, J.-P.; Foujols, T.

    2016-08-01

    A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.

  14. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption Technology

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Bower, Chad; Iacomini, Christie S.; Paul, H.

    2011-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA subassembly was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort is operations and testing in a simulated lunar environment. This environment was simulated in Paragon s EHF vacuum chamber. The objective of this testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. The lunar testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This had not been achieved in any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  15. Mars Gardens in the University - Red Thumbs: Growing Vegetables in Martian regolith simulant.

    NASA Astrophysics Data System (ADS)

    Guinan, Edward Francis

    2018-01-01

    Over the next few decades NASA and private enterprise missions plan to send manned missions to Mars with the ultimate aim to establish a permanent human presence on this planet. For a self-sustaining colony on Mars it will be necessary to provide food by growing plants in sheltered greenhouses on the Martian surface. As part of an undergraduate student project in Astrobiology at Villanova University, experiments are being carried out, testing how various plants grow in Martian regolith. A wide sample of plants are being grown and tested in Mars regolith simulant commercially available from The Martian Garden (TheMartian Garden.com). This Mars regolith simulant is based on Mojave Mars Simulant (MMS) developed by NASA and JPL for the Mars Phoenix mission. The MMS is based on the Mojave Saddleback basalt similar that used by JPL/NASA. Additional reagents were added to this iron rich basalt to bring the chemical content close to actual Mars regolith. The MMS used is an approximately 90% similar to regolith found on the surface of Mars - excluding poisonous perchlorates commonly found on actual Mars surface.The students have selected various vegetables and herbs to grow and test. These include carrots, spinach, dandelions, kale, soy beans, peas, onions, garlic and of course potatoes and sweet potatoes. Plants were tested in various growing conditions, using different fertilizers, and varying light conditions and compared with identical “control plants” grown in Earth soil / humus. The results of the project will be discussed from an education view point as well as from usefulness for fundamental research.We thank The Martian Garden for providing Martian regolith simulant at education discounted prices.

  16. Adaptation of an Antarctic lichen to Martian niche conditions can occur within 34 days

    NASA Astrophysics Data System (ADS)

    de Vera, Jean-Pierre; Schulze-Makuch, Dirk; Khan, Afshin; Lorek, Andreas; Koncz, Alexander; Möhlmann, Diedrich; Spohn, Tilman

    2014-08-01

    Stresses occurring on the Martian surface were simulated in a Mars Simulation Chamber (MSC) and included high UV fluxes (Zarnecki and Catling, 2002), low temperatures, low water activity, high atmospheric CO2 concentrations, and an atmospheric pressure of about 800 Pa (Kasting, 1991; Head et al., 2003). The lichen Pleopsidium chlorophanum is an extremophile that lives in very cold, dry, high-altitude habitats, which are Earth's best approximation of the Martian surface. Samples with P. chlorophanum were exposed uninterruptedly to simulated conditions of the unprotected Martian surface (i.e. 6344 kJ m-2) and protected niche conditions (269 kJ m-2) for 34 days. Under unprotected Martian surface conditions the fungal symbiont decreases its metabolic activity and it was unclear if the algal symbiont of the lichen was still actively photosynthesizing. However, under "protected site" conditions, the entire lichen not only survived and remained photosynthetically active, it even adapted physiologically by increasing its photosynthetic activity over 34 days.

  17. Pulmonary toxicity of simulated lunar and Martian dusts in mice: II. Biomarkers of acute responses after intratracheal instillation

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-Wing; James, John T.; Latch, Judith N.; Hamilton, Raymond F Jr; Holian, Andrij

    2002-01-01

    Volcanic ashes from Arizona and Hawaii, with chemical and mineral properties similar to those of lunar and Martian soils, respectively, are used by the National Aeronautics and Space Administration (NASA) to simulate lunar and Martian environments for instrument tests. NASA needs toxicity data on these volcanic soils to assess health risks from potential exposures of workers in facilities where these soil simulants are used. In this study we investigated the acute effects of lunar soil simulant (LSS) and Martian soil simulant (MSS), as a complement to a histopathological study assessing their subchronic effects (Lam et al., 2002). Fine dust of LSS, MSS, TiO(2), or quartz suspended in saline was intratracheally instilled into C57Bl/6J mice (4/group) in single doses of 0.1 mg/mouse or 1 mg/mouse. The mice were euthanized 4 or 24 h after the dust treatment, and bronchoalveolar lavage fluid (BALF) was obtained. Statistically significant lower cell viability and higher total protein concentration in the BALF were seen only in mice treated with the high dose of quartz for 4 h and with the high dose of MSS or quartz for 24 h, compared to mice treated only with saline. A significant increase in the percentage of neutrophils was not observed with any dust-treated group at 4 h after the instillation, but was observed after 24 h in all the dust-treated groups. This observation indicates that these dusts were not acutely toxic and the effects were gradual; it took some time for neutrophils to be recruited into and accumulate significantly in the lung. A statistically significant increase in apoptosis of lavaged macrophages from mice 4 h after treatment was found only in the high-dose silica group. The overall results of this study on the acute effects of these dusts in the lung indicate that LSS is slightly more toxic than TiO(2), and that MSS is comparable to quartz. These results were consistent with the subchronic histopathological findings in that the order of severity of lung toxicity was TiO(2) < LSS < MSS < quartz.

  18. Detection of Survival and Proliferation of Sulfate Reducers Under Simulated Martian Atmospheric and Soil Conditions

    NASA Astrophysics Data System (ADS)

    Mora, Sergio Mosquera

    Numerous studies have tried to determine the survivability and proliferation of microorganisms under simulated Martian conditions. Furthermore, most of them have been focused on the ability of these microbes to cope with high brines' salt (NaCl) concentrations inherent of the Martian surface. However, there are not studies related to the ability of bacteria to survive on subsurface environments that have increasing concentrations of sulfate compounds. For this research, a group of microorganisms known as sulfate-reducing bacteria or simply sulfate reducers were chosen due to their ability to use sulfate compounds as terminal electron acceptors to produce metabolic energy, their tolerance to low temperatures (psychrophilic microbes) and their anaerobic metabolism. Moreover, the principal purpose of this study was to determine the ability of sulfate reducers to carry active metabolism under conditions similar to those present on Mars subsurface (low temperature, high concentration of sulfate compounds, anoxic atmosphere-95% carbon dioxide, low nutrients availability, among others). Furthermore, we cultivated strains of Desulfotalea psychrophila, Desulfuromusa ferrireducens and Desulfotomaculum arcticum using different concentrations of minerals. The latter (CaSO 4, MgSO4, FeSO4 and Fe2(SO4) 3) are normally found as part of the Martian subsurface components and they can act as terminal electron acceptors in sulfate respiration. Moreover, PCR amplifications of the 16S rDNA gene and the dsrAB genes were performed in order to determine the growth and survivability of the three microorganisms tested. Finally, we were able to determine that they were metabolically active at the different types and mineral concentrations under study.

  19. Pax permanent Martian base: Space architecture for the first human habitation on Mars, volume 5

    NASA Technical Reports Server (NTRS)

    Huebner-Moths, Janis; Fieber, Joseph P.; Rebholz, Patrick J.; Paruleski, Kerry L.; Moore, Gary T. (Editor)

    1992-01-01

    America at the Threshold: Report of the Synthesis Group on America's Space Exploration Initiative (the 'Synthesis Report,' sometimes called the Stafford Report after its astronaut chair, published in 1991) recommended that NASA explore what it called four 'architectures,' i.e., four different scenarios for habitation on Mars. The Advanced Design Program in Space Architecture at the University of Wisconsin-Milwaukee supported this report and two of its scenarios--'Architecture 1' and 'Architecture 4'--during the spring of 1992. This report investigates the implications of different mission scenarios, the Martian environment, supporting technologies, and especially human factors and environment-behavior considerations for the design of the first permanent Martian base. The report is comprised of sections on mission analysis, implications of the Martian atmosphere and geologic environment, development of habitability design requirements based on environment-behavior and human factors research, and a full design proposed (concept design and design development) for the first permanent Martian base and habitat. The design is presented in terms of a base site plan, master plan based on a Mars direct scenario phased through IOC, and design development details of a complete Martian habitat for 18 crew members including all laboratory, mission control, and crew support spaces.

  20. Research at a European Planetary Simulation Facility

    NASA Astrophysics Data System (ADS)

    Merrison, J.; Iversen, J. J.; Alois, S.; Rasmussen, K. R.

    2015-10-01

    This unique environmental simulation facility is capable of re-creating extreme terrestrial, Martian and other planetary environments. It is supported by EU activities including Europlanet RI and a volcanology network VERTIGO. It is also used as a test facility by ESA for the forthcoming ExoMars 2018 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and Industrial community. The latest research and networking activities will be presented.

  1. Prediction of Lunar- and Martian-Based Intra- and Site-to-Site Task Performance.

    PubMed

    Ade, Carl J; Broxterman, Ryan M; Craig, Jesse C; Schlup, Susanna J; Wilcox, Samuel L; Warren, Steve; Kuehl, Phillip; Gude, Dana; Jia, Chen; Barstow, Thomas J

    2016-04-01

    This study aimed to investigate the feasibility of determining the physiological parameters associated with the ability to complete simulated exploration type tasks at metabolic rates which might be expected for lunar and Martian ambulation. Running V̇O2max and gas exchange threshold (GET) were measured in 21 volunteers. Two simulated extravehicular activity field tests were completed in 1 G in regular athletic apparel at two intensities designed to elicit metabolic rates of ∼20.0 and ∼30.0 ml · kg(-1) · min(-1), which are similar to those previously reported for ambulation in simulated lunar- and Martian-based environments, respectively. All subjects were able to complete the field test at the lunar intensity, but 28% were unable to complete the field test at the Martian intensity (non-Finishers). During the Martian field test there were no differences in V̇O2 between Finishers and non-Finishers, but the non-Finishers achieved a greater %V̇O2max compared to Finishers (78.4 ± 4.6% vs. 64.9 ± 9.6%). Logistic regression analysis revealed fitness thresholds for a predicted probability of 0.5, at which Finishing and non-Finishing are equally likely, and 0.75, at which an individual has a 75% chance of Finishing, to be a V̇O2max of 38.4 ml · kg(-1) · min(-1) and 40.0 ml · kg(-1) · min(-1) or a GET of 20.1 ml · kg(-1) · min(-1) and 25.1 ml · kg(-1) · min(-1), respectively (χ(2) = 10.2). Logistic regression analysis also revealed that the expected %V̇O2max required to complete a field test could be used to successfully predict performance (χ(2) = 19.3). The results of the present investigation highlight the potential utility of V̇O2max, particularly as it relates to the metabolic demands of a surface ambulation, in defining successful completion of planetary-based exploration field tests.

  2. The responses of an anaerobic microorganism, Yersinia intermedia MASE-LG-1 to individual and combined simulated Martian stresses

    PubMed Central

    Bohmeier, Maria; Perras, Alexandra K.; Schwendner, Petra; Rabbow, Elke; Moissl-Eichinger, Christine; Cockell, Charles S.; Pukall, Rüdiger; Vannier, Pauline; Marteinsson, Viggo T.; Monaghan, Euan P.; Ehrenfreund, Pascale; Garcia-Descalzo, Laura; Gómez, Felipe; Malki, Moustafa; Amils, Ricardo; Gaboyer, Frédéric; Westall, Frances; Cabezas, Patricia; Walter, Nicolas; Rettberg, Petra

    2017-01-01

    The limits of life of aerobic microorganisms are well understood, but the responses of anaerobic microorganisms to individual and combined extreme stressors are less well known. Motivated by an interest in understanding the survivability of anaerobic microorganisms under Martian conditions, we investigated the responses of a new isolate, Yersinia intermedia MASE-LG-1 to individual and combined stresses associated with the Martian surface. This organism belongs to an adaptable and persistent genus of anaerobic microorganisms found in many environments worldwide. The effects of desiccation, low pressure, ionizing radiation, varying temperature, osmotic pressure, and oxidizing chemical compounds were investigated. The strain showed a high tolerance to desiccation, with a decline of survivability by four orders of magnitude during a storage time of 85 days. Exposure to X-rays resulted in dose-dependent inactivation for exposure up to 600 Gy while applied doses above 750 Gy led to complete inactivation. The effects of the combination of desiccation and irradiation were additive and the survivability was influenced by the order in which they were imposed. Ionizing irradiation and subsequent desiccation was more deleterious than vice versa. By contrast, the presence of perchlorates was not found to significantly affect the survival of the Yersinia strain after ionizing radiation. These data show that the organism has the capacity to survive and grow in physical and chemical stresses, imposed individually or in combination that are associated with Martian environment. Eventually it lost its viability showing that many of the most adaptable anaerobic organisms on Earth would be killed on Mars today. PMID:29069099

  3. Effect of particle size of Martian dust on the degradation of photovoltaic cell performance

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1991-01-01

    Glass coverglass and SiO2 covered and uncovered silicon photovoltaic (PV) cells were subjected to conditions simulating a Mars dust storm, using the Martian Surface Wind Tunnel, to assess the effect of particle size on the performance of PV cells in the Martian environment. The dust used was an artificial mineral of the approximate elemental composition of Martian soil, which was sorted into four different size ranges. Samples were tested both initially clean and initially dusted. The samples were exposed to clear and dust laden winds, wind velocities varying from 23 to 116 m/s, and attack angles from 0 to 90 deg. It was found that transmittance through the coverglass approximates the power produced by a dusty PV cell. Occultation by the dust was found to dominate the performance degradation for wind velocities below 50 m/s, whereas abrasion dominates the degradation at wind velocities above 85 m/s. Occultation is most severe at 0 deg (parallel to the wind), is less pronounced from 22.5 to 67.5 deg, and is somewhat larger at 90 deg (perpendicular to the wind). Abrasion is negligible at 0 deg, and increases to a maximum at 90 deg. Occultation is more of a problem with small particles, whereas large particles (unless they are agglomerates) cause more abrasion.

  4. Dust Removal Technolgy for a Mars In Situ Resource Utilization System

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Johansen, M. R.; Williams, B. S.; Hogue, M. D.; Mackey, P. J.; Clements, J. S.

    2011-01-01

    Several In Situ Resource Utilization (lSRU) systems being considered to enable future manned exploration of Mars require capture of Martian atmospheric gas to extract oxygen and other commodities. However, the Martian atmosphere contains relatively large amounts of dust which must be removed in tbe collection systems of the ISRU chambers. The amount of atmospheric dust varies largely with the presence of daily dust devils and the less frequent but much more powerful global dust storms. A common and mature dust removal technology for terrestrial systems is the electrostatic precipitator. With this technology, dust particles being captured are imparted an electrostatic charge by means of a corona discharge. Charged dust particles are then driven to a region of high electric field which forces the particles onto a collector for capture. Several difficulties appear when this technology is adapted to the Martian atmospheric environment At the low atmospheric pressure of Mars, electrical breakdown occurs at much lower voltages than on Earth and corona discharge is difficult to sustain. In this paper, we report on our efforts to obtain a steady corona/glow discharge in a simulated Martian atmosphere of carbon dioxide at 9 millibars of pressure. We also present results on the design of a dust capture system under these atmospheric conditions.

  5. Survival of Bacillus subtilis endospores on ultraviolet-irradiated rover wheels and Mars regolith under simulated Martian conditions.

    PubMed

    Kerney, Krystal R; Schuerger, Andrew C

    2011-06-01

    Endospores of Bacillus subtilis HA101 were applied to a simulated Mars Exploration Rover (MER) wheel and exposed to Mars-normal UV irradiation for 1, 3, or 6 h. The experiment was designed to simulate a contaminated rover wheel sitting on its landing platform before rolling off onto the martian terrain, as was encountered during the Spirit and Opportunity missions. When exposed to 1 h of Mars UV, a reduction of 81% of viable endospores was observed compared to the non-UV irradiated controls. When exposed for 3 or 6 h, reductions of 94.6% and 96.6%, respectively, were observed compared to controls. In a second experiment, the contaminated rover wheel was rolled over a bed of heat-sterilized Mars analog soil; then the analog soil was exposed to full martian conditions of UV irradiation, low pressure (6.9 mbar), low temperature (-10°C), and an anaerobic CO(2) martian atmosphere for 24 h to determine whether endospores of B. subtilis on the contaminated rover wheel could be transferred to the surface of the analog soil and survive martian conditions. The experiment simulated conditions in which a rover wheel might come into contact with martian regolith immediately after landing, such as is designed for the upcoming Mars Science Laboratory (MSL) rover. The contaminated rover wheel transferred viable endospores of B. subtilis to the Mars analog soil, as demonstrated by 31.7% of samples showing positive growth. However, when contaminated soil samples were exposed to full martian conditions for 24 h, only 16.7% of samples exhibited positive growth-a 50% reduction in the number of soil samples positive for the transferred viable endospores.

  6. Electrostatic Precipitation of Dust in the Martian Atmosphere: Implications for the Utilization of Resources During Future Manned Exploration Missions

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Clements, Judson S.; Thompson, Samuel M.; Cox, Nathan D.; Hogue, Michael D.; Johansen, Michael R.; Williams, Blakeley S.

    2011-01-01

    Future human missions to Mars will require the utilization of local resources for oxygen, fuel. and water. The In Situ Resource Utilization (ISRU) project is an active research endeavor at NASA to develop technologies that can enable cost effective ways to live off the land. The extraction of oxygen from the Martian atmosphere. composed primarily of carbon dioxide, is one of the most important goals of the Mars ISRU project. The main obstacle is the relatively large amount of dust present in the Martian atmosphere. This dust must be efficiently removed from atmospheric gas intakes for ISRU processing chambers. A common technique to achieve this removal on earth is by electrostatic precipitation, where large electrostatic fields are established in a localized region to precipitate and collect previously charged dust particles. This technique is difficult to adapt to the Martian environment, with an atmospheric pressure of about one-hundredth of the terrestrial atmosphere. At these low pressures. the corona discharges required to implant an electrostatic charge to the particles to be collected is extremely difficult to sustain and the corona easily becomes biopolar. which is unsuitable for particle charging. In this paper, we report on our successful efforts to establish a stable corona under Martian simulated conditions. We also present results on dust collecting efficiencies with an electrostatic precipitator prototype that could be effectively used on a future mission to the red planet

  7. Robot computer problem solving system

    NASA Technical Reports Server (NTRS)

    Merriam, E. W.; Becker, J. D.

    1973-01-01

    A robot computer problem solving system which represents a robot exploration vehicle in a simulated Mars environment is described. The model exhibits changes and improvements made on a previously designed robot in a city environment. The Martian environment is modeled in Cartesian coordinates; objects are scattered about a plane; arbitrary restrictions on the robot's vision have been removed; and the robot's path contains arbitrary curves. New environmental features, particularly the visual occlusion of objects by other objects, were added to the model. Two different algorithms were developed for computing occlusion. Movement and vision capabilities of the robot were established in the Mars environment, using LISP/FORTRAN interface for computational efficiency. The graphical display program was redesigned to reflect the change to the Mars-like environment.

  8. A Comparative Study Of Dust Devils

    NASA Astrophysics Data System (ADS)

    Lange, C. F.; Prieto, L. E.

    2005-12-01

    Spatial variations in the column of water vapour in the Martian near-surface are due to the combined effects of several process within water underground reservoirs and the atmosphere. Among these process, dust devils could be an important local factor in the water concentration levels. In fact, the apparently high occurrence of dust devils could potentially affect the mass transfer rate of water vapour from the Martian regolith. A detailed study of these atmospheric vortices may help to better understand the complex relation between the cycle of water and this Martian atmospheric event. Subsequently, field data are required to provide a close estimation of the dynamics presented in Martian surface. The upcoming Phoenix mission is being designed to investigate these natural events on Mars. However, field studies of dust devils are difficult because of their sporadic, unpredictable occurrence and distance. In contrast, laboratory simulations present a better physical insight into this complex swirling flow by consideration of a much simplified, and more controllable and reproducible model flow. The use of numerical simulations in addition to laboratory experiments can provide complementary information on flow properties in regions where measurements are difficult due to flow profiles. Computational models also allow for significant flexibility in the model layout and they are, therefore, ideally suited for a comparison of different types of model flows. A 3-D numerical study is presented for two different types of dust devil laboratory simulators (Ward, 1952 and Greeley et al., 2001). An initial numerical study was conducted to validate the simulation results with previous laboratory measurements (Lund and Snow, 1993). Secondly, a numerical comparison was carried out between the two tornado-like vortex representations based on kinematic similarities to provide a clear method to relate dust devils in several nature environments, laboratory simulations, and computational models. This was accomplished by examining features of the dust devils in the form of three main flow parameters: the ratio of the inflow layer height h to the updraft radius r_0 (aspect ratio), the radial Reynolds number characterizing the updraft zone, and the ratio of the tangential velocity to the mean radial velocity (swirl ratio) at the radius of the updraft zone, r_0. The detailed analysis of the numerical flow solutions led to a simple definition of h and r_0, valid for the types of model flows analyzed. This study is a necessary part of a larger effort to examine and compare both numerical and laboratory simulations of atmospheric vortices in terrestrial and Martian conditions. References [1] R. Greeley et al., XXXII Lunar and Planetary Science, 2001. [2] D. E. Lund and J. T. Snow, The Tornado: Its Structure, Dynamics, Prediction, and Hazards, 1993, p. 297--306. [3] N. B. Ward, J. Atmos. Sci., 1972, 1194--1204.

  9. Martian Feeling: An Analogue Study to Simulate a Round-Trip to Mars using the International Space Station

    NASA Astrophysics Data System (ADS)

    Felix, C. V.; Gini, A.

    When talking about human space exploration, Mars missions are always present. It is clear that sooner or later, humanity will take this adventure. Arguably the most important aspect to consider for the success of such an endeavour is the human element. The safety of the crew throughout a Martian mission is a top priority for all space agencies. Therefore, such a mission should not take place until all the risks have been fully understood and mitigated. A mission to Mars presents unique human and technological challenges in terms of isolation, confinement, autonomy, reliance on mission control, communication delays and adaptation to different gravity levels. Analogue environments provide the safest way to simulate these conditions, mitigate the risks and evaluate the effects of long-term space travel on the crew. Martian Feeling is one of nine analogue studies, from the Mars Analogue Path (MAP) report [1], proposed by the TP Analogue group of ISU Masters class 2010. It is an integrated analogue study which simulates the psychological, physiological and operational conditions that an international, six-person, mixed gender crew would experience on a mission to Mars. Set both onboard the International Space Station (ISS) and on Earth, the Martian Feeling study will perform a ``dress rehearsal'' of a mission to Mars. The study proposes to test both human performance and operational procedures in a cost-effective manner. Since Low Earth Orbit (LEO) is more accessible than other space-based locations, an analogue studies in LEO would provide the required level of realism to a simulated transit mission to Mars. The sustained presence of microgravity and other elements of true spaceflight are features of LEO that are neither currently feasible nor possible to study in terrestrial analogue sites. International collaboration, economics, legal and ethical issues were considered when the study was proposed. As an example of international collaboration, the ISS would demonstrate an effective model for an international effort to send humans to Mars. The proposed starting date is the year 2017, before the planned retirement of the ISS, which is currently scheduled for 2020.

  10. Martian Gardens

    NASA Image and Video Library

    2016-08-15

    NASA’s Kennedy Space Center is partnering with the Florida Tech Buzz Aldrin Space Institute in Melbourne, Florida, to collaborate on research studying the performance of crop species grown in a simulated “Martian garden” — a proving ground for a potential future farm on the Red Planet. Plants were grown in a preliminary experiment comparing (left to right) potting soil, regolith simulant with added nutrients, and simulant without nutrients.

  11. Martian dust storms as a possible sink of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.

    2006-11-01

    Recent laboratory tests, analog studies and numerical simulations all suggest that Martian dust devils and larger dusty convective storms generate and maintain large-scale electric fields. Such expected E-fields will have the capability to create significant electron drift motion in the collisional gas and to form an extended high energy (u $\\gg$ kT) electron tail in the distribution. We demonstrate herein that these energetic electrons are capable of dissociating any trace CH4 in the ambient atmosphere thereby acting as an atmospheric sink of this important gas. We demonstrate that the methane destruction rate increases by a factor of 1012 as the dust storm E-fields, E, increase from 5 to 25 kV/m, resulting in an apparent decrease in methane stability from ~ 1010 sec to a value of ~1000 seconds. While destruction in dust storms is severe, the overall methane lifetime is expected to decrease only moderately due to recycling of products, heterogeneous effects from localized sinks, etc. We show further evidence that the electrical activity anticipated in Martian dust storms creates a new harsh electro-chemical environment.

  12. Production of reactive oxygen species from abraded silicates. Implications for the reactivity of the Martian soil

    NASA Astrophysics Data System (ADS)

    Bak, Ebbe N.; Zafirov, Kaloyan; Merrison, Jonathan P.; Jensen, Svend J. Knak; Nørnberg, Per; Gunnlaugsson, Haraldur P.; Finster, Kai

    2017-09-01

    The results of the Labeled Release and the Gas Exchange experiments conducted on Mars by the Viking Landers show that compounds in the Martian soil can cause oxidation of organics and a release of oxygen in the presence of water. Several sources have been proposed for the oxidizing compounds, but none has been validated in situ and the cause of the observed oxidation has not been resolved. In this study, laboratory simulations of saltation were conducted to examine if and under which conditions wind abrasion of silicates, a process that is common on the Martian surface, can give rise to oxidants in the form of hydrogen peroxide (H2O2) and hydroxyl radicals (ṡOH). We found that silicate samples abraded in simulated Martian atmospheres gave rise to a significant production of H2O2 and ṡOH upon contact with water. Our experiments demonstrated that abraded silicates could lead to a production of H2O2 facilitated by atmospheric O2 and inhibited by carbon dioxide. Furthermore, during simulated saltation the silicate particles became triboelectrically charged and at pressures similar to the Martian surface pressure we observed glow discharges. Electrical discharges can cause dissociation of CO2 and through subsequent reactions lead to a production of H2O2. These results indicate that the reactions linked to electrical discharges are the dominant source of H2O2 during saltation of silicates in a simulated Martian atmosphere, given the low pressure and the relatively high concentration of CO2. Our experiments provide evidence that wind driven abrasion could enhance the reactivity of the Martian soil and thereby could have contributed to the oxidation of organic compounds and the O2 release observed in the Labeled Release and the Gas Exchange experiments. Furthermore, the release of H2O2 and ṡOH from abraded silicates could have a negative effect on the persistence of organic compounds in the Martian soil and the habitability of the Martian surface.

  13. Life Beyond the Planet of Origin and Implications for the Search for Life on Mars

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.

    2015-01-01

    Outer space is vast, cold, devoid of matter, radiation filled with essentially no gravity. These factors present an environmental challenge for any form of life. Earth's biosphere has evolved for more than 3 billion years shielded from the hostile environment of outer space by the protective blanket of the atmosphere and magnetosphere. Space is a nutritional wasteland with no liquid water and readily available organic carbon. Moving beyond a life's planet of origin requires a means for transport, the ability to withstand transport, and the ability to colonize, thrive and ultimately evolve in the new environment. Can life survive beyond its home planet? The key to answering this question is to identify organisms that first have the ability to withstand space radiation, space vacuum desiccation and time in transit, and second the ability to grow in an alien environment. Within the last 60 years space technology allowed us to transport life beyond Earth's protective shield so we may study, in situ, their responses to selected conditions of space. To date a variety of microbes ranging from viruses, to Bacteria, to Archaea, to Eukarya have been tested in the space environment. Most died instantly, but not all. These studies revealed that ultraviolet radiation is the near-term lethal agent, while hard radiation is the long-term lethal agent when the organism is shielded from ultraviolet radiation. In fact, bacterial spores, halophilic cyanobacteria and Archaea as well as some lichens survive very well if protected from ultraviolet radiation [1]. Some microbes, then, may be able to survive the trip in outer space to Mars on a spacecraft or in a meteorite. Once on Mars can a terrestrial microbe survive? Although the conditions on Mars are not as harsh as those in space, they are not hospitable for a terrestrial microbe. Studies, however, have shown that certain microbes that can survive in space for several years may also be able to survive on Mars if protected from ultraviolet radiation [1]. Laboratory simulation experiments using a mock-up of the Phoenix lander have shown that microbes transported to the surface of Mars on a spacecraft come off the spacecraft and mix into the Martian regolith [2]. Additionally, studies simulating Martian dust storms demonstrate that microbes can survive in the Martian wind blown dust and be scattered across the Martian surface away from the spacecraft. Would these microbes that may survive on Mars metabolize and propagate? Growth requires liquid water, a carbon source and an energy source. Survival on Mars also requires protection from ultraviolet radiation. In the cold, dry environment of Mars the probability of microbial metabolism and growth at or just beneath the surface is extremely low. Although the probability is low, Mars may be contaminated with potentially live terrestrial organisms. In light of that statistic we must be extremely diligent and cautious in our search for Martian life. If we are not cautious we may find life on Mars and it may be a contaminant from Earth.

  14. Visualization of Radiation Environment on Mars: Assessment with MARIE Measurements

    NASA Technical Reports Server (NTRS)

    Saganti, P.; Cucinotta, F.; Zeitlin, C.; Cleghorn, T.; Flanders, J.; Riman, F.; Hu, X.; Pinsky, L.; Lee, K.; Anderson, V.; hide

    2003-01-01

    For a given GCR (Galactic Cosmic Ray) environment at Mars, particle flux of protons, alpha particles, and heavy ions, are also needed on the surface of Mars for future human exploration missions. For the past twelve months, the MARJE (Martian Radiation Environment Experiment) instrument onboard the 200J Mars Odyssey has been providing the radiation measurements from the Martian orbit. These measurements are well correlated with the HZETRN (High Z and Energy Transport) and QMSFRG (Quantum Multiple-Scattering theory of nuclear Fragmentation) model calculations. These model calculations during these specific GCR environment conditions are now extended and transported through the CO2 atmosphere onto the Martian surface. These calculated pa11icle flux distributions are presented as a function of the Martian topography making use of the MOLA (Mars Orbiter Laser Altimeter) data from the MGS (Mars Global Surveyor). Also, particle flux calculations are presented with visualization in the human body from skin depth to the internal organs including the blood-forming organs.

  15. Workshop on Evolution of Martian Volatiles. Part 1

    NASA Technical Reports Server (NTRS)

    Jakosky, B. (Editor); Treiman, A. (Editor)

    1996-01-01

    This volume contains papers that were presented on February 12-14, 1996 at the Evolution for Martian Volatiles Workshop. Topics in this volume include: returned Martian samples; acidic volatiles and the Mars soil; solar EUV Radiation; the ancient Mars Thermosphere; primitive methane atmospheres on Earth and Mars; the evolution of Martian water; the role of SO2 for the climate history of Mars; impact crater morphology; the formation of the Martian drainage system; atmospheric dust-water ice Interactions; volatiles and volcanos; accretion of interplanetary dust particles; Mars' ionosphere; simulations with the NASA Ames Mars General Circulation Model; modeling the Martian water cycle; the evolution of Martian atmosphere; isotopic composition; solar occultation; magnetic fields; photochemical weathering; NASA's Mars Surveyor Program; iron formations; measurements of Martian atmospheric water vapor; and the thermal evolution Models of Mars.

  16. Cost effectiveness as applied to the Viking Lander systems-level thermal development test program

    NASA Technical Reports Server (NTRS)

    Buna, T.; Shupert, T. C.

    1974-01-01

    The economic aspects of thermal testing at the systems-level as applied to the Viking Lander Capsule thermal development program are reviewed. The unique mission profile and pioneering scientific goals of Viking imposed novel requirements on testing, including the development of a simulation technique for the Martian thermal environment. The selected approach included modifications of an existing conventional thermal vacuum facility, and improved test-operational techniques that are applicable to the simulation of the other mission phases as well, thereby contributing significantly to the cost effectiveness of the overall thermal test program.

  17. Innovations at a European Planetary Simulation Facility

    NASA Astrophysics Data System (ADS)

    Merrison, J.; Iversen, J. J.; Alois, S.; Rasmussen, K. R.

    2017-09-01

    This unique and recently improved planetary simulation facility is capable of re-creating extreme terrestrial, Martian and other planetary environments. It is supported by EU activities including Europlanet 2020 RI and a volcanology network VERTIGO. It is also used as a test facility by ESA for the forthcoming ExoMars 2020 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and Industrial community. The latest research and networking activities will be presented.

  18. The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016

    NASA Astrophysics Data System (ADS)

    Ehresmann, Bent; Zeitlin, Cary J.; Hassler, Donald M.; Matthiä, Daniel; Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Appel, Jan K.; Brinza, David E.; Rafkin, Scot C. R.; Böttcher, Stephan I.; Burmeister, Sönke; Lohf, Henning; Martin, Cesar; Böhm, Eckart; Reitz, Günther

    2017-08-01

    The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory (MSL) Curiosity rover has been measuring the radiation environment in Gale crater on Mars since August, 2012. These first in-situ measurements provide an important data set for assessing the radiation-associated health risks for future manned missions to Mars. Mainly, the radiation field on the Martian surface stems from Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. RAD is capable of measuring differential particle fluxes for lower-energy ions and isotopes of hydrogen and helium (up to hundreds of MeV/nuc). Additionally, RAD also measures integral particle fluxes for higher energies of these ions. Besides providing insight on the current Martian radiation environment, these fluxes also present an essential input for particle transport codes that are used to model the radiation to be encountered during future manned missions to Mars. Comparing simulation results with actual ground-truth measurements helps to validate these transport codes and identify potential areas of improvements in the underlying physics of these codes. At the First Mars Radiation Modeling Workshop (June 2016 in Boulder, CO), different groups of modelers were asked to calculate the Martian surface radiation environment for the time of November 15, 2015 to January 15, 2016. These model results can then be compared with in-situ measurements of MSL/RAD conducted during the same time frame. In this publication, we focus on presenting the charged particle fluxes measured by RAD between November 15, 2015 and January 15, 2016, providing the necessary data set for the comparison to model outputs from the modeling workshop. We also compare the fluxes to initial GCR intensities, as well as to RAD measurements from an earlier time period (August 2012 to January 2013). Furthermore, we describe how changes and updates in RAD on board processing and the on ground analysis tools effect and improve the flux calculations. An in-depth comparison of modeling results from the workshop and RAD fluxes of this publication is presented elsewhere in this issue (Matthiä et al., 2017).

  19. Generating a Reduced Gravity Environment on Earth

    NASA Technical Reports Server (NTRS)

    Dungan, L. K.; Valle, P.; Shy, C.

    2015-01-01

    The Active Response Gravity Offload System (ARGOS) is designed to simulate reduced gravity environments, such as Lunar, Martian, or microgravity using a vertical lifting hoist and horizontal motion system. Three directions of motion are provided over a 41 ft x 24 ft x 25 ft tall area. ARGOS supplies a continuous offload of a portion of a person's weight during dynamic motions such as walking, running, and jumping. The ARGOS system tracks the person's motion in the horizontal directions to maintain a vertical offload force directly above the person or payload by measuring the deflection of the cable and adjusting accordingly.

  20. Liquid Water in the Extremely Shallow Martian Subsurface

    NASA Technical Reports Server (NTRS)

    Pavlov, A.; Shivak, J. N.

    2012-01-01

    Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.

  1. Appropriate Simulants are a Requirement for Mars Surface Systems Technology Development

    NASA Technical Reports Server (NTRS)

    Edmunson, Jennifer E.; McLemore, Carole A.; Rickman, Douglas L.

    2012-01-01

    To date, there are two simulants for martian regolith: JSC Mars-1A, produced from palagonitic (weathered) basaltic tephra mined from the Pu'u Nene cinder cone in Hawaii [1] by commercial company Orbitec, and Mojave Mars Simulant (MMS), produced from Saddleback Basalt in the western Mojave desert by the Jet Propulsion Laboratory [2]. Until numerous recent orbiters, rovers, and landers were sent to Mars, weathered basalt was surmised to cover every inch of the martian landscape. All missions since Viking have disproven that the entire martian surface is weathered basalt. In fact, the outcrops, features, and surfaces that are significantly different from weathered basalt are too numerous to realistically count. There are gullies, evaporites, sand dunes, lake deposits, hydrothermal deposits, alluvium, etc. that indicate sedimentary and chemical processes. There is no one size fits all simulant. Each unique area requires its own simulant in order to test technologies and hardware, thereby reducing risk.

  2. A Study of the Electrostatic Interaction Between Insulators and Martian/Lunar Soil Simulants

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.

    2001-01-01

    Using our previous experience with the Mars Environmental Compatibility Assessment (MECA) electrometer, we have designed a new type of aerodynamic electrometer. The goal of the research was to measure the buildup of electrostatic surface charge on a stationary cylindrical insulator after windborne granular particles have collided with the insulator surface in a simulated dust storm. The experiments are performed inside a vacuum chamber. This allows the atmospheric composition and pressure to be controlled in order to simulate the atmospheric conditions near the equator on the Martian surface. An impeller fan was used to propel the dust particles at a cylindrically shaped insulator under low vacuum conditions. We tested the new electrometer in a 10 mbar CO2 atmosphere by exposing two types of cylindrical insulators, Teflon (1.9 cm diameter) and Fiberglass (2.5 cm diameter), to a variety of windborne granular particulate materials. The granular materials tested were JSC Mars-1 simulant, which is a mixture of coarse and fine (<5microns diameter) particle sizes, and some of the major mineral constituents of the Martian soil. The minerals included Ottawa sand (SiO2), iron oxide (Fe2O3), aluminum oxide (Al2O3) and magnesium oxide (MgO). We also constructed a MECA-like electrometer that contained an insulator capped planar electrode for measuring the amount of electrostatic charge produced by rubbing an insulator surface over Martian and lunar soil simulants. The results of this study indicate that it is possible to detect triboelectric charging of insulator surfaces by windborne Martian soil simulant, and by individual mineral constituents of the soil simulant. We have also found that Teflon and Fiberglass insulator surfaces respond in different ways by developing opposite polarity surface charge, which decays at different rates after the particle impacts cease.

  3. Workshop on Early Mars: How Warm and How Wet?, part 1

    NASA Technical Reports Server (NTRS)

    Squyres, S. (Editor); Kasting, J. (Editor)

    1993-01-01

    This volume contains papers that have been accepted for presentation at the Workshop on Early Mars: How Warm and How Wet?, 26-28 Jul. 1993, in Breckenridge, CO. The following topics are covered: the Martian water cycle; Martian paleoclimatology; CO2/CH4 atmosphere on early Mars; Noachian hydrology; early Martian environment; Martian weathering; nitrogen isotope ratios; CO2 evolution on Mars; and climate change.

  4. Enrichment of Inorganic Martian Dust Simulant with Carbon Component can Provoke Neurotoxicity

    NASA Astrophysics Data System (ADS)

    Pozdnyakova, Natalia; Pastukhov, Artem; Dudarenko, Marina; Borysov, Arsenii; Krisanova, Natalia; Nazarova, Anastasia; Borisova, Tatiana

    2017-02-01

    Carbon is the most abundant dust-forming element in the interstellar medium. Tremendous amount of meteorites containing plentiful carbon and carbon-enriched dust particles have reached the Earth daily. National Institute of Health panel accumulates evidences that nano-sized air pollution components may have a significant impact on the central nervous system (CNS) in health and disease. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and can be transported to the CNS. Based on above facts, here we present the study, the aims of which were: 1) to upgrade inorganic Martian dust simulant derived from volcanic ash (JSC-1a/JSC, ORBITEC Orbital Technologies Corporation, Madison, Wisconsin) by the addition of carbon components, that is, nanodiamonds and carbon dots; 2) to analyse acute effects of upgraded simulant on key characteristics of synaptic neurotransmission; and 3) to compare above effects with those of inorganic dust and carbon components per se. Acute administration of carbon-containing Martian dust analogues resulted in a significant decrease in transporter-mediated uptake of L-[14C]glutamate (the major excitatory neurotransmitter) and [3H]GABA (the main inhibitory neurotransmitter) by isolated rat brain nerve terminals. The extracellular level of both neurotransmitters increased in the presence of carbon-containing Martian dust analogues. These effects were associated with action of carbon components of upgraded Martian dust simulant, but not with its inorganic constituent. This fact indicates that carbon component of native Martian dust can have deleterious effects on extracellular glutamate and GABA homeostasis in the CNS, and so glutamate- and GABA-ergic neurotransmission disballansing exitation and inhibition.

  5. Modeling hot spring chemistries with applications to martian silica formation

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Catling, D. C.; Crowley, J. K.; Kargel, J. S.

    2011-04-01

    Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO 2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100 °C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25 °C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO 4-SO 4-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system up to 100 °C and apply the model to hot springs and silica deposits. A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355 K) led to precipitation of anhydrous minerals (CaSO 4, Na 2SO 4) that was also the case for the high temperature (353 K) low pH case where anhydrous minerals (NaCl, CaSO 4) also precipitated. Thus we predict that secondary minerals associated with massive silica deposits are plausible indicators on Mars of precipitation environments and aqueous chemistry. Theoretical model calculations are in reasonable agreement with independent experimental silica concentrations, which strengthens the validity of the new CHEMCHAU model.

  6. Modeling hot spring chemistries with applications to martian silica formation

    USGS Publications Warehouse

    Marion, G.M.; Catling, D.C.; Crowley, J.K.; Kargel, J.S.

    2011-01-01

    Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100??C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25??C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO4-SO4-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system up to 100??C and apply the model to hot springs and silica deposits.A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355K) led to precipitation of anhydrous minerals (CaSO4, Na2SO4) that was also the case for the high temperature (353K) low pH case where anhydrous minerals (NaCl, CaSO4) also precipitated. Thus we predict that secondary minerals associated with massive silica deposits are plausible indicators on Mars of precipitation environments and aqueous chemistry. Theoretical model calculations are in reasonable agreement with independent experimental silica concentrations, which strengthens the validity of the new CHEMCHAU model. ?? 2011 Elsevier Inc.

  7. The Martian Chronicles. A Sound Filmstrip Program. Study Guide.

    ERIC Educational Resources Information Center

    Christesen, Barbara

    This filmstrip study guide dramatizes several stories from Ray Bradbury's "The Martian Chronicles" concerning basic issues of human nature: the need to respect cultural differences and the importance of preserving the environment. A collection of 26 short stories, "The Martian Chronicles" describes the colonization of Mars. The…

  8. Computational Analysis of a Prototype Martian Rotorcraft Experiment

    NASA Technical Reports Server (NTRS)

    Corfeld, Kelly J.; Strawn, Roger C.; Long, Lyle N.

    2002-01-01

    This paper presents Reynolds-averaged Navier-Stokes calculations for a prototype Martian rotorcraft. The computations are intended for comparison with an ongoing Mars rotor hover test at NASA Ames Research Center. These computational simulations present a new and challenging problem, since rotors that operate on Mars will experience a unique low Reynolds number and high Mach number environment. Computed results for the 3-D rotor differ substantially from 2-D sectional computations in that the 3-D results exhibit a stall delay phenomenon caused by rotational forces along the blade span. Computational results have yet to be compared to experimental data, but computed performance predictions match the experimental design goals fairly well. In addition, the computed results provide a high level of detail in the rotor wake and blade surface aerodynamics. These details provide an important supplement to the expected experimental performance data.

  9. Effects of long-term simulated martian conditions on a freeze-dried and homogenized bacterial permafrost community.

    PubMed

    Hansen, Aviaja A; Jensen, Lars L; Kristoffersen, Tommy; Mikkelsen, Karina; Merrison, Jonathan; Finster, Kai W; Lomstein, Bente Aa

    2009-03-01

    Indigenous bacteria and biomolecules (DNA and proteins) in a freeze-dried and homogenized Arctic permafrost were exposed to simulated martian conditions that correspond to about 80 days on the surface of Mars with respect to the accumulated UV dose. The simulation conditions included UV radiation, freeze-thaw cycles, the atmospheric gas composition, and pressure. The homogenized permafrost cores were subjected to repeated cycles of UV radiation for 3 h followed by 27 h without irradiation. The effects of the simulation conditions on the concentrations of biomolecules; numbers of viable, dead, and cultured bacteria; as well as the community structure were determined. Simulated martian conditions resulted in a significant reduction of the concentrations of DNA and amino acids in the uppermost 1.5 mm of the soil core. The total number of bacterial cells was reduced in the upper 9 mm of the soil core, while the number of viable cells was reduced in the upper 15 mm. The number of cultured aerobic bacteria was reduced in the upper 6 mm of the soil core, whereas the community structure of cultured anaerobic bacteria was relatively unaffected by the exposure conditions. As explanations for the observed changes, we propose three causes that might have been working on the biological material either individually or synergistically: (i) UV radiation, (ii) UV-generated reactive oxygen species, and (iii) freeze-thaw cycles. Currently, the production and action of reactive gases is only hypothetical and will be a central subject in future investigations. Overall, we conclude that in a stable environment (no wind-/pressure-induced mixing) biological material is efficiently shielded by a 2 cm thick layer of dust, while it is relatively rapidly destroyed in the surface layer, and that biomolecules like proteins and polynucleotides are more resistant to destruction than living biota.

  10. Effects of Long-Term Simulated Martian Conditions on a Freeze-Dried and Homogenized Bacterial Permafrost Community

    NASA Astrophysics Data System (ADS)

    Hansen, Aviaja A.; Jenson, Lars L.; Kristoffersen, Tommy; Mikkelsen, Karina; Merrison, Jonathan; Finster, Kai W.; Lomstein, Bente Aa.

    2009-03-01

    Indigenous bacteria and biomolecules (DNA and proteins) in a freeze-dried and homogenized Arctic permafrost were exposed to simulated martian conditions that correspond to about 80 days on the surface of Mars with respect to the accumulated UV dose. The simulation conditions included UV radiation, freeze-thaw cycles, the atmospheric gas composition, and pressure. The homogenized permafrost cores were subjected to repeated cycles of UV radiation for 3 h followed by 27 h without irradiation. The effects of the simulation conditions on the concentrations of biomolecules; numbers of viable, dead, and cultured bacteria; as well as the community structure were determined. Simulated martian conditions resulted in a significant reduction of the concentrations of DNA and amino acids in the uppermost 1.5 mm of the soil core. The total number of bacterial cells was reduced in the upper 9 mm of the soil core, while the number of viable cells was reduced in the upper 15 mm. The number of cultured aerobic bacteria was reduced in the upper 6 mm of the soil core, whereas the community structure of cultured anaerobic bacteria was relatively unaffected by the exposure conditions. As explanations for the observed changes, we propose three causes that might have been working on the biological material either individually or synergistically: (i) UV radiation, (ii) UV-generated reactive oxygen species, and (iii) freeze-thaw cycles. Currently, the production and action of reactive gases is only hypothetical and will be a central subject in future investigations. Overall, we conclude that in a stable environment (no wind-/pressure-induced mixing) biological material is efficiently shielded by a 2 cm thick layer of dust, while it is relatively rapidly destroyed in the surface layer, and that biomolecules like proteins and polynucleotides are more resistant to destruction than living biota.

  11. Measurements of the Charged and Neutral Particle Spectra on the Martian Surface with MSL/RAD

    NASA Astrophysics Data System (ADS)

    Koehler, Jan

    The Radiation Assessment Detector (RAD) onboard Mars Science Laboratory’s rover Curiosity is the first ever instrument to measure the energetic particle radiation environment on the surface of Mars. Charged particles are a major component of this environment, both galactic cosmic rays propagating to the Martian surface and secondary particles created by interactions of these cosmic rays with the atoms of the Martian atmosphere and soil. Another important factor for determining the biological impact of the Martian surface radiation is the specific contribution of neutrons, which possess a high biological effectiveness. In contrast to charged particles, neutrons and gamma rays are generally only measured indirectly. Their measurement is the result of a complex convolution of the incident particle spectrum with the measurement process. We apply an inversion method to calculate the gamma/neutron spectra from the RAD neutral particle measurements. Here we show first surface measurements of the Martian particle spectra and compare them to theoretical predictions. Measuring the Martian particle spectra is an essential step for determining the mutagenic influences to past or present life at or beneath the Martian surface as well as the radiation hazard for future human exploration, including the shielding design of a potential habitat.

  12. Prediction of physical workload in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Goldberg, Joseph H.

    1987-01-01

    The background, development, and application of a methodology to predict human energy expenditure and physical workload in low gravity environments, such as a Lunar or Martian base, is described. Based on a validated model to predict energy expenditures in Earth-based industrial jobs, the model relies on an elemental analysis of the proposed job. Because the job itself need not physically exist, many alternative job designs may be compared in their physical workload. The feasibility of using the model for prediction of low gravity work was evaluated by lowering body and load weights, while maintaining basal energy expenditure. Comparison of model results was made both with simulated low gravity energy expenditure studies and with reported Apollo 14 Lunar EVA expenditure. Prediction accuracy was very good for walking and for cart pulling on slopes less than 15 deg, but the model underpredicted the most difficult work conditions. This model was applied to example core sampling and facility construction jobs, as presently conceptualized for a Lunar or Martian base. Resultant energy expenditures and suggested work-rest cycles were well within the range of moderate work difficulty. Future model development requirements were also discussed.

  13. Germination and growth of wheat in simulated Martian atmospheres

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Mancinelli, Rocco L.

    1991-01-01

    One design for a manned Mars base incorporates a bioregenerative life support system based upon growing higher plants at a low atmospheric pressure in a greenhouse on the Martian surface. To determine the concept's feasibility, the germination and initial growth of wheat (Triticum aestivum) was evaluated at low atmospheric pressures in simulated Martian atmosphere (SMA) and in SMA supplemented with oxygen. Total atmospheric pressures ranged from 10 to 1013 mb. No seeds germinated in pure SMA, regardless of atmospheric pressure. In SMA plus oxygen at 60 mb total pressure, germination and growth occurred but were lower than in the earth atmosphere controls.

  14. Enzyme activity in terrestrial soil in relation to exploration of the Martian surface

    NASA Technical Reports Server (NTRS)

    Mclaren, A. D.

    1974-01-01

    Sensitive tests for the detection of extracellular enzyme activity in Martian soil was investigated using simulated Martian soil. Enzyme action at solid-liquid water interfaces and at low humidity were studied, and a kinetic scheme was devised and tested based on the growth of microorganisms and the oxidation of ammonium nitrite.

  15. TPS: From Arc-Jet to Flight

    NASA Technical Reports Server (NTRS)

    Buslog, Stanley A.

    2004-01-01

    This slide presentation reviews the testing of thermal protection system materials. All space vehicles that reenter Earth's atmosphere from either LEO or from Lunar/Mars missions require thermal protection system (TPS) materials. These TPS materials requires ground test facilities that simulate the aerothermodynamic environments experienced by reentry. The existing arc-jet facility requires expansion to combine convective and radiation heating and to test the capability to protect with the CO2 atmosphere that will be encountered for Martian entry.

  16. Response of selected microoganisms to experimental planetary environments

    NASA Technical Reports Server (NTRS)

    Foster, T. L.

    1975-01-01

    A microbial population profile of mixed Cape Canaveral soil samples is presented. During this investigation a few organisms were isolated which exhibit the ability to grow at 3 C, 32 C, and 55 C. Growth curves are shown for three of these isolates, one of which grows extremely well at all three temperatures. Also included are studies dealing with growth of soil populations at zero and subzero temperatures. Results indicate growth at 0 C and -5 C, but not at 15 C or -65 C. The effect of storage temperature on dry soil is presented, and results show that psychrophilic populations decrease when soil is stored at room temperature, but do not decrease when soil is stored at -65 C. Results of an experiment with the simulated Martian environment are presented and indicate that nonsporeforming rods, sporeforming rods, and cocci can reproduce in the simulated environment when nutrients and moisture are supplied. The sporeforming rods are the predominant suvivors when dry soil is subjected to this environment.

  17. Developing a High Fidelity Martian Soil Simulant Based on MSL Measurements: Applications for Habitability, Exploration, and In-Situ Resource Utilization

    NASA Astrophysics Data System (ADS)

    Cannon, K.; Britt, D. T.; Smith, T. M.; Fritsche, R. F.; Covey, S. D.; Batcheldor, D.; Watson, B.

    2017-12-01

    Powerful instruments, that include CheMin and SAM on the MSL Curiosity rover, have provided an unprecedented look into the mineral, chemical, and volatile composition of Martian soils. Interestingly, the bulk chemistry of the Rocknest windblown soil is a close match to similar measurements from the Spirit and Opportunity rovers, suggesting the presence of a global basaltic soil component. The Martian regolith is likely composed of this global soil mixed with locally to regionally derived components that include alteration products and evolved volcanic compositions. Without returned soil samples, researchers have relied on terrestrial simulants to address fundamental Mars science, habitability, in-situ resource utilization, and hardware for future exploration. However, these past simulants have low fidelity compared to actual Martian soils: JSC Mars-1a is an amorphous palagonitic material with spectral similarities to Martian dust, not soil, and Mojave Mars is simply a ground up terrestrial basalt chosen for its convenient location. Based on our experience creating asteroid regolith simulants, we are developing a high fidelity Martian soil simulant (Mars Global) designed ab initio to match the mineralogy, chemistry, and volatile contents of the global basaltic soil on Mars. The crystalline portion of the simulant is based on CheMin measurements of Rocknest and includes plagioclase, two pyroxenes, olivine, hematite, magnetite, anhydrite, and quartz. The amorphous portion is less well constrained, but we are re-creating it with basaltic glass, synthetic ferrihydrite, ferric sulfate, and carbonates. We also include perchlorate and nitrate salts based on evolved gas analyses from the SAM instrument. Analysis and testing of Mars Global will include physical properties (shear strength, density, internal friction angle), spectral properties, magnetic properties, and volatile release patterns. The simulant is initially being designed for NASA agricultural studies, but applications include studies of habitability, toxicity, and in-situ resource utilization, among others. Through a partnership with Deep Space Industries we intend to produce industrial quantities of Mars Global from consistently maintained feedstocks, making it available to researchers, engineers, and educators.

  18. Simulation of the early Martian climate using a general circulation model, DRAMATIC MGCM: Impacts of thermal inertia

    NASA Astrophysics Data System (ADS)

    Kamada, A.; Kuroda, T.; Kasaba, Y.; Terada, N.; Akiba, T.

    2017-09-01

    Our Mars General Circulation Model was used to reproduce the early Martian climate which was thought to be warm and wet. Our simulation with high thermal inertia assuming wet soils and ancient ocean/lakes succeeded in producing the surface temperature above 273K throughout a year in low-mid latitudes of northern hemisphere.

  19. Martian atmospheric gravity waves simulated by a high-resolution general circulation model

    NASA Astrophysics Data System (ADS)

    Kuroda, Takeshi; Yiǧit, Erdal; Medvedev, Alexander S.; Hartogh, Paul

    2016-07-01

    Gravity waves (GWs) significantly affect temperature and wind fields in the Martian middle and upper atmosphere. They are also one of the observational targets of the MAVEN mission. We report on the first simulations with a high-resolution general circulation model (GCM) and present a global distributions of small-scale GWs in the Martian atmosphere. The simulated GW-induced temperature variances are in a good agreement with available radio occultation data in the lower atmosphere between 10 and 30 km. For the northern winter solstice, the model reveals a latitudinal asymmetry with stronger wave generation in the winter hemisphere and two distinctive sources of GWs: mountainous regions and the meandering winter polar jet. Orographic GWs are filtered upon propagating upward, and the mesosphere is primarily dominated by harmonics with faster horizontal phase velocities. Wave fluxes are directed mainly against the local wind. GW dissipation in the upper mesosphere generates a body force per unit mass of tens of m s^{-1} per Martian solar day (sol^{-1}), which tends to close the simulated jets. The results represent a realistic surrogate for missing observations, which can be used for constraining GW parameterizations and validating GCMs.

  20. Photosynthetic Activity and Adaptation Capacities of Lichens and Cyanobacteria to Martian Surface Conditions

    NASA Astrophysics Data System (ADS)

    De Vera, Jean-Pierre; Schulze-Makuch, D.; Khan, A.; Lorek, A.; Koncz, A.; Stivaletta, N.; Möhlmann, D.; Spohn, T.

    2012-05-01

    We observed an increase in photosynthetic activity in the lichen Pleopsidium chlorophanum but a strong negative effect on the photosynthetic activity of endolithic cyanobacteria when subjected for 34 days to environmental stresses likely to be encountered in semi-protected habitats on the Martian surface. Stresses were simulated in a Mars Simulation Chamber (MSC) and included high UV fluxes, low temperatures, low water activity, high atmospheric CO2 concentrations, and an atmospheric pressure of about 6 mbar. P. chlorophanum is an extremophile: it lives in very cold, dry, high-altitude habitats which are Earth's best approximation of the Martian surface. Our lichen samples came from North Victoria Land in Antarctica whereas the investigated samples of cyanobacteria came from tropic regions in the Sahara. Three samples of each group of organisms were exposed uninterruptedly to simulated conditions (as above) of the naked, unprotected Martian surface for 34 days, receiving the full Martian solar spectrum (200 - 2500 nm) for a cumulative UV dose of 6343.6 kJm-2. For a second sample set - containing also three lichen thalli and three endolithic cyanobacteria communities - the cumulative (34-day) UV dose was reduced to 268.8 kJm-2, to reasonably simulate the amount the microorganisms might receive in (semi-) protected surface sites (e.g., fissures, cracks and micro-caves within rocks or permafrost soil). In the 'unprotected' experiment it was unclear if the lichen was still actively photosynthesizing but still clear that the cyanobacteria were affected. However, under 'protected site' conditions, the cyanobacteria had no clear photosynthetic response under and after simulated Martian conditions but the lichen not only survived and remained photosynthetically active, it even adapted physiologically by increasing its photosynthetic activity over 34 days. Comparison with other Mars simulation experiments on exposure platforms in space and in the laboratory with other investigated species show results of remarkable survival rates and maintained photosynthesizing activity which strongly supports the interconnected notions (1) that terrestrial life most likely can adapt physiologically to live on Mars (hence justifying stringent measures to prevent human activities from contaminating/infecting Mars with terrestrial organisms); (2) that in searching for extant life on Mars we should focus on "protected" habitats; and (3) that early-originating (Noachian Period) indigenous Martian life might still survive in such habitats despite Mars' cooling and drying during the last 4 billion years.

  1. Radiation Beamline Testbeds for the Simulation of Planetary and Spacecraft Environments for Human and Robotic Mission Risk Assessment

    NASA Technical Reports Server (NTRS)

    Wilkins, Richard

    2010-01-01

    The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the international space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Medical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materials. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scientific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technology, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.

  2. Radiation beamline testbeds for the simulation of planetary and spacecraft environments for human and robotic mission risk assessment

    NASA Astrophysics Data System (ADS)

    Wilkins, Richard

    The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the inter-national space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Med-ical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materi-als. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scien-tific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technol-ogy, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.

  3. The Charged Particle Environment on the Surface of Mars induced by Solar Energetic Particles - Five Years of Measurements with the MSL/RAD instrument

    NASA Astrophysics Data System (ADS)

    Ehresmann, B.; Hassler, D.; Zeitlin, C.; Guo, J.; Lee, C. O.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Brinza, D. E.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.

    2017-12-01

    NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale crater on the surface of Mars for five years. On board MSL, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights on its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. However, on shorter time scales the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the modulating effect of the Martian atmosphere shape and intensity of these SEP spectra will differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface during SEP activity from the five years of MSL operations on Mars. The presented results incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. Furthermore, we compare the MSL/RAD SEP-induced fluxes to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit. Analyzing changes of SEP intensities from interplanetary space to the Martian surface gives insight into the modulating effect of the Martian atmosphere, while comparing timing profiles of SEP events between Mars and different points in interplanetary space can increase our understanding of SEP propagation in the heliosphere.

  4. Emission of hydrogen energetic neutral atoms from the Martian subsolar magnetosheath

    NASA Astrophysics Data System (ADS)

    Wang, X.-D.; Alho, M.; Jarvinen, R.; Kallio, E.; Barabash, S.; Futaana, Y.

    2016-01-01

    We have simulated the hydrogen energetic neutral atom (ENA) emissions from the subsolar magnetosheath of Mars using a hybrid model of the proton plasma charge exchanging with the Martian exosphere to study statistical features revealed from the observations of the Neutral Particle Detectors on Mars Express. The simulations reproduce well the observed enhancement of the hydrogen ENA emissions from the dayside magnetosheath in directions perpendicular to the Sun-Mars line. Our results show that the neutralized protons from the shocked solar wind are the dominant ENA population rather than those originating from the pickup planetary ions. The simulation also suggests that the observed stronger ENA emissions in the direction opposite to the solar wind convective electric field result from a stronger proton flux in the same direction at the lower magnetosheath; i.e., the proton fluxes in the magnetosheath are not cylindrically symmetric. We also confirm the observed increasing of the ENA fluxes with the solar wind dynamical pressure in the simulations. This feature is associated with a low altitude of the induced magnetic boundary when the dynamic pressure is high and the magnetosheath protons can reach to a denser exosphere, and thus, the charge exchange rate becomes higher. Overall, the analysis suggests that kinetic effects play an important and pronounced role in the morphology of the hydrogen ENA distribution and the plasma environment at Mars, in general.

  5. Path selection system simulation and evaluation for a Martian roving vehicle

    NASA Technical Reports Server (NTRS)

    Boheim, S. L.; Prudon, W. C.

    1972-01-01

    The simulation and evaluation of proposed path selection systems for an autonomous Martian roving vehicle was developed. The package incorporates a number of realistic features, such as the simulation of random effects due to vehicle bounce and sensor-reading uncertainty, to increase the reliability of the results. Qualitative and quantitative evaluation criteria were established. The performance of three different path selection systems was evaluated to determine the effectiveness of the simulation package, and to form some preliminary conclusions regarding the tradeoffs involved in a path selection system design.

  6. UV irradiation experiments under simulated martian surface conditions: Bio-effects on glycine, phage T7 and isolated T7 DNA

    NASA Astrophysics Data System (ADS)

    Bérces, Attila; ten Kate, I. L.; Fekete, A.; Hegedus, M.; Garry, J. R. C.; Lammer, Helmut; Ehrenfreund, Pascale; Peeters, Zan; Kovacs, G.; Ronto, G.

    Mars is considered as a main target for astrobiologically relevant exploration programmes. In order to explain the non-detection of organic material to a detection level of several parts per billion (ppb) by the Viking landers, several hypotheses have been suggested, including degradation processes occurring on the martian surface and in the martian soil and subsurface. UV exposure experiments have been performed in which thin layers of glycine ( 300 nm), and aqueous suspensions of phage T7 and isolated T7 DNA were irradiated with a Deuterium lamp and for comparison with a Xenon arc lamp, modified to simulate the solar irradiation on the surface of Mars (MarsUV). The glycine sample was subjected to 24 hours of irradiation with MarsUV. The results of this glycine experiment show a destruction rate comparable to the results of previous experiments in which thin layers of glycine were irradiated with a deuterium lamp (ten Kate et al., 2005, 2006). After exposure of different doses of simulated Martian UV radiation a decrease of the biological activity of phages and characteristic changes in the UV absorption spectrum have been detected, indicating the UV damage of isolated and intraphage T7 DNA. The results of our experiments show that intraphage DNA is 4 times more sensitive to simulated martian UV and deuterium lamp radiation than isolated T7 DNA. This result indicates the significant role that phage proteins play in the UV damage. The effect of simulated martian radiation is smaller than the biological defects observed after the exposure with a deuterium lamp for both cases, in intraphage and isolated DNA, despite of the 100 times larger intensity of the MarsUV lamp. The detected spectral differences are about ten times smaller; the biological activity is about 3 - 4 times smaller, indicating that the shorter wavelength UV radiation from the deuterium lamp is more effective in inducing DNA damage, irrespective of being intraphage or isolated.

  7. Pax: A permanent base for human habitation of Mars

    NASA Technical Reports Server (NTRS)

    Moore, Gary T.; Rebholz, Patrick J.; Fieber, Joseph P.; Huebner-Moths, Janis; Paruleski, Kerry L.

    1992-01-01

    The Advanced Design Program in Space Architecture at the University of Wisconsin-Milwaukee supported the synthesis report and two of its scenarios - 'Architecture 1' and 'Architecture 4' - and the Weaver ExPO report on near-term extraterrestrial explorations during the spring of 1992. The project investigated the implications of different mission scenarios, the Martian environment, supporting technologies, and especially human factors and environment-behavior considerations for the design of the first permanent Martian base. This paper presents the results of that investigation. The paper summarizes site selection, development of habitability design requirements based on environment-behavior research, construction sequencing, and a full concept design and design development for a first permanent Martian base and habitat. The proposed design is presented in terms of an integrative mission scenario and master plan phased through initial operational configuration, base site plan, and design development details of a complete Martian habitat for 18 crew members including all laboratory, mission control, and crew support spaces.

  8. Intercomparison of Martian Lower Atmosphere Simulated Using Different Planetary Boundary Layer Parameterization Schemes

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Fairlie, T. Duncan; Dwyer Cianciolo, Alicia; Smith, Michael D.

    2015-01-01

    We use the mesoscale modeling capability of Mars Weather Research and Forecasting (MarsWRF) model to study the sensitivity of the simulated Martian lower atmosphere to differences in the parameterization of the planetary boundary layer (PBL). Characterization of the Martian atmosphere and realistic representation of processes such as mixing of tracers like dust depend on how well the model reproduces the evolution of the PBL structure. MarsWRF is based on the NCAR WRF model and it retains some of the PBL schemes available in the earth version. Published studies have examined the performance of different PBL schemes in NCAR WRF with the help of observations. Currently such assessments are not feasible for Martian atmospheric models due to lack of observations. It is of interest though to study the sensitivity of the model to PBL parameterization. Typically, for standard Martian atmospheric simulations, we have used the Medium Range Forecast (MRF) PBL scheme, which considers a correction term to the vertical gradients to incorporate nonlocal effects. For this study, we have also used two other parameterizations, a non-local closure scheme called Yonsei University (YSU) PBL scheme and a turbulent kinetic energy closure scheme called Mellor- Yamada-Janjic (MYJ) PBL scheme. We will present intercomparisons of the near surface temperature profiles, boundary layer heights, and wind obtained from the different simulations. We plan to use available temperature observations from Mini TES instrument onboard the rovers Spirit and Opportunity in evaluating the model results.

  9. Molecular emission in laser-induced breakdown spectroscopy: An investigation of its suitability for chlorine quantification on Mars

    NASA Astrophysics Data System (ADS)

    Vogt, D. S.; Rammelkamp, K.; Schröder, S.; Hübers, H. W.

    2018-03-01

    The intensity of the molecular CaCl emission in LIBS spectra is examined in order to evaluate its suitability for the detection of chlorine in a Martian environment. Various mixtures resembling Martian targets with varying Cl content are investigated under simulated Martian conditions. The reactions leading to the formation of CaCl are modeled based on reaction kinetics and are used to fit the measured CaCl band intensities. MgCl bands are also investigated as potential alternatives to CaCl, but no MgCl bands can be identified in samples containing both Mg and Cl. The study confirms that CaCl is well suited for the indirect detection of chlorine, but finds a strong dependence on the concentrations of Ca and Cl in the sample. Spectra from samples with a high chlorine concentration can have low-intensity CaCl emission due to a deficiency of Ca. A qualitative estimate of the sample composition is possible based on the ratio of the band intensity of CaCl to the intensity of Ca emission lines. Time-resolved measurements show that the CaCl concentration in the plasma is highest after about 1 μs.

  10. Supercritical Carbon Dioxide Extraction of Coronene in the Presence of Perchlorate for In Situ Chemical Analysis of Martian Regolith.

    PubMed

    McCaig, Heather C; Stockton, Amanda; Crilly, Candice; Chung, Shirley; Kanik, Isik; Lin, Ying; Zhong, Fang

    2016-09-01

    The analysis of the organic compounds present in the martian regolith is essential for understanding the history and habitability of Mars, as well as studying the signs of possible extant or extinct life. To date, pyrolysis, the only technique that has been used to extract organic compounds from the martian regolith, has not enabled the detection of unaltered native martian organics. The elevated temperatures required for pyrolysis extraction can cause native martian organics to react with perchlorate salts in the regolith and possibly result in the chlorohydrocarbons that have been detected by in situ instruments. Supercritical carbon dioxide (SCCO2) extraction is an alternative to pyrolysis that may be capable of delivering unaltered native organic species to an in situ detector. In this study, we report the SCCO2 extraction of unaltered coronene, a representative polycyclic aromatic hydrocarbon (PAH), from martian regolith simulants, in the presence of 3 parts per thousand (ppth) sodium perchlorate. PAHs are a class of nonpolar molecules of astrobiological interest and are delivered to the martian surface by meteoritic infall. We also determined that the extraction efficiency of coronene was unaffected by the presence of perchlorate on the regolith simulant, and that no sodium perchlorate was extracted by SCCO2. This indicates that SCCO2 extraction can provide de-salted samples that could be directly delivered to a variety of in situ detectors. SCCO2 was also used to extract trace native fluorescent organic compounds from the martian regolith simulant JSC Mars-1, providing further evidence that SCCO2 extraction may provide an alternative to pyrolysis to enable the delivery of unaltered native organic compounds to an in situ detector on a future Mars rover. Biomarkers-Carbon dioxide-In situ measurement-Mars-Search for Mars' organics. Astrobiology 16, 703-714.

  11. Lighting Condition Analysis for Mars Moon Phobos

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; De Carufel, Guy

    2016-01-01

    A manned mission to Phobos may be an important precursor and catalyst for the human exploration of Mars, as it will fully demonstrate the technologies for a successful Mars mission. A comprehensive understanding of Phobos' environment such as lighting condition and gravitational acceleration are essential to the mission success. The lighting condition is one of many critical factors for landing zone selection, vehicle power subsystem design, and surface mobility vehicle path planning. Due to the orbital characteristic of Phobos, the lighting condition will change dramatically from one Martian season to another. This study uses high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, the Earth, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos' state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting condition over one Martian year are presented in this paper, which include length of solar eclipse, average solar radiation intensity, surface exposure time, total maximum solar energy, and total surface solar energy (constrained by incident angle). The results show that Phobos' solar eclipse time changes throughout the Martian year with the maximum eclipse time occurring during the Martian spring and fall equinox and no solar eclipse during the Martian summer and winter solstice. Solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice. Total surface exposure time is longer near the north pole and around the anti- Mars point. Total maximum solar energy is larger around the anti-Mars point. Total surface solar energy is higher around the anti-Mars point near the equator. The results from this study and others like it will be important in determining landing site selection, vehicle system design and mission operations for the human exploration of Phobos and subsequently Mars.

  12. Survivability and growth kinetics of methanogenic archaea at various pHs and pressures: Implications for deep subsurface life on Mars

    NASA Astrophysics Data System (ADS)

    Sinha, Navita; Nepal, Sudip; Kral, Timothy; Kumar, Pradeep

    2017-02-01

    Life as we know it requires liquid water and sufficient liquid water is highly unlikely on the surface of present-day Mars. However, according to thermal models there is a possibility of liquid water in the deep subsurface of Mars. Thus, the martian subsurface, where the pressure and temperature is higher, could potentially provide a hospitable environment for a biosphere. Also, methane has been detected in the Mars' atmosphere. Analogous to Earth's atmospheric methane, martian methane could also be biological in origin. The carbon and energy sources for methanogenesis in the subsurface of Mars could be available by downwelling of atmospheric CO2 into the regolith and water-rock reactions such as serpentinization, respectively. Corresponding analogs of the martian subsurface on Earth might be the active sites of serpentinization at depths where methanogenic thermophilic archaea are the dominant species. Methanogens residing in Earth's hydrothermal environments are usually exposed to a variety of physiological stresses including a wide range of pressures, temperatures, and pHs. Martian geochemical models imply that the pH of probable groundwater varies from 4.96 to 9.13. In this work, we used the thermophilic methanogen, Methanothermobacter wolfeii, which grows optimally at 55oC. Therefore, a temperature of 55oC was chosen for these experiments, possibly simulating Mars' subsurface temperature. A martian geophysical model suggests depth and pressure corresponding to a temperature of 55 °C would be between 1-30 km and 100-3,000 atm respectively. Here, we have simulated Mars deep subsurface pH, pressure, and temperature conditions and have investigated the survivability, growth rate, and morphology of M. wolfeii after exposure to a wide range of pH 5-9) and pressure (1-1200 atm) at a temperature of 55 °C. Interestingly, in this study we have found that M. wolfeii was able to survive at all the pressures and pHs tested at 55 °C. In order to understand the effect of different pHs and pressures on the metabolic activities of M. wolfeii, we also calculated their growth rate by measuring methane concentration in the headspace gas samples at regular intervals. In acidic conditions, the growth rate (γ) of M. wolfeii increased with the increase in pressure. In neutral and alkaline conditions, the growth rate (γ) of M. wolfeii initially increased with pressure, but decreased upon further increase of pressure. To investigate the effect of combined pH, pressure, and temperature on the morphology of M. wolfeii, we took phase contrast images of the cells. We did not find any obvious significant alteration in the morphology of M. wolfeii cells. Methanogens, chemolithoautotrophic anaerobic microorganisms, are considered as ideal model microorganisms for Mars. In light of research presented here, we suggest that at least one methanogen, M. wolfeii, could survive in the deep subsurface environment of Mars.

  13. The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight.

    PubMed

    Nicholson, Wayne L; Schuerger, Andrew C; Setlow, Peter

    2005-04-01

    The environment in space and on planets such as Mars can be lethal to microorganisms because of the high vacuum and high solar radiation flux, in particular UV radiation, in such environments. Spores of various Bacillus species are among the organisms most resistant to the lethal effects of high vacuum and UV radiation, and as a consequence are of major concern for planetary contamination via unmanned spacecraft or even natural processes. This review focuses on the spores of various Bacillus species: (i) their mechanisms of UV resistance; (ii) their survival in unmanned spacecraft, space flight and simulated space flight and Martian conditions; (iii) the UV flux in space and on Mars; (iv) factors affecting spore survival in such high UV flux environments.

  14. An experimental study to support the search for organics at Mars

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Stalport, Fabien; Noblet, Audrey; Szopa, Cyril; Coll, Patrice

    2012-07-01

    Several evidences suggest that early Mars offered favorable conditions for long-term sustaining water. As a consequence, we can assume that processes related to prebiotic chemistry, and even the emergence of life, may have occurred on early Mars. In those days, organic matter may have been widespread on Mars, due to exogenous delivery from small bodies, or endogenous chemical processes. The search for these organic relics is one of the main objectives of Mars exploration missions to come. But for about 3 Gy, due to the harsh environmental conditions of the Mars surface (UV radiation, oxidants etc.), the inventory of organic compounds at the current surface or subsurface of Mars may have been narrowed. Two major questions raised by this putative evolution are: What is the evolution pattern of organics in the Martian environment? What types of molecules would have been preserved, and if so, in which conditions? We address these questions using an experimental device dedicated to simulate the processes susceptible to have an effect on organic matter in the current environmental conditions of the Mars surface and subsurface. This experimental setup is part of a project called MOMIE, for Mars Organic Molecules Irradiation and Evolution. We study the evolution of some of the most likely molecular compounds potentially synthesized or brought to Mars (amino acids, hydrocarbons, nucleobases etc.). Nanometers thin deposits of a molecular compound or of a mineral in which the molecular compound has been embedded are allowed to evolve at mean Martian pressure and temperature, under a UV radiation environment similar to the Martian one. Qualitative and quantitative changes of the sample are monitored during the simulation, especially using infrared spectroscopy. We will present and compare the evolution of several organics submitted to these conditions. These experiments will provide essential insights to guide and discuss in situ analyses at Mars, particularly during the upcoming exploration of Gale Crater by Curiosity, the rover of the NASA Mars Science Laboratory mission.

  15. Isolation of rpoB mutations causing rifampicin resistance in Bacillus subtilis spores exposed to simulated Martian surface conditions.

    PubMed

    Perkins, Amy E; Schuerger, Andrew C; Nicholson, Wayne L

    2008-12-01

    ABSTRACT Bacterial spores are considered prime candidates for Earth-to-Mars transport by natural processes and human spaceflight activities. Previous studies have shown that exposure of Bacillus subtilis spores to ultrahigh vacuum (UHV) characteristic of space both increased the spontaneous mutation rate and altered the spectrum of mutation in various marker genes; but, to date, mutagenesis studies have not been performed on spores exposed to milder low pressures encountered in the martian environment. Mutations to rifampicin-resistance (Rif(R)) were isolated in B. subtilis spores exposed to simulated martian atmosphere (99.9% CO(2), 710 Pa) for 21 days in a Mars Simulation Chamber (MSC) and compared to parallel Earth controls. Exposure in the MSC reduced spore viability by approximately 67% compared to Earth controls, but this decrease was not statistically significant (P = 0.3321). The frequency of mutation to Rif(R) was also not significantly increased in the MSC compared to Earth-exposed spores (P = 0.479). Forty-two and 51 Rif(R) mutant spores were isolated from the MSC- and Earth-exposed controls, respectively. Nucleotide sequencing located the Rif(R) mutations in the rpoB gene encoding the beta subunit of RNA polymerase at residue V135F of the N-cluster and at residues Q469K/L, H482D/P/R/Y, and S487L in Cluster I. No mutations were found in rpoB Clusters II or III. Two new alleles, Q469L and H482D, previously unreported in B. subtilis rpoB, were isolated from spores exposed in the MSC; otherwise, only slight differences were observed in the spectra of spontaneous Rif(R) mutations from spores exposed to Earth vs. the MSC. However, both spectra are distinctly different from Rif(R) mutations previously reported arising from B. subtilis spores exposed to simulated space vacuum.

  16. Variability of the Martian thermospheric temperatures during the last 7 Martian Years

    NASA Astrophysics Data System (ADS)

    Gonzalez-Galindo, Francisco; Lopez-Valverde, Miguel Angel; Millour, Ehouarn; Forget, François

    2014-05-01

    The temperatures and densities in the Martian upper atmosphere have a significant influence over the different processes producing atmospheric escape. A good knowledge of the thermosphere and its variability is thus necessary in order to better understand and quantify the atmospheric loss to space and the evolution of the planet. Different global models have been used to study the seasonal and interannual variability of the Martian thermosphere, usually considering three solar scenarios (solar minimum, solar medium and solar maximum conditions) to take into account the solar cycle variability. However, the variability of the solar activity within the simulated period of time is not usually considered in these models. We have improved the description of the UV solar flux included on the General Circulation Model for Mars developed at the Laboratoire de Météorologie Dynamique (LMD-MGCM) in order to include its observed day-to-day variability. We have used the model to simulate the thermospheric variability during Martian Years 24 to 30, using realistic UV solar fluxes and dust opacities. The model predicts and interannual variability of the temperatures in the upper thermosphere that ranges from about 50 K during the aphelion to up to 150 K during perihelion. The seasonal variability of temperatures due to the eccentricity of the Martian orbit is modified by the variability of the solar flux within a given Martian year. The solar rotation cycle produces temperature oscillations of up to 30 K. We have also studied the response of the modeled thermosphere to the global dust storms in Martian Year 25 and Martian Year 28. The atmospheric dynamics are significantly modified by the global dust storms, which induces significant changes in the thermospheric temperatures. The response of the model to the presence of both global dust storms is in good agreement with previous modeling results (Medvedev et al., Journal of Geophysical Research, 2013). As expected, the simulated ionosphere is also sensitive to the variability of the solar activity. Acknowledgemnt: Francisco González-Galindo is funded by a CSIC JAE-Doc contract financed by the European Social Fund

  17. Considerations Concerning the Development and Testing of In-situ Materials for Martian Exploration

    NASA Technical Reports Server (NTRS)

    Kim, M.-H. Y.; Heilbronn, L.; Thibeault, S. A.; Simonsen, L. C.; Wilson, J. W.; Chang, K.; Kiefer, R. L.; Maahs, H. G.

    2000-01-01

    Natural Martian surface materials are evaluated for their potential use as radiation shields for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley s HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To make structural shielding composite materials from constituents of the Mars atmosphere and from Martian regolith for Martian surface habitats, schemes for synthesizing polyimide from the Mars atmosphere and for processing Martian regolith/polyimide composites are proposed. Theoretical predictions of the shielding properties of these composites are computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties enhances the shielding properties of these composites because of the added hydrogenous constituents. Laboratory testing of regolith simulant/polyimide composites is planned to validate this prediction.

  18. Aeolian Erosion on Mars - a New Threshold for Saltation

    NASA Astrophysics Data System (ADS)

    Teiser, J.; Musiolik, G.; Kruss, M.; Demirci, T.; Schrinski, B.; Daerden, F.; Smith, M. D.; Neary, L.; Wurm, G.

    2017-12-01

    The Martian atmosphere shows a large variety of dust activity, ranging from local dust devils to global dust storms. Also, sand motion has been observed in form of moving dunes. The dust entrainment into the Martian atmosphere is not well understood due to the small atmospheric pressure of only a few mbar. Laboratory experiments on Earth and numerical models were developed to understand these processes leading to dust lifting and saltation. Experiments so far suggested that large wind velocities are needed to reach the threshold shear velocity and to entrain dust into the atmosphere. In global circulation models this threshold shear velocity is typically reduced artificially to reproduce the observed dust activity. Although preceding experiments were designed to simulate Martian conditions, no experiment so far could scale all parameters to Martian conditions, as either the atmospheric or the gravitational conditions were not scaled. In this work, a first experimental study of saltation under Martian conditions is presented. Martian gravity is reached by a centrifuge on a parabolic flight, while pressure (6 mbar) and atmospheric composition (95% CO2, 5% air) are adjusted to Martian levels. A sample of JSC 1A (grain sizes from 10 - 100 µm) was used to simulate Martian regolith. The experiments showed that the reduced gravity (0.38 g) not only affects the weight of the dust particles, but also influences the packing density within the soil and therefore also the cohesive forces. The measured threshold shear velocity of 0.82 m/s is significantly lower than the measured value for 1 g in ground experiments (1.01 m/s). Feeding the measured value into a Global Circulation Model showed that no artificial reduction of the threshold shear velocity might be needed to reproduce the global dust distribution in the Martian atmosphere.

  19. Mars: Past, Present, and Future. Results from the MSATT Program, part 1

    NASA Technical Reports Server (NTRS)

    Haberle, R. M. (Editor)

    1993-01-01

    This volume contains papers that were accepted for presentation at the workshop on Mars: Past, Present, and Future -- Results from the MSATT Program. Topics include, but are not limited to: Martian impact craters; thermal emission measurements of Hawaiian palagonitic soils with implications for Mars; thermal studies of the Martian surface; Martian atmospheric composition studies; temporal and spatial mapping of Mars' atmospheric dust opacity and surface albedo; studies of atmospheric dust from Viking IR thermal mapper data; the distribution of Martian ground ice at other epochs; numerical simulation of thermally induced near-surface flows over Martian terrain; the pH of Mars; the mineralogic evolution of the Martian surface through time; geologic controls of erosion and sedimentation on Mars; and dielectric properties of Mars' surface: proposed measurement on a Mars Lander.

  20. Mars Greenhouse Experiment Module: An Experiment to Grow Flowers on Mars

    NASA Technical Reports Server (NTRS)

    MacCallum, T. K.; Poynter, J. E.; McKay, C. P.

    2000-01-01

    NASA has entered a new phase of in-depth exploration of the planets where robotic exploration of the Solar System is focusing on in-situ missions that pave the way for human exploration. Creating a human presence on Mars will require specialized knowledge and experience concerning the Martian environment and validated technologies that will provide life-supporting consumables. An understanding of the response of terrestrial organisms to the Martian environment with respect to potential deleterious effects on crew health and changes to biological processes will be paramount. In response to these challenges an innovative selfcontained flight experiment is proposed, which is designed to assess the biocompatibility of the Martian environment by germinating seeds and following their growth through to flowering. The experiment, dubbed Mars Greenhouse Experiment Module (Mars GEM), will be accomplished in a sealed pressurized growth chamber or 'Mars Greenhouse'. Seeds will be grown in Martian soil and the Mars Greenhouse will provide ultraviolet-radiation protected, thermal-controlled environment for plant growth that actively controls the CO2 (required nutrient) and O2 (generated by the plants) levels in the chamber. The simple, but visually dramatic, demonstration of the potential to grow a plant in a man-made environment on the surface of Mars should establish a strong connection between current robotic missions and future human habitation on Mars.

  1. Sulphur Spring: Busy Intersection and Possible Martian Analogue

    NASA Technical Reports Server (NTRS)

    Nankivell, A.; Andre, N.; Thomas-Keprta, K.; Allen, C.; McKay, D.

    2000-01-01

    Life in extreme environments exhibiting conditions similar to early Earth and Mars, such as Sulphur Spring, may harbor microbiota serving as both relics from the past as well as present day Martian analogues.

  2. The Antarctic dry valley lakes: Relevance to Mars

    NASA Technical Reports Server (NTRS)

    Wharton, R. A., Jr.; Mckay, Christopher P.; Mancinelli, Rocco L.; Clow, G. D.; Simmons, G. M., Jr.

    1989-01-01

    The similarity of the early environments of Mars and Earth, and the biological evolution which occurred on early Earth, motivates exobiologists to seriously consider the possiblity of an early Martian biota. Environments are being identified which could contain Martian life and areas which may presently contain evidence of this former life. Sediments which were thought to be deposited in large ice-covered lakes are present on Mars. Such localities were identified within some of the canyons of the Valles Marineris and more recently in the ancient terrain in the Southern Hemisphere. Perennially ice-covered Antarctic lakes are being studied in order to develop quantitative models that relate environmental factors to the nature of the biological community and sediment forming processes. These models will be applied to the Martian paleolakes to establish the scientific rationale for the exobiological study of ancient Martian sediments.

  3. Covariant C and O Isotope Trends in Some Terrestrial Carbonates and ALH 84001: Possible Linkage Through Similar Formation Processes

    NASA Technical Reports Server (NTRS)

    Volk, Kathryn E.; Niles, Paul B.; Socki, Richard A.

    2011-01-01

    Carbonate minerals found on the surface of Mars and in martian meteorites indicate that liquid water has played a significant role in the planet's history. These findings have raised questions regarding the history of the martian hydrosphere and atmosphere as well as the possibility of life. Sunset Crater, Arizona is a dry environment with relatively high evaporation and brief periods of precipitation. This environment resembles Mars and may make Sunset Crater a good analog to martian carbonates. In this study we sought to identify discrete micro-scale isotopic variation within the carbonate crusts in Sunset Crater to see if they resembled the micro-scale isotope variation found in ALH 84001 carbonates. Sunset Crater carbonate formation may be used as a martian analog and ultimately provide insight into carbonate formation in ALH 84001.

  4. Seasonal and diurnal variations in Martian surface ultraviolet irradiation: biological and chemical implications for the Martian regolith

    NASA Astrophysics Data System (ADS)

    Patel, M. R.; Bérces, A.; Kolb, C.; Lammer, H.; Rettberg, P.; Zarnecki, J. C.; Selsis, F.

    2003-01-01

    The issue of the variation of the surface ultraviolet (UV) environment on Mars was investigated with particular emphasis being placed on the interpretation of data in a biological context. A UV model has been developed to yield the surface UV irradiance at any time and place over the Martian year. Seasonal and diurnal variations were calculated and dose rates evaluated. Biological interpretation of UV doses is performed through the calculation of DNA damage effects upon phage T7 and Uracil, used as examples for biological dosimeters. A solar UV "hotspot" was revealed towards perihelion in the southern hemisphere, with a significant damaging effect upon these species. Diurnal profiles of UV irradiance are also seen to vary markedly between aphelion and perihelion. The effect of UV dose is also discussed in terms of the chemical environment of the Martian regolith, since UV irradiance can reach high enough levels so as to have a significant effect upon the soil chemistry. We show, by assuming that H2O is the main source of hydrogen in the Martian atmosphere, that the stoichiometrically desirable ratio of 2:1 for atmospheric H and O loss rates to space are not maintained and at present the ratio is about 20:1. A large planetary oxygen surface sink is therefore necessary, in contrast with escape to space. This surface oxygen sink has important implications for the oxidation potential and the toxicology of the Martian soil. UV-induced adsorption of O_{2}^{-} super-radicals plays an important role in the oxidative environment of the Martian surface, and the biologically damaging areas found in this study are also shown to be regions of high subsurface oxidation. Furthermore, we briefly cover the astrobiological implications for landing sites that are planned for future Mars missions

  5. Experimental Simulations to Understand the Lunar and Martian Surficial Processes

    NASA Astrophysics Data System (ADS)

    Zhao, Y. Y. S.; Li, X.; Tang, H.; Li, Y.; Zeng, X.; Chang, R.; Li, S.; Zhang, S.; Jin, H.; Mo, B.; Li, R.; Yu, W.; Wang, S.

    2016-12-01

    In support with China's Lunar and Mars exploration programs and beyond, our center is dedicated to understand the surficial processes and environments of planetary bodies. Over the latest several years, we design, build and optimize experimental simulation facilities and utilize them to test hypotheses and evaluate affecting mechanisms under controlled conditions particularly relevant to the Moon and Mars. Among the fundamental questions to address, we emphasize on five major areas: (1) Micrometeorites bombardment simulation to evaluate the formation mechanisms of np-Fe0 which was found in lunar samples and the possible sources of Fe. (2) Solar wind implantation simulation to evaluate the alteration/amorphization/OH or H2O formation on the surface of target minerals or rocks. (3) Dusts mobility characteristics on the Moon and other planetary bodies by excitation different types of dust particles and measuring their movements. (4) Mars basaltic soil simulant development (e.g., Jining Martian Soil Simulant (JMSS-1)) and applications for scientific/engineering experiments. (5) Halogens (Cl and Br) and life essential elements (C, H, O, N, P, and S) distribution and speciation on Mars during surficial processes such as sedimentary- and photochemical- related processes. Depending on the variables of interest, the simulation systems provide flexibility to vary source of energy, temperature, pressure, and ambient gas composition in the reaction chambers. Also, simulation products can be observed or analyzed in-situ by various analyzer components inside the chamber, without interrupting the experimental conditions. In addition, behavior of elements and isotopes during certain surficial processes (e.g., evaporation, dissolution, etc.) can be theoretically predicted by our theoretical geochemistry group with thermodynamics-kinetics calculation and modeling, which supports experiment design and result interpretation.

  6. Overview of the Martian radiation environment experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitlin, C.; Cleghorn, T.F.; Cucinotta, F.A.

    Space radiation presents a hazard to astronauts, particularly those journeying outside the protective influence of the geomagnetosphere. Crews on future missions to Mars will be exposed to the harsh radiation environment of deep space during the transit between Earth and Mars. Once on Mars, they will encounter radiation that is only slightly reduced, compared to free space, by the thin Martian atmosphere. NASA is obliged to minimize, where possible, the radiation exposures received by astronauts. Thus, as a precursor to eventual human exploration, it is necessary to measure the Martian radiation environment in detail. The MARIE experiment, aboard the 2001more » Mars Odyssey spacecraft, is returning the first data that bear directly on this problem. Here we provide an overview of the experiment, including introductory material on space radiation and radiation dosimetry, a description of the detector, model predictions of the radiation environment at Mars, and preliminary dose-rate data obtained at Mars.« less

  7. The charged particle radiation environment on Mars measured by MSL/RAD from November 15, 2015 to January 15, 2016.

    PubMed

    Ehresmann, Bent; Zeitlin, Cary J; Hassler, Donald M; Matthiä, Daniel; Guo, Jingnan; Wimmer-Schweingruber, Robert F; Appel, Jan K; Brinza, David E; Rafkin, Scot C R; Böttcher, Stephan I; Burmeister, Sönke; Lohf, Henning; Martin, Cesar; Böhm, Eckart; Reitz, Günther

    2017-08-01

    The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory (MSL) Curiosity rover has been measuring the radiation environment in Gale crater on Mars since August, 2012. These first in-situ measurements provide an important data set for assessing the radiation-associated health risks for future manned missions to Mars. Mainly, the radiation field on the Martian surface stems from Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. RAD is capable of measuring differential particle fluxes for lower-energy ions and isotopes of hydrogen and helium (up to hundreds of MeV/nuc). Additionally, RAD also measures integral particle fluxes for higher energies of these ions. Besides providing insight on the current Martian radiation environment, these fluxes also present an essential input for particle transport codes that are used to model the radiation to be encountered during future manned missions to Mars. Comparing simulation results with actual ground-truth measurements helps to validate these transport codes and identify potential areas of improvements in the underlying physics of these codes. At the First Mars Radiation Modeling Workshop (June 2016 in Boulder, CO), different groups of modelers were asked to calculate the Martian surface radiation environment for the time of November 15, 2015 to January 15, 2016. These model results can then be compared with in-situ measurements of MSL/RAD conducted during the same time frame. In this publication, we focus on presenting the charged particle fluxes measured by RAD between November 15, 2015 and January 15, 2016, providing the necessary data set for the comparison to model outputs from the modeling workshop. We also compare the fluxes to initial GCR intensities, as well as to RAD measurements from an earlier time period (August 2012 to January 2013). Furthermore, we describe how changes and updates in RAD on board processing and the on ground analysis tools effect and improve the flux calculations. An in-depth comparison of modeling results from the workshop and RAD fluxes of this publication is presented elsewhere in this issue (Matthiä et al., 2017). Copyright © 2017 The Committee on Space Research (COSPAR). All rights reserved.

  8. Nighttime Convection, Temperature Inversions, and Diurnal Variations at Low Altitudes in the Martian Tropics

    NASA Astrophysics Data System (ADS)

    Hinson, D. P.; Haberle, R. M.; Spiga, A.; Tellmann, S.; Paetzold, M.; Asmar, S. W.; Haeusler, B.

    2014-07-01

    We are using radio occultation measurements and numerical simulations to explore the atmospheric structure and diurnal variations in the lowest few scale heights of the martian atmosphere, with emphasis on nighttime convective layers.

  9. Amino acid racemization on Mars: implications for the preservation of biomolecules from an extinct martian biota

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; McDonald, G. D.; Miller, S. L. (Principal Investigator)

    1995-01-01

    Using kinetic data, we have estimated the racemization half-lives and times for total racemization of amino acids under conditions relevant to the surface of Mars. Amino acids from an extinct martian biota maintained in a dry, cold (<250 K) environment would not have racemized significantly over the lifetime of the planet. Racemization would have taken place in environments where liquid water was present even for time periods of only a few million years following biotic extinction. The best preservation of both amino acid homochirality and nucleic acid genetic information associated with extinct martian life would be in the polar regions.

  10. Evidence from Olivine-Hosted Melt Inclusions that the Martian Mantle has a Chondritic D/H Ratio and that Some Young Basalts have Assimilated Old Crust

    NASA Technical Reports Server (NTRS)

    Usui, Tomohiro; Alexander, O'D.; Wang, J.; Simon, J. I.; Jones, J. H.

    2012-01-01

    Magmatic degassing of volatile elements affects the climate and near-surface environment of Mars. Telescopic and meteorite studies have revealed that the Martian atmosphere and near-surface materials have D/H ratios 5-6 times terrestrial values [e.g., 1, 2]. Such high D/H ratios are interpreted to result from the preferential loss of H relative to heavier D from the Martian atmosphere, assuming that the original Martian water inventory had a D/H ratio similar to terrestrial values and to H in primitive meteorites [e.g., 1, 3]. However, the primordial Martian D/H ratio has, until now, not been well constrained. The uncertainty over the Martian primordial D/H ratio has arisen both from the scarcity of primitive Martian meteorites and as a result of contamination by terrestrial and, perhaps, Martian surface waters that obscure the signature of the Martian mantle. This study reports a comprehensive dataset of magmatic volatiles and D/H ratios in Martian primary magmas based on low-contamination, in situ ion microprobe analyses of olivine-hosted melt inclusions from both depleted [Yamato 980459 (Y98)] and enriched [Larkman Nunatak 06319 (LAR06)] Martian basaltic meteorites. Analyses of these primitive melts provide definitive evidence that the Martian mantle has retained a primordial D/H ratio and that young Martian basalts have assimilated old Martian crust.

  11. Pulmonary toxicity of simulated lunar and Martian dusts in mice: I. Histopathology 7 and 90 days after intratracheal instillation

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-Wing; James, John T.; McCluskey, Richard; Cowper, Shawn; Balis, John; Muro-Cacho, Carlos

    2002-01-01

    NASA is contemplating sending humans to Mars and to the moon for further exploration. Volcanic ashes from Arizona and Hawaii with mineral properties similar to those of lunar and Martian soils, respectively, are used to simulate lunar and Martian environments for instrument testing. Martian soil is highly oxidative; this property is not found in Earth's volcanic ashes. NASA is concerned about the health risk from potential exposure of workers in the test facilities. Fine lunar soil simulant (LSS), Martian soil simulant (MSS), titanium dioxide, or quartz in saline was intratracheally instilled into groups of 4 mice (C57BL/6J) at 0.1 mg/mouse (low dose, LD) or 1 mg/mouse (high dose, HD). Separate groups of mice were exposed to ozone (0.5 ppm for 3 h) prior to MSS instillation. Lungs were harvested for histopathological examination 7 or 90 days after the single dust treatment. The lungs of the LSS-LD groups showed no evidence of inflammation, edema, or fibrosis; clumps of particles and an increased number of macrophages were visible after 7 days but not 90 days. In the LSS-HD-7d group, the lungs showed mild to moderate alveolitis, and perivascular and peribronchiolar inflammation. The LSS-HD-90d group showed signs of mild chronic pulmonary inflammation, septal thickening, and some fibrosis. Foci of particle-laden macrophages (PLMs) were still visible. Lung lesions in the MSS-LD-7d group were similar to those observed in the LSS-HD-7d group. The MSS-LD-90d group had PLMs and scattered foci of mild fibrosis in the lungs. The MSS-HD-7d group showed large foci of PLMs, intra-alveolar debris, mild-to-moderate focal alveolitis, and perivascular and peribronchiolar inflammation. The MSS-HD-90d group showed focal chronic mild-to-moderate alveolitis and fibrosis. The findings in the O(3)-MSS-HD-90d group included widespread intra-alveolar debris, focal moderate alveolitis, and fibrosis. Lung lesions in the MSS groups were more severe with the ozone pretreatment. The effects of O(3) and MSS coexposure appeared to be more than additive. Results for the TiO(2) and quartz controls were consistent with the known pulmonary toxicity of these compounds. The overall severity of lung injury was TiO(2) < LSS < MSS < O(3) + MSS < quartz. Except for TiO(2), the increased duration of dust presence in the lung from 7 to 90 days transformed the acute inflammatory response to a chronic inflammatory lesion. This study showed that LSS and MSS are more hazardous in the lungs than nuisance dusts.

  12. Implantation of Martian Materials in the Inner Solar System by a Mega Impact on Mars

    NASA Astrophysics Data System (ADS)

    Hyodo, Ryuki; Genda, Hidenori

    2018-04-01

    Observations and meteorites indicate that the Martian materials are enigmatically distributed within the inner solar system. A mega impact on Mars creating a Martian hemispheric dichotomy and the Martian moons can potentially eject Martian materials. A recent work has shown that the mega-impact-induced debris is potentially captured as the Martian Trojans and implanted in the asteroid belt. However, the amount, distribution, and composition of the debris has not been studied. Here, using hydrodynamic simulations, we report that a large amount of debris (∼1% of Mars’ mass), including Martian crust/mantle and the impactor’s materials (∼20:80), are ejected by a dichotomy-forming impact, and distributed between ∼0.5–3.0 au. Our result indicates that unmelted Martian mantle debris (∼0.02% of Mars’ mass) can be the source of Martian Trojans, olivine-rich asteroids in the Hungarian region and the main asteroid belt, and some even hit the early Earth. The evidence of a mega impact on Mars would be recorded as a spike of 40Ar–39Ar ages in meteorites. A mega impact can naturally implant Martian mantle materials within the inner solar system.

  13. Endolithic microbial model for Martian exobiology: The road to extinction

    NASA Technical Reports Server (NTRS)

    Oscampo-Friedmann, R.; Friedmann, E. I.

    1991-01-01

    Martian exobiology is based on the assumption that on early Mars, liquid water was present and that conditions were suitable for the evolution of life. The cause for life to disappear from the surface and the recognizable fingerprints of past microbial activity preserved on Mars are addressed. The Antarctic cryptoendolithic microbial ecosystem as a model for extinction in the deteriorating Martian environment is discussed.

  14. The Martian surface radiation environment - a comparison of models and MSL/RAD measurements

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Ehresmann, Bent; Lohf, Henning; Köhler, Jan; Zeitlin, Cary; Appel, Jan; Sato, Tatsuhiko; Slaba, Tony; Martin, Cesar; Berger, Thomas; Boehm, Eckart; Boettcher, Stephan; Brinza, David E.; Burmeister, Soenke; Guo, Jingnan; Hassler, Donald M.; Posner, Arik; Rafkin, Scot C. R.; Reitz, Günther; Wilson, John W.; Wimmer-Schweingruber, Robert F.

    2016-03-01

    Context: The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) has been measuring the radiation environment on the surface of Mars since August 6th 2012. MSL-RAD is the first instrument to provide detailed information about charged and neutral particle spectra and dose rates on the Martian surface, and one of the primary objectives of the RAD investigation is to help improve and validate current radiation transport models. Aims: Applying different numerical transport models with boundary conditions derived from the MSL-RAD environment the goal of this work was to both provide predictions for the particle spectra and the radiation exposure on the Martian surface complementing the RAD sensitive range and, at the same time, validate the results with the experimental data, where applicable. Such validated models can be used to predict dose rates for future manned missions as well as for performing shield optimization studies. Methods: Several particle transport models (GEANT4, PHITS, HZETRN/OLTARIS) were used to predict the particle flux and the corresponding radiation environment caused by galactic cosmic radiation on Mars. From the calculated particle spectra the dose rates on the surface are estimated. Results: Calculations of particle spectra and dose rates induced by galactic cosmic radiation on the Martian surface are presented. Although good agreement is found in many cases for the different transport codes, GEANT4, PHITS, and HZETRN/OLTARIS, some models still show large, sometimes order of magnitude discrepancies in certain particle spectra. We have found that RAD data is helping to make better choices of input parameters and physical models. Elements of these validated models can be applied to more detailed studies on how the radiation environment is influenced by solar modulation, Martian atmosphere and soil, and changes due to the Martian seasonal pressure cycle. By extending the range of the calculated particle spectra with respect to the experimental data additional information about the radiation environment is gained, and the contribution of different particle species to the dose is estimated.

  15. Evidence that the reactivity of the martian soil is due to superoxide ions

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Kim, S. S.; Hecht, M. H.; Frant, M. S.; Murray, B.

    2000-01-01

    The Viking Landers were unable to detect evidence of life on Mars but, instead, found a chemically reactive soil capable of decomposing organic molecules. This reactivity was attributed to the presence of one or more as-yet-unidentified inorganic superoxides or peroxides in the martian soil. Using electron paramagnetic resonance spectroscopy, we show that superoxide radical ions (O2-) form directly on Mars-analog mineral surfaces exposed to ultraviolet radiation under a simulated martian atmosphere. These oxygen radicals can explain the reactive nature of the soil and the apparent absence of organic material at the martian surface.

  16. Mars Spark Source Prototype Developed

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; VanderWal, Randall L.; Weiland, Karen J.

    2000-01-01

    The Mars Spark Source Prototype (MSSP) hardware was developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample, and detectors measure the optical emission from metals in the plasma to identify and quantify them. Trace metal measurements are vital in assessing whether or not the Martian environment will be toxic to human explorers. The current method of x-ray fluorescence can yield concentrations of major species only. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The new instrument will be developed primarily for use in the Martian environment, but it would be adaptable for terrestrial use in environmental monitoring. The NASA Glenn Research Center at Lewis Field initiated the development of the MSSP as part of Glenn's Director's Discretionary Fund project for the Spark Analysis Detection of Trace Metal Species in Martian Dusts and Soils. The objective of this project is to develop and demonstrate a compact, sensitive optical instrument for the detection of trace hazardous metals in Martian dusts and soils.

  17. Radio Wave Propagation Handbook for Communication on and Around Mars

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Golshan, Nasser; Kliore, Arvydas

    2002-01-01

    This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.

  18. Near-Mars space

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Brace, L. H.

    1991-05-01

    The prevalent attributes of near-Mars space are described: the ambient interplanetary environment, the ionosphere, the upper atmosphere, and more remote regions that are affected by the presence of Mars. The descriptions are based on existing Martian data and/or models constructed from measurements made near Venus. Specific attention is given to the features of solar wind interaction with magnetospheric and ionospheric obstacles. The high-altitude plasma and field environment, the energetic particle environment, the ionosphere environment, and the neutral upper atmosphere environment are described with extensive graphic information, based on existing measurements collected from nine Martian missions. The ionospheric obstacle is assumed to prevail as a mechanism for describing the scenario. Martian perturbation of solar wind is theorized to be of a relatively small order. A distinctive local energetic particle population of planetary origin is shown to result from the direct interaction of solar wind plasma. This phenomenon is considered evidence of the important scavenging of planetary elements from Mars. The absence of a planetary dipole field around Mars, like its low gravity and distance from the sun, is considered important in determining the environment of this earthlike laboratory.

  19. Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Mancinelli, Rocco L.; Kern, Roger G.; Rothschild, Lynn J.; McKay, Christopher P.

    2003-01-01

    Experiments were conducted in a Mars simulation chamber (MSC) to characterize the survival of endospores of Bacillus subtilis under high UV irradiation and simulated martian conditions. The MSC was used to create Mars surface environments in which pressure (8.5 mb), temperature (-80, -40, -10, or +23 degrees C), gas composition (Earth-normal N2/O2 mix, pure N2, pure CO2, or a Mars gas mix), and UV-VIS-NIR fluence rates (200-1200 nm) were maintained within tight limits. The Mars gas mix was composed of CO2 (95.3%), N2 (2.7%), Ar (1.7%), O2 (0.2%), and water vapor (0.03%). Experiments were conducted to measure the effects of pressure, gas composition, and temperature alone or in combination with Mars-normal UV-VIS-NIR light environments. Endospores of B. subtilis, were deposited on aluminum coupons as monolayers in which the average density applied to coupons was 2.47 x 10(6) bacteria per sample. Populations of B. subtilis placed on aluminum coupons and subjected to an Earth-normal temperature (23 degrees C), pressure (1013 mb), and gas mix (normal N2/O2 ratio) but illuminated with a Mars-normal UV-VIS-NIR spectrum were reduced by over 99.9% after 30 sec exposure to Mars-normal UV fluence rates. However, it required at least 15 min of Mars-normal UV exposure to reduce bacterial populations on aluminum coupons to non-recoverable levels. These results were duplicated when bacteria were exposed to Mars-normal environments of temperature (-10 degrees C), pressure (8.5 mb), gas composition (pure CO2), and UV fluence rates. In other experiments, results indicated that the gas composition of the atmosphere and the temperature of the bacterial monolayers at the time of Mars UV exposure had no effects on the survival of bacterial endospores. But Mars-normal pressures (8.5 mb) were found to reduce survival by approximately 20-35% compared to Earth-normal pressures (1013 mb). The primary implications of these results are (a) that greater than 99.9% of bacterial populations on sun-exposed surfaces of spacecraft are likely to be inactivated within a few tens of seconds to a few minutes on the surface of Mars, and (b) that within a single Mars day under clear-sky conditions bacterial populations on sun-exposed surfaces of spacecraft will be sterilized. Furthermore, these results suggest that the high UV fluence rates on the martian surface can be an important resource in minimizing the forward contamination of Mars. c2003 Elsevier Inc. All rights reserved.

  20. Searching for life on Mars: degradation of surfactant solutions used in organic extraction experiments.

    PubMed

    Court, Richard W; Sims, Mark R; Cullen, David C; Sephton, Mark A

    2014-09-01

    Life-detection instruments on future Mars missions may use surfactant solutions to extract organic matter from samples of martian rocks. The thermal and radiation environments of space and Mars are capable of degrading these solutions, thereby reducing their ability to dissolve organic species. Successful extraction and detection of biosignatures on Mars requires an understanding of how degradation in extraterrestrial environments can affect surfactant performance. We exposed solutions of the surfactants polysorbate 80 (PS80), Zonyl FS-300, and poly[dimethylsiloxane-co-[3-(2-(2-hydroxyethoxy)ethoxy)propyl]methylsiloxane] (PDMSHEPMS) to elevated radiation and heat levels, combined with prolonged storage. Degradation was investigated by measuring changes in pH and electrical conductivity and by using the degraded solutions to extract a suite of organic compounds spiked onto grains of the martian soil simulant JSC Mars-1. Results indicate that the proton fluences expected during a mission to Mars do not cause significant degradation of surfactant compounds. Solutions of PS80 or PDMSHEPMS stored at -20 °C are able to extract the spiked standards with acceptable recovery efficiencies. Extraction efficiencies for spiked standards decrease progressively with increasing temperature, and prolonged storage at 60°C renders the surfactant solutions ineffective. Neither the presence of ascorbic acid nor the choice of solvent unequivocally alters the efficiency of extraction of the spiked standards. Since degradation of polysorbates has the potential to produce organic compounds that could be mistaken for indigenous martian organic matter, the polysiloxane PDMSHEPMS may be a superior choice of surfactant for the exploration of Mars.

  1. Aspicilia fruticulosa: A new model for Astrobiology

    NASA Astrophysics Data System (ADS)

    Sánchez Iñigo, Fco. Javier; de La Torre Noetzel, Rosa; Martinez-Frias, Jesus; Mateo Mart, Eva; Horneck, Gerda

    In order to avoid the technological constraints that prevent the performance of experiments in other planets, Astrobiology research implies the development of models that simulate the conditions present in outer space or in planetary bodies. Extremophile organisms, like lichens have been widely studied in Astrobiology due to their high resistance to extremely harsh envi-ronments(5). The vagrant lichen species, Aspicilia fruticulosa lives detached from the substrate, and has a coralloid thalli up to 2.5 cm, which provides a very compact internal structure(6). This species typically grows in deserts and arid areas. Its resistance has been tested several times and amazing results about their vitality have been obtained. Two main experiments have been per-formed: 1. LITHOPANSPERMIA experiment(1): Integrated on board of BIOPAN (multi-user exposure facility, designed for exobiology, radiation biology, radiation dosimetry and material science investigations in space (http://www.spaceflight.esa.int/users/index.cfm?act=default.pagelevel=11p foton-next-pay-Bpan) launched on the Foton M3 satellite in September 2007); the resistance of this lichen species to the combination of the following space conditions during 10 days was tested: Ultraviolet (UV) extraterrestrial radiation, Mars UV-climate, UV-B radiation and Photosynthetically Active Radiation (PAR), microgravity, space vacuum of 1x10-6 mbar and extreme temperatures ranging from -23o C to +16o C. After the flight, the samples were revital-ized for a 72h period in a climatic chamber before taking measurements of their photosynthetic activity with a Mini-PAM fluorometer (Heinz Walz GmbH) as described by R. de la Torre et al. 2007b (2). The results showed that the samples exposed to space environment except solar UV radiation, reached a 76.5-1002. A step further on these investigations was carried out in order to study how the viability of this lichen species were affected by a combination of different sim-ulated martian conditions. For this purpose, we used an environmental simulation chamber(4) placed at the CAB (Centro de Astrobiologé to reproduce martian conditions. Three different ıa) exposures, each of them during 80 hours, were performed: a) martian atmosphere (7mbar of atmospheric pressure, with a standard concentration of martian surface gases) and tempera-ture (-93o C); b) martian UV radiation (200-400nm), temperature(-93o C) and space vacuum (1x10-7 mbar); c) combination of martian UV radiation (200-400nm), atmosphere (7mbar of atmospheric pressure) and temperature (-93o C). A set of 8 samples were located on two levels: exposure level (L-1) and dark control level (L-2). A general tendence was observed: all the samples survived. The analysis of the results compared to the pre-simulation data showed: a) photosynthetic activity decreased (74 References: 1 R. DE LA TORRE (2009): Likelihood of interplanetary transfer of rock-inhabiting microbial communities: Results from the space experiment Lithopanspermia. Icarus. Under revision 2 R. DE LA TORRE, L.G. SANCHO, A. PINTADO, P. RETTBERG, E. RABBOW, C. PANITZ, U. DEUTSCHMANN, M. REINA, G. HORNECK (2007b): BIOPAN experi-ment LICHENS on the Foton M2 mission: Pre-flight verification tests of the Rhizocarpon geographicum-granite ecosystem. Advances in Space Research. Volume 40, Issue 11, 2007, Pages 1665-1671 3 G. HORNECK (1994): Exobiology, the study of the origin, evolution and distribution of life within the context of cosmic evolution: a review. Planetary and Space Science. 1995 Jan-Feb; 43(1-2):189-217 4 E. MATEO MARTé et al. (2006): A chamber for I studying planetary environments and its applications to astrobiology. Measurement science technology. 2006, vol. 17, no8, pp. 2274-2280 5 L.G. SANCHO, R. de la TORRE A. PIN-TADO (2009): Lichens, new and promising material from experiments in astrobiology. Fungal Biology Reviews. Volume 22, Issues 3-4, Aug-Nov 2008, Pages 103-109 6 L.G. SANCHO, B. SCHROETER R. DEL PRADO (2000): Ecophysiology and morphology of the globular erratic lichen Aspicilia fruticulosa (EVERSM.) FLAG. from Central Spain. Bibliotheca Lichenologica. Band 75, Pages 137-147

  2. Comment on Mars as the Parent Body of the CI Carbonaceous Chondrites by J. E. Brandenburg

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1996-01-01

    Geological and chemical data refute a martian origin for the CI carbonaceous chondrites. Here, I will first consider Brandenburg's [1996] proposal that the CI's formed as water-deposited sediments on Mars, and that these sediments had limited chemical interactions with their martian environment. Finally, I will address oxygen isotope ratios, the strongest link between the CIs and the martian meteorites.

  3. The planetary hydraulics analysis based on a multi-resolution stereo DTMs and LISFLOOD-FP model: Case study in Mars

    NASA Astrophysics Data System (ADS)

    Kim, J.; Schumann, G.; Neal, J. C.; Lin, S.

    2013-12-01

    Earth is the only planet possessing an active hydrological system based on H2O circulation. However, after Mariner 9 discovered fluvial channels on Mars with similar features to Earth, it became clear that some solid planets and satellites once had water flows or pseudo hydrological systems of other liquids. After liquid water was identified as the agent of ancient martian fluvial activities, the valley and channels on the martian surface were investigated by a number of remote sensing and in-suit measurements. Among all available data sets, the stereo DTM and ortho from various successful orbital sensor, such as High Resolution Stereo Camera (HRSC), Context Camera (CTX), and High Resolution Imaging Science Experiment (HiRISE), are being most widely used to trace the origin and consequences of martian hydrological channels. However, geomorphological analysis, with stereo DTM and ortho images over fluvial areas, has some limitations, and so a quantitative modeling method utilizing various spatial resolution DTMs is required. Thus in this study we tested the application of hydraulics analysis with multi-resolution martian DTMs, constructed in line with Kim and Muller's (2009) approach. An advanced LISFLOOD-FP model (Bates et al., 2010), which simulates in-channel dynamic wave behavior by solving 2D shallow water equations without advection, was introduced to conduct a high accuracy simulation together with 150-1.2m DTMs over test sites including Athabasca and Bahram valles. For application to a martian surface, technically the acceleration of gravity in LISFLOOD-FP was reduced to the martian value of 3.71 m s-2 and the Manning's n value (friction), the only free parameter in the model, was adjusted for martian gravity by scaling it. The approach employing multi-resolution stereo DTMs and LISFLOOD-FP was superior compared with the other research cases using a single DTM source for hydraulics analysis. HRSC DTMs, covering 50-150m resolutions was used to trace rough routes of water flows for extensive target areas. After then, refinements through hydraulics simulations with CTX DTMs (~12-18m resolution) and HiRISE DTMs (~1- 4m resolution) were conducted by employing the output of HRSC simulations as the initial conditions. Thus even a few high and very high resolution stereo DTMs coverage enabled the performance of a high precision hydraulics analysis for reconstructing a whole fluvial event. In this manner, useful information to identify the characteristics of martian fluvial activities, such as water depth along the time line, flow direction, and travel time, were successfully retrieved with each target tributary. Together with all above useful outputs of hydraulics analysis, the local roughness and photogrammetric control of the stereo DTMs appeared to be crucial elements for accurate fluvial simulation. The potential of this study should be further explored for its application to the other extraterrestrial bodies where fluvial activity once existed, as well as the major martian channel and valleys.

  4. Robust and Elastic Lunar and Martian Structures from 3D-Printed Regolith Inks

    NASA Astrophysics Data System (ADS)

    Jakus, Adam E.; Koube, Katie D.; Geisendorfer, Nicholas R.; Shah, Ramille N.

    2017-03-01

    Here, we present a comprehensive approach for creating robust, elastic, designer Lunar and Martian regolith simulant (LRS and MRS, respectively) architectures using ambient condition, extrusion-based 3D-printing of regolith simulant inks. The LRS and MRS powders are characterized by distinct, highly inhomogeneous morphologies and sizes, where LRS powder particles are highly irregular and jagged and MRS powder particles are rough, but primarily rounded. The inks are synthesized via simple mixing of evaporant, surfactant, and plasticizer solvents, polylactic-co-glycolic acid (30% by solids volume), and regolith simulant powders (70% by solids volume). Both LRS and MRS inks exhibit similar rheological and 3D-printing characteristics, and can be 3D-printed at linear deposition rates of 1-150 mm/s using 300 μm to 1.4 cm-diameter nozzles. The resulting LRS and MRS 3D-printed materials exhibit similar, but distinct internal and external microstructures and material porosity (~20-40%). These microstructures contribute to the rubber-like quasi-static and cyclic mechanical properties of both materials, with young’s moduli ranging from 1.8 to 13.2 MPa and extension to failure exceeding 250% over a range of strain rates (10-1-102 min-1). Finally, we discuss the potential for LRS and MRS ink components to be reclaimed and recycled, as well as be synthesized in resource-limited, extraterrestrial environments.

  5. Fire Safety in Extraterrestrial Environments

    NASA Technical Reports Server (NTRS)

    Friedman, Robert

    1998-01-01

    Despite rigorous fire-safety policies and practices, fire incidents are possible during lunar and Martian missions. Fire behavior and hence preventive and responsive safety actions in the missions are strongly influenced by the low-gravity environments in flight and on the planetary surfaces. This paper reviews the understanding and key issues of fire safety in the missions, stressing flame spread, fire detection, suppression, and combustion performance of propellants produced from Martian resources.

  6. Radiation protection using Martian surface materials in human exploration of Mars

    NASA Technical Reports Server (NTRS)

    Kim, M. H.; Thibeault, S. A.; Wilson, J. W.; Heilbronn, L.; Kiefer, R. L.; Weakley, J. A.; Dueber, J. L.; Fogarty, T.; Wilkins, R.

    2001-01-01

    To develop materials for shielding astronauts from the hazards of GCR, natural Martian surface materials are considered for their potential as radiation shielding for manned Mars missions. The modified radiation fluences behind various kinds of Martian rocks and regolith are determined by solving the Boltzmann equation using NASA Langley's HZETRN code along with the 1977 Solar Minimum galactic cosmic ray environmental model. To develop structural shielding composite materials for Martian surface habitats, theoretical predictions of the shielding properties of Martian regolith/polyimide composites has been computed to assess their shielding effectiveness. Adding high-performance polymer binders to Martian regolith to enhance structural properties also enhances the shielding properties of these composites because of the added hydrogenous constituents. Heavy ion beam testing of regolith simulant/polyimide composites is planned to validate this prediction. Characterization and proton beam tests are performed to measure structural properties and to compare the shielding effects on microelectronic devices, respectively.

  7. Laboratory Investigations of Physical State of CO2 Ice on Mars

    NASA Astrophysics Data System (ADS)

    Portyankina, G.; Merrison, J.; Iversen, J. J.; Yoldi, Z.; Hansen, C. J.; Aye, K.-M.; Pommeroll, A.

    2016-09-01

    We used Environmental Wind Tunnel to simulate CO2 ice condensation under the conditions of the martian polar areas. We find that under conditions usual for martian fall and winter, CO2 ice always deposits from atmosphere as a translucent slab.

  8. Saltation under Martian gravity and its influence on the global dust distribution

    NASA Astrophysics Data System (ADS)

    Musiolik, Grzegorz; Kruss, Maximilian; Demirci, Tunahan; Schrinski, Björn; Teiser, Jens; Daerden, Frank; Smith, Michael D.; Neary, Lori; Wurm, Gerhard

    2018-05-01

    Dust and sand motion are a common sight on Mars. Understanding the interaction of atmosphere and Martian soil is fundamental to describe the planet's weather, climate and surface morphology. We set up a wind tunnel to study the lift of a mixture between very fine sand and dust in a Mars simulant soil. The experiments were carried out under Martian gravity in a parabolic flight. The reduced gravity was provided by a centrifuge under external microgravity. The onset of saltation was measured for a fluid threshold shear velocity of 0.82 ± 0.04 m/s. This is considerably lower than found under Earth gravity. In addition to a reduction in weight, this low threshold can be attributed to gravity dependent cohesive forces within the sand bed, which drop by 2/3 under Martian gravity. The new threshold for saltation leads to a simulation of the annual dust cycle with a Mars GCM that is in agreement with observations.

  9. Corrosion on Mars: An Investigation of Corrosion Mechanisms Under Relevant Simulated Martian Environments

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Johansen, Michael R.; Buhrow, Jerry W.; Calle, Carlos I.

    2017-01-01

    This one-year project was selected by NASA's Science Innovation Fund in FY17 to address Corrosion on Mars which is a problem that has not been addressed before. Corrosion resistance is one of the most important properties in selecting materials for landed spacecraft and structures that will support surface operations for the human exploration of Mars. Currently, the selection of materials is done by assuming that the corrosion behavior of a material on Mars will be the same as that on Earth. This is understandable given that there is no data regarding the corrosion resistance of materials in the Mars environment. However, given that corrosion is defined as the degradation of a metal that results from its chemical interaction with the environment, it cannot be assumed that corrosion is going to be the same in both environments since they are significantly different. The goal of this research is to develop a systematic approach to understand corrosion of spacecraft materials on Mars by conducting a literature search of available data, relevant to corrosion in the Mars environment, and by performing preliminary laboratory experiments under relevant simulated Martian conditions. This project was motivated by the newly found evidence for the presence of transient liquid brines on Mars that coincided with the suggestion, by a team of researchers, that some of the structural degradation observed on Curiosity's wheels may be caused by corrosive interactions with the brines, while the most significant damage was attributed to rock scratching. An extensive literature search on data relevant to Mars corrosion confirmed the need for further investigation of the interaction between materials used for spacecraft and structures designed to support long-term surface operations on Mars. Simple preliminary experiments, designed to look at the interaction between an aerospace aluminum alloy (AA7075-T73) and the gases present in the Mars atmosphere, at 20degC and a pressure of 700 Pa, showed that there is an interaction between the small amount of oxygen present in the Mars gas and the alloy when there is a scratch that removes the protective aluminum oxide film. Further studies are needed to consider many other important components of the Mars environment that can affect this interaction such as: the effect of oxidants, the effect of radiation on their oxidizing properties and the possible catalytic effects of the clays present in the Martian regolith. The results of this one-year project provide strong justification for further investigation of the corrosion mechanism of materials relevant to long-term surface operations in support of future human exploration missions on Mars.

  10. Europlanet Research Infrastructure: Planetary Simulation Facilities

    NASA Astrophysics Data System (ADS)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of pressures and temperatures and through provision of external UV light and or electrical discharge can be used to form the well known Titan Aerosol species, which can subsequently be analysed using one of several analytical techniques (UV-Vis, FTIR and mass spectrometry). Simulated surfaces can be produced (icy surfaces down to 15K) and subjected to a variety of light and particles (electron and ion) sources. Chemical and physical changes in the surface may be explored using remote spectroscopy. Planetary Simulation chamber for low density atmospheres INTA-CAB The planetary simulation chamber-ultra-high vacuum equipment (PSC-UHV) has been designed to study planetary surfaces and low dense atmospheres, space environments or any other hypothetic environment at UHV. Total pressure ranges from 7 mbar (Martian conditions) to 5x10-9 mbar. A residual gas analyzer regulates gas compositions to ppm precision. Temperature ranges from 4K to 325K and most operations are computer controlled. Radiation levels are simulated using a deuterium UV lamp, and ionization sources. 5 KV electron and noble-gas discharge UV allows measurement of IR and UV spectra and chemical compositions are determined by mass spectroscopy. Planetary Simulation chamber for high density planetary atmospheres at INTA-CAB The facility allows experimental study of planetary environments under high pressure, and was designed to include underground, seafloor and dense atmosphere environments. Analytical capabilities include Raman spectra, physicochemical properties of materials, e.a. thermal conductivity. P-T can be controlled as independent variables to allow monitoring of the tolerance of microorganisms and the stability of materials and their phase changes. Planetary Simulation chamber for icy surfaces at INTA-CAB This chamber is being developed to the growth of ice samples to simulate the chemical and physical properties of ices found on both planetary bodies and their moons. The goal is to allow measurement of the physical properties of ice samples formed under planetary conditions to assess how rheology varies with pressure and temperature and grain size to gain a far better understanding of how tectonics may operate on icy moons. Hot planetary surfaces simulation chamber at DLR The planetary simulation chamber is to study the behaviour of planetary analogue materials on the surface of hot (airless) bodies in the solar system. Samples can be heated up to temperatures of 500°C simulating conditions found on the surface of Mercury and Venus. This enables highly accurate thermal emission measurements using the integrated infrared spectrometer and calibrated sources. Thermal gradients can be applied to samples to simulate diurnal thermal cycles and examine thermal stresses in materials. The chamber can be placed under vacuum or purged with gas. In addition, to the high temperature chamber a number of further planetary simulation chambers are available equipped with LIBS and Raman-spectroscopy equipment. Dust analogue simulation chamber at INAF/OACN This facility produces and characterises dust analogues (arc discharge, laser ablation, grinding of minerals, ices) in a variety of simulation chambers under variable pressure (10-6 - 10-3 mbar), temperature (80 - 330 K) and gas composition. Dust and analogues are characterised by a variety of Spectroscopic (absorption, transmission, diffuse-specular reflectance) and imaging techniques (SEM) and can be subjected to thermal annealing, ion bombardment and UV irradiation. Dust accelerator facility at Max Planck Institüt Nuclear Physics, Heidelberg. This facility allows the investigation of hypervelocity dust impacts onto various materials. Dust grain materials from nano to micron sizes are accelerated using a 2 MV Vande- Graaff to velocities between 1 and 60 km/s comparable to the planetary rings of the giant gas planets and impact ejecta processes on the surface of small bodies (asteroids, comets) as well as moons and planetary surfaces. Potential phenomena for study include dust charging, dust magentosphere interactions, dust impact flashes and the possibility of obtaining compositional measurements of impact plasma plumes. Mars surface simulation Laboratory, Aberystwyth University. A Planetary Analogue Terrain Laboratory facilitates comprehensive mission operations emulation experiments designed to interpret and maximise scientific data return from robotic instruments. This facility includes Mars Soil Simulant and `science target' rocks that have been fully characterised. The terrain also has an area for sub-surface sampling. An Access Grid Node allows simulation of remote control operation and diminishes the need for direct onsite attendance. PAT Lab has a large selection of software tools for rover, robot arm and instrument modelling and simulation, and for the processing and visualisation of captured instrument data. Instrument motion is measured using a Vicon motion capture system with a resolution < 0.1 mm. Dusty wind tunnel at Aarhus University, Denmark The Aarhus wind tunnel simulates wind driven dust exposure on Mars. This allows study into analogue materials, dust/surface processes, meteorological condition and microbiological survival under Martian conditions. The multipurpose facility is used to quantify dust deposition (i.e. on optical surfaces, electrical or mechanical components) and examine the operation of instrumentation in dusty/windy environment under Martian conditions (pressure, gas composition & temperature). This includes calibration of wind flow instrumentation and dust sensors.

  11. Calibrating the ChemCam LIBS for Carbonate Minerals on Mars

    DOE R&D Accomplishments Database

    Wiens, Roger C.; Clegg, Samuel M.; Ollila, Ann M.; Barefield, James E.; Lanza, Nina; Newsom, Horton E.

    2009-01-01

    The ChemCam instrument suite on board the NASA Mars Science Laboratory (MSL) rover includes the first LIBS instrument for extraterrestrial applications. Here we examine carbonate minerals in a simulated martian environment using the LIDS technique in order to better understand the in situ signature of these materials on Mars. Both chemical composition and rock type are determined using multivariate analysis (MVA) techniques. Composition is confirmed using scanning electron microscopy (SEM) techniques. Our initial results suggest that ChemCam can recognize and differentiate between carbonate materials on Mars.

  12. Fate of Earth Microbes on Mars: UV Radiation Effects

    NASA Technical Reports Server (NTRS)

    Cockell, Charles

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment. Biological action spectra for DNA inactivation are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Although the present-day martian UV flux is similar to early earth and thus may not be a limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Here calculations for loss of microbial viability on the Pathfinder and Polar lander spacecraft are presented and the effects of martian dust on loss of viability are discussed. Details of the radiative transfer model are presented.

  13. Fate of Earth Microbes on Mars -- UV Radiation Effects

    NASA Technical Reports Server (NTRS)

    Cockell, Charles

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment. Biological action spectra for DNA inactivation are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Although the present-day martian UV flux is similar to early earth and thus may not be a limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Here calculations for loss of microbial viability on the Pathfinder and Polar lander spacecraft are presented and the effects of martian dust on loss of viability are discussed. Details of the radiative transfer model are presented.

  14. Overview of the Martian radiation environment experiment

    NASA Technical Reports Server (NTRS)

    Zeitlin, C.; Cleghorn, T.; Cucinotta, F.; Saganti, P.; Andersen, V.; Lee, K.; Pinsky, L.; Atwell, W.; Turner, R.; Badhwar, G.

    2004-01-01

    Space radiation presents a hazard to astronauts, particularly those journeying outside the protective influence of the geomagnetosphere. Crews on future missions to Mars will be exposed to the harsh radiation environment of deep space during the transit between Earth and Mars. Once on Mars, they will encounter radiation that is only slightly reduced, compared to free space, by the thin Martian atmosphere. NASA is obliged to minimize, where possible, the radiation exposures received by astronauts. Thus, as a precursor to eventual human exploration, it is necessary to measure the Martian radiation environment in detail. The MARIE experiment, aboard the 2001 Mars Odyssey spacecraft, is returning the first data that bear directly on this problem. Here we provide an overview of the experiment, including introductory material on space radiation and radiation dosimetry, a description of the detector, model predictions of the radiation environment at Mars, and preliminary dose-rate data obtained at Mars. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  15. The potential of hydrodynamic analysis for the interpretation of Martian fluvial activities

    NASA Astrophysics Data System (ADS)

    Kim, Jungrack; Schumann, Guy; Neal, Jeffrey; Lin, Shih-Yuan

    2014-05-01

    After liquid water was identified as the agent of ancient Martian fluvial activities, the valley and channels on the Martian surface were investigated by a number of remote sensing and in-situ measurements. In particular, the stereo DTMs and ortho images from various successful orbital sensors are being effectively used to trace the origin and consequences of Martian hydrological channels. For instance, to analyze the Martian fluvial activities more quantitatively using the topographic products, Burr et al. (2003) employed 1D hydrodynamic models such as HEC-RAS together with the topography by MOLA to derive water flow estimates for the Athabasca Valles area on Mars [1]. Where extensive floodplain flows or detailed 2D bathymetry for the river channel exist, it may be more accurate to simulate flows in two dimensions, especially if the direction of flow is unclear a priori. Thus in this study we demonstrated a quantitative modeling method utilizing multi-resolution Martian DTMs, constructed in line with Kim and Muller's (2009) [2] approach, and an advanced hydraulics model LISFLOOD-FP (Bates et al., 2010) [3], which simulates in-channel dynamic wave behavior by solving for 2D shallow water equations without advection. Martian gravitation and manning constants were adjusted in the hydraulic model and the inflow values were iteratively refined from the outputs of the coarser to the finer model. Then we chose the target areas among Martian fluvial geomorphologies and tested the effectiveness of high resolution hydraulic modeling to retrieve the characteristics of fluvial systems. Test sites were established in the Athabasca Valles, Bahram Vallis, and Naktong Vallis respectively. Since those sites are proposed to be originated by different fluvial mechanisms, it is expected that the outputs from hydraulics modeling will provide important clues about the evolution of each fluvial system. Hydraulics modeling in the test areas with terrestrial simulation parameters was also conducted to explore the different characteristics of two planets' fluvial activities. Ultimately, this study proved the effectiveness of multi-resolution modeling using 150-1.2m DTMs and 2D hydraulics to study the Martian fluvial system. In future study, we will elaborate the hydrodynamic model to investigate the sediment transformation mechanism in Martian fluvial activities using hydrodynamic properties such as flow speed. References: [1] Burr, D.M. (2003).Hydraulic modelling of Athabasca Vallis, Mars. Hydrological Sciences Journal, 48(4), 655-664. [2] Kim, J.R. & Muller, J-P.,(2009).Multi resolution topographic data extraction from Martian stereo imagery.Planetary and Space Science. 57, 2095-2112. [3] Bates, P.D., Horritt, M.S., & Fewtrell, T.J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387(1), 33-45.

  16. Mars Observer Mission: Mapping the Martian World

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The 1992 Mars Observer Mission is highlighted in this video overview of the mission objectives and planning. Using previous photography and computer graphics and simulation, the main objectives of the 687 day (one Martian year) consecutive orbit by the Mars Observer Satellite around Mars are explained. Dr. Arden Albee, the project scientist, speaks about the pole-to-pole mapping of the Martian surface topography, the planned relief maps, the chemical and mineral composition analysis, the gravity fields analysis, and the proposed search for any Mars magnetic fields.

  17. Organic Adsorption Capacity of Aluminum for Potential Mars Sample Return Contamination Analysis

    NASA Astrophysics Data System (ADS)

    Skoog, E. J.; Tuite, M. L., Jr.; Williford, K. H.

    2017-12-01

    The NASA Mars 2020 rover will sample martian rock and regolith as it searches for biosignatures and chemical potential for life. Possible contamination of martian samples by Earth-derived organic and inorganic materials poses a challenge to the ultimate goal of determining whether features detected within samples are of martian origin. To address this issue, Mars 2020 will implement a contamination knowledge strategy that includes "witness blanks": special sample tubes that contain multiple "getter" materials designed to witness any ambient contamination in the environment during sampling events on Mars. One getter material being considered for use inside witness tubes is aluminum foil. Here we present data from a series of experiments to evaluate the capacity of aluminum foil to adsorb organics and release them by solvent extraction. Strips of clean aluminum foil were suspended in closed vials containing 0.15 mg of pyrene and heated to 50°C to provide a bounding case for ambient pyrene concentration. Another set of foil strips in vials was stored at -20°C to better simulate martian conditions. After ten weeks, these foil strips were exposed to pyrene at additive 15 minute increments to test the time dependence of pyrene adsorption at -20°C. Foil strips were removed from vials and subjected to solvent extraction gas chromatography mass spectrometry. Preliminary results suggest that the pyrene adsorption capacity of aluminum at 50°C is 1-10 ng/cm2 after 24 hours. Further research will test the adsorption capacity of aluminum at varying temperatures, varying times, and varying organic compositions.

  18. Space Weather at Mars: 3-D studies using one-way coupling between the Multi-fluid MHD, M-GITM and M-AMPS models

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei

    This dissertation presents numerical simulation results of the solar wind interaction with the Martian upper atmosphere by using three comprehensive 3-D models: the Mars Global Ionosphere Thermosphere Model (M-GITM), the Mars exosphere Monte Carlo model Adaptive Mesh Particle Simulator (M-AMPS), and the BATS-R-US Mars multi-fluid MHD (MF-MHD) model. The coupled framework has the potential to provide improved predictions for ion escape rates for comparison with future data to be returned by the MAVEN mission (2014-2016) and thereby improve our understanding of present day escape processes. Estimates of ion escape rates over Mars history must start from properly validated models that can be extrapolated into the past. This thesis aims to build a model library for the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, which will thus enhance the science return from the MAVEN mission. In this thesis, we aim to address the following four main scientific questions by adopting the one-way coupled framework developed here: (1) What are the Martian ion escape rates at the current epoch and ancient times? (2) What controls the ion escape processes at the current epoch? How are the ion escape variations connected to the solar cycle, crustal field orientation and seasonal variations? (3) How do the variable 3-D cold neutral thermosphere and hot oxygen corona affect the solar wind-Mars interaction? (4) How does the Martian atmosphere respond to extreme variations (e.g., ICMEs) in the solar wind and its interplanetary environment? These questions are closely related to the primary scientific goals of NASA's MAVEN mission and European Space Agency's Mars Express (MEX) mission. We reasonably answer all these four questions at the end of this thesis by employing the one-way coupled framework and comparing the simulation results with both MEX and MAVEN observational data.

  19. Mars Simulant Development for In-Situ Resource Utilization (ISRU) Applications

    NASA Technical Reports Server (NTRS)

    Ming, Doug

    2016-01-01

    Current design reference missions for the Evolvable Mars Campaign (EMC) call for the use of in-situ resources to enable human missions to the surface of Mars. One potential resource is water extracted from the Martian regolith. Current Mars' soil analogs (JSC Mars-1) have 5-10 times more water than typical regolith on Mars. Therefore, there is a critical need to develop Mars simulants to be used in ISRU applications that mimic the chemical, mineralogical, and physical properties of the Martian regolith.

  20. Martian Soil Plant Growth Experiment: The Effects of Adding Nitrogen, Bacteria, and Fungi to Enhance Plant Growth

    NASA Technical Reports Server (NTRS)

    Kliman, D. M.; Cooper, J. B.; Anderson, R. C.

    2000-01-01

    Plant growth is enhanced by the presence of symbiotic soil microbes. In order to better understand how plants might prosper on Mars, we set up an experiment to test whether symbiotic microbes function to enhance plant growth in a Martian soil simulant.

  1. The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment

    NASA Astrophysics Data System (ADS)

    Levin, Gilbert V.; Straat, Patricia Ann

    2016-10-01

    The 1976 Viking Labeled Release (LR) experiment was positive for extant microbial life on the surface of Mars. Experiments on both Viking landers, 4000 miles apart, yielded similar, repeatable, positive responses. While the authors eventually concluded that the experiment detected martian life, this was and remains a highly controversial conclusion. Many believe that the martian environment is inimical to life and the LR responses were nonbiological, attributed to an as-yet-unidentified oxidant (or oxidants) in the martian soil. Unfortunately, no further metabolic experiments have been conducted on Mars. Instead, follow-on missions have sought to define the martian environment, mostly searching for signs of water. These missions have collected considerable data regarding Mars as a habitat, both past and present. The purpose of this article is to consider recent findings about martian water, methane, and organics that impact the case for extant life on Mars. Further, the biological explanation of the LR and recent nonbiological hypotheses are evaluated. It is concluded that extant life is a strong possibility, that abiotic interpretations of the LR data are not conclusive, and that, even setting our conclusion aside, biology should still be considered as an explanation for the LR experiment. Because of possible contamination of Mars by terrestrial microbes after Viking, we note that the LR data are the only data we will ever have on biologically pristine martian samples.

  2. The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Hassler, Donald M.; de Wet, Wouter; Ehresmann, Bent; Firan, Ana; Flores-McLaughlin, John; Guo, Jingnan; Heilbronn, Lawrence H.; Lee, Kerry; Ratliff, Hunter; Rios, Ryan R.; Slaba, Tony C.; Smith, Michael; Stoffle, Nicholas N.; Townsend, Lawrence W.; Berger, Thomas; Reitz, Günther; Wimmer-Schweingruber, Robert F.; Zeitlin, Cary

    2017-08-01

    The radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations. In this work the outcome of a workshop held in June 2016 in Boulder, CO, USA is presented: experimental results from the Radiation Assessment Detector of the Mars Science Laboratory are compared to model results from GEANT4, HETC-HEDS, HZETRN, MCNP6, and PHITS. Charged and neutral particle spectra and dose rates measured between 15 November 2015 and 15 January 2016 and model results calculated for this time period are investigated.

  3. Simulations of gravitational stress on normovolemic and hypovolemic men and women.

    PubMed

    Zhang, Qingguang; Knapp, Charles F; Stenger, Michael B; Patwardhan, Abhijit R; Elayi, Samy C; Wang, Siqi; Kostas, Vladimir I; Evans, Joyce M

    2014-04-01

    Earth-based simulations of physiologic responses to space mission activities are needed to develop prospective countermeasures. To determine whether upright lower body positive pressure (LBPP) provides a suitable space mission simulation, we investigated the cardiovascular responses of normovolemic and hypovolemic men and women to supine and orthostatic stress induced by head-up tilt (HUT) and upright LBPP, representing standing in lunar, Martian, and Earth gravities. Six men and six women were tested in normovolemic and hypovolemic (furosemide, intravenous, 0.5 mg x kg(-1)) conditions. Continuous electrocardiogram, blood pressure, segmental bioimpedance, and stroke volume (echocardiography) were recorded supine and at lunar, Martian, and Earth gravities (10 degrees, 20 degrees, and 80 degrees HUT vs. 20%, 40%, and 100% bodyweight upright LBPP), respectively. Cardiovascular responses were assessed from mean values, spectral powers, and spontaneous baroreflex parameters. Hypovolemia reduced plasma volume by approximately 10% and stroke volume by approximately 25% at supine, and increasing orthostatic stress resulted in further reductions. Upright LBPP induced more plasma volume losses at simulated lunar and Martian gravities compared with HUT, while both techniques induced comparable central hypovolemia at each stress. Cardiovascular responses to orthostatic stress were comparable between HUT and upright LBPP in both normovolemic and hypovolemic conditions; however, hypovolemic blood pressure was greater during standing at 100% bodyweight compared to 80 degree HUT due to a greater increase of total peripheral resistance. The comparable cardiovascular response to HUT and upright LBPP support the use of upright LBPP as a potential model to simulate activity in lunar and Martian gravities.

  4. Weathering of Olivine during Interaction of Sulfate Aerosols with Mars Soil under Current Climate Conditions

    NASA Astrophysics Data System (ADS)

    Niles, P. B.; Golden, D. C.; Michalski, J. R.; Ming, D. W.

    2017-12-01

    Sulfur concentrations in the Mars soils are elevated above 1 wt% in nearly every location visited by landed spacecraft. This observation was first made by the Viking landers, and has been confirmed by subsequent missions. The wide distribution of sulfur in martian soils has been attributed to volcanic degassing, formation of sulfate aerosols, and later incorporation into martian soils during gravitational sedimentation. However, later discoveries of more concentrated sulfur bearing sediments by the Opportunity rover has led some to believe that sulfates may instead be a product of evaporation and aeolian redistribution. One question that has not been addressed is whether the modern surface conditions are too cold for weathering of volcanic materials by sulfate aerosols. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars. Laboratory experiments were conducted to simulate weathering of olivine under Mars-like conditions. The weathering rates measured in this study suggest that fine grained olivine on Mars would weather into sulfate minerals in short time periods if they are exposed to H2SO4 aerosols at temperatures at or above -40°C. In this system, the strength of the acidic solution is maximized through eutectic freezing in an environment where the silicate minerals are extremely fine grained and have high surface areas. This provides an ideal environment for olivine weathering despite the very low temperatures. The likelihood of substantial sulfur-rich volcanism on Mars and creation of abundant sulfate aerosols suggests that this process would have been important during formation of martian soils and sediments. Future work modeling sulfur release rates during volcanic eruptions and aerosol distribution over the surface will help understand how well this process could concentrate sulfate minerals in nearby surface materials or whether this process would simply result in widespread globally distributed sulfur materials.

  5. Resistance of Terrestrial Microbial Communities to Impack of Physical Conditinos of Subsurface Layers of Martian Regolith

    NASA Astrophysics Data System (ADS)

    Cheptsov, V. S.; Vorobyova, E. A.

    2017-05-01

    Currently, astrobiology is focused on Mars as one of the most perspective objects in the Solar System to search for microbial life. It was assumed that the putative biosphere of Mars could be cryopreserved and had been stored for billions of years in anabiotic state like microbial communities of Arctic and Antarctic permafrost deposits have been preserved till now for millions of years. In this case microbial cells should be not able to repair the damages or these processes have to be significantly depressed, and the main factor causing cell's death should be ionizing radiation. In a series of experiments we simulated the effects of combination of physical factors known as characteristics of the Martian regolith (and close to the space environment) on the natural microbial communities inhabiting xerophytic harsh habitats with extreme temperature conditions: polar permafrost and desert soils. The aim of the study was to examine the cumulative effect of factors (gamma radiation, low temperature, low pressure) to assess the possibility of metabolic reactions, and to find limits of the viability of natural microbial communities after exposure to the given conditions. It was found that microbial biomarkers could be reliably detected in soil samples after radiation dose accumulation up to 1 MGy (not further investigated) in combination with exposure to low temperature and low pressure. Resistance to extremely high doses of radiation in simulated conditions proves that if there was an Earth-like biosphere on the early Mars microorganisms could survive in the surface or subsurface layers of the Martian regolith for more than tens of millions of years after climate change. The study gives also some new grounds for the approval of transfer of viable microorganisms in space.

  6. Radiative habitable zones in martian polar environments.

    PubMed

    Córdoba-Jabonero, Carmen; Zorzano, María-Paz; Selsis, Franck; Patel, Manish R; Cockell, Charles S

    2005-06-01

    The biologically damaging solar ultraviolet (UV) radiation (quantified by the DNA-weighted dose) reaches the martian surface in extremely high levels. Searching for potentially habitable UV-protected environments on Mars, we considered the polar ice caps that consist of a seasonally varying CO2 ice cover and a permanent H2O ice layer. It was found that, though the CO2 ice is insufficient by itself to screen the UV radiation, at approximately 1 m depth within the perennial H2O ice the DNA-weighted dose is reduced to terrestrial levels. This depth depends strongly on the optical properties of the H2O ice layers (for instance snow-like layers). The Earth-like DNA-weighted dose and Photosynthetically Active Radiation (PAR) requirements were used to define the upper and lower limits of the northern and southern polar Radiative Habitable Zone (RHZ) for which a temporal and spatial mapping was performed. Based on these studies we conclude that photosynthetic life might be possible within the ice layers of the polar regions. The thickness varies along each martian polar spring and summer between approximately 1.5 and 2.4 m for H2O ice-like layers, and a few centimeters for snow-like covers. These martian Earth-like radiative habitable environments may be primary targets for future martian astrobiological missions. Special attention should be paid to planetary protection, since the polar RHZ may also be subject to terrestrial contamination by probes. c2004 Elsevier Inc. All rights reserved.

  7. Effective Utilization of Commercial Wireless Networking Technology in Planetary Environments

    NASA Technical Reports Server (NTRS)

    Caulev, Michael (Technical Monitor); Phillip, DeLeon; Horan, Stephen; Borah, Deva; Lyman, Ray

    2005-01-01

    The purpose of this research is to investigate the use of commercial, off-the-shelf wireless networking technology in planetary exploration applications involving rovers and sensor webs. The three objectives of this research project are to: 1) simulate the radio frequency environment of proposed landing sites on Mars using actual topographic data, 2) analyze the performance of current wireless networking standards in the simulated radio frequency environment, and 3) propose modifications to the standards for more efficient utilization. In this annual report, we present our results for the second year of research. During this year, the effort has focussed on the second objective of analyzing the performance of the IEEE 802.11a and IEEE 802.1lb wireless networking standards in the simulated radio frequency environment of Mars. The approach builds upon our previous results which deterministically modelled the RF environment at selected sites on Mars using high-resolution topographical data. These results provide critical information regarding antenna coverage patterns, maximum link distances, effects of surface clutter, and multipath effects. Using these previous results, the physical layer of these wireless networking standards has now been simulated and analyzed in the Martian environment. We are looking to extending these results to the and medium access layer next. Our results give us critical information regarding the performance (data rates, packet error rates, link distances, etc.) of IEEE 802.1 la/b wireless networks. This information enables a critical examination of how these wireless networks may be utilized in future Mars missions and how they may be possibly modified for more optimal usage.

  8. Noble Gas Analysis for Mars Robotic Missions: Evaluating K-Ar Age Dating for Mars Rock Analogs and Martian Shergottites

    NASA Technical Reports Server (NTRS)

    Park, J.; Ming, D. W.; Garrison, D. H.; Jones, J. H.; Bogard, D. D.; Nagao, K.

    2009-01-01

    The purpose of this noble gas investigation was to evaluate the possibility of measuring noble gases in martian rocks and air by future robotic missions such as the Mars Science Laboratory (MSL). The MSL mission has, as part of its payload, the Sample Analysis at Mars (SAM) instrument, which consists of a pyrolysis oven integrated with a GCMS. The MSL SAM instrument has the capability to measure noble gas compositions of martian rocks and atmosphere. Here we suggest the possibility of K-Ar age dating based on noble gas release of martian rocks by conducting laboratory simulation experiments on terrestrial basalts and martian meteorites. We provide requirements for the SAM instrument to obtain adequate noble gas abundances and compositions within the current SAM instrumental operating conditions, especially, a power limit that prevents heating the furnace above approx.1100 C. In addition, Martian meteorite analyses from NASA-JSC will be used as ground truth to evaluate the feasibility of robotic experiments to constrain the ages of martian surface rocks.

  9. The effects of combined application of inorganic Martian dust simulant and carbon dots on glutamate transport rat brain nerve terminals

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Krisanova, Natalia; Nazarova, Anastasiya; Borysov, Arseniy; Pastukhov, Artem; Pozdnyakova, Natalia; Dudarenko, Marina

    2016-07-01

    During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and can be transported to the central nervous system (Oberdorster et al., 2004). Recently, the research team of this study found the minor fractions of nanoparticles with the size ~ 50 -60 nm in Lunar and Martian dust stimulants (JSC-1a and JSC, ORBITEC Orbital Technologies Corporation, Madison, Wisconsin), whereas the average size of the simulants was 1 mm and 4mm, respectively (Krisanova et al., 2013). Also, the research team of this study discovered new phenomenon - the neuromodulating and neurotoxic effect of carbon nano-sized particles - Carbon dots (C-dots), originated from ash of burned carbon-containing product (Borisova et al, 2015). The aims of this study was to analyse acute effects of upgraded stimulant of inorganic Martian dust derived from volcanic ash (JSC-1a/JSC, ORBITEC Orbital Technologies Corporation, Madison, Wisconsin) by the addition of carbon components, that is, carbon dots, on the key characteristic of synaptic neurotransmission. Acute administration of carbon-containing Martian dust analogue resulted in a significant decrease in transporter-mediated uptake of L-[14C]glutamate (the major excitatory neurotransmitter) by isolated rat brain nerve terminals. The ambient level of the neurotransmitter in the preparation of nerve terminals increased in the presence of carbon dot-contained Martian dust analogue. These effects were associated with action of carbon component of the upgraded Martian dust stimulant but not with its inorganic constituent.

  10. Snow precipitation on Mars driven by cloud-induced night-time convection

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Hinson, David P.; Madeleine, Jean-Baptiste; Navarro, Thomas; Millour, Ehouarn; Forget, François; Montmessin, Franck

    2017-09-01

    Although it contains less water vapour than Earth's atmosphere, the Martian atmosphere hosts clouds. These clouds, composed of water-ice particles, influence the global transport of water vapour and the seasonal variations of ice deposits. However, the influence of water-ice clouds on local weather is unclear: it is thought that Martian clouds are devoid of moist convective motions, and snow precipitation occurs only by the slow sedimentation of individual particles. Here we present numerical simulations of the meteorology in Martian cloudy regions that demonstrate that localized convective snowstorms can occur on Mars. We show that such snowstorms--or ice microbursts--can explain deep night-time mixing layers detected from orbit and precipitation signatures detected below water-ice clouds by the Phoenix lander. In our simulations, convective snowstorms occur only during the Martian night, and result from atmospheric instability due to radiative cooling of water-ice cloud particles. This triggers strong convective plumes within and below clouds, with fast snow precipitation resulting from the vigorous descending currents. Night-time convection in Martian water-ice clouds and the associated snow precipitation lead to transport of water both above and below the mixing layers, and thus would affect Mars' water cycle past and present, especially under the high-obliquity conditions associated with a more intense water cycle.

  11. Survivability of Microbes in Mars Wind Blown Dust Environment

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.; Klovstad, Melisa R.; Fonda, Mark L.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    Although the probability of Earth microbes growing (dividing) in the Martian environment is extremely low, the probability of their survival on the Martian surface is unknown. During the course of landed missions to Mars terrestrial microbes may reach the surface of Mars via inadequately sterilized spacecraft landers, rovers, or through accidental impact of orbiters. This investigation studied the potential for Earth microbes to survive in the windblown dust on the surface of Mars. The rationale for the study comes from the fact that Mars regularly has huge dust storms that engulf the planet, shading the surface from solar UV radiation. These storms serve as a mechanism for global transfer of dust particles. If live organisms were to be transported to the surface of Mars they could be picked up with the dust during a dust storm and transported across the planet. Washed, dried spores of Bacillus subtilis strain HA 101 were aseptically mixed with sterile sieved (size range of 1-5microns) Mars soil standard (obtained from NASA Johnson Space Center, Houston, Texas, USA), or Fe-montmorillonite such that the number of microbes equals 5 x 10(exp 6)/g dry wt soil. The microbe soil mixture was placed in a spherical 8 L Mars simulation chamber equipped with a variable speed rotor, gas ports and an Oriel deuterium UV lamp emitting light of wave lengths 180-400 nm. The chamber was sealed, flushed with a simulated Martian atmosphere (96.9% CO2, 3% O2, 0.1% H2O), and the pressure brought to 10 torr. The lamp and rotor were switched on to begin the experiment. Periodically samples were collected from the chamber, and the numbers of microbial survivors g soil was determined using plate counts and the most probable number method (MPN). The data indicate that Bacillus subtilis spores dispersed with Mars analog soil in a Mars atmosphere (wind blown dust) survive exposure to 5.13 KJ m-2 UV radiation, suggesting that Mars wind blown dust has potential to the protect microbes from solar UV radiation.

  12. Semi-automated operation of Mars Climate Simulation chamber - MCSC modelled for biological experiments

    NASA Astrophysics Data System (ADS)

    Tarasashvili, M. V.; Sabashvili, Sh. A.; Tsereteli, S. L.; Aleksidze, N. D.; Dalakishvili, O.

    2017-10-01

    The Mars Climate Simulation Chamber (MCSC) (GEO PAT 12 522/01) is designed for the investigation of the possible past and present habitability of Mars, as well as for the solution of practical tasks necessary for the colonization and Terraformation of the Planet. There are specific tasks such as the experimental investigation of the biological parameters that allow many terrestrial organisms to adapt to the imitated Martian conditions: chemistry of the ground, atmosphere, temperature, radiation, etc. MCSC is set for the simulation of the conduction of various biological experiments, as well as the selection of extremophile microorganisms for the possible Settlement, Ecopoesis and/or Terraformation purposes and investigation of their physiological functions. For long-term purposes, it is possible to cultivate genetically modified organisms (e.g., plants) adapted to the Martian conditions for future Martian agriculture to sustain human Mars missions and permanent settlements. The size of the chamber allows preliminary testing of the functionality of space-station mini-models and personal protection devices such as space-suits, covering and building materials and other structures. The reliability of the experimental biotechnological materials can also be tested over a period of years. Complex and thorough research has been performed to acquire the most appropriate technical tools for the accurate engineering of the MCSC and precious programmed simulation of Martian environmental conditions. This paper describes the construction and technical details of the equipment of the MCSC, which allows its semi-automated, long-term operation.

  13. The Sublimation Rate of CO2 Under Simulated Mars Conditions and the Possible Climatic Implications

    NASA Astrophysics Data System (ADS)

    Bryson, Kathryn; Chevrier, V.; Roe, L.; White, K.; Blackburn, D.

    2008-09-01

    In order to understand the behavior of CO2 on Mars, we have studied the sublimation of dry ice under simulated martian conditions. Our experiments resulted in an average sublimation rate for CO2 ice of 1.20 ± 0.27 mm h-1. These results are very close to those observed of the martian polar caps retreat, and suggest a common process for the sublimation mechanism on Mars and in our chamber. Based on these results we created a model where irradiance from the sun is the primary source of heat on the martian polar surface. Our model predicts a 32 cm offset between the amount of CO2 ice sublimated and deposited in the southern polar region. The eccentricity of the martian orbit causes the southern hemisphere to sublimate more then it deposits back during one martian year. We have compared MOC and HiRISE images from approximately the same season (Ls 285.57º and 289.5º, respectively) from three martian years apart. These images indicate an average sublimation rate of 0.43 ± 0.04 m y-1, very close to the 0.32 m y-1 predicted by our model. Due to the length of Mars’ precession cycle, 93,000 martian years, it will take an extensive amount of time for the equinoxes to change. Therefore, we predict that the CO2 of the south polar cap will migrate entirely to the northern polar cap before such changes could occur. If the CO2 ice is only a thin layer above a much thicker water ice layer, this could expose large amounts of water ice, having a drastic climactic affect.

  14. Paloma-radon: Atmospheric radon-222 as a geochemical probe for water in the Martian subsoil.

    NASA Astrophysics Data System (ADS)

    Sabroux, J.-C.; Michielsen, N.; Voisin, V.; Ferry, C.; Richon, P.; Pineau, J.-F.; Le Roulley, J.-C.; Chassefière, E.

    2003-04-01

    Radon exhalation from a porous soil is known to depend strongly on the soil moisture content: a minute amount of water, or water ice, in the pore space increases dramatically the possibility for radon to migrate far from its parent mineral. We propose to take advantage of this characteristic by using atmospheric radon-222 as a geochemical probe for water in the Martian soil, at least one order of magnitude deeper than the current Mars Odyssey neutron data. Strong thermal inversions during the Martian night will accumulate radon in the lowest atmospheric boundary layer, up to measurable levels despite the comparatively high environmental (cosmic and solar) background radiation and the assumed low uranium content of the upper crust of the planet. Preliminary studies and development of an instrument for the measurement of the Martian atmospheric alpha radioactivity is part of the CNES-supported PALOMA experiment. Two test benches have been implemented, one of them allowing differential measurements of the diffusion of radon in the Martian soil simulant NASA JSC Mars-1, under relevant temperatures and pressures. The other, a 1 m^3 radon-dedicated test bench, aims to characterize the instrument that will measure radon in the Mars environment (7 mb CO_2). Tests on several nuclear radiation detectors show that semiconductor alpha-particle detectors (PIPS) are the best option (already on board the Mars Pathfinder Rover and other platforms). In addition, the detection volume is left open in order to capitalize upon the long (ca. 4 m) alpha track at this low pressure. A stationary diffusion model was developed in order to assess the radon flux at the Mars soil surface. Diffusion of gas in Martian soil is governed by Knudsen diffusion. The radon Knudsen diffusion coefficient was estimated, depending on the soil moisture and relevant structural properties, leading to a radon diffusion length of the order of 20 m. The landed platform PALOMA-Radon instrument will consist of a set of alpha detectors connected to an electronic spectrometer, a system of collimators and an alpha source used for test and calibration purposes.

  15. Optimization of Martian regolith and ultra-high molecular weight polyethylene composites for radiation shielding and habitat structures

    NASA Astrophysics Data System (ADS)

    Wilkins, Richard; Gersey, Brad; Baburaj, Abhijit; Barnett, Milan; Zhou, Xianren

    2012-07-01

    In preparation for long duration missions to the moon, Mars or, even near earth asteroids, one challenge, amongst many others, that the space program faces is shielding against space radiation. It is difficult to effectively shield all sources of space radiation because of the broad range of types and high energies found in space, so the most important goal is to minimize the damaging effects that may occur to humans and electronics during long duration space flight. For a long duration planetary habitat, a shielding option is to use in situ resources such as the native regolith. A possible way to utilize regolith on a planet is to combine it with a binder to form a structural material that also exhibits desirable shielding properties. In our studies, we explore Martian regolith and ultra-high molecular weight polyethylene (UHMWPE) composites. We selected UHMWPE as the binder in our composites due to its high hydrogen content; a desirable characteristic for shielding materials in a space environment. Our initial work has focused on the process of developing the right ratio of simulated Martian regolith and UHMWPE to yield the best results in material endurance and strength, while retaining good shielding characteristics. Another factor in our optimization process is to determine the composite ratio that minimizes the amount of ex situ UHMWPE while retaining desirable structural and shielding properties. This consideration seeks to minimize mission weight and costs. Mechanical properties such as tensile strength of the Martian regolith/UHMWPE composite as a function of its grain size, processing parameters, and different temperature variations used are discussed. The radiation shielding effectiveness of loose mixtures of Martian regolith/ UHMWPE is evaluated using a 200 MeV proton beam and a tissue equivalent proportional counter. Preliminary results show that composites with an 80/20 ratio percent weight of regolith to UHMWPE can be fabricated with potentially useful structural strength. I n addition, Martian regolith, while not as efficient as polyethylene at reducing proton energy as a function of shield thickness, compares well with polyethylene at shielding the 200 MeV protons. These preliminary results indicate that native Martian regolith has promising properties as a habitat material for future human missions. Future work studying the shielding effectiveness and radiation tolerance will also be discussed.

  16. WISDOM GPR investigations in a Mars-analog environment during the SAFER rover operation simulation

    NASA Astrophysics Data System (ADS)

    Dorizon, S.; Ciarletti, V.; Plettemeier, D.; Vieau, A.-J.; Benedix, W.-S.; Mütze, M.; Hassen-Kodja, R.; Humeau, O.

    2014-04-01

    The WISDOM (Water Ice Subsurface Deposits Observations on Mars) Ground Penetrating Radar has been selected to be onboard the ExoMars 2018 rover mission [1]. This instrument will investigate the Martian shallow subsurface and provide the geological context of the mission, by characterizing the subsurface in terms of structure, stratigraphy and potential buried objects. It will also quantify the geoelectrical properties of the medium, which are directly related to its nature, its water or salts content and its hardness [2]. WISDOM data will provide important clues to guide the drilling operations to location of potential exobiological interest. A prototype available in LATMOS, France, is currently tested in a wide range of natural environments. In this context, the WISDOM team participated in the SAFER (Sample Acquisition Field Experiment with a Rover) field trial that occurred from 7th to 13th October 2013 in the Atacama Desert, Chile. Designed to gather together scientists and engineers in a context of a real Martian mission with a rover, the SAFER trial was the opportunity to use three onboard ExoMars instruments, namely CLUPI (Close- UP Imager), PANCAM (Panoramic Camera) and WISDOM, to investigate the chosen area. We present the results derived from WISDOM data acquired over the SAFER trial site to characterize the shallow subsurface of the area.

  17. Bi-Static Deep Electromagnetic Soundings for Martian Subsurface Characterization: Experimental Validation in the Egyptian Western Desert

    NASA Astrophysics Data System (ADS)

    Ciarletti, V.; Le Gall, A.; Berthelier, J. J.; Corbel, Ch.; Dolon, F.; Ney, R.; Reineix, A.; Guiffaud, Ch.; Clifford, S.; Heggy, E.

    2007-03-01

    A bi-static version of the HF GPR TAPIR developed for martian deep soundings has been operated in the Egyptian Western Desert. The study presented focuses on the retrieval of the direction of arrival of the observed echoes on both simulated and measured d

  18. A Little Vacation on Mars: Mars Simulation Microbial Challenge Experiments

    NASA Astrophysics Data System (ADS)

    Boston, P.; Todd, P.; Van De Camp, J.; Northup, D.; Spilde, M.

    2008-06-01

    Communities of microbial organisms isolated from a variety of extreme environments were subjected to 1 to 5 weeks of simulated Martian environmental conditions using the Mars Environment Simulation Chamber at the Techshot, Inc. facility in Greenville, Indiana. The goal of the overall experiment program was to assess survival of test Earth organisms under Mars full spectrum sunlight, low-latitude daily temperature profile and various Mars-atmosphere pressures (~50 mbar to 500 mbar, 100% CO2) and low moisture content. Organisms surviving after 5 weeks at 100 mbar included those from gypsum surface fracture communities in a Permian aged evaporite basin, desert varnish on andesite lavas around a manganese mine, and iron and manganese oxidizing organisms isolated from two caves in Mew Mexico. Phylogenetic DNA analysis revealed strains of cyanobacteria, bacterial genera (present in all surviving communities) Asticacaulis, Achromobacter, Comamonas, Pantoea, Verrucomicrobium, Bacillus, Gemmatimonas, Actinomyces, and others. At least one microcolonial fungal strain from a desert varnish community and at least one strain from Utah survived simulations. Strains related to the unusual cave bacterial group Bacteroidetes are present in survivor communities that resist isolation into pure culture implying that their consortial relationships may be critical to their survival.

  19. Mars Pathfinder meteorological observations on the basis of results of an atmospheric global circulation model

    NASA Technical Reports Server (NTRS)

    Forget, Francois; Hourdin, F.; Talagrand, O.

    1994-01-01

    The Mars Pathfinder Meteorological Package (ASI/MET) will measure the local pressure, temperature, and winds at its future landing site, somewhere between the latitudes 0 deg N and 30 deg N. Comparable measurements have already been obtained at the surface of Mars by the Viking Landers at 22 deg N (VL1) and 48 deg N (VL2), providing much useful information on the martian atmosphere. In particular the pressure measurements contain very instructive information on the global atmospheric circulation. At the Laboratoire de Meteorologie Dynamique (LMD), we have analyzed and simulated these measurements with a martian atmospheric global circulation model (GCM), which was the first to simulate the martian atmospheric circulation over more than 1 year. The model is able to reproduce rather accurately many observed features of the martian atmosphere, including the long- and short-period oscillations of the surface pressure observed by the Viking landers. From a meteorological point of view, we think that a landing site located near or at the equator would be an interesting choice.

  20. Olivine Weathering aud Sulfate Formation Under Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.; Golden, D. C.; Michalski, J.

    2013-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one of the most important discoveries being wide-spread layered sedimentary deposits associated with sulfate minerals across the low to mid latitude regions of Mars. The mechanism for sulfate formation on Mars has been frequently attributed to playa-like evaporative environments under prolonged warm conditions. An alternate view of the ancient martian climate contends that prolonged warm temperatures were never present and that the atmosphere and climate has been similar to modern conditions throughout most of its history. This view has had a difficult time explaining the sedimentary history of Mars and in particular the presence of sulfate minerals which seemingly need more water. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars. This study seeks to test whether sulfate formation may be possible at temperatures well below 0degC in water limited environments removing the need for prolonged warm periods to form sulfates on early Mars. To test this idea we performed laboratory experiments to simulate weathering of mafic minerals under Mars-like conditions. The weathering rates measured in this study suggest that fine grained olivine on Mars would weather into sulfate minerals in short time periods if they are exposed to H2SO4 aerosols at temperatures at or above -40degC. In this system, the strength of the acidic solution is maximized through eutectic freezing in an environment where the silicate minerals are extremely fine grained and have high surface areas. This provides an ideal environment despite the very low temperatures. On Mars the presence of large deposits of mixed ice and dust is undisputed. The presence of substantial sulfur-rich volcanism, and sulfur-rich surface deposits also makes it very likely that sulfate aerosols have also been an important component of the martian atmosphere. Thus mixtures of ice, dust, and sulfate aerosols are likely to have been common on the martian surface. Given the fact that it is not difficult to achieve surface temperatures above -40degC on Mars throughout its history, it seems likely that sulfate formation on Mars is controlled by the availability of sulfate aerosols and not by the martian climate. The current polar regions of Mars and Earth provide interesting analogs. Large regions of sulfaterich material have been detected on and around the modern north polar region of Mars. The prevalence of ice-dust mixtures in this region and the existence of sulfates within the ice cap itself are strong evidence for the origin of the sulfates from inside the ice deposits. In addition sulfates have been found in ice deposits in Greenland and Mount Fuji on Earth that have been attributed to forming within the ice deposit. These sulfates can form either through interaction with dust particles in the atmosphere or through weathering inside the ice itself.

  1. Conditions and constraints of food processing in space

    NASA Technical Reports Server (NTRS)

    Fu, B.; Nelson, P. E.; Mitchell, C. A. (Principal Investigator)

    1994-01-01

    Requirements and constraints of food processing in space include a balanced diet, food variety, stability for storage, hardware weight and volume, plant performance, build-up of microorganisms, and waste processing. Lunar, Martian, and space station environmental conditions include variations in atmosphere, day length, temperature, gravity, magnetic field, and radiation environment. Weightlessness affects fluid behavior, heat transfer, and mass transfer. Concerns about microbial behavior include survival on Martian and lunar surfaces and in enclosed environments. Many present technologies can be adapted to meet space conditions.

  2. Life on Mars: Evidence from Martian Meteorites

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Thomas-Keptra, Katie L.; Clemett, Simon J.; Gibson, Everett K., Jr.; Spencer, Lauren; Wentworth, Susan J.

    2009-01-01

    New data on martian meteorite 84001 as well as new experimental studies show that thermal or shock decomposition of carbonate, the leading alternative non-biologic explanation for the unusual nanophase magnetite found in this meteorite, cannot explain the chemistry of the actual martian magnetites. This leaves the biogenic explanation as the only remaining viable hypothesis for the origin of these unique magnetites. Additional data from two other martian meteorites show a suite of biomorphs which are nearly identical between meteorites recovered from two widely different terrestrial environments (Egyptian Nile bottomlands and Antarctic ice sheets). This similarity argues against terrestrial processes as the cause of these biomorphs and supports an origin on Mars for these features.

  3. Evidence for a Heterogeneous Distribution of Water in the Martian Interior

    NASA Technical Reports Server (NTRS)

    McCubbin, Francis; Boyce, Jeremy W.; Srinvasan, Poorna; Santos, Alison R.; Elardo, Stephen M.; Filiberto, Justin; Steele, Andrew; Shearer, Charles K.

    2016-01-01

    The abundance and distribution of H2O within the terrestrial planets, as well as its timing of delivery, is a topic of vital importance for understanding the chemical and physical evolution of planets and their potential for hosting habitable environments. Analysis of planetary materials from Mars, the Moon, and the eucrite parent body (i.e., asteroid 4Vesta) have confirmed the presence of H2O within their interiors. Moreover, H and N isotopic data from these planetary materials suggests H2O was delivered to the inner solar system very early from a common source, similar in composition to the carbonaceous chondrites. Despite the ubiquity of H2O in the inner Solar System, the only destination with any prospects for past or present habitable environments at this time, outside of the Earth, is Mars. Although the presence of H2O within the martian interior has been confirmed, very little is known regarding its abundance and distribution within the martian interior and how the martian water inventory has changed over time. By combining new analyses of martian apatites within a large number of martian meteorite types with previously published volatile data and recently determined mineral-melt partition coefficients for apatite, we report new insights into the abundance and distribution of volatiles in the martian crust and mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite mantle source has 36-73 ppm H2O and the depleted shergottite mantle source has 14-23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the martian mantle. We also estimated the H2O content of the martian crust using the revised mantle H2O abundances and known crust-mantle distributions of incompatible lithophile elements. We determined that the bulk martian crust has approximately 1400 ppm H2O, which is likely distributed toward the martian surface. This crustal water abundance would equate to a global equivalent layer (GEL) of water at a depth of-229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface.

  4. The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment.

    PubMed

    Levin, Gilbert V; Straat, Patricia Ann

    2016-10-01

    The 1976 Viking Labeled Release (LR) experiment was positive for extant microbial life on the surface of Mars. Experiments on both Viking landers, 4000 miles apart, yielded similar, repeatable, positive responses. While the authors eventually concluded that the experiment detected martian life, this was and remains a highly controversial conclusion. Many believe that the martian environment is inimical to life and the LR responses were nonbiological, attributed to an as-yet-unidentified oxidant (or oxidants) in the martian soil. Unfortunately, no further metabolic experiments have been conducted on Mars. Instead, follow-on missions have sought to define the martian environment, mostly searching for signs of water. These missions have collected considerable data regarding Mars as a habitat, both past and present. The purpose of this article is to consider recent findings about martian water, methane, and organics that impact the case for extant life on Mars. Further, the biological explanation of the LR and recent nonbiological hypotheses are evaluated. It is concluded that extant life is a strong possibility, that abiotic interpretations of the LR data are not conclusive, and that, even setting our conclusion aside, biology should still be considered as an explanation for the LR experiment. Because of possible contamination of Mars by terrestrial microbes after Viking, we note that the LR data are the only data we will ever have on biologically pristine martian samples. Key Words: Extant life on Mars-Viking Labeled Release experiment-Astrobiology-Extraterrestrial life-Mars. Astrobiology 16, 798-810.

  5. Dependence of the Martian radiation environment on atmospheric depth: Modeling and measurement

    NASA Astrophysics Data System (ADS)

    Guo, Jingnan; Slaba, Tony C.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Badavi, Francis F.; Böhm, Eckart; Böttcher, Stephan; Brinza, David E.; Ehresmann, Bent; Hassler, Donald M.; Matthiä, Daniel; Rafkin, Scot

    2017-02-01

    The energetic particle environment on the Martian surface is influenced by solar and heliospheric modulation and changes in the local atmospheric pressure (or column depth). The Radiation Assessment Detector (RAD) on board the Mars Science Laboratory rover Curiosity on the surface of Mars has been measuring this effect for over four Earth years (about two Martian years). The anticorrelation between the recorded surface Galactic Cosmic Ray-induced dose rates and pressure changes has been investigated by Rafkin et al. (2014) and the long-term solar modulation has also been empirically analyzed and modeled by Guo et al. (2015). This paper employs the newly updated HZETRN2015 code to model the Martian atmospheric shielding effect on the accumulated dose rates and the change of this effect under different solar modulation and atmospheric conditions. The modeled results are compared with the most up-to-date (from 14 August 2012 to 29 June 2016) observations of the RAD instrument on the surface of Mars. Both model and measurements agree reasonably well and show the atmospheric shielding effect under weak solar modulation conditions and the decline of this effect as solar modulation becomes stronger. This result is important for better risk estimations of future human explorations to Mars under different heliospheric and Martian atmospheric conditions.

  6. Martian Surface Boundary Layer Characterization: Enabling Environmental Data for Science, Engineering and Human Exploration

    NASA Technical Reports Server (NTRS)

    England, C.

    2000-01-01

    For human or large robotic exploration of Mars, engineering devices such as power sources will be utilized that interact closely with the Martian environment. Heat sources for power production, for example, will use the low ambient temperature for efficient heat rejection. The Martian ambient, however, is highly variable, and will have a first order influence on the efficiency and operation of all large-scale equipment. Diurnal changes in temperature, for example, can vary the theoretical efficiency of power production by 15% and affect the choice of equipment, working fluids, and operating parameters. As part of the Mars Exploration program, missions must acquire the environmental data needed for design, operation and maintenance of engineering equipment including the transportation devices. The information should focus on the variability of the environment, and on the differences among locations including latitudes, altitudes, and seasons. This paper outlines some of the WHY's, WHAT's and WHERE's of the needed data, as well as some examples of how this data will be used. Environmental data for engineering design should be considered a priority in Mars Exploration planning. The Mars Thermal Environment Radiator Characterization (MTERC), and Dust Accumulation and Removal Technology (DART) experiments planned for early Mars landers are examples of information needed for even small robotic missions. Large missions will require proportionately more accurate data that encompass larger samples of the Martian surface conditions. In achieving this goal, the Mars Exploration program will also acquire primary data needed for understanding Martian weather, surface evolution, and ground-atmosphere interrelationships.

  7. Mars EVA Suit Airlock (MESA)

    NASA Astrophysics Data System (ADS)

    Ransom, Stephen; Böttcher, Jörg; Steinsiek, Frank

    The Astrium Space Infrastructure Division has begun an in-house research activity of an Earth-based simulation facility supporting future manned missions to Mars. This research unit will help to prepare and support planned missions in the following ways: 1) to enable the investigation and analysis of contamination issues in advance of a human visit to Mars; 2) as a design tool to investigate and simulate crew operations; 3) to simulate crew operation during an actual mission; 4) to enable on-surface scientific operations without leaving the shirt-sleeve habitation environment ("glove box principle"). The MESA module is a surface EVA facility attached to the main habitation or laboratory module, or mobile pressurized rover. It will be sealed, but not pressurized, and provide protection against the harsh Martian environment. This module will include a second crew airlock for safety reasons. The compartment can also be used to provide an external working bench and experiment area for the crew. A simpler MESA concept provides only an open shelter against wind and dust. This concept does not incorporate working and experimental areas. The principle idea behind the MESA concept is to tackle the issue of contamination by minimizing the decontamination processes needed to clean surface equipment and crew suit surfaces after an EVA excursion prior to the astronaut re-entering the habitable area. The technical solution envisages the use of a dedicated crew suit airlock. This airlock uses an EVA suit which is externally attached by its back-pack to the EVA compartment area facing the Martian environment. The crew donns the suit from inside the habitable volume through the airlock on the back of the suit. The surface EVA can be accomplished after closing the back-pack and detaching the suit. A special technical design concept foresees an extendable suit back-pack, so that the astronaut can operate outside and in the vincinity of the module. The key driver in the investigation is the problem of contamination of the habitable volume by EVA and sampling activities and the transport of Earth-generated contaminants to Mars.

  8. The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data.

    PubMed

    Matthiä, Daniel; Hassler, Donald M; de Wet, Wouter; Ehresmann, Bent; Firan, Ana; Flores-McLaughlin, John; Guo, Jingnan; Heilbronn, Lawrence H; Lee, Kerry; Ratliff, Hunter; Rios, Ryan R; Slaba, Tony C; Smith, Michael; Stoffle, Nicholas N; Townsend, Lawrence W; Berger, Thomas; Reitz, Günther; Wimmer-Schweingruber, Robert F; Zeitlin, Cary

    2017-08-01

    The radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations. In this work the outcome of a workshop held in June 2016 in Boulder, CO, USA is presented: experimental results from the Radiation Assessment Detector of the Mars Science Laboratory are compared to model results from GEANT4, HETC-HEDS, HZETRN, MCNP6, and PHITS. Charged and neutral particle spectra and dose rates measured between 15 November 2015 and 15 January 2016 and model results calculated for this time period are investigated. Copyright © 2017 The Committee on Space Research (COSPAR). All rights reserved.

  9. Is Mars Sample Return Required Prior to Sending Humans to Mars?

    NASA Technical Reports Server (NTRS)

    Carr, Michael; Abell, Paul; Allwood, Abigail; Baker, John; Barnes, Jeff; Bass, Deborah; Beaty, David; Boston, Penny; Brinkerhoff, Will; Budney, Charles; hide

    2012-01-01

    Prior to potentially sending humans to the surface of Mars, it is fundamentally important to return samples from Mars. Analysis in Earth's extensive scientific laboratories would significantly reduce the risk of human Mars exploration and would also support the science and engineering decisions relating to the Mars human flight architecture. The importance of measurements of any returned Mars samples range from critical to desirable, and in all cases these samples will would enhance our understanding of the Martian environment before potentially sending humans to that alien locale. For example, Mars sample return (MSR) could yield information that would enable human exploration related to 1) enabling forward and back planetary protection, 2) characterizing properties of Martian materials relevant for in situ resource utilization (ISRU), 3) assessing any toxicity of Martian materials with respect to human health and performance, and 4) identifying information related to engineering surface hazards such as the corrosive effect of the Martian environment. In addition, MSR would be engineering 'proof of concept' for a potential round trip human mission to the planet, and a potential model for international Mars exploration.

  10. Solar Energetic Particle Events Observed on Mars with MSL/RAD

    NASA Astrophysics Data System (ADS)

    Ehresmann, B.; Hassler, D.; Zeitlin, C.; Guo, J.; Wimmer-Schweingruber, R. F.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Brinza, D. E.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Rafkin, S. C.; Posner, A.; Reitz, G.

    2016-12-01

    The Mars Science Laboratory's Radiation Assessment Detector (MSL/RAD) has been conducting measurements of the ionizing radiation field on the Martian surface since August 2012. While this field is mainly dominated by Galactic Cosmic Rays (GCRs) and their interactions with the atoms in the atmosphere and soil, Solar Energetic Particle (SEP) events can contribute significantly to the radiation environment on short time scales and enhance and dominate, in particular, the Martian surface proton flux. Monitoring and understanding the effects of these SEP events on the radiation environment is of great importance to assess the associated health risks for potential, future manned missions to Mars. Furthermore, measurements of the proton spectra during such events aids in the validation of particle transport codes that are used to model the propagation of SEPs through the Martian atmosphere. Comparing the temporal evolution of the SEP events signals detected by MSL/RAD with measurements from other spacecraft can further yield insight into SEP propagation throughout the heliosphere. Here, we present and overview of measurements of the SEP events that have been directly detected on the Martian surface by the MSL/RAD instrument.

  11. Solar UV irradiation conditions on the surface of Mars.

    PubMed

    Rontó, Györgyi; Bérces, Attila; Lammer, Helmut; Cockell, Charles S; Molina-Cuberos, Gregorio J; Patel, Manish R; Selsis, Franck

    2003-01-01

    The UV radiation environment on planetary surfaces and within atmospheres is of importance in a wide range of scientific disciplines. Solar UV radiation is a driving force of chemical and organic evolution and serves also as a constraint in biological evolution. In this work we modeled the transmission of present and early solar UV radiation from 200 to 400 nm through the present-day and early (3.5 Gyr ago) Martian atmosphere for a variety of possible cases, including dust loading, observed and modeled O3 concentrations. The UV stress on microorganisms and/or molecules essential for life was estimated by using DNA damaging effects (specifically bacteriophage T7 killing and uracil dimerization) for various irradiation conditions on the present and ancient Martian surface. Our study suggests that the UV irradiance on the early Martian surface 3.5 Gyr ago may have been comparable with that of present-day Earth, and though the current Martian UV environment is still quite severe from a biological viewpoint, we show that substantial protection can still be afforded under dust and ice.

  12. Effects of a simulated martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029.

    PubMed

    Cockell, Charles S; Schuerger, Andrew C; Billi, Daniela; Friedmann, E Imre; Panitz, Corinna

    2005-04-01

    Dried monolayers of Chroococcidiopsis sp. 029, a desiccation-tolerant, endolithic cyanobacterium, were exposed to a simulated martian-surface UV and visible light flux, which may also approximate to the worst-case scenario for the Archean Earth. After 5 min, there was a 99% loss of cell viability, and there were no survivors after 30 min. However, this survival was approximately 10 times higher than that previously reported for Bacillus subtilis. We show that under 1 mm of rock, Chroococcidiopsis sp. could survive (and potentially grow) under the high martian UV flux if water and nutrient requirements for growth were met. In isolated cells, phycobilisomes and esterases remained intact hours after viability was lost. Esterase activity was reduced by 99% after a 1-h exposure, while 99% loss of autofluorescence required a 4-h exposure. However, cell morphology was not changed, and DNA was still detectable by 4',6-diamidino-2-phenylindole staining after an 8-h exposure (equivalent to approximately 1 day on Mars at the equator). Under 1 mm of simulant martian soil or gneiss, the effect of UV radiation could not be detected on esterase activity or autofluorescence after 4 h. These results show that under the intense martian UV flux the morphological signatures of life can persist even after viability, enzymatic activity, and pigmentation have been destroyed. Finally, the global dispersal of viable, isolated cells of even this desiccation-tolerant, ionizing-radiation-resistant microorganism on Mars is unlikely as they are killed quickly by unattenuated UV radiation when in a desiccated state. These findings have implications for the survival of diverse microbial contaminants dispersed during the course of human exploratory class missions on the surface of Mars.

  13. Trajectories of martian habitability.

    PubMed

    Cockell, Charles S

    2014-02-01

    Beginning from two plausible starting points-an uninhabited or inhabited Mars-this paper discusses the possible trajectories of martian habitability over time. On an uninhabited Mars, the trajectories follow paths determined by the abundance of uninhabitable environments and uninhabited habitats. On an inhabited Mars, the addition of a third environment type, inhabited habitats, results in other trajectories, including ones where the planet remains inhabited today or others where planetary-scale life extinction occurs. By identifying different trajectories of habitability, corresponding hypotheses can be described that allow for the various trajectories to be disentangled and ultimately a determination of which trajectory Mars has taken and the changing relative abundance of its constituent environments.

  14. UV irradiation of biomarkers adsorbed on minerals under Martian-like conditions: Hints for life detection on Mars

    NASA Astrophysics Data System (ADS)

    Fornaro, Teresa; Boosman, Arjen; Brucato, John R.; ten Kate, Inge Loes; Siljeström, Sandra; Poggiali, Giovanni; Steele, Andrew; Hazen, Robert M.

    2018-10-01

    Laboratory simulations of Martian conditions are essential to develop quantitative models for the survival of organic biomarkers for future Mars exploration missions. In this work, we report the results of ultraviolet (UV) irradiation processing of biomarkers adsorbed on minerals under Martian-like conditions. Specifically, we prepared Mars soil analogues by doping forsterite, lizardite, antigorite, labradorite, natrolite, apatite and hematite minerals with organic compounds considered as potential biomarkers of extant terrestrial life such as the nucleotides adenosine monophosphate (AMP) and uridine monophosphate (UMP). We characterized such Mars soil analogues by means of Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and Confocal Raman Imaging Spectroscopy (CRIS), in order to get insights into the specific molecule-mineral interactions and explore the capabilities of different techniques to reveal diagnostic features of these biomarkers. Then, we performed irradiation experiments in the mid-UV spectral region under simulated Martian conditions and under terrestrial ambient conditions for comparison, monitoring the degradation process through DRIFTS. We observed that degradation under Martian-like conditions occurs much slower than in terrestrial ambient conditions. The minerals labradorite and natrolite mainly promote photodegradation of nucleotides, hematite and forsterite exhibit an intermediate degrading effect, while apatite, lizardite and antigorite do not show any significant catalytic effect on the degradation of the target organic species.

  15. Simulation of Martian EVA at the Mars Society Arctic Research Station

    NASA Astrophysics Data System (ADS)

    Pletser, V.; Zubrin, R.; Quinn, K.

    The Mars Society has established a Mars Arctic Research Station (M.A.R.S.) on Devon Island, North of Canada, in the middle of the Haughton crater formed by the impact of a large meteorite several million years ago. The site was selected for its similarities with the surface of the Mars planet. During the Summer 2001, the MARS Flashline Research Station supported an extended international simulation campaign of human Mars exploration operations. Six rotations of six person crews spent up to ten days each at the MARS Flashline Research Station. International crews, of mixed gender and professional qualifications, conducted various tasks as a Martian crew would do and performed scientific experiments in several fields (Geophysics, Biology, Psychology). One of the goals of this simulation campaign was to assess the operational and technical feasibility of sustaining a crew in an autonomous habitat, conducting a field scientific research program. Operations were conducted as they would be during a Martian mission, including Extra-Vehicular Activities (EVA) with specially designed unpressurized suits. The second rotation crew conducted seven simulated EVAs for a total of 17 hours, including motorized EVAs with All Terrain Vehicles, to perform field scientific experiments in Biology and Geophysics. Some EVAs were highly successful. For some others, several problems were encountered related to hardware technical failures and to bad weather conditions. The paper will present the experiment programme conducted at the Mars Flashline Research Station, the problems encountered and the lessons learned from an EVA operational point of view. Suggestions to improve foreseen Martian EVA operations will be discussed.

  16. Possible Habilability of Martian Regolity and Research of Ancient Life "Biomarkers"

    NASA Astrophysics Data System (ADS)

    Pavlov, A. K.

    2017-05-01

    We consider environments of modern subsurface martian regolith layer as possible habitats of the terrestrial like microorganisms. Recent experimental studies demonstrate that low atmospheric pressure, low temperature and high level of cosmic rays ionizing radiation are not able to sterilize the subsurface layer of Mars. Even nonextremofile microorganisms can reproduce in martian regolith using films of liquid water which are produced by absorption of water vapor of subsurface ice sublimation. Areas of possible seasonal subsurface water flow (recurring slope lineae, dark dune spots) and methane emission regions are discussed as perspective sites for discovering of modern life on Mars. Degradation of "biomarkers" (complex organic molecules and isotopic ratio 13C/12C) in martian soil under high level of cosmic rays radiation is analyzed. We show the ancient biomarkers are effectively destroyed within period 108 -109 years. As result, probability of its discovering in shallow subsurface martian layer is low.

  17. Martian Radiation Environment: Model Calculations and Recent Measurements with "MARIE"

    NASA Technical Reports Server (NTRS)

    Saganti, P. B.; Cucinotta, F. A.; zeitlin, C. J.; Cleghorn, T. F.

    2004-01-01

    The Galactic Cosmic Ray spectra in Mars orbit were generated with the recently expanded HZETRN (High Z and Energy Transport) and QMSFRG (Quantum Multiple-Scattering theory of nuclear Fragmentation) model calculations. These model calculations are compared with the first eighteen months of measured data from the MARIE (Martian Radiation Environment Experiment) instrument onboard the 2001 Mars Odyssey spacecraft that is currently in Martian orbit. The dose rates observed by the MARIE instrument are within 10% of the model calculated predictions. Model calculations are compared with the MARIE measurements of dose, dose-equivalent values, along with the available particle flux distribution. Model calculated particle flux includes GCR elemental composition of atomic number, Z = 1-28 and mass number, A = 1-58. Particle flux calculations specific for the current MARIE mapping period are reviewed and presented.

  18. Filter Media Tests Under Simulated Martian Atmospheric Conditions

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.

    2016-01-01

    Human exploration of Mars will require the optimal utilization of planetary resources. One of its abundant resources is the Martian atmosphere that can be harvested through filtration and chemical processes that purify and separate it into its gaseous and elemental constituents. Effective filtration needs to be part of the suite of resource utilization technologies. A unique testing platform is being used which provides the relevant operational and instrumental capabilities to test articles under the proper simulated Martian conditions. A series of tests were conducted to assess the performance of filter media. Light sheet imaging of the particle flow provided a means of detecting and quantifying particle concentrations to determine capturing efficiencies. The media's efficiency was also evaluated by gravimetric means through a by-layer filter media configuration. These tests will help to establish techniques and methods for measuring capturing efficiency and arrestance of conventional fibrous filter media. This paper will describe initial test results on different filter media.

  19. What causes Mars' annular polar vortices?

    NASA Astrophysics Data System (ADS)

    Toigo, A. D.; Waugh, D. W.; Guzewich, S. D.

    2017-01-01

    A distinctive feature of the Martian atmosphere is that the winter polar vortices exhibit annuli of high potential vorticity (PV) with a local minimum near the pole. These annuli are seen in observations, reanalyses, and free-running general circulation model simulations of Mars, but are not generally a feature of Earth's polar vortices, where there is a monotonic increase in magnitude of PV with latitude. The creation and maintenance of the annular polar vortices on Mars are not well understood. Here we use simulations with a Martian general circulation model to the show that annular vortices are related to another distinctive, and possibly unique in the solar system, feature of the Martian atmosphere: the condensation of the predominant atmospheric gas species (CO2) in polar winter regions. The latent heat associated with CO2 condensation leads to destruction of PV in the polar lower atmosphere, inducing the formation of an annular PV structure.

  20. Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?

  1. Life sciences.

    PubMed

    Martin-Brennan, Cindy; Joshi, Jitendra

    2003-12-01

    Space life sciences research activities are reviewed for 2003. Many life sciences experiments were lost with the tragic loss of STS-107. Life sciences experiments continue to fly as small payloads to the International Space Station (ISS) via the Russian Progress vehicle. Health-related studies continue with the Martian Radiation Environment Experiment (MARIE) aboard the Odyssey spacecraft, collecting data on the radiation environment in Mars orbit. NASA Ames increased nanotechnology research in all areas, including fundamental biology, bioastronautics, life support systems, and homeland security. Plant research efforts continued at NASA Kennedy, testing candidate crops for ISS. Research included plant growth studies at different light intensities, varying carbon dioxide concentrations, and different growth media. Education and outreach efforts included development of a NASA/USDA program called Space Agriculture in the Classroom. Canada sponsored a project called Tomatosphere, with classrooms across North America exposing seeds to simulated Mars environment for growth studies. NASA's Office of Biological and Physical Research released an updated strategic research plan.

  2. Survival of Antarctic Cryptoendolithic Fungi in Simulated Martian Conditions On Board the International Space Station.

    PubMed

    Onofri, Silvano; de Vera, Jean-Pierre; Zucconi, Laura; Selbmann, Laura; Scalzi, Giuliano; Venkateswaran, Kasthuri J; Rabbow, Elke; de la Torre, Rosa; Horneck, Gerda

    2015-12-01

    Dehydrated Antarctic cryptoendolithic communities and colonies of the rock inhabitant black fungi Cryomyces antarcticus (CCFEE 515) and Cryomyces minteri (CCFEE 5187) were exposed as part of the Lichens and Fungi Experiment (LIFE) for 18 months in the European Space Agency's EXPOSE-E facility to simulated martian conditions aboard the International Space Station (ISS). Upon sample retrieval, survival was proved by testing colony-forming ability, and viability of cells (as integrity of cell membrane) was determined by the propidium monoazide (PMA) assay coupled with quantitative PCR tests. Although less than 10% of the samples exposed to simulated martian conditions were able to proliferate and form colonies, the PMA assay indicated that more than 60% of the cells and rock communities had remained intact after the "Mars exposure." Furthermore, a high stability of the DNA in the cells was demonstrated. The results contribute to assessing the stability of resistant microorganisms and biosignatures on the surface of Mars, data that are valuable information for further search-for-life experiments on Mars. Endoliths-Eukaryotes-Extremophilic microorganisms-Mars-Radiation resistance.

  3. The early Martian environment: Clues from the cratered highlands and the Precambrian Earth

    NASA Technical Reports Server (NTRS)

    Craddock, R. A.; Maxwell, T. A.

    1993-01-01

    There is abundant geomorphic evidence to suggest that Mars once had a much denser and warmer atmosphere than present today. Outflow channel, ancient valley networks, and degraded impact craters in the highlands all suggest that ancient Martian atmospheric conditions supported liquid water on the surface. The pressure, composition, and duration of this atmosphere is largely unknown. However, we have attempted to place some constraints on the nature of the early Martian atmosphere by analyzing morphologic variations of highland impact crater populations, synthesizing results of other investigators, and incorporating what is know about the geologic history of the early Earth. This is important for understanding the climatic evolution of Mars, the relative abundance of martian volatiles, and the nature of highland surface materials.

  4. Martian Environment Electrostatic Precipitator

    NASA Technical Reports Server (NTRS)

    McDougall, Michael Owen

    2016-01-01

    As part of the planned manned mission to Mars, NASA has noticed that shipping oxygen as a part of life support to keep the astronauts alive continuously is overly expensive, and impractical. As such, noting that the Martian atmosphere is 95.37% CO2, NASA chemists noted that one could obtain oxygen from the Martian atmosphere. The plan, as part of a larger ISRU (in-situ resource utilization) initiative, would extract water from the regolith, or the Martian soil which can be electrolyzed by solar panel produced voltage into hydrogen and oxygen. The hydrogen can then be used in the Sabatier reaction with carbon dioxide to produce methane and water producing a net reaction that does not lose water and outputs methane and oxygen for use as rocket fuel and breathing.

  5. Dynamical Circularization of the Martian Orbit

    NASA Astrophysics Data System (ADS)

    Bierbaum, Quinn Patrick; Brown, Cole; Williams, Darren M.

    2018-06-01

    As part of an investigation into the history of the orbital characteristics of the planet Mars, in conjunction with research being performed by Cole Brown and Dr. Darren Williams, I have run dynamical computer simulations of the solar system placing the eccentricity of the Martian orbit between 0.2 and 0.4 in order to discern the viability of eccentricity damping due to long-range planetary interactions as well as interactions with swarms of asteroids placed randomly between 0.5-2.0 AU. This research is one component of a hypothesis intended to explain the geological evidence of flowing water on the primordial Martian surface.

  6. Resistance of Bacterial Endospores to Outer Space for Planetary Protection Purposes—Experiment PROTECT of the EXPOSE-E Mission

    PubMed Central

    Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L.; Nicholson, Wayne L.; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J.

    2012-01-01

    Abstract Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the “trip to Mars” spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the “stay on Mars” spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the “trip to Mars” or “stay on Mars” spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations. Key Words: Planetary protection—Bacterial spores—Space experiment—Simulated Mars mission. Astrobiology 12, 445–456. PMID:22680691

  7. Engineering knowledge requirements for sand and dust on Mars

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.

    1991-01-01

    The successful landing of human beings on Mars and the establishment of a permanent outpost there will require an understanding of the Martian environment by the engineers. A key feature of the Martian environment is the nearly ubiquitous presence of sand and dust. The process which the engineering community will undertake to determine the sensitivities of their designs to the current level of knowledge about Mars sand and dust is emphasized. The interaction of the engineering community with the space exploration initiative (SEI) mission planners and management is described.

  8. Biotoxicity of Mars soils: 1. Dry deposition of analog soils on microbial colonies and survival under Martian conditions

    NASA Astrophysics Data System (ADS)

    Schuerger, Andrew C.; Golden, D. C.; Ming, Doug W.

    2012-11-01

    Six Mars analog soils were created to simulate a range of potentially biotoxic geochemistries relevant to the survival of terrestrial microorganisms on Mars, and included basalt-only (non-toxic control), salt, acidic, alkaline, aeolian, and perchlorate rich geochemistries. Experiments were designed to simulate the dry-deposition of Mars soils onto spacecraft surfaces during an active descent landing scenario with propellant engines. Six eubacteria were initially tested for tolerance to desiccation, and the spore-former Bacillus subtilis HA101 and non-spore former Enterococcus faecalis ATCC 29212 were identified to be strongly resistant (HA101) and moderately resistant (29212) to desiccation at 24 °C. Furthermore, tests with B. subtilis and E. faecalis demonstrated that at least 1 mm of Mars analog soil was required to fully attenuate the biocidal effects of a simulated Mars-normal equatorial UV flux. Biotoxicity experiments were conducted under simulated Martian conditions of 6.9 mbar, -10 °C, CO2-enriched anoxic atmosphere, and a simulated equatorial solar spectrum (200-1100 nm) with an optical depth of 0.1. For B. subtilis, the six analog soils were found, in general, to be of low biotoxicity with only the high salt and acidic soils exhibiting the capacity to inactivate a moderate number of spores (<1 log reductions) exposed 7 days to the soils under simulated Martian conditions. In contrast, the overall response of E. faecalis to the analog soils was more dramatic with between two and three orders of magnitude reductions in viable cells for most soils, and between six and seven orders of magnitude reductions observed for the high-salt soil. Results suggest that Mars soils are likely not to be overtly biotoxic to terrestrial microorganisms, and suggest that the soil geochemistries on Mars will not preclude the habitability of the Martian surface.

  9. Electrodynamics of the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Ledvina, S. A.; Brecht, S. H.

    2017-12-01

    The presence of the Martian crustal magnetic fields makes a significant modification to the interaction between the solar wind/IMF and the ionosphere of the planet. This paper presents the results of 3-D hybrid simulations of Martian solar wind interaction containing the Martian crustal fields., self-consistent ionospheric chemistry and planetary rotation. It has already been reported that the addition of the crustal fields and planetary rotation makes a significant modification of the ionospheric loss from Mars, Brecht et al., 2016. This paper focuses on two other aspects of the interaction, the electric fields and the current systems created by the solar wind interaction. The results of several simulations will be analyzed and compared. The electric fields around Mars due to its interaction with the solar wind will be examined. Special attention will be paid to the electric field constituents (∇ X B, ∇Pe, ηJ). Regions where the electric field is parallel to the magnetic field will be found and the implications of these regions will be discussed. Current systems for each ion species will be shown. Finally the effects on the electric fields and the current systems due to the rotation of Mars will be examined.

  10. BIOMEX Experiment: Ultrastructural Alterations, Molecular Damage and Survival of the Fungus Cryomyces antarcticus after the Experiment Verification Tests.

    PubMed

    Pacelli, Claudia; Selbmann, Laura; Zucconi, Laura; De Vera, Jean-Pierre; Rabbow, Elke; Horneck, Gerda; de la Torre, Rosa; Onofri, Silvano

    2017-06-01

    The search for traces of extinct or extant life in extraterrestrial environments is one of the main goals for astrobiologists; due to their ability to withstand stress producing conditions, extremophiles are perfect candidates for astrobiological studies. The BIOMEX project aims to test the ability of biomolecules and cell components to preserve their stability under space and Mars-like conditions, while at the same time investigating the survival capability of microorganisms. The experiment has been launched into space and is being exposed on the EXPOSE-R2 payload, outside of the International Space Station (ISS) over a time-span of 1.5 years. Along with a number of other extremophilic microorganisms, the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 has been included in the experiment. Before launch, dried colonies grown on Lunar and Martian regolith analogues were exposed to vacuum, irradiation and temperature cycles in ground based experiments (EVT1 and EVT2). Cultural and molecular tests revealed that the fungus survived on rock analogues under space and simulated Martian conditions, showing only slight ultra-structural and molecular damage.

  11. BIOMEX Experiment: Ultrastructural Alterations, Molecular Damage and Survival of the Fungus Cryomyces antarcticus after the Experiment Verification Tests

    NASA Astrophysics Data System (ADS)

    Pacelli, Claudia; Selbmann, Laura; Zucconi, Laura; De Vera, Jean-Pierre; Rabbow, Elke; Horneck, Gerda; de la Torre, Rosa; Onofri, Silvano

    2017-06-01

    The search for traces of extinct or extant life in extraterrestrial environments is one of the main goals for astrobiologists; due to their ability to withstand stress producing conditions, extremophiles are perfect candidates for astrobiological studies. The BIOMEX project aims to test the ability of biomolecules and cell components to preserve their stability under space and Mars-like conditions, while at the same time investigating the survival capability of microorganisms. The experiment has been launched into space and is being exposed on the EXPOSE-R2 payload, outside of the International Space Station (ISS) over a time-span of 1.5 years. Along with a number of other extremophilic microorganisms, the Antarctic cryptoendolithic black fungus Cryomyces antarcticus CCFEE 515 has been included in the experiment. Before launch, dried colonies grown on Lunar and Martian regolith analogues were exposed to vacuum, irradiation and temperature cycles in ground based experiments (EVT1 and EVT2). Cultural and molecular tests revealed that the fungus survived on rock analogues under space and simulated Martian conditions, showing only slight ultra-structural and molecular damage.

  12. A Laboratory Scale Vortex Generator for Simulation of Martian Dust Devils.

    NASA Astrophysics Data System (ADS)

    Balme, M.; Greeley, R.; Mickelson, B.; Iversen, J.; Beardmore, G.; Metzger, S.

    2001-12-01

    Martian dust particles are a few microns in diameter. Current Martian ambient wind speeds appear to be insufficient to lift such fine particles and are marginal to entrain even the optimum particles sizes for threshold (100-160mm diameter). Instead, dust devils were suggested as a local source of airborne particles and have been observed on Mars both from orbit and from lander data. Dust devils lift particles through enhanced local wind speeds and by a pressure drop often associated with the vortex which provides `lift'. This study seeks to 1) quantify the relative importance of enhanced wind speed versus pressure drop lift in dust devil entrainment threshold; 2) measure the mass transport potential of dust devils; 3) investigate the effects of surface roughness and topography on dust devil morphology; 4) quantify the overall effects of low atmospheric pressure on the formation, structure and entrainment processes of dust devils. To investigate the particle lifting properties of dust devils, a laboratory vortex generator was fabricated. It consists of a large vertical cylinder (45 and 75cm in diameter) containing a motor-driven rotor comprised of four vertical blades. Beneath the cylinder is a 2.4 by 2.4 m tabletop containing 14 differential pressure transducer ports used to measure the surface pressure structure of the vortex. Both the distance between the cylinder and the tabletop and the height of the blades within the cylinder can be varied. By controlling these variables and the angular velocity of the blades, a wide range of geometries and intensities of atmospheric vortices can be achieved. The apparatus is portable for use both under terrestrial atmospheric conditions and in the NASA-Ames Research Center Mars Surface Wind Tunnel facility to simulate Martian atmospheric conditions. The laboratory simulation is preferable to a numerical model because direct measurements of dust lifting threshold can be made and holds several advantages over terrestrial field measurements in that it is convenient, easily instrumented and, most importantly, can be moved to a low-pressure environment. Terrestrial field data are necessary, however, to validate the laboratory simulation as a good approximation of reality. Field measurements show that both pressure and velocity structure of the laboratory-generated vortex are similar to terrestrial dust devils. Initial threshold tests under terrestrial conditions show that the geometry of the vortex plays a key role in the angular velocity required to entrain material: smaller vortices have lower angular velocities at threshold. This is thought to be due to the smaller inflow boundary layer associated with narrow vortices and hence enhanced shear stress. However, calculations show that the shear stresses at the surface are at least two orders of magnitude less than the upward force caused by the pressure drop at the center of the vortex. This leads to the tentative conclusion that the actual particle lifting action of the `lift' force is minimal. A full program of experiments using this apparatus is under way to confirm these initial findings and a sequence of experiments under Martian conditions is being planned.

  13. Models of Metabolic Community Structure in Martian Habitable Environments: Constraints from a Terrestrial Analog Acid-Sulfate Fumarole Environment, Cerro Negro Volcano, Nicaragua

    NASA Astrophysics Data System (ADS)

    Rogers, K. L.; McCollom, T. M.; Hynek, B. M.

    2014-12-01

    Microbial habitability in extreme environments on Earth is described by microscale geochemical conditions that constrain metabolic niches in concert with long-term habitat stability that is governed by dynamic geologic processes. Using terrestrial analogs to identify habitable martian environments requires correlating microscale geochemical constraints with reconstructions of past martian environments that are based on global-scale observations. While past martian environments can be characterized by primary parameters (e.g. pH, redox, mineralogy, thermal history), microbial habitability on Earth is a complex function of both primary and derived parameters (e.g. metabolic reaction energetics, chemical & thermal gradients, flow dynamics). In recent years we have been investigating acid-sulfate fumaroles at the Mars analog site, Cerro Negro Volcano, Nicaragua, where habitability is constrained by steep thermal gradients, spatially- and temporally-variable vent dynamics, and limited water and nutrient availability. The most common niche identified thus far is found in fumaroles that host mixed photosynthetic and chemosynthetic endolithic microbial communities. One such endolith is dominated by acidic red algae (Cyanidiales), aerobic bacterial heterotrophs (Ktedonobacteria), and archaeal thermoacidophiles (Hyperthermus, Caldisphaera, and Thermofilum). An analysis of the metabolic structure suggests that primary production by the red algae supports the growth of heterotrophic thermoacidophiles. Diversification among the chemoheterotrophs with respect to temperature and oxygen tolerance suggests community adaptation to environmental gradients or variable venting dynamics. Furthermore, individual cells within the endolith are silica-encrusted, providing the possibility for biosignature formation and preservation. Putative hydrothermal environments on early Mars with similar conditions could have supported endolithic communities with comparable metabolic strategies. Even on a generally cold and dry Mars, volcanic craters likely provided long-lived warm and wet conditions that could have supported diverse assemblages of thermoacidophilic organisms with various metabolic strategies adapted to environmental conditions of acid-sulfate fumaroles.

  14. Photo-induced free radicals on a simulated Martian surface

    NASA Technical Reports Server (NTRS)

    Tseng, S.-S.; Chang, S.

    1974-01-01

    Results of an electron spin resonance study of free radicals in the ultraviolet irradiation of a simulated Martian surface suggest that the ultraviolet photolysis of CO or CO2, or a mixture of both, adsorbed on silica gel at minus 170 C involves the formation of OH radicals and possibly of H atoms as the primary process, followed by the formation of CO2H radicals. It is concluded that the photochemical synthesis of organic compounds could occur on Mars if the siliceous surface dust contains enough silanol groups and/or adsorbed H2O in the form of bound water.

  15. The Martian and extraterrestrial UV radiation environment--1. Biological and closed-loop ecosystem considerations.

    PubMed

    Cockell, C S; Andrady, A L

    1999-01-01

    The Martian surface is exposed to both UVC radiation (<280 nm) and higher doses of UVB (280-315 nm) compared to the surface of the Earth. Terrestrial organisms have not evolved to cope with such high levels of UVC and UVB and thus any attempts to introduce organisms to Mars, particularly in closed-loop life support systems that use ambient sunlight, must address this problem. Here we examine the UV radiation environment of Mars with respect to biological systems. Action spectra and UV surface fluxes are used to estimate the UV stress that both DNA and chloroplasts would experience. From this vantage point it is possible to consider appropriate measures to address the problem of the Martian UV environment for future long term human exploration and settlement strategies. Some prospects for improving the UV tolerance of organisms are also discussed. Existing artificial ecosystems such as Biosphere 2 can provide some insights into design strategies pertinent to high UV environments. Some prospects for improving the UV tolerance of organisms are also discussed. The data also have implications for the establishment of closed-loop ecosystems using natural sunlight on the lunar surface and elsewhere in the Solar System.

  16. Lunar and Planetary Science XXXV: Weird Martian Minerals: Complex Mars Surface Processes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Complex Mars Surface" included the following reports:A Reappraisal of Adsorbed Superoxide Ion as the Cause Behind the Reactivity of the Martian Soils; Sub-Surface Deposits of Hydrous Silicates or Hydrated Magnesium Sulfates as Hydrogen Reservoirs near the Martian Equator: Plausible or Not?; Thermal and Evolved Gas Analysis of Smectites: The Search for Water on Mars; Aqueous Alteration Pathways for K, Th, and U on Mars; Temperature Dependence of the Moessbauer Fraction in Mars-Analog Minerals; Acid-Sulfate Vapor Reactions with Basaltic Tephra: An Analog for Martian Surface Processes; Iron Oxide Weathering in Sulfuric Acid: Implications for Mars; P/Fe as an Aquamarker for Mars; Stable Isotope Composition of Carbonates Formed in Low-Temperature Terrestrial Environments as Martian Analogs; Can the Phosphate Sorption and Occlusion Properties Help to Elucidate the Genesis of Specular Hematite on the Mars Surface?; Sulfate Salts, Regolith Interactions, and Water Storage in Equatorial Martian Regolith; Potential Pathways to Maghemite in Mars Soils: The Key Role of Phosphate; and Mineralogy, Abundance, and Hydration State of Sulfates and Chlorides at the Mars Pathfinder Landing Site.

  17. Partial gravity simulation using a pneumatic actuator with closed loop mechanical amplification

    NASA Technical Reports Server (NTRS)

    Ray, David M.

    1994-01-01

    To support future manned missions to the surface of the Moon and Mars or missions requiring manipulation of payloads and locomotion in space, a training device is required to simulate the conditions of both partial and microgravity as compared to the gravity on Earth. The focus of this paper is to present the development, construction, and testing of a partial gravity simulator which uses a pneumatic actuator with closed loop mechanical amplification. Results of the testing show that this type of simulator maintains a constant partial gravity simulation with a variation of the simulated body force between 2.2 percent and 10 percent, depending on the type of locomotion inputs. The data collected using the simulator show that mean stride frequencies at running speeds at lunar and Martian gravity levels are 12 percent less than those at Earth gravity. The data also show that foot/ground reaction forces at lunar and Martian gravity are, respectively, 62 percent and 51 percent less than those on Earth.

  18. On the Impact Origin of Phobos and Deimos. I. Thermodynamic and Physical Aspects

    NASA Astrophysics Data System (ADS)

    Hyodo, Ryuki; Genda, Hidenori; Charnoz, Sébastien; Rosenblatt, Pascal

    2017-08-01

    Phobos and Deimos are the two small moons of Mars. Recent works have shown that they can accrete within an impact-generated disk. However, the detailed structure and initial thermodynamic properties of the disk are poorly understood. In this paper, we perform high-resolution SPH simulations of the Martian moon-forming giant impact that can also form the Borealis basin. This giant impact heats up the disk material (around ˜2000 K in temperature) with an entropy increase of ˜1500 J K-1 kg-1. Thus, the disk material should be mostly molten, though a tiny fraction of disk material (< 5 % ) would even experience vaporization. Typically, a piece of molten disk material is estimated to be meter sized owing to the fragmentation regulated by their shear velocity and surface tension during the impact process. The disk materials initially have highly eccentric orbits (e ˜ 0.6-0.9), and successive collisions between meter-sized fragments at high impact velocity (˜1-5 km s-1) can grind them down to ˜100 μm sized particles. On the other hand, a tiny amount of vaporized disk material condenses into ˜0.1 μm sized grains. Thus, the building blocks of the Martian moons are expected to be a mixture of these different sized particles from meter-sized down to ˜100 μm sized particles and ˜0.1 μm sized grains. Our simulations also suggest that the building blocks of Phobos and Deimos contain both impactor and Martian materials (at least 35%), most of which come from the Martian mantle (50-150 km in depth; at least 50%). Our results will give useful information for planning a future sample return mission to Martian moons, such as JAXA’s MMX (Martian Moons eXploration) mission.

  19. DR-induced Hot Oxygen and Carbon Coronae of Early Mars

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Chassefiere, E.; Tian, F.; Chaufray, J. Y.; Leblanc, F.

    2017-12-01

    The evolution of Martian atmosphere is a key aspect to understand the habitability of Mars in time. The distributions of neutral atoms above the exobase of ancient Mars (corona) is important for understanding the interactions between the corona and the solar wind, which could help improving our understanding of the evolution of Martian atmosphere. In this work, a 3-D Monte Carlo Model is built to simulate Martian corona in different period of Mars history based on thermosphere structure corresponding to 1, 3, 10, and 20 times present solar XUV conditions and dissociative recombination (DR) reaction profiles. DR reactions of O2+, CO2+, and CO+ are considered as the sources of primary O and C. Secondary O and C atoms, which are formed through collisions between primaries and background species. We will discuss the dependence of physical properties of Martian corona as functions of solar XUV flux and DR reactions. We will also discuss the potential importance of CO+ DR as a contributor to Martian corona.

  20. The Martian Water Cycle Based on 3-D Modeling

    NASA Technical Reports Server (NTRS)

    Houben, H.; Haberle, R. M.; Joshi, M. M.

    1999-01-01

    Understanding the distribution of Martian water is a major goal of the Mars Surveyor program. However, until the bulk of the data from the nominal missions of TES, PMIRR, GRS, MVACS, and the DS2 probes are available, we are bound to be in a state where much of our knowledge of the seasonal behavior of water is based on theoretical modeling. We therefore summarize the results of this modeling at the present time. The most complete calculations come from a somewhat simplified treatment of the Martian climate system which is capable of simulating many decades of weather. More elaborate meteorological models are now being applied to study of the problem. The results show a high degree of consistency with observations of aspects of the Martian water cycle made by Viking MAWD, a large number of ground-based measurements of atmospheric column water vapor, studies of Martian frosts, and the widespread occurrence of water ice clouds. Additional information is contained in the original extended abstract.

  1. Proceedings of the Fourth International Conference on Mars Polar Science and Exploration

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Sessions in this conference include: Mars polar geology and glaciology; Mars and terrestrial radar investigations; Observations, nature, and evolution of the Martian seasonal polar caps; Mars' residual south polar cap; Climate change, ice core analysis, and the redistribution of volatiles on Mars; errestrial Mars analog environments; The Phoenix Scout mission and the nature of the near-polar environment; Moderated Discussion: Key Issues Regarding Phoenix Scout Mission and the nature of the near-polar environment; Panel Discussion: Key Issues in Mars Polar Science and Exploration; Mars Reconnaissance Orbiter investigations of the Martian polar regions and climate; Mars Polar Scout Mission concepts; and Panel Discussion: New perspectives on Mars polar science and exploration

  2. Martian paleolakes and waterways - Exobiological implications

    NASA Technical Reports Server (NTRS)

    Scott, David H.; Rice, James W., Jr.; Dohm, James M.

    1991-01-01

    Mars may have had an early environment similar to earth's that was conductive to the emergence of life. In addition, increasing geologic evidence indicates that water, upon which terrestrial life depends, has been present on Mars throughout its history. This evidence suggests that life could have developed not only on early Mars but also over longer periods of time in longer lasting, more element local environments. It is suggested that paleolakes may have provided such environments. Unlike the case on earth, this record of the origin and evolution of life has probably not been erased by extensive deformation of the Martian surface. The work reported in this paper has identified eleven prospective areas where large lacustrine basins may once have existed.

  3. Mars Spark Source Prototype

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Lindamood, Glenn R.; Weiland, Karen J.; VanderWal, Randall L.

    1999-01-01

    The Mars Spark Source Prototype (MSSP) hardware has been developed as part of a proof of concept system for the detection of trace metals such as lead, cadmium, and arsenic in Martian dusts and soils. A spark discharge produces plasma from a soil sample and detectors measure the optical emission from metals in the plasma that will allow their identification and quantification. Trace metal measurements are vital for the assessment of the potential toxicity of the Martian environment for human exploration. The current method of X-ray fluorescence can yield concentrations only of major species. Other instruments are incompatible with the volume, weight, and power constraints for a Mars mission. The instrument will be developed primarily for use in the Martian environment, but would be adaptable for terrestrial use in environmental monitoring. This paper describes the Mars Spark Source Prototype hardware, the results of the characterization tests, and future plans for hardware development.

  4. Mars atmospheric losses induced by the solar wind: current knowledge and perspective

    NASA Astrophysics Data System (ADS)

    Ermakov, Vladimir; Zelenyi, Lev; Vaisberg, Oleg; Sementsov, Egor; Dubinin, Eduard

    2017-04-01

    Solar wind induced atmospheric losses have been studied since earlier 1970th. Several loss channels have been identified including pick-up of exospheric photo-ions and ionospheric ions escape. Measurements performed during several solar cycles showed variation of these losses by about factor of 10, being largest at maximum solar activity. MAVEN spacecraft equipped with comprehensive set of instruments with high temporal and mass resolution operating at Mars since fall 2014 ensures much better investigation of solar wind enforcing Martian environment, Mars atmospheric losses processes and mass loss rate. These issues are very important for understanding of Martian atmospheric evolution including water loss during cosmogonic time. Simultaneous observations by MAVEN and MEX spacecraft open the new perspective in study of Martian environment. In this report we discuss results of past and current missions and preliminary analysis of heavy ions escape using simultaneous measurements of MEX and MAVEN spacecraft.

  5. The MSP 2001 Mars Environmental Compatibility Assessment (MECA)

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Meloy, T. P.; Anderson, M. S.; Buehler, M. G.; Frant, M. A.; Grannan, S. M.; Fuerstenau, S. D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.

    1999-01-01

    A chemical analysis of soil-water mixtures and the first microscopic images of martian soil will be among the results to be returned by the Mars Environmental Compatibility Assessment (MECA) payload on the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's primary goal is to evaluate potential geochemical and environmental hazards that may confront future martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. As a survey of soil properties, the MECA data set will also be rich in information relevant to basic geology, paleoclimate, and exobiology. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. MECA is allocated a mass of 10 kg and a peak power usage of 15 W within an enclosure of 35 x 25 x 15 cm. The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Ion-selective electrodes and related sensors will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases. Cyclic voltammetry will address oxidants, and anodic stripping voltammetry will probe potentially hazardous trace metals. MECA's microscopy station combines optical and atomic-force microscopy (AFM) in a controlled illumination environment to image dust and soil particles from millimeters to nanometers in size. Careful selection of substrates and an abrasion tool allows experimental study of size distribution, adhesion, abrasion, hardness, color, shape, aggregation, magnetic and other properties. Mounted on the end of the robot arm, MECA's electrometer consists of four types of sensors: an electric field meter, several triboelectricity monitors, an ion gauge, and a thermometer. Tempered only by ultra-violet- light-induced ions and a low-voltage break-down threshold, the dry, cold, dusty martian environment presents an imposing electrostatic hazard to both robots and humans. In addition, the electrostatic environment is key to transport of dust and, consequently, martian meteorology. MECA will also observe natural dust accumulation on engineering materials. Viewed with the robot arm camera, the abrasion and adhesion plates are strategically placed to allow direct observation of the inter-action between materials and soils on a macroscopic scale. Materials of graded hardness are placed directly under the robot arm scoop to sense wear and soil hardness. A second array, placed on the lander deck, is deployed after the dust plume of landing has settled. It can be manipulated in a primitive fashion by the arm, first having dirt deposited on it from the scoop and subsequently shaken clean. Dust accumulation as a function of conductivity, magnetic field strength, and other parameters will be explored. The MECA instruments described above will assess potential hazards that the Martian soil might present to human explorers and their equipment. In addition, MECA will provide information on the composition of ancient surface water environments, observing microscopic evidence of geological (and biological?) processes, inferring soil and dust transport, comminution and weathering mechanisms, and characterizing soil horizons that might be encountered during excavation. Additional information is contained in the original extended abstract.

  6. Water activity and the challenge for life on early Mars.

    PubMed

    Tosca, Nicholas J; Knoll, Andrew H; McLennan, Scott M

    2008-05-30

    In situ and orbital exploration of the martian surface has shown that acidic, saline liquid water was intermittently available on ancient Mars. The habitability of these waters depends critically on water activity (aH2O), a thermodynamic measure of salinity, which, for terrestrial organisms, has sharply defined limits. Using constraints on fluid chemistry and saline mineralogy based on martian data, we calculated the maximum aH2O for Meridiani Planum and other environments where salts precipitated from martian brines. Our calculations indicate that the salinity of well-documented surface waters often exceeded levels tolerated by known terrestrial organisms.

  7. Non-Psychrophilic Methanogens Capable of Growth Following Long-Term Extreme Temperature Changes, with Application to Mars.

    PubMed

    Mickol, Rebecca L; Laird, Sarah K; Kral, Timothy A

    2018-04-23

    Although the martian environment is currently cold and dry, geomorphological features on the surface of the planet indicate relatively recent (<4 My) freeze/thaw episodes. Additionally, the recent detections of near-subsurface ice as well as hydrated salts within recurring slope lineae suggest potentially habitable micro-environments within the martian subsurface. On Earth, microbial communities are often active at sub-freezing temperatures within permafrost, especially within the active layer, which experiences large ranges in temperature. With warming global temperatures, the effect of thawing permafrost communities on the release of greenhouse gases such as carbon dioxide and methane becomes increasingly important. Studies examining the community structure and activity of microbial permafrost communities on Earth can also be related to martian permafrost environments, should life have developed on the planet. Here, two non-psychrophilic methanogens, Methanobacterium formicicum and Methanothermobacter wolfeii , were tested for their ability to survive long-term (~4 year) exposure to freeze/thaw cycles varying in both temperature and duration, with implications both for climate change on Earth and possible life on Mars.

  8. Three Dimensional Volcanic Plume Simulations on Early Mars

    NASA Astrophysics Data System (ADS)

    Fisher, M. A.; Kobs-Nawotniak, S. E.

    2016-12-01

    Current explosive volcanic plume models for early Mars are thought to overestimate plume height by tens of kilometers. They are based on 1D empirical terrestrial plume models, which determine plume rise using Morton-style convection. Not only do these models fail to account for turbulent mixing processes, but the Martian versions also violate assumptions regarding the speed of sound, radial expansion, and availability of ambient air for entrainment. Since volcanically derived volatiles are hypothesized to have increased early Martian warming, it is vital to understand how high these volatiles can be injected into the atmosphere. Active Tracer High-resolution Atmospheric Model (ATHAM; Oberhuber et al., 1998) is a 3D plume simulator that circumvents the underlying assumptions of the current Martian plume models by solving the Navier-Stokes equations. Martian-ATHAM (M-ATHAM) simulates Martian volcanic eruptions by replacing terrestrial planetary and atmospheric conditions with those appropriate for early Mars. In particular we evaluate three different atmospheric compositions with unique temperature and density profiles: 99.5% CO2/0.5% SO2 and 85% CO2/15% H2 representing a "warm and wet" climate and 100% CO2 representing a "cold and wet" climate. We evaluated for mass eruption rates from 10^3 kg/s to 10^10 kg/s using the Idaho National Laboratory's supercomputer Falcon in order determine what conditions produced stable eruption columns. Of the three different atmospheric compositions, 100% CO2 and 99.5% CO2/0.5% SO2 produced stable plumes for the same mass eruption rates whereas the 85% CO2/15% H2 atmosphere produced stable plumes for a slightly higher range of mass eruption rates. The tallest plumes were produced by 85% CO2/15% H2 atmosphere, producing plumes 5% taller than the revised empirical models, suggesting closer agreement than previously assumed under certain conditions. In comparison to terrestrial plumes, all early Martian plumes needed higher mass eruption rates to become positively buoyant, but could sustain stable plumes at higher mass eruption rates than terrestrial eruptions.

  9. Looking for water related environments on Mars: analysis of reflectance spectra for present and future exploration

    NASA Astrophysics Data System (ADS)

    De Toffoli, B.; Carli, C.; Maturilli, A.; Sauro, F.; Massironi, M.; Helbert, J.

    2017-09-01

    Spectroscopic analyses of basalt epithermal alterations, clay minerals and samples representative of wet sedimentary environments in a broad wavelength range from the ultraviolet to the far-infrared provide new loads of information for present and future exploration of environments that could have been linked to water and gas emission. Specifically, methane emission centers on the Martian surface are high interest targets for Exo-Mars mission since they involve environments where life could have potentially arisen, grown and given a contribution to the degassing phenomenon. Such data will be applied to drive the analysis on remotely sensed hyperspectral images of Martian regions where surface expressions of water and sediments resurgences are recognisable, such as the mound fields detected in Utopia and Hellas basins and Vastitas Borealis.

  10. Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.

    PubMed

    Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P

    2014-01-24

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  11. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    Energy levels are high in the RoboPit as teams prepare for NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. arel using their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  12. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    NASA Kennedy Space Center Director Bob Cabana welcomes participants to the agency's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  13. Quantitative ecology and dry-heat resistance of psychrophiles. M.S. Thesis; [in soil samples from Viking spacecraft manufacturing areas

    NASA Technical Reports Server (NTRS)

    Winans, L., Jr.

    1974-01-01

    Microorganisms capable of growth at 7 C were enumerated and isolated from soil samples from the manufacture area (Denver, Colorado) and assembly area (Cape Kennedy, Florida) of the Viking spacecraft. Temperature requirements were determined for these isolates, and those growing at 3 C, but not at 32 C were designated as obligate psychrophiles in this investigation. These were identified to major generic groups, and the population density of obligate psychrophiles from the various groups was determined. Dry heat D-values were found for those spores that demonstrated growth or survival under a simulated Martian environment.

  14. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    A robotic miner digs in the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  15. Integrated Spectroscopic Studies of Anhydrous Sulfate Minerals

    NASA Technical Reports Server (NTRS)

    Lane, M. D.; Bishop, J. L.; Dyar, M. D.; Cloutis, E.; Forray, F. L.; Hiroi, T.

    2005-01-01

    Sulfates have been identified in Martian soils and bedrock and are emerging as an important indicator for aqueous activity on Mars. Sulfate minerals can form in a variety of low-temperature (evaporitic; chemical-weathering) and high-temperature (volcanic/fumarolic; hydrothermal) environments and their formational environments can range from alkaline to acidic. Although sulfates generally form in the presence of water, not all sulfates are hydrous or contain water in their structures. Many of these anhydrous sulfates (Dana group 28; Strunz class 67A) are minerals that form as accompanying phases to the main minerals in ore deposits or as replacement deposits in sedimentary rocks. However, some form from thermal decomposition of OH or H2O-bearing sulfates, such as from the reaction [1]: jarosite = yavapaiite + Fe2O3 + H2O. Where known, the stability fields of these minerals all suggest that they would be stable under martian surface conditions [2]. Thus, anhydrous sulfate minerals may contribute to martian surface mineralogy, so they must be well-represented in spectral libraries used for interpretation of the Martian surface. We present here the preliminary results of an integrated study of emittance, reflectance, and Mossbauer spectroscopy of a suite of wel-lcharacterized anhydrous sulfates.

  16. Microbial Diversity in Surface Iron-Rich Aqueous Environments: Implications for Seeking Signs of Life on Mars

    NASA Technical Reports Server (NTRS)

    Brown, I. I.; Allen, C. C.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Garrison, D. H.; McKay, D. S.

    2010-01-01

    The success of selecting future landing sites on Mars to discover extinct and/or extant extraterrestrial life is dependent on the correct approximation of available knowledge about terrestrial paleogeochemistry and life evolution to Martian (paleo) geology and geochemistry. It is well known that both Earth and Mars are Fe rich. This widespread occurrence suggests that Fe may have played a key role in early life forms, where it probably served as a key constituent in early prosthetic moieties in many proteins of ancient microbes on Earth and likely Mars. The second critical idea is the premise that Life on Mars could most likely have developed when Mars experienced tectonic activity [1] which dramatically decreased around 1 bin years after Martian creation. After that Martian life could have gone extinct or hibernated in the deep subsurface, which would be expensive to reach in contrast to the successful work of Martian surface rovers. Here we analyze the diversity of microbes in several terrestrial Fe rich surface environments in conjunction with the phylogeny and molecular timing of emergence of those microbes on Earth. Anticipated results should help evaluate future landing sites on Mars in searches for biosignatures.

  17. Surface Power Radiative Cooling Tests

    NASA Astrophysics Data System (ADS)

    Vaughn, Jason; Schneider, Todd

    2006-01-01

    Terrestrial nuclear power plants typically maintain their temperature through convective cooling, such as water and forced air. However, the space environment is a vacuum environment, typically 10-8 Torr pressure, therefore in proposed missions to the lunar surface, power plants would have to rely on radiative cooling to remove waste heat. Also, the Martian surface has a very tenuous atmosphere (e.g. ~5 Torr CO2), therefore, the main heat transfer method on the Martian surface is also radiative. Because of the lack of atmosphere on the Moon and the tenuous atmosphere on Mars, surface power systems on both the Lunar and Martian surface must rely heavily on radiative heat transfer. Because of the large temperature swings on both the lunar and the Martian surfaces, trying to radiate heat is inefficient. In order to increase power system efficiency, an effort is underway to test various combinations of materials with high emissivities to demonstrate their ability to survive these degrading atmospheres to maintain a constant radiator temperature improving surface power plant efficiency. An important part of this effort is the development of a unique capability that would allow the determination of a materials emissivity at high temperatures. A description of the test capability as well as initial data is presented.

  18. Monitoring Mars LOD Variations from a High Altitude Circular Equatorial Orbit: Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Barriot, J.; Dehant, V.; Duron, J.

    2003-12-01

    We compute the perturbations of a high altitude circular equatorial orbit of a martian probe under the influence of an annual variation of the martian lenght of day. For this purpose, we use the first order perturbations of the newtonian equations of motion, where the small parameter is given from the hourglass model of Chao and Rubincam, which allow a simple computation of CO2 exchanges during the martian year. We are able to demonstrate that the perturbations contains two components: the first one is a sine/cosine modulation at the orbit frequency, the second one is composed of terms of the form exp(t)*sin(t), so the orbit may not stable in the long term (several martian years), with perturbations growing exponentially. We give the full theory and numbers.

  19. Mars Surface Ionizing Radiation Environment: Need for Validation

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Kim, M. Y.; Clowdsley, M. S.; Heinbockel, J. H.; Tripathi, R. K.; Singleterry, R. C.; Shinn, J. L.; Suggs, R.

    1999-01-01

    Protection against the hazards from exposure to ionizing radiation remains an unresolved issue in the Human Exploration and Development of Space (HEDS) enterprise [1]. The major uncertainty is the lack of data on biological response to galactic cosmic ray (GCR) exposures but even a full understanding of the physical interaction of GCR with shielding and body tissues is not yet available and has a potentially large impact on mission costs. "The general opinion is that the initial flights should be short-stay missions performed as fast as possible (so-called 'Sprint' missions) to minimize crew exposure to the zero-g and space radiation environment, to ease requirements on system reliability, and to enhance the probability of mission success." The short-stay missions tend to have long transit times and may not be the best option due to the relatively long exposure to zero-g and ionizing radiation. On the other hand the short-transit missions tend to have long stays on the surface requiring an adequate knowledge of the surface radiation environment to estimate risks and to design shield configurations. Our knowledge of the surface environment is theoretically based and suffers from an incomplete understanding of the physical interactions of GCR with the Martian atmosphere, Martian surface, and intervening shield materials. An important component of Mars surface robotic exploration is the opportunity to test our understanding of the Mars surface environment. The Mars surface environment is generated by the interaction of Galactic Cosmic Rays (GCR) and Solar Particle Events (SPEs) with the Mars atmosphere and Mars surface materials. In these interactions, multiple charged ions are reduced in size and secondary particles are generated, including neutrons. Upon impact with the Martian surface, the character of the interactions changes as a result of the differing nuclear constituents of the surface materials. Among the surface environment are many neutrons diffusing from the Martian surface and especially prominent are energetic neutrons with energies up to a few hundred MeV. Testing of these computational results is first supported by ongoing experiments at the Brookhaven National Laboratory but equally important is the validation to the extent possible by measurements on the Martian surface. Such measurements are limited by power and weight requirements of the specific mission and simplified instrumentation by necessity lacks the full discernment of particle type and spectra as is possible with laboratory experimental equipment. Yet, the surface measurements are precise and a necessary requisite to validate our understanding of the surface environment. At the very minimum the surface measurements need to provide some spectral information on the neutron environment. Of absolute necessity is the precise knowledge of the detector response functions for absolute comparisons between the computational model of the surface environment and the detector measurements on the surface.

  20. Results From Mars Show Electrostatic Charging of the Mars Pathfinder Sojourner Rover

    NASA Technical Reports Server (NTRS)

    Kolecki, Joseph C.; Siebert, Mark W.

    1998-01-01

    Indirect evidence (dust accumulation) has been obtained indicating that the Mars Pathfinder rover, Sojourner, experienced electrostatic charging on Mars. Lander camera images of the Sojourner rover provide distinctive evidence of dust accumulation on rover wheels during traverses, turns, and crabbing maneuvers. The sol 22 (22nd Martian "day" after Pathfinder landed) end-of-day image clearly shows fine red dust concentrated around the wheel edges with additional accumulation in the wheel hubs. A sol 41 image of the rover near the rock "Wedge" (see the next image) shows a more uniform coating of dust on the wheel drive surfaces with accumulation in the hubs similar to that in the previous image. In the sol 41 image, note particularly the loss of black-white contrast on the Wheel Abrasion Experiment strips (center wheel). This loss of contrast was also seen when dust accumulated on test wheels in the laboratory. We believe that this accumulation occurred because the Martian surface dust consists of clay-sized particles, similar to those detected by Viking, which have become electrically charged. By adhering to the wheels, the charged dust carries a net nonzero charge to the rover, raising its electrical potential relative to its surroundings. Similar charging behavior was routinely observed in an experimental facility at the NASA Lewis Research Center, where a Sojourner wheel was driven in a simulated Martian surface environment. There, as the wheel moved and accumulated dust (see the following image), electrical potentials in excess of 100 V (relative to the chamber ground) were detected by a capacitively coupled electrostatic probe located 4 mm from the wheel surface. The measured wheel capacitance was approximately 80 picofarads (pF), and the calculated charge, 8 x 10(exp -9) coulombs (C). Voltage differences of 100 V and greater are believed sufficient to produce Paschen electrical discharge in the Martian atmosphere. With an accumulated net charge of 8 x 10(exp -9) C, and average arc time of 1 msec, arcs can also occur with estimated arc currents approaching 10 milliamperes (mA). Discharges of this magnitude could interfere with the operation of sensitive electrical or electronic elements and logic circuits. Sojourner rover wheel tested in laboratory before launch to Mars. Before launch, we believed that the dust would become triboelectrically charged as it was moved about and compacted by the rover wheels. In all cases observed in the laboratory, the test wheel charged positively, and the wheel tracks charged negatively. Dust samples removed from the laboratory wheel averaged a few ones to tens of micrometers in size (clay size). Coarser grains were left behind in the wheel track. On Mars, grain size estimates of 2 to 10 mm were derived for the Martian surface materials from the Viking Gas Exchange Experiment. These size estimates approximately match the laboratory samples. Our tentative conclusion for the Sojourner observations is that fine clay-sized particles acquired an electrostatic charge during rover traverses and adhered to the rover wheels, carrying electrical charge to the rover. Since the Sojourner rover carried no instruments to measure this mission's onboard electrical charge, confirmatory measurements from future rover missions on Mars are desirable so that the physical and electrical properties of the Martian surface dust can be characterized. Sojourner was protected by discharge points, and Faraday cages were placed around sensitive electronics. But larger systems than Sojourner are being contemplated for missions to the Martian surface in the foreseeable future. The design of such systems will require a detailed knowledge of how they will interact with their environment. Validated environmental interaction models and guidelines for the Martian surface must be developed so that design engineers can test new ideas prior to cutting hardware. These models and guidelines cannot be validated without actual flighata. Electrical charging of vehicles and, one day, astronauts moving across the Martian surface may have moderate to severe consequences if large potential differences develop. The observations from Sojourner point to just such a possibility. It is desirable to quantify these results. The various lander/rover missions being planned for the upcoming decade provide the means for doing so. They should, therefore, carry instruments that will not only measure vehicle charging but characterize all the natural and induced electrical phenomena occurring in the environment and assess their impact on future missions.

  1. Characterization of Fillite as a planetary soil simulant in support of rover mobility assessment in high-sinkage/high-slip environments

    NASA Astrophysics Data System (ADS)

    Edwards, Michael

    This thesis presents the results of a research program characterizing a soil simulant called Fillite, which is composed of alumino-silicate hollow microspheres harvested from the pulverized fuel ash of coal-fired power plants. Fillite is available in large quantities at a reasonable cost and it is chemically inert. Fillite has been selected by the National Aeronautics and Space Administration (NASA) Glenn Research Center to simulate high-sinkage/high-slip environment in a large test bed such as the ones encountered by the Spirit rover on Mars in 2009 when it became entrapped in a pocket of soft, loose regolith on Mars. The terms high-sinkage and high-slip used here describe the interaction of soils with typical rover wheels. High-sinkage refers to a wheel sinking with little to no applied force while high-slip refers to a spinning wheel with minimal traction. Standard material properties (density, specific gravity, compression index, Young's modulus, and Poisson's ratio) of Fillite were determined from a series of laboratory tests conducted in general accordance with ASTM standards. Tests were also performed to determine some less standard material properties of Fillite such as the small strain shear wave velocity, maximum shear modulus, and several pressure-sinkage parameters for use in pressure-sinkage models. The experiments include an extensive series of triaxial compression tests, bender element tests, and normal and shear bevameter tests. The unit weight of Fillite on Earth ranges between 3.9 and 4.8 kN/m 3, which is similar to that of Martian regolith (about 3.7 -- 5.6 kN/m3) on Mars and close to the range of the unit weight of lunar regolith (about 1.4 -- 2.9 kN/m3) on the Moon. The data presented here support that Fillite has many physical and mechanical properties that are similar to what is known about Martian regolith. These properties are also comparable to lunar regolith. Fillite is quite dilatant; its peak and critical angles of internal friction are smaller than those of most other simulants. Smaller shear strength, coupled with much smaller bulk unit weight as compared to other simulants, results in smaller bearing and shearing resistances allowing for better simulation of the intended high-sinkage, high-slip behavior for rover mobility studies. The results of the normal bevameter tests were used to determine parameters for two models available in the literature - the Bekker model and the New Model of Mobility (N2M) model. These parameters were then used to predict the sinkage of a Spirit rover wheel if the rover were to be used on Fillite. The predicted sinkage of a Spirit rover wheel in Fillite was 84% of the wheel diameter, which was within the observed sinkage of 50 to 90% of the wheel diameter of the Spirit rover on Mars. Shear bevameter tests were also performed on Fillite to assess the shear stresses and shear deformations imparted by wheels under torsional loads. The results compared well to the estimated shear stresses and deformations of Martian soil caused by the wheels of the Spirit rover. When compared to other simulants (e.g. GRC-1), the pressure-sinkage and shear stress-shear deformation behaviors of Fillite confirm that Fillite is more suitable for high-sinkage and high-slip rover studies than other typical simulants derived from natural terrestrial soils and rocks.

  2. The prospects for life on Mars - A pre-Viking assessment

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Lederberg, J.

    1976-01-01

    The paper considers implications of the Mariner 9 findings for the investigation of Martian biology in the next decade, beginning with the Viking mission. Previous claims for observations of Martian biological activity are reviewed and refuted or reinterpreted. The question is raised of whether there are combinations of environmental temperature and water activity on Mars that are suitable for a conceivable Martian biology. Four possible classes of Martian organisms associated with temperature/water ecological niches in the external environment are proposed: organisms requiring high temperatures and high water activity, those inhabiting niches with low temperatures and high water activity, those inhabiting niches of high temperature and low water activity, and those which can survive under conditions of low temperature and low water activity. It is noted that organisms of the last two classes may extract water from minerals or from ice and may be of large dimensions. The possible surface distribution of Martian organisms is discussed along with future search strategies for life on Mars.

  3. Comparison of Martian Radiation Environment with International Space Station

    NASA Image and Video Library

    2003-03-13

    This graphic shows the radiation dose equivalent as measured by Odyssey's Martian radiation environment experiment at Mars and by instruments aboard the International Space Station, for the 11-month period from April 2002 through February 2003. The accumulated total in Mars orbit is about two and a half times larger than that aboard the Space Station. Averaged over this time period, about 10 percent of the dose equivalent at Mars is due to solar particles, although a 30 percent contribution from solar particles was seen in July 2002, when the sun was particularly active. http://photojournal.jpl.nasa.gov/catalog/PIA04258

  4. Desiccation tolerance of iron bacteria biofilms on Mars regolith simulants

    NASA Astrophysics Data System (ADS)

    Feyh, Nina; Szewzyk, Ulrich

    2010-05-01

    Iron oxidizing bacteria play an important role in the geological redox cycling of iron on earth. The redox change between Fe(II) and Fe(III) can be used for biological energy production [1]. Therefore iron oxidation in the iron rich martian soils may be or may have been microbially mediated. The microbial conversion of iron is considered to be an ancient form of metabolism [2], so it might have evolved on Mars as well. However, to exist in recent martian soils, bacteria must be able to endure dry and cold conditions. Neutrophilic iron oxidizers can be found in various iron rich aquatic environments, where they lead to the precipitation of insoluble ferric hydroxides. Some of these environments fall temporarily dry, what could have led to an adaptation to desiccation by bacteria, existing there. One strategy of iron bacteria to endure drought stress might be the formation of biofilms by excreting Extracellular Polymeric Substances (EPS). The deposition of iron hydroxides could enable them to endure dry conditions as well. For our experiments, neutrophilic iron oxidizing bacteria have been isolated from a creek in Bad Salzhausen/Hesse and temporarily drying out pools in Tierra del Fuego. Strains from aquatic environments in the national park "Unteres Odertal" and from water wells in Berlin/Brandenburg are included in the tests as well. In desiccation experiments, the capability of iron bacteria to tolerate dry conditions are investigated. The aim of our first experiment is the adaptation to dry conditions. Biofilms of 15 strains are grown on ceramic beads in liquid medium containing complexed Fe(II), established biofilms contain Fe(III) precipitates. The cultures are desiccated in a sterile airflow until the weight of the cultures remained constant. After a desiccation period of 9 h up to 7 d, the beads are transferred to fresh liquid medium. Adapted strains are used in further desiccation experiments, where biofilms are grown on two martian regolith simulants. These mineral mixtures were developed and produced by the Naturkundemuseum Berlin according to recent data of Mars research missions [3, 4, 5, 6, 7]. The minerals are attached to object slides with potassium silicate and biofilms are grown on the mineral surface. The biofilms are quantified by cell counting and the structure is evaluated by epifluorescence microscopy. After desiccation in a sterile airflow, the survival of cells is determined by fluorescence staining. Acknowledgements This research was supported by the Helmholtz Association through the research alliance "Planetary Evolution and Life". References [1] Weber, K. A. et al. (2006). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology 4: 752-764. [2] Vargas, M. et al. (1998). Microbiological evidence for Fe(III) reduction on early Earth. Nature 395: 65-67. [3] Bibring, J.-P., Y. Langevin, et al. (2005). Mars surface diversity as revealed by the OMEGA/Mars express observations. Science 307(5715): 1576-1581. [4] Bibring, J.-P., S. W. Squyres, et al. (2006). Merging Views on Mars. Science 313(5795): 1899-1901. [5] Chevrier, V. and P. E. Mathé (2007). Mineralogy and evolution of the surface of Mars: A review. Planetary and Space Science 55(3): 289-314. [6] McCollom, T. M. and B. M. Hynek (2005). A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars. Nature 438(7071): 1129-1131. [7] Poulet, F., J. P. Bibring, et al. (2005). Phyllosilicates on Mars and implications for early martian climate. Nature 438(7068): 623-627.

  5. Numerical simulation of thermally induced near-surface flows over Martian terrain

    NASA Technical Reports Server (NTRS)

    Parish, T. R.; Howard, A. D.

    1993-01-01

    Numerical simulations of the Martian near-surface wind regime using a mesoscale atmospheric model have shown that the thermally induced near-surface winds are analogous to terrestrial circulations. In particular, katabatic wind displays a striking similarity to flow observed over Antarctica. Introduction of solar radiation strongly perturbs the slope flows; anabatic conditions develop in middle to high latitudes during the daytime hours due to the solar heating of the sloping terrain. There appears to be a rapid transition from the katabatic to the anabatic flow regimes, emphasizing the primary importance of radiative exchanges at the surface in specifying the horizontal pressure gradient force.

  6. Damage Escape and Repair in Dried Chroococcidiopsis spp. from Hot and Cold Deserts Exposed to Simulated Space and Martian Conditions

    NASA Astrophysics Data System (ADS)

    Billi, Daniela; Viaggiu, Emanuela; Cockell, Charles S.; Rabbow, Elke; Horneck, Gerda; Onofri, Silvano

    2011-01-01

    The cyanobacterium Chroococcidiopsis, overlain by 3mm of Antarctic sandstone, was exposed as dried multilayers to simulated space and martian conditions. Ground-based experiments were conducted in the context of Lichens and Fungi Experiments (EXPOSE-E mission, European Space Agency), which were performed to evaluate, after 1.5 years on the International Space Station, the survival of cyanobacteria (Chroococcidiopsis), lichens, and fungi colonized on Antarctic rock. The survival potential and the role played by protection and repair mechanisms in the response of dried Chroococcidiopsis cells to ground-based experiments were both investigated. Different methods were employed, including evaluation of the colony-forming ability, single-cell analysis of subcellular integrities based on membrane integrity molecular and redox probes, evaluation of the photosynthetic pigment autofluorescence, and assessment of the genomic DNA integrity with a PCR-based assay. Desiccation survivors of strain CCMEE 123 (coastal desert, Chile) were better suited than CCMEE 134 (Beacon Valley, Antarctica) to withstand cellular damage imposed by simulated space and martian conditions. Exposed dried cells of strain CCMEE 123 formed colonies, maintained subcellular integrities, and, depending on the exposure conditions, also escaped DNA damage or repaired the induced damage upon rewetting.

  7. Asymmetry of the Martian Current Sheet in a Multi-fluid MHD Model

    NASA Astrophysics Data System (ADS)

    Panoncillo, S. G.; Egan, H. L.; Dong, C.; Connerney, J. E. P.; Brain, D. A.; Jakosky, B. M.

    2017-12-01

    The solar wind carries interplanetary magnetic field (IMF) lines toward Mars, where they drape around the planet's conducting ionosphere, creating a current sheet behind the planet where the magnetic field has opposite polarity on either side. In its simplest form, the current sheet is often thought of as symmetric, extending behind the planet along the Mars-Sun line. Observations and model simulations, however, demonstrate that this idealized representation is only an approximation, and the actual scenario is much more complex. The current sheet can have 3D structure, move back and forth, and be situated dawnward or duskward of the Mars-Sun line. In this project, we utilized a library of global plasma model results for Mars consisting of a collection of multi-fluid MHD simulations where solar max/min, sub-solar longitude, and the orbital position of Mars are varied individually. The model includes Martian crustal fields, and was run for identical steady solar wind conditions. This library was created for the purpose of comparing model results to MAVEN data; we looked at the results of this model library to investigate current sheet asymmetries. By altering one variable at a time we were able to measure how these variables influence the location of the current sheet. We found that the current sheet is typically shifted toward the dusk side of the planet, and that modeled asymmetries are especially prevalent during solar min. Previous model studies that lack crustal fields have found that, for a Parker spiral IMF, the current sheet will shift dawnward, while our results typically show the opposite. This could expose certain limitations in the models used, or it could reveal an interaction between the solar wind and the plasma environment of Mars that has not yet been explored. MAVEN data may be compared to the model results to confirm the sense of the modeled asymmetry. These results help us to probe the physics controlling the Martian magnetotail and atmospheric escape from Mars.

  8. Mars Tumbleweed Simulation Using Singular Perturbation Theory

    NASA Technical Reports Server (NTRS)

    Raiszadeh, Behzad; Calhoun, Phillip

    2005-01-01

    The Mars Tumbleweed is a new surface rover concept that utilizes Martian winds as the primary source of mobility. Several designs have been proposed for the Mars Tumbleweed, all using aerodynamic drag to generate force for traveling about the surface. The Mars Tumbleweed, in its deployed configuration, must be large and lightweight to provide the ratio of drag force to rolling resistance necessary to initiate motion from the Martian surface. This paper discusses the dynamic simulation details of a candidate Tumbleweed design. The dynamic simulation model must properly evaluate and characterize the motion of the tumbleweed rover to support proper selection of system design parameters. Several factors, such as model flexibility, simulation run times, and model accuracy needed to be considered in modeling assumptions. The simulation was required to address the flexibility of the rover and its interaction with the ground, and properly evaluate its mobility. Proper assumptions needed to be made such that the simulated dynamic motion is accurate and realistic while not overly burdened by long simulation run times. This paper also shows results that provided reasonable correlation between the simulation and a drop/roll test of a tumbleweed prototype.

  9. The Effect of Martian Dust on Radiator Performance

    NASA Technical Reports Server (NTRS)

    Hollingsworth, D. Keith; Witte, Larry C.; Hinke, Jaime; Hulbert, Kathryn

    2004-01-01

    Experiments were performed in which the effective emittance of three types of radiator Coatings was measured as Martian dust simulant was added to the radiator face. The apparatus consisted of multiple radiator coupons on which Carbondale Red Clay dust was deposited. The coupons were powered by electric heaters, using a guard-heating configuration to achieve the accuracy required for acceptable emittance calculations. The apparatus was containing in a vacuum chamber that featured a liquid-nitrogen cooled shroud that simulated the Martian sky temperature. Radiator temperatures ranged from 250 to 350 K with sky temperatures from 185 to 248 K. Results show that as dust was added to the radiator surfaces, the effective emittance of the high - emittance coatings decreased from near 0.9 to a value of about 0.5. A low-emittance control surface, polished aluminum, demonstrated a rise in effective emittance for thin dust layers, and then a decline as the dust layer thickened. This behavior is attributed to the conductive resistance caused by the dust layer.

  10. Wind tunnel studies of Martian aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Iversen, J. D.; Pollack, J. B.; Udovich, N.; White, B.

    1973-01-01

    Preliminary results are reported of an investigation which involves wind tunnel simulations, geologic field studies, theoretical model studies, and analyses of Mariner 9 imagery. Threshold speed experiments were conducted for particles ranging in specific gravity from 1.3 to 11.35 and diameter from 10.2 micron to 1290 micron to verify and better define Bagnold's (1941) expressions for grain movement, particularly for low particle Reynolds numbers and to study the effects of aerodynamic lift and surface roughness. Wind tunnel simulations were conducted to determine the flow field over raised rim craters and associated zones of deposition and erosion. A horseshoe vortex forms around the crater, resulting in two axial velocity maxima in the lee of the crater which cause a zone of preferential erosion in the wake of the crater. Reverse flow direction occurs on the floor of the crater. The result is a distinct pattern of erosion and deposition which is similar to some martian craters and which indicates that some dark zones around Martian craters are erosional and some light zones are depositional.

  11. Lighting Condition Analysis for Mars' Moon Phobos

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul

    2016-01-01

    This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, and radiant exposure for both sun tracking and fixed solar arrays. The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian northern spring and fall seasons and no eclipses during the Martian northern summer and winter seasons; solar radiation intensity is close to minimum in late spring and close to maximum in late fall; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.

  12. Trajectories of Martian Habitability

    PubMed Central

    2014-01-01

    Abstract Beginning from two plausible starting points—an uninhabited or inhabited Mars—this paper discusses the possible trajectories of martian habitability over time. On an uninhabited Mars, the trajectories follow paths determined by the abundance of uninhabitable environments and uninhabited habitats. On an inhabited Mars, the addition of a third environment type, inhabited habitats, results in other trajectories, including ones where the planet remains inhabited today or others where planetary-scale life extinction occurs. By identifying different trajectories of habitability, corresponding hypotheses can be described that allow for the various trajectories to be disentangled and ultimately a determination of which trajectory Mars has taken and the changing relative abundance of its constituent environments. Key Words: Mars—Habitability—Liquid water—Planetary science. Astrobiology 14, 182–203. PMID:24506485

  13. Photovoltaic Cell Operation on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Kerslake, Thomas; Jenkins, Phillip P.; Scheiman, David A.

    2004-01-01

    The Martian surface environment provides peculiar challenges for the operation of solar arrays: low temperature, solar flux with a significant scattered component that varies in intensity and spectrum with the amount of suspended atmospheric dust, and the possibility of performance loss due to dust deposition on the array surface. This paper presents theoretical analyses of solar cell performance on the surface of Mars and measurements of cells under Martian conditions.

  14. Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed), Martian Rover

    NASA Technical Reports Server (NTRS)

    Flick, John J.; Toniolo, Matthew D.

    2005-01-01

    The process and findings are presented from a preliminary feasibility study examining the dynamics characteristics of a spherical wind-driven (or Tumbleweed) rover, which is intended for exploration of the Martian surface. The results of an initial feasibility study involving several worst-case mobility situations that a Tumbleweed rover might encounter on the surface of Mars are discussed. Additional topics include the evaluation of several commercially available analysis software packages that were examined as possible platforms for the development of a Monte Carlo Tumbleweed mission simulation tool. This evaluation lead to the development of the Mars Tumbleweed Monte Carlo Simulator (or Tumbleweed Simulator) using the Vortex physics software package from CM-Labs, Inc. Discussions regarding the development and evaluation of the Tumbleweed Simulator, as well as the results of a preliminary analysis using the tool are also presented. Finally, a brief conclusions section is presented.

  15. Martian Cryogenic Carbonate Formation: Stable Isotope Variations Observed in Laboratory Studies

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Niles, Paul B.; Sun, Tao; Fu, Qi; Romanek, Christopher S.; Gibson, Everett K. Jr.

    2014-01-01

    The history of water on Mars is tied to the formation of carbonates through atmospheric CO2 and its control of the climate history of the planet. Carbonate mineral formation under modern martian atmospheric conditions could be a critical factor in controlling the martian climate in a means similar to the rock weathering cycle on Earth. The combination of evidence for liquid water on the martian surface and cold surface conditions suggest fluid freezing could be very common on the surface of Mars. Cryogenic calcite forms easily from freezing solutions when carbon dioxide degasses quickly from Ca-bicarbonate-rich water, a process that has been observed in some terrestrial settings such as arctic permafrost cave deposits, lake beds of the Dry Valleys of Antarctica, and in aufeis (river icings) from rivers of N.E. Alaska. A series of laboratory experiments were conducted that simulated cryogenic carbonate formation on Mars in order to understand their isotopic systematics. The results indicate that carbonates grown under martian conditions show variable enrichments from starting bicarbonate fluids in both carbon and oxygen isotopes beyond equilibrium values.

  16. Realistic dust and water cycles in the MarsWRF GCM using coupled two-moment microphysics

    NASA Astrophysics Data System (ADS)

    Lee, Christopher; Richardson, Mark Ian; Mischna, Michael A.; Newman, Claire E.

    2017-10-01

    Dust and water ice aerosols significantly complicate the Martian climate system because the evolution of the two aerosol fields is coupled through microphysics and because both aerosols strongly interact with visible and thermal radiation. The combination of strong forcing feedback and coupling has led to various problems in understanding and modeling of the Martian climate: in reconciling cloud abundances at different locations in the atmosphere, in generating a stable dust cycle, and in preventing numerical instability within models.Using a new microphysics model inside the MarsWRF GCM we show that fully coupled simulations produce more realistic simulation of the Martian climate system compared to a dry, dust only simulations. In the coupled simulations, interannual variability and intra-annual variability are increased, strong 'solstitial pause' features are produced in both winter high latitude regions, and dust storm seasons are more varied, with early southern summer (Ls 180) dust storms and/or more than one storm occurring in some seasons.A new microphysics scheme was developed as a part of this work and has been included in the MarsWRF model. The scheme uses split spectral/spatial size distribution numerics with adaptive bin sizes to track particle size evolution. Significantly, this scheme is highly accurate, numerically stable, and is capable of running with time steps commensurate with those of the parent atmospheric model.

  17. Mimicking Mars: a vacuum simulation chamber for testing environmental instrumentation for Mars exploration.

    PubMed

    Sobrado, J M; Martín-Soler, J; Martín-Gago, J A

    2014-03-01

    We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10(-6) mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source and its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.

  18. Assessment of the turbulence parameterization schemes for the Martian mesoscale simulations

    NASA Astrophysics Data System (ADS)

    Temel, Orkun; Karatekin, Ozgur; Van Beeck, Jeroen

    2016-07-01

    Turbulent transport within the Martian atmospheric boundary layer (ABL) is one of the most important physical processes in the Martian atmosphere due to the very thin structure of Martian atmosphere and super-adiabatic conditions during the diurnal cycle [1]. The realistic modeling of turbulent fluxes within the Martian ABL has a crucial effect on the many physical phenomena including dust devils [2], methane dispersion [3] and nocturnal jets [4]. Moreover, the surface heat and mass fluxes, which are related with the mass transport within the sub-surface of Mars, are being computed by the turbulence parameterization schemes. Therefore, in addition to the possible applications within the Martian boundary layer, parameterization of turbulence has an important effect on the biological research on Mars including the investigation of water cycle or sub-surface modeling. In terms of the turbulence modeling approaches being employed for the Martian ABL, the "planetary boundary layer (PBL) schemes" have been applied not only for the global circulation modeling but also for the mesoscale simulations [5]. The PBL schemes being used for Mars are the variants of the PBL schemes which had been developed for the Earth and these schemes are either based on the empirical determination of turbulent fluxes [6] or based on solving a one dimensional turbulent kinetic energy equation [7]. Even though, the Large Eddy Simulation techniques had also been applied with the regional models for Mars, it must be noted that these advanced models also use the features of these traditional PBL schemes for sub-grid modeling [8]. Therefore, assessment of these PBL schemes is vital for a better understanding the atmospheric processes of Mars. In this framework, this present study is devoted to the validation of different turbulence modeling approaches for the Martian ABL in comparison to Viking Lander [9] and MSL [10] datasets. The GCM/Mesoscale code being used is the PlanetWRF, the extended version of WRF model for the extraterrestrial atmospheres [11]. Based on the measurements, the performances of different PBL schemes have been evaluated and some improvements have been proposed. [1] Colaïtis, A., Spiga, A., Hourdin, F., Rio, C., Forget, F., & Millour, E. (2013). A thermal plume model for the Martian convective boundary layer. Journal of Geophysical Research: Planets, 118(7), 1468-1487. [2] Balme, M., & Greeley, R. (2006). Dust devils on Earth and Mars. Reviews of Geophysics, 44(3). [3] Olsen, K. S., Cloutis, E., & Strong, K. (2012). Small-scale methane dispersion modelling for possible plume sources on the surface of Mars. Geophysical Research Letters, 39(19). [4] Savijärvi, H., & Siili, T. (1993). The Martian slope winds and the nocturnal PBL jet. Journal of the atmospheric sciences, 50(1), 77-88. [5] Fenton, L. K., Toigo, A. D., & Richardson, M. I. (2005). Aeolian processes in Proctor crater on Mars: Mesoscale modeling of dune-forming winds. Journal of Geophysical Research: Planets, 110(E6). [6] Hong, Song-You, Yign Noh, Jimy Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. [7] Janjic, Zavisa I., 1994: The Step-Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927-945. [8] Michaels, T. I., & Rafkin, S. C. (2004). Large-eddy simulation of atmospheric convection on Mars. Quarterly Journal of the Royal Meteorological Society, 130(599), 1251-1274. [9] Hess, S. L., Henry, R. M., Leovy, C. B., Ryan, J. A., & Tillman, J. E. (1977). Meteorological results from the surface of Mars: Viking 1 and 2. Journal of Geophysical Research, 82(28), 4559-4574. [10] Martínez, G. et Al. (2015). Likely frost events at Gale crater: Analysis from MSL/REMS measurements. Icarus. [11] Richardson, M. I., Toigo, A. D., & Newman, C. E. (2007). PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics. Journal of Geophysical Research: Planets, 112(E9).

  19. Wind Power: A Renewable Energy Source for Mars Transit Vehicle

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Kohout, Lisa; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Martian environment presents significant design challenges for the development of power generation systems. Nuclear-based systems may not be available due to political and safety concerns. The output of photovoltaics are limited by a solar intensity of 580 W/sqm as compared to 1353 W/sqm on Earth. The presence of dust particles in the Mars atmosphere will further reduce the photovoltaic output. Also, energy storage for a 12-hour night period must be provided. In this challenging environment, wind power generation capabilities may provide a viable option as a Martian power generation system. This paper provides an analysis of the feasibility of such a system.

  20. Antarctica as a Martian model.

    NASA Technical Reports Server (NTRS)

    Vishniac, W. V.; Mainzer, S. E.

    1973-01-01

    Results of a survey of a variety of environments in the dry valleys of Antarctica, ranging from mountain crests to valley floors. The main purpose of the investigation was the determination of active microbial multiplication in the soil. A series of techniques was employed which permitted the detection of bacterial growth in situ. All evidence points to an active growth of micro-organisms in the Antarctic soil in all locations examined. The measurements were supported by electron micrographs of soil films which showed colonial growth covering soil particles. These findings suggest that Antarctica does not serve as a useful model for the Martian environment in evaluating quarantine standards.

  1. Penetration of Solar Radiation into Solid Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Chinnery, H. E.; Hagermann, A.; Kaufmann, E.; Lewis, S. R.; Grady, M. M.

    2017-09-01

    Carbon dioxide ice exists naturally on the surface of Mars. This is a unique environment, with no Earth analogues, and so determining the properties of such a surface is important to further our understanding of the Martian environment. Laboratory experiments have determined the e-folding scale, or absorption scale length, for carbon dioxide slab ice, granular ice and snow. This is a universal measure of how transparent a material is to visible light, and so has implications for the radiative budget of carbon dioxide ice covered surfaces, as well as physical processes, such as the so-called spider formations in the cryptic region near the Martian south pole.

  2. Exobiology site selection for future Mars missions: Martian paleolake sediments and terrestrial analogs

    NASA Technical Reports Server (NTRS)

    Wharton, Robert A., Jr.

    1989-01-01

    This research was conducted to establish the scientific framework for the exobiological study of sediments on Mars and to encourage the selection of these sedimentary deposits as sampling sites for future Mars missions. A study was completed on the Antarctic Dry Valley Lakes (terrestrial analogs of the purported Martian paleolakes) and their sediments that allowed the development of quantitative models relating environmental factors to the nature of the biological community and sediment forming processes. The publications presented include: (1) Diversity of micro-fungi isolated in an Antarctic dry valley; (2) Lake Hoare, Antarctica--sedimentation through a thick perennial ice cover; (3) The possibility of life on Mars during a water-rich past; (4) An Antarctic research outpost as a model for planetary exploration; (5) Early Martian environments--the Antarctic and other terrestrial analogs; (6) Lipophilic pigments from the benthos of a perennially ice-covered Antarctic lake; and (7) Perennially ice-covered Lake Hoare, Antarctica--physical environment, biology, and sedimentation.

  3. Evaluating Material Flammability in Microgravity and Martian Gravity Compared to the NASA Standard Normal Gravity Test

    NASA Technical Reports Server (NTRS)

    Oslon, Sandra. L.; Ferkul, Paul

    2012-01-01

    Drop tower tests are conducted at Martian gravity to determine the flammability of three materials compared to previous tests in other normal gravity and reduced gravity environments. The comparison is made with consideration of a modified NASA standard test protocol. Material flammability limits in the different gravity and flow environments are tabulated to determine the factor of safety associated with normal gravity flammability screening. Previous testing at microgravity and Lunar gravity indicated that some materials burned to lower oxygen concentrations in low gravity than in normal gravity, although the low g extinction limit criteria are not the same as 1g due to time constraints in drop testing. Similarly, the data presented in this paper for Martian gravity suggest that there is a gravity level below Earth s at which materials burn more readily than on Earth. If proven for more materials, this may indicate the need to include a factor of safety on 1g flammability limits.

  4. VNIR spectroscopy of Mars Analogues with the ExoMars-Ma_Miss instrument .

    NASA Astrophysics Data System (ADS)

    De Angelis, S.; De Sanctis, M. C.; Ammannito, E.; Di Iorio, T.; Carli, C.; Frigeri, A.; Capria, M. T.; Federico, C.; Boccaccini, A.; Capaccioni, F.; Giardino, M.; Cerroni, P.; Palomba, E.; Piccioni, G.

    The ExoMars 2018 mission will investigate the Martian surface environment with the aim of searching for eventual present or past signs of life, and to obtain a characterization of Martian soil and subsoil. The investigation of the near-surface environment and of the shallow subsurface with complementary techniques, will provide insights on the chemical and mineralogical composition, material grain size, the litotypes, the stratigraphy: these information will help us to understand the geologic processes that characterized the history of the Martian crust. The Ma_Miss (Mars Multispectral Imager for Subsurface Studies) instrument \\citep{coradini01} is a miniaturized visible and near-infrared spectrometer, integrated in the ExoMars Pasteur Rover Drill: it will acquire spectra of the borehole wall performed by the Drill, down to a depth up to two meters. Spectroscopic tests have been performed with the laboratory model (breadboard) on spectral targets and rock samples; furtherly, an activity of VNIR reflectance spectroscopy of Mars analogues has been begun with the breadboard to build a spectral library.

  5. Organic Entrainment and Preservation in Volcanic Glasses

    NASA Technical Reports Server (NTRS)

    Wilhelm, Mary Beth; Ojha, Lujendra; Brunner, Anna E.; Dufek, Josef D.; Wray, James Joseph

    2014-01-01

    Unaltered pyroclastic deposits have previously been deemed to have "low" potential for the formation, concentration and preservation of organic material on the Martian surface. Yet volcanic glasses that have solidified very quickly after an eruption may be good candidates for containment and preservation of refractory organic material that existed in a biologic system pre-eruption due to their impermeability and ability to attenuate UV radiation. Analysis using NanoSIMS of volcanic glass could then be performed to both deduce carbon isotope ratios that indicate biologic origin and confirm entrainment during eruption. Terrestrial contamination is one of the biggest barriers to definitive Martian organic identification in soil and rock samples. While there is a greater potential to concentrate organics in sedimentary strata, volcanic glasses may better encapsulate and preserve organics over long time scales, and are widespread on Mars. If volcanic glass from many sites on Earth could be shown to contain biologically derived organics from the original environment, there could be significant implications for the search for biomarkers in ancient Martian environments.

  6. Visualization of particle flux in the human body on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Saganti, Premkumar B.; Cucinotta, Francis A.; Wilson, John W.; Schimmerling, Walter

    2002-01-01

    For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the HZETRN, QMSFRG, and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.

  7. Visualization of particle flux in the human body on the surface of Mars.

    PubMed

    Saganti, Premkumar B; Cucinotta, Francis A; Wilson, John W; Schimmerling, Walter

    2002-12-01

    For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the HZETRN, QMSFRG, and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.

  8. Laboratory Equipment for Investigation of Coring Under Mars-like Conditions

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Cooper, G.

    2004-12-01

    To develop a suitable drill bit and set of operating conditions for Mars sample coring applications, it is essential to make tests under conditions that match those of the mission. The goal of the laboratory test program was to determine the drilling performance of diamond-impregnated bits under simulated Martian conditions, particularly those of low pressure and low temperature in a carbon dioxide atmosphere. For this purpose, drilling tests were performed in a vacuum chamber kept at a pressure of 5 torr. Prior to drilling, a rock, soil or a clay sample was cooled down to minus 80 degrees Celsius (Zacny et al, 2004). Thus, all Martian conditions, except the low gravity were simulated in the controlled environment. Input drilling parameters of interest included the weight on bit and rotational speed. These two independent variables were controlled from a PC station. The dependent variables included the bit reaction torque, the depth of the bit inside the drilled hole and the temperatures at various positions inside the drilled sample, in the center of the core as it was being cut and at the bit itself. These were acquired every second by a data acquisition system. Additional information such as the rate of penetration and the drill power were calculated after the test was completed. The weight of the rock and the bit prior to and after the test were measured to aid in evaluating the bit performance. In addition, the water saturation of the rock was measured prior to the test. Finally, the bit was viewed under the Scanning Electron Microscope and the Stereo Optical Microscope. The extent of the bit wear and its salient features were captured photographically. The results revealed that drilling or coring under Martian conditions in a water saturated rock is different in many respects from drilling on Earth. This is mainly because the Martian atmospheric pressure is in the vicinity of the pressure at the triple point of water. Thus ice, heated by contact with the rotating bit, sublimed and released water vapor. The volumetric expansion of ice turning into a vapor was over 150 000 times. This continuously generated volume of gas effectively cleared the freeze-dried rock cuttings from the bottom of the hole. In addition, the subliming ice provided a powerful cooling effect that kept the bit cold and preserved the core in its original state. Keeping the rock core below freezing also reduced drastically the chances of cross contamination. To keep the bit cool in near vacuum conditions where convective cooling is poor, some intermittent stops would have to be made. Under virtually the same drilling conditions, coring under Martian low temperature and pressure conditions consumed only half the power while doubling the rate of penetration as compared to drilling under Earth atmospheric conditions. However, the rate of bit wear was much higher under Martian conditions (Zacny and Cooper, 2004) References Zacny, K. A., M. C. Quayle, and G. A. Cooper (2004), Laboratory drilling under Martian conditions yields unexpected results, J. Geophys. Res., 109, E07S16, doi:10.1029/2003JE002203. Zacny, K. A., and G. A. Cooper (2004), Investigation of diamond-impregnated drill bit wear while drilling under Earth and Mars conditions, J. Geophys. Res., 109, E07S10, doi:10.1029/2003JE002204. Acknowledgments The research supported by the NASA Astrobiology, Science and Technology Instrument Development (ASTID) program.

  9. West-Antarctic Ice Streams: Analog to Ice Flow in Channels on Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1997-01-01

    Sounding of the sea floor in front of the Ross Ice Shelf in Antarctica recently revealed large persistent patterns of longitudinal megaflutes and drumlinoid forms, which are interpreted to have formed at the base of ice streams during the list glacial advance. The flutes bear remarkable resemblance to longitudinal grooves and highly elongated streamlined islands found on the floors of some large martian channels, called outflow channels. ln addition, other similarities exist between Antarctic ice streams and outflow channels. Ice streams are 30 to 80 km wide and hundreds of kilometers long, as are the martian channels. Ice stream beds are below sea level. Floors of many martian outflow channels lie below martian datum, which may have been close to or below past martian sea levels. The Antarctic ice stream bed gradient is flat and locally may go uphill, and surface slopes are exceptionally low. So are gradients of martian channels. The depth to the bed in ice streams is 1 to 1.5 km. At bankful stage, the depth of the fluid in outflow channels would have been 1 to 2 km. These similarities suggest that the martian outflow channels, whose origin is commonly attributed to gigantic catastrophic floods, were locally filled by ice that left a conspicuous morphologic imprint. Unlike the West-Antarctic-ice streams, which discharge ice from an ice sheet, ice in the martian channels came from water erupting from the ground. In the cold martian environment, this water, if of moderate volume, would eventually freeze. Thus it may have formed icings on springs, ice dams and jams on constrictions in the channel path, or frozen pools. Given sufficient thickness and downhill surface gradient, these ice masses would have moved; and given the right conditions, they could have moved like Antarctic ice streams.

  10. The Mars In-Situ-Propellant-Production Precursor (MIP) Flight Demonstration

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.; Ratliff, J. E.; Baird, R. S.; Sanders, G. B.; Johnson, K. R.; Karlmann, P. B.; Baraona, C. R.; Landis, G. A.; Jenkins, P. P.; Scheiman, D. A.

    1999-01-01

    Strategic planning for human missions of exploration to Mars has conclusively identified insitu propellant production (ISPP) as an enabling technology. A team of scientists and engineers from NASA's Johnson Space Center, Jet Propulsion Laboratory, and Glenn Research Center is preparing the MARS ISPP PRECURSOR (MIP) Flight Demonstration. The objectives of MIP are to characterize the performance of processes and hardware that are important to ISPP concepts and to demonstrate how these processes and hardware interact with the Mars environment. Operating this hardware in the actual Mars environment is extremely important due to (1) uncertainties in our knowledge of the Mars environment, and (2) conditions that cannot be adequately simulated on Earth. The MIP Flight Demonstration is a payload onboard the MARS SURVEYOR Lander and will be launched in April 2001. MIP will be the first hardware to utilize the indigenous resources of a planet or moon. Its successful operation will pave the way for future robotic and human missions to rely on propellants produced using Martian resources as feedstock.

  11. Effects of variation in solar conditions and crustal sources' orientation on the Martian magnetic field topology

    NASA Astrophysics Data System (ADS)

    Ulusen, D.; Luhmann, J. G.; Ma, Y.; Brain, D. A.

    2013-12-01

    Strong crustal magnetic sources on the surface of Mars directly interact with the solar magnetic field and plasma, resulting a very dynamic environment near the planet. Effects of the orientation of these remnant magnetic sources with respect to the sun and variation of the solar conditions on the Martian plasma interaction have been investigated in a previous paper. In this previous study, magnetic topology maps obtained from ~7 years of Mars Global Surveyor (MGS) directional electron observations (obtained by Dave Brain) were compared with the topology maps obtained from a set of BATS-R-US MHD simulations for Mars. One conclusion from this study was that although the MHD model is consistent with the data and provides insight about the global magnetic field topology variation with changing crustal field orientation and solar parameters, detailed investigation of local effects is difficult due to MGS orbital bias. Moreover, proper comparison of the observations with the model requires more careful data selection rather than using 7 years time averages. In this paper, we readdress the study to tackle the problems of our previous work by performing more detailed data analysis and present the results of the updated model-data comparison.

  12. Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life

    PubMed Central

    Foucher, Frédéric; Bost, Nicolas; Bertrand, Marylène; Loizeau, Damien; Vago, Jorge L.; Kminek, Gerhard; Gaboyer, Frédéric; Campbell, Kathleen A.; Bréhéret, Jean-Gabriel; Gautret, Pascale; Cockell, Charles S.

    2015-01-01

    Abstract The search for traces of life is one of the principal objectives of Mars exploration. Central to this objective is the concept of habitability, the set of conditions that allows the appearance of life and successful establishment of microorganisms in any one location. While environmental conditions may have been conducive to the appearance of life early in martian history, habitable conditions were always heterogeneous on a spatial scale and in a geological time frame. This “punctuated” scenario of habitability would have had important consequences for the evolution of martian life, as well as for the presence and preservation of traces of life at a specific landing site. We hypothesize that, given the lack of long-term, continuous habitability, if martian life developed, it was (and may still be) chemotrophic and anaerobic. Obtaining nutrition from the same kinds of sources as early terrestrial chemotrophic life and living in the same kinds of environments, the fossilized traces of the latter serve as useful proxies for understanding the potential distribution of martian chemotrophs and their fossilized traces. Thus, comparison with analog, anaerobic, volcanic terrestrial environments (Early Archean >3.5–3.33 Ga) shows that the fossil remains of chemotrophs in such environments were common, although sparsely distributed, except in the vicinity of hydrothermal activity where nutrients were readily available. Moreover, the traces of these kinds of microorganisms can be well preserved, provided that they are rapidly mineralized and that the sediments in which they occur are rapidly cemented. We evaluate the biogenicity of these signatures by comparing them to possible abiotic features. Finally, we discuss the implications of different scenarios for life on Mars for detection by in situ exploration, ranging from its non-appearance, through preserved traces of life, to the presence of living microorganisms. Key Words: Mars—Early Earth—Anaerobic chemotrophs—Biosignatures—Astrobiology missions to Mars. Astrobiology 15, 998–1029. PMID:26575218

  13. Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life.

    PubMed

    Westall, Frances; Foucher, Frédéric; Bost, Nicolas; Bertrand, Marylène; Loizeau, Damien; Vago, Jorge L; Kminek, Gerhard; Gaboyer, Frédéric; Campbell, Kathleen A; Bréhéret, Jean-Gabriel; Gautret, Pascale; Cockell, Charles S

    2015-11-01

    The search for traces of life is one of the principal objectives of Mars exploration. Central to this objective is the concept of habitability, the set of conditions that allows the appearance of life and successful establishment of microorganisms in any one location. While environmental conditions may have been conducive to the appearance of life early in martian history, habitable conditions were always heterogeneous on a spatial scale and in a geological time frame. This "punctuated" scenario of habitability would have had important consequences for the evolution of martian life, as well as for the presence and preservation of traces of life at a specific landing site. We hypothesize that, given the lack of long-term, continuous habitability, if martian life developed, it was (and may still be) chemotrophic and anaerobic. Obtaining nutrition from the same kinds of sources as early terrestrial chemotrophic life and living in the same kinds of environments, the fossilized traces of the latter serve as useful proxies for understanding the potential distribution of martian chemotrophs and their fossilized traces. Thus, comparison with analog, anaerobic, volcanic terrestrial environments (Early Archean >3.5-3.33 Ga) shows that the fossil remains of chemotrophs in such environments were common, although sparsely distributed, except in the vicinity of hydrothermal activity where nutrients were readily available. Moreover, the traces of these kinds of microorganisms can be well preserved, provided that they are rapidly mineralized and that the sediments in which they occur are rapidly cemented. We evaluate the biogenicity of these signatures by comparing them to possible abiotic features. Finally, we discuss the implications of different scenarios for life on Mars for detection by in situ exploration, ranging from its non-appearance, through preserved traces of life, to the presence of living microorganisms. Mars-Early Earth-Anaerobic chemotrophs-Biosignatures-Astrobiology missions to Mars.

  14. Greenhouse as pert of a life support system for a martian crew

    NASA Astrophysics Data System (ADS)

    Sychev, V. N.; Levinskikh, M. A.; Grigorie, A. I.

    One of the most important problems in space exploration is the biomedical support of humans in a hostile environment that cannot sustain their life and development. An integral part of biomedical support is an adequate life support systems (LSS). In the visible future a manned flight to Mars can become a reality. When designing a LSS for a Martian Expedition, we assume that over the next 15-20 years we will be able to support the Martian crew using systems and hardware that have been in operation on the International Space Station (ISS). Their extended use on MIR and ISS has demonstrated their high reliability and provided detailed information about their operation in space. Today it is recognized that integration of a biological subsystem (at least, a greenhouse) in a LSS will enrich the Martian spacecraft environment and mitigate potential adverse effects of a long-term exposure to a man-made (abiogenic) environment. Our estimates show that an adequate amount of wet biomass of lettuce cultures can be produced in a greenhouse with a planting area of 10 m2. This means that a greenhouse of a sufficient size can be housed in 5 standard Space Shuttle racks. A greenhouse made of modules can be installed as a single unit in one area or as several subunits in different areas of the Martian vehicle. According to our calculations, a greenhouse of this capacity can provide a 6-member crew with adequate amounts of vitamins and minerals, as well as regenerate about 5% of oxygen, 3.6% of water and over 1% of food components. Incorporation of a greenhouse will make it necessary to redesign current LSSs by changing material flows and upgrading their components. Prior to this, we have to investigate operational characteristics of greenhouses on space vehicles, design systems capable of supporting continuous and prolonged operation of greenhouses, and select plants that can provide crews with required vitamins and minerals.

  15. Simulated Flyover of Mars Canyon Map Animation

    NASA Image and Video Library

    2014-12-12

    This frame from an animation simulates a flyover of a portion of a Martian canyon detailed in a geological map produced by the U.S. Geological Survey and based on observations by the HiRISE camera on NASA Mars Reconnaissance Orbiter.

  16. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet.

    PubMed

    Ticoş, C M; Scurtu, A; Toader, D; Banu, N

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  17. Experimental demonstration of Martian soil simulant removal from a surface using a pulsed plasma jet

    NASA Astrophysics Data System (ADS)

    Ticoş, C. M.; Scurtu, A.; Toader, D.; Banu, N.

    2015-03-01

    A plasma jet produced in a small coaxial plasma gun operated at voltages up to 2 kV and working in pure carbon dioxide (CO2) at a few Torr is used to remove Martian soil simulant from a surface. A capacitor with 0.5 mF is charged up from a high voltage source and supplies the power to the coaxial electrodes. The muzzle of the coaxial plasma gun is placed at a few millimeters near the dusty surface and the jet is fired parallel with the surface. Removal of dust is imaged in real time with a high speed camera. Mars regolith simulant JSC-Mars-1A with particle sizes up to 5 mm is used on different types of surfaces made of aluminium, cotton fabric, polyethylene, cardboard, and phenolic.

  18. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    College team members watch a live display of their mining robots during test runs in the mining arena at NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  19. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    Team members from the New York University Tandon School of Engineering transport their robot to the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  20. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    College team members prepare to enter the robotic mining arena for a test run during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  1. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    The robotic miner from Mississippi State University digs in the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  2. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    Team members from Purdue University prepare their uniquely-designed robot miner in the RoboPit at NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  3. Lightweight Modular Instrumentation for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Joshi, P. B.

    1993-01-01

    An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment.

  4. Scaled Jump in Gravity-Reduced Virtual Environments.

    PubMed

    Kim, MyoungGon; Cho, Sunglk; Tran, Tanh Quang; Kim, Seong-Pil; Kwon, Ohung; Han, JungHyun

    2017-04-01

    The reduced gravity experienced in lunar or Martian surfaces can be simulated on the earth using a cable-driven system, where the cable lifts a person to reduce his or her weight. This paper presents a novel cable-driven system designed for the purpose. It is integrated with a head-mounted display and a motion capture system. Focusing on jump motion within the system, this paper proposes to scale the jump and reports the experiments made for quantifying the extent to which a jump can be scaled without the discrepancy between physical and virtual jumps being noticed by the user. With the tolerable range of scaling computed from these experiments, an application named retargeted jump is developed, where a user can jump up onto virtual objects while physically jumping in the real-world flat floor. The core techniques presented in this paper can be extended to develop extreme-sport simulators such as parasailing and skydiving.

  5. Testing, Modeling and System Impact of Metabolic Heat Regenerated Temperature Swing Adsorption

    NASA Technical Reports Server (NTRS)

    Lacomini, Christine S.; Powers, Aaron; Lewis, Matthew; Linrud, Christopher; Waguespack, Glenn; Conger, Bruce; Paul, Heather L.

    2008-01-01

    Metabolic heat regenerated temperature swing adsorption (MTSA) technology is being developed for removal and rejection of carbon dioxide (CO2) and heat from a portable life support system (PLSS) to the Martian environment. Previously, hardware was built and tested to demonstrate using heat from simulated, dry ventilation loop gas to affect the temperature swing required to regenerate an adsorbent used for CO2 removal. New testing has been performed using a moist, simulated ventilation loop gas to demonstrate the effects of water condensing and freezing in the heat exchanger during adsorbent regeneration. In addition, thermal models of the adsorbent during regeneration were modified and calibrated with test data to capture the effect of the CO2 heat of desorption. Finally, MTSA impact on PLSS design was evaluated by performing thermal balances assuming a specific PLSS architecture. Results using NASA s Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT), a PLSS system evaluation tool, are presented.

  6. Constraining Habitable Environments on Mars by Quantifying Available Geochemical Energy

    NASA Astrophysics Data System (ADS)

    Tierney, L. L.; Jakosky, B. M.

    2009-12-01

    The search for life on Mars includes the availability of liquid water, access to biogenic elements and an energy source. In the past, when water was more abundant on Mars, a source of energy may have been the limiting factor for potential life. Energy, either from photosynthesis or chemosynthesis, is required in order to drive metabolism. Potential martian organisms most likely took advantage of chemosynthetic reactions at and below the surface. Terrestrial chemolithoautotrophs, for example, thrive off of chemical disequilibrium that exists in many environments and use inorganic redox (reduction-oxidation) reactions to drive metabolism and create cellular biomass. The chemical disequilibrium of six different martian environments were modeled in this study and analyzed incorporating a range of water and rock compositions, water:rock mass ratios, atmospheric fugacities, pH, and temperatures. All of these models can be applied to specific sites on Mars including environments similar to Meridiani Planum and Gusev Crater. Both a mass transfer geochemical model of groundwater-basalt interaction and a mixing model of groundwater-hydrothermal fluid interaction were used to estimate hypothetical martian fluid compositions that results from mixing over the entire reaction path. By determining the overall Gibbs free energy yields for redox reactions in the H-O-C-S-Fe-Mn system, the amount of geochemical energy that was available for potential chemolithoautotrophic microorganisms was quantified and the amount of biomass that could have been sustained was estimated. The quantity of biomass that can be formed and supported within a system depends on energy availability, thus sites that have higher levels and fluxes of energy have greater potential to support life. Results show that iron- and sulfur-oxidation reactions would have been the most favorable redox reactions in aqueous systems where groundwater and rock interacted at or near the surface. These types of reactions could have supported between 0.05 and 1.0 grams (dry weight) of biomass per mole of iron or sulfur. The hydrothermal environments would have had numerous redox reactions in the H-O-C-S-Fe-Mn system that could have provided sufficient metabolic energy for potential microorganisms. Methanotrophy, for example, provides the greatest amount of energy at ~760 kJ per mole of methane, which is equivalent to 0.6 grams (dry weight) of biomass. Additional results show that varying the amount of CO2 in the martian atmosphere or adjusting the water:rock ratios has little effect on the resulting Gibbs free energies. The martian values that are reported for available free energy in this study are similar to values that have been calculated for terrestrial systems in hydrothermal settings in which life is known to be abundant. In summary, the models indicate that martian aqueous environments were likely to have been habitable at a wide range of conditions when liquid water was more abundant and would have been able to supply a large amount of energy for potential organisms.

  7. A space radiation shielding model of the Martian radiation environment experiment (MARIE)

    NASA Technical Reports Server (NTRS)

    Atwell, W.; Saganti, P.; Cucinotta, F. A.; Zeitlin, C. J.

    2004-01-01

    The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20-500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  8. Isolation of bacteria from Siberian permafrost capable of growing under simulated Mars atmospheric pressure and composition

    NASA Astrophysics Data System (ADS)

    Nicholson, Wayne; Gilichinsky, David; Schuerger, Andrew; Mironov, Vasiliy; Fajardo-Cavazos, Patricia; Kerney, Krystal; Krivushin, Kirill; Oliveira, Rafael; Waters, Samantha

    A central goal of Astrobiology is to explore the limits at which life can occur and to search for life and habitable locations outside Earth. Mars is currently an active target in the search for life due to its relative proximity and similarity to Earth, coupled with increasing evidence pointing to the past and present existence of liquid water at the surface and near subsurface [1]. Exchange of rocky impact ejecta between Mars and Earth has been known for at least two decades [2], and evidence has accumulated supporting the hypothesis that living microorganisms embedded in rocks could survive the transfer process [3]. Understanding the ability of terrestrial microbes to grow in the near-surface martian environment is of prime importance both for life detection and for protection of Mars from forward contamination by human or robotic exploration [4]. The surface environment of Mars presents formidable challenges to life, such as: harsh solar radiation; a scarcity of liquid water and nutrients; extreme low temperatures; and a low-pressure, CO2-dominated anoxic atmosphere [5]. Our recent work has concentrated on investigating the possibility that prokaryotes from Earth could survive and proliferate in the Mars environment. Our experiments have involved environmental chambers that can simulate Mars atmospheric conditions of low pressure (P; 0.7 kPa), temperature (T; 0˚C), and a CO2-dominated anoxic atmosphere (A), called here collectively low-PTA conditions. Because much of the water on present-day Mars exists in a permanently frozen state mixed with mineral matrix, terrestrial permafrosts are considered to be analogs of the martian environment [6]. We therefore screened Siberian permafrost soils for microbes capable of growing under low-PTA conditions. Using this approach we reported the isolation of 6 Carnobacterium spp. isolates from Siberian permafrost that were capable of low-PTA growth [7]. One of these isolates has been characterized in detail and proposed as a new species, C. gilichinskyi, in honor of the late David Gilichinsky of our team. Additional new isolates from Siberian permafrost capable of growth under low-PTA conditions will be presented. References: [1] Chyba C.F. & Hand K.P. (2005) Annu. Rev. Astron. Astrophys. 43, 31. [2] Jagoutz E. (1991) Space Sci. Rev. 56, 13. [3] Nicholson, W.L. (2009) Trends Microbiol. 17, 243. [4] Nicholson W.L. et al. (2009) Trends Microbiol. 17, 389. [5] Schuerger A.C. (2004) In Martian Expedition Planning, ed Cockell C.S. (Univelt Publishers), 363. [6] Frolov A.D. (2003) JGR-Planets, 108(E4), 7. [7] Nicholson W.L. et al. (2013) Proc. Natl. Acad. Sci USA 110, 666. Acknowledgments: Supported by the following NASA programs: Exobiology and Evolutionary Biology (NNX08AO15G); Planetary Protection (NNA06CB58G); and the Planetary Biology Internship program.

  9. Constraining Hesperian martian PCO2 from mineral analysis at Gale crater

    NASA Astrophysics Data System (ADS)

    Bristow, T.; Haberle, R. M.; Blake, D. F.; Vaniman, D. T.; Grotzinger, J. P.; Siebach, K. L.; Des Marais, D. J.; Rampe, E. B.; Eigenbrode, J. L.; Sutter, B.; Fairén, A. G.; Mischna, M.; Vasavada, A. R.

    2016-12-01

    Carbon dioxide is an essential atmospheric component in martian climate models that attempt to reconcile a faint young sun with widespread evidence of liquid water at the planet's surface in the Noachian and Early Hesperian. Current estimates of ancient martian CO2 levels, derived from global inventories of carbon, and orbital detections of Noachian and Early Hesperian clay mineral-bearing terrains indicate CO2 levels that are unable to support warm and wet conditions. These estimates are subject to various sources of uncertainty however. Mineral and contextual sedimentary environmental data collected by the Mars Science Laboratory rover Curiosity in Gale Crater provide a more direct means of estimating the atmospheric partial pressure of CO2 (PCO2) coinciding with a long-lived lake system in Gale crater at 3.5 Ga. Results from a reaction-transport model, which simulates mineralogy observed within the Sheepbed member at Yellowknife Bay by coupling mineral equilibria with carbonate precipitation kinetics and rates of sedimentation, indicate atmospheric levels in the 10's mbar range. At such low PCO2 levels, climate models are unable to warm Hesperian Mars anywhere near the freezing point of water and other gases are required to raise atmospheric pressure to prevent lakes from boiling away. Thus, lacustrine features of Gale formed in a cold environment by a mechanism yet to be determined, or the climate models lack an essential component that would serve to elevate surface temperatures, at least temporally and/or locally, on Hesperian Mars. Our results also impose restrictions on the potential role of atmospheric CO2 in inferred warmer conditions of the Noachian.

  10. P21C-2113: Constraining Hesperian Martian PCO2 from Mineral Analysis at Gale Crater

    NASA Technical Reports Server (NTRS)

    Bristow, Thomas; Haberle, Robert Michael; Blake, David Frederick; Vaniman, David T.; Grotzinger, John P.; Siebach, Kirsten L.; Des Marais, David J.; Rampe, Elizabeth B.; Eigenbrode, Jennifer L.; Sutter, Brad; hide

    2016-01-01

    Carbon dioxide is an essential atmospheric component in martian climate models that attempt to reconcile a faint young sun with widespread evidence of liquid water at the planet's surface in the Noachian and Early Hesperian. Current estimates of ancient martian CO levels, derived from global inventories of carbon, and orbital detections of Noachian and Early Hesperian clay mineralbearing terrains indicate CO levels that are unable to support warm and wet conditions. These estimates are subject to various sources of uncertainty however. Mineral and contextual sedimentary environmental data collected by the Mars Science Laboratory rover Curiosity in Gale Crater provide a more direct means of estimating the atmospheric partial pressure of CO (P ) coinciding with a long-lived lake system in Gale crater at approximately 3.5 Ga. Results from a reaction transport model, which simulates mineralogy observed within the Sheepbed member at Yellowknife Bay by coupling mineral equilibria with carbonate precipitation kinetics and rates of sedimentation, indicate atmospheric levels in the 10's mbar range. At such low P levels, climate models are unable to warm Hesperian Mars anywhere near the freezing point of water and other gases are required to raise atmospheric pressure to prevent lakes from boiling away. Thus, lacustrine features of Gale formed in a cold environment by a mechanism yet to be determined, or the climate models lack an essential component that would serve to elevate surface temperatures, at least temporally and/or locally, on Hesperian Mars. Our results also impose restrictions on the potential role of atmospheric CO in inferred warmer conditions of the Noachian.

  11. Evolution and Transport of Water in the Upper Regolith of Mars

    NASA Technical Reports Server (NTRS)

    Hudson, T. L.; Aharonson, O.; Schorghofer, N.; Hecht, M. H.; Bridges, N. T.; Green, J. R.

    2003-01-01

    Long standing theoretical predictions [1-3], as well as recent spacecraft observations [4] indicate that large quantities of ice is present in the high latitudes upper decimeters to meters of the Martian regolith. At shallower depths and warmer locations small amounts of H2O, either adsorbed or free, may be present transiently. An understanding of the evolution of water based on theoretical and experimental considerations of the processes operating at the Martian environment is required. In particular, the porosity, diffusivity, and permeability of soils and their effect on water vapor transport under Mars-like conditions have been estimated, but experimental validation of such models is lacking. Goal: Three related mechanisms may affect water transport in the upper Martian regolith. 1) diffusion along a concentration gradient under isobaric conditions, 2) diffusion along a thermal gradient, which may give rise to a concentration gradient as ice sublimes or molecules desorb from the regolith, and 3) hydraulic flow, or mass motion in response to a pressure gradient. Our combined theoretical and experimental investigation seeks to disentangle these mechanisms and determine which process(es) are dominant in the upper regolith over various timescales. A detailed one-dimensional model of the upper regolith is being created which incorporates water adsorption/ desorption, condensation, porosity, diffusivity, and permeability effects. Certain factors such as diffusivity are difficult to determine theoretically due to the wide range of intrinsic grain properties such as particle sizes, shapes, packing densities, and emergent properties such as tortuosity. An experiment is being designed which will allow us to more accurately determine diffusivity, permeability, and water desorption isotherms for regolith simulants.

  12. "Martian Boneyards": Sustained Scientific Inquiry in a Social Digital Game

    NASA Astrophysics Data System (ADS)

    Asbell-Clarke, Jordis

    Social digital gaming is an explosive phenomenon where youth and adults are engaged in inquiry for the sake of fun. The complexity of learning evidenced in social digital games is attracting the attention of educators. Martian Boneyards is a proof-of-concept game designed to study how a community of voluntary gamers can be enticed to engage in sustained, high-quality scientific inquiry. Science educators and game designers worked together to create an educational game with the polish and intrigue of a professional-level game, striving to attract a new audience to scientific inquiry. Martian Boneyards took place in the high-definition, massively multiplayer online environment, Blue Mars, where players spent an average of 30 hours in the game over the 4-month implementation period, with some exceeding 200 hours. Most of the players' time was spent in scientific inquiry activities and about 30% of the players' in-game interactions were in the analysis and theory-building phases of inquiry. Female players conducted most of the inquiry, in particular analysis and theory building. The quality of scientific inquiry processes, which included extensive information gathering by players, and the resulting content were judged to be very good by a team of independent scientists. This research suggests that a compelling storyline, a highly aesthetic environment, and the emergent social bonds among players and between players and the characters played by designers were all responsible for sustaining high quality inquiry among gamers in this free-choice experience. The gaming environment developed for Martian Boneyards is seen as an evolving ecosystem with interactions among design, players' activity, and players' progress.

  13. Experientally guided robots. [for planet exploration

    NASA Technical Reports Server (NTRS)

    Merriam, E. W.; Becker, J. D.

    1974-01-01

    This paper argues that an experientally guided robot is necessary to successfully explore far-away planets. Such a robot is characterized as having sense organs which receive sensory information from its environment and motor systems which allow it to interact with that environment. The sensori-motor information which it receives is organized into an experiential knowledge structure and this knowledge in turn is used to guide the robot's future actions. A summary is presented of a problem solving system which is being used as a test bed for developing such a robot. The robot currently engages in the behaviors of visual tracking, focusing down, and looking around in a simulated Martian landscape. Finally, some unsolved problems are outlined whose solutions are necessary before an experientally guided robot can be produced. These problems center around organizing the motivational and memory structure of the robot and understanding its high-level control mechanisms.

  14. Smectite clays in Mars soil: evidence for their presence and role in Viking biology experimental results.

    PubMed

    Banin, A; Rishpon, J

    1979-12-01

    Various chemical, physical and geological observations indicate that smectite clays are probably the major components of the Martian soil. Satisfactory ground-based chemical simulation of the Viking biology experimental results was obtained with the smectite clays nontronite and montmorillonite when they contained iron and hydrogen as adsorbed ions. Radioactive gas was released from the medium solution used in the Viking Labeled Release (LR) experiment when interacted with the clays, at rates and quantities similar to those measured by Viking on Mars. Heating of the active clay (mixed with soluble salts) to 160 degrees C in CO2 atmosphere reduced the decomposition activity considerably, again, as was observed on Mars. The decomposition reaction in LR experiment is postulated to be iron-catalyzed formate decomposition on the clay surface. The main features of the Viking Pyrolytic Release (PR) experiment were also simulated recently (Hubbard, 1979) which the iron clays, including a relatively low '1st peak' and significant '2nd peak'. The accumulated observations on various Martian soil properties and the results of simulation experiments, thus indicate that smectite clays are major and active components of the Martian soil. It now appears that many of the results of the Viking biology experiments can be explained on the basis of their surface activity in catalysis and adsorption.

  15. MarsSedEx I: feasibility test for sediment settling experiments under Martian gravity

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2013-04-01

    Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases. However, StokeśLaw, the common way of estimating the terminal velocity of a particle moving in a gas of liquid assumes a linear relationship between terminal velocity and gravity. For terrestrial applications, this "error" is not relevant, but it may strongly influence the terminal velocity achieved by settling particles in the Martian atmosphere or water bodies. In principle, the effect of gravity on settling velocity can also be achieved by reducing the difference in density between particle and gas or liquid. However, the use of analogues simulating the lower gravity on Mars on Earth is difficult because the properties and interaction of the liquids and materials differ from those of water and sediment, .i.e. the viscosity of the liquid or the interaction between charges surfaces and liquid molecules. An alternative for measuring the actual settling velocities of particles under Martian gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling tests within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation we report on the feasibility of such a test based on an experiment conducted during a reduced gravity flight in November 2012.

  16. Simulated Martian pressure cycle based on the sublimation and deposition of polar CO2

    NASA Astrophysics Data System (ADS)

    Kemppinen, Osku; Paton, Mark; Savijärvi, Hannu; Harri, Ari-Matti

    2014-05-01

    The Martian atmospheric pressure cycle is driven by sublimation and deposition of CO2 at polar caps. In the thin atmosphere of Mars the surface energy balance and thus the phase changes of CO2 are dominated by radiation. Additionally, because the atmosphere is so thin, the annual polar cap cycle can have a large relative effect on the pressure. In this work we utilize radiative transfer models to calculate the amount of radiation incoming to Martian polar latitudes over each sol of the year, as well as the amount of energy lost from the surface due to thermal radiation. The energy budget calculated in this way allows us to estimate the amount of CO2 sublimating and depositing at each hour of the Martian year. Since virtually all of the sublimated CO2 is believed to enter and stay in the atmosphere until depositing, this estimate allows us to calculate the annual pressure cycle, assuming that the CO2 is distributed approximately evenly over the planet. The model is running with physically plausible parameters and producing encouragingly good fits to in situ measured data made by e.g. Viking landers. In the next phase we will validate the simulation runs against polar ice cap thickness measurements as well as compare the calculated CO2 source and sink strengths to the sources and sinks of global atmospheric models.

  17. Lighting Condition Analysis for Mars' Moon Phobos

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul

    2016-01-01

    This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, available energy per unit area for sun tracking arrays, and available energy per unit area for fixed arrays (constrained by incident angle). The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian spring and fall seasons and no eclipses during the Martian summer and winter seasons; solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.

  18. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants.

    PubMed

    Wamelink, G W Wieger; Frissel, Joep Y; Krijnen, Wilfred H J; Verwoert, M Rinie; Goedhart, Paul W

    2014-01-01

    When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant); the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils.

  19. Can Plants Grow on Mars and the Moon: A Growth Experiment on Mars and Moon Soil Simulants

    PubMed Central

    Wamelink, G. W. Wieger; Frissel, Joep Y.; Krijnen, Wilfred H. J.; Verwoert, M. Rinie; Goedhart, Paul W.

    2014-01-01

    When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant); the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils. PMID:25162657

  20. The influence of crustal magnetic sources on the topology of the Martian magnetic environment

    NASA Astrophysics Data System (ADS)

    Brain, David Andrew

    2002-09-01

    In this thesis I use magnetometer data and magnetic field models to explore the morphology of magnetic fields close to Mars, with emphasis on the manner and extent to which crustal magnetic sources affect the magnetic field configuration. I analyze Mars Global Surveyor (MGS) Magnetometer (MAG) data to determine the relative importance of the solar wind and of crustal magnetic sources in the observations. Crustal sources locally modify the solar wind interaction, adding variability to the Martian magnetic environment that depends on planetary rotation. I identify trends in the vector magnetic field with respect to altitude, solar zenith angle, and geographic location. The influence of the strongest crustal source extends to 1300 1400 km. I then use MAG data to evaluate models for the magnetic field associated with Mars' crust and for the solar wind interaction with the Martian ionosphere. A linear superposition of a spherical harmonic crustal model and a gasdynamic solar wind model improves the fit to MAG data over that from either model individually. I use simple pressure balance to calculate the shape and size of the Martian solar wind obstacle under a variety of different conditions. The obstacle is irregularly shaped (“lumpy”) and varies over the course of a Martian rotation, over a Martian year, and with changes in the upstream pressure. The obstacle above strong crustal sources can exceed 1000 km and is always higher than the altitude of the MGS spacecraft in its mapping orbit. I use a superposition model to explore the magnetic field topology at Mars under a variety of conditions. The model field topology is sensitive to changes in the interplanetary magnetic field (IMF) strength and orientation, as well as to Mars' orientation with respect to the solar wind flow. Regions of open magnetic field are located above strong crustal sources in the models, where the magnetic field is radially oriented with respect to the Martian surface. An examination of MAG and electron reflectometer (ER) data above one of these regions reveals a sharp change in the electron energy spectrum coinciding with perturbations in the orientation of the magnetic field.

  1. The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Lindgren, Paula

    2010-07-01

    On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission's payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian subsurface contains a record of life, it is reasonable to assume that biosignatures derived from the Martian subsurface could also be preserved in the Martian impact ejecta.

  2. Low computation vision-based navigation for a Martian rover

    NASA Technical Reports Server (NTRS)

    Gavin, Andrew S.; Brooks, Rodney A.

    1994-01-01

    Construction and design details of the Mobot Vision System, a small, self-contained, mobile vision system, are presented. This system uses the view from the top of a small, roving, robotic vehicle to supply data that is processed in real-time to safely navigate the surface of Mars. A simple, low-computation algorithm for constructing a 3-D navigational map of the Martian environment to be used by the rover is discussed.

  3. Basaltic caves at Craters of the Moon National Monument and Preserve as analogs for Mars

    NASA Astrophysics Data System (ADS)

    Hinman, N. W.; Richardson, C. D.; McHenry, L.; Scott, J. R.

    2010-12-01

    Basaltic caves and lava tubes offer stable physicochemical conditions for formation of secondary minerals. Such features, putatively observed on Mars, intercept groundwater to weather country rock, leading to formation of secondary minerals. Further, caves are stable environments to search for evidence of past life, as they could offer protection from the oxidizing martian atmosphere. Searching for signs of life in a cave that could protect bio/organic compounds would preclude the need for risky drilling on Mars. Craters of the Moon National Monument (COM) offers an opportunity to study caves in Holocene iron-rich basalt flows to characterize secondary mineral deposits and search for organic compounds associated with secondary minerals; COM basalts are a good analog for martian basalts because of their high iron but other elements are higher at COM than on Mars. The Blue Dragon flow (~2.1 ka) contains the majority of the accessible caves and lava tubes. Two types of secondary mineral deposits were observed in these caves: ceiling coatings and crack or floor precipitates. Hematite, silica, and calcite comprise ceiling coatings. The crack and floor precipitates are white, efflorescent deposits in cavities along cave walls and ceilings or in localized mounds on cave floors. The secondary minerals in crack and floor precipitates are mainly thenardite and mirabilite with some minor concentrations of trona and/or burkeite. Organic compounds were found associated with the efflorescent deposits. Formation of the deposits is likely due to chemical leaching of basalt by meteoritic water. To test this, fluids collected from the ceiling and walls of the caves were analyzed. Solutions were modeled with the geochemical code, PHREEQC. The model tracked composition as water evaporated. Selected minerals were allowed to precipitate as they became oversaturated. Among the first minerals to become oversaturated were quartz and calcite, which are observed in ceiling deposits. Iron minerals were not included as no iron was detected in solution. Results compared well with evaporation of solutions generated by simulating chemical weathering of minerals found in the basalt; this approach allowed iron minerals to precipitate during evaporation because minerals in the basalt contained iron. The minerals modeled upon evaporation included the minerals observed in the actual deposits - hematite, calcite, and quartz. Na-minerals neared saturation in simulations but were normally not saturated, leaving open the question of their origin. One possible explanation for the presence of Na-minerals could be seasonal ice formation in the caves followed by sublimation, leaving more concentrated solutions behind than were sampled here. A seasonal model for mineral deposition in caves could be relevant to deposits in martian caves. While the formation mechanism for the secondary minerals at COM is not completely understood, the presence of secondary minerals that harbor organic compounds in a cave environment that may be analogous to Mar has implications for where to search for signs of martian life.

  4. The Martian dust cycle: A proposed model

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1987-01-01

    Despite more than a decade of study of martian dust storms, many of their characteristics and associated processes remain enigmatic, including the mechanisms for dust raising, modes of settling, and the nature of dust deposits. However, observations of Mars dust, considerations of terrestrial analogs, theoretical models, and laboratory simulations permit the formulation of a Martian Dust Cycle Model, which consists of three main processes: (1) suspension threshold, (2) transportation, and (3) deposition; two associated processes are also included: (4) dust removal and (5) the addition of new dust to the cycle. Although definitions vary, dust includes particles less than 4 to approx. 60 microns in diameter, which by terrestrial usage includes silt, loess, clay, and aerosolic dust particles. The dust cycle model is explained.

  5. Response of selected microorganisms to experimental planetary environments

    NASA Technical Reports Server (NTRS)

    Foster, T. L.; Winans, L., Jr.; Casey, R. C.

    1975-01-01

    Experiments indicate that hardy organisms will likely grow in the Martian environment if moisture is available, and that these organisms definitely present a threat to contamination of the biopackage if they are transported to the surface of Mars.

  6. Variable g- Mars environmental chamber: a small window of the martian environment for life science investigations

    NASA Astrophysics Data System (ADS)

    Sgambati, Antonella; Slenzka, Klaus; Schmeyers, Bernd; Di Capua, Massimiliano; Harting, Benjamin

    Human exploration and permanent settlement on the Martian surface is the one of the most attractive and ambitious endeavors mankind has ever faced. As technology and research progress, solutions and information that were before unavailable are slowly making the dream become everyday more feasible. In the past years a huge amount of knowledge was gathered by the Mars Exploration Rovers Spirit and Opportunity and now, even more insight is being gathered through the latest rover of the family, Curiosity. In this work, data from the various missions will be used to define and reproduce on Earth the characteristic Martian atmospheric conditions. A small Mars environmental chamber has been designed and built with the objective of studying the effects of the Martian environment on biological systems. The Variable gravity Mars Environmental Chamber (VgMEC) will allow researchers to replicate atmospheric pressure, gas composition, temperature and UVA/B exposure typical of the equatorial regions of Mars. By exposing biological systems to a controllable set of stressor it will be possible to identify both multi and single stressor effects on the system of interest. While several Mars environment simulation facilities exist, due to their size and mass, all are confined to floor-fixed laboratory settings. The VgMEC is an OHB funded project that wishes to bring together the scientific community and the industry. Collaborations will be enabled by granting low cost access to cutting-edge instrumentation and services. Developed at OHB System AG, VgMEC has been designed from the ground up to be a 28L, compact and lightweight test volume capable of being integrated in existing centrifuges (such as the ESA-ESTEC LCD), gimbal systems and parabolic flight aircraft. The VgMEC support systems were designed to accommodate continuous operations of virtually unlimited duration through the adoption of solutions such as: hot swappable gas/liquid consumables bottles, low power requirements, an observation window and robust embedded electronics. VgMEC is a new-generation chamber equipped with state-of-the-art contactless sensors and actuators, which can be controlled and monitored remotely allowing the system to be used without requiring the user to be physically in front of the experiential setup. The chamber is also equipped with a load lock system, which allows samples to be placed in the main chamber without breaking its environmental condition and so avoiding the samples experiencing vacuum during the chamber filling phase. Lastly while the VgMEC has been designed specifically for biological systems, its core properties allow alternative sample analysis therefore providing an extremely flexible, accurate, controllable and low-cost alternative for scientific research and Mars flight hardware evaluation.

  7. The photolytic degradation and oxidation of organic compounds under simulated Martian conditions

    NASA Technical Reports Server (NTRS)

    Oro, J.; Holzer, G.

    1979-01-01

    Cosmochemical considerations suggest various potential sources for the accumulation of organic matter on Mars. However the Viking Molecular Analysis did not indicate any indigenous organic compounds on the surface of Mars. Their disappearance from the top layer is most likely caused by the combined action of the high solar radiation flux and various oxidizing species in the Martian atmosphere and regolith. In this study the stability of several organic substances and a sample of the Murchison meteorite was tested under simulated Martian conditions. After adsorption on powdered quartz, samples of adenine, glycine and naphthalene were irradiated with UV light at various oxygen concentrations and exposure times. In the absence of oxygen, adenine and glycine appeared stable over the given irradiation period, whereas a definite loss was observed in the case of naphthalene, as well as in the volatilizable and pyrolizable content of the Murchison meteorite. The presence of oxygen during UV exposure caused a significant increase in the degradation rate of all samples. It is likely that similar processes have led to the destruction of organic materials on the surface of Mars.

  8. Smectite clays in Mars soil - Evidence for their presence and role in Viking biology experimental results

    NASA Technical Reports Server (NTRS)

    Banin, A.; Rishpon, J.

    1979-01-01

    Evidence for the presence of smectite clays in Martian soils is reviewed and results of experiments with certain active clays simulating the Viking biology experiments are reported. Analyses of Martian soil composition by means of X-ray fluorescence spectrometry and dust storm spectroscopy and Martian geological history strongly suggest the presence of a mixture of weathered ferro-silicate minerals, mainly nontronite and montmorillonite, accompanied by soluble sulphate salts, as major constituents. Samples of montmorillonite and nontronite incubated with (C-14)-formate or the radioactive nutrient medium solution used in the Viking Labeled Release experiment, were found to produce patterns of release of radioactive gas very similar to those observed in the Viking experiments, indicating the iron-catalyzed decomposition of formate as the reaction responsible for the Viking results. The experimental results of Hubbard (1979) simulating the results of the Viking Pyrolytic Release experiment using iron montmorillonites are pointed out, and it is concluded that many of the results of the Viking biology experiments can be explained in terms of the surface activity of smectite clays in catalysis and adsorption.

  9. Martian Dust Devils: Laboratory Simulations of Particle Threshold

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Balme, Matthew R.; Iverson, James D.; Metzger, Stephen; Mickelson, Robert; Phoreman, Jim; White, Bruce

    2003-01-01

    An apparatus has been fabricated to simulate terrestrial and Martian dust devils. Comparisons of surface pressure profiles through the vortex core generated in the apparatus with both those in natural dust devils on Earth and those inferred for Mars are similar and are consistent with theoretical Rankine vortex models. Experiments to determine particle threshold under Earth ambient atmospheric pressures show that sand (particles > 60 micron in diameter) threshold is analogous to normal boundary-layer shear, in which the rotating winds of the vortex generate surface shear and hence lift. Lower-pressure experiments down to approx. 65 mbar follow this trend for sand-sized particles. However, smaller particles (i.e., dust) and all particles at very low pressures (w 10-60 mbar) appear to be subjected to an additional lift function interpreted to result from the strong decrease in atmospheric pressure centered beneath the vortex core. Initial results suggest that the wind speeds required for the entrainment of grains approx. 2 microns in diameter (i.e., Martian dust sizes) are about half those required for entrainment by boundary layer winds on both Earth and Mars.

  10. Low Biotoxicity of Mars Analog Soils Suggests that the Surface of Mars May be Habitable for Terrestrial Microorganisms

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Ming, Douglas W.; Golden, D. C.

    2012-01-01

    Recent studies on the interactive effects of hypobaria, low temperatures, and CO2-enriched anoxic atmospheres on the growth of 37 species of mesophilic bacteria identified 14 potential biocidal agents that might affect microbial survival and growth on the martian surface. Biocidal or inhibitory factors include (not in priority): (1) solar UV irradiation, (2) low pressure, (3) extreme desiccating conditions, (4) extreme diurnal temperature fluctuations, (5) solar particle events, (6) galactic cosmic rays, (7) UV-glow discharge from blowing dust, (8) solar UV-induced volatile oxidants [e.g., O2(-), O(-), H2O2, O3], (9) globally distributed oxidizing soils, (10) extremely high salts levels [e.g., MgCl2, NaCl, FeSO4, and MgSO4] in surficial soils at some sites on Mars, (11) high concentrations of heavy metals in martian soils, (12) likely acidic conditions in martian fines, (13) high CO2 concentrations in the global atmosphere, and (14) perchlorate-rich soils. Despite these extreme conditions several studies have demonstrated that dormant spores or vegetative cells of terrestrial microorganisms can survive simulated martian conditions as long as they are protected from UV irradiation. What has not been explored in depth are the effects of potential biotoxic geochemical components of the martian regolith on the survival and growth of microorganisms. The primary objectives of the research included: (1) prepare and characterize Mars analog soils amended with potential biotoxic levels of sulfates, salts, acidifying minerals, etc.; and (2) use the simulants to conduct biotoxicity assays to determine if terrestrial microorganisms from spacecraft can survive direct exposure to the analog soils.

  11. Evaluation of the Performance of the Mars Environmental Compatibility Assessment Electrometer

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.

    2002-01-01

    The Mars Environmental Compatibility Assessment (MECA) electrometer is an instrument that was designed jointly by researchers at the Jet Propulsion Laboratory and the Kennedy Space Center, and is intended to fly on a future space exploration mission of the surface of Mars. The electrometer was designed primarily to study (1) the electrostatic interaction between the Martian soil and five different types of insulators, which are attached to the electrometer, as the electrometer is rubbed over the Martian soil. The MECA/Electrometer is also capable of measuring (2) the presence of charged particles in the Martian atmosphere, (3) the local electric field strength, and (4) the local temperature. The goal of the research project described in this report was to test and evaluate the measurement capabilities of the MECA/Electrometer under simulated Martian surface conditions using facilities located in the Labs and Testbeds Division at the Kennedy Space Center. The results of this study indicate that the Martian soil simulant can triboelectrically charge up the insulator surface. However, the maximum charge buildup did not exceed 18% of the electrometer's full-range sensitivity when rubbed vigorously, and is more likely to be as low as 1% of the maximum range when rubbed through soil. This indicates that the overall gain of the MECA/Electrometer could be increased by a factor of 50 if measurements at the 50% level of full-range sensitivity are desired. The ion gauge, which detects the presence of charged particles, was also evaluated over a pressure range from 10 to 400 Torr (13 to 533 mbar). The electric field sensor was also evaluated. Although the temperature sensor was not evaluated due to project time constraints, it was previously reported to work properly.

  12. Evaluation of The Performance of The Mars Environmental Compatibility Assessment Electrometer

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.

    2001-01-01

    The Mars Environmental Compatibility Assessment (MECA) electrometer is an instrument that was designed jointly by researchers at the Jet Propulsion Laboratory and the Kennedy Space Center, and is intended to fly on a future space exploration mission of the surface of Mars. The electrometer was designed primarily to study (1) the electrostatic interaction between the Martian soil and five different types of insulators, which are attached to the electrometer, as the electrometer is rubbed over the Martian soil. The MECA/Electrometer is also capable of measuring (2) the presence of charged particles in the Martian atmosphere, (3) the local electric field strength, and (4) the local temperature. The goal of the research project described in this report was to test and evaluate the measurement capabilities of the MECA/Electrometer under simulated Martian surface conditions using facilities located in the Labs and Testbeds Division at the Kennedy Space Center. The results of this study indicate that the Martian soil simulant can triboelectrically charge up the insulator surface. However, the maximum charge buildup did not exceed 18% of the electrometer's full-range sensitivity when rubbed vigorously, and is more likely to be as low as 1% of the maximum range when rubbed through soil. This indicates that the overall gain of the MECA/Electrometer could be increased by a factor of 50 if measurements at the 50% level of full-range sensitivity are desired. The ion gauge, which detects the presence of charged particles, was also evaluated over a pressure range from 10 to 400 Torr (13 to 533 mbar). The electric field sensor was also evaluated. Although the temperature sensor was not evaluated due to project time constraints, it was previously reported to work properly.

  13. The Licancabur Project: Exploring the Limits of Life in the Highest Lake on Earth as an Analog to Martian Paleolakes

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.; Grin, E. A.; McKay, C. P.; Friedmann, I.; Diaz, G. Chong; Demergasso, C.; Kisse, K.; Grigorszky, I.; Friedmann, R. Ocampo; Hock, A.

    2003-01-01

    The Licancabur volcano (6017 m) hosts the highest and one of the least explored lakes in the world in its summit crater. It is located 22 deg.50 min. South / 67 deg.53 min. West at the boundary of Chile and Bolivia in the High-Andes. In a freezing environment, the lake located in volcano-tectonic environment combines low-oxygen, low atmospheric pressure due to altitude, and high-UV radiation (see table). However, its bottom water temperature remains above 0 C year-round. These conditions make Licancabur a unique analog to Martian paleolakes considered high-priority sites for the search for life on Mars.

  14. Toxicity of Lunar and Martian Dust Simulants to Alveolar Macrophages Isolated from Human Volunteers

    NASA Technical Reports Server (NTRS)

    Latch, Judith N.; Hamilton, Raymond F., Jr.; Holian, Andrij; James, John T.

    2007-01-01

    NASA is planning to build a habitat on the Moon and use the Moon as a stepping stone to Mars. JSC-1, an Arizona volcanic ash that has mineral properties similar to lunar soil, is used to produce lunar environments for instrument and equipment testing. NASA is concerned about potential health risks to workers exposed to these fine dusts in test facilities. The potential toxicity of JSC-1 and a Martian soil simulant (JSC-Mars-1, a Hawaiian volcanic ash) was evaluated using human alveolar macrophages (HAM) isolated from volunteers; titanium dioxide and quartz were used as reference dusts. This investigation is a prerequisite to studies of actual lunar dust. HAM were treated in vitro with these test dusts for 24 h; assays of cell viability and apoptosis showed that JSC-1 and TiO2 were comparable, and more toxic than saline control, but less toxic than quartz. HAM treated with JSC-1 or JSC-Mars 1 showed a dose-dependent increase in cytotoxicity. To elucidate the mechanism by which these dusts induce apoptosis, we investigated the involvement of the scavenger receptor (SR). Pretreatment of cells with polyinosinic acid, an SR blocker, significantly inhibited both apoptosis and necrosis. These results suggest HAM cytotoxicity may be initiated by interaction of the dust particles with SR. Besides being cytotoxic, silica is known to induce shifting of HAM phenotypes to an immune active status. The immunomodulatory effect of the simulants was investigated. Treatment of HAM with either simulant caused preferential damage to the suppressor macrophage subpopulation, leading to a net increase in the ratio of activator (RFD1+) to suppressor (RFD1+7+) macrophages, a result similar to treatment with silica. It is recommended that appropriate precautions be used to minimize exposure to these fine dusts in large-scale engineering applications.

  15. Wind driven saltation: a hitherto overlooked challenge for life on Mars

    NASA Astrophysics Data System (ADS)

    Bak, Ebbe; Goul, Michael; Rasmussen, Martin; Moeller, Ralf; Nørnberg, Per; Knak Jensen, Svend; Finster, Kai

    2017-04-01

    The Martian surface is a hostile environment characterized by low water availability, low atmospheric pressure and high UV and ionizing radiation. Furthermore, wind-driven saltation leads to abrasion of silicates with a production of reactive surface sites and, through triboelectric charging, a release of electrical discharges with a concomitant production of reactive oxygen species. While the effects of low water availability, low pressure and radiation have been extensively studied in relation to the habitability of the Martian surface and the preservation of organic biosignatures, the effects of wind-driven saltation have hitherto been ignored. In this study, we have investigated the effect of exposing bacteria to wind-abraded silicates and directly to wind-driven saltation on Mars in controlled laboratory simulation experiments. Wind-driven saltation was simulated by tumbling mineral samples in a Mars-like atmosphere in sealed quartz ampoules. The effects on bacterial survival and structure were evaluated by colony forming unit counts in combination with scanning electron microscopy, quantitative polymerase chain reaction and life/dead-staining with flow cytometry. The viability of vegetative cells of P. putida, B. subtilis and D. radiodurans in aqueous suspensions was reduced by more than 99% by exposure to abraded basalt, while the viability of B. subtilis endospores was unaffected. B. subtilis mutants lacking different spore components were likewise highly resistant to the exposure to abraded basalt, which indicates that the resistance of spores is not associated with any specific spore component. We found a significant but reduced effect of abraded quartz and we suggest that the stress effect of abraded silicates is induced by a production of reactive oxygen species and hydroxyl radicals produced by Fenton-like reactions in the presence of transition metals. Direct exposure to simulated saltation had a dramatic effect on both D. radiodurans cells and B. subtilis spore with a more than 99.9% decrease in survival after 17 days. The high susceptibility of the usually multi-resistant D. radiodurans cells and B. sublitis spores to the effects of wind-driven saltation indicates that wind abraded silicates as well as direct exposure to saltation represent a considerable stress for microorganisms at the Martian surface, which may have limited the chance of indigenous life, could limit the risk of forward contamination and may have degraded potential organic biosignatures.

  16. The Effect of Dust on the Martian Polar Vortices

    NASA Technical Reports Server (NTRS)

    Guzewich, Scott D.; Toigo, A. D.; Waugh, D. W.

    2016-01-01

    The influence of atmospheric dust on the dynamics and stability of the martian polar vortices is examined, through analysis of Mars Climate Sounder observations and MarsWRF general circulation model simulations. We show that regional and global dust storms produce transient vortex warming events that partially or fully disrupt the northern winter polar vortex for brief periods. Increased atmospheric dust heating alters the Hadley circulation and shifts the downwelling branch of the circulation poleward, leading to a disruption of the polar vortex for a period of days to weeks. Through our simulations, we find this effect is dependent on the atmospheric heating rate, which can be changed by increasing the amount of dust in the atmosphere or by altering the dust optical properties (e.g., single scattering albedo). Despite this, our simulations show that some level of atmospheric dust is necessary to produce a distinct northern hemisphere winter polar vortex.

  17. Simulations of the general circulation of the Martian atmosphere. I - Polar processes

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Haberle, Robert M.; Schaeffer, James; Lee, Hilda

    1990-01-01

    Numerical simulations of the Martian atmosphere general circulation are carried out for 50 simulated days, using a three-dimensional model, based on the primitive equations of meteorology, which incorporated the radiative effects of atmospheric dust on solar and thermal radiation. A large number of numerical experiments were conducted for alternative choices of seasonal date and dust optical depth. It was found that, as the dust content of the winter polar region increased, the rate of atmospheric CO2 condensation increased sharply. It is shown that the strong seasonal variation in the atmospheric dust content observed might cause a number of hemispheric asymmetries. These asymmetries include the greater prevalence of polar hoods in the northern polar region during winter, the lower albedo of the northern polar cap during spring, and the total dissipation of the northern CO2 ice cap during the warmer seasons.

  18. The effect of dust on the martian polar vortices

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Toigo, A. D.; Waugh, D. W.

    2016-11-01

    The influence of atmospheric dust on the dynamics and stability of the martian polar vortices is examined, through analysis of Mars Climate Sounder observations and MarsWRF general circulation model simulations. We show that regional and global dust storms produce ;transient vortex warming; events that partially or fully disrupt the northern winter polar vortex for brief periods. Increased atmospheric dust heating alters the Hadley circulation and shifts the downwelling branch of the circulation poleward, leading to a disruption of the polar vortex for a period of days to weeks. Through our simulations, we find this effect is dependent on the atmospheric heating rate, which can be changed by increasing the amount of dust in the atmosphere or by altering the dust optical properties (e.g., single scattering albedo). Despite this, our simulations show that some level of atmospheric dust is necessary to produce a distinct northern hemisphere winter polar vortex.

  19. Simulation of the atmospheric thermal circulation of a martian volcano using a mesoscale numerical model.

    PubMed

    Rafkin, Scot C R; Sta Maria, Magdalena R V; Michaels, Timothy I

    2002-10-17

    Mesoscale (<100 km) atmospheric phenomena are ubiquitous on Mars, as revealed by Mars Orbiter Camera images. Numerical models provide an important means of investigating martian atmospheric dynamics, for which data availability is limited. But the resolution of general circulation models, which are traditionally used for such research, is not sufficient to resolve mesoscale phenomena. To provide better understanding of these relatively small-scale phenomena, mesoscale models have recently been introduced. Here we simulate the mesoscale spiral dust cloud observed over the caldera of the volcano Arsia Mons by using the Mars Regional Atmospheric Modelling System. Our simulation uses a hierarchy of nested models with grid sizes ranging from 240 km to 3 km, and reveals that the dust cloud is an indicator of a greater but optically thin thermal circulation that reaches heights of up to 30 km, and transports dust horizontally over thousands of kilometres.

  20. The Test Drive

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image taken at NASA's Jet Propulsion Laboratory shows engineers rehearsing the sol 133 (June 8, 2004) drive into 'Endurance' crater by NASA's Mars Exploration Rover Opportunity. Engineers and scientists have recreated the martian surface and slope the rover will encounter using a combination of bare and thinly sand-coated rocks, simulated martian 'blueberries' and a platform tilted at a 25-degree angle. The results of this test convinced engineers that the rover was capable of driving up and down a straight slope before it attempted the actual drive on Mars.

  1. Numerical Analysis on the Rheology of Martian Lobate Debris Aprons

    NASA Astrophysics Data System (ADS)

    Li, H.; Jing, H.; Zhang, H.; Shi, Y.

    2011-10-01

    Occurrence of ice in Martian subsurface is indicated by landforms such as lobate debris aprons (LDAs), concentric crater fills, and softened terrains. We used a three dimensional non-Newtonian viscous finite element model to investigate the behavior of ice-rock mixtures numerically. Our preliminary simulation results show that when the volume of rock is less than 40%, the rheology of the mixture is dominated by ice, and there exists a brittle-ductile transition when ice fraction reaches a certain value.

  2. Electrostatic Precipitator

    NASA Image and Video Library

    2017-06-09

    Dr. Carlos Calle, lead scientist in the Kennedy Space Center's Electrostatics and Surface Physics Laboratory, left, and Jay Phillips, a research physicist, are modifying an electrostatic precipitator to help remove dust from simulated Martian atmosphere. NASA's Journey to Mars requires cutting-edge technologies to solve the problems explorers will face on the Red Planet. Scientists are developing some of the needed solutions by adapting a device to remove the ever-present dust from valuable elements in the Martian atmosphere. Those commodities include oxygen, water and methane.

  3. Electrostatic Precipitator

    NASA Image and Video Library

    2017-06-09

    Dr. Carlos Calle, lead scientist in the Kennedy Space Center's Electrostatics and Surface Physics Laboratory, left, and Jay Phillips, a research physicist, are modifying an electrostatic precipitator to help remove dust from a simulated Martian atmosphere. NASA's Journey to Mars requires cutting-edge technologies to solve the problems explorers will face on the Red Planet. Scientists are developing some of the needed solutions by adapting a device to remove the ever-present dust from valuable elements in the Martian atmosphere. Those commodities include oxygen, water and methane.

  4. Electrostatic Precipitator

    NASA Image and Video Library

    2017-06-09

    Jay Phillips, a research physicist in the Kennedy Space Center's Electrostatics and Surface Physics Laboratory, left, and Dr. Carlos Calle, lead scientist in the lab, are modifying an electrostatic precipitator to help remove dust from simulated Martian atmosphere. NASA's Journey to Mars requires cutting-edge technologies to solve the problems explorers will face on the Red Planet. Scientists are developing some of the needed solutions by adapting a device to remove the ever-present dust from valuable elements in the Martian atmosphere. Those commodities include oxygen, water and methane.

  5. Mars Global Reference Atmospheric Model (Mars-GRAM): Release No. 2 - Overview and applications

    NASA Technical Reports Server (NTRS)

    James, B.; Johnson, D.; Tyree, L.

    1993-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM), a science and engineering model for empirically parameterizing the temperature, pressure, density, and wind structure of the Martian atmosphere, is described with particular attention to the model's newest version, Mars-GRAM, Release No. 2 and to the improvements incorporated into the Release No. 2 model as compared with the Release No. 1 version. These improvements include (1) an addition of a new capability to simulate local-scale Martian dust storms and the growth and decay of these storms; (2) an addition of the Zurek and Haberle (1988) wave perturbation model, for simulating tidal perturbation effects; and (3) a new modular version of Mars-GRAM, for incorporation as a subroutine into other codes.

  6. Phobos Mobility Simulation

    NASA Technical Reports Server (NTRS)

    Bielski, Paul

    2015-01-01

    Phobos, the larger of Mars' moons, provides a potential staging location for human exploration of the Martian surface. Its low gravity (about 1/200th of Earth) and lack of atmosphere makes it an attractive destination before a more complex human landing on Mars is attempted. While easier to approach and depart than Mars itself, Phobos provides unique challenges to visiting crews. It is irregularly shaped, so its local gravitational field does not always point straight down with respect to the visible horizon. It is very close to Mars and tidally locked, so the Martian gravity gradient and applied acceleration greatly affect the perceived surface gravity direction and magnitude. This simulation allows the assessment of unique mobility approaches on the surface of Phobos, including hopping in particular.

  7. Formation of a hybrid-type proto-atmosphere on Mars accreting in the solar nebula

    NASA Astrophysics Data System (ADS)

    Saito, Hiroaki; Kuramoto, Kiyoshi

    2018-03-01

    Recent studies of the chronology of Martian meteorites suggest that the growth of Mars was almost complete within a few Myr after the birth of the Solar system. During such rapid accretion, proto-Mars likely gravitationally maintained both the solar nebula component and the impact degassing component, containing H2O vapour and reduced gas species, as a proto-atmosphere to be called a hybrid-type proto-atmosphere. Here we numerically analyse the mass and composition of the degassed component and the atmospheric thermal structure sustained by accretional heating. Our results predict that a growing Mars possibly acquired a massive and hot hybrid-type proto-atmosphere with surface pressure and temperature greater than several kbar and 2000 K, respectively, which is sufficient to produce a deep magma ocean. In such a high-temperature and high-pressure environment, a significant amount of H2O, CH4, CO, and H2 is expected to be partitioned into the planetary interior, although this would strongly depend on the dynamics of the magma ocean and mantle solidification. The dissolved H2O may explain the wet Martian mantle implied from basaltic Martian meteorites. Along with the remnant reduced atmosphere after the hydrodynamic atmospheric escape, dissolved reduced gas species may have maintained an earliest Martian surface environment that allowed prebiotic chemical evolution and liquid H2O activities.

  8. A new Mars radiation environment model with visualization

    NASA Technical Reports Server (NTRS)

    De Angelis, G.; Clowdsley, M. S.; Singleterry, R. C.; Wilson, J. W.

    2004-01-01

    A new model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (OCR) has been developed at the NASA Langley Research Center. Solar modulated primary particles rescaled for Mars conditions are transported through the Martian atmosphere, with temporal properties modeled with variable timescales, down to the surface, with altitude and backscattering patterns taken into account. The Martian atmosphere has been modeled by using the Mars Global Reference Atmospheric Model--version 2001 (Mars-GRAM 2001). The altitude to compute the atmospheric thickness profile has been determined by using a model for the topography based on the data provided by the Mars Orbiter Laser Altimeter (MOLA) instrument on board the Mars Global Surveyor (MGS) spacecraft. The Mars surface composition has been modeled based on averages over the measurements obtained from orbiting spacecraft and at various landing sites, taking into account the possible volatile inventory (e.g., CO2 ice, H2O ice) along with its time variation throughout the Martian year. Particle transport has been performed with the HZETRN heavy ion code. The Mars Radiation Environment Model has been made available worldwide through the Space Ionizing Radiation Effects and Shielding Tools (SIREST) website, a project of NASA Langley Research Center. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  9. The Athena Mars Rover Investigation

    NASA Technical Reports Server (NTRS)

    Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Haskin, L.; Herkenhoff, K.

    2000-01-01

    The Mars Surveyor program requires tools for martian surface exploration, including remote sensing, in-situ sensing, and sample collection. The Athena Mars rover payload is a suite of scientific instruments and sample collection tools designed to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition; (2) Determine the elemental and mineralogical composition of martian surface materials; (3) Determine the fine-scale textural properties of these materials; and (4) Collect and store samples. The Athena payload is designed to be implemented on a long-range rover such as the one now under consideration for the 2003 Mars opportunity. The payload is at a high state of maturity, and most of the instruments have now been built for flight.

  10. Lava Tubes as Martian Analog sites on Hawaii Island

    NASA Astrophysics Data System (ADS)

    Andersen, Christian; Hamilton, J. C.; Adams, M.

    2013-10-01

    The existence of geologic features similar to skylights seen in Mars Reconnaissance Orbiter HIRISE imagery suggest Martian lava tube networks. Along with pit craters, these features are evidence of a past era of vulcanism. If these were contemporary with the wet Mars eras, then it is suggestive that any Martian life may have retreated into these subsurface oases. Hawaii island has numerous lava tubes of differing ages, humidity, lengths and sizes that make ideal analog test environments for future Mars exploration. PISCES has surveyed multiple candidate sites during the past summer with a team of University of Hawaii at Hilo student interns. It should be noted that Lunar features have also been similarly discovered via Lunar Reconnaissance Orbiter LROC imagery.

  11. Modeling the Hydrological Cycle in the Atmosphere of Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation Particles

    NASA Astrophysics Data System (ADS)

    Shaposhnikov, Dmitry S.; Rodin, Alexander V.; Medvedev, Alexander S.; Fedorova, Anna A.; Kuroda, Takeshi; Hartogh, Paul

    2018-02-01

    We present a new implementation of the hydrological cycle scheme into a general circulation model of the Martian atmosphere. The model includes a semi-Lagrangian transport scheme for water vapor and ice and accounts for microphysics of phase transitions between them. The hydrological scheme includes processes of saturation, nucleation, particle growth, sublimation, and sedimentation under the assumption of a variable size distribution. The scheme has been implemented into the Max Planck Institute Martian general circulation model and tested assuming monomodal and bimodal lognormal distributions of ice condensation nuclei. We present a comparison of the simulated annual variations, horizontal and vertical distributions of water vapor, and ice clouds with the available observations from instruments on board Mars orbiters. The accounting for bimodality of aerosol particle distribution improves the simulations of the annual hydrological cycle, including predicted ice clouds mass, opacity, number density, and particle radii. The increased number density and lower nucleation rates bring the simulated cloud opacities closer to observations. Simulations show a weak effect of the excess of small aerosol particles on the simulated water vapor distributions.

  12. Luminescence Dating of Martian Polar Deposits: Concepts and Preliminary Measurements Using Martian Soil Analogs

    NASA Astrophysics Data System (ADS)

    Lepper, K.; Kuhns, C. K.; McKeever, S. W. S.; Sears, D. W. G.

    2000-08-01

    Martian polar deposits have the potential to reveal a wealth of information about the evolution of Mars' climate and surface environment. However, as pointed out by Clifford et al. in the summary of the First International Conference on Mars Polar Science and Exploration, 'The single greatest obstacle to unlocking and interpreting the geologic and climatic record preserved at the [martian] poles is the need for absolute dating.' At that same conference Lepper and McKeever proposed development of luminescence dating as a remote in-situ technique for absolute dating of silicate mineral grains incorporated in polar deposits. Clifford et al. have also acknowledged that luminescence dating is more practical from cost, engineering, and logistical perspectives than other isotope-based methods proposed for in-situ dating on Mars. We report here the results of ongoing experiments with terrestrial analogs of martian surface materials to establish a broad fundamental knowledge base from which robust dating procedures for robotic missions may be developed. This broad knowledge base will also be critical in determining the engineering requirements of remote in-situ luminescence dating equipment intended for use on Mars. Additional information can be found in the original extended abstract.

  13. MODELING THE VARIATIONS OF DOSE RATE MEASURED BY RAD DURING THE FIRST MSL MARTIAN YEAR: 2012–2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Heber, Bernd

    2015-09-01

    The Radiation Assessment Detector (RAD), on board Mars Science Laboratory’s (MSL) rover Curiosity, measures the energy spectra of both energetic charged and neutral particles along with the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed several effects influencing the galactic cosmic-ray (GCR) induced surface radiation dose concurrently: (a) short-term diurnal variations of the Martian atmospheric pressure caused by daily thermal tides, (b) long-term seasonal pressure changes in the Martian atmosphere, and (c) the modulation of the primary GCR flux by the heliospheric magnetic field, which correlates with long-term solar activitymore » and the rotation of the Sun. The RAD surface dose measurements, along with the surface pressure data and the solar modulation factor, are analyzed and fitted to empirical models that quantitatively demonstrate how the long-term influences ((b) and (c)) are related to the measured dose rates. Correspondingly, we can estimate dose rate and dose equivalents under different solar modulations and different atmospheric conditions, thus allowing empirical predictions of the Martian surface radiation environment.« less

  14. Review of dust transport and mitigation technologies in lunar and Martian atmospheres

    NASA Astrophysics Data System (ADS)

    Afshar-Mohajer, Nima; Wu, Chang-Yu; Curtis, Jennifer Sinclair; Gaier, James R.

    2015-09-01

    Dust resuspension and deposition is a ubiquitous phenomenon in all lunar and Martian missions. The near-term plans to return to the Moon as a stepping stone to further exploration of Mars and beyond bring scientists' attention to development and evaluation of lunar and Martian dust mitigation technologies. In this paper, different lunar and Martian dust transport mechanisms are presented, followed by a review of previously developed dust mitigation technologies including fluidal, mechanical, electrical and passive self-cleaning methods for lunar/Martian installed surfaces along with filtration for dust control inside cabins. Key factors in choosing the most effective dust mitigation technology are recognized to be the dust transport mechanism, energy consumption, environment, type of surface materials, area of the surface and surface functionality. While electrical methods operating at higher voltages are identified to be suitable for small but light sensitive surfaces, pre-treatment of the surface is effective for cleaning thermal control surfaces, and mechanical methods are appropriate for surfaces with no concerns of light blockage, surface abrasion and 100% cleaning efficiency. Findings from this paper can help choose proper surface protection/cleaning for future space explorations. Hybrid techniques combining the advantages of different methods are recommended.

  15. The DREAMS experiment flown on the ExoMars 2016 mission for the study of Martian environment during the dust storm season

    NASA Astrophysics Data System (ADS)

    Bettanini, C.; Esposito, R.; Debei, S.; Molfese, C.; Colombatti, G.; Aboudan, A.; Brucato, J. R.; Cortecchia, F.; Di Achille, G.; Guizzo, G. P.; Friso, E.; Ferri, F.; Marty, L.; Mennella, V.; Molinaro, R.; Schipani, P.; Silvestro, S.; Mugnuolo, R.; Pirrotta, S.; Marchetti, E.; Harri, A.-M.; Montmessin, F.; Wilson, C.; Arruego Rodriguez, I.; Abbaki, S.; Apestigue, V.; Bellucci, G.; Berthelier, J. J.; Calcutt, S. B.; Forget, F.; Genzer, M.; Gilbert, P.; Haukka, H.; Jimenez, J. J.; Jimenez, S.; Josset, J. L.; Karatekin, O.; Landis, G.; Lorenz, R.; Martinez, J.; Möhlmann, D.; Moirin, D.; Palomba, E.; Pateli, M.; Pommereau, J.-P.; Popa, C. I.; Rafkin, S.; Rannou, P.; Renno, N. O.; Schmidt, W.; Simoes, F.; Spiga, A.; Valero, F.; Vazquez, L.; Vivat, F.; Witasse, O.

    2017-08-01

    The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) experiment on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and direction, but also on solar irradiance, dust opacity and atmospheric electrification, to measure for the first time key parameters linked to hazard conditions for future manned explorations. Although with very limited mass and energy resources, DREAMS would be able to operate autonomously for at least two Martian days (sols) after landing in a very harsh environment as it was supposed to land on Mars during the dust storm season (October 2016 in Meridiani Planum) relying on its own power supply. ExoMars mission was successfully launched on 14th March 2016 and Schiaparelli entered the Mars atmosphere on October 20th beginning its 'six minutes of terror' journey to the surface. Unfortunately, some unexpected behavior during the parachuted descent caused an unrecoverable critical condition in navigation system of the lander driving to a destructive crash on the surface. The adverse sequence of events at 4 km altitude triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. This paper describes this experiment in terms of scientific goals, design, performances, testing and operational capabilities with an overview of in flight performances and available mission data.

  16. A 3.8 b.y. History of Bacterial Biofilms and Their Significance in the Search for Extraterrestrial Life

    NASA Technical Reports Server (NTRS)

    Westall, Frances; Steele, Andrew; Toporski, Jan; Walsh, Maud; Allen, Carlton; Guidry, Sean; McKay, David; Gibson, Everett; Chafetz, Henry

    2000-01-01

    Bacterial biofilms are almost ubiquitous in terrestrial environments, many similar to past or present Martian environments. Together with ToF-SIMS analysis of the in situ organics, fossil biofilms constitute reliable biomarkers.

  17. Oxalate minerals on Mars?

    NASA Astrophysics Data System (ADS)

    Applin, D. M.; Izawa, M. R. M.; Cloutis, E. A.; Goltz, D.; Johnson, J. R.

    2015-06-01

    Small amounts of unidentified organic compounds have only recently been inferred on Mars despite strong reasons to expect significant concentrations and decades of searching. Based on X-ray diffraction and reflectance spectroscopic analyses we show that solid oxalic acid and its most common mineral salts are stable under the pressure and ultraviolet irradiation environment of the surface of Mars, and could represent a heretofore largely overlooked reservoir of organic carbon in the martian near-surface. In addition to the delivery to Mars by carbonaceous chondrites, oxalate minerals are among the predicted breakdown products of meteoritic organic matter delivered to the martian surface, as well as any endogenic organic carbon reaching the martian surface from the interior. A reinterpretation of pyrolysis experiments from the Viking, Phoenix, and Mars Science Laboratory missions shows that all are consistent with the presence of significant concentrations of oxalate minerals. Oxalate minerals could be important in numerous martian geochemical processes, including acting as a possible nitrogen sink (as ammonium oxalate), and contributing to the formation of “organic” carbonates, methane, and hydroxyl radicals.

  18. Zeolites on Mars: Possible environmental indicators in soils and sediments

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Gooding, J. L.

    1988-01-01

    Weathering products should serve as indicators of weathering environments and may provide the best evidence of the nature of climate change on Mars. No direct mineralogical measurements of Martian regolith were performed by the Viking missions, but the biology and X-ray fluorescence experiments provided some information on the physiochemical properties of Martian regolith. Most post-Viking studies of candidate weathering products have emphasized phyllosilicates and Fe-oxides; zeolites are potentially important, but overlooked, candidate Martian minerals. Zeolites would be important on Mars for three different reasons. First, they are major sinks of atmospheric gases and, per unit mass, are stronger and more efficient sorbents than are phyllosilicates. Secondly, they can be virtually unique sorbents and shelters for organic compounds and possible catalysts for organic-based reactions. Finally, their exchangeable ions are good indicators of the chemical properties of solutions with which they have communicated. Accordingly, the search for information on past compositions of the Martian atmosphere and hydrosphere should find zeolites to be rich repositories.

  19. Degradation of Organics in a Glow Discharge Under Martian Conditions

    NASA Technical Reports Server (NTRS)

    Hintze, P. E.; Calle, L. M.; Calle, C. I.; Buhler, C. R.; Trigwell, S.; Starnes, J. W.; Schuerger, A. C.

    2006-01-01

    The primary objective of this project is to understand the consequences of glow electrical discharges on the chemistry and biology of Mars. The possibility was raised some time ago that the absence of organic material and carbonaceous matter in the Martian soil samples studied by the VikinG Landers might be due in part to an intrinsic atmospheric mechanism such as glow discharge. The high probability for dust interactions during Martian dust storms and dust devils, combined with the cold, dry climate of Mars most likely results in airborne dust that is highly charged. Such high electrostatic potentials generated during dust storms on Earth are not permitted in the low-pressure CO2 environment on Mars; therefore electrostatic energy released in the form of glow discharges is a highly likely phenomenon. Since glow discharge methods are used for cleaning and sterilizing surfaces throughout industry, the idea that dust in the Martian atmosphere undergoes a cleaning action many times over geologic time scales appears to be a plausible one.

  20. Simulation Based Studies of Low Latency Teleoperations for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Crues, Edwin Z.; Bielski, Paul; Dexter, Dan; Litaker, Harry L.; Chappell, Steven P.; Beaton, Kara H.; Bekdash, Omar S.

    2017-01-01

    Human exploration of Mars will involve both crewed and robotic systems. Many mission concepts involve the deployment and assembly of mission support assets prior to crew arrival on the surface. Some of these deployment and assembly activities will be performed autonomously while others will be performed using teleoperations. However, significant communications latencies between the Earth and Mars make teleoperations challenging. Alternatively, low latency teleoperations are possible from locations in Mars orbit like Mars' moons Phobos and Deimos. To explore these latency opportunities, NASA is conducting a series of studies to investigate the effects of latency on telerobotic deployment and assembly activities. These studies are being conducted in laboratory environments at NASA's Johnson Space Center (JSC), the Human Exploration Research Analog (HERA) at JSC and the NASA Extreme Environment Mission Operations (NEEMO) underwater habitat off the coast of Florida. The studies involve two human-in-the-loop interactive simulations developed by the NASA Exploration Systems Simulations (NExSyS) team at JSC. The first simulation investigates manipulation related activities while the second simulation investigates mobility related activities. The first simulation provides a simple real-time operator interface with displays and controls for a simulated 6 degree of freedom end effector. The initial version of the simulation uses a simple control mode to decouple the robotic kinematic constraints and a communications delay to model latency effects. This provides the basis for early testing with more detailed manipulation simulations planned for the future. Subjects are tested using five operating latencies that represent teleoperation conditions from local surface operations to orbital operations at Phobos, Deimos and ultimately high Martian orbit. Subject performance is measured and correlated with three distance-to-target zones of interest. Each zone represents a target distance ranging from beyond 10m in Zone 1, through 1 cm to contact in Zone 5 with a step size factor of 10. Collected data consists of both objective simulation data (time, distance, hand controller inputs, velocity) and subjective questionnaire data. The second simulation provides a simple real-time operator interface with displays and control of a simulated surface rover. The rover traverses a synthetic Mars-like terrain and must be maneuvered to avoid obstacles while progressing to its destination. Like the manipulator simulation, subjects are tested using five operating latencies that represent teleoperation conditions from local surface operations to orbital operations at Phobos, Deimos and ultimately high Martian orbit. The rover is also operated at three different traverse speeds to assess the correlation between latency and speed. Collected data consisted of both objective simulation data (time, distance, hand controller inputs, braking) and subjective questionnaire data. These studies are exploring relationships between task complexity, operating speeds, operator efficiencies, and communications latencies for low latency teleoperations in support of human planetary exploration. This paper presents early results from these studies along with the current observations and conclusions. These and planned future studies will help to inform NASA on the potential for low latency teleoperations to support human exploration of Mars and inform the design of robotic systems and exploration missions.

  1. Monte Carlo simulation of the radiation environment encountered by a biochip during a space mission to Mars.

    PubMed

    Le Postollec, A; Incerti, S; Dobrijevic, M; Desorgher, L; Santin, G; Moretto, P; Vandenabeele-Trambouze, O; Coussot, G; Dartnell, L; Nieminen, P

    2009-04-01

    Simulations with a Monte Carlo tool kit have been performed to determine the radiation environment a specific device, called a biochip, would face if it were placed into a rover bound to explore Mars' surface. A biochip is a miniaturized device that can be used to detect organic molecules in situ. Its specific detection part is constituted of proteins whose behavior under cosmic radiation is completely unknown and must be investigated to ensure a good functioning of the device under space conditions. The aim of this study is to define particle species and energy ranges that could be relevant to investigate during experiments on irradiation beam facilities. Several primary particles have been considered for galactic cosmic ray (GCR) and solar energetic particle (SEP) contributions. Ionizing doses accumulated in the biochip and differential fluxes of protons, alphas, neutrons, gammas, and electrons have been established for both the Earth-Mars transit and the journey at Mars' surface. Neutrons and gammas appear as dominant species on martian soil, whereas protons dominate during the interplanetary travel. Depending on solar event occurrence during the mission, an ionizing dose of around a few Grays (1 Gy = 100 rad) is expected.

  2. Multi-fluid MHD Study of the Solar Wind Interaction with Mars' Upper Atmosphere during the 2015 March 8th ICME Event

    NASA Astrophysics Data System (ADS)

    Dong, C.; Ma, Y.; Bougher, S. W.; Toth, G.; Nagy, A. F.; Halekas, J. S.; Dong, Y.; Curry, S.; Luhmann, J. G.; Brain, D. A.; Connerney, J. E. P.; Espley, J. R.; Mahaffy, P. R.; Benna, M.; McFadden, J. P.; Mitchell, D. L.; DiBraccio, G. A.; Lillis, R. J.; Jakosky, B. M.; Grebowsky, J. M.

    2015-12-01

    The 3-D Mars multi-fluid BATS-R-US MHD code is used to study the solar wind interaction with the Martian upper atmosphere during the 2015 March 8th interplanetary coronal mass ejection (ICME). We studied four steady-state cases, corresponding to three major ICME phases: pre-ICME phase (Case 1), sheath phase (Cases 2--3), and ejecta phase (Case 4). Detailed data-model comparisons demonstrate that the simulation results are in good agreement with Mars Atmosphere and Volatile EvolutioN (MAVEN) measurements, indicating that the multi-fluid MHD model can reproduce most of the features observed by MAVEN, thus providing confidence in the estimate of ion escape rates from its calculation. The total ion escape rate is increased by an order of magnitude, from 2.05×1024 s-1 (pre-ICME phase) to 2.25×1025 s-1 (ICME sheath phase), during this time period. The calculated ion escape rates were used to examine the relative importance of the two major ion loss channels from the planet: energetic pickup ion loss through the dayside plume and cold ionospheric ion loss through the nightside plasma wake region. We found that the energetic pickup ions escaping from the dayside plume could be as much as ~23% of the total ion loss prior to the ICME arrival. Interestingly, the tailward ion escape rate is significantly increased at the ejecta phase, leading to a reduction of the dayside ion escape to ~5% of the total ion loss. Under such circumstance, the cold ionospheric ions escaping from the plasma wake comprise the majority of the ion loss from the planet. Furthermore, by comparing four simulation results along the same MAVEN orbit, we note that there is no significant variation in the Martian lower ionosphere. Finally, both bow shock and magnetic pileup boundary (BS, MPB) locations are decreased from (1.2 RMars, 1.57 RMars) at the pre-ICME phase to (1.16 RMars, 1.47 RMars) respectively during the sheath phase along the dayside Sun-Mars line. MAVEN has provided a great opportunity to study the evolution of the Martian atmosphere and climate over its history. A large quantity of useful data has been returned for future studies. These kinds of data-model comparisons can help the community to better understand the Martian upper atmosphere response to the (extreme) variation in the solar wind and its interplanetary environment from a global perspective.

  3. Localized Models of Charged Particle Motion in Martian Crustal Magnetic Cusps

    NASA Astrophysics Data System (ADS)

    Brain, D. A.; Poppe, A. R.; Jarvinen, R.; Dong, Y.; Egan, H. L.; Fang, X.

    2017-12-01

    The induced magnetosphere of Mars is punctuated by localized but strong crustal magnetic fields that are observed to play host to a variety of phenomena typically associated with global magnetic fields, such as auroral processes and particle precipitation, field-aligned current systems, and ion outflow. Each of these phenomena occur on the night side, in small-scale magnetic `cusp' regions of vertically aligned field. Cusp regions are not yet capable of being spatially resolved in global scale models that include the ion kinetics necessary for simulating charged particle transport along cusps. Local models are therefore necessary if we are to understand how cusp processes operate at Mars. Here we present the first results of an effort to model the kinetic particle motion and electric fields in Martian cusps. We are adapting both a 1.5D Particle-in-Cell (PIC) model for lunar magnetic cusps regions to the Martian case and a hybrid model framework (used previously for the global Martian plasma interaction and for lunar magnetic anomaly regions) to cusps in 2D. By comparing the models we can asses the importance of electron kinetics in particle transport along cusp field lines. In this first stage of our study we model a moderately strong nightside cusp, with incident hot hydrogen plasma from above, and cold planetary (oxygen) plasma entering the simulation from below. We report on the spatial and temporal distribution of plasma along cusp field lines for this initial case.

  4. Dry-heat resistance of selected psychrophiles. [Viking lander in spacecraft sterilization

    NASA Technical Reports Server (NTRS)

    Winans, L.; Pflug, I. J.; Foster, T. L.

    1977-01-01

    The dry-heat resistance characteristics of spores of psychrophilic organisms isolated from soil samples from the Viking spacecraft assembly areas at Cape Kennedy Space Flight Center, Cape Canaveral, Fla., were studied. Spore suspensions were produced, and dry-heat D values were determined for the microorganisms that demonstrated growth or survival under a simulated Martian environment. The dry-heat tests were carried out by using the planchet-boat-hot plate system at 110 and 125 C with an ambient relative humidity of 50% at 22 C. The spores evaluated had a relatively low resistance to dry heat. D (110 C) values ranged from 7.5 to 122 min, whereas the D (125 C) values ranged from less than 1.0 to 9.8 min.

  5. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-23

    Team Raptor members from the University of North Dakota College of Engineering and Mines check their robot, named "Marsbot," in the RoboPit at NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  6. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    Derrick Matthews, left, with Kennedy Space Center's Communication and Public Engagement Directorate, and Kurt Leucht, event emcee, provide commentary at the mining arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  7. 2017 Robotic Mining Competition

    NASA Image and Video Library

    2017-05-24

    Team members from West Virginia University prepare their mining robot for a test run in a giant sandbox before their scheduled mining run in the arena during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. are using their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  8. Robotic Mining Competition Awards Ceremony

    NASA Image and Video Library

    2017-05-26

    Inside the Apollo-Saturn V Center at NASA's Kennedy Space Center Visitor Complex in Florida, teams from the 8th Annual Robotic Mining Competition eat dinner before the awards ceremony begins. More than 40 student teams from colleges and universities around the U.S. used their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participated in other competition requirements, May 22-26 at the visitor complex. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  9. First Demonstration on Direct Laser Fabrication of Lunar Regolith Parts

    NASA Technical Reports Server (NTRS)

    Balla, Vamsi Krishna; Roberson, Luke B.; OConnor, Gregory W. O.; Trigwell, Stephen; Bose, Susmita; Bandyopadhyay, Amit

    2010-01-01

    Establishment of a lunar or Martian outpost necessitates the development of methods to utilize in situ mineral resources for various construction and resource extraction applications. Fabrication technologies are critical for habitat structure development, as well as repair and replacement of tools and parts at the outpost. Herein we report the direct fabrication of lunar regolith simulant parts, in freeform environment, using lasers. We show that raw lunar regolith can be processed at laser energy levels as a low as 2.12 J mm-2 resulting in nanocrystalline and/or amorphous microstructures. Potential applications of laser based fabrication technologies to make useful regolith parts for various applications including load bearing composite structures, radiation shielding, and solar cell substrates is described.

  10. Dry-heat resistance of selected psychrophiles.

    PubMed Central

    Winans, L; Pflug, I J; Foster, T L

    1977-01-01

    The dry-heat resistance characteristics of spores of psychrophilic organisms isolated from soil samples from the Viking spacecraft assembly areas at Cape Kennedy Space Flight Center, Cape Canaveral, Fla., were studied. Spore suspensions were produced, and dry-heat D values were determined for the microorganisms that demonstrated growth or survival under a simulated Martian environment. The dry-heat tests were carried out by using the planchet-boat-hot plate system at 110 and 125 degrees C with an ambient relative humidity of 50% at 22 degrees C. The spores evaluated had a relatively low resistance to dry heat. D(110 degrees C) values ranged from 7.5 to 122 min, whereas the D(123 degrees C) values ranged from less than 1.0 to 9.8 min. PMID:410367

  11. Fluid Physics and Transport Phenomena in a Simulated Reduced Gravity Environment

    NASA Technical Reports Server (NTRS)

    Lipa, J.

    2004-01-01

    We describe a ground-based apparatus that allows the cancellation of gravity on a fluid using magnetic forces. The present system was designed for liquid oxygen studies over the range 0.001 - 5 g s. This fluid is an essential component of any flight mission using substantial amounts of liquid propellant, especially manned missions. The apparatus has been used to reduce the hydrostatic compression near the oxygen critical point and to demonstrate inverted phase separation. It could also be used to study pool boiling and two-phase heat transfer in Martian, Lunar or near-zero gravity, as well as phenomena such as Marangoni flow and convective instabilities. These studies would contribute directly to the reliability and optimization of the Moon and Mars flight programs.

  12. Robotic Mining Competition - Opening Ceremony

    NASA Image and Video Library

    2018-05-15

    On the second day of NASA's 9th Robotic Mining Competition, May 15, team members from Temple University work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  13. Robotic Mining Competition - Opening Ceremony

    NASA Image and Video Library

    2018-05-15

    Team members from Iowa State University prepare their robot miner on the second day of NASA's 9th Robotic Mining Competition, May 15, in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  14. Robotic Mining Competition - Setup

    NASA Image and Video Library

    2018-05-14

    On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, college team members work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  15. Precipitation of energetic neutral atoms and induced non-thermal escape fluxes from the Martian atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewkow, N. R.; Kharchenko, V.

    2014-08-01

    The precipitation of energetic neutral atoms, produced through charge exchange collisions between solar wind ions and thermal atmospheric gases, is investigated for the Martian atmosphere. Connections between parameters of precipitating fast ions and resulting escape fluxes, altitude-dependent energy distributions of fast atoms and their coefficients of reflection from the Mars atmosphere, are established using accurate cross sections in Monte Carlo (MC) simulations. Distributions of secondary hot (SH) atoms and molecules, induced by precipitating particles, have been obtained and applied for computations of the non-thermal escape fluxes. A new collisional database on accurate energy-angular-dependent cross sections, required for description of themore » energy-momentum transfer in collisions of precipitating particles and production of non-thermal atmospheric atoms and molecules, is reported with analytic fitting equations. Three-dimensional MC simulations with accurate energy-angular-dependent cross sections have been carried out to track large ensembles of energetic atoms in a time-dependent manner as they propagate into the Martian atmosphere and transfer their energy to the ambient atoms and molecules. Results of the MC simulations on the energy-deposition altitude profiles, reflection coefficients, and time-dependent atmospheric heating, obtained for the isotropic hard sphere and anisotropic quantum cross sections, are compared. Atmospheric heating rates, thermalization depths, altitude profiles of production rates, energy distributions of SH atoms and molecules, and induced escape fluxes have been determined.« less

  16. Detection of Endolithes Using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dumas, S.; Dutil, Y.; Joncas, G.

    2009-12-01

    On Earth, the Dry Valleys of Antarctica provide the closest martian-like environment for the study of extremophiles. Colonies of bacterias are protected from the freezing temperatures, the drought and UV light. They represent almost half of the biomass of those regions. Due to their resilience, endolithes are one possible model of martian biota. We propose to use infrared spectroscopy to remotely detect those colonies even if there is no obvious sign of their presence. This remote sensing approach reduces the risk of contamination or damage to the samples.

  17. Hydrogen Isotopes Record the History of the Martian Hydrosphere and Atmosphere

    NASA Technical Reports Server (NTRS)

    Usui, T.; Simon, J. I.; Jones, J. H.; Kurokawa, H.; Sato, M.; Alexander, C. M. O'D; Wang, J.

    2015-01-01

    The surface geology and geomorphology of Mars indicates that it was once warm enough to maintain a large body of liquid water on its surface, though such a warm environment might have been transient. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. This study presents insights from hydrogen isotopes for the origin and evolution of Martian water reservoirs.

  18. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars

    NASA Astrophysics Data System (ADS)

    Bishop, Janice L.; Fairén, Alberto G.; Michalski, Joseph R.; Gago-Duport, Luis; Baker, Leslie L.; Velbel, Michael A.; Gross, Christoph; Rampe, Elizabeth B.

    2018-03-01

    The ancient rock record for Mars has long been at odds with climate modelling. The presence of valley networks, dendritic channels and deltas on ancient terrains points towards running water and fluvial erosion on early Mars1, but climate modelling indicates that long-term warm conditions were not sustainable2. Widespread phyllosilicates and other aqueous minerals on the Martian surface3-6 provide additional evidence that an early wet Martian climate resulted in surface weathering. Some of these phyllosilicates formed in subsurface crustal environments5, with no association with the Martian climate, while other phyllosilicate-rich outcrops exhibit layered morphologies and broad stratigraphies7 consistent with surface formation. Here, we develop a new geochemical model for early Mars to explain the formation of these clay-bearing rocks in warm and wet surface locations. We propose that sporadic, short-term warm and wet environments during a generally cold early Mars enabled phyllosilicate formation without requiring long-term warm and wet conditions. We conclude that Mg-rich clay-bearing rocks with lateral variations in mixed Fe/Mg smectite, chlorite, talc, serpentine and zeolite occurrences formed in subsurface hydrothermal environments, whereas dioctahedral (Al/Fe3+-rich) smectite and widespread vertical horizonation of Fe/Mg smectites, clay assemblages and sulphates formed in variable aqueous environments on the surface of Mars. Our model for aluminosilicate formation on Mars is consistent with the observed geological features, diversity of aqueous mineralogies in ancient surface rocks and state-of-the-art palaeoclimate scenarios.

  19. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable Mars Campaign assessments. The paper concludes by capturing additional findings and describing additional simulations and tests that should be conducted to better characterize the performance of the identified terrestrial technologies for accessing subsurface ice, as well as the Rodriguez Well, under Mars environmental conditions.

  20. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial polar regions is reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable Mars Campaign assessments. The paper concludes by capturing additional findings and describing additional simulations and tests that should be conducted to better characterize the performance of the identified terrestrial technologies for accessing subsurface ice, as well as the Rodriguez Well, under Mars environmental conditions.

  1. MSL's Widgets: Adding Rebustness to Martian Sample Acquisition, Handling, and Processing

    NASA Technical Reports Server (NTRS)

    Roumeliotis, Chris; Kennedy, Brett; Lin, Justin; DeGrosse, Patrick; Cady, Ian; Onufer, Nicholas; Sigel, Deborah; Jandura, Louise; Anderson, Robert; Katz, Ira; hide

    2013-01-01

    Mars Science Laboratory's (MSL) Sample Acquisition Sample Processing and Handling (SA-SPaH) system is one of the most ambitious terrain interaction and manipulation systems ever built and successfully used outside of planet earth. Mars has a ruthless environment that has surprised many who have tried to explore there. The robustness widget program was implemented by the MSL project to help ensure the SA-SPaH system would be robust enough to the surprises of this ruthless Martian environment. The robustness widget program was an effort of extreme schedule pressure and responsibility, but was accomplished with resounding success. This paper will focus on a behind the scenes look at MSL's robustness widgets: the particle fun zone, the wind guards, and the portioner pokers.

  2. Global warming and climate forcing by recent albedo changes on Mars

    USGS Publications Warehouse

    Fenton, L.K.; Geissler, P.E.; Haberle, R.M.

    2007-01-01

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by ???0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies. ??2007 Nature Publishing Group.

  3. Global warming and climate forcing by recent albedo changes on Mars.

    PubMed

    Fenton, Lori K; Geissler, Paul E; Haberle, Robert M

    2007-04-05

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by approximately 0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies.

  4. A space radiation shielding model of the Martian radiationenvironment experiment (MARIE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atwell, William; Saganti, Premkumar; Cucinotta, Francis A.

    2004-12-01

    The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. On board the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20 500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding modelmore » and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset.« less

  5. Is the adaptation to UV stress correlated with a higher resistance to other environmental stressors? First results of the space experiment ADAPT

    NASA Astrophysics Data System (ADS)

    Rettberg, Petra; Wassmann, Marko; Rabbow, Elke; Moeller, Ralf; Panitz, Corinna; Horneck, Gerda; Douki, Thierry; Cadet, Jean

    The effects of one of the most important environmental factors that have influenced the biolog-ical evolution on earth, solar UV radiation, was investigated in the space experiment ADAPT in the ESA facility EXPOSE on the European ISS module Columbus. Three highly resistant microorganims from very distinct terrestrial habitats were selected: Bacillus subtilis, a well characterised spore forming soil bacterium, a natural community of cyanobacteria colonising rocks and a species of halophilic archaea isolated from rock salt, Halococcus dombrowskii. The capability of the three different microorganisms to survive in a qualitatively and quantitatively different UV climate like that in space and on Mars was investigated in EXPOSE and its effects as well as its interaction with other environmental parameters were characterised at the cellular and molecular level. In the EXPOSE facility the environmental parameters of space were provided by the exposure of samples in vented sample carriers under MgF2 windows allowing the transmittance of solar UV wavelengths down to 110 nm. In addition, the environmental conditions on the surface of Mars were simulated in earth orbit by using closed sample carriers with martian atmosphere and pressure and a martian UV climate realised by the use of suitable cut-off filters and the extraterrestrial solar UV radiation. Due to the different composition of the martian atmosphere and it's low pressure, the martian UV radiation climate is significantly different from that of today's earth. Energy-rich biologically harmful UVB and UVC radiation can penetrate to the surface of Mars. This UV radiation spectrum resembles that of the early earth before the rise of the atmospheric oxygen concentration. In the experiment ADAPT I the model organism Bacillus subtilis was used to test the hypothesis experimentally whether longer-lasting selective pressure by a mars-like UV radiation spectrum results in a higher UV resistance as well as in a higher resistance against the simultaneous action of further `extreme' environmental factors that exist in space or on other planets like vacuum / low pressure or cosmic radiation. In preparation of ADAPT a continuos culture of Bacillus subtilis 168 cells was grown for 700 generations under periodical polychromatic mars-like UV irradiation. Populations that evolved under this UV stress were about 4.7fold more resistant than the ancestral and non-UV evolved populations. In addition to the acquired increased UV resistance, further changes in microbial stress response to hydrogen peroxide, increased salinity and desiccation were observed in UV-evolved cells. For the space experiment spores of the strain MW01, isolated from this UV-resistant population, were exposed in earth orbit to space and simulated martian conditions. The biological endpoints under investigation include among others survival, mutation induction, loss of sporulation capability. The results of this experiment will contribute to our understanding of the adaptability of life to extreme environments on earth and on other planets in general.

  6. Resistance of bacterial endospores to outer space for planetary protection purposes--experiment PROTECT of the EXPOSE-E mission.

    PubMed

    Horneck, Gerda; Moeller, Ralf; Cadet, Jean; Douki, Thierry; Mancinelli, Rocco L; Nicholson, Wayne L; Panitz, Corinna; Rabbow, Elke; Rettberg, Petra; Spry, Andrew; Stackebrandt, Erko; Vaishampayan, Parag; Venkateswaran, Kasthuri J

    2012-05-01

    Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the "trip to Mars" spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the "stay on Mars" spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the "trip to Mars" or "stay on Mars" spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations.

  7. Mimicking Mars: A vacuum simulation chamber for testing environmental instrumentation for Mars exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobrado, J. M., E-mail: sobradovj@inta.es; Martín-Soler, J.; Martín-Gago, J. A.

    We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10{sup −6} mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source andmore » its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.« less

  8. Site alteration effects from rocket exhaust impingment during a simulated Viking Mars landing. Part 1: Nozzle development and physical site alternation

    NASA Technical Reports Server (NTRS)

    Romine, G. L.; Reisert, T. D.; Gliozzi, J.

    1973-01-01

    A potential interference problem for the Viking '75 scientific investigation of the Martian surface resulting from retrorocket exhaust plume impingement of the surface was investigated experimentally and analytically. It was discovered that the conventional bell nozzle originally planned for the Viking Lander retrorockets would produce an unacceptably large amount of physical disturbance to the landing site. An experimental program was subsequently undertaken to find and/or develop a nozzle configuration which would significantly reduce the site alteration. A multiple nozzle configuration, consisting of 18 small bell nozzles, was shown to produce a level of disturbance that was considered by the Viking Lander Science Teams to be acceptable on the basis of results from full-scale tests on simulated Martian soils.

  9. Mars Radiator Characterization Experimental Program

    NASA Technical Reports Server (NTRS)

    Witte, Larry C.; Hollingsworth, D. Keith

    2004-01-01

    Radiators are an enabling technology for the human exploration and development of the moon and Mars. As standard components of the heat rejection subsystem of space vehicles, radiators are used to reject waste heat to space and/or a planetary environment. They are typically large components of the thermal control system for a space vehicle or human habitation facility, and in some cases safety factors are used to oversize them when the operating environment cannot be fully characterized. Over-sizing can impose significant weight and size penalties that might be prohibitive for future missions. Radiator performance depends on the size of the radiator surface, its emittance and absorptance, the radiator temperature, the effective sky temperature surrounding the radiator, solar radiation and atmospheric irradiation levels, convection to or from the atmosphere (on Mars), and other conditions that could affect the nature of the radiator surface, such as dust accumulation. Most particularly, dust is expected to be a major contributor to the local environmental conditions on either the lunar or Martian surface. This conclusion regarding Mars is supported by measurements of dust accumulation on the Mars Sojourner Rover solar array during the Pathfinder mission. This Final Report describes a study of the effect of Martian dust accumulation on radiator performance. It is comprised of quantitative measurements of effective emittance for a range of dust accumulation levels on surfaces of known emittance under clean conditions. The test radiator coatings were Z-93P, NS-43G, and Silver Teflon (10 mil) film. The Martian dust simulant was Carbondale Red Clay. Results were obtained under vacuum conditions sufficient to reduce convection effects virtually to zero. The experiments required the development of a calorimetric apparatus that allows simultaneous measurements of the effective emittance for all the coatings at each set of experimental conditions. A method of adding dust to multiple radiator coupons was developed and shown to be capable of depositing dust on the surfaces with acceptable uniformity. In these experiments, the dust layer accumulates under earth gravity and in the presence of an earth atmosphere. An invention disclosure for the dust deposition apparatus is being filed through NASA and University of Houston.

  10. The effects of atmospheric pressure on infrared reflectance spectra of Martian analogs

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.; Pratt, Stephen F.; Patterson, William

    1993-01-01

    The use of terrestrial samples as analogs of Mars soils are complicated by the Martian atmosphere. Spectral features due to the Martian atmosphere can be removed from telescopic spectra of Mars and ISM spectra of Mars, but this does not account for any spectral differences resulting from atmospheric pressure or any interactions between the atmosphere and the surface. We are examining the effects of atmospheric pressure on reflectance spectra of powdered samples in the laboratory. Contrary to a previous experiment with granite, no significant changes in albedo or the Christiansen feature were observed from 1 bar pressure down to a pressure of 8 micrometers Hg. However, reducing the atmospheric pressure does have a pronounced affect on the hydration features, even for samples retained in a dry environment for years.

  11. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  12. Basalt: Biologic Analog Science Associated with Lava Terrains

    NASA Astrophysics Data System (ADS)

    Lim, D. S. S.; Abercromby, A.; Kobs-Nawotniak, S. E.; Kobayashi, L.; Hughes, S. S.; Chappell, S.; Bramall, N. E.; Deans, M. C.; Heldmann, J. L.; Downs, M.; Cockell, C. S.; Stevens, A. H.; Caldwell, B.; Hoffman, J.; Vadhavk, N.; Marquez, J.; Miller, M.; Squyres, S. W.; Lees, D. S.; Fong, T.; Cohen, T.; Smith, T.; Lee, G.; Frank, J.; Colaprete, A.

    2015-12-01

    This presentation will provide an overview of the BASALT (Biologic Analog Science Associated with Lava Terrains) program. BASALT research addresses Science, Science Operations, and Technology. Specifically, BASALT is focused on the investigation of terrestrial volcanic terrains and their habitability as analog environments for early and present-day Mars. Our scientific fieldwork is conducted under simulated Mars mission constraints to evaluate strategically selected concepts of operations (ConOps) and capabilities with respect to their anticipated value for the joint human and robotic exploration of Mars. a) Science: The BASALT science program is focused on understanding habitability conditions of early and present-day Mars in two relevant Mars-analog locations (the Southwest Rift Zone (SWRZ) and the East Rift Zone (ERZ) flows on the Big Island of Hawai'i and the eastern Snake River Plain (ESRP) in Idaho) to characterize and compare the physical and geochemical conditions of life in these environments and to learn how to seek, identify, and characterize life and life-related chemistry in basaltic environments representing these two epochs of martian history. b) Science Operations: The BASALT team will conduct real (non-simulated) biological and geological science at two high-fidelity Mars analogs, all within simulated Mars mission conditions (including communication latencies and bandwidth constraints) that are based on current architectural assumptions for Mars exploration missions. We will identify which human-robotic ConOps and supporting capabilities enable science return and discovery. c) Technology: BASALT will incorporate and evaluate technologies in to our field operations that are directly relevant to conducting the scientific investigations regarding life and life-related chemistry in Mars-analogous terrestrial environments. BASALT technologies include the use of mobile science platforms, extravehicular informatics, display technologies, communication & navigation packages, remote sensing, advanced science mission planning tools, and scientifically-relevant instrument packages to achieve the project goals.

  13. Mars Exobiology: The Principles Behind The Plan For Exploration

    NASA Technical Reports Server (NTRS)

    DesMarais, D. J.; DeVincenzi, Donald L.; Carr, M. H.; Clark, B. C.; Farmer, J. D.; Hayes, J. M.; Holland, H.; Kerridge, J. F.; Klein, H. P.; McDonald, G. D.

    1995-01-01

    The search for evidence of life on Mars is a highly interdisciplinary enterprise which extends beyond the traditional life sciences. Mars conceivably had a pervasive ancient biosphere which may have persisted even to the present, but only in subsurface environments. Understanding the history of Mars' global environment, including its inventory of volatile elements, is a crucial part of the search strategy. Those deposits (minerals, sediments, etc.) which could have and retained a record of earlier biological activity must be identified and examined. While the importance of. seeking another biosphere has not diminished during the years since the Viking mission, the strategy for Mars exploration certainly has been modified by later discoveries. The Viking mission itself demonstrated that the present day surface environment of Mars is hostile to life as we know it. Thus, to search effectively for life on Mars, be it extant or extinct, we now must greatly improve our understanding of Mars the planet. Such an understanding will help us broaden our search beyond the Viking lander sites, both back in time to earlier epochs and elsewhere to other sites and beneath the surface. Exobiology involves much more than simply a search for extant life beyond Earth. It addresses the prospect of long-extinct biospheres and also the chemistry, organic and otherwise, which either led to life or which occurred on rocky planets that remained lifeless. Even a Mars without a biosphere would reveal much about life. How better to understand the origin and impact of a biosphere than to compare Earth with another similar but lifeless planet? Still, several relatively recent discoveries offer encouragement that a Martian biosphere indeed might have existed. The ancient Martian surface was extensively sculptured by volcanism and the activity of liquid water. Such observations invoke impressions of an ancient martian atmosphere and environment that resembled ancient Earth more than present-day Mars. Since Viking, we have learned that our own biosphere began prior to 3.5 billion years ago, during an early period when our solar system apparently was sustaining clement conditions on at least two of its planets. Also, we have found that microorganisms can survive, even flourish, in environments more extreme in temperature and water availability than had been previously recognized. The common ancestor of life on Earth probably was adapted to elevated temperatures, raising the possibility that hydrothermal systems played a central role in sustaining our early biosphere. If a biosphere ever arose on Mars, at least some of its constituents probably dwelled in the subsurface. Even today, conditions on Mars and Earth become more similar with increasing depth beneath their surfaces. For example, under the martian permafrost, the geothermal gradient very likely maintains liquid water in environments which resemble aquifers on Earth. Indigenous bacteria have recently been recovered from deep aquifers on Earth. Liquid groundwater very likely persisted throughout Mars' history. Thus, martian biota, if they ever existed, indeed might have survived in subsurface environments.

  14. Unveiling Mars nightside mesosphere dynamics by IUVS/MAVEN global images of NO nightglow

    NASA Astrophysics Data System (ADS)

    Stiepen, A.; Jain, S. K.; Schneider, N. M.; Milby, Z.; Deighan, J. I.; Gonzàlez-Galindo, F.; Gérard, J.-C.; Forget, F.; Bougher, S.; Stewart, A. I. F.; Royer, E.; Stevens, M. H.; Evans, J. S.; Chaffin, M. S.; Crismani, M.; McClintock, W. E.; Clarke, J. T.; Holsclaw, G. W.; Montmessin, F.; Lo, D. Y.

    2017-09-01

    We analyze the morphology of the ultraviolet nightglow in the Martian upper atmosphere through Nitric Oxide (NO) δ and γ bands emissions observed by the Imaging Ultraviolet Spectrograph instrument on the Mars Atmosphere and Volatile EvolutioN spacecraft. The seasonal dynamics of the Martian thermosphere-mesosphere can be constrained based on the distribution of these emissions. We show evidence for local (emission streaks and splotches) and global (longitudinal and seasonal) variability in brightness of the emission and provide quantitative comparisons to GCM simulations.

  15. Photodegradation of selected organics on Mars

    NASA Astrophysics Data System (ADS)

    ten Kate, I. L.; Boosman, A.; Fornaro, T.; King, H. E.; Kopacz, K. A.; Wolthers, M.

    2017-09-01

    At least as much as 2.4 million kg of unaltered organic material is estimated to be delivered to the Martian surface each year. However, intense UV irradiation and the highly oxidizing and acidic nature of Martian soil cause degradation of organic compounds. Here we present first results obtained with the recently developed PALLAS facility at Utrecht University. This facility is specifically designed to simulate planetary and asteroid surface conditions to study the photocatalytic properties of relevant planetary minerals. Our results tentatively show degradation of several compounds and preservation of others.

  16. Mars In-Situ Propellant Production Precursor (MIP) Flight Demonstration Project: Overview

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.; Ratliff, J. E.; Baird, R. S.; Sanders, G. B.; Johnson, K. R.; Karlmann, P. B.; Juanero, K. J.; Baraona, C. R.; Landis, G. A.; Jenkins, P. P.; hide

    1999-01-01

    Strategic planning for human missions of exploration to Mars has conclusively identified in-situ propellant production (ISPP) as an enabling technology. A team of scientists and engineers from NASA's Johnson Space Center, Jet Propulsion Laboratory, and Lewis Research Center is preparing the MARS ISPP PRECURSOR (MIP) Flight Demonstration. The objectives of MIP are to characterize the performance of processes and hardware which are important to ISPP concepts and to demonstrate how these processes and hardware interact with the Mars environment. Operating this hardware in the actual Mars environment is extremely important due to both uncertainties in our knowledge of the Mars environment as well as because of conditions that cannot be adequately simulated on Earth. The MIP Flight Demonstration is a payload onboard the MARS SURVEYOR Lander and will be launched in April 2001. MIP will be the first hardware to utilize the indigenous resources of a planet or moon. Its successful operation will pave the way for future robotic and human missions to rely on propellants produced using Martian resources as feedstock.

  17. Mars In-Situ Propellant Production Precursor (MIP) Flight Demonstration Project: Overview

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.; Ratliff, J. E.; Sanders, G. B.; Johnson, K. R.; Karlmann, P. B.; Juanero, K. J.; Barona, C. R.; Landis, G. A.; Jenkins, P. P.; Scheiman, D. A.

    1999-01-01

    Strategic planning for human missions of exploration to Mars has conclusively identified in-situ propellant production (ISPP) as an enabling technology. A team of scientists and engineers from NASA's Johnson Space Center, Jet Propulsion Laboratory, and Lewis Research Center is preparing the MARS ISPP Precursors (MIP) Flight Demonstration. The objectives of MIP are to characterize the performance of processes and hardware which are important to ISPP concepts and to demonstrate how these processes and hardware interact with the Mars environment. Operating this hardware in the actual Mars environment is extremely important due to both uncertainties in our knowledge of the Mars environment as well as because of conditions that cannot be adequately simulated on Earth. The MIP Flight Demonstration is a payload onboard the MARS SURVEYOR Lander and will be launched in April 2001. MIP will be the first hardware to utilize the indigenous resources of a planet or moon. Its successful operation will pave the way for future robotic and human missions to rely on propellants produced using Martian resources as feedstock.

  18. Ground tests of the Dynamic Albedo of Neutron instrument operation in the passive mode with a Martian soil model

    NASA Astrophysics Data System (ADS)

    Shvetsov, V. N.; Dubasov, P. V.; Golovin, D. V.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Litvak, M. L.; Malakhov, A. V.; Mitrofanov, I. G.; Mokrousov, M. I.; Sanin, A. B.; Timoshenko, G. N.; Vostrukhin, A. A.; Zontikov, A. O.

    2017-07-01

    The results of the Dynamic Albedo of Neutrons (DAN) instrument ground tests in the passive mode of operation are presented in comparison with the numerical calculations. These test series were conducted to support the current surface measurements of DAN onboard the MSL Curiosity rover. The instrument sensitivity to detect thin subsurface layers of water ice buried at different depths in the analog of Martian soil has been evaluated during these tests. The experiments have been done with a radioisotope Pu-Be neutron source (analog of the MMRTG neutron source onboard the Curiosity rover) and the Martian soil model assembled from silicon-rich window glass pane. Water ice layers were simulated with polyethylene sheets. All experiments have been performed at the test facility built at the Joint Institute for Nuclear Research (Dubna, Russia).

  19. The Role of Subsurface Properties on Transport of Water and Trace Gases: 1D Simulations at Selected Mars Landing Sites.

    NASA Astrophysics Data System (ADS)

    Karatekin, O.; Gloesener, E.; Dehant, V. M. A.

    2017-12-01

    In this work, water ice stability and water vapour transport through porous martian subsurface are studied using a 1D diffusive model. The role of adsorption on water transfer in martian conditions is investigated as well as the range of parameters that have the largest effect on gas transport. In addition, adsorption kinetics is considered to examine its influence on the water vapor exchange between the subsurface and the atmosphere. As methane has been detected in the martian atmosphere, the subsurface model is then used to study methane diffusion in the CH4/CO2/H2O system from variable depths under the surface. The results of subsurface gas transport at selected locations/landing sites are shown and implications for present/future observations are discussed.

  20. Simulation of the GCR spectrum in the Mars curiosity rover's RAD detector using MCNP6

    NASA Astrophysics Data System (ADS)

    Ratliff, Hunter N.; Smith, Michael B. R.; Heilbronn, Lawrence

    2017-08-01

    The paper presents results from MCNP6 simulations of galactic cosmic ray (GCR) propagation down through the Martian atmosphere to the surface and comparison with RAD measurements made there. This effort is part of a collaborative modeling workshop for space radiation hosted by Southwest Research Institute (SwRI). All modeling teams were tasked with simulating the galactic cosmic ray (GCR) spectrum through the Martian atmosphere and the Radiation Assessment Detector (RAD) on-board the Curiosity rover. The detector had two separate particle acceptance angles, 4π and 30 ° off zenith. All ions with Z = 1 through Z = 28 were tracked in both scenarios while some additional secondary particles were only tracked in the 4π cases. The MCNP6 4π absorbed dose rate was 307.3 ± 1.3 μGy/day while RAD measured 233 μGy/day. Using the ICRP-60 dose equivalent conversion factors built into MCNP6, the simulated 4π dose equivalent rate was found to be 473.1 ± 2.4 μSv/day while RAD reported 710 μSv/day.

  1. The Michigan Mars Environmental Chamber: Preliminary Results and Capabilities

    NASA Astrophysics Data System (ADS)

    Fischer, E.; Martinez, G.; Elliott, H. M.; Borlina, C.; Renno, N. O.

    2013-12-01

    Introduction: We have developed the Michigan Mars Environmental Chamber (MMEC) to simulate the entire range of Martian surface and shallow subsurface conditions with respect to temperature, pressure, relative humidity, solar radiation and soil wetness. Our goal is to simulate the Martian diurnal cycle for equatorial as well as polar Martian conditions and test the hypothesis that salts known to exist in the Martian regolith can deliquesce and form brine pockets or layers by freeze-thaw cycles. Motivation: Liquid water is one of the necessary ingredients for the development of life as we know it. The behavior of various liquid states of H2O such as liquid brine, undercooled liquid interfacial water, subsurface melt water and ground water has to be understood in order to understand the potential habitability of Mars for microbes and future human exploration. It has been shown that liquid brines are ubiquitous in the Martian polar regions [1, 2, 3] and microbial communities have been seen to survive under similar conditions in Antarctica's Dry Valleys [4]. Chamber Description: The MMEC is a cylindrical environmental chamber with an inside volume of 64 cm diameter by 160 cm length. The temperature range that can be simulated is 145 K to 500 K. The temperature is controlled through an automated control system using a thermal plate system with embedded cartridge heaters and a liquid nitrogen cooling loop. Furthermore, the temperature can be measured at eight variable locations inside the chamber. The pressure is controlled through an automated control system with attainable pressures ranging from 10 Pa to 105 Pa of pure CO2. Additionally, water vapor can be added to the chamber through a separate temperature and pressure controlled H2O bath to change the relative humidity. The relative humidity is determined by measuring the frost point using a chilled mirror hygrometer and the full range of relative humidity values can be achieved. The soil wetness is measured using a microwave ring resonator soil wetness sensor [5]. Also, we can detect brine formation using a Raman spectrometer that measures spectral changes in the O-H stretching vibration region. Spectral reflectance measurements can be performed in the MMEC as well. A Xe-lamp will be used to simulate the solar radiation spectrum reaching the Martian surface and a camera will measure the spectral reflectance of the soil-ice mixture. The obtained soil wetness and spectral reflectance values are very important to support satellite estimations and numerical models. Acknowledgement: This research is supported by a grant from the NASA Astrobiology Program: Exobiology and Evolutionary Biology. Award #09-EXOB09-0050. References: [1] Renno, N. O. et al. (2009) JGR, 114, E00E03. [2] Zorzano, M.-P. et al. (2009) GRL, 36, L20201. [3] Möhlmann, D. and Kereszturi, A. (2010) Icarus, 207, 654-658. [4] Mikucki, J. A. et al. (2009) Science, 324, 397. [5] Sarabandi, K. and Li, E. S. (1997) IEEE GRS, 35, 1223-1231.

  2. Comparison of upright LBPP and supine LBNP in terms of cardiovascular and biomechanical parameters to simulate 1/6-G (lunar gravity) and 3/8-G (Martian gravity) activities

    NASA Astrophysics Data System (ADS)

    Schlabs, Thomas; Rosales-Velderrain, Armando; Ruckstuhl, Heidi; Richardson, Sara E.; Hargens, Alan

    Background: Missions of astronauts to Moon and Mars may be planned in the future. From over 40 years of manned spaceflight it is known that the human body experiences cardiovascular and musculoskeletal losses and a decrease in aerobic fitness while exposed to reduced gravity. Because future missions will be much longer than before, further research is needed to improve Earth-based simulations of reduced gravity. Among others, two methods are capable of simu-lating fractional gravity on Earth: upright Lower Body Positive Pressure (LBPP) and supine Lower Body Negative Pressure (LBNP). No previous study has directly compared these two methods to determine which method is better suited to simulate both the biomechanical and cardiovascular responses of performing activity in lunar (1/6-G) and Martian (3/8-G) gravities. Taken previous studies into account and considering the fact that supine posture is closer to the established 10 head-up-tilt lunar simulation, we hypothesized that exercise performed in supine LBNP better simulates the cardiovascular conditions that occur in lunar and Martian gravities. Methods: 12 healthy normal subjects underwent a protocol consisting of resting and walking (0.25 Froude) with LBNP and LBPP. Each protocol was performed in simulated 1/6-G and 3/8-G. Heart-rate (HR), blood pressure, oxygen consumption (VO2), vertical component of the ground reaction force, comfort of the subject and perceived exertion of the subject (Borg Scale) were assessed. The obtained parameters were compared to predicted values for lunar and Martian gravity conditions in order to determine the method that shows the best level of agreement. Results: There was no difference in gait parameters between LBPP and LBNP simulation of lunar and Martian gravity (cadence: P=0.427, normalized stride length: P=0.373, duty fac-tor: P=0.302, and normalized vertical peak force (P=0.064). Mean blood pressure (P=0.398), comfort (P=0.832) and BORG rating (P=0.186) did not differ between the two methods. How-ever, we found that the heart rate (P=0.022) and VO2 (P=0.038) were significantly higher during LBPP (HRM oon =74±3 bpm, HRM ars =80±3 bpm, VO2M oon =4.6±0.22 l*kg-1 *min-1 , VO2M ars =6.17±0.38 l*kg-1 *min-1 ) than in LBNP (HRM oon =72±3 bpm, HRM ars =77±3 bpm, VO2M oon =4.66±0.43 l*kg-1 *min-1 , VO2M ars =5.66±0.42 l*kg-1 *min-1 ). A further analysis of deviation from the predicted parameters (HRM oon =77 bpm, HRM ars =84 bpm, VO2M oon =5.40 l*kg-1 *min-1 , VO2M ars =7.14 l*kg-1 *min-1 ) revealed a smaller deviation for LBPP (∆HR=4 bpm, ∆VO2=0.89 l*kg-1 *min-1 ) as compared to LBNP (∆HR=6 bpm, ∆VO2=1.11 l*kg-1 *min-1 ). Discussion: We conclude that biomechanical characteristics of gait are not different between supine LBNP and upright LBPP. In terms of cardiovascular parameters there are only differ-ences in heart rate and VO2. The higher heart rate during upright LBPP is probably due to a lower preload of the heart; as venous return is attenuated when the subject is positioned upright instead of supine. The higher VO2 during upright LBPP reflects the increased activity of anti-gravity muscles working to keep the upper body in balance without body suspension. Most skeletal muscles are not used when lying at rest in supine LBNP. Considering that values for heart rate and VO2 produced with the LBPP simulation had a smaller deviation from the predicted values than with the LBNP simulation, we conclude that upright LBPP is obviously better suited to simulate both lunar and Martian activities.

  3. Electron Spin Resonance (ESR) detection of active oxygen species and organic phases in Martian soils

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.

    1989-01-01

    The presence of active oxygen species (O(-), O2(-), O3(-)) and other strong oxidants (Fe2O3 and Fe3O4) was invoked in interpretations of the Viking biological experiments and a model was also suggested for Martian surface chemistry. The non-biological interpretations of the biological results gain futher support as no organic compounds were detected in the Viking pyrolysis-gas chromatography mass spectrometer (GCSM) experiments at concentrations as low as 10 ppb. Electron spin resonance (ESR) measures the absorption of microwaves by a paramagnetic and/or ferromagnetic center in the presence of an external field. In many instances, ESR has the advantage of detailed submicroscopic identification of the transient species and/or unstable reaction intermediates in their environments. Since the higly active oxygen species (O(-), O2(-), O3(-), and R-O-O(-)) are all paramagnetic in nature, they can be readily detected in native form by the ESR method. Active oxygen species likely to occur in the Martian surface samples were detected by ESR in UV-irradiated samples containing MgO. A miniaturized ESR spectrometer system can be developed for the Mars Rover Sample Return Mission. The instrument can perform the following in situ Martian samples analyses: detection of active oxygen species; characterization of Martian surface chemistry and photooxidation processes; and searching for organic compounds in the form of free radicals preserved in subsoils, and detection of microfossils with Martian carbonate sediments.

  4. Development of a Tool to Recreate the Mars Science Laboratory Aerothermal Environment

    NASA Technical Reports Server (NTRS)

    Beerman, A. F.; Lewis, M. J.; Santos, J. A.; White, T. R.

    2010-01-01

    The Mars Science Laboratory will enter the Martian atmosphere in 2012 with multiple char depth sensors and in-depth thermocouples in its heatshield. The aerothermal environment experienced by MSL may be computationally recreated using the data from the sensors and a material response program, such as the Fully Implicit Ablation and Thermal (FIAT) response program, through the matching of the char depth and thermocouple predictions of the material response program to the sensor data. A tool, CHanging Inputs from the Environment of FIAT (CHIEF), was developed to iteratively change different environmental conditions such that FIAT predictions match within certain criteria applied to an external data set. The computational environment is changed by iterating on the enthalpy, pressure, or heat transfer coefficient at certain times in the trajectory. CHIEF was initially compared against arc-jet test data from the development of the MSL heatshield and then against simulated sensor data derived from design trajectories for MSL. CHIEF was able to match char depth and in-depth thermocouple temperatures within the bounds placed upon it for these cases. Further refinement of CHIEF to compare multiple time points and assign convergence criteria may improve accuracy.

  5. Sample Return from Ancient Hydrothermal Springs

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2008-01-01

    Hydrothermal spring deposits on Mars would make excellent candidates for sample return. Molecular phylogeny suggests that that life on Earth may have arisen in hydrothermal settings [1-3], and on Mars, such settings not only would have supplied energy-rich waters in which martian life may have evolved [4-7] but also would have provided warm, liquid water to martian life forms as the climate became colder and drier [8]. Since silica, sulfates, and clays associated with hydrothermal settings are known to preserve geochemical and morphological remains of ancient terrestrial life [9-11], such settings on Mars might similarly preserve evidence of martian life. Finally, because formation of hydrothermal springs includes surface and subsurface processes, martian spring deposits would offer the potential to assess astrobiological potential and hydrological history in a variety of settings, including surface mineralized terraces, associated stream deposits, and subsurface environments where organic remains may have been well protected from oxidation. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data [12-14]. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel, and based on these new data, we have interpreted several features in Vernal Crater, Arabia Terra as ancient hydrothermal springs [15, 16].

  6. Micro weather stations for in situ measurements in the Martian planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Crisp, D.; Kaiser, W. J.; Kenny, T. W.; Vanzandt, T. R.; Tillman, J. E.

    1992-01-01

    Viking Lander meteorology measurements show that the Martian planetary boundary layer (PBL) has large diurnal and seasonal variations in pressure, wind velocity, relative humidity, and airborne dust loading. An even larger range of conditions was inferred from remote sensing observations acquired by the Mariner 9 and Viking orbiters. Numerical models indicate that these changes may be accompanied by dramatic vertical and horizontal wind shears (100 m/s/km) and rapid changes in the static stability. In-situ measurements from a relatively small number surface stations could yield global constraints on the Martian climate and atmospheric general circulation by providing ground truth for remote sensing instruments on orbiters. A more complete understanding of the meteorology of the PBL is an essential precursor to manned missions to Mars because this will be their working environment. In-situ measurements are needed for these studies because the spatial and temporal scales that characterize the important meteorological processes near the surface cannot be resolved from orbit. The Mars Environmental Survey (MESUR) Program will provide the first opportunity to deploy a network of surface weather stations for a comprehensive investigation of the Martian PBL. The feasibility and utility of a network of micro-weather stations for making in-situ meteorological measurements in the Martian PBL are assessed.

  7. Martian Boneyards: Scientific Inquiry in an MMO Game

    ERIC Educational Resources Information Center

    Asbell-Clarke, Jodi; Edwards, Teon; Rowe, Elizabeth; Larsen, Jamie; Sylvan, Elisabeth; Hewitt, Jim

    2012-01-01

    This paper reports on research of a game designed for scientific inquiry in a new and publicly available massively-multiplayer online environment (MMO). Educators and game designers worked together to create a highly immersive environment, a compelling storyline, and research-grounded tools for scientific inquiry within the game. The designers…

  8. Mars Atmosphere Effects on Arc Welds: Phase 1

    NASA Technical Reports Server (NTRS)

    Courtright, Z. S.

    2016-01-01

    NASA has been unprecedented in achieving its goals related to space exploration and furthering the understanding of our solar system. In keeping with this trend, NASA's current mission is to land a team of astronauts on Mars and return them safely to Earth. In addition to comprising much of the structure and life support systems that will be brought to Mars for the habitat and vehicle, titanium and aluminum can be found and mined on Mars and may be used when building structures.Where metals are present, there will be a need for welding capabilities. For welds that need to be made quickly and are located far from heavy resistance or solid state welding machinery, there will be a need for basic arc welding. Arc welding has been a major cornerstone of manufacturing throughout the 20th century, and the portability and capability of gas tungsten arc welding (GTAW) will be necessary for repair, manufacturing, and survival on Mars. The two primary concerns for welding on Mars are that the Martian atmosphere contains high levels of carbon dioxide (CO2), and the atmospheric pressure is much lower than it is on Earth. The high levels of CO2 in the Martian atmosphere may dissociate and produce oxygen in the arc and therefore increase the risk of oxidation. For simplification, atmospheric pressure will not be taken into account for this experiment. For survival on Mars during this mission, the life support and water filtration systems must be kept operational at all times. In order to ensure that water filtration systems can be repaired in the event of an emergency, it is very important to have the capability to weld. The Orion capsule and Mars lander must also remain operational throughout the duration of the mission to ensure the safe return of the astronauts on the mission to Mars. A better understanding of welding in a Mars environment is important to ensure that repair welds are possible if the Orion capsule/Mars lander or water filtration system is damaged at any point while on the surface of Mars. The Orion capsule is made primarily of AA2219-T87, and the water filtration system is primarily Ti-6Al-4V, so the effect of the Mars environment on welding those materials must be known to reduce potential mission risk. GTAW is a portable process that can weld a versatile group of metals, so it has many potential applications for welding on Mars. Thus, missions to colonize Mars will depend on the capability to weld a strong, leak-tight joint. Metals are also likely to be used in support structures made of a lightweight and durable material. For this reason, it is important to understand the implications of welding in a Mars environment. A comparison of the Martian and terrestrial atmospheres are provided in table 1. Based on the elemental compositions, simulation of the Martian atmosphere can be made using primarily CO2 gas.

  9. Effective mie-scattering and CO2 absorption in the dust-laden Martian atmosphere and its impact on radiative-convective temperature changes in the lower scale heights

    NASA Technical Reports Server (NTRS)

    Pallmann, A. J.

    1976-01-01

    A time dependent computer model of radiative-convective-conductive heat transfer in the Martian ground-atmosphere system was refined by incorporating an intermediate line strength CO2 band absorption which together with the strong-and weak-line approximation closely simulated the radiative transmission through a vertically inhomogeneous stratification. About 33,000 CO2 lines were processed to cover the spectral range of solar and planetary radiation. Absorption by silicate dust particulates, was taken into consideration to study its impact on the ground-atmosphere temperature field as a function of time. This model was subsequently attuned to IRIS, IR-radiometric and S-band occultation data. Satisfactory simulations of the measured IRIS spectra were accomplished for the dust-free condition. In the case of variable dust loads, the simulations were sufficiently fair so that some inferences into the effect of dust on temperature were justified.

  10. Elemental Analysis of the JSC Mars-1 Soil Simulant using Laser Ablation and Magnetic Separation

    NASA Technical Reports Server (NTRS)

    Nasab, Ahab S.

    2005-01-01

    Future long-duration missions to Mars require capabilities in terms of manufacture of structures and chemical compounds essential for human habitat and exploratory activities. Currently, it is not feasible to import all the required raw and finished materials from Earth. In fact, essential items such as structural members as well as various gases for human consumption and material processing need to be largely extracted from the available planetary resources. The resources on Mars include its soil and rocks, its atmosphere and the polar caps. Mars atmosphere consists of 95% carbon dioxide and the balance contains small percentages of oxygen, nitrogen, and argon. The Mars regolith contains many metal oxides in various mineralogical forms. Presently, Martian soil samples are not available. However, a closely matched Martian soil simulant developed by the Johnson Space Center has been available for scientific research and engineering studies. The chemical makeup of this simulant is compared with the data from Viking Lander and Path Finder missions are shown..

  11. The complex magnetic field configuration of the Martian magnetotail as observed by MAVEN

    NASA Astrophysics Data System (ADS)

    DiBraccio, Gina A.; Luhmann, Janet; Curry, Shannon; Espley, Jared R.; Gruesbeck, Jacob; Xu, Shaosui; Mitchell, David; Soobiah, Yasir; Connerney, John E. P.; Dong, Chuanfei; Harada, Yuki; Ruhunusiri, Suranga; Halekas, Jasper; Hara, Takuya; Ma, Yingjuan; Brain, David; Jakosky, Bruce

    2017-10-01

    The Martian magnetosphere forms as the solar wind directly interacts with the planet’s upper atmosphere. During this interaction, the Sun’s interplanetary magnetic field (IMF) drapes around the planet and local crustal magnetic fields, creating a magnetosphere configuration that has attributes of both an induced magnetosphere like that of Venus, and a complex, small-scale magnetosphere like the Moon. In addition to the closed crustal fields and draped IMF at Mars, open magnetic fields are created when magnetic reconnection occurs between the planetary fields and the IMF. These various field topologies present a complex magnetotail structure that we are now able to explore using a combination of MAVEN observations and magnetohydrodynamic (MHD) simulations. Preliminary MHD results have suggested that the Martian magnetotail includes a dual-lobe component, composed of open crustal fields, enveloped by an induced comet-like tail. These simulated open-field lobes are twisted by roughly 45°, either clockwise or counterclockwise, from the ecliptic plane. This rotation depends on the east-west component of the IMF. We utilize MAVEN Magnetometer and Solar Wind Ion Analyzer (SWIA) measurements collected over two Earth years to analyze the tail magnetic field configuration as a function of IMF direction. Cross-tail views of the average measured magnetic field components directed toward and away from the planet are compared for a variety of solar wind parameters. We find that, in agreement with simulation results, the east-west IMF component strongly affects the magnetotail structure, twisting its sunward-antisunward polarity patterns in response to changing IMF orientation. Through a data-model comparison we are able to infer that regions of open magnetic fields in the tail are likely reconnected crustal fields. Futhermore, these open fields in the tail may contribute to atmospheric escape to space. From this investigation we are able to confirm that the Martian magnetotail is a hybrid configuration between intrinsic and induced magnetospheres, shifting the paradigm of Mars’ magnetosphere as we have understood it thus far.

  12. Simulation and Comparison of Martian Surface Ionization Radiation

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Zeitlin, Cary; Hassler, Donald M.; Cucinotta, Francis A.

    2013-01-01

    The spectrum of energetic particle radiation and corresponding doses at the surface of Mars is being characterized by the Radiation Assessment Detector (RAD), one of ten science instruments on the Mars Science Laboratory (MSL) Curiosity Rover. The time series of dose rate for the first 300 Sols after landing on Mars on August 6, 2012 is presented here. For the comparison to RAD measurements of dose rate, Martian surface ionization radiation is simulated by utilizing observed space quantities. The GCR primary radiation spectrum is calculated by using the Badhwar-O'Neill 2011 (BO11) galactic cosmic ray (GCR) model, which has been developed by utilizing all balloon and satellite GCR measurements since 1955 and the newer 1997-2012 Advanced Composition Explorer (ACE) measurements. In the BO11 model, solar modulation of the GCR primary radiation spectrum is described in terms of the international smoothed sunspot number and a time delay function. For the transport of the impingent GCR primary radiation through Mars atmosphere, a vertical distribution of atmospheric thickness at each elevation is calculated using the vertical profiles of atmospheric temperature and pressure made by Mars Global Surveyor measurements. At Gale Crater in the southern hemisphere, the seasonal variation of atmospheric thickness is accounted for the daily atmospheric pressure measurements of the MSL Rover Environmental Monitoring Station (REMS) by using low- and high-density models for cool- and warm-season, respectively. The spherically distributed atmospheric distance is traced along the slant path, and the resultant directional shielding by Martian atmosphere is coupled with Curiosity vehicle for dose estimates. We present predictions of dose rate and comparison to the RAD measurements. The simulation agrees to within +/- 20% with the RAD measurements showing clearly the variation of dose rate by heliospheric conditions, and presenting the sensitivity of dose rate by atmospheric pressure, which has been found from the RAD experiments and driven by thermal tides on Martian surface.

  13. Atmospheric Constraints on the Surface UV Environment of Mars at 3.9 Ga Relevant to Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Ranjan, Sukrit; Wordsworth, Robin; Sasselov, Dimitar D.

    2017-08-01

    Recent findings suggest that Mars may have been a clement environment for the emergence of life and may even have compared favorably to Earth in this regard. These findings have revived interest in the hypothesis that prebiotically important molecules or even nascent life may have formed on Mars and been transferred to Earth. UV light plays a key role in prebiotic chemistry. Characterizing the early martian surface UV environment is key to understanding how Mars compares to Earth as a venue for prebiotic chemistry. Here, we present two-stream, multilayer calculations of the UV surface radiance on Mars at 3.9 Ga to constrain the surface UV environment as a function of atmospheric state. We explore a wide range of atmospheric pressures, temperatures, and compositions that correspond to the diversity of martian atmospheric states consistent with available constraints. We include the effects of clouds and dust. We calculate dose rates to quantify the effect of different atmospheric states on UV-sensitive prebiotic chemistry. We find that, for normative clear-sky CO2-H2O atmospheres, the UV environment on young Mars is comparable to young Earth. This similarity is robust to moderate cloud cover; thick clouds (τcloud ≥ 100) are required to significantly affect the martian UV environment, because cloud absorption is degenerate with atmospheric CO2. On the other hand, absorption from SO2, H2S, and dust is nondegenerate with CO2, meaning that, if these constituents build up to significant levels, surface UV fluence can be suppressed. These absorbers have spectrally variable absorption, meaning that their presence affects prebiotic pathways in different ways. In particular, high SO2 environments may admit UV fluence that favors pathways conducive to abiogenesis over pathways unfavorable to it. However, better measurements of the spectral quantum yields of these pathways are required to evaluate this hypothesis definitively.

  14. Multiyear Simulations of the Martian Water Cycle with the Ames General Circulation Model

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Schaeffer, J. R.; Nelli, S. M.; Murphy, J. R.

    2003-01-01

    Mars atmosphere is carbon dioxide dominated with non-negligible amounts of water vapor and suspended dust particles. The atmospheric dust plays an important role in the heating and cooling of the planet through absorption and emission of radiation. Small dust particles can potentially be carried to great altitudes and affect the temperatures there. Water vapor condensing onto the dust grains can affect the radiative properties of both, as well as their vertical extent. The condensation of water onto a dust grain will change the grain s fall speed and diminish the possibility of dust obtaining high altitudes. In this capacity, water becomes a controlling agent with regard to the vertical distribution of dust. Similarly, the atmosphere s water vapor holding capacity is affected by the amount of dust in the atmosphere. Dust is an excellent green house catalyst; it raises the temperature of the atmosphere, and thus, its water vapor holding capacity. There is, therefore, a potentially significant interplay between the Martian dust and water cycles. Previous research done using global, 3-D computer modeling to better understand the Martian atmosphere treat the dust and the water cycles as two separate and independent processes. The existing Ames numerical model will be employed to simulate the relationship between the Martian dust and water cycles by actually coupling the two cycles. Water will condense onto the dust, allowing the particle's radiative characteristics, fall speeds, and as a result, their vertical distribution to change. Data obtained from the Viking, Mars Pathfinder, and especially the Mars Global Surveyor missions will be used to determine the accuracy of the model results.

  15. Study of the formation of duricrusts on the martian surface and their effect on sampling equipment

    NASA Astrophysics Data System (ADS)

    Kömle, Norbert; Pitcher, Craig; Gao, Yang; Richter, Lutz

    2017-01-01

    The Powdered Sample Dosing and Distribution System (PSDDS) of the ExoMars rover will be required to handle and contain samples of Mars regolith for long periods of time. Cementation of the regolith, caused by water and salts in the soil, results in clumpy material and a duricrust layer forming on the surface. It is therefore possible that material residing in the sampling system may cement, and could potentially hinder its operation. There has yet to be an investigation into the formation of duricrusts under simulated Martian conditions, or how this may affect the performance of sample handling mechanisms. Therefore experiments have been performed to create a duricrust and to explore the cementation of Mars analogues, before performing a series of tests on a qualification model of the PSDDS under simulated Martian conditions. It was possible to create a consolidated crust of cemented material several millimetres deep, with the material below remaining powder-like. It was seen that due to the very low permeability of the Montmorillonite component material, diffusion of water through the material was quickly blocked, resulting in a sample with an inhomogeneous water content. Additionally, samples with a water mass content of 10% or higher would cement into a single solid piece. Finally, tests with the PSDDS revealed that samples with a water mass content of just 5% created small clumps with significant internal cohesion, blocking the sample funnels and preventing transportation of the material. These experiments have highlighted that the cementation of regolith in Martian conditions must be taken into consideration in the design of sample handling instruments.

  16. Planetary protection policy (U.S.A.)

    NASA Technical Reports Server (NTRS)

    Rummel, John D.

    1992-01-01

    Through existing treaty obligations of the United States, NASA is committed to exploring space while avoiding biological contamination of the planets, and to the protection of the earth against harm from materials returned from space. Because of the similarities between Mars and earth, plans for the exploration of Mars evoke discussions of these Planetary Protection issues. U.S. Planetary Protection Policy will be focused on the preservation of these goals in an arena that will change with the growth of scientific knowledge about the Martian environment. Early opportunities to gain the appropriate data will be used to guide later policy implementation. Because human presence on Mars will result in the end of earth's separation from the Martian environment, it is expected that precursor robotic missions will address critical planetary protection concerns before humans arrive.

  17. Continued Evidence for Input of Chlorine into the Martian Crust from Degassing of Chlorine-Rich Martian Magmas with Implications for Potential Habitability

    NASA Astrophysics Data System (ADS)

    Filiberto, J.; Gross, J.

    2014-12-01

    The chlorine-concentration (or salinity) of a fluid affects the potential for that fluid to be a habitable environment, with most known terrestrial organisms preferring low salinity fluids [1, 2]. The Martian crust (as analyzed by the Gamma Ray Spectrometer) is chlorine-rich with up to 0.8 wt% Cl; while the MER rovers Spirit and Opportunity as well as MSL Curiosity have analyzed rocks with even higher chlorine concentrations [e.g., 3]. This suggests that any potential fluid flowing through the crust would have high chlorine concentrations and therefore high salinity. Here we investigate the bulk and mineral chemistry of the SNC meteorites to constrain the pre-eruptive chlorine concentrations of Martian magmas as the potential source of chlorine in the Martian crust. Bulk SNC meteorites have Cl concentrations similar to terrestrial Mid Ocean Ridge Basalts which would suggest a Cl content of the Martian interior similar to that of the Earth [4]. However, based on Cl/La ratios, the Martian interior actually has 2-3 times more Cl than the Earth [5]. This is also reflected in the composition of Cl-rich minerals within the SNC meteorites [5, 6] and suggests that the pre-eruptive parental magmas to the SNC meteorites were Cl-rich. Eruption and degassing of such Cl-rich magmas would have delivered Cl to the Martian crust, thereby increasing the salinity of any fluids within the crust. [1] Rothschild L.J. and R.L. Mancinelli (2001) Nature. 409: 1092-1101. [2] Sharp Z.D. and D.S. Draper (2013) EPSL. 369-370: 71-77. [3] Taylor G.J. et al. (2010) GRL. 37: L12204. [4]. Burgess R. et al (2013) GCA 77: 793. [5] Filiberto J. and A.H. Treiman (2009) Geology. 37: 1087-1090. [6] McCubbin F.M. et al. (2013) MaPS. 48: 819-853.

  18. Evolution of space food in Nostoc sp. HK-01

    NASA Astrophysics Data System (ADS)

    Tomita-Yokotani, Kaori; Yamashita, Masamichi; Hashimoto, Hirofumi; Sato, Seigo; Kimura, Yasuko; Katoh, Hiroshi; Arai, Mayumi

    2012-07-01

    Habitation in outer space is one of our challenges. We have been studying future space agriculture to provide food and oxygen for the habitation area in the space environment, on Mars. A cyanobacteria, Nostoc sp. HK-01, has high several outer space environmental tolerance. We have already confirmed that Nostoc sp.HK-01 had an ability to grow for over several years on the Martian regolith simulant in a laboratory experiment. Nostoc sp HK-01 would have high contribution to change the atmosphere in Mars as a photosynthetic creature. In outer environment, all of materials have to circulate for all of creature living in artificial eco-systems on Mars. This material has several functions as the utilization in space agriculture. Here, we are proposing using them as a food after its growing on Mars. We are trying to determine the best conditions and evolution for space food using Nostoc sp.HK-01 and studying the proposal of utilization of cyanobacteria, Nostoc sp HK-01, for the variation of meal as space agriculture.

  19. The interaction of high voltage systems with the environments of the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry; Kolecki, Joseph C.

    1993-01-01

    High voltage systems designed for use on the lunar and Martian surfaces or in orbit will interact with environmental components such as electrically charged dust, low pressure atmospheres, ionospheric plasmas and neutrals, and chemically reactive species. As the Space Exploration Initiative (SEI) advances from the realm of feasibility study to that of conceptual design, guidelines will be required to ensure that these effects are properly accounted for. A first step in providing such guidelines is the prioritization of interactions for each of the space or surface environments that will be encountered. For those issues that are identified as high priority, the state of environmental knowledge, emphasizing essential data, must be determined. This report describes possible means of obtaining such information, including ground tests, modeling and analysis, and flight experiments. The development of computational tools which will enable engineers to simulate and thereby quantify the interactions will be especially considered. Our analysis is drawn from various study and workshop activities undertaken within the last two years.

  20. Creation and testing of an artificial neural network based carbonate detector for Mars rovers

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin; Castano, Rebecca; Gilmore, Martha S.; Merrill, Matthew; Greenwood, James P.

    2005-01-01

    We have developed an artificial neural network (ANN) based carbonate detector capable of running on current and future rover hardware. The detector can identify calcite in visible/NIR (350-2500 nm) spectra of both laboratory specimens covered by ferric dust and rocks in Mars analogue field environments. The ANN was trained using the Backpropagation algorithm with sigmoid activation neurons. For the training dataset, we chose nine carbonate and eight non-carbonate representative mineral spectra from the USGS spectral library. Using these spectra as seeds, we generated 10,000 variants with up to 2% Gaussian noise in each reflectance measurement. We cross-validated several ANN architectures, training on 9,900 spectra and testing on the remaining 100. The best performing ANN correctly detected, with perfect accuracy, the presence (or absence) of carbonate in spectral data taken on field samples from the Mojave desert and clean, pure marbles from CT. Sensitivity experiments with JSC Mars-1 simulant dust suggest the carbonate detector would perform well in aeolian Martian environments.

  1. Search for Trapped Electrons and a Magnetic Moment at Mars by Mariner IV.

    PubMed

    O'gallagher, J J; Simpson, J A

    1965-09-10

    The Mariner IV spacecraft on 14-15 July 1965 passed within 9850 kilometers of Mars, carrying a solid-state charged-particle telescope which could detect electrons greater than 40 kiloelectron volts and protons greater than 1 million electron volts. The trajectory could have passed through a bow shock, a transition region, and a magnetospheric boundary where particles could be stably trapped for a wide range of Martian magnetic moments. No evidence of charged-particle radiation was found in any of these regions. In view of these results, an upper limit is established for the Martian magnetic moment provided it is assumed that the same physical processes leading to acceleration and trapping of electrons in Earth's magnetic field would be found in a Martian magnetic field. On this basis, the upper limit for the Martian magnetic moment is 0.1 percent that of Earth for a wide range of postulated orientations with respect to the rotational axis of Mars. The implications of these results for the physical and biological environment of Mars are briefly discussed.

  2. Detection of hydrated silicates in crustal outcrops in the northern plains of Mars.

    PubMed

    Carter, J; Poulet, F; Bibring, J-P; Murchie, S

    2010-06-25

    The composition of the ancient martian crust is a key ingredient in deciphering the environment and evolution of early Mars. We present an analysis of the composition of large craters in the martian northern plains based on data from spaceborne imaging spectrometers. Nine of the craters have excavated assemblages of phyllosilicates from ancient, Noachian crust buried beneath the plains' cover. The phyllosilicates are indistinguishable from those exposed in widespread locations in the southern highlands, demonstrating that liquid water once altered both hemispheres of Mars.

  3. Experimental Evidence for Weathering and Martian Sulfate Formation Under Extremely Cold Weather-Limited Environments

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.; Golden, D. C.; Michalski, J.

    2013-01-01

    High resolution photography and spectroscopy of the martian surface (MOC, HiRISE) from orbit has revolutionized our view of Mars with one of the most important discoveries being wide-spread layered sedimentary deposits associated with sulfate minerals across the low to mid latitude regions of Mars [1, 2]. The mechanism for sulfate formation on Mars has been frequently attributed to playa-like evaporative environments under prolonged warm conditions [3]. However, there are several problems with the presence of prolonged surface temperatures on Mars above 273 K during the Noachian including the faint young Sun [4] and the presence of suitable greenhouse gases [5]. The geomorphic evidence for early warm conditions may instead be explained by periodic episodes of warming rather than long term prolonged warm temperatures [6]. An alternate view of the ancient martian climate contends that prolonged warm temperatures were never present and that the atmosphere and climate has been similar to modern conditions throughout most of its history [6]. This view is more consistent with the climate models, but has had a difficult time explaining the sedimentary history of Mars and in particular the presence of sulfate minerals. We suggest here that mixtures of atmospheric aerosols, ice, and dust have the potential for creating small films of cryo-concentrated acidic solutions that may represent an important unexamined environment for understanding weathering processes on Mars [7, 8]. This study seeks to test whether sulfate formation may be possible at temperatures well below 0 C in water limited environments removing the need for prolonged warm periods to form sulfates on early Mars.

  4. Simulation of Martian dust accumulation on surfaces

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Gaier, James R.; Kress, Robert; Grimalda, Justus

    1990-01-01

    Future NASA space missions include the possibility of manned landings and exploration of Mars. Environmental and operational constraints unique to Mars must be considered when selecting and designing the power system to be used on the Mars surface. A technique is described which was developed to simulate the deposition of dust on surfaces. Three kinds of dust materials were studied: aluminum oxide, basalt, and iron oxide. The apparatus was designed using the Stokes and Stokes-Cunningham law for particle fallout, with additional consideration given to particle size and shape. Characterization of the resulting dust films on silicon dioxide, polytetrafluoroethylene, indium tin oxide, diamondlike carbon, and other surfaces are discussed based on optical transmittance measurements. The results of these experiments will guide future studies which will consider processes to remove the dust from surfaces under Martian environmental conditions.

  5. Biofilm and planktonic lifestyles differently support the resistance of the desert cyanobacterium Chroococcidiopsis under space and Martian simulations.

    PubMed

    Baqué, Mickael; Scalzi, Giuliano; Rabbow, Elke; Rettberg, Petra; Billi, Daniela

    2013-10-01

    When Chroococcidiopsis sp. strain CCMEE 057 from the Sinai Desert and strain CCMEE 029 from the Negev Desert were exposed to space and Martian simulations in the dried status as biofilms or multilayered planktonic samples, the biofilms exhibited an enhanced rate of survival. Compared to strain CCMEE 029, biofilms of strain CCME 057 better tolerated UV polychromatic radiation (5 × 10(5) kJ/m(2) attenuated with a 0.1% neutral density filter) combined with space vacuum or Martian atmosphere of 780 Pa. CCMEE 029, on the other hand, failed to survive UV polychromatic doses higher than 1.5 × 10(3) kJ/m(2). The induced damage to genomic DNA, plasma membranes and photosynthetic apparatus was quantified and visualized by means of PCR-based assays and CLSM imaging. Planktonic samples of both strains accumulated a higher amount of damage than did the biofilms after exposure to each simulation; CLSM imaging showed that photosynthetic pigment bleaching, DNA fragmentation and damaged plasma membranes occurred in the top 3-4 cell layers of both biofilms and of multilayered planktonic samples. Differences in the EPS composition were revealed by molecular probe staining as contributing to the enhanced endurance of biofilms compared to that of planktonic samples. Our results suggest that compared to strain CCMEE 029, biofilms of strain CCMEE 057 might better tolerate 1 year's exposure in space during the next EXPOSE-R2 mission.

  6. Biofilm and Planktonic Lifestyles Differently Support the Resistance of the Desert Cyanobacterium Chroococcidiopsis Under Space and Martian Simulations

    NASA Astrophysics Data System (ADS)

    Baqué, Mickael; Scalzi, Giuliano; Rabbow, Elke; Rettberg, Petra; Billi, Daniela

    2013-10-01

    When Chroococcidiopsis sp. strain CCMEE 057 from the Sinai Desert and strain CCMEE 029 from the Negev Desert were exposed to space and Martian simulations in the dried status as biofilms or multilayered planktonic samples, the biofilms exhibited an enhanced rate of survival. Compared to strain CCMEE 029, biofilms of strain CCME 057 better tolerated UV polychromatic radiation (5 × 105 kJ/m2 attenuated with a 0.1 % neutral density filter) combined with space vacuum or Martian atmosphere of 780 Pa. CCMEE 029, on the other hand, failed to survive UV polychromatic doses higher than 1.5 × 103 kJ/m2. The induced damage to genomic DNA, plasma membranes and photosynthetic apparatus was quantified and visualized by means of PCR-based assays and CLSM imaging. Planktonic samples of both strains accumulated a higher amount of damage than did the biofilms after exposure to each simulation; CLSM imaging showed that photosynthetic pigment bleaching, DNA fragmentation and damaged plasma membranes occurred in the top 3-4 cell layers of both biofilms and of multilayered planktonic samples. Differences in the EPS composition were revealed by molecular probe staining as contributing to the enhanced endurance of biofilms compared to that of planktonic samples. Our results suggest that compared to strain CCMEE 029, biofilms of strain CCMEE 057 might better tolerate 1 year's exposure in space during the next EXPOSE-R2 mission.

  7. How Mars is losing its atmosphere on This Week @NASA – November 6, 2015

    NASA Image and Video Library

    2015-11-06

    New findings by NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) mission indicate that solar wind is currently stripping away the equivalent of about 1/4 pound of gas every second from the Martian atmosphere. MAVEN tracked a series of dramatic solar storms passing through the Martian atmosphere in March and found the loss was accelerated. This could suggest that violent solar activity in the distant past may have played a key role in the transition of the Martian climate from an early, warm and wet environment that might have supported surface life, to the cold, arid planet Mars is today. Also, 15 Years on space station, and counting!, Spacewalk for space station maintenance, NASA seeking future astronauts, Commercial Crew access tower progress and First SLS flight engine placed for testing!

  8. Robotic Mining Competition - Opening Ceremony

    NASA Image and Video Library

    2018-05-15

    NASA Kennedy Space Center Director Bob Cabana welcomes college and university teams to NASA's 9th Robotic Mining Competition, May 15, during the opening ceremony in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  9. Robotic Mining Competition - Media Day

    NASA Image and Video Library

    2017-05-25

    NASA Kennedy Space Center Director Bob Cabana, at right, talks with Ken Kremer, Universe Today, during media day at the agency's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. Cabana shared his thoughts about the competition and the progress made to make Kennedy a multi-user spaceport. Teams from colleges and universities around the U.S. used their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participated in other competition requirements, May 22-26. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  10. Robotic Mining Competition Awards Ceremony

    NASA Image and Video Library

    2017-05-26

    Undergraduate and graduate students with teams that participated in NASA's 8th Annual Robotic Mining Competition eat dinner in the Apollo-Saturn V Center at NASA's Kennedy Space Center Visitor Complex in Florida, before the awards ceremony. More than 40 student teams from colleges and universities around the U.S. used their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participated in other competition requirements, May 22-26 at the visitor complex. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  11. Robotic Mining Competition - Media Day

    NASA Image and Video Library

    2017-05-25

    Lilliana Villareal, Spacecraft and Offline Operations manager in the Ground Systems Development and Operations Program, is interviewed on-camera by Al Feinberg, with the Communications and Public Engagement Directorate, during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. used their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participated in other competition requirements, May 22-26. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  12. Robotic Mining Competition Awards Ceremony

    NASA Image and Video Library

    2017-05-26

    Inside the Apollo-Saturn V Center at the Kennedy Space Center Visitor Complex in Florida, Pat Simpkins, director of the Engineering Directorate at Kennedy Space Center, speaks to the teams during the award ceremony for NASA's 8th Annual Robotic Mining Competition. More than 40 student teams from colleges and universities around the U.S. used their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participated in other competition requirements, May 22-26, at the visitor complex. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  13. Robotic Mining Competition Awards Ceremony

    NASA Image and Video Library

    2017-05-26

    Inside the Apollo-Saturn V Center at the Kennedy Space Center Visitor Complex in Florida, Lisa May, with Murphian Systems, presents the Judges Innovation Award during the award ceremony for NASA's 8th Annual Robotic Mining Competition. More than 40 student teams from colleges and universities around the U.S. used their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participated in other competition requirements, May 22-26, at the visitor complex. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  14. Robotic Mining Competition Awards Ceremony

    NASA Image and Video Library

    2017-05-26

    Kurt Leucht, a NASA engineer and event emcee, welcomes guests to the awards ceremony for NASA's 8th Annual Robotic Mining Competition in the Apollo-Saturn V Center at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. used their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participated in other competition requirements, May 22-26 at the visitor complex. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  15. Robotic Mining Competition - Media Day

    NASA Image and Video Library

    2017-05-25

    Stan Starr, branch chief for Applied Physics in the Exploration Research and Technology Programs, is interviewed on-camera by Sarah McNulty, with the Communication and Public Engagement Directorate, during NASA's 8th Annual Robotic Mining Competition at the Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. used their uniquely-designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, and participated in other competition requirements, May 22-26. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's Journey to Mars.

  16. Robotic Mining Competition - Opening Ceremony

    NASA Image and Video Library

    2018-05-15

    A flag presentation and singing of the National Anthem are part of the opening ceremony of NASA's 9th Robotic Mining Competition, May 15, in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their uniquely designed mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  17. Robotic Mining Competition - Setup

    NASA Image and Video Library

    2018-05-14

    On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from the University of Minnesota-Twin Cities work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  18. Robotic Mining Competition - Opening Ceremony

    NASA Image and Video Library

    2018-05-15

    On the second day of NASA's 9th Robotic Mining Competition, May 15, the RoboPits in the Educatory Resource Center at Kennedy Space Center Visitor Complex in Florida is filled with teams of students working on their uniquely designed robot miners. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  19. Robotic Mining Competition - Opening Ceremony

    NASA Image and Video Library

    2018-05-15

    On the second day of NASA's 9th Robotic Mining Competition, May 15, team members from the University of Tulsa work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  20. Robotic Mining Competition - Setup

    NASA Image and Video Library

    2018-05-14

    On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from the South Dakota School of Mines & Technology work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  1. Robotic Mining Competition - Setup

    NASA Image and Video Library

    2018-05-14

    On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from Montana Tech of the University of Montana work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  2. Robotic Mining Competition - Setup

    NASA Image and Video Library

    2018-05-14

    On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from the Illinois Institute of Technology work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  3. Robotic Mining Competition - Setup

    NASA Image and Video Library

    2018-05-14

    On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from the University of North Carolina at Charlotte work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  4. Robotic Mining Competition - Setup

    NASA Image and Video Library

    2018-05-14

    On the first day of NASA's 9th Robotic Mining Competition, set-up day on May 14, team members from Temple University work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  5. Robotic Mining Competition - Opening Ceremony

    NASA Image and Video Library

    2018-05-15

    On the second day of NASA's 9th Robotic Mining Competition, May 15, team members from Saginaw Valley State University in Michigan work on their robot miner in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  6. Robotic Mining Competition - Opening Ceremony

    NASA Image and Video Library

    2018-05-15

    Team members and their advisor, far right, from Montana Tech of the University of Montana, prepare their robot miner on the second day of NASA's 9th Robotic Mining Competition, May 15, in the RobotPits in the Educator Resource Center at Kennedy Space Center Visitor Complex in Florida. More than 40 student teams from colleges and universities around the U.S. will use their mining robots to dig in a supersized sandbox filled with BP-1, or simulated Martian soil, gravel and rocks, and participate in other competition requirements. The Robotic Mining Competition is a NASA Human Exploration and Operations Mission Directorate project designed to encourage students in science, technology, engineering and math, or STEM fields. The project provides a competitive environment to foster innovative ideas and solutions that could be used on NASA's deep space missions.

  7. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions.

    PubMed

    Poch, Olivier; Jaber, Maguy; Stalport, Fabien; Nowak, Sophie; Georgelin, Thomas; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-03-01

    Most of the phyllosilicates detected at the surface of Mars today are probably remnants of ancient environments that sustained long-term bodies of liquid water at the surface or subsurface and were possibly favorable for the emergence of life. Consequently, phyllosilicates have become the main mineral target in the search for organics on Mars. But are phyllosilicates efficient at preserving organic molecules under current environmental conditions at the surface of Mars? We monitored the qualitative and quantitative evolutions of glycine, urea, and adenine in interaction with the Fe(3+)-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K), and pressure (6 ± 1 mbar) in a laboratory simulation setup. We tested organic-rich samples that were representative of the evaporation of a small, warm pond of liquid water containing a high concentration of organics. For each molecule, we observed how the nontronite influences its quantum efficiency of photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine; their efficiencies of photodecomposition were reduced by a factor of 5 when mixed at a concentration of 2.6 × 10(-2) mol of molecules per gram of nontronite. Moreover, when the amount of nontronite in the sample of glycine was increased by a factor of 2, the gain of photoprotection was multiplied by a factor of 5. This indicates that the photoprotection provided by the nontronite is not a purely mechanical shielding effect but is also due to stabilizing interactions. No new evolution product was firmly identified, but the results obtained with urea suggest a particular reactivity in the presence of nontronite, leading to an increase of its dissociation rate.

  8. Physical and Chemical Aspects of Fire Suppression in Extraterrestrial Environments

    NASA Technical Reports Server (NTRS)

    Takahashi, F.; Linteris, G. T.; Katta, V. R.

    2001-01-01

    A fire, whether in a spacecraft or in occupied spaces on extraterrestrial bases, can lead to mission termination or loss of life. While the fire-safety record of US space missions has been excellent, the advent of longer duration missions to Mars, the moon, or aboard the International Space Station (ISS) increases the likelihood of fire events, with more limited mission termination options. The fire safety program of NASA's manned space flight program is based largely upon the principles of controlling the flammability of on-board materials and greatly eliminating sources of ignition. As a result, very little research has been conducted on fire suppression in the microgravity or reduced-gravity environment. The objectives of this study are: to obtain fundamental knowledge of physical and chemical processes of fire suppression, using gravity and oxygen concentration as independent variables to simulate various extraterrestrial environments, including spacecraft and surface bases in Mars and moon missions; to provide rigorous testing of analytical models, which include comprehensive descriptions of combustion and suppression chemistry; and to provide basic research results useful for technological advances in fire safety, including the development of new fire-extinguishing agents and approaches, in the microgravity environment associated with ISS and in the partial-gravity Martian and lunar environments.

  9. Transient variation of martian ground-atmosphere thermal boundary layer structure.

    NASA Technical Reports Server (NTRS)

    Pallmann, A. J.; Dannevik, W. P.

    1972-01-01

    Results of a numerical simulation of the diurnal redistribution of temperature by radiative and molecular-conductive processes in the Martian soil-atmosphere system. An attempt is made to assess the importance of atmospheric molecular conduction near the surface and to estimate the characteristic depth of the diurnal temperature wave. The computational results are found to indicate a dual structure in the diurnal temperature wave propagation pattern, with a diffusive-type wave in the lowest 150 m superimposed on a radiatively induced disturbance with a characteristic scale of 1.8 km. Atmospheric molecular thermal conduction typically accounts for about 15% of the total heating/cooling in the lowest 25 m. Thermal conduction in both the soil and atmosphere appears to be an important factor in the thermal coupling of these subsystems. A free-convection regime in the conduction layer is predicted by the model for about five hours of the Martian day.

  10. The Martian impact cratering record

    NASA Technical Reports Server (NTRS)

    Strom, Robert G.; Croft, Steven K.; Barlow, Nadine G.

    1992-01-01

    A detailed analysis of the Martian impact cratering record is presented. The major differences in impact crater morphology and morphometry between Mars and the moon and Mercury are argued to be largely the result of subsurface volatiles on Mars. In general, the depth to these volatiles may decrease with increasing latitude in the southern hemisphere, but the base of this layer may be at a more or less constant depth. The Martial crustal dichotomy could have been the result of a very large impact near the end of the accretion of Mars. Monte Carlo computer simulations suggest that such an impact was not only possible, but likely. The Martian highland cratering record shows a marked paucity of craters less than about 30 km in diameter relative to the lunar highlands. This paucity of craters was probably the result of the obliteration of craters by an early period of intense erosion and deposition by aeolian, fluvial, and glacial processes.

  11. Probing organic residues on Martian regolith simulants using a long-wave infrared Laser-induced breakdown spectroscopy linear array detection system

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Yang, Clayton S.-C.; Jin, Feng; Jia, Ken; Brown, EiEi; Hömmerich, Uwe; Jia, Yingqing; Trivedi, Sudhir; Wijewarnasuriya, Priyalal; Decuir, Eric; Samuels, Alan C.

    2016-09-01

    Recently, a mercury-cadmium-telluride (MCT) linear array detection system that is capable of rapidly capturing ( 1-5 second) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the longwave infrarμed region (LWIR, 5.6 to 10 μm) has been developed. Similar to the conventional Ultraviolet (UV)-Visible (Vis) LIBS, a broad band emission spectrum of condensed phase samples covering the entire 5.6 to 10 μm region can be acquired from just a single laser-induced micro-plasma or averaging a few single laser-induced micro-plasmas. This setup has enabled probing samples "as is" without the need for extensive sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement. A Martian regolith simulant (JSC Mars-1A) was studied with this novel Vis + LWIR LIBS array system. A broad SiO2 vibrational emission feature around 9.5 μm and multiple strong emission features between 6.5 to 8 μm can be clearly identified. The 6.5 to 8 μm features are possibly from biological impurities of the simulant. JSC Mars-1A samples with organic methyl salicylate (MeS, wintergreen oil) and Dimethyl methyl-phosphonate (DMMP) residues were also probed using the LWIR LIBS array system. Both molecular spectral signature around 6.5 μm and 9.5 μm of Martian regolith simulant and MeS and DMMP molecular signature emissions, such as Aromatic CC stretching band at 7.5 μm, C-CH3O asymmetric deformation at 7.6 μm, and P=O stretching band at 7.9 μm, are clearly observed from the LIBS emission spectra in the LWIR region.

  12. Experimental Investigation of InSight HP3 Mole Interaction with Martian Regolith Simulant. Quasi-Static and Dynamic Penetration Testing

    NASA Astrophysics Data System (ADS)

    Marshall, Jason P.; Hudson, Troy L.; Andrade, José E.

    2017-10-01

    The InSight mission launches in 2018 to characterize several geophysical quantities on Mars, including the heat flow from the planetary interior. This quantity will be calculated by utilizing measurements of the thermal conductivity and the thermal gradient down to 5 meters below the Martian surface. One of the components of InSight is the Mole, which hammers into the Martian regolith to facilitate these thermal property measurements. In this paper, we experimentally investigated the effect of the Mole's penetrating action on regolith compaction and mechanical properties. Quasi-static and dynamic experiments were run with a 2D model of the 3D cylindrical mole. Force resistance data was captured with load cells. Deformation information was captured in images and analyzed using Digitial Image Correlation (DIC). Additionally, we used existing approximations of Martian regolith thermal conductivity to estimate the change in the surrounding granular material's thermal conductivity due to the Mole's penetration. We found that the Mole has the potential to cause a high degree of densification, especially if the initial granular material is relatively loose. The effect on the thermal conductivity from this densification was found to be relatively small in first-order calculations though more complete thermal models incorporating this densification should be a subject of further investigation. The results obtained provide an initial estimate of the Mole's impact on Martian regolith thermal properties.

  13. New insights into the structure and energetics of the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Fowler, Christopher M.

    Understanding the formation and evolution of planetary bodies is of great interest and importance to humankind. Mars, being the closest analogue to Earth in our solar system, has been of particular importance. Having studied the red planet for many decades using landers and orbiting spacecraft, we are now laying the groundwork to venture there ourselves. The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission recently went into Mars orbit to study the physical processes active within the Martian atmosphere, and to understand how the atmosphere itself has evolved throughout the planet's history. This thesis is based upon unraveling data from the MAVEN mission, with a focus on the structure and energetics of the Martian ionosphere. Data from many of the instruments carried by MAVEN have been analyzed in this work, in particular, analysis and fitting of current-voltage sweeps measured by the Langmuir Probe and Waves instrument. New insights have been gained about the operation of Langmuir probes in planetary ionospheres, and through first author papers, about the Martian ionosphere itself. The four papers presented in this thesis focus on the structure and energetics of the Martian ionosphere. The first in-situ observations of the Martian nightside electron density and temperature showed that an ionization source is needed to sustain the observed densities. Precipitating electrons were shown as a feasible source, agreeing with suggestions from previous modeling efforts. The transfer of energy from the solar wind to the atmosphere is an important energy source for the Martian atmosphere. An investigation of the electromagnetic environment at Mars shows how the distribution of wave power, and various plasma boundaries within the Martian magnetosphere, respond to upstream solar wind conditions, highlighting regions important for energy dissipation. The combination of magnetic field and ion data allows for the first time at Mars, ion conics to be observed. These show evidence of parallel acceleration and ion heating present at low altitudes in the ionosphere. Finally, an investigation of sporadic disturbances observed below the Martian exobase showed that the Rayleigh-Taylor instability is present in the Martian ionosphere. Similar disturbances are present in the terrestrial ionosphere and are known as Equatorial Spread F (ESF). Such disturbances cause communication problems within the terrestrial ionosphere and similar problems may occur when humans reach the surface of the red planet.

  14. Search for Organic Matter on Mars: Complementarity of In Situ Analyses and Laboratory Analyses of Martian Samples

    NASA Astrophysics Data System (ADS)

    Brack, A.; Commeyras, A.; Derenne, S.; Despois, D.; Dhamelincourt, P.; Dobrijevic, M.; Engrand, C.; Geffard, M.; Grenier-Loustalot, M. F.; Largeau, C.

    2000-07-01

    On Earth, the molecules which participated in the emergence of life about 4 Ga ago have been erased by plate tectonics, the permanent presence of running water, unshielded solar ultraviolet radiation and by oxygen produced by life. Since the environment of the early Mars about 3.5-4 Ga ago was probably very close to that of the early Earth, life might have emerged on Mars as well and might give us some insight into the prebiotic chemistry that took place on Earth about 4 Ga ago. Furthermore, there is a possibility that life still exists on Mars, protected from the harsh environment in some specific locales. In order to search for life on Mars, one should look for potential biogenic markers such as organic matter and inorganic signatures (microfossils, biominerals, biogenic etching, isotopic fingerprints...) which have different degrees of resistance to the Martian environment. As biomarkers could be organic or inorganic in nature, complete organic and mineral analyses should therefore be conducted in parallel on the same sets of samples, going from the least destructive to the most destructive technique of micro-analysis. Furthermore, in situ analyses should be complemented by high precision and high sensitivity laboratory measurements of returned Martian samples. Due to the very oxidized Martian environment, organic molecules should be searched for in protected sites, either surface boulders or near sub-surface, in layers deep enough for avoiding the oxidizing effect of the atmosphere. Molecules that should be looked for include low and high molecular weight organics (like alkanoic acids, peroxiacids, PAHs and amino acids, respectively), and macromolecular com-pounds like kerogens or kerogen-like materials. Previous in situ analyses were performed using pyrolysis systems which allow to detect organic compounds but do not always permit the identification of individual molecules. New possible analytical solutions could include gas chromatography-based techniques coupled with a mass spectrometer using multi GC columns systems, including columns able to separate enantiomers, chemical derivatization cells (using new derivatization schemes in particular for amino acid analysis), high performance liquid chromatography and supercritical fluid chromatography.

  15. Connecting Returned Apollo Soils and Remote Sensing: Application to the Diviner Lunar Radiometer

    NASA Technical Reports Server (NTRS)

    Greenhagen, B. T.; DonaldsonHanna, K. L.; Thomas, I. R.; Bowles, N. E.; Allen, Carlton C.; Pieters, C. M.; Paige, D. A.

    2014-01-01

    The Diviner Lunar Radiometer, onboard NASA's Lunar Reconnaissance Orbiter, has produced the first global, high resolution, thermal infrared observations of an airless body. The Moon, which is the most accessible member of this most abundant class of solar system objects, is also the only body for which we have extraterrestrial samples with known spatial context, returned Apollo samples. Here we present the results of a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of a representative suite of Apollo soils, and correlate them with Diviner observations of the lunar surface. It has been established previously that thermal infrared spectra measured in simulated lunar environment (SLE) are significantly altered from spectra measured under terrestrial or martian conditions. The data presented here were collected at the University of Oxford Simulated Lunar Environment Chamber (SLEC). In SLEC, we simulate the lunar environment by: (1) pumping the chamber to vacuum pressures (less than 10-4 mbar) sufficient to simulate lunar heat transport processes within the sample, (2) cooling the chamber with liquid nitrogen to simulate radiation to the cold space environment, and (3) heating the samples with heaters and lamp to set-up thermal gradients similar to those experienced in the upper hundreds of microns of the lunar surface. We then conducted a comprehensive suite of experiments using different sample preparation and heating conditions on Apollo soils 15071 (maria) and 67701 (highland) and compared the results to Diviner noontime data to select the optimal experimental conditions. This study includes thermal infrared SLE measurements of 10084 (A11 - LM), 12001 (A12 - LM), 14259 (A14 - LM), 15071 (A15 - S1), 15601 (A15 - S9a), 61141 (A16 - S1), 66031 (A16 - S6), 67701 (A16 - S11), and 70181 (A17 - LM). The Diviner dataset includes all six Apollo sites at approximately 200 m spatial resolution We find that analyses of Diviner observations of individual sampling stations and SLE measurements returned Apollo soils show good agreement, while comparisons to thermal infrared reflectance under ambient conditions do not agree well, which underscores the need for SLE measurements and validates the Diviner compositional measurement technique.

  16. The Martian climate: Energy balance models with CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.

    1984-01-01

    Progress in the development of a multi-reservoir, time dependent energy balance climate model for Mars driven by prescribed insolation at the top of the atmosphere is reported. The first approximately half-year of the program was devoted to assembling and testing components of the full model. Specific accomplishments were made on a longwave radiation code, coupling seasonal solar input to a ground temperature simulation, and conceptualizing an approach to modeling the seasonal pressure waves that develop in the Martian atmosphere as a result of sublimation and condensation of CO2 in polar regions.

  17. Electrostatic Precipitator

    NASA Image and Video Library

    2017-06-09

    In their Swamp Works laboratory at NASA's Kennedy Space Center, Dr. Carlos Calle and Jay Phillips are testing an electrostatic precipitator using dust that closely approximates the make-up of that on Mars. They upgraded their electrostatic precipitator to fully simulate Martian atmosphere by designing and constructing a dust aerosolization pre-chamber. The agency's Journey to Mars requires cutting-edge technologies to solve the problems explorers will face on the Red Planet. Scientists are developing some of the needed solutions by adapting a device to remove the ever-present dust from valuable elements in the Martian atmosphere. Those commodities include oxygen, water and methane.

  18. The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit.

    PubMed

    Noblet, Audrey; Stalport, Fabien; Guan, Yuan Yong; Poch, Olivier; Coll, Patrice; Szopa, Cyril; Cloix, Mégane; Macari, Frédérique; Raulin, Francois; Chaput, Didier; Cottin, Hervé

    2012-05-01

    The search for organic molecules at the surface of Mars is a top priority of the next Mars exploration space missions: Mars Science Laboratory (NASA) and ExoMars (ESA). The detection of organic matter could provide information about the presence of a prebiotic chemistry or even biological activity on this planet. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the martian environment. Several laboratory experiments have been devoted to quantifying and qualifying the evolution of organic molecules under simulated environmental conditions of Mars. However, these laboratory simulations are limited, and one major constraint is the reproduction of the UV spectrum that reaches the surface of Mars. As part of the PROCESS experiment of the European EXPOSE-E mission on board the International Space Station, a study was performed on the photodegradation of organics under filtered extraterrestrial solar electromagnetic radiation that mimics Mars-like surface UV radiation conditions. Glycine, serine, phthalic acid, phthalic acid in the presence of a mineral phase, and mellitic acid were exposed to these conditions for 1.5 years, and their evolution was determined by Fourier transform infrared spectroscopy after their retrieval. The results were compared with data from laboratory experiments. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Half-lives between 50 and 150 h for martian surface conditions were calculated from both laboratory and low-Earth orbit experiments. The results highlight that none of those organics are stable under low-Earth orbit solar UV radiation conditions.

  19. A Comparison between 3D Model Results Using Two Different Collision Schemes: Forward Scattering vs. Hard Sphere Collision

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Combi, M. R.; Tenishev, V.; Bougher, S. W.; Johnson, R. E.; Tully, C.

    2016-12-01

    The recent observations of the Martian geomorphology suggest that water has played a critical role in forming the present status of the Martian atmosphere and environment. The inventory of water has been depleted throughout the planet's geologic time via various mechanisms from the surface to the uppermost atmosphere where the Sun-Mars interaction occurs. During the current epoch, dissociative recombination of O2+ is suggested as the main nonthermal mechanism that regulates the escape of atomic O, forming the hot O corona. A nascent hot O atom produced deep in the thermosphere undergoes collisions with the background thermal species, where the particle can lose energy and become thermalized before it reaches the collisionless regime and escape. The major hot O collisions with the background species that contribute to the thermalization of hot O are Ohot-Ocold, Ohot-CO2,cold, Ohot-COcold, and Ohot-N2,cold. In order to describe these collisions, there have been different collisions schemes used by the previous models. One of the most realistic descriptions involves using angular differential cross sections, and the simplest approach is using isotropic collision cross sections. Here, we present a comparison between the 3D model results using two different collision schemes to find equivalent hard sphere collision cross sections that satisfy the effects from using forward scattering cross sections. We adapted the newly calculated angular differential cross sections to the major hot O collisions. The hot O corona is simulated by coupling our Mars application of the 3D Adaptive Mesh Particle Simulator (M-AMPS) [Tenishev et al., 2008, 2013] and the Mars Global Ionosphere-Thermosphere Model (M-GITM) [Bougher et al., 2015].

  20. Silicates Eroded under Simulated Martian Conditions Effectively Kill Bacteria—A Challenge for Life on Mars

    PubMed Central

    Bak, Ebbe N.; Larsen, Michael G.; Moeller, Ralf; Nissen, Silas B.; Jensen, Lasse R.; Nørnberg, Per; Jensen, Svend J. K.; Finster, Kai

    2017-01-01

    The habitability of Mars is determined by the physical and chemical environment. The effect of low water availability, temperature, low atmospheric pressure and strong UV radiation has been extensively studied in relation to the survival of microorganisms. In addition to these stress factors, it was recently found that silicates exposed to simulated saltation in a Mars-like atmosphere can lead to a production of reactive oxygen species. Here, we have investigated the stress effect induced by quartz and basalt abraded in Mars-like atmospheres by examining the survivability of the three microbial model organisms Pseudomonas putida, Bacillus subtilis, and Deinococcus radiodurans upon exposure to the abraded silicates. We found that abraded basalt that had not been in contact with oxygen after abrasion killed more than 99% of the vegetative cells while endospores were largely unaffected. Exposure of the basalt samples to oxygen after abrasion led to a significant reduction in the stress effect. Abraded quartz was generally less toxic than abraded basalt. We suggest that the stress effect of abraded silicates may be caused by a production of reactive oxygen species and enhanced by transition metal ions in the basalt leading to hydroxyl radicals through Fenton-like reactions. The low survivability of the usually highly resistant D. radiodurans indicates that the effect of abraded silicates, as is ubiquitous on the Martian surface, would limit the habitability of Mars as well as the risk of forward contamination. Furthermore, the reactivity of abraded silicates could have implications for future manned missions, although the lower effect of abraded silicates exposed to oxygen suggests that the effects would be reduced in human habitats. PMID:28955310

  1. Silicates Eroded under Simulated Martian Conditions Effectively Kill Bacteria-A Challenge for Life on Mars.

    PubMed

    Bak, Ebbe N; Larsen, Michael G; Moeller, Ralf; Nissen, Silas B; Jensen, Lasse R; Nørnberg, Per; Jensen, Svend J K; Finster, Kai

    2017-01-01

    The habitability of Mars is determined by the physical and chemical environment. The effect of low water availability, temperature, low atmospheric pressure and strong UV radiation has been extensively studied in relation to the survival of microorganisms. In addition to these stress factors, it was recently found that silicates exposed to simulated saltation in a Mars-like atmosphere can lead to a production of reactive oxygen species. Here, we have investigated the stress effect induced by quartz and basalt abraded in Mars-like atmospheres by examining the survivability of the three microbial model organisms Pseudomonas putida, Bacillus subtilis , and Deinococcus radiodurans upon exposure to the abraded silicates. We found that abraded basalt that had not been in contact with oxygen after abrasion killed more than 99% of the vegetative cells while endospores were largely unaffected. Exposure of the basalt samples to oxygen after abrasion led to a significant reduction in the stress effect. Abraded quartz was generally less toxic than abraded basalt. We suggest that the stress effect of abraded silicates may be caused by a production of reactive oxygen species and enhanced by transition metal ions in the basalt leading to hydroxyl radicals through Fenton-like reactions. The low survivability of the usually highly resistant D. radiodurans indicates that the effect of abraded silicates, as is ubiquitous on the Martian surface, would limit the habitability of Mars as well as the risk of forward contamination. Furthermore, the reactivity of abraded silicates could have implications for future manned missions, although the lower effect of abraded silicates exposed to oxygen suggests that the effects would be reduced in human habitats.

  2. Comparison of Martian Surface Radiation Predictions to the Measurements of Mars Science Laboratory Radiation Assessment Detector (MSL/RAD)

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.; Zeitlin, Cary; Hassler, Donald M.; Ehresmann, Bent; Rafkin, Scot C. R.; Wimmer-Schweingruber, Robert F; Boettcher, Stephan; Boehm, Eckart; Guo, Jingnan; hide

    2014-01-01

    For the analysis of radiation risks to astronauts and planning exploratory space missions, detailed knowledge of particle spectra is an important factor. Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Mars Science Laboratory Radiation Assessment Detector (MSL-RAD) on the Curiosity rover since August 2012, and particle fluxes for a wide range of ion species (up to several hundred MeV/u) and high energy neutrons (8 - 1000 MeV) have been available for the first 200 sols. Although the data obtained on the surface of Mars for 200 sols are limited in the narrow energy spectra, the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code are compared to the data. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used, which includes direct knockout, evaporation and nuclear coalescence. Daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station are implemented into transport calculations for describing the daily column depth of atmosphere. Particles impinging on top of the Martian atmosphere reach the RAD after traversing varying depths of atmosphere that depend on the slant angles, and the model accounts for shielding of the RAD by the rest of the instrument. Calculations of stopping particle spectra are in good agreement with the RAD measurements for the first 200 sols by accounting changing heliospheric conditions and atmospheric pressure. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and thus increase the accuracy of the predictions of future radiation environments on Mars. These contributions lend support to the understanding of radiation health risks to astronauts for the planning of various mission scenarios.

  3. Mars environment and magnetic orbiter scientific and measurement objectives.

    PubMed

    Leblanc, F; Langlais, B; Fouchet, T; Barabash, S; Breuer, D; Chassefière, E; Coates, A; Dehant, V; Forget, F; Lammer, H; Lewis, S; Lopez-Valverde, M; Mandea, M; Menvielle, M; Pais, A; Paetzold, M; Read, P; Sotin, C; Tarits, P; Vennerstrom, S

    2009-01-01

    In this paper, we summarize our present understanding of Mars' atmosphere, magnetic field, and surface and address past evolution of these features. Key scientific questions concerning Mars' surface, atmosphere, and magnetic field, along with the planet's interaction with solar wind, are discussed. We also define what key parameters and measurements should be performed and the main characteristics of a martian mission that would help to provide answers to these questions. Such a mission--Mars Environment and Magnetic Orbiter (MEMO)--was proposed as an answer to the Cosmic Vision Call of Opportunity as an M-class mission (corresponding to a total European Space Agency cost of less than 300 Meuro). MEMO was designed to study the strong interconnection between the planetary interior, atmosphere, and solar conditions, which is essential to our understanding of planetary evolution, the appearance of life, and its sustainability. The MEMO main platform combined remote sensing and in situ measurements of the atmosphere and the magnetic field during regular incursions into the martian upper atmosphere. The micro-satellite was designed to perform simultaneous in situ solar wind measurements. MEMO was defined to conduct: * Four-dimensional mapping of the martian atmosphere from the surface up to 120 km by measuring wind, temperature, water, and composition, all of which would provide a complete view of the martian climate and photochemical system; Mapping of the low-altitude magnetic field with unprecedented geographical, altitude, local time, and seasonal resolutions; A characterization of the simultaneous responses of the atmosphere, magnetic field, and near-Mars space to solar variability by means of in situ atmospheric and solar wind measurements.

  4. Evaluation of the Tindouf Basin Region in Southern Morocco as an Analog Site for Soil Geochemistry on Noachian Mars.

    PubMed

    Oberlin, Elizabeth A; Claire, Mark W; Kounaves, Samuel P

    2018-02-09

    Locations on Earth that provide insights into processes that may be occurring or may have occurred throughout martian history are often broadly deemed "Mars analog environments." As no single locale can precisely represent a past or present martian environment, it is important to focus on characterization of terrestrial processes that produce analogous features to those observed in specific regions of Mars or, if possible, specific time periods during martian history. Here, we report on the preservation of ionic species in soil samples collected from the Tindouf region of Morocco and compare them with the McMurdo Dry Valleys of Antarctica, the Atacama Desert in Chile, the martian meteorite EETA79001, and the in situ Mars analyses from the Phoenix Wet Chemistry Laboratory (WCL). The Moroccan samples show the greatest similarity with those from Victoria Valley, Beacon Valley, and the Atacama, while being consistently depleted compared to University Valley and enriched compared to Taylor Valley. The NO 3 /Cl ratios are most similar to Victoria Valley and Atacama, while the SO 4 /Cl ratios are similar to those from Beacon Valley, Victoria Valley, and the Atacama. While perchlorate concentrations in the Moroccan samples are typically lower than those found in samples of other analog sites, conditions in the region are sufficiently arid to retain oxychlorines at detectable levels. Our results suggest that the Tindouf Basin in Morocco can serve as a suitable analogue for the soil geochemistry and subsequent aridification of the Noachian epoch on Mars. Key Words: Mars analogues-Antarctica-Morocco-Oxyanions-Perchlorate-Nitrate. Astrobiology 18, xxx-xxx.

  5. The Mojave Desert: A Martian Analog Site for Future Astrobiology Themed Missions

    NASA Technical Reports Server (NTRS)

    Salas, E.; Abbey, W.; Bhartia, R.; Beegle, L. W.

    2011-01-01

    Astrobiological interest in Mars is highlighted by evidence that Mars was once warm enough to have liquid water present on its surface long enough to create geologic formations that could only exist in the presense of extended fluvial periods. These periods existed at the same time life on Earth arose. If life began on Mars as well during this period, it is reasonable to assume it may have adapted to the subsurface as environments at the surface changed into the inhospitable state we find today. If the next series of Mars missions (Mars Science Laboratory, the ExoMars Trace Gas Orbiter proposed for launch in 2016, and potential near surface sample return) fail to discover either extinct or extant life on Mars, a subsurface mission would be necessary to attempt to "close the book" on the existence of martian life. Mars is much colder and drier than Earth, with a very low pressure CO2 environment and no obvious habitats. Terrestrial regions with limited precipitation, and hence reduced active biota, are some of the best martian low to mid latitude analogs to be found on Earth, be they the Antarctic dry valleys, the Atacama or Mojave Deserts. The Mojave Desert/Death Valley region is considered a Mars analog site by the Terrestrial Analogs Panel of the NSF-sponsored decadal survey; a field guide was even developed and a workshop was held on its applicability as a Mars analog. This region has received a great deal of attention due to its accessibility and the variety of landforms and processes observed relevant to martian studies.

  6. A new analysis of Mars "Special Regions": findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2)

    USGS Publications Warehouse

    Rummel, John D.; Beaty, David W.; Jones, Melissa A.; Bakermans, Corien; Barlow, Nadine G.; Boston, Penelope J.; Chevrier, Vincent F.; Clark, Benton C.; de Vera, Jean-Pierre P.; Gough, Raina V.; Hallsworth, John E.; Head, James W.; Hipkin, Victoria J.; Kieft, Thomas L.; McEwen, Alfred S.; Mellon, Michael T.; Mikucki, Jill A.; Nicholson, Wayne L.; Omelon, Christopher R.; Peterson, Ronald; Roden, Eric E.; Lollar, Barbara Sherwood; Tanaka, Kenneth L.; Viola, Donna; Wray, James J.

    2014-01-01

    A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth—including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of potential resources and as places that should not be inadvertently contaminated by human activity.

  7. A new analysis of Mars "Special Regions": findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2).

    PubMed

    Rummel, John D; Beaty, David W; Jones, Melissa A; Bakermans, Corien; Barlow, Nadine G; Boston, Penelope J; Chevrier, Vincent F; Clark, Benton C; de Vera, Jean-Pierre P; Gough, Raina V; Hallsworth, John E; Head, James W; Hipkin, Victoria J; Kieft, Thomas L; McEwen, Alfred S; Mellon, Michael T; Mikucki, Jill A; Nicholson, Wayne L; Omelon, Christopher R; Peterson, Ronald; Roden, Eric E; Sherwood Lollar, Barbara; Tanaka, Kenneth L; Viola, Donna; Wray, James J

    2014-11-01

    A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth-including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of potential resources and as places that should not be inadvertently contaminated by human activity.

  8. Carbonate-Containing Martian Rocks, False Color

    NASA Image and Video Library

    2010-06-03

    Lengthy detective work from data collected by NASA rover Spirit confirmed that an outcrop called Comanche contains a mineral indicating that a past environment was wet and non-acidic, possibly favorable to life.

  9. Reconnection in the Martian Magnetotail: Hall-MHD With Embedded Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Ma, Yingjuan; Russell, Christopher T.; Toth, Gabor; Chen, Yuxi; Nagy, Andrew F.; Harada, Yuki; McFadden, James; Halekas, Jasper S.; Lillis, Rob; Connerney, John E. P.; Espley, Jared; DiBraccio, Gina A.; Markidis, Stefano; Peng, Ivy Bo; Fang, Xiaohua; Jakosky, Bruce M.

    2018-05-01

    Mars Atmosphere and Volatile EvolutioN (MAVEN) mission observations show clear evidence of the occurrence of the magnetic reconnection process in the Martian plasma tail. In this study, we use sophisticated numerical models to help us understand the effects of magnetic reconnection in the plasma tail. The numerical models used in this study are (a) a multispecies global Hall-magnetohydrodynamic (HMHD) model and (b) a global HMHD model two-way coupled to an embedded fully kinetic particle-in-cell code. Comparison with MAVEN observations clearly shows that the general interaction pattern is well reproduced by the global HMHD model. The coupled model takes advantage of both the efficiency of the MHD model and the ability to incorporate kinetic processes of the particle-in-cell model, making it feasible to conduct kinetic simulations for Mars under realistic solar wind conditions for the first time. Results from the coupled model show that the Martian magnetotail is highly dynamic due to magnetic reconnection, and the resulting Mars-ward plasma flow velocities are significantly higher for the lighter ion fluid, which are quantitatively consistent with MAVEN observations. The HMHD with Embedded Particle-in-Cell model predicts that the ion loss rates are more variable but with similar mean values as compared with HMHD model results.

  10. Studies of Life on Earth are Important for Mars Exploration

    NASA Technical Reports Server (NTRS)

    DesMarais, D. J.

    1998-01-01

    The search for evidence of the early martian environment and a martian biosphere is benefitted by diverse studies of life on Earth. Most fundamentally, origin-of-life research highlights the challenge in formulating a rigorous definition of life. Because such definitions typically list several of life's most basic properties, they also help to define those observable features that distinguish life and thus might be sought through telescopes, spacecraft, and analyses of extraterrestrial samples. Studies of prebiotic chemistry also help by defining the range of environments and processes that sustain prebiotic organic synthesis. These studies might indicate if and where prebiotic processes occur today on Earth and elsewhere. Such studies should also help to identify which localities are good candidates for the origin of life. A better understanding of the most fundamental principles by which molecules are assembled into living systems will help us to appreciate possible alternatives to the path followed by life on Earth. These perspectives will sharpen our ability to recognize exotic life and/or those environments that can sustain it.

  11. Mars Missions Using Emerging Commercial Space Transportation Capabilities

    NASA Technical Reports Server (NTRS)

    Gonzales, Andrew A.

    2016-01-01

    New Discoveries regarding the Martian Environment may impact Mars mission planning. Transportation of investigation payloads can be facilitated by Commercial Space Transportation options. The development of Commercial Space Transportation. Capabilities anticipated from various commercial entities are examined objectively. The potential for one of these options, in the form of a Mars Sample Return mission, described in the results of previous work, is presented to demonstrate a high capability potential. The transportation needs of the Mars Environment Team Project at ISU 2016 may fit within the payload capabilities of a Mars Sample Return mission, but the payload elements may or may not differ. Resource Modules will help you develop a component of a strategy to address the Implications of New Discoveries in the Martian Environment using the possibility of efficient, commercial space transportation options. Opportunities for open discussions as appropriate during the team project formulation period at the end of each Resource Module. The objective is to provide information that can be incorporated into your work in the Team Project including brainstorming.

  12. A study of psychrophilic organisms isolated from the manufacture and assembly areas of spacecraft to be used in the Viking mission

    NASA Technical Reports Server (NTRS)

    Foster, T. L.

    1974-01-01

    The effect of storage of dry heat treated Teflon ribbons under nitrogen gas followed by high vacuum on the recovery of hardy organisms from the ribbons was studied. A similar experiment was performed on spore crops of hardy organisms recovered previously from Cape Canaveral. Hardy organisms have been inoculated onto slides and subjected to an artificial Martian environment in an attempt to demonstrate their growth in this environment. Additional experiments using the artificial Martian environment include response of soil samples from the VAB with both constant temperature and freeze-thaw cycles. These experiments were performed with dried soil and soil containing added water. Other investigations included the effect of heatshock on soil samples, psychrophilic counts of new soil samples from the manufacture area of the Viking spacecraft, effect of pour plate versus spread plate on psychrophilic counts, and preparation of spore crops of hardy organisms from Cape Canaveral.

  13. The MSP 2001 Mars Environmental Compatibility Assessment (MECA)

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Meloy, T. P.; Anderson, M. S.; Buehler, M. G.; Frant, M. A.; Grannan, S. M.; Fuerstenau, D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's goal is to evaluate potential geochemical and environmental hazards that may confront future Martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. The instrument will acquire soil samples with a robotic arm equipped with a camera. MECA will examine surface and subsurface soil and dust in order to characterize particle size, shape, hardness, and also physical characteristics that may provide clues to mineralogy. MECA will characterize soil/water mixtures with respect to pH, redox potential, total dissolved ions, and trace toxins. MECA will determine the nature of electrostatic charging associated with excavation of soil, and the influence of ionizing radiation on material properties. It will also observe natural dust accumulation on engineering materials. To accomplish these objectives, MECA is allocated a mass of 10 kg within an enclosure of 35 x 25 x 15 cm. The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Ion-selective electrodes and related sensors will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases in wet Martian soil. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential. Experiments will include cyclic voltammetry and anodic stripping voltammetry. Complementary to the Viking experiments, the chemical laboratory will characterize the water-soil solution rather than emitted gases. Nonetheless, through analysis of dissolved gases it will be able to replicate many of the Viking observations related to oxidants. MECA's microscopy station combines optical and atomic-force microscopy (AFM) in an actively focused, controlled illumination environment to image particles from millimeters to nanometers in size. Careful selection of substrates allows controlled experiments in adhesion, abrasion, hardness, aggregation, magnetic and other properties. Special tools allow primitive manipulation (brushing and scraping) of samples. Soil particle properties including size, shape, color, hardness, adhesive potential (electrostatic and magnetic), will be determined using an array of sample receptacles and collection substrates. The simple, rugged atomic-force microscope will image in the submicron size range and has the capability of performing a particle-by-particle analysis of the dust and soil. On Earth, the earliest forms of life are preserved as microfossils. The atomic-force microscope will have the required resolution to image down to the scale of terrestrial microfossils and beyond. Mounted on the end of the robot arm, MECA's electrometer actually consists of four types of sensors: an electric field meter, several triboelectricity monitors, an ion gauge, and a thermometer. Tempered only by ultraviolet-light-induced ions and a low-voltage breakdown threshold, the dry, cold, dusty martian environment presents an imposing electrostatic hazard to both robots and humans. The field meter will measure the ambient field on nearby objects while the triboelectric sensors, using identical circuitry, will measure the charge accumulated on test substances as they are dragged through the soil by the arm. The ion chamber, open to the environment, will sense both charged dust and free ions in the air. Over and above the potential threat to electronics, the electrostatic environment holds one of the keys to transport of dust and, consequently, Martian meteorology. Viewed with the robot arm camera, the abrasion and adhesion plates are strategically placed to allow direct observation of the interaction between materials and soils on a macroscopic scale. Materials of graded hardness are placed directly under the robot arm scoop to sense wear and soil hardness. A second array, placed on the lander deck, is deployed after the dust plume of landing has settled. It can be manipulated in a primitive fashion by the arm, first having dirt deposited on it from the scoop and subsequently shaken clean. A third array will passively collect dust from the atmosphere. In addition to objectives related to human exploration, the MECA data set will be rich in information relevant to basic geology, paleoclimate, and exobiology issues. To understand both contemporaneous and ancient processes on Mars, the mineralogy, petrology, and reactivity of Martian surface materials should be constrained. The MECA experiment will shed light on these quantities through its combination of chemistry and microscopy. MECA will be capable of measuring the composition of ancient surface water environments, observing microscopic evidence of geological (and biological?) processes, inferring soil and dust transport, comminution and weathering mechanisms, and characterizing soil horizons that might be encountered during excavation.

  14. Automated life-detection experiments for the Viking mission to Mars

    NASA Technical Reports Server (NTRS)

    Klein, H. P.

    1974-01-01

    As part of the Viking mission to Mars in 1975, an automated set of instruments is being built to test for the presence of metabolizing organisms on that planet. Three separate modules are combined in this instrument so that samples of the Martian surface can be subjected to a broad array of experimental conditions so as to measure biological activity. The first, the Pyrolytic Release Module, will expose surface samples to a mixture of C-14O and C-14O2 in the presence of Martian atmosphere and a light source that simulates the Martian visible spectrum. The assay system is designed to determine the extent of assimilation of CO or CO2 into organic compounds. The Gas Exchange Module will incubate surface samples in a humidified CO2 atmosphere. At specified times, portions of the incubation atmosphere will be analyzed by gas chromatography to detect the release or uptake of CO2 and several additional gases. The Label Release Module will incubate surface samples with a dilute aqueous solution of simple radioactive organic substrates in Martian atmosphere, and the gas phase will be monitored continuously for the release of labeled CO2.

  15. Perchlorate Formation on Mars Through Surface Radiolysis-Initiated Atmospheric Chemistry: A Potential Mechanism

    NASA Technical Reports Server (NTRS)

    Wilson, Eric H.; Atreya, Sushil K.; Kaiser, Ralf I.; Mahaffy, Paul R.

    2016-01-01

    Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one-dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 x 10(exp 7) molecules/sq cm/s sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.

  16. Concept for Mars Volcanic Emission Life Scout

    NASA Image and Video Library

    2004-12-21

    This artist rendition depicts a concept for NASA Mars orbiter that would scrutinize the martian atmosphere for chemical traces of life or environments supportive of life that might be present anywhere on the planet.

  17. Rover's Wheel Churns Up Bright Martian Soil

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel.

    The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life.

    Spirit acquired this mosaic with the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters. The view presented here is an approximately true-color rendering.

  18. Rover's Wheel Churns Up Bright Martian Soil (Vertical)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel.

    The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life.

    The image is presented here as a vertical projection, as if looking straight down, and in false color, which brings out subtle color differences.

  19. Rover's Wheel Churns Up Bright Martian Soil (False Color)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Spirit acquired this mosaic on the mission's 1,202nd Martian day, or sol (May 21, 2007), while investigating the area east of the elevated plateau known as 'Home Plate' in the 'Columbia Hills.' The mosaic shows an area of disturbed soil, nicknamed 'Gertrude Weise' by scientists, made by Spirit's stuck right front wheel.

    The trench exposed a patch of nearly pure silica, with the composition of opal. It could have come from either a hot-spring environment or an environment called a fumarole, in which acidic, volcanic steam rises through cracks. Either way, its formation involved water, and on Earth, both of these types of settings teem with microbial life.

    The image is presented here in false color that is used to bring out subtle differences in color.

  20. Preliminary design of a long-endurance Mars aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.

    1990-01-01

    The preliminary design requirements of a long endurance aircraft capable of flight within the Martian environment was determined. Both radioisotope/heat engine and PV solar array power production systems were considered. Various cases for each power system were analyzed in order to determine the necessary size, weight and power requirements of the aircraft. The analysis method used was an adaptation of the method developed by Youngblood and Talay of NASA-Langley used to design a high altitude earth based aircraft. The analysis is set up to design an aircraft which, for the given conditions, has a minimum wingspan and maximum endurance parameter. The results showed that, for a first approximation, a long endurance aircraft is feasible within the Martian environment. The size and weight of the most efficient solar aircraft were comparable to the radioisotope powered one.

Top