NASA Astrophysics Data System (ADS)
Bagolini, Alvise; Picciotto, Antonino; Crivellari, Michele; Conci, Paolo; Bellutti, Pierluigi
2016-02-01
An analysis of the mechanical properties of plasma enhanced chemical vapor (PECVD) silicon nitrides is presented, using micro fabricated silicon nitride membranes under point load deflection. The membranes are made of PECVD silicon-rich nitride and low stress nitride films. The mechanical performance of the bended membranes is examined both with analytical models and finite element simulation in order to extract the elastic modulus and residual stress values. The elastic modulus of low stress silicon nitride is calculated using stress free analytical models, while for silicon-rich silicon nitride and annealed low stress silicon nitride it is estimated with a pre-stressed model of point-load deflection. The effect of annealing both in nitrogen and hydrogen atmosphere is evaluated in terms of residual stress, refractive index and thickness variation. It is demonstrated that a hydrogen rich annealing atmosphere induces very little change in low stress silicon nitride. Nitrogen annealing effects are measured and shown to be much higher in silicon-rich nitride than in low stress silicon nitride. An estimate of PECVD silicon-rich nitride elastic modulus is obtained in the range between 240-320 GPa for deposited samples and 390 GPa for samples annealed in nitrogen atmosphere. PECVD low stress silicon nitride elastic modulus is estimated to be 88 GPa as deposited and 320 GPa after nitrogen annealing.
Powder Injection Molding of Ceramic Engine Components for Transportation
NASA Astrophysics Data System (ADS)
Lenz, Juergen; Enneti, Ravi K.; Onbattuvelli, Valmikanathan; Kate, Kunal; Martin, Renee; Atre, Sundar
2012-03-01
Silicon nitride has been the favored material for manufacturing high-efficiency engine components for transportation due to its high temperature stability, good wear resistance, excellent corrosion resistance, thermal shock resistance, and low density. The use of silicon nitride in engine components greatly depends on the ability to fabricate near net-shape components economically. The absence of a material database for design and simulation has further restricted the engineering community in developing parts from silicon nitride. In this paper, the design and manufacturability of silicon nitride engine rotors for unmanned aerial vehicles by the injection molding process are discussed. The feedstock material property data obtained from experiments were used to simulate the flow of the material during injection molding. The areas susceptible to the formation of defects during the injection molding process of the engine component were identified from the simulations. A test sample was successfully injection molded using the feedstock and sintered to 99% density without formation of significant observable defects.
Discontinuous Inter-Granular Separations (DIGS) in the Gas Nitride Layer of ISS Race Rings
NASA Technical Reports Server (NTRS)
Figert, John; Dasgupta, Rajib; Martinez, James
2010-01-01
The starboard solar alpha rotary joint (SARJ) race ring on the International space station (ISS) failed due to severe spalling of the outer diameter, 45 degree (outer canted) nitrided surface. Subsequent analysis at NASA-KSC revealed that almost all of the debris generated due to the failure was nitrided 15-5 stainless steel. Subsequent analysis of the nitride control coupons (NCC) at NASA-JSC revealed the presence of discontinuous inter-granular separations (DIGS) in the gas nitride layer. These DIGS were present in the inter-granular networking located in the top 2 mils of the nitride layer. The manufacturer's specification requires the maximum white structure to be 0.0003 inches and intergranular networking below the allowable white structure depth to be cause for rejection; a requirement that the NCCs did not meet. Subsequent testing and analysis revealed that lower DIGS content significantly lowered the probability of nitride spalling in simulated, dry condition runs. One batch of nitride samples with DIGS content similar to the port SARJ (did not fail on orbit) which exhibited almost no nitride spalling after being run on one test rig. Another batch of nitride samples with DIGS content levels similar to the starboard SARJ exhibited significant nitride spalling on the same test rig with the same load under dry conditions. Although DIGS were not the root cause of starboard race ring failure, testing indicates that increased DIGS reduced the robustness of the gas nitride layer under dry operating conditions.
NASA Astrophysics Data System (ADS)
Noli, Fotini; Pichon, Luc; Öztürk, Orhan
2018-04-01
Plasma-based nitriding and/or oxidizing treatments were applied to CoCrMo alloy to improve its surface mechanical properties and corrosion resistance for biomedical applications. Three treatments were performed. A set of CoCrMo samples has been subjected to nitriding at moderate temperatures ( 400 °C). A second set of CoCrMo samples was oxidized at 395 °C in pure O2. The last set of CoCrMo samples was nitrided and subsequently oxidized under the experimental conditions of previous sets (double treatment). The microstructure and morphology of the layers formed on the CoCrMo alloy were investigated by X-ray diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy. In addition, nitrogen and oxygen profiles were determined by Glow Discharge Optical Emission Spectroscopy, Rutherford Backscattering Spectroscopy, Energy-Dispersive X-ray, and Nuclear Reaction Analysis. Significant improvement of the Vickers hardness of the CoCrMo samples after plasma nitriding was observed due to the supersaturated nitrogen solution and the formation of an expanded FCC γ N phase and CrN precipitates. In the case of the oxidized samples, Vickers hardness improvement was minimal. The corrosion behavior of the samples was investigated in simulated body fluid (0.9 pct NaCl solution at 37 °C) using electrochemical techniques (potentiodynamic polarization and cyclic voltammetry). The concentration of metal ions released from the CoCrMo surfaces was determined by Instrumental Neutron Activation Analysis. The experimental results clearly indicate that the CoCrMo surface subjected to the double surface treatment consisting in plasma nitriding and plasma oxidizing exhibited lower deterioration and better resistance to corrosion compared to the nitrided, oxidized, and untreated samples. This enhancement is believed to be due to the formation of a thicker and more stable layer.
Experimental and numerical study on plasma nitriding of AISI P20 mold steel
NASA Astrophysics Data System (ADS)
Nayebpashaee, N.; Vafaeenezhad, H.; Kheirandish, Sh.; Soltanieh, M.
2016-09-01
In this study, plasma nitriding was used to fabricate a hard protective layer on AISI P20 steel, at three process temperatures (450°C, 500°C, and 550°C) and over a range of time periods (2.5, 5, 7.5, and 10 h), and at a fixed gas N2:H2 ratio of 75vol%:25vol%. The morphology of samples was studied using optical microscopy and scanning electron microscopy, and the formed phase of each sample was determined by X-ray diffraction. The elemental depth profile was measured by energy dispersive X-ray spectroscopy, wavelength dispersive spectroscopy, and glow dispersive spectroscopy. The hardness profile of the samples was identified, and the microhardness profile from the surface to the sample center was recorded. The results show that ɛ-nitride is the dominant species after carrying out plasma nitriding in all strategies and that the plasma nitriding process improves the hardness up to more than three times. It is found that as the time and temperature of the process increase, the hardness and hardness depth of the diffusion zone considerably increase. Furthermore, artificial neural networks were used to predict the effects of operational parameters on the mechanical properties of plastic mold steel. The plasma temperature, running time of imposition, and target distance to the sample surface were all used as network inputs; Vickers hardness measurements were given as the output of the model. The model accurately reproduced the experimental outcomes under different operational conditions; therefore, it can be used in the effective simulation of the plasma nitriding process in AISI P20 steel.
Modeling the Gas Nitriding Process of Low Alloy Steels
NASA Astrophysics Data System (ADS)
Yang, M.; Zimmerman, C.; Donahue, D.; Sisson, R. D.
2013-07-01
The effort to simulate the nitriding process has been ongoing for the last 20 years. Most of the work has been done to simulate the nitriding process of pure iron. In the present work a series of experiments have been done to understand the effects of the nitriding process parameters such as the nitriding potential, temperature, and time as well as surface condition on the gas nitriding process for the steels. The compound layer growth model has been developed to simulate the nitriding process of AISI 4140 steel. In this paper the fundamentals of the model are presented and discussed including the kinetics of compound layer growth and the determination of the nitrogen diffusivity in the diffusion zone. The excellent agreements have been achieved for both as-washed and pre-oxided nitrided AISI 4140 between the experimental data and simulation results. The nitrogen diffusivity in the diffusion zone is determined to be constant and only depends on the nitriding temperature, which is ~5 × 10-9 cm2/s at 548 °C. It proves the concept of utilizing the compound layer growth model in other steels. The nitriding process of various steels can thus be modeled and predicted in the future.
Nitridation of a Super-Ferritic Stainless Steel for PEMFC Bipolar Plate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H.; Turner, J. A.; Brady, M. P.
2007-01-01
AL29-4C alloy nitrided in pure nitrogen resulted in a nitrogen-modified oxide surface, which is the same as AISI446 nitrided under identical conditions. When the alloy was nitrided 24h at 900 C in N2-4H2, XRD and XPS analysis indicated that the surface layer consisted of a nitride outer layer ({approx}0.20 {micro}m) and an oxide inner layer ({approx} 0.82 {micro}m). According to XPS, the nitride outer layer is composed of CrN and [Cr(N),Fe]2N1-x, with much more Cr2N than Fe2N. Mn is migrated and enriched in the oxide inner layer and combined with chromium oxide.AL29-4C alloy nitrided in N2-4H2 resulted in low ICRmore » and excellent corrosion resistance in simulated PEMFC environments. Current was at ca. -3.0 {micro}A/cm2 in the PEMFC anode environment, and at ca. 0.3 {approx} 0.5 {micro}A/cm2 in the cathode environment. This is considered to be rather stable. After being polarized in a PEMFC environment, the ICR increased slightly compared with the as-nitrided sample, but was still rather low.« less
Modelling heat conduction in polycrystalline hexagonal boron-nitride films
Mortazavi, Bohayra; Pereira, Luiz Felipe C.; Jiang, Jin-Wu; Rabczuk, Timon
2015-01-01
We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets. PMID:26286820
Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid
2012-07-01
Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity.
Numerical and Experimental Study on the Residual Stresses in the Nitrided Steel
NASA Astrophysics Data System (ADS)
Song, X.; Zhang, Zhi-Qian; Narayanaswamy, S.; Huang, Y. Z.; Zarinejad, M.
2016-09-01
In the present work, residual stresses distribution in the gas nitrided AISI 4140 sample has been studied using finite element (FE) simulation. The nitrogen concentration profile is obtained from the diffusion-controlled compound layer growth model, and nitrogen concentration controls the material volume change through phase transformation and lattice interstitials which results in residual stresses. Such model is validated through residual stress measurement technique—micro-ring-core method, which is applied to the nitriding process to obtain the residual stresses profiles in both the compound and diffusion layer. The numerical and experimental results are in good agreement with each other; they both indicate significant stress variation in the compound layer, which was not captured in previous research works due to the resolution limit of the traditional methods.
Yeo, Sang Chul; Lo, Yu Chieh; Li, Ju; Lee, Hyuck Mo
2014-10-07
Ammonia (NH3) nitridation on an Fe surface was studied by combining density functional theory (DFT) and kinetic Monte Carlo (kMC) calculations. A DFT calculation was performed to obtain the energy barriers (Eb) of the relevant elementary processes. The full mechanism of the exact reaction path was divided into five steps (adsorption, dissociation, surface migration, penetration, and diffusion) on an Fe (100) surface pre-covered with nitrogen. The energy barrier (Eb) depended on the N surface coverage. The DFT results were subsequently employed as a database for the kMC simulations. We then evaluated the NH3 nitridation rate on the N pre-covered Fe surface. To determine the conditions necessary for a rapid NH3 nitridation rate, the eight reaction events were considered in the kMC simulations: adsorption, desorption, dissociation, reverse dissociation, surface migration, penetration, reverse penetration, and diffusion. This study provides a real-time-scale simulation of NH3 nitridation influenced by nitrogen surface coverage that allowed us to theoretically determine a nitrogen coverage (0.56 ML) suitable for rapid NH3 nitridation. In this way, we were able to reveal the coverage dependence of the nitridation reaction using the combined DFT and kMC simulations.
NASA Astrophysics Data System (ADS)
Hussein, M. A.; Kumar, A. Madhan; Yilbas, Bekir S.; Al-Aqeeli, N.
2017-11-01
Despite the widespread application of Ti alloy in the biomedical field, surface treatments are typically applied to improve its resistance to corrosion and wear. A newly developed biomedical Ti-20Nb-13Zr at.% alloy (TNZ) was laser-treated in nitrogen environment to improve its surface characteristics with corrosion protection performance. Surface modification of the alloy by laser was performed through a Nd:YAG laser. The structural and surface morphological alterations in the laser nitrided layer were investigated by XRD and a FE-SEM. The mechanical properties have been evaluated using nanoindentation for laser nitride and as-received samples. The corrosion protection behavior was estimated using electrochemical corrosion analysis in a physiological medium (SBF). The obtained results revealed the production of a dense and compact film of TiN fine grains (micro-/nanosize) with 9.1 µm below the surface. The mechanical assessment results indicated an improvement in the modulus of elasticity, hardness, and resistance of the formed TiN layer to plastic deformation. The electrochemical analysis exhibited that the surface protection performance of the laser nitrided TNZ substrates in the SBF could be considerably enhanced compared to that of the as-received alloy due to the presence of fine grains in the TiN layer resulting from laser nitriding. Furthermore, the untreated and treated Ti-20Nb-13Zr alloy exhibited higher corrosion resistance than the CpTi and Ti6Al4V commercial alloys. The improvements in the surface hardness and corrosion properties of Ti alloy in a simulated body obtained using laser nitriding make this approach a suitable candidate for enhancing the properties of biomaterials.
Shock-induced Plasticity and Brittle Cracks in Aluminum Nitride
NASA Astrophysics Data System (ADS)
Branicio, Paulo; Kalia, Rajiv
2005-03-01
Two hundred and nine million atom molecular-dynamics simulation of hypervelocity projectile impact in aluminum nitride reveals strong interplay between shock-induced structural phase transformation, plastic deformation and brittle cracks. The shock wave splits into an elastic precursor and a wurtzite-to-rocksalt structural transformation wave. When the elastic wave reflected from the boundary of the sample interacts with the transformation wave front, nanocavities are generated along the penetration path of the projectile and dislocations in adjacent regions. The nanocavities coalesce to form mode I brittle cracks while dislocations generate kink bands that give rise to mode II cracks. These simulations provide a microscopic view of defects associated with simultaneous tensile and shear cracking at the structural phase transformation boundary due to shock impact in high-strength ceramics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeo, Sang Chul; Lee, Hyuck Mo, E-mail: hmlee@kaist.ac.kr; Lo, Yu Chieh
2014-10-07
Ammonia (NH{sub 3}) nitridation on an Fe surface was studied by combining density functional theory (DFT) and kinetic Monte Carlo (kMC) calculations. A DFT calculation was performed to obtain the energy barriers (E{sub b}) of the relevant elementary processes. The full mechanism of the exact reaction path was divided into five steps (adsorption, dissociation, surface migration, penetration, and diffusion) on an Fe (100) surface pre-covered with nitrogen. The energy barrier (E{sub b}) depended on the N surface coverage. The DFT results were subsequently employed as a database for the kMC simulations. We then evaluated the NH{sub 3} nitridation rate onmore » the N pre-covered Fe surface. To determine the conditions necessary for a rapid NH{sub 3} nitridation rate, the eight reaction events were considered in the kMC simulations: adsorption, desorption, dissociation, reverse dissociation, surface migration, penetration, reverse penetration, and diffusion. This study provides a real-time-scale simulation of NH{sub 3} nitridation influenced by nitrogen surface coverage that allowed us to theoretically determine a nitrogen coverage (0.56 ML) suitable for rapid NH{sub 3} nitridation. In this way, we were able to reveal the coverage dependence of the nitridation reaction using the combined DFT and kMC simulations.« less
Enhanced cell adhesion on severe peened-plasma nitrided 316L stainless steel
NASA Astrophysics Data System (ADS)
Jayalakshmi, M.; Bhat, Badekai Ramachandra; Bhat, K. Udaya
2018-04-01
Plasma nitriding is an effective technique to enhance the wear resistance of austenitic stainless steels. Recently, severe surface deformation techniques are extensively used prior to nitriding to enhance diffusion kinetics. In the present study, AISI 316L austenitic stainless steel is subjected to peening-nitriding duplex treatment and biocompatibility of treated surfaces is assessed through adhesion of the fibroblast cells. Three-fold increase in the surface microhardness is observed from the un-peened sample to the peened-nitrided sample; with severe peened sample showing intermediate hardness. Similar trend is observed in the number of the fibroblast cells attached to the sample surface. Spreading of some of the fibroblast cells is observed on the sample subjected to duplex treatment; while the other two samples showed only the spindle shaped fibroblasts. Combined influence of surface nanocrystallization and presence of nitride layer is responsible for the improved biocompatibility.
Failure Mechanisms of the Protective Coatings for the Hot Stamping Applications
NASA Astrophysics Data System (ADS)
Zhao, Chen
In the present study, four different nitriding techniques were carried on the ductile irons NAAMS-D6510 and cast steels NAAMS-S0050A, which are widely used stamping die materials; duplex treatments (PVD CrN coating+nitriding) were carried on H13 steels, which are common inserts for the hot stamping dies. Inclined impact-sliding wear tests were performed on the nitriding cases under simulated stamping conditions. Surface profilometer, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were used to investigate the wear and failure mechanisms of the protective coatings. It was found that the nitrided ductile iron samples performed better than the nitrided cast steel specimens. High temperature inclined impact-sliding wear tests were carried out on the CrN coatings. It was found that the coating performed better at elevated temperature. XPS analysis indicated the top surface layer (about 3-4nm) of the coating was oxidized at 400 °C and formed a Cr2O3 protective film. The in-situ formation of the thin Cr2O3 protective layer likely led to the change of wear mechanisms from severe adhesive failure to mild abrasive wear.
Nanotribological response of a plasma nitrided bio-steel.
Samanta, Aniruddha; Chakraborty, Himel; Bhattacharya, Manjima; Ghosh, Jiten; Sreemany, Monjoy; Bysakh, Sandip; Rane, Ramkrishna; Joseph, Alphonsa; Jhala, Ghanshyam; Mukherjee, Subroto; Das, Mitun; Mukhopadhyay, Anoop K
2017-01-01
AISI 316L is a well known biocompatible, austenitic stainless steel (SS). It is thus a bio-steel. Considering its importance as a bio-prosthesis material here we report the plasma nitriding of AISI 316L (SS) followed by its microstructural and nanotribological characterization. Plasma nitriding of the SS samples was carried out in a plasma reactor with a hot wall vacuum chamber. For ease of comparison these plasma nitrided samples were termed as SSPN. The experimental results confirmed the formations of an embedded nitrided metal layer zone (ENMLZ) and an interface zone (IZ) between the ENMLZ and the unnitrided bulk metallic layer zone (BMLZ) in the SSPN sample. These ENMLZ and IZ in the SSPN sample were richer in iron nitride (FeN) chromium nitride (CrN) along with the austenite phase. The results from nanoindentation, microscratch, nanoscratch and sliding wear studies confirmed that the static contact deformation resistance, the microwear, nanowear and sliding wear resistance of the SSPN samples were much better than those of the SS samples. These results were explained in terms of structure-property correlations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Process dependency of radiation hardness of rapid thermal reoxidized nitrided gate oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weishin Lu; Kuanchin Lin; Jenngwo Hwu
The radiation hardness of MOS capacitors with various reoxidized nitrided oxide (RNO) structures is studied by changing the durations of rapid thermal processes during sample preparation and by applying irradiation-then-anneal (ITA) treatments on samples after preparation. It is found that the initial flatband voltage and midgap interface trap density of MOS capacitors exhibit turnaround'' dependency on the total time of nitridation and reoxidation processes. For samples with nitrided oxide (NO) structures, the radiation-induced variations of above parameters are also turnaround''-dependent on nitridation time. However, when the reoxidation process is performed, the radiation hardness for all samples will be gradually improvedmore » with increasing reoxidation time no matter what the nitridation time is. The most radiation-hard process for RNO structures is suggested. Finally, it is found that when ITA treatments are applied on samples after preparation, their radiation hardness is much improved.« less
Electric heater for nuclear fuel rod simulators
McCulloch, Reginald W.; Morgan, Jr., Chester S.; Dial, Ralph E.
1982-01-01
The present invention is directed to an electric cartridge-type heater for use as a simulator for a nuclear fuel pin in reactor studies. The heater comprises an elongated cylindrical housing containing a longitudinally extending helically wound heating element with the heating element radially inwardly separated from the housing. Crushed cold-pressed preforms of boron nitride electrically insulate the heating element from the housing while providing good thermal conductivity. Crushed cold-pressed preforms of magnesia or a magnesia-15 percent boron nitride mixture are disposed in the cavity of the helical heating element. The coefficient of thermal expansion of the magnesia or the magnesia-boron nitride mixture is higher than that of the boron nitride disposed about the heating element for urging the boron nitride radially outwardly against the housing during elevated temperatures to assure adequate thermal contact between the housing and the boron nitride.
Investigation of Nitride Morphology After Self-Aligned Contact Etch
NASA Technical Reports Server (NTRS)
Hwang, Helen H.; Keil, J.; Helmer, B. A.; Chien, T.; Gopaladasu, P.; Kim, J.; Shon, J.; Biegel, Bryan (Technical Monitor)
2001-01-01
Self-Aligned Contact (SAC) etch has emerged as a key enabling technology for the fabrication of very large-scale memory devices. However, this is also a very challenging technology to implement from an etch viewpoint. The issues that arise range from poor oxide etch selectivity to nitride to problems with post etch nitride surface morphology. Unfortunately, the mechanisms that drive nitride loss and surface behavior remain poorly understood. Using a simple langmuir site balance model, SAC nitride etch simulations have been performed and compared to actual etched results. This approach permits the study of various etch mechanisms that may play a role in determining nitride loss and surface morphology. Particle trajectories and fluxes are computed using Monte-Carlo techniques and initial data obtained from double Langmuir probe measurements. Etched surface advancement is implemented using a shock tracking algorithm. Sticking coefficients and etch yields are adjusted to obtain the best agreement between actual etched results and simulated profiles.
Effects of Temperature on Microstructure and Wear of Salt Bath Nitrided 17-4PH Stainless Steel
NASA Astrophysics Data System (ADS)
Wang, Jun; Lin, Yuanhua; Fan, Hongyuan; Zeng, Dezhi; Peng, Qian; Shen, Baoluo
2012-08-01
Salt bath nitriding of 17-4 PH martensitic precipitation hardening stainless steels was conducted at 610, 630, and 650 °C for 2 h using a complex salt bath heat-treatment, and the properties of the nitrided surface were systematically evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt bathing nitriding, the main phase of the nitrided layer was expanded martensite (α'), expanded austenite (γN), CrN, Fe4N, and (Fe,Cr) x O y . In the sample nitrided above 610 °C, the expanded martensite transformed into expanded austenite. But in the sample nitrided at 650 °C, the expanded austenite decomposed into αN and CrN. The decomposed αN then disassembled into CrN and alpha again. The nitrided layer depth thickened intensively with the increasing nitriding temperature. The activation energy of nitriding in this salt bath was 125 ± 5 kJ/mol.
The effect of surface nanocrystallization on plasma nitriding behaviour of AISI 4140 steel
NASA Astrophysics Data System (ADS)
Li, Yang; Wang, Liang; Zhang, Dandan; Shen, Lie
2010-11-01
A plastic deformation surface layer with nanocrystalline grains was produced on AISI 4140 steel by means of surface mechanical attrition treatment (SMAT). Plasma nitriding of SMAT and un-SMAT AISI 4140 steel was carried out by a low-frequency pulse excited plasma unit. A series of nitriding experiments has been conducted at temperatures ranging from 380 to 500 °C for 8 h in an NH 3 gas. The samples were characterized using X-ray diffraction, scanning electron microscopy, optical microscopy and Vickers microhardness tester. The results showed that a much thicker compound layer with higher hardness was obtained for the SMAT samples when compared with un-SMAT samples after nitriding at the low temperature. In particular, plasma nitriding SMAT AISI 4140 steel at 380 °C for 8 h can produced a compound layer of 2.5 μm thickness with very high hardness on the surface, which is similar to un-SMAT samples were plasma nitrided at approximately 430 °C within the same time.
Microscopic modeling of nitride intersubband absorbance
NASA Astrophysics Data System (ADS)
Montano, Ines; Allerman, A. A.; Wierer, J. J.; Moseley, M.; Skogen, E. J.; Tauke-Pedretti, A.; Vawter, G. A.
III-nitride intersubband structures have recently attracted much interest because of their potential for a wide variety of applications ranging from electro-optical modulators to terahertz quantum cascade lasers. To overcome present simulation limitations we have developed a microscopic absorbance simulator for nitride intersubband devices. Our simulator calculates the band structure of nitride intersubband systems using a fully coupled 8x8 k.p Hamiltonian and determines the material response of a single period in a density-matrix-formalism by solving the Heisenberg equation including many-body and dephasing contributions. After calculating the polarization due to intersubband transitions in a single period, the resulting absorbance of a superlattice structure including radiative coupling between the different periods is determined using a non-local Green's-function formalism. As a result our simulator allows us to predict intersubband absorbance of superlattice structures with microscopically determined lineshapes and linewidths accounting for both many-body and correlation contributions. This work is funded by Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin.
NASA Astrophysics Data System (ADS)
Navid, Ishtiaque Ahmed; Intisar Khan, Asir; Subrina, Samia
2018-02-01
The thermal conductivity of single layer strained hexagonal boron nitride nanoribbon (h-BNNR) has been computed using the Green—Kubo formulation of Equilibrium Molecular Dynamics (EMD) simulation. We have investigated the impact of strain on thermal transport of h-BNNR by varying the applied tensile strain from 1% upto 5% through uniaxial loading. The thermal conductivity of h-BNNR decreases monotonically with the increase of uniaxial tensile strain keeping the sample size and temperature constant. The thermal conductivity can be reduced upto 86% for an applied uniaxial tensile strain of 5%. The impact of temperature and width variation on the thermal conductivity of h-BNNR has also been studied under different uniaxial tensile strain conditions. With the increase in temperature, the thermal conductivity of strained h-BNNR exhibits a decaying characteristics whereas it shows an opposite pattern with the increasing width. Such study would provide a good insight on the strain tunable thermal transport for the potential device application of boron nitride nanostructures.
Hoang, Son; Berglund, Sean P; Hahn, Nathan T; Bard, Allen J; Mullins, C Buddie
2012-02-29
We report a synergistic effect involving hydrogenation and nitridation cotreatment of TiO(2) nanowire (NW) arrays that improves the water photo-oxidation performance under visible light illumination. The visible light (>420 nm) photocurrent of the cotreated TiO(2) is 0.16 mA/cm(2) and accounts for 41% of the total photocurrent under simulated AM 1.5 G illumination. Electron paramagnetic resonance (EPR) spectroscopy reveals that the concentration of Ti(3+) species in the bulk of the TiO(2) following hydrogenation and nitridation cotreatment is significantly higher than that of the sample treated solely with ammonia. It is believed that the interaction between the N-dopant and Ti(3+) is the key to the extension of the active spectrum and the superior visible light water photo-oxidation activity of the hydrogenation and nitridation cotreated TiO(2) NW arrays. © 2012 American Chemical Society
NASA Astrophysics Data System (ADS)
Lin, J. Y. Y.; Aczel, A. A.; Abernathy, D. L.; Nagler, S. E.; Buyers, W. J. L.; Granroth, G. E.
2014-04-01
Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of-flight chopper spectrometers [A. A. Aczel et al., Nat. Commun. 3, 1124 (2012), 10.1038/ncomms2117]. These modes are well described by three-dimensional isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accounting for nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states, and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature-dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T dependence of the scattering from these modes is strongly influenced by the uranium lattice.
Precipitation Modeling in Nitriding in Fe-M Binary System
NASA Astrophysics Data System (ADS)
Tomio, Yusaku; Miyamoto, Goro; Furuhara, Tadashi
2016-10-01
Precipitation of fine alloy nitrides near the specimen surface results in significant surface hardening in nitriding of alloyed steels. In this study, a simulation model of alloy nitride precipitation during nitriding is developed for Fe-M binary system based upon the Kampmann-Wagner numerical model in order to predict variations in the distribution of precipitates with depth. The model can predict the number density, average radius, and volume fraction of alloy nitrides as a function of depth from the surface and nitriding time. By a comparison with the experimental observation in a nitrided Fe-Cr alloy, it was found that the model can predict successfully the observed particle distribution from the surface into depth when appropriate solubility of CrN, interfacial energy between CrN and α, and nitrogen flux at the surface are selected.
Effects of gaseous nitriding AISI4140 alloy steel on corrosion and hardness properties
NASA Astrophysics Data System (ADS)
Tamil Moli, L.; Wahab, N.; Gopinathan, M.; Karmegam, K.; Maniyarasi, M.
2016-10-01
Corrosion is one of the major problems in the industry especially on machinery since it weakens the structure of the machinery part and causes the mechanical failure. This will stop the production and increase the maintenance cost. In this study, the corrosion behaviour of gas nitriding on a screw press machine shaft made from AISI 4140 steel was investigated. Pitting corrosion was identified as a major cause of the shaft failure and this study was conducted to improve the corrosion resistance on the AISI 4140 alloy steel shaft by gas nitriding as a surface hardening treatment. Gas nitriding was performed with composition of 15% ammonia and 85% nitrogen at temperatures of 525 °C, 550 °C and 575 °C and with the soaking time of 30, 45 and 60 minutes, respectively. The samples were prepared as rectangular sized of 30mm x 12mm x 3mm for immersion testing. The results showed that corrosion rate of untreated samples was 77% higher compared to the nitrided samples. It was also found that hardness of the nitrided samples was higher than untreated sample. All in all, it can be concluded that gaseous nitriding can significantly improve the surface hardness and the corrosion resistance of the shaft made of AISI 4140 alloy steel, hence reduces the pitting that is the root cause of failure.
NASA Astrophysics Data System (ADS)
Yan, J. W.; Tong, L. H.; Xiang, Ping
2017-12-01
Free vibration behaviors of single-walled boron nitride nanotubes are investigated using a computational mechanics approach. Tersoff-Brenner potential is used to reflect atomic interaction between boron and nitrogen atoms. The higher-order Cauchy-Born rule is employed to establish the constitutive relationship for single-walled boron nitride nanotubes on the basis of higher-order gradient continuum theory. It bridges the gaps between the nanoscale lattice structures with a continuum body. A mesh-free modeling framework is constructed, using the moving Kriging interpolation which automatically satisfies the higher-order continuity, to implement numerical simulation in order to match the higher-order constitutive model. In comparison with conventional atomistic simulation methods, the established atomistic-continuum multi-scale approach possesses advantages in tackling atomic structures with high-accuracy and high-efficiency. Free vibration characteristics of single-walled boron nitride nanotubes with different boundary conditions, tube chiralities, lengths and radii are examined in case studies. In this research, it is pointed out that a critical radius exists for the evaluation of fundamental vibration frequencies of boron nitride nanotubes; opposite trends can be observed prior to and beyond the critical radius. Simulation results are presented and discussed.
Lin, Naiming; Liu, Qiang; Zou, Jiaojuan; Guo, Junwen; Li, Dali; Yuan, Shuo; Ma, Yong; Wang, Zhenxia; Wang, Zhihua; Tang, Bin
2016-01-01
Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless steel to improve its tribological performance. Tribological behaviors of ground 316 substrates, plasma-nitrided 316 (PN-316), surface-textured 316 (ST-316), and duplex-treated 316 (DT-316) in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si3N4 balls. The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were systemically investigated and analyzed. The results showed that a textured surface was formed on 316 after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316. Both of the obtained nitriding layers presented thickness values of more than 30 μm. The nitriding layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received improved surface hardness after plasma nitriding. When the tribological tests were carried out under dry sliding and grease lubrication conditions, the tested samples showed different tribological behaviors. As expected, the DT-316 samples revealed the most promising tribological properties, reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage, and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding layer had high surface hardness; secondly, the surface texture was able to capture wear debris, store up grease, and then provide continuous lubrication. PMID:28773996
Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh
2016-10-01
Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were -4.128kcalmol(-1) and -2457.124kcalmol(-1) respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was -281.937kcalmol(-1) which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (-374.082 and -245.766kcalmol(-1)) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.
Alloy Effects on the Gas Nitriding Process
NASA Astrophysics Data System (ADS)
Yang, M.; Sisson, R. D.
2014-12-01
Alloy elements, such as Al, Cr, V, and Mo, have been used to improve the nitriding performance of steels. In the present work, plain carbon steel AISI 1045 and alloy steel AISI 4140 were selected to compare the nitriding effects of the alloying elements in AISI 4140. Fundamental analysis is carried out by using the "Lehrer-like" diagrams (alloy specific Lehrer diagram and nitriding potential versus nitrogen concentration diagram) and the compound layer growth model to simulate the gas nitriding process. With this method, the fundamental understanding for the alloy effect based on the thermodynamics and kinetics becomes possible. This new method paves the way for the development of new alloy for nitriding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, Nisha, E-mail: prakasnisha@gmail.com; Barvat, Arun; Anand, Kritika
2016-05-23
The surface roughness and defect density of GaN epitaxial layers grown on c-plane sapphire substrate are investigated and found to be dependent on nitridation temperature. GaN epitaxial layers grown after nitridation of sapphire at 200°C have a higher defect density and higher surface roughness compared to the GaN layers grown at 646°C nitridation as confirmed by atomic force microscopy (AFM). The persistent photoconductivity (PPC) was observed in both samples and it was found to be decreasing with decreasing temperature in the range 150-300°C due to long carrier lifetime and high electron mobility at low temperature. The photoresponse of the GaNmore » films grown in this study exhibit improved PPC due to their better surface morphology at 646°C nitrided sample. The point defects or extended microstructure defects limits the photocarrier lifetime and electron mobility at 200°C nitrided sample.« less
NASA Astrophysics Data System (ADS)
Li, Yang; He, Yongyong; Wang, Wei; Mao, Junyuan; Zhang, Lei; Zhu, Yijie; Ye, Qianwen
2018-03-01
In direct current plasma nitriding (DCPN), the treated components are subjected to a high cathodic potential, which brings several inherent shortcomings, e.g., damage by arcing and the edging effect. In active screen plasma nitriding (ASPN) processes, the cathodic potential is applied to a metal screen that surrounds the workload, and the component to be treated is placed in a floating potential. Such an electrical configuration allows plasma to be formed on the metal screen surface rather than on the component surface; thus, the shortcomings of the DCPN are eliminated. In this work, the nitrided experiments were performed using a plasma nitriding unit. Two groups of samples were placed on the table in the cathodic and the floating potential, corresponding to the DCPN and ASPN, respectively. The floating samples and table were surrounded by a steel screen. The DCPN and ASPN of the AISI 304 stainless steels are investigated as a function of the electric potential. The samples were characterized using scanning electron microscopy with energy-dispersive x-ray spectroscopy, x-ray diffraction, atomic force microscopy and transmission electron microscope. Dry sliding ball-on-disk wear tests were conducted on the untreated substrate, DCPN and ASPN samples. The results reveal that all nitrided samples successfully produced similar nitrogen-supersaturated S phase layers on their surfaces. This finding also shows the strong impact of the electric potential of the nitriding process on the morphology, chemical characteristics, hardness and tribological behavior of the DCPN and ASPN samples.
Effect of Thermodiffusion Nitriding on Cytocompatibility of Ti-6Al-4V Titanium Alloy
NASA Astrophysics Data System (ADS)
Pohrelyuk, I. M.; Tkachuk, O. V.; Proskurnyak, R. V.; Boiko, N. M.; Kluchivska, O. Yu.; Stoika, R. S.
2016-04-01
The nitrided layer was formed on the surface of Ti-6Al-4V titanium alloy by the thermodiffusion saturation in nitrogen at the atmospheric pressure. The study of the vitality of pseudonormal human embryo kidney cells of the HEK293T line showed that their cultivation in the presence of the untreated alloy sample is accompanied by a statistically significant reduction in the number of living cells compared with the control sample (untreated cells), whereas their cultivation in the presence of the nitrided alloy sample does not change the cell number considerably. In addition, it was shown that cell behavior in the presence of the nitrided sample differs only slightly from the control sample, whereas the growth of cells in the presence of the untreated alloy differed significantly from that in the control sample, demonstrating small groups of cells instead of their big clusters.
Microstructure and dry-sliding wear properties of DC plasma nitrided 17-4 PH stainless steel
NASA Astrophysics Data System (ADS)
Li, Gui-jiang; Wang, Jun; Li, Cong; Peng, Qian; Gao, Jian; Shen, Bao-luo
2008-05-01
An attempt that the precipitation hardening steel 17-4PH was conducted by DC plasma nitriding (DCPN) is made to develop a kind of candidate material for nuclear reactor. Nitriding process performed at temperature ⩽ 400 °C takes effect on creation of the layers composed of S-phase (expanded austenite) and αN‧ (expanded martensite). Up to the temperature of 420 °C, the S-phase peaks disappear due to the transformation occurrence (S-phase → αN‧ + CrN). For the samples nitrided at temperature ⩾ 450 °C, no evidence of αN‧ is found owing to a precipitation (αN‧ → α +CrN) taking place. For the 480 °C/4 h treated sample, it is the surface microhardness that plays the lead role in the wear rate reduction but the surface roughness; while for the 400 °C/4 h treated sample, it is both of the surface roughness and the S-phase formation. Dry sliding wear of the untreated 17-4PH is mainly characterized by strong adhesion, abrasion and oxidation mechanism. Samples nitrided at 400 °C which is dominated by slight abrasion and plastic deformation exhibit the best dry sliding wear resistance compared to the samples nitrided at other temperatures.
Saha, Dipendu; Orkoulas, Gerassimos; Yohannan, Samuel; Ho, Hoi Chun; Cakmak, Ercan; Chen, Jihua; Ozcan, Soydan
2017-04-26
In this work, nanoporous boron nitride sample was synthesized with a Brunauer-Emmett-Teller (BET) surface area of 1360 m 2 /g and particle size 5-7 μm. The boron nitride was characterized with X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electron microscopy (TEM and SEM). Thermogravimetric analysis (TGA) under nitrogen and air and subsequent analysis with XPS and XRD suggested that its structure is stable in air up to 800 °C and in nitrogen up to 1050 °C, which is higher than most of the common adsorbents reported so far. Nitrogen and hydrocarbon adsorption at 298 K and pressure up to 1 bar suggested that all hydrocarbon adsorption amounts were higher than that of nitrogen and the adsorbed amount of hydrocarbon increases with an increase in its molecular weight. The kinetics of adsorption data suggested that adsorption becomes slower with the increase in molecular weight of hydrocarbons. The equilibrium data suggested that that boron nitride is selective to paraffins in a paraffin-olefin mixture and hence may act as an "olefin generator". The ideal adsorbed solution theory (IAST)-based selectivity for CH 4 /N 2 , C 2 H 6 /CH 4 , and C 3 H 8 /C 3 H 6 was very high and probably higher than the majority of adsorbents reported in the literature. IAST-based calculations were also employed to simulate the binary mixture adsorption data for the gas pairs of CH 4 /N 2 , C 2 H 6 /CH 4 , C 2 H 6 /C 2 H 4 , and C 3 H 8 /C 3 H 6 . Finally, a simple mathematical model was employed to simulate the breakthrough behavior of the above-mentioned four gas pairs in a dynamic column experiment. The overall results suggest that nanoporous boron nitride can be used as a potential adsorbent for light hydrocarbon separation.
NASA Astrophysics Data System (ADS)
Giannopoulos, Georgios I.; Kontoni, Denise-Penelope N.; Georgantzinos, Stylianos K.
2016-08-01
This paper describes the static and free vibration behavior of single walled boron nitride nanotubes using a structural mechanics based finite element method. First, depending on the type of nanotube under investigation, its three dimensional nanostructure is developed according to the well-known corresponding positions of boron and nitride atoms as well as boron nitride bonds. Then, appropriate point masses are assigned to the atomic positions of the developed space frame. Next, these point masses are suitably interconnected with two-noded, linear, spring-like, finite elements. In order to simulate effectively the interactions observed between boron and nitride atoms within the nanotube, appropriate potential energy functions are introduced for these finite elements. In this manner, various atomistic models for both armchair and zigzag nanotubes with different aspect ratios are numerically analyzed and their effective elastic modulus as well as their natural frequencies and corresponding mode shapes are obtained. Regarding the free vibration analysis, the computed results reveal bending, breathing and axial modes of vibration depending on the nanotube size and chirality as well as the applied boundary support conditions. The longitudinal stiffness of the boron nitride nanotubes is found also sensitive to their geometric characteristics.
Nitriding kinetics of Si-SiC powder mixtures as simulations of reaction bonded Si3N4-SiC composites
NASA Technical Reports Server (NTRS)
Lightfoot, A.; Sheldon, B. W.; Flint, J. H.; Haggerty, J. S.
1989-01-01
The nitriding kinetics of Si and Si plus SiC powder mixtures were studied to simulate the fabrication of RBSN-SiC ceramic matrix composites. Very clean, assynthesized, and solvent-exposed powders were studied; C-rich and Si-rich SiC 0.04-0.05 micron diameter powders were mixed in varying concentrations with SiH4-derived 0.2-0.3 micron diameter Si powder. Complete nitridation is achieved with C-rich SiC powders in 140 min at 1250 C, and in the centers of Si-rich SiC powders in 15 min. The effects on the incubation periods, fast reaction periods, and slow reaction periods that characterize these nitriding processes were studied to explain unusual reverse reaction gradients and other effects of contamination.
Nitridation of porous GaAs by an ECR ammonia plasma
NASA Astrophysics Data System (ADS)
Naddaf, M.; Hullavarad, S. S.; Ganesan, V.; Bhoraskar, S. V.
2006-02-01
The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 °C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 °C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy.
1996-12-01
gallium, nitrogen and gallium nitride structures. Thus it can be shown to be transferable and efficient for predictive molecular -dynamic simulations on...potentials and forces for the molecular dynamics simulations are derived by means of a density-functional based nonorthogonal tight-binding (DF-TB) scheme...LDA). Molecular -dynamics simulations for determining the different reconstructions of the SiC surface use the slab method (two-dimensional periodic
NASA Astrophysics Data System (ADS)
Bott, June; Yin, Hongbin; Sridhar, Seetharaman
2014-12-01
When high Al containing Fe alloys such as TRIP steels are exposed to atmospheres that contain N2 during re-heating, sub-surface nitrides form and these can be detrimental to mechanical properties. Nitride precipitation can be controlled by minimizing the access of the gaseous atmosphere to the metal surface, which can be achieved by a rapid growth of a continuous and adherent surface scale. This investigation utilizes a Au-image furnace attached to a confocal scanning microscope to simulate the annealing temperature vs time while Fe-Al alloys (with Al contents varying from 1 to 8 wt pct) are exposed to a O2-N2 atm with 10-6 atm O2. The heating times of 1, 10, and 100 minutes to the isothermal temperature of 1558 K (1285 °C) were used. It was found that fewer sub-surface nitride precipitates formed when the heating time was lowered and when Al content in the samples was increased. In the 8 wt pct samples, no internal nitride precipitates were present regardless of heating time. In the 3 and 5 wt pct samples, internal nitride precipitates were nearly more or less absent at heating times less than 10 minutes. The decrease in internal precipitates was governed by the evolving structure of the external oxide-scale. At low heating rates and/or low Al contents, significant Fe-oxide patches formed and these appeared to allow for ingress of gaseous N2. For the slow heating rates, ingress could have happened during the longer time spent in lower temperatures where non-protective alumina was present. As Al content in the alloy was increased, the external scale was Al2O3 and/or FeAl2O4 and more continuous and consequently hindered the N2 from accessing the metal surface. Increasing the Al content in the alloy had the effect of promoting the outward diffusion of Al in the alloy and thereby assisting the formation of the continuous external layer of Al2O3 and/or FeAl2O4.
McLean, Ben; Eveleens, Clothilde A; Mitchell, Izaac; Webber, Grant B; Page, Alister J
2017-10-11
Low-dimensional carbon and boron nitride nanomaterials - hexagonal boron nitride, graphene, boron nitride nanotubes and carbon nanotubes - remain at the forefront of advanced materials research. Catalytic chemical vapour deposition has become an invaluable technique for reliably and cost-effectively synthesising these materials. In this review, we will emphasise how a synergy between experimental and theoretical methods has enhanced the understanding and optimisation of this synthetic technique. This review examines recent advances in the application of CVD to synthesising boron nitride and carbon nanomaterials and highlights where, in many cases, molecular simulations and quantum chemistry have provided key insights complementary to experimental investigation. This synergy is particularly prominent in the field of carbon nanotube and graphene CVD synthesis, and we propose here it will be the key to future advances in optimisation of CVD synthesis of boron nitride nanomaterials, boron nitride - carbon composite materials, and other nanomaterials generally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, J. Y. Y.; Aczel, Adam A; Abernathy, Douglas L
2014-01-01
Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of- flight chopper spectrometers [A.A. Aczel et al, Nature Communications 3, 1124 (2012)]. These modes are well described by 3D isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accountingmore » for the nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states (PDOS), and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T-dependence of the scattering from these modes is strongly influenced by the uranium lattice.« less
Advanced ceramic material for high temperature turbine tip seals
NASA Technical Reports Server (NTRS)
Solomon, N. G.; Vogan, J. W.
1978-01-01
Ceramic material systems are being considered for potential use as turbine blade tip gas path seals at temperatures up to 1370 1/4 C. Silicon carbide and silicon nitride structures were selected for study since an initial analysis of the problem gave these materials the greatest potential for development into a successful materials system. Segments of silicon nitride and silicon carbide materials over a range of densities, processed by various methods, a honeycomb structure of silicon nitride and ceramic blade tip inserts fabricated from both materials by hot pressing were tested singly and in combination. The evaluations included wear under simulated engine blade tip rub conditions, thermal stability, impact resistance, machinability, hot gas erosion and feasibility of fabrication into engine components. The silicon nitride honeycomb and low-density silicon carbide using a selected grain size distribution gave the most promising results as rub-tolerant shroud liners. Ceramic blade tip inserts made from hot-pressed silicon nitride gave excellent test results. Their behavior closely simulated metal tips. Wear was similar to that of metals but reduced by a factor of six.
A kinetic model for the thermal nitridation of SiO2/Si
NASA Technical Reports Server (NTRS)
Vasquez, R. P.; Madhukar, A.
1986-01-01
To explain the observed nitrogen distributions in thermally nitridated SiO2 films, a kinetic model is proposed in which the nitridation process is simulated, using the first-order chemical kinetics and Arrhenius dependence of the diffusion and reaction rates on temperature. The calculations show that initially, as the substrate reacts with diffusing nitrogen, a nitrogen-rich oxynitride forms at the SiO2-Si interface, while at nitridation temperatures above 1000 C, an oxygen-rich oxynitride subsequently forms at the interface, due to reaction of the substrate with an increasingly concentrated oxygen displaced by the slower nitridation of the SiO2. This sequence of events results in a nitrogen distribution in which the peak of the interfacial nitrogen concentration occurs away from the interface. The results are compared with the observed nitrogen distribution. The calculated results have correctly predicted the positions of the interfacial nitrogen peaks at the temperatures of 800, 1000, and 1150 C. To account for the observed width of the interfacial nitrogen distribution, it was found necessary to include in the simulations the effect of interfacial strain.
NASA Astrophysics Data System (ADS)
Kao, W. H.; Su, Y. L.; Hsieh, Y. T.
2017-08-01
Ti6Al4V alloy substrates were nitrided at 900 °C. TiN coatings were then deposited on the nitrided substrates using a closed-field unbalanced magnetron sputtering system. The microstructure, hardness and adhesion properties of the TiN-N-Ti6Al4V substrates were evaluated and compared with those of an untreated Ti6Al4V sample, a nitrided Ti6Al4V sample and a TiN-coated Ti6Al4V sample, respectively. The tribological properties of the various samples were investigated by means of reciprocating sliding wear tests performed in 0.9 wt.% NaCl solution against 316L, Si3N4 and Ti6Al4V balls, respectively. In addition, the corrosion resistance was evaluated using potentiodynamic polarization tests. Finally, the biocompatibility of the samples was investigated by observing the attachment and growth of purified mouse leukemic monocyte/macrophage cells (Raw 264.7) on the sample surface after culturing periods of 24, 72 and 120 h, respectively. Overall, the results showed that the duplex nitriding/TiN coating treatment significantly improved the tribological, anti-corrosion and biocompatibility properties of the original Ti6Al4V alloy.
Phase formation in selected surface-roughened plasma-nitrided 304 austenite stainless steel.
Singh, Gajendra Prasad; Joseph, Alphonsa; Raole, Prakash Manohar; Barhai, Prema Kanta; Mukherjee, Subroto
2008-04-01
Direct current (DC) glow discharge plasma nitriding was carried out on three selected surface-roughened AISI 304 stainless steel samples at 833 K under 4 mbar pressures for 24 h in the presence of N 2 :H 2 gas mixtures of 50 : 50 ratios. After plasma nitriding, the phase formation, case depth, surface roughness, and microhardness of a plasma-nitrided layer were evaluated by glancing angle x-ray diffractogram, optical microscope, stylus profilometer, and Vickers microhardness tester techniques. The case depth, surface hardness, and phase formation variations were observed with a variation in initial surface roughness. The diffraction patterns of the plasma-nitrided samples showed the modified intensities of the α and γ phases along with those of the CrN, Fe 4 N, and Fe 3 N phases. Hardness and case depth variations were observed with a variation in surface roughness. A maximum hardness of 1058 Hv and a case depth of 95 μm were achieved in least surface-roughened samples.
Tribological and corrosion properties of plasma nitrided and nitrocarburized 42CrMo4 steel
NASA Astrophysics Data System (ADS)
Kusmic, D.; Van Thanh, D.
2017-02-01
This article deals with tribological and corrosion resistance comparison of plasma nitrided and nitrocarburized 42CrMo4 steel used for breech mechanism in the armament production. Increasing of materials demands (like wear resistance, surface hardness, running-in properties and corrosion resistance) used for armament production and in other industrial application leads in the field of surface treatment. Experimental steel samples were plasma nitrided under different nitriding gas ratio at 500 °C for 15h and nitrocarburized for 45 min at temperature 590°C and consequently post-oxidized for 10 min at 430°C. Individual 42CrMo4 steel samples were subsequently metallographically evaluated and characterized by hardness and microhardness measuring. The wear test “ball on disc” was realized for measuring of adhesive wear and coefficient of friction during unlubricated sliding. NSS corrosion tests were realized for corrosion resistance evaluation and expressed by corroded area and calculated corrosion rate. The corrosion resistance evaluation is by the surface corrosion-free surfaces evaluation supplemented using the laser confocal microscopy. Due to different surface treatment and plasma nitriding conditions, there are wear resistance and corrosion resistance differences evident between the plasma nitrided steel samples as well.
Li, H; Yuan, B; Gao, Y; Chung, C Y; Zhu, M
2011-12-15
An in-situ nitriding method has been developed to modify the outer surface and the pore walls of both open and closed pores of porous NiTi shape memory alloys (SMAs) as part of their sintering process. XRD and XPS examinations revealed that the modified layer is mainly TiN. The biocompatibility of the in-situ nitrided sample has been characterized by its corrosion resistance, cell adherence, and implant surgery. The in-situ nitrided porous NiTi SMAs exhibit much better corrosion resistance, cell adherence, and bone tissue induced capability than the porous NiTi alloys without surface modification. Furthermore, the released Ni ion content in the blood of rabbit is reduced greatly by the in-situ nitriding. The excellent biocompatibility of in-situ nitrided sample is attributed to the formation of the TiN layer on all the pore walls including both open and closed pores. Copyright © 2011 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, S.D. de; Olzon-Dionysio, M., E-mail: dmod@df.ufscar.br; Basso, R.L.O.
2010-10-15
Plasma nitriding of ASTM F138 stainless steel samples has been carried out using dc glow discharge under 80% H{sub 2}-20% N{sub 2} gas mixture, at 673 K, and 2, 4, and 7 h time intervals, in order to investigate the influence of treatment time on the microstructure and the corrosion resistance properties. The samples were characterized by scanning electron microscopy, glancing angle X-ray diffraction and conversion electron Moessbauer spectroscopy, besides electrochemical tests in NaCl aerated solution. A modified layer of about 6 {mu}m was observed for all the nitrided samples, independent of nitriding time. The X-ray diffraction analysis shows broadmore » {gamma}{sub N} phase peaks, signifying a great degree of nitrogen supersaturation. Besides {gamma}{sub N,} the Moessbauer spectroscopy results indicated the occurrence of {gamma}' and {epsilon} phases, as well as some other less important phases. Corrosion measurements demonstrate that the plasma nitriding time affects the corrosion resistance and the best performance is reached at 4 h treatment. It seems that the {epsilon}/{gamma}' fraction ratio plays an important role on the resistance corrosion. Additionally, the Moessbauer spectroscopy was decisive in this study, since it was able to identify and quantify the iron phases that influence the corrosion resistance of plasma nitrided ASTM F138 samples.« less
Osteoblastlike cell adhesion on titanium surfaces modified by plasma nitriding.
da Silva, Jose Sandro Pereira; Amico, Sandro Campos; Rodrigues, Almir Olegario Neves; Barboza, Carlos Augusto Galvao; Alves, Clodomiro; Croci, Alberto Tesconi
2011-01-01
The aim of this study was to evaluate the characteristics of various titanium surfaces modified by cold plasma nitriding in terms of adhesion and proliferation of rat osteoblastlike cells. Samples of grade 2 titanium were subjected to three different surface modification processes: polishing, nitriding by plasma direct current, and nitriding by cathodic cage discharge. To evaluate the effect of the surface treatment on the cellular response, the adhesion and proliferation of osteoblastlike cells (MC3T3) were quantified and the results were analyzed by Kruskal-Wallis and Friedman statistical tests. Cellular morphology was observed by scanning electron microscopy. There was more MC3T3 cell attachment on the rougher surfaces produced by cathodic cage discharge compared with polished samples (P < .05). Plasma nitriding improves titanium surface roughness and wettability, leading to osteoblastlike cell adhesion.
NASA Astrophysics Data System (ADS)
Granda-Gutiérrez, E. E.; Díaz-Guillén, J. C.; Díaz-Guillén, J. A.; González, M. A.; García-Vázquez, F.; Muñóz, R.
2014-11-01
In this paper, we present the results of a duplex plasma nitriding followed by an oxidizing stage process (which is also referred as oxy-nitriding) on the corrosion behavior of a 17-4PH precipitation hardening stainless steel. The formation of both, expanded martensite (b.c.t. α'N-phase) and chromium oxide (type Cr2O3) in the subsurface of oxy-nitrided samples at specific controlled conditions, leads in a noticeable increasing in the time-to-rupture during the sulfide stress cracking test, in comparison with an untreated reference sample. Oxy-nitriding improves the corrosion performance of the alloy when it is immersed in solutions saturated by sour gas, which extends the application potential of this type of steel in the oil and gas extraction and processing industry. The presence of the oxy-nitrided layer inhibits the corrosion process that occurs in the near-surface region, where hydrogen is liberated after the formation of iron sulfides, which finally produces a fragile fracture by micro-crack propagation; the obtained results suggest that oxy-nitriding slows this process, thus delaying the rupture of the specimen. Moreover, oxy-nitriding produces a hard, sour gas-resistant surface, but do not significantly affect the original chloride ion solution resistance of the material.
NASA Astrophysics Data System (ADS)
Kharlamov, Alexey; Bondarenko, Marina; Kharlamova, Ganna; Fomenko, Veniamin
2016-09-01
For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C3N4)O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C3N4. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists of weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets.
Nitriding of Polymer by Low Energy Nitrogen Neutral Beam Source
NASA Astrophysics Data System (ADS)
Hara, Yasuhiro; Takeda, Keigo; Yamakawa, Koji; Den, Shoji; Toyoda, Hirotaka; Sekine, Makoto; Hori, Masaru
2012-03-01
Nitriding of polyethylene naphthalate (PEN) has been carried out at room temperature using a nitrogen neutral beam with kinetic energy of less than 100 eV. The surface hardness of nitrided samples increased to two times that of the untreated sample, when the acceleration voltage was between 30 and 50 V. The thickness of the hardened polymer layer was estimated to be 1 µm. It was concluded that the hardness enhancement was caused by the diffusion of nitrogen atoms into the polymer.
Modeling and Simulation of a Gallium Nitride (GaN) Betavoltaic Energy Converter
2016-06-01
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY...June 2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 05/2015–08/2015 4. TITLE AND SUBTITLE Modeling and Simulation of a Gallium Nitride...current battery technology has several drawbacks, such as charge leakage, temperature and environment sensitivity, and finite charge cycles. Radioisotope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvan, J.S.; Subramanian, K.; Nath, A.K.
Surface nitriding of commercially pure (CP) titanium was carried out using high power CO{sub 2} laser at pure nitrogen and dilute nitrogen (N{sub 2} + Ar) environment. The hardness, microstructure, and melt pool configuration of the laser melted titanium in helium and argon atmosphere was compared with laser melting at pure and dilute nitrogen environment. The hardness of the nitrided layer was of the order of 1000 to 1600 HV. The hardness of the laser melted titanium in the argon and helium atmosphere was 500 to 1000 HV. Using x-ray analysis of the formation of TiN and Ti{sub 2}N phasemore » was identified in the laser nitrided titanium. The presence of nitrogen in the nitrided zone was confirmed using secondary ion mass spectroscopy (SIMS) analysis. The microstructures revealed densely populated dendrites in the sample nitrided at 100% N{sub 2} environment and thinly populated dendrites in dilute environment. The crack intensity was large in the nitrided sample at pure nitrogen, and few cracks were observed in the 50% N{sub 2} + 50% Ar environment.« less
NASA Astrophysics Data System (ADS)
Shimabayashi, Masaharu; Kurihara, Kazuaki; Sasaki, Koichi
2018-05-01
We remotely irradiated a nitrogen plasma onto the carbon-side surface of 4H-SiC at a low temperature, and examined the effect of sample cooling on the characteristics of the nitride layer. An improved nitride layer, which had higher concentrations of carbon and silicon and a lower concentration of oxygen, was formed in the region at depths of more than 0.6–0.9 nm from the top surface. The depth of the fragile nitride layer in the top region, where no improved characteristics of the nitride layer were observed, became smaller with sample cooling. In addition, on the basis of the experimental results, we discussed the difference in the activation energy of the nitriding reaction of 4H-SiC supported by atomic nitrogen and molecular nitrogen in the metastable \\text{A}3Σ \\text{u} + state.
Isotope heat source simulator for testing of space power systems
NASA Technical Reports Server (NTRS)
Prok, G. M.; Smith, R. B.
1973-01-01
A reliable isotope heat source simulator was designed for use in a Brayton power system. This simulator is composed of an electrically heated tungsten wire which is wound around a boron nitride core and enclosed in a graphite jacket. Simulator testing was performed at the expected operating temperature of the Brayton power system. Endurance testing for 5012 hours was followed by cycling the simulator temperature. The integrity of this simulator was maintained throughout testing. Alumina beads served as a diffusion barrier to prevent interaction between the tungsten heater and boron nitride core. The simulator was designed to maintain a surface temperature of 1311 to 1366 K (1900 to 2000 F) with a power input of approximately 400 watts. The design concept and the materials used in the simulator make possible man different geometries. This flexibility increases its potential use.
Effects of ultraviolet radiation on lattice imperfections in pyrolytic boron nitride.
NASA Technical Reports Server (NTRS)
Buckley, J. D.; Cooley, J. A.
1971-01-01
Pyrolitic boron nitride was exposed to 310 equivalent sun hours of ultraviolet radiation in a space environment simulator with the objective to evaluate its applicability as a pigment for a thermal control coating and to identify radiation damage using X-ray diffraction techniques. Lattice parameter comparisons show a definite increase in lattice imperfections in the crystal structure resulting from the ultraviolet irradiation. This sensitivity to radiation damage makes pyrolitic boron nitride unsuitable as a pigment for thermal control coating.
Structural Analysis of a Magnetically Actuated Silicon Nitride Micro-Shutter for Space Applications
NASA Technical Reports Server (NTRS)
Loughlin, James P.; Fettig, Rainer K.; Moseley, S. Harvey; Kutyrev, Alexander S.; Mott, D. Brent; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
Finite element models have been created to simulate the electrostatic and electromagnetic actuation of a 0.5 micrometers silicon nitride micro-shutter for use in a spacebased Multi-object Spectrometer (MOS). The microshutter uses a torsion hinge to go from the closed, 0 degree, position, to the open, 90 degree position. Stresses in the torsion hinge are determined with a large deformation nonlinear finite element model. The simulation results are compared to experimental measurements of fabricated micro-shutter devices.
Metal surface nitriding by laser induced plasma
NASA Astrophysics Data System (ADS)
Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.
1996-10-01
We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features as purity, thickness, and surface morphology.
The Influence of Hot-Rolled Temperature on Plasma Nitriding Behavior of Iron-Based Alloys
NASA Astrophysics Data System (ADS)
El-Hossary, F. M.; Khalil, S. M.; Lotfy, Kh.; Kassem, M. A.
2009-07-01
Experiments were performed with an aim of studying the effect of hot-rolled temperature (600 and 900°C) on radio frequency (rf) plasma nitriding of Fe93Ni4Zr3 alloy. Nitriding was carried out for 10 min in a nitrogen atmosphere at a base pressure of 10-2 mbarr. Different continuous plasma processing powers of 300-550 W in steps 50 W or less were applied. Nitrided hot-rolled specimens were characterized by optical microscopy (OM), X-ray diffraction (XRD) and microhardness measurements. The results reveal that the surface of hot-rolled rf plasma nitrided specimens at 600°C is characterized with a fine microstructure as a result of the high nitrogen solubility and diffusivity. Moreover, the hot-rolled treated samples at 600°C exhibit higher microhardness value than the associated values of hot-rolled treated samples at 900°C. The enhancement of microhardness is due to precipitation and predominance of new phases ( γ and ɛ phases). Mainly, this conclusion has been attributed to the high defect densities and small grain sizes of the samples hot-rolled at 600°C. Generally, the refinement of grain size plays a dramatic role in improvement of mechanical properties of tested samples.
NASA Astrophysics Data System (ADS)
Tanasta, Z.; Muhamad, P.; Kuwano, N.; Norfazrina, H. M. Y.; Unuh, M. H.
2018-03-01
Aluminium Nitride (AlN) is a ceramic 111-nitride material that is used widely as components in functional devices. Besides good thermal conductivity, it also has a high band gap in emitting light which is 6 eV. AlN thin film is grown on the sapphire substrate (0001). However, lattice mismatch between both materials has caused defects to exist along the microstructure of AlN thin films. The defects have affected the properties of Aluminium Nitride. Annealing heat treatment has been proved by the previous researcher to be the best method to improve the microstructure of Aluminium Nitride thin films. Hence, this method is applied at four different temperatures for two hour. The changes of Aluminium Nitride microstructures before and after annealing is observed using Transmission Electron Microscope. It is observed that inversion domains start to occur at temperature of 1500 °C. Convergent Beam Electron Diffraction pattern simulation has confirmed the defects as inversion domain. Therefore, this paper is about to extract the matters occurred during the process of producing high quality Aluminium Nitride thin films and the ways to overcome this problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, Thirumaleshwara N.; Rajpalke, Mohana K.; Krupanidhi, S. B.
Phase pure wurtzite GaN films were grown on Si (100) substrates by introducing a silicon nitride layer followed by low temperature GaN growth as buffer layers. GaN films grown directly on Si (100) were found to be phase mixtured, containing both cubic ({beta}) and hexagonal ({alpha}) modifications. The x-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN films grown with silicon nitride buffer layer grown at 800 deg. C when compared to the samples grown in the absence of silicon nitridemore » buffer layer and with silicon nitride buffer layer grown at 600 deg. C. Core-level photoelectron spectroscopy of Si{sub x}N{sub y} layers reveals the sources for superior qualities of GaN epilayers grown with the high temperature substrate nitridation process. The discussion has been carried out on the typical inverted rectification behavior exhibited by n-GaN/p-Si heterojunctions. Considerable modulation in the transport mechanism was observed with the nitridation conditions. The heterojunction fabricated with the sample of substrate nitridation at high temperature exhibited superior rectifying nature with reduced trap concentrations. Lowest ideality factors ({approx}1.5) were observed in the heterojunctions grown with high temperature substrate nitridation which is attributed to the recombination tunneling at the space charge region transport mechanism at lower voltages and at higher voltages space charge limited current conduction is the dominating transport mechanism. Whereas, thermally generated carrier tunneling and recombination tunneling are the dominating transport mechanisms in the heterojunctions grown without substrate nitridation and low temperature substrate nitridation, respectively.« less
NASA Astrophysics Data System (ADS)
Xie, Fei; Zhang, Ge; Pan, Jianwei
2018-02-01
Thin cases and long treating time are shortcomings of conventional duplex treatment of aluminizing followed by nitriding (DTAN). Alternating current field (ACF) enhanced DTAN was carried out on AISI 1045 steel by applying an ACF to treated samples and treating agents with a pair of electrodes for overcoming those shortcomings. By investigating cases' structures, phases, composition and hardness distributions of differently treated samples, preliminary studies were made on characterizations of the ACF enhanced duplex treatment to AISI 1045 steel. The results show that, with the help of the ACF, the surface Al-rich phase Al5Fe2 formed in conventional pack aluminizing can be easily avoided and the aluminizing process is dramatically promoted. The aluminizing case can be nitrided either with conventional pack nitriding or ACF enhanced pack nitriding. By applying ACF to pack nitriding, the diffusion of nitrogen into the aluminizing case is promoted. AlN, Fe2∼3N and solid solution of N in iron are efficiently formed as a result of reactions of N with the aluminizing case. A duplex treated case with an effective thickness of more than 170 μm can be obtained by the alternating current field enhanced 4 h pack aluminizing plus 4 h pack nitriding.
NASA Technical Reports Server (NTRS)
Haggerty, John S.; Lightfoot, A.; Sigalovsky, J.
1993-01-01
The topics discussed include the following: effects of solvent and polymer exposures on nitriding kinetics of high purity Si powders and on resulting phase distributions; effects of solvent and polymer exposures on Si Surface Chemistry; effects of solvent and polymeric exposures on nitriding kinetics; and fabrication of flexural test samples.
Modeling and Simulation of III-Nitride-Based Solar Cells using NextnanoRTM
NASA Astrophysics Data System (ADS)
Refaei, Malak
Nextnano3 software is a well-known package for simulating semiconductor band-structures at the nanoscale and predicting the general electronic structure. In this work, it is further demonstrated as a viable tool for the simulation of III-nitride solar cells. In order to prove this feasibility, the generally accepted solar cell simulation package, PC1D, was chosen for comparison. To critique the results from both PC1D and Nextnano3, the fundamental drift-diffusion equations were used to calculate the performance of a simple p-n homojunction solar cell device analytically. Silicon was picked as the material for this comparison between the outputs of the two simulators as well as the results of the drift-diffusion equations because it is a well-known material in both software tools. After substantiating the capabilities of Nextnano3 for the simulation solar cells, an InGaN single-junction solar cell was simulated. The effects of various indium compositions and device structures on the performance of this InGaN p-n homojunction solar cell was then investigated using Nextnano 3 as a simulation tool. For single-junction devices with varying bandgap, an In0.6Ga0.4N device with a bandgap of 1.44 eV was found to be the optimum. The results of this research demonstrate that the Nextnano3 software can be used to usefully simulate solar cells in general, and III-nitride solar cells specifically, for future study of nanoscale structured devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okada, H.; Kato, M.; Ishimaru, T.
2014-02-20
Organometallic chemical vapor deposition of silicon nitride films enhanced by atomic nitrogen generated from surface-wave plasma is investigated. Feasibility of precursors of triethylsilane (TES) and bis(dimethylamino)dimethylsilane (BDMADMS) is discussed based on a calculation of bond energies by computer simulation. Refractive indices of 1.81 and 1.71 are obtained for deposited films with TES and BDMADMS, respectively. X-ray photoelectron spectroscopy (XPS) analysis of the deposited film revealed that TES-based film coincides with the stoichiometric thermal silicon nitride.
NASA Technical Reports Server (NTRS)
Heinemann, K.
1985-01-01
The interaction of 100 and 200 keV electron beams with amorphous alumina, titania, and aluminum nitride substrates and nanometer-size palladium particulate deposits was investigated for the two extreme cases of (1) large-area electron-beam flash-heating and (2) small-area high-intensity electron-beam irradiation. The former simulates a short-term heating effect with minimum electron irradiation exposure, the latter simulates high-dosage irradiation with minimum heating effect. All alumina and titania samples responded to the flash-heating treatment with significant recrystallization. However, the size, crystal structure, shape, and orientation of the grains depended on the type and thickness of the films and the thickness of the Pd deposit. High-dosage electron irradiation also readily crystallized the alumina substrate films but did not affect the titania films. The alumina recrystallization products were usually either all in the alpha phase, or they were a mixture of small grains in a number of low-temperature phases including gamma, delta, kappa, beta, theta-alumina. Palladium deposits reacted heavily with the alumina substrates during either treatment, but they were very little effected when supported on titania. Both treatments had the same, less prominent localized crystallization effect on aluminum nitride films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharlamov, Alexey; Bondarenko, Marina, E-mail: mebondarenko@ukr.net; Kharlamova, Ganna
For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists ofmore » weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets. - Graphical abstract: XRD pattern and schematic atomic model of one layer of reduced carbon nitride, carbon nitride oxide and synthesized carbon nitride. For the first time at the reduction by hydroquinone of the water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O is obtained the reduced carbon nitride (or reduced multi-layer azagraphene). Display Omitted - Highlights: • First the reduced carbon nitride (RCN) at the reduction of the carbon nitride oxide was obtained. • Water-soluble carbon nitride oxide was reduced by hydroquinone. • The chemical bonds in a heteroatomic plane of RCN correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. • Reduced carbon nitride consists of poorly connected heteroatomic azagraphene layers.« less
NASA Astrophysics Data System (ADS)
Wang, Jun; Lin, Yuanhua; Li, Mingxing; Fan, Hongyuan; Zeng, Dezhi; Xiong, Ji
2013-08-01
The effects of salt-bath nitriding time on the microstructure, microhardness, and erosion-corrosion behavior of nitrided 17-4PH stainless steel at 703 K (430 °C) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and erosion-corrosion testing. The experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt-bathing nitriding, the main phase of the nitrided layer was expanded martensite ( α`), expanded austenite (S), CrN, Fe4N, and Fe2N. The thickness of nitrided layers increased with the treating time. The salt-bath nitriding improves effectively the surface hardness. The maximum values measured from the treated surface are observed to be 1100 HV0.1 for 40 hours approximately, which is about 3.5 times as hard as the untreated material (309 HV0.1). Low-temperature nitriding can improve the erosion-corrosion resistance against two-phase flow. The sample nitrided for 4 hours has the best corrosion resistance.
Comparative study of elastic constantd of α-, β- and Cubic- silicon nitride
NASA Astrophysics Data System (ADS)
Yao, Hongzhi; Ouyang, Lizhi; Ching, Wai-Yim
2003-03-01
Silicon nitride is an important structural ceramic and dielectric insulator. Recently, the new high pressure cubic phase of silicon nitride in spinel structure has attracted a lot of attention.^[1] We have carried out a detailed ab-initio calculation of all independent elastic constants for all three phases of Si_3N4 by using the Vienna Ab-initio Simulation Package (VASP) in both LDA and GGA approxmations. The results for β-Si_3N4 are in reasonable agreement with a experimental measurement on single crystal samples.^[2] For cubic-Si_3N4 , The three independent elastic constants are predicted to be C_11 = 504.16 GPa, C_12 = 176.66 GPa, C_44 = 326.65 GPa and a bulk modulus B = 286 GPa. This value is very close to the experimental value of 300 GPa.^[1] All these results will be compared with those obtained by using the OLCAO method based on localized orbital approach.^[3] [1]. Wai-Yim Ching, Yong-Nian Xu, Jukian D. Gale, and Manfred Ruhle, J. Am. Ceram. Soc. 81, 3189 (1998) [2]. R. Vogelgesang, M. Grimsditch, and J. S. Wallace, Appl. Phys. Lett. 76, 8 (2000) [3]. W.Y.Ching, Lizhi Ouyang, and Julian D. Gale, Phys. Rev. B61, 13, (2000)
The effect of plasma surface treatment on the bioactivity of titanium implant materials (in vitro)
Abdelrahim, Ramy A.; Badr, Nadia A.; Baroudi, Kusai
2016-01-01
Background: The surface of an implantable biomaterial plays a very important role in determining the biocompatibility, osteoinduction, and osteointegration of implants because it is in intimate contact with the host bone and soft tissues. Objective: This study was aimed to assess the effect of plasma surface treatment on the bioactivity of titanium alloy (Ti–6Al–4V). Materials and Methods: Fifteen titanium alloy samples were used in this study. The samples were divided into three groups (with five samples in each group). Five samples were kept untreated and served as control (group A). Another five plasma samples were sprayed for nitrogen ion implantation on their surfaces (group B) and the last five samples were pre-etched with acid before plasma treatment (group C). All the investigated samples were immersed for 7 days in Hank's balanced salt solution (HBSS) which was used as a simulating body fluid (SBF) at pH 7.4 and 37°C. HBSS was renewed every 3 days. The different surfaces were characterized by X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDXA), and Fourier Transformation Infrared Spectroscopy (FTIR). Results: Nitriding of Ti-alloy samples via plasma nitrogen ion implantation increased the bioactivity of titanium. Moreover, the surface topography affected the chemical structure of the formed apatite. Increasing the surface roughness enhanced the bioactivity of the implant material. Conclusions: Nitridation can be exploited as an effective way to promote the formation of bone-like material on the implant surface. PMID:27011927
NASA Astrophysics Data System (ADS)
Seifitokaldani, Ali
In this project, titanium oxy-nitride (TiOxN y) has been studied as a new non-noble electrocatalyst for the oxygen reduction reaction (ORR). A comprehensive comparison between four different sol-gel methods was carried out to evaluate the physicochemical and electrochemical properties of the produced electro-catalysts. Among them, a new urea-based sol-gel method (simply called U method) is introduced to prepare TiOxNy at a fairly low temperature and duration, with higher electro-catalytic activity for the ORR. The prepared electro-catalysts with different N/O ratios showed different properties from a less conductive behavior in oxygen-rich (low N/O ratio) materials to more conductive electro-catalyst behavior in nitrogen-rich (high N/O ratio) oxy-nitrides, respectively. Generally, electro-catalysts prepared by the U method had more titanium nitride in their structures than the electro-catalysts prepared by the other methods. Nevertheless, heat treatment had a key role in this phase transferring from having high oxide structure to high nitride structure. According to the elemental analysis done by energy dispersive spectroscopy (EDS), nitrogen percentage in the bulk material increased from 9 to 24 percent by increasing the temperature from 700 to 1100 °C, while the oxygen percentage was decreasing inversely. In addition, based on the X-ray diffraction (XRD) data, in the case of U method, the TiN characteristic peaks were obvious, even at lower temperatures. Increasing the temperature also made the peaks much sharper indicating the growth of the crystallite size. The calculated crystallite size showed the crystallite size of samples prepared by U method (20 to 40 nm) was almost in the same range of the TiN crystallite size, but the crystallite size of the samples prepared by the other sol-gel methods (40 to 60 nm) was in the same range of the TiO2 crystallite size. Scanning electron microscopy (SEM) and B.E.T. surface area analyzer were used to evaluate the particle size and surface area of different samples, respectively. They indicated a smaller particle size and a higher surface area in the electro-catalysts produced by the U method. Besides the aforementioned physicochemical characterizations, cyclic voltammetry (CV), polarization, and electrochemical impedance spectroscopy (EIS) were used to evaluate the electrochemical properties of the electro-catalysts. Obtained Tafel slope, exchange current density and onset potential revealed that the electro-catalyst prepared by the U method which was annealed at 1100 °C, had the best electro-catalytic activity among all other samples with Tafel slope of -203 mV/decade, exchange current density around 4E-04 mA/mg and the onset potential close to 0.8 volt vs. NHE (normal hydrogen electrode). EIS measurements also supported this assertion through revealing the highest specific capacitance (˜ 3.3 F/g). This result was in agreement with the highest B.E.T. surface area and the lowest charge transfer resistance exhibited by this electro-catalyst among the other samples. Stability is one of the determinant factors in selecting an electro-catalyst for the ORR. In this regard, ICP-TOF-MS was used to evaluate the chemical stability of the prepared electro-catalysts under corrosive acidic environment, by measuring the concentration of the dissolved titanium after a certain time. Heretofore, measuring the dissolved metal concentration by ICP-TOF-MS was done just to evaluate its chemical stability. However, in this project this technique was also used during the CV, to evaluate the electro-catalyst's electrochemical stability as well, which is more realistic and similar to the PEMFC's working condition. Stability of the best electrocatalyst with the highest catalytic activity (prepared by the U method) was better than the commercially used Pt/C electro-catalyst, both chemically and electrochemically. Electrochemical stability of the prepared electro-catalysts has also been studied at a high oxidizing potential (more than 2 volts vs. NHE). X-ray Photoelectron Spectroscopy (XPS) showed that the nitrogen amount on the surface of the electro-catalyst decreased from 11 % before the oxidation to 5 % after the oxidation, whereas the catalytic activity for the ORR decreased after the oxidation. Thus, decreasing the titanium nitride's amount in the titanium oxy-nitride surface reduced its catalytic activity. In the second phase of this project, electro-catalytic activity of the titanium nitride for the ORR was investigated via a density functional theory (DFT) computation. To the best of our knowledge, there is no theoretical and computational quantum chemistry study of the transition metal's nitride as the electro-catalyst in PEM fuel cells. ORR was considered to take place in three different sequential steps namely oxygen adsorption, hydroxide production and water desorption. Based on the XRD results, TiN(111) and TiN(200) were considered as the two major facets of the TiN. Simulation was done by the Vienna ab initio Simulation Package (VASP) based on the Plane-Wave basis sets and periodic boundary condition, while the PBE exchangecorrelational functional was used to describe the interactions among electrons. Comparing the adsorption energies proved existence of a strong dissociative adsorption of oxygen on the TiN(111) regardless of the adsorption sites. However, because of a relatively strong OH adsorption, TiN(111) loses the active sites to proceed the ORR, while on the TiN(200) surface, water production and desorption came about easily. Electron density of states (DOS) was obtained to calculate the d-band center and fractional filling in different situations. Considering two possible bridge and top adsorption sites on the TiN(200), these information indicated the hydroxide production and water desorption as the rate determining steps for the ORR in bridge and top sites, respectively. Therefore, it was shown that the TiN, specially TiN(200) had exhibited good electro-catalytic activity for the ORR. Losing this TiN amount from the titanium oxy-nitride's surface might be responsible for the decrease of the electro-catalytic activity of the titanium oxy-nitride for the ORR.
Communication: Water on hexagonal boron nitride from diffusion Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk
2015-05-14
Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.
NASA Technical Reports Server (NTRS)
Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.; Koontz, S. L.
1990-01-01
The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results.
NASA Astrophysics Data System (ADS)
Wang, Jun; Lin, Yuanhua; Zeng, Dezhi; Yan, Jing; Fan, Hongyuan
2013-04-01
The effects of process parameters on the microstructure, microhardness, and dry-sliding wear behavior of plasma nitrided 17-4PH stainless steel were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and wear testing. The results show that a wear-resistant nitrided layer was formed on the surface of direct current plasma nitrided 17-4PH martensitic stainless steel. The microstructure and thickness of the nitrided layer is dependent on the treatment temperature rather than process pressure. XRD indicated that a single α N phase was formed during nitriding at 623 K (350 °C). When the temperature increased, the α N phase disappeared and CrN transformed in the nitrided layer. The hardness measurement demonstrated that the hardness of the stainless substrate steel increased from 320 HV0.1 in the untreated condition increasing to about 1275HV0.1 after nitriding 623 K (350 °C)/600 pa/4 hours. The extremely high values of the microhardness achieved by the great misfit-induced stress fields associated with the plenty of dislocation group and stacking fault. Dry-sliding wear resistance was improved by DC plasma nitriding. The best wear-resistance performance of a nitrided sample was obtained after nitriding at 673 K (350 °C), when the single α N-phase was produced and there were no CrN precipitates in the nitrided layer.
Synthesis and electrochemical characterization of TixTayAlzN1-δOγ for fuel cell catalyst supports
NASA Astrophysics Data System (ADS)
Wakabayashi, Ryo H.; Abruña, Héctor D.; DiSalvo, Francis J.
2017-02-01
Quinary TixTayAlzN1-δOγ of various compositions have been prepared by a co-precipitation method followed by ammonolysis. The nitride samples were examined as potential catalyst supports in polymer electrolyte membrane fuel cells. The nitride products crystallized in the rock salt (NaCl) structure over a wide range of compositions. The addition of Ta and Al was highly beneficial towards improving the chemical and electrochemical stability of TiN, without a significant loss of electrical conductivity. Platinum particles were successfully deposited on the (oxy)nitride samples, and the composite samples at some compositions were found to be comparable to Pt/carbon in their stability and catalytic activity even without optimizing the Pt deposition and dispersion processes.
Ordering of lipid membranes altered by boron nitride nanosheets.
Zhang, Yonghui; Li, Zhen; Chan, Chun; Ma, Jiale; Zhi, Chunyi; Cheng, Xiaolin; Fan, Jun
2018-02-07
Boron nitride nanosheets are novel promising nanomaterials with a lower cytotoxicity than graphene making them a better candidate for biomedical applications. However, there is no systematic study on how they interact with cell membranes. Here we employed large scale all-atom molecular dynamics simulations to provide molecular details of the structure and properties of membranes after the insertion of boron nitride nanosheets. Our results reveal that the boron nitride nanosheet can extract phospholipids from the lipid bilayers and is enveloped by the membrane. Afterwards, the acyl chains of lipid molecules re-orient and become more ordered. As a result, a fluid to gel phase transition occurs in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer. Consequently, the bending moduli of the bilayers increase, and the diffusivity of the individual lipid molecule decreases. These changes will affect relevant cellular activities, such as endocytosis and signal transduction. Our study provides novel insights into the biocompatibility and cytotoxicity of boron nitride nanosheets, which may facilitate the design of safer nanocarriers, antibiotics and other bio-nanotechnology applications.
Inter-layer potential for hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded
2014-03-01
A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.
Identification of microscopic hole-trapping mechanisms in nitride semiconductors
John L. Lyons; Krishnaswamy, Karthik; Luke Gordon; ...
2015-12-17
Hole trapping has been observed in nitride heterostructure devices, where the Fermi level is in the vicinity of the valence-band maximum. Using hybrid density functional calculations, we examine microscopic mechanisms for hole trapping in GaN and AlN. In a defect-free material, hole trapping does not spontaneously occur, but trapping can occur in the vicinity of impurities, such as C-a common unintentional impurity in nitrides. As a result, using Schrodinger-Poisson simulations, we assess the effects of C-derived hole traps on N-face high-electron mobility transistors, which we find to be more detrimental than the previously proposed interface traps.
Application of hard coatings to substrates at low temperatures
NASA Technical Reports Server (NTRS)
Sproul, William D.
1993-01-01
BIRL, the industrial research laboratory of Northwestern University, has conducted unique and innovative research, under sponsorship from the NASA Marshall Space Flight Center (MSFC), in the application of hard, wear resistant coatings to bearing steels using the high-rate reactive sputtering (HRRS) process that was pioneered by Dr. William Sproul, the principal investigator on this program. Prior to this program, Dr. Sproul had demonstrated that it is possible to apply hard coatings such as titanium nitride (TiN) to alloy steels at low temperatures via the HRRS process without changing the metallurgical properties of the steel. The NASA MSFC program at BIRL had the specific objectives to: apply TiN to 440C stainless steel without changing the metallurgical properties of the steel; prepare rolling contact fatigue (RCF) test samples coated with binary hard coatings of TiN, zirconium nitride (ZrN), hafnium nitride (HfN), chromium nitride (CrN), and molybdenum nitride (MoN), and metal coatings of copper (Cu) and gold (Au); and develop new alloyed hard coatings of titanium aluminum nitride (Ti(0.5)Al(0.5)N), titanium zirconium nitride (Ti(0.5)Zr(0.5)N), and titanium aluminum vanadium nitride.
NASA Astrophysics Data System (ADS)
Satonik, Alexander J.
Worn Hall effect thrusters (HET) show a variety of unique microstructures and elemental compositions in the boron nitride thruster channel walls. Worn thruster channels are typically created by running test thrusters in vacuum chambers for hundreds of hours. Studies were undertaken to manually modify samples of boron nitride without the use of a hall effect thruster. Samples were manually abraded with an abrasive blaster and sandpaper, in addition to a vacuum heater. Some of these samples were further exposed to a xenon plasma in a magnetron sputter device. Sandpaper and abrasive blaster tests were used to modify surface roughness values of the samples from 10,000 A to 150,000 A, matching worn thruster values. Vacuum heat treatments were performed on samples. These treatments showed the ability to modify chemical compositions of boron nitride samples, but not in a manner matching changes seen in worn thruster channels. Plasma erosion rate was shown to depend on the grade of the BN ceramic and the preparation of the surface prior to plasma exposure. Abraded samples were shown to erode 43% more than their pristine counterparts. Unique surface features and elemental compositions on the worn thruster channel samples were overwritten by new surface features on the ceramic grains. The microscope images of the ceramic surface show that the magnetron plasma source rounded the edges of the ceramic grains to closely match the worn HET surface. This effect was not as pronounced in studies of ion beam bombardment of the surface and appears to be a result of the quasi-neutral plasma environment.
Tensile strength of aluminium nitride films
NASA Astrophysics Data System (ADS)
Zong, Deng Gang; Ong, Chung Wo; Aravind, Manju; Tsang, Mei Po; Loong Choy, Chung; Lu, Deren; Ma, Dejun
2004-11-01
Two-layered aluminium nitride (AlN)/silicon nitride microbridges were fabricated for microbridge tests to evaluate the elastic modulus, residual stress and tensile strength of the AlN films. The silicon nitride layer was added to increase the robustness of the structure. In a microbridge test, load was applied to the centre of a microbridge and was gradually increased by a nano-indenter equipped with a wedge tip until the sample was broken, while displacement was recorded coherently. Measurements were performed on single-layered silicon nitride microbridges and two-layered AlN/silicon nitride microbridges respectively. The data were fitted to a theory to derive the elastic modulus, residual stress and tensile strength of the silicon nitride films and AlN films. For the AlN films, the three parameters were determined to be 200, 0.06 and 0.3 GPa, respectively. The values of elastic modulus obtained were consistent with those measured by conventional nano-indentation method. The tensile strength value can be used as a reference to reflect the maximum tolerable tensile stress of AlN films when they are used in micro-electromechanical devices.
Detection of boron nitride radicals by emission spectroscopy in a laser-induced plasma
NASA Astrophysics Data System (ADS)
Dutouquet, C.; Acquaviva, S.; Hermann, J.
2001-06-01
Several vibrational bands of boron nitride radicals have been observed in a plasma produced by pulsed-laser ablation of a boron nitride target in low-pressure nitrogen or argon atmospheres. Using time- and space-resolved emission spectroscopic measurements with a high dynamic range, the most abundant isotopic species B 11N have been detected. The emission bands in the spectral range from 340 to 380 nm belong to the Δυ =-1, 0, +1 sequences of the triplet system (transition A 3Π-X 3Π). For positive identification, the molecular emission bands have been compared with synthetic spectra obtained by computer simulations. Furthermore, B 10N emission bands have been reproduced by computer simulation using molecular constants which have been deduced from the B 11N constants. Nevertheless, the presence of the lower abundant isotopic radical B 10N was not proved due the noise level which masked the low emission intensity of the B 10N band heads.
Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition.
Riemensberger, Johann; Hartinger, Klaus; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J
2012-12-03
We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.
Reliability analysis of structural ceramic components using a three-parameter Weibull distribution
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Powers, Lynn M.; Starlinger, Alois
1992-01-01
Described here are nonlinear regression estimators for the three-Weibull distribution. Issues relating to the bias and invariance associated with these estimators are examined numerically using Monte Carlo simulation methods. The estimators were used to extract parameters from sintered silicon nitride failure data. A reliability analysis was performed on a turbopump blade utilizing the three-parameter Weibull distribution and the estimates from the sintered silicon nitride data.
Analysis of Aluminum-Nitride SOI for High-Temperature Electronics
NASA Technical Reports Server (NTRS)
Biegel, Bryan A.; Osman, Mohamed A.; Yu, Zhiping
2000-01-01
We use numerical simulation to investigate the high-temperature (up to 500K) operation of SOI MOSFETs with Aluminum-Nitride (AIN) buried insulators, rather than the conventional silicon-dioxide (SiO2). Because the thermal conductivity of AIN is about 100 times that of SiO2, AIN SOI should greatly reduce the often severe self-heating problem of conventional SOI, making SOI potentially suitable for high-temperature applications. A detailed electrothermal transport model is used in the simulations, and solved with a PDE solver called PROPHET In this work, we compare the performance of AIN-based SOI with that of SiO2-based SOI and conventional MOSFETs. We find that AIN SOI does indeed remove the self-heating penalty of SOL However, several device design trade-offs remain, which our simulations highlight.
Bridgman Growth of GeSi Alloys in a Static Magnetic Field
NASA Technical Reports Server (NTRS)
Volz, M. P.; Szofran, F. R.; Vujisic, L.; Motakef, S.
1998-01-01
Ge(0.95)Si(0.050 alloy crystals have been grown by the vertical Bridgman technique, both with and without an axial 5 Tesla magnetic field. The crystals were processed in a constant axial thermal gradient and the effects of graphite, hot pressed boron nitride, and pyrolitic boron nitride ampoule materials on interface shapes and macrosegregation profiles were investigated. The sample grown in a graphite ampoule at 5 Tesla exhibited a macroscopic axial concentration profile close to that of complete mixing and strong striation patterns. In samples grown in boron nitride ampoules, both with and without a 5 Tesla magnetic field applied, measured macroscopic axial concentration profiles were intermediate between those expected for a completely mixed melt and diffusion-controlled growth, and striation patterns were also observed. Possible explanations for the apparent inability of the magnetic field to reduce the flow velocities to below the growth velocities are discussed, and results of growth experiments in pyrolitic boron nitride ampoules are also described.
Khatti, Zahra; Hashemianzadeh, Seyed Majid
2016-06-10
Molecular dynamics (MD) simulation has been applied to investigate a drug delivery system based on boron nitride nanotubes, particularly the delivery of platinum-based anticancer drugs. For this propose, the behavior of carboplatin drugs inserted in boron nitride nanotubes (BNNT) as a carrier was studied. The diffusion rate of water molecules and carboplatin was investigated inside functionalized and pristine boron nitride nanotubes. The penetration rate of water and drug in functionalized BNNT was higher than that in pristine BNNT due to favorable water-mediated hydrogen bonding in hydroxyl edge-functionalized BNNT. Additionally, the encapsulation of multiple carboplatin drugs inside functionalized boron nitride nanotubes with one to five drug molecules confined inside the nanotube cavity was examined. At high drug loading, the hydrogen bond formation between adjacent drugs and the non-bonded van der Waals interaction between carboplatin and functionalized BNNT inner surface were found to be influential in drug displacement within the functionalized BNNT cavity for higher drug-loading capacity. Copyright © 2016 Elsevier B.V. All rights reserved.
Laser nitriding of iron: Nitrogen profiles and phases
NASA Astrophysics Data System (ADS)
Illgner, C.; Schaaf, P.; Lieb, K. P.; Schubert, E.; Queitsch, R.; Bergmann, H.-W.
1995-07-01
Armco iron samples were surface nitrided by irradiating them with pulses of an excimer laser in a nitrogen atmosphere. The resulting nitrogen depth profiles measured by Resonant Nuclear Reaction Analysis (RNRA) and the phase formation determined by Conversion Electron Mössbauer Spectroscopy (CEMS) were investigated as functions of energy density and the number of pulses. The nitrogen content of the samples was found to be independent of the number of pulses in a layer of 50 nm from the surface and to increase in depths exceeding 150 nm. The phase composition did not change with the number of pulses. The nitrogen content can be related to an enhanced nitrogen solubility based on high temperatures and high pressures due to the laser-induced plasma above the sample. With increasing pulse energy density, the phase composition changes towards phases with higher nitrogen contents. Nitrogen diffusion seems to be the limiting factor for the nitriding process.
Anomalous thermal conductivity of monolayer boron nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabarraei, Alireza, E-mail: atabarra@uncc.edu; Wang, Xiaonan
In this paper, we use nonequilibrium molecular dynamics modeling to investigate the thermal properties of monolayer hexagonal boron nitride nanoribbons under uniaxial strain along their longitudinal axis. Our simulations predict that hexagonal boron nitride shows an anomalous thermal response to the applied uniaxial strain. Contrary to three dimensional materials, under uniaxial stretching, the thermal conductivity of boron nitride nanoribbons first increases rather than decreasing until it reaches its peak value and then starts decreasing. Under compressive strain, the thermal conductivity of monolayer boron nitride ribbons monolithically reduces rather than increasing. We use phonon spectrum and dispersion curves to investigate themore » mechanism responsible for the unexpected behavior. Our molecular dynamics modeling and density functional theory results show that application of longitudinal tensile strain leads to the reduction of the group velocities of longitudinal and transverse acoustic modes. Such a phonon softening mechanism acts to reduce the thermal conductivity of the nanoribbons. On the other hand, a significant increase in the group velocity (stiffening) of the flexural acoustic modes is observed, which counteracts the phonon softening effects of the longitudinal and transverse modes. The total thermal conductivity of the ribbons is a result of competition between these two mechanisms. At low tensile strain, the stiffening mechanism overcomes the softening mechanism which leads to an increase in the thermal conductivity. At higher tensile strain, the softening mechanism supersedes the stiffening and the thermal conductivity slightly reduces. Our simulations show that the decrease in the thermal conductivity under compressive strain is attributed to the formation of buckling defects which reduces the phonon mean free path.« less
Optical gain in 1.3-μm electrically driven dilute nitride VCSOAs
2014-01-01
We report the observation of room-temperature optical gain at 1.3 μm in electrically driven dilute nitride vertical cavity semiconductor optical amplifiers. The gain is calculated with respect to injected power for samples with and without a confinement aperture. At lower injected powers, a gain of almost 10 dB is observed in both samples. At injection powers over 5 nW, the gain is observed to decrease. For nearly all investigated power levels, the sample with confinement aperture gives slightly higher gain. PMID:24417791
NASA Astrophysics Data System (ADS)
Wang, Jiang; Li, Yongfang; Wang, Zhaolu; Han, Jing; Huang, Nan; Liu, Hongjun
2018-01-01
Broadband wavelength conversion based on degenerate four-wave mixing is theoretically investigated in a hydrogenated amorphous silicon (a-Si:H) waveguide with silicon nitride inter-cladding layer (a-Si:HN). We have found that enhancement of the non-linear effect of a-Si:H waveguide nitride intermediate layer facilitates broadband wavelength conversion. Conversion bandwidth of 490 nm and conversion efficiency of 11.4 dB were achieved in a numerical simulation of a 4 mm-long a-Si:HN waveguide under 1.55 μm continuous wave pumping. This broadband continuous-wave wavelength converter has potential applications in photonic networks, a type of readily manufactured low-cost highly integrated optical circuits.
Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Chen, Fan; Wu, Chi-Man Lawrence; Zhao, Rusong; Cheng, Chuange
2014-11-21
Boron nitride hollow spheres with ultrathin-shells were synthesized and used as sorbents for dispersive solid-phase extraction of aromatic pollutants at trace levels from environmental water samples. Polychlorinated biphenyls (PCBs) were selected as target compounds. Sample quantification and detection were performed by gas chromatography-tandem mass spectrometry. Extraction parameters influencing the extraction efficiency were optimized through response surface methodology using the Box-Behnken design. The proposed method achieved good linearity within the concentration range of 0.15-250 ng L(-1) PCBs, low limits of detection (0.04-0.09 ng L(-1), S/N=3:1), good repeatability of the extractions (relative standard deviation, <12%, n=6), and satisfactory recoveries between 84.9% and 101.0% under optimal conditions. Real environmental samples collected from rivers, local lakes, rain and spring waters were analyzed using the developed method. Results demonstrated that the hexagonal boron nitride-based material has significant potential as a sorbent for organic pollutant extraction from environmental water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gordon, Luke
Our era is defined by its technology, and our future is dependent on its continued evolution. Over the past few decades, we have witnessed the expansion of advanced technology into all walks of life and all industries, driven by the exponential increase in the speed and power of semiconductor-based devices. However, as the length scale of devices reaches the atomic scale, a deep understanding of atomistic theory and its application is increasingly crucial. In order to illustrate the power of an atomistic approach to understanding devices, we will present results and conclusions from three interlinked projects: n-type doping of III-nitride semiconductors, defects for quantum computing, and macroscopic simulations of devices. First, we will study effective n-type doping of III-nitride semiconductors and their alloys, and analyze the barriers to effective n-type doping of III-nitrides and their alloys. In particular, we will study the formation of DX centers, and predict alloy composition onsets for various III-nitride alloys. In addition, we will perform a comprehensive study of alternative dopants, and provide potential alternative dopants to improve n-type conductivity in AlN and wide-band-gap nitride alloys. Next, we will discuss how atomic-scale defects can act as a curse for the development of quantum computers by contributing to decoherence at an atomic scale, specifically investigating the effect of two-level state defects (TLS) systems in alumina as a source of decoherence in superconducting qubits based on Josephson junctions; and also as a blessing, by allowing the identification of wholly new qubits in different materials, specifically showing calculations on defects in SiC for quantum computing applications. Finally, we will provide examples of recent calculations we have performed for devices using macrosopic device simulations, largely in conjunction with first-principles calculations. Specifically, we will discuss the power of using a multi-scale approach to accurately model oxide and nitride-based heterostructures, and thereby illustrate our ability to predict device performance on scales unreachable using a purely first-principles approach.
Dissolution of bulk specimens of silicon nitride
NASA Technical Reports Server (NTRS)
Davis, W. F.; Merkle, E. J.
1981-01-01
An accurate chemical characterization of silicon nitride has become important in connection with current efforts to incorporate components of this material into advanced heat engines. However, there are problems concerning a chemical analysis of bulk silicon nitride. Current analytical methods require the pulverization of bulk specimens. A pulverization procedure making use of grinding media, on the other hand, will introduce contaminants. A description is given of a dissolution procedure which overcomes these difficulties. It has been found that up to at least 0.6 g solid pieces of various samples of hot pressed and reaction bonded silicon nitride can be decomposed in a mixture of 3 mL hydrofluoric acid and 1 mL nitric acid overnight at 150 C in a Parr bomb. High-purity silicon nitride is completely soluble in nitric acid after treatment in the bomb. Following decomposition, silicon and hydrofluoric acid are volatilized and insoluble fluorides are converted to a soluble form.
NASA Technical Reports Server (NTRS)
Vasquez, R. P.; Madhukar, A.; Grunthaner, F. J.; Naiman, M. L.
1986-01-01
Previously reported nitrogen distributions in SiO2 films on Si which have been thermally nitrided at 1000 C have been explained by a kinetic model of the nitridation process which rests upon the effects of interfacial strain. A critical test of this kinetic model is the validity of the predictions regarding nitrogen distributions obtained at other nitridation temperatures. In this work, nitrogen distributions determined via X-ray photoelectron spectroscopy are reported for samples nitrided at 800 and 1150 C, and are shown to be consistent with the kinetic model. In addition, the intensity of a fluorine marker is found to correlate with the nitrogen distribution, and is postulated to be related to kinetically generated defects in the dielectric film, consistent with the strain-dependent energy of formation of defects proposed recently to explain electrical data.
Gradient microstructure and microhardness in a nitrided 18CrNiMo7-6 gear steel
NASA Astrophysics Data System (ADS)
Yang, R.; Wu, G. L.; Zhang, X.; Fu, W. T.; Huang, X.
2017-07-01
A commercial gear steel (18CrNiMo7-6) containing a tempered martensite structure was nitrided using a pressurized gas nitriding process under a pressure of 5 atm at 530 °C for 5 hours. The mechanical properties and microstructure of the nitrided sample were characterized by Vickers hardness measurements, X-ray diffraction, and backscatter electron imaging in a scanning electron microscope. A micro-hardness gradient was identified over a distance of 500 μm with hardness values of 900 HV at the top surface and 300 HV in the core. This micro-hardness gradient corresponds to a gradient in the microstructure that changes from a nitride compound layer at the top surface (∼ 20 μm thick) to a diffusion zone with a decreasing nitrogen concentration and precipitate density with distance from the surface, finally reaching the core matrix layer with a recovered martensite structure.
Realistic Silver Optical Constants for Plasmonics.
Jiang, Yajie; Pillai, Supriya; Green, Martin A
2016-07-29
Silver remains the preferred conductor for optical and near-infrared plasmonics. Many high-profile studies focus exclusively on performance simulation in such applications. Almost invariably, these use silver optical data either from Palik's 1985 handbook or, more frequently, an earlier Johnson and Christy (J&C) tabulation. These data are inconsistent, making it difficult to ascertain the reliability of the simulations. The inconsistency stems from challenges in measuring representative properties of pristine silver, due to tarnishing on air exposure. We demonstrate techniques, including use of silicon-nitride membranes, to access the full capabilities of multiple-angle, spectrometric-ellipsometry to generate an improved data set, representative of overlayer-protected, freshly-deposited silver films on silicon-nitride and glass.
Vora, Hitesh D; Shanker Rajamure, Ravi; Dahotre, Sanket N; Ho, Yee-Hsien; Banerjee, Rajarshi; Dahotre, Narendra B
2014-09-01
A laser based surface nitriding process was adopted to further enhance the osseo-integration, corrosion resistance, and tribological properties of the commonly used bioimplant alloy, Ti-6Al-4V. Earlier preliminary osteoblast, electrochemical, and corrosive wear studies of laser nitrided titanium in simulated body fluid clearly revealed improvement of cell adhesion as well as enhancement in corrosion and wear resistance but mostly lacked the in-depth fundamental understanding behind these improvements. Therefore, a novel integrated experimental and theoretical approach were implemented to understand the physical phenomena behind the improvements and establish the property-structure-processing correlation of nitrided surface. The first principle and thermodynamic calculations were employed to understand the thermodynamic, electronic, and elastic properties of TiN for enthalpy of formation, Gibbs free energy, density of states, and elastic properties of TiN were investigated. Additionally, open circuit potential and cyclic potentio-dynamic polarization tests were carried out in simulated body fluid to evaluate the corrosion resistance that in turn linked with the experimentally measured and computationally predicted surface energies of TiN. From these results, it is concluded that the enhancement in the corrosion resistance after laser nitriding is mainly attributed to the presence of covalent bonding via hybridization among Ti (p) and N (d) orbitals. Furthermore, mechanical properties, such as, Poisson׳s ratio, stiffness, Pugh׳s ductility criteria, and Vicker׳s hardness, predicted from first principle calculations were also correlated to the increase in wear resistance of TiN. All the above factors together seem to have contributed to significant improvement in both wear and corrosion performance of nitride surface compared to the bare Ti-6Al-4V in physiological environment indicating its suitability for bioimplant applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillinger, M., E-mail: manuel.gillinger@tuwien.ac.at; Knobloch, T.; Schneider, M.
2016-06-06
This paper investigates the performance of surface acoustic wave (SAW) devices consisting of reactively sputter deposited scandium doped aluminum nitride (Sc{sub x}Al{sub 1-x}N) thin films as piezoelectric layers on sapphire substrates for wireless sensor or for RF-MEMS applications. To investigate the influence of piezoelectric film thickness on the device properties, samples with thickness ranging from 500 nm up to 3000 nm are fabricated. S{sub 21} measurements and simulations demonstrate that the phase velocity is predominantly influenced by the mass density of the electrode material rather than by the thickness of the piezoelectric film. Additionally, the wave propagation direction is varied by rotatingmore » the interdigital transducer structures with respect to the crystal orientation of the substrate. The phase velocity is about 2.5% higher for a-direction compared to m-direction of the sapphire substrate, which is in excellent agreement with the difference in the anisotropic Young's modulus of the substrate corresponding to these directions.« less
Boron nitride encapsulated graphene infrared emitters
NASA Astrophysics Data System (ADS)
Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R.
2016-03-01
The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.
NASA Astrophysics Data System (ADS)
Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming B.; Somers, Marcel A. J.
2017-10-01
Chromium-rich nitride precipitates in production of nickel-free austenitic stainless steel plates via pressurised solution nitriding of Fe-22.7Cr-2.4Mo ferritic stainless steel at 1473 K (1200 °C) under a nitrogen gas atmosphere was investigated. The microstructure, chemical and phase composition, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride precipitates were formed firstly close to the surface and later throughout the sample with austenitic structure. Chromium-rich nitride precipitates with a rod or strip-like morphology was developed by a discontinuous cellular precipitation mechanism. STEM-EDS analysis demonstrated partitioning of metallic elements between austenite and nitrides, with chromium contents of about 80 wt.% in the precipitates. XRD analysis indicated that the Chromium-rich nitride precipitates are hexagonal (Cr, Mo)2N. Based on the TEM studies, (Cr, Mo)2N precipitates presented a (1 1 1)γ//(0 0 2)(Cr, Mo)2N, ?γ//?(Cr, Mo)2N orientation relationship with respect to the austenite matrix. EBSD studies revealed that the austenite in the regions that have transformed into austenite and (Cr, Mo)2N have no orientation relation to the untransformed austenite.
Electronic structure and mechanical properties of plasma nitrided ferrous alloys
NASA Astrophysics Data System (ADS)
Portolan, E.; Baumvol, I. J. R.; Figueroa, C. A.
2009-04-01
The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.
NASA Astrophysics Data System (ADS)
Thévenot, F.; Doche, C.; Mongeot, H.; Guilhon, F.; Miele, P.; Cornu, D.; Bonnetot, B.
1997-10-01
Aminoboranes, pure or partially converted into aminoborazines using thermal or aminolysis polymerization, have been used as boron nitride precursors. An amorphous BN preceramic is obtained when pyrolysed up to 1000°C that can be stabilized using further annealing up to 1400°C or crystallized into h-BN above 1700°C. These molecular precursors have been used to prepare carbon fiber/BN matrix microcomposites to get an efficient BN coating on graphite and as a BN source in Si3N4/BN composite ceramic. The properties of these new types of samples have been compared with those obtained by classical processes. The boron nitride obtained from these precursors is a good sintering agent during the hot-pressing of the samples. However, the crystallinity of BN, even sintered up to 1800°C, remains poor. In fact, most of the mechanical properties of the composite ceramic (density, porosity, hardness) are clearly improved and the aminoboranes can be considered as convenient boron nitride sources and helpful sintering agents in hot-pressing technology.
Highly Active GaN-Stabilized Ta3 N5 Thin-Film Photoanode for Solar Water Oxidation.
Zhong, Miao; Hisatomi, Takashi; Sasaki, Yutaka; Suzuki, Sayaka; Teshima, Katsuya; Nakabayashi, Mamiko; Shibata, Naoya; Nishiyama, Hiroshi; Katayama, Masao; Yamada, Taro; Domen, Kazunari
2017-04-18
Ta 3 N 5 is a very promising photocatalyst for solar water splitting because of its wide spectrum solar energy utilization up to 600 nm and suitable energy band position straddling the water splitting redox reactions. However, its development has long been impeded by poor compatibility with electrolytes. Herein, we demonstrate a simple sputtering-nitridation process to fabricate high-performance Ta 3 N 5 film photoanodes owing to successful synthesis of the vital TaO δ precursors. An effective GaN coating strategy is developed to remarkably stabilize Ta 3 N 5 by forming a crystalline nitride-on-nitride structure with an improved nitride/electrolyte interface. A stable, high photocurrent density of 8 mA cm -2 was obtained with a CoPi/GaN/Ta 3 N 5 photoanode at 1.2 V RHE under simulated sunlight, with O 2 and H 2 generated at a Faraday efficiency of unity over 12 h. Our vapor-phase deposition method can be used to fabricate high-performance (oxy)nitrides for practical photoelectrochemical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Silicon Nitride for Direct Water-Splitting and Corrosion Mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Head, J.; Turner, J.A.
2006-01-01
Todays fossil fuels are becoming harder to obtain, creating pollution problems, and posing hazards to people’s health. One alternative to fossil fuels is hydrogen, capable of serving as a clean and efficient energy carrier. Certain semiconductors are able to harness the energy of photons and direct it into water electrolysis in a process known as photoelectrochemical water splitting. Triple junction devices integrate three semiconductors of different band gaps resulting in a monolithic material that absorbs over a broader spectrum. Amorphous silicon (a-Si) is one such material that, when stacked in tandem, possesses water-splitting capabilities. Even though a-Si is capable ofmore » splitting water, it is an unstable material in solution and therefore requires a coating to protect the surface from corrosion. A stable, transparent material that has the potential for corrosion protection is silicon nitride. In this study, silicon nitride thin films were grown using DC magnetron sputtering with varying amounts of argon and nitrogen added to the system. X-ray diffraction indicated amorphous silicon nitride films. Current as a function of potential was determined from cyclic voltammetry measurements. Mott-Schottky analysis showed n-type behavior with absorption and transmission measurements indicated variation in flatband potentials. Variation in band gap values ranging from 1.90 to 4.0 eV. Corrosion measurements reveal that the silicon nitride samples exhibit both p-type and n-type behavior. Photocurrent over a range of potentials was greater in samples that were submerged in acidic electrolyte. Silicon nitride shows good stability in acidic, neutral, and basic solutions, indicative of a good material for corrosion mitigation.« less
Analysis and modeling of hot extrusion die for its service life enhancement
NASA Astrophysics Data System (ADS)
Akhtar, Syed Sohail
Aluminum extrusion finds extensive application in the construction, automobile and aerospace industries. High pressures, elevated temperatures, complex and intricate section geometries lead to repeated mechanical and thermal stresses in the die and affiliated tooling. Product rework and rejects can be traced back to various defects spread over the die life cycle: die design, die manufacture and heat treatment, process parameters, inprocess die maintenance/correction and, billet type and quality. Therefore, improved and efficient service life of die and related tooling used in the extrusion press is one the most important factors in maximizing productivity and minimizing cost for ensuring the economical efficiency of an aluminum extrusion plant. How often a die has to be scrapped and replaced with a new one directly contributes to the commercial viability of producing a certain profile. The focus of the current work is on three distinct yet inter-related studies pertaining to the improvement of aluminum extrusion die. Study-A (Die Failure Analysis) is an investigation of various modes and critical failure types based on industrial data (Chapter-2 ), examination of failed dies and finite element simulation for identification of critical process parameters and design features in die fatigue-life (Chapter-3). In Study-B (Die Surface Hardening Treatment), two-stage controlled gas nitriding process for H13 steel is evaluated, both experimentally and numerically, in terms of nitrided case morphology and properties (Chapter-4) followed by experimental and numerical investigation of the effects of repeated nitriding (Chapter-5), pre-nitriding surface preparation (Chapter-6) and die profile geometry (Chapter-7) on nitriding performance in regard to die service life. In Study-C (Effect of Billet Quality on Die Life), the effect of billet quality and related influencing extrusion parameters on the die service life is investigated based on industrial data and some regression-based die life models are proposed (Chapter-8 ). This is followed by a detailed microstructural investigation of different billet samples and finite element analysis of extrusion process to observe the influence of smelter (primary) and recycled (secondary) billets on the useful life of extrusion die (Chapter-9).
NASA Astrophysics Data System (ADS)
Désières, Yohan; Chen, Ding Yuan; Visser, Dennis; Schippers, Casper; Anand, Srinivasan
2018-06-01
Colloidal TiO2 nanoparticles were used for embossing of composite microcone arrays on III-Nitride vertical-thin-film blue light emitting diodes (LEDs) as well as on silicon, glass, gallium arsenide, and gallium nitride surfaces. Ray tracing simulations were performed to optimize the design of microcones for light extraction and to explain the experimental results. An optical power enhancement of ˜2.08 was measured on III-Nitride blue LEDs embossed with a hexagonal array of TiO2 microcones of ˜1.35 μm in height and ˜2.6 μm in base width, without epoxy encapsulation. A voltage increase in ˜70 mV at an operating current density of ˜35 A/cm2 was measured for the embossed LEDs. The TiO2 microcone arrays were embossed on functioning LEDs, using low pressures (˜100 g/cm2) and temperatures ≤100 °C.
Design, Control and in Situ Visualization of Gas Nitriding Processes
Ratajski, Jerzy; Olik, Roman; Suszko, Tomasz; Dobrodziej, Jerzy; Michalski, Jerzy
2010-01-01
The article presents a complex system of design, in situ visualization and control of the commonly used surface treatment process: the gas nitriding process. In the computer design conception, analytical mathematical models and artificial intelligence methods were used. As a result, possibilities were obtained of the poly-optimization and poly-parametric simulations of the course of the process combined with a visualization of the value changes of the process parameters in the function of time, as well as possibilities to predict the properties of nitrided layers. For in situ visualization of the growth of the nitrided layer, computer procedures were developed which make use of the results of the correlations of direct and differential voltage and time runs of the process result sensor (magnetic sensor), with the proper layer growth stage. Computer procedures make it possible to combine, in the duration of the process, the registered voltage and time runs with the models of the process. PMID:22315536
Synthesis of crumpled nanosheets of polymeric carbon nitride from melamine cyanurate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dante, Roberto C., E-mail: rcdante@yahoo.com; Martín-Ramos, Pablo; Sánchez-Arévalo, F.M.
2013-05-01
Polymeric carbon nitride was synthesized by pyrolysis in nitrogen flux at different temperatures between 450 and 700 °C using melamine cyanurate as a reagent and sulfuric acid as a catalyst. The obtained carbon nitride consisted of curled nanosheets (650 °C), and globular particles (700 °C) with formula C₆N₇NHNH₂. The reaction yield of the catalyzed reaction was around the 15% for the sample treated at 700 °C, in a tapped crucible. The optical band gap of the polymer obtained at 700 °C is around 2.9 eV. The gap to the Fermi level is around 2 eV, considerably above the half ofmore » the band gap (due to electrons trapped in the gap), indicating that the polymer is probably a n-type semiconductor. - Graphical abstract: Transition from amorphous to crystalline carbon nitride, which is composed of globular particles and is a n-type wide band semiconductor. Highlights: • We synthetized carbon nitride using melamine cyanurate. • The reaction of carbon nitride formation is catalyzed by sulfuric acid. • The carbon nitride obtained at 700 °C is composed of globular particles. • The material obtained at 700 °C is a n-type semiconductor.« less
Rolling Contact Fatigue Failure Mechanisms of Plasma-Nitrided Ductile Cast Iron
NASA Astrophysics Data System (ADS)
Wollmann, D.; Soares, G. P. P. P.; Grabarski, M. I.; Weigert, N. B.; Escobar, J. A.; Pintaude, G.; Neves, J. C. K.
2017-05-01
Rolling contact fatigue (RCF) of a nitrided ductile cast iron was investigated. Flat washers machined from a pearlitic ductile cast iron bar were quenched and tempered to maximum hardness, ground, polished and divided into four groups: (1) specimens tested as quenched and tempered; (2) specimens plasma-nitrided for 8 h at 400 °C; (3) specimens plasma-nitrided and submitted to a diffusion process for 16 h at 400 °C; and (4) specimens submitted to a second tempering for 24 h at 400 °C. Hardness profiles, phase analyses and residual stress measurements by x-ray diffraction, surface roughness and scanning electron microscopy were applied to characterize the surfaces at each step of this work. Ball-on-flat washer tests were conducted with a maximum contact pressure of 3.6 GPa, under flood lubrication with a SAE 90 API GL-5 oil at 50 °C. Test ending criterion was the occurrence of a spalling. Weibull analysis was used to characterize RCF's lifetime data. Plasma-nitrided specimens exhibited a shorter RCF lifetime than those just quenched and tempered. The effects of nitriding on the mechanical properties and microstructure of the ductile cast iron are discussed in order to explain the shorter endurance of nitrided samples.
Azamat, Jafar; Sattary, Batoul Shirforush; Khataee, Alireza; Joo, Sang Woo
2015-09-01
A computer simulation was performed to investigate the removal of Zn(2+) as a heavy metal from aqueous solution using the functionalized pore of a graphene nanosheet and boron nitride nanosheet (BNNS). The simulated systems were comprised of a graphene nanosheet or BNNS with a functionalized pore containing an aqueous ionic solution of zinc chloride. In order to remove heavy metal from an aqueous solution using the functionalized pore of a graphene nanosheet and BNNS, an external voltage was applied along the z-axis of the simulated box. For the selective removal of zinc ions, the pores of graphene and BNNS were functionalized by passivating each atom at the pore edge with appropriate atoms. For complete analysis systems, we calculated the potential of the mean force of ions, the radial distribution function of ion-water, the residence time of ions, the hydrogen bond, and the autocorrelation function of the hydrogen bond. Copyright © 2015 Elsevier Inc. All rights reserved.
Numerical Simulation of Ballistic Impact of Layered Aluminum Nitride Ceramic
2015-09-01
tile(s) Aluminum nitride (AlN) 163 a Polymer layers Polyurethane foam 18 b Backing metal Aluminum 6061-T6 (Al) 23 c Projectile Tungsten heavy alloy...larger (a factor of 3.8) than the most dense polyurethane foam of the available constitutive models. Default options for element failure were imposed in...AlN), a polycrystalline ceramic. The total thickness of the tile(s) is 38.1 mm in all cases. A thin polyurethane laminate separates neighboring tiles
Optimization Study of Pulsed DC Nitrogen-Hydrogen Plasma in the Presence of an Active Screen Cage
NASA Astrophysics Data System (ADS)
Saeed, A.; W. Khan, A.; F., Jan; U. Shah, H.; Abrar, M.; Zaka-Ul-Islam, M.; Khalid, M.; Zakaullah, M.
2014-05-01
A glow discharge plasma nitriding reactor in the presence of an active screen cage is optimized in terms of current density, filling pressure and hydrogen concentrations using optical emission spectroscopy (OES). The samples of AISI 304 are nitrided for different treatment times under optimum conditions. The treated samples were analyzed by X-ray diffraction (XRD) to explore the changes induced in the crystallographic structure. The XRD pattern confirmed the formation of iron and chromium nitrides arising from incorporation of nitrogen as an interstitial solid solution in the iron lattice. A Vickers microhardness tester was used to evaluate the surface hardness as a function of treatment time (h). The results showed clear evidence of improved surface hardness and a substantial amount of decrease in the treatment time compared with the previous work.
Formation mechanisms of Si3N4 and Si2N2O in silicon powder nitridation
NASA Astrophysics Data System (ADS)
Yao, Guisheng; Li, Yong; Jiang, Peng; Jin, Xiuming; Long, Menglong; Qin, Haixia; Kumar, R. Vasant
2017-04-01
Commercial silicon powders are nitrided at constant temperatures (1453 K; 1513 K; 1633 K; 1693 K). The X-ray diffraction results show that small amounts of Si3N4 and Si2N2O are formed as the nitridation products in the samples. Fibroid and short columnar Si3N4 are detected in the samples. The formation mechanisms of Si3N4 and Si2N2O are analyzed. During the initial stage of silicon powder nitridation, Si on the outside of sample captures slight amount of O2 in N2 atmosphere, forming a thin film of SiO2 on the surface which seals the residual silicon inside. And the oxygen partial pressure between the SiO2 film and free silicon is decreasing gradually, so passive oxidation transforms to active oxidation and metastable SiO(g) is produced. When the SiO(g) partial pressure is high enough, the SiO2 film will crack, and N2 is infiltrated into the central section of the sample through cracks, generating Si2N2O and short columnar Si3N4 in situ. At the same time, metastable SiO(g) reacts with N2 and form fibroid Si3N4. In the regions where the oxygen partial pressure is high, Si3N4 is oxidized into Si2N2O.
Improved reaction sintered silicon nitride. [protective coatings to improve oxidation resistance
NASA Technical Reports Server (NTRS)
Baumgartner, H. R.
1978-01-01
Processing treatments were applied to as-nitrided reaction sintered silicon nitride (RSSN) with the purposes of improving strength after processing to above 350 MN/m2 and improving strength after oxidation exposure. The experimental approaches are divided into three broad classifications: sintering of surface-applied powders; impregnation of solution followed by further thermal processing; and infiltration of molten silicon and subsequent carburization or nitridation of the silicon. The impregnation of RSSN with solutions of aluminum nitrate and zirconyl chloride, followed by heating at 1400-1500 C in a nitrogen atmosphere containing silicon monoxide, improved RSSN strength and oxidation resistance. The room temperature bend strength of RSSN was increased nearly fifty percent above the untreated strength with mean absolute strengths up to 420 MN/m2. Strengths of treated samples that were measured after a 12 hour oxidation exposure in air were up to 90 percent of the original as-nitrided strength, as compared to retained strengths in the range of 35 to 60 percent for untreated RSSN after the same oxidation exposure.
NASA Astrophysics Data System (ADS)
Parali, Levent; Kurbanov, Mirza A.; Bayramov, Azad A.; Tatardar, Farida N.; Sultanakhmedova, Ramazanova I.; Xanlar, Huseynova Gulnara
2015-11-01
High-density polymer composites with semiconductor or dielectric fillers such as aluminum nitride (AIN), aluminum oxide (Al2O3), titanium carbide (TiC), titanium nitride (TiN), boron nitride (BN), silicon nitride (Si3N4), and titanium carbonitride (TiCN) were prepared by the hot pressing method. Each powder phase of the composites was exposed to an electric discharge plasma process before composite formation. The effects of the electric discharge plasma process and the filler content (volume fraction) on the thermal conductivity, volt-ampere characteristics, thermally stimulated depolarization current, as well as electrical and mechanical strength were investigated. The results of the study indicate that, with increasing filler volume fraction, the thermal conductivity of the samples also increased. Furthermore, the thermal conductivity, and electrophysical and mechanical properties of the high-density polyethylene + 70% BN composite modified using the electric discharge plasma showed improvement when compared with that without electric discharge plasma treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borisenko, S. I., E-mail: sib@tpu.ru
2016-04-15
The dependence of the effective relaxation time on the electron concentration in A{sup III}–N nitrides in the case of electron scattering at polar longitudinal optical phonons is calculated by the marching method. The method takes into account the inelasticity of electron scattering at polar optical phonons for nitrides in the zinc-blende approximation. The calculations show a substantial increase in mobility in samples with a degenerate electron gas, if screening of the long-range potential of polar longitudinal optical phonons is taken into account.
Orgaz, Felipe; Dzika, Alexandra; Szycht, Olga; Amat, Daniel; Barba, Flora; Becerra, José; Santos-Ruiz, Leonor
2016-01-01
Novel bioactive amorphous glass-glass composite scaffolds (ICIE16/BSG) with interconnected porosity have been developed. Hierarchically interconnected porous glass scaffolds were prepared from a mixture of two melt-derived glasses: a ICIE16 bioactive glass that was previously developed by Wu et al. (2011) to prevent crystallization, and a borosilicate glass of composition 73.48 SiO2-11.35 B2O3-15.15 Na2O (wt%). The resulting melt derived glass-glass composite scaffolds (ICIE16/BSG) were subject to surface functionalization to further improve its interaction with biological systems. Surface functionalization was performed by a nitridation process with hot gas N2/ammonia at 550°C for 2h, obtaining the ICIE16/BSG-NITRI. Evaluation of the degradation rate and the conversion to hydroxyapatite after immersion in simulated body fluid predicted a good biological activity of all the scaffolds, but particularly of the nitrided ones. In vitro evaluation of osteoblastic cells cultured onto the nitrided and non-nitrided scaffolds showed cell attachment, proliferation and differentiation on all scaffolds, but both proliferation and differentiation were improved in the nitrided ICIE16/BSG-NITRI. Biomaterials are often required in the clinic to stimulate bone repair. We have developed a novel bioglass (ICIE16/SBG-NITRI) that can be sintered into highly porous 3D scaffolds, and we have further improved its bioactivity by nitridation. ICIE16/SBG-NITRI was synthesized from a mixture of two melt-derived glasses through combined gel casting and foam replication techniques, followed by nitridation. To mimic bone, it presents high-interconnected porosity while being mechanically stable. Nitridation improved its reactivity and bioactivity facilitating its resorption and the deposition of apatite (bone-like mineral) on its surface and increasing its degradation rate. The nitrided surface also improved the bioglass' interaction with bone cells, which were found to attach better to ICIE16/SBG-NITRI and to differentiate earlier on its surface. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Compositional analysis of dilute nitride doped indium antimonide bulk crystal by VDS technique
NASA Astrophysics Data System (ADS)
Deshpande, Manisha; Maske, Dilip; Choudhari, Rashmi; Arora, Brij Mohan; Gadkari, Dattatray
2016-05-01
Dilute nitrides are suitable materials for fabrication of devices in detection of long wavelength infrared region. Dilute nitride doped Indium antimonide bulk crystals were grown using vertical directional solidification technique. The compositional characteristics of the crystals were carried out using EDS. The analysis was simulated and compared with observations using DTSA II software for accuracy. The ingots have uniform composition of Indium and Antimony. The actual nitrogen composition measured using EDS was 0.136% for doped nitrogen composition 0.1% except near conical end where it was 0.1%. The study of bonding between nitrogen, Indium and antimony was carried out using SIMS. The analysis shows strong presence of In-N bonding along with In-Sb bonds which indicates nitrogen has replaced antimony atoms in crystal lattice.
NASA Astrophysics Data System (ADS)
Einalipour Eshkalak, Kasra; Sadeghzadeh, Sadegh; Jalaly, Maisam
2018-02-01
From electronic point of view, graphene resembles a metal or semi-metal and boron nitride is a dielectric material (band gap = 5.9 eV). Hybridization of these two materials opens band gap of the graphene which has expansive applications in field-effect graphene transistors. In this paper, the effect of the interface structure on the mechanical properties of a hybrid graphene/boron nitride was studied. Young's modulus, fracture strain and tensile strength of the models were simulated. Three likely types (hexagonal, octagonal and decagonal) were found for the interface of hybrid sheet after relaxation. Although Csbnd B bonds at the interface were indicated to result in more promising electrical properties, nitrogen atoms are better choice for bonding to carbon for mechanical applications.
Boron nitride encapsulated graphene infrared emitters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.
2016-03-28
The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devicesmore » and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.« less
Superior thermal conductivity in suspended bilayer hexagonal boron nitride
Wang, Chengru; Guo, Jie; Dong, Lan; Aiyiti, Adili; Xu, Xiangfan; Li, Baowen
2016-01-01
We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm−1K−1(+141 Wm−1K−1/ −24 Wm−1K−1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN. PMID:27142571
Tungsten nitride coatings obtained by HiPIMS as plasma facing materials for fusion applications
NASA Astrophysics Data System (ADS)
Tiron, Vasile; Velicu, Ioana-Laura; Porosnicu, Corneliu; Burducea, Ion; Dinca, Paul; Malinský, Petr
2017-09-01
In this work, tungsten nitride coatings with nitrogen content in the range of 19-50 at% were prepared by reactive multi-pulse high power impulse magnetron sputtering as a function of the argon and nitrogen mixture and further exposed to a deuterium plasma jet. The elemental composition, morphological properties and physical structure of the samples were investigated by Rutherford backscattering spectrometry, atomic force microscopy and X-ray diffraction. Deuterium implantation was performed using a deuterium plasma jet and its retention in nitrogen containing tungsten films was investigated using thermal desorption spectrometry. Deuterium retention and release behaviour strongly depend on the nitrogen content in the coatings and the films microstructure. All nitride coatings have a polycrystalline structure and retain a lower deuterium level than the pure tungsten sample. Nitrogen content in the films acts as a diffusion barrier for deuterium and leads to a higher desorption temperature, therefore to a higher binding energy.
Kinetic modelling of chlorination of nitrided ilmenite using MATLAB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramakrishnan, Sivakumar, E-mail: srsivakumar@usm.my; Kwok, Teong Chen, E-mail: ctck@live.com; Hamid, Sheikh Abdul Rezan Sheikh Abdul, E-mail: rezanshk@gmail.com
In the present study, chlorination of nitride ilmenite using 2{sup k} factorial design was investigated. The reduction experiments were carried out in a temperature range of 400°C to 500°C, chlorination duration from 1 hour to 3 hours and using different type of carbon reactant. Phases of raw materials and reduced samples were analyzed by X-ray diffraction (XRD). Ilmenite was reduced to TiO{sub x}C{sub y}N{sub z} through carbothermal and nitridation for further chlorination into titanium tetrachloride. The Design of Experiment analysis suggested that the types of carbon reactant contribute most influence to the extent of chlorination of nitride ilmenite. The extentmore » of chlorination was highest at 500°C with 3 hours chlorination time and carbon nanotube as carbon reactant.« less
Supramolecular intermediates in the synthesis of polymeric carbon nitride from melamine cyanurate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dante, Roberto C., E-mail: rcdante@yahoo.com; Sánchez-Arévalo, Francisco M.; Chamorro-Posada, Pedro
The adduct of melamine and cyanuric acid (MCA) was used in past research to produce polymeric carbon nitride and precursors. The reaction yield was considerably incremented by the addition of sulfuric acid. The polymeric carbon nitride formation occurs around 450 °C at temperatures above the sublimation of the adduct components, which occurs around 400 °C. In this report the effect of sulfuric acid on MCA was investigated. It was found that the MCA rosette supramolecular channel structures behave as a solid solvent able to host small molecules, such as sulfuric acid, inside these channels and interact with them. Therefore, themore » sulfuric acid effect was found to be close to that of a solute that causes a temperature increment of the “solvent sublimation” enough to allowing the formation of polymeric carbon nitride to occur. Sulfate ions are presumably hosted in the rosette channels of MCA as shown by simulations. - Graphical abstract: The blend of melamine cyanurate and sulfuric acid behaves like a solution so that melamine cyanurate decomposition is shifted to temperatures high enough to react and form polymeric carbon nitride. - Highlights: • The adduct of melamine and cyanuric acid behaves as a solid solvent. • The blend of sulfuric acid and melamine cyanurate behaves like a solution. • Melamine cyanurate decomposition is shifted to higher temperatures by sulfuric acid. • The formation of polymeric carbon nitride occurs for these higher temperatures.« less
NASA Astrophysics Data System (ADS)
García, M. F.; Restrepo-Parra, E.; Riaño-Rojas, J. C.
2015-05-01
This work develops a model that mimics the growth of diatomic, polycrystalline thin films by artificially splitting the growth into deposition and relaxation processes including two stages: (1) a grain-based stochastic method (grains orientation randomly chosen) is considered and by means of the Kinetic Monte Carlo method employing a non-standard version, known as Constant Time Stepping, the deposition is simulated. The adsorption of adatoms is accepted or rejected depending on the neighborhood conditions; furthermore, the desorption process is not included in the simulation and (2) the Monte Carlo method combined with the metropolis algorithm is used to simulate the diffusion. The model was developed by accounting for parameters that determine the morphology of the film, such as the growth temperature, the interacting atomic species, the binding energy and the material crystal structure. The modeled samples exhibited an FCC structure with grain formation with orientations in the family planes of < 111 >, < 200 > and < 220 >. The grain size and film roughness were analyzed. By construction, the grain size decreased, and the roughness increased, as the growth temperature increased. Although, during the growth process of real materials, the deposition and relaxation occurs simultaneously, this method may perhaps be valid to build realistic polycrystalline samples.
Vertical transport in graphene-hexagonal boron nitride heterostructure devices
Bruzzone, Samantha; Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe
2015-01-01
Research in graphene-based electronics is recently focusing on devices based on vertical heterostructures of two-dimensional materials. Here we use density functional theory and multiscale simulations to investigate the tunneling properties of single- and double-barrier structures with graphene and few-layer hexagonal boron nitride (h-BN) or hexagonal boron carbon nitride (h-BC2N). We find that tunneling through a single barrier exhibit a weak dependence on energy. We also show that in double barriers separated by a graphene layer we do not observe resonant tunneling, but a significant increase of the tunneling probability with respect to a single barrier of thickness equal to the sum of the two barriers. This is due to the fact that the graphene layer acts as an effective phase randomizer, suppressing resonant tunneling and effectively letting a double-barrier structure behave as two single-barriers in series. Finally, we use multiscale simulations to reproduce a current-voltage characteristics resembling that of a resonant tunneling diode, that has been experimentally observed in single barrier structure. The peak current is obtained when there is perfect matching between the densities of states of the cathode and anode graphene regions. PMID:26415656
Development and characterization of ultrathin hafnium titanates as high permittivity gate insulators
NASA Astrophysics Data System (ADS)
Li, Min
High permittivity or high-kappa materials are being developed for use as gate insulators for future ultrascaled metal oxide semiconductor field effect transistors (MOSFETs). Hafnium containing compounds are the leading candidates. Due to its moderate permittivity, however, it is difficult to achieve HfO2 gate structures with an EOT well below 1.0 nm. One approach to increase HfO2 permittivity is combining it with a very high-kappa material, such as TiO2. In this thesis, we systematically studied the electrical and physical characteristics of high-kappa hafnium titanates films as gate insulators. A series of HfxTi1-xO2 films with well-controlled composition were deposited using an MOCVD system. The physical properties of the films were analyzed using a variety of characterization techniques. X-ray micro diffraction indicates that the Ti-rich thin film is more immune to crystallization. TEM analysis showed that the thick stoichiometric HfTiO 4 film has an orthorhombic structure and large anisotropic grains. The C-V curves from the devices with the hafnium titanates films displayed relatively low hysteresis. In a certain composition range, the interfacial layer (IL) EOT and permittivity of HfxTi1-x O2 increases linearly with increasing Ti. The charge is negative for HfxTi1-xO2/IL and positive for Si/IL interface, and the magnitude increases as Hf increases. For ultra-thin films (less than 2 nm EOT), the leakage current increases with increasing HE Moreover, the Hf-rich sample has weaker temperature dependence of the current. In the MOSFET devices with the hafnium titanates films, normal transistor characteristics were observed, also electron mobility degradation. Next, we investigated the effects that different pre-deposition surface treatments, including HF dipping, NH3 surface nitridation, and HfO2 deposition, have on the electrical properties of hafnium titanates. Surface nitridation shows stronger effect than the thin HfO2 layer. The nitrided samples displayed a negative flat band voltage shift and larger hysteresis relative to the HF-dipped samples. The IL EOT reduction by mtridation increases with increasing HE Surface nitridation also induces extra charge, more considerable at the Si/IL interface. The leakage current is reduced in the Hf-rich samples with a nitride layer. Electron mobility degradation by surface nitridation was also observed.
NASA Astrophysics Data System (ADS)
Sawicki, J.; Siedlaczek, P.; Staszczyk, A.
2018-03-01
A numerical three-dimensional model for computing residual stresses generated in cross section of steel 42CrMo4 after nitriding is presented. The diffusion process is analyzed by the finite-element method. The internal stresses are computed using the obtained profile of the distribution of the nitrogen concentration. The special features of the intricate geometry of the treated articles including edges and angles are considered. Comparative analysis of the results of the simulation and of the experimental measurement of residual stresses is performed by the Waisman-Philips method.
Carlo simulations of disorder in ZnSnN2 and the effects on the electronic structure," Physical Review Materials, 2017 "Effects of Hydrogen on Acceptor Activation in Ternary Nitride Semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wakabayashi, Ryo H.; Abruña, Héctor D., E-mail: hda1@cornell.edu; DiSalvo, Francis J., E-mail: fjd3@cornell.edu
2017-02-15
Quinary Ti{sub x}Ta{sub y}Al{sub z}N{sub 1-δ}O{sub γ} of various compositions have been prepared by a co-precipitation method followed by ammonolysis. The nitride samples were examined as potential catalyst supports in polymer electrolyte membrane fuel cells. The nitride products crystallized in the rock salt (NaCl) structure over a wide range of compositions. The addition of Ta and Al was highly beneficial towards improving the chemical and electrochemical stability of TiN, without a significant loss of electrical conductivity. Platinum particles were successfully deposited on the (oxy)nitride samples, and the composite samples at some compositions were found to be comparable to Pt/carbon inmore » their stability and catalytic activity even without optimizing the Pt deposition and dispersion processes. - Graphical abstract: The effect of additions of Ta and Al into TiN structure. Shifts the lattice constant, and increases its chemical stability in acidic environment.« less
Compositional analysis of dilute nitride doped indium antimonide bulk crystal by VDS technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshpande, Manisha, E-mail: manishauj@gmail.com; Department of Physics, Mithibai College, Vile Parle; Maske, Dilip
2016-05-06
Dilute nitrides are suitable materials for fabrication of devices in detection of long wavelength infrared region. Dilute nitride doped Indium antimonide bulk crystals were grown using vertical directional solidification technique. The compositional characteristics of the crystals were carried out using EDS. The analysis was simulated and compared with observations using DTSA II software for accuracy. The ingots have uniform composition of Indium and Antimony. The actual nitrogen composition measured using EDS was 0.136% for doped nitrogen composition 0.1% except near conical end where it was 0.1%. The study of bonding between nitrogen, Indium and antimony was carried out using SIMS.more » The analysis shows strong presence of In-N bonding along with In-Sb bonds which indicates nitrogen has replaced antimony atoms in crystal lattice.« less
NASA Astrophysics Data System (ADS)
Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.
2015-12-01
A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.
Study of SiO{sub 2}/4H-SiC interface nitridation by post-oxidation annealing in pure nitrogen gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanthaphan, Atthawut, E-mail: chanthaphan@asf.mls.eng.osaka-u.ac.jp; Hosoi, Takuji, E-mail: hosoi@mls.eng.osaka-u.ac.jp; Shimura, Takayoshi
An alternative and effective method to perform interface nitridation for 4H-SiC metal-oxide-semiconductor (MOS) devices was developed. We found that the high-temperature post-oxidation annealing (POA) in N{sub 2} ambient was beneficial to incorporate a sufficient amount of nitrogen atoms directly into thermal SiO{sub 2}/SiC interfaces. Although N{sub 2}-POA was ineffective for samples with thick thermal oxide layers, interface nitridation using N{sub 2}-POA was achieved under certain conditions, i.e., thin SiO{sub 2} layers (< 15 nm) and high annealing temperatures (>1350°C). Electrical characterizations of SiC-MOS capacitors treated with high-temperature N{sub 2}-POA revealed the same evidence of slow trap passivation and fast trapmore » generation that occurred in NO-treated devices fabricated with the optimized nitridation conditions.« less
NASA Astrophysics Data System (ADS)
Tian, C. Y.; Jiang, H.
2018-01-01
Carbon nanotube-silicon nitride nano-ceramic matrix composites were fabricated by hot-pressing nano-sized Si3N4 powders and carbon nanotubes. The effect of CNTs on the mechanical properties of silicon nitride was researched. The phase compositions and the microstructure characteristics of the samples as well as the distribution of carbon nanotube in the silicon nitride ceramic were analyzed by X-ray diffraction and scanning electron microscope. The results show that the microstructure of composites consists mainly of α-Si3N4, β-Si3N4, Si2N2O and carbon natubes. The addition of proper amount of carbon nanotubes can improve the fracture toughness and the flexural strength, and the optimal amount of carbon nanotube are both 3wt.%. However the Vickers hardness values decrease with the increase of carbon nanotubes content.
NASA Astrophysics Data System (ADS)
Feijoo, Pedro C.; Pasadas, Francisco; Iglesias, José M.; Martín, María J.; Rengel, Raúl; Li, Changfeng; Kim, Wonjae; Riikonen, Juha; Lipsanen, Harri; Jiménez, David
2017-12-01
The quality of graphene in nanodevices has increased hugely thanks to the use of hexagonal boron nitride as a supporting layer. This paper studies to which extent hBN together with channel length scaling can be exploited in graphene field-effect transistors (GFETs) to get a competitive radio-frequency (RF) performance. Carrier mobility and saturation velocity were obtained from an ensemble Monte Carlo simulator that accounted for the relevant scattering mechanisms (intrinsic phonons, scattering with impurities and defects, etc). This information is fed into a self-consistent simulator, which solves the drift-diffusion equation coupled with the two-dimensional Poisson’s equation to take full account of short channel effects. Simulated GFET characteristics were benchmarked against experimental data from our fabricated devices. Our simulations show that scalability is supposed to bring to RF performance an improvement that is, however, highly limited by instability. Despite the possibility of a lower performance, a careful choice of the bias point can avoid instability. Nevertheless, maximum oscillation frequencies are still achievable in the THz region for channel lengths of a few hundreds of nanometers.
Boron Nitride Nanoribbons from Exfoliation of Boron Nitride Nanotubes
NASA Technical Reports Server (NTRS)
Hung, Ching-Cheh; Hurst, Janet; Santiago, Diana
2017-01-01
Two types of boron nitride nanotubes (BNNTs) were exfoliated into boron nitride nanoribbons (BNNR), which were identified using transmission electron microscopy: (1) commercial BNNTs with thin tube walls and small diameters. Tube unzipping was indicated by a large decrease of the sample's surface area and volume for pores less than 2 nm in diameter. (2) BNNTs with large diameters and thick walls synthesized at NASA Glenn Research Center. Here, tube unraveling was indicated by a large increase in external surface area and pore volume. For both, the exfoliation process was similar to the previous reported method to exfoliate commercial hexagonal boron nitride (hBN): Mixtures of BNNT, FeCl3, and NaF (or KF) were sequentially treated in 250 to 350 C nitrogen for intercalation, 500 to 750 C air for exfoliation, and finally HCl for purification. Property changes of the nanosized boron nitride throughout this process were also similar to the previously observed changes of commercial hBN during the exfoliation process: Both crystal structure (x-ray diffraction data) and chemical properties (Fourier-transform infrared spectroscopy data) of the original reactant changed after intercalation and exfoliation, but most (not all) of these changes revert back to those of the reactant once the final, purified products are obtained.
NASA Astrophysics Data System (ADS)
Naeem, M.; Raza, H. A.; Shafiq, M.; Zaka-ul-Islam, M.; Iqbal, Javed; Díaz-Guillén, J. C.; Zakaullah, M.
2017-11-01
Austenitic stainless steels are of prime importance in many industrial sectors because of their excellent corrosion resistance; however, their poor mechanical and tribological features lead to their reduced applicability. In this regard, low-temperature cathodic cage plasma nitriding (CCPN) can be used to improve surface properties of steels without scarifying the inherent corrosion resistance. In this study, AISI-316 samples are processed in CCPN reactor at a temperature of 400 °C, for the treatment time of 4 h, at a pressure of 150 Pa and variable pulsed duty cycle (15-75%). The microstructure and mechanical features are analyzed using x-ray diffraction, scanning electron microscopy, microhardness tester and ball-on-disc wear tester. The anodic polarization test in 3.5% NaCl is conducted to examine the corrosion properties. The results show that hardness is enhanced up to 1327 HV at low duty cycle, which is considerably higher than base material (278 HV). The wear rate is found to be reduced up to 90% over base material by processing at low duty cycle. The base material exhibits severe abrasive wear, and the nitrided sample has dominant adhesive wear. The corrosion rate is found to be reduced up to 95% over base material for the sample nitrided at low duty cycle. This study shows that wear and corrosion resistance in CCPN can be significantly boosted by reducing the pulsed duty cycle.
NASA Technical Reports Server (NTRS)
Cross, Jon B.; Koontz, Steven L.; Lan, Esther H.
1993-01-01
The effects of atomic oxygen on boron nitride (BN), silicon nitride (Si3N4), Intelsat 6 solar cell interconnects, organic polymers, and MoS2 and WS2 dry lubricant, were studied in Low Earth Orbit (LEO) flight experiments and in a ground based simulation facility. Both the inflight and ground based experiments employed in situ electrical resistance measurements to detect penetration of atomic oxygen through materials and Electron Spectroscopy for Chemical Analysis (ESCA) analysis to measure chemical composition changes. Results are given. The ground based results on the materials studied to date show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground based facility in terms of reproducing LEO flight results. In addition it was demonstrated that ground based simulation is capable of performing more detailed experiments than orbital exposures can presently perform. This allows the development of a fundamental understanding of the mechanisms involved in the LEO environment degradation of materials.
Enhanced thermaly managed packaging for III-nitride light emitters
NASA Astrophysics Data System (ADS)
Kudsieh, Nicolas
In this Dissertation our work on `enhanced thermally managed packaging of high power semiconductor light sources for solid state lighting (SSL)' is presented. The motivation of this research and development is to design thermally high stable cost-efficient packaging of single and multi-chip arrays of III-nitrides wide bandgap semiconductor light sources through mathematical modeling and simulations. Major issues linked with this technology are device overheating which causes serious degradation in their illumination intensity and decrease in the lifetime. In the introduction the basics of III-nitrides WBG semiconductor light emitters are presented along with necessary thermal management of high power cingulated and multi-chip LEDs and laser diodes. This work starts at chip level followed by its extension to fully packaged lighting modules and devices. Different III-nitride structures of multi-quantum well InGaN/GaN and AlGaN/GaN based LEDs and LDs were analyzed using advanced modeling and simulation for different packaging designs and high thermal conductivity materials. Study started with basic surface mounted devices using conventional packaging strategies and was concluded with the latest thermal management of chip-on-plate (COP) method. Newly discovered high thermal conductivity materials have also been incorporated for this work. Our study also presents the new approach of 2D heat spreaders using such materials for SSL and micro LED array packaging. Most of the work has been presented in international conferences proceedings and peer review journals. Some of the latest work has also been submitted to well reputed international journals which are currently been reviewed for publication. .
NASA Astrophysics Data System (ADS)
Li, Kexin; Rakheja, Shaloo
2017-02-01
In this paper, we develop a physically motivated compact model of the charge-voltage (Q-V) characteristics in various III-nitride high-electron mobility transistors (HEMTs) operating under highly non-equilibrium transport conditions, i.e. high drain-source current. By solving the coupled Schrödinger-Poisson equation and incorporating the two-dimensional electrostatics in the channel, we obtain the charge at the top-of-the-barrier for various applied terminal voltages. The Q-V model accounts for cutting off of the negative momenta states from the drain terminal under high drain-source bias and when the transmission in the channel is quasi-ballistic. We specifically focus on AlGaN and AlInN as barrier materials and InGaN and GaN as the channel material in the heterostructure. The Q-V model is verified and calibrated against numerical results using the commercial TCAD simulator Sentaurus from Synopsys for a 20-nm channel length III-nitride HEMT. With 10 fitting parameters, most of which have a physical origin and can easily be obtained from numerical or experimental calibration, the compact Q-V model allows us to study the limits and opportunities of III-nitride technology. We also identify optimal material and geometrical parameters of the device that maximize the carrier concentration in the HEMT channel in order to achieve superior RF performance. Additionally, the compact charge model can be easily integrated in a hierarchical circuit simulator, such as Keysight ADS and CADENCE, to facilitate circuit design and optimization of various technology parameters.
Phonon wave interference in graphene and boron nitride superlattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xue-Kun; Zhou, Wu-Xing; Tang, Li-Ming
2016-07-11
The thermal transport properties of the graphene and boron nitride superlattice (CBNSL) are investigated via nonequilibrium molecular dynamics simulations. The simulation results show that a minimum lattice thermal conductivity can be achieved by changing the period length of the superlattice. Additionally, it is found that the period length at the minimum shifts to lower values at higher temperatures, and that the depth of the minimum increases with decreasing temperature. In particular, at 200 K, the thermal conductivities of CBNSLs with certain specific period lengths are nearly equal to the corresponding values at 300 K. A detailed analysis of the phonon spectra showsmore » that this anomalous thermal conductivity behavior is a result of strong phonon wave interference. These observations indicate a promising strategy for manipulation of thermal transport in superlattices.« less
NASA Astrophysics Data System (ADS)
Obeidi, M. Ahmed; McCarthy, E.; Brabazon, D.
2018-03-01
Laser surface modification can be used to enhance the mechanical properties of a material, such as hardness, toughness, fatigue strength, and corrosion resistance. Surface nitriding is a widely used thermochemical method of surface modification, in which nitrogen is introduced into a metal or other material at an elevated temperature within a furnace. It is used on parts where there is a need for increased wear resistance, corrosion resistance, fatigue life, and hardness. Laser nitriding is a novel method of nitriding where the surface is heated locally by a laser, either in an atmosphere of nitrogen or with a jet of nitrogen delivered to the laser heated site. It combines the benefits of laser modification with those of nitriding. Recent work on high toughness tool steel samples has shown promising results due to the increased nitrogen gas impingement onto the laser heated region. Increased surface activity and nitrogen adsorption was achieved which resulted in a deeper and harder surface compared to conventional hardening methods. In this work, the effects of the laser power, pulse repetition frequency, and overlap percentage on laser surface treatment of 316 L SST steel samples with an argon-nitrogen jet will be presented. Resulting microstructure, phase type, microhardness, and wear resistance are presented.
Tribological properties of CrN coatings deposited by nitro-chromizing treatment on AISI D2 steel
NASA Astrophysics Data System (ADS)
Durmaz, M.; Kilinc, B.; Abakay, E.; Sen, U.; Sen, S.
2015-03-01
In this work, the wear test of uncoated and chromium nitride coated AISI D2 cold work tool steel against alumina ball realized at 0.1 m/s sliding speeds and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then chromium nitride coating was performed thermo-reactive deposition technique (TRD) in a powder mixture consisting of ferro-chromium, ammonium chloride and alumina at 1000°C for 2 h. Nitro-chromized samples were characterized by X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), micro-hardness and ball on disk wear tests. The coating layer formed on the AISI D2 steel was compact and homogeneous. X-ray studies showed that the phase formed in the coated layer is Cr2N. The depth of the layer was 8.15 µm. The average hardness of the layer was 2160±15 HV0.025. For uncoated and chromium nitride materials, wear rate increased with increasing load. The results of friction coefficient and wear rate of the tested materials showed that the CrN coating presents the lowest results.
Tribological properties of CrN coatings deposited by nitro-chromizing treatment on AISI D2 steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durmaz, M., E-mail: mdurmaz@sakarya.edu.tr; Abakay, E.; Sen, U.
2015-03-30
In this work, the wear test of uncoated and chromium nitride coated AISI D2 cold work tool steel against alumina ball realized at 0.1 m/s sliding speeds and under the loads of 2.5N, 5N and 10N. Steel samples were nitrided at 575°C for 8 h in the first step of the coating process, and then chromium nitride coating was performed thermo-reactive deposition technique (TRD) in a powder mixture consisting of ferro-chromium, ammonium chloride and alumina at 1000°C for 2 h. Nitro-chromized samples were characterized by X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), micro-hardness and ball on disk wear tests. The coating layermore » formed on the AISI D2 steel was compact and homogeneous. X-ray studies showed that the phase formed in the coated layer is Cr{sub 2}N. The depth of the layer was 8.15 µm. The average hardness of the layer was 2160±15 HV{sub 0.025}. For uncoated and chromium nitride materials, wear rate increased with increasing load. The results of friction coefficient and wear rate of the tested materials showed that the CrN coating presents the lowest results.« less
Furuhashi, Takeshi; Nukarinen, Ella; Ota, Shigenori; Weckwerth, Wolfram
2014-05-01
Hydrophilic peptides in shotgun proteomics have been shown to be problematic in conventional chromatography. Typically, C18 solid phase extraction or peptide traps are used for desalting the sample prior to mass spectrometry analysis, but the capacity to retain hydrophilic peptides is not very high, causing a bias toward more hydrophobic peptides. This is particularly problematic in phosphoproteomic studies. We tested the compatibility of commercially available boron nitride as a novel material for peptide desalting. Boron nitride can be used to recover a wide range of peptides with different physicochemical properties comparable to combined C18 and graphite carbon material. Copyright © 2014. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Setoodeh, A. R.; Badjian, H.
2017-12-01
The most stable form of boron nitride polymorph naming hexagonal boron nitride sheet has recently been widely concerned like graphite due to its interesting features such as electrical insulation and high thermal conductivity. In this study, the molecular dynamic simulations are implemented to investigate the mechanical properties of single-layer graphene sheets under tensile and compressive loadings in the absence and presence of boron-nitride coating layers. In this introduced hybrid nanostructure, the benefit of combining both individual interesting features of graphene and boron-nitride sheets such as exceptional mechanical and electrical properties can be simultaneously achieved for future potential application in nano devices. The influences of chiral indices, boundary conditions and presence of mono-atomic vacancy defects as well as coating dimension on the mechanical behavior of the resulted hybrid structure are reported. The interatomic forces between the atoms are modeled by employing the AIREBO and Tersoff-Brenner potentials for carbon-carbon and boron-nitrogen atoms in each layer, respectively. Furthermore, the van der Waal interlayer forces of carbon-boron and carbon-nitrogen are estimated by the Lennard-Jones potential field. Besides the potential improvement in electrical and physical properties of the nanostructure, it is demonstrated that the buckling load capacity of the fully coated graphene sheet with 3% concentration of mono-atomic vacancy defects noticeably enhances by amounts of 24.1%.
First-principles study of transition-metal nitrides as diffusion barriers against Al
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Zhi-Gang; Yacout, Abdellatif M.; Kim, Yeon Soo
2016-04-01
Using density-functional theory based first-principles calculations we provided a comparative study of the diffusion barrier properties of TiN, ZrN, and HfN against Al for U-Mo dispersion fuel applications. We firstly examined the thermodynamic stability of these transition-metal nitrides with Al. The calculated heats of reaction show that both TiN and ZrN are thermodynamically unstable diffusion barrier materials, which might be decomposed by Al at relatively high temperatures. As a comparison, HfN is a stable diffusion barrier material for Al. To evaluate the kinetic stability of these nitride systems against Al diffusion, we investigated the diffusion mechanisms of Al in TiN,more » ZrN and HfN using atomic scale simulations. The effect of non-stoichiometry on the defect formation and Al migration was systematically studied. (C) 2015 ELSEVIER B.V. All rights reserved« less
Metallic and Magnetic 2D Materials Containing Planar Tetracoordinated C and N.
Jimenez-Izal, Elisa; Saeys, Mark; Alexandrova, Anastassia N
2016-08-26
The top monolayers of surface carbides and nitrides of Co and Ni are predicted to yield new stable 2D materials upon exfoliation. These 2D phases are p4g clock reconstructed, and contain planar tetracoordinated C or N. The stability of these flat carbides and nitrides is high, and ab-initio molecular dynamics at a simulation temperature of 1800 K suggest that the materials are thermally stable at elevated temperatures. The materials owe their stability to local triple aromaticity (π-, σ-radial, and σ-peripheral) associated with binding of the main group element to the metal. All predicted 2D phases are conductors, and the two alloys of Co are also ferromagnetic - a property especially rare among 2D materials. The preparation of 2D carbides and nitrides is envisioned to be done through surface deposition and peeling, possibly on a metal with a larger lattice constant for reduced affinity.
Simulation of STM technique for electron transport through boron-nitride nanotubes
NASA Astrophysics Data System (ADS)
Ganji, M. D.; Mohammadi-nejad, A.
2008-06-01
We report first-principles calculations on the electrical transport properties of boron-nitrid nanotubes (BNNTs). We consider a single walled (5,0) boron-nitrid nanotube sandwiched between an Au(1 0 0) substrate and a monatomic Au scanning tunneling microscope (STM) tip. Lateral motion of the tip over the nanotube wall cause it to change from one conformation class to the others and to switch between a strongly and a weakly conducting state. Thus, surprisingly, despite their apparent simplicity these Au/BNNT/Au nanowires are shown to be a convenient switch. Experiments with a conventional STM are proposed to test these predictions. The projection of the density of states (PDOS) and the transmission coefficients T(E) of the two-probe systems at zero bias are analyzed, and it suggests that the variation of the coupling between the wire and the electrodes leads to switching behaviour.
Formation of carbon nitride — a novel hard coating
NASA Astrophysics Data System (ADS)
Chubaci, J. F. D.; Ogata, K.; Fujimoto, F.; Watanabe, S.; Biersack, J. P.
1996-08-01
Increasing efforts have been reported on the formation of carbon nitride. Vapor deposition and simultaneous ion bombardment from accelerators or plasmas (IBAD) proved to be a successful technique for the preparation of this material. In our preparation, the properties of the films were controlled by varying the nitrogen ion energy and the flux composition ratio {C}/{N}. The deposited films with high nitrogen incorporation ( {C}/{N} = 0.6 ˜ 0.7 ) and low implantation energies (< 1.0 keV) showed high Knoop hardnesses of up to 63 GPa. XPS and FT-IR measurements indicated a high fraction of triple bonded CN. X-ray diffraction showed an amorphous structure. Computer simulations by the dynamic TRIM code are used to study the formation parameters, nitrogen ion energy and {C}/{N} ratio. This turned on to be useful in understanding the formation process of the carbon nitride films grown on silicon wafers, fused silica and tungsten carbide substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddiqua, Poppy; O'Leary, Stephen K., E-mail: stephen.oleary@ubc.ca
2016-03-07
Within the framework of a semi-classical three-valley Monte Carlo electron transport simulation approach, we analyze the steady-state and transient aspects of the electron transport within bulk zinc-blende indium nitride, with a focus on the response to variations in the crystal temperature and the doping concentration. We find that while the electron transport associated with zinc-blende InN is highly sensitive to the crystal temperature, it is not very sensitive to the doping concentration selection. The device consequences of these results are then explored.
Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaskell, J.; Fromhold, T. M.; Greenaway, M. T.
We assess the potential of two-terminal graphene-hexagonal boron nitride-graphene resonant tunneling diodes as high-frequency oscillators, using self-consistent quantum transport and electrostatic simulations to determine the time-dependent response of the diodes in a resonant circuit. We quantify how the frequency and power of the current oscillations depend on the diode and circuit parameters including the doping of the graphene electrodes, device geometry, alignment of the graphene lattices, and the circuit impedances. Our results indicate that current oscillations with frequencies of up to several hundred GHz should be achievable.
Research and Development for Continued Performance Improvement in Flexible a-Si PV
2010-12-14
accomplished, however, at low temperatures silicides tend to form on the surface of the filament, which affected filament lifetime and deposition rate...considered. Titanium Nitride, sputtered As an alternative to the hot wire deposition of silicon, samples were prepared with various thicknesses of...Silicon 21 Insitu DC Sputtering Titanium Nitride 22 Metal Machine 2 ឈ> RF Oxygen Plasma Silicon Dioxide 20. Oxygen Etch Table A.4.1 Open circuit
Continuation of development of nitrides for space nuclear reactors
NASA Technical Reports Server (NTRS)
Potter, R. A.; Scott, J. L.
1974-01-01
Alloy nitrides (U,Zr), (U,Ce), and (U,Y) were prepared and exposed to vacuum at temperatures to 1700 C (1973 K) and compared with pure UN. Weight loss data and physical observations showed that the alloy samples were more stable than UN. In weight loss, (U,Zr)N was 3 times as stable as UN at 1600 C (1873 K) for 100 hr at 0.000002 torr (0.000266n/sq.m.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J.; Börner, K.
2015-12-15
A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steelmore » samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.« less
Wang, Liancheng; Cheng, Yan; Liu, Zhiqiang; Yi, Xiaoyan; Zhu, Hongwei; Wang, Guohong
2016-01-20
Graphene transparent conductive electrode (TCE) applications in nitride light emitting diodes (LEDs) are still limited by the large contact resistance and interface barrier between graphene and p-GaN. We propose a hybrid tunnel junction (TJ)-graphene TCE approach for nitride lateral LEDs theoretically and experimentally. Through simulation using commercial advanced physical models of semiconductor devices (APSYS), we found that low tunnel resistance can be achieved in the n(+)-GaN/u-InGaN/p(+)-GaN TJ, which has a lower tunneling barrier and an enhanced electric field due to the polarization effect. Graphene TCEs and hybrid graphene-TJ TCEs are then modeled. The designed hybrid TJ-graphene TCEs show sufficient current diffusion length (Ls), low introduced series resistance, and high transmittance. The assembled TJ LED with the triple-layer graphene (TLG) TCEs show comparable optoelectrical performance (3.99 V@20 mA, LOP = 10.8 mW) with the reference LED with ITO TCEs (3.36 V@20 mA, LOP = 12.6 mW). The experimental results further prove that the TJ-graphene structure can be successfully incorporated as TCEs for lateral nitride LEDs.
NASA Astrophysics Data System (ADS)
Rok Kim, Kyeong; You, Joo Hyung; Dal Kwack, Kae; Kim, Tae Whan
2010-10-01
Unique multibit NAND polycrystalline silicon-oxide-silicon nitride-oxide-silicon (SONOS) memory cells utilizing a separated control gate (SCG) were designed to increase memory density. The proposed NAND SONOS memory device based on a SCG structure was operated as two bits, resulting in an increase in the storage density of the NVM devices in comparison with conventional single-bit memories. The electrical properties of the SONOS memory cells with a SCG were investigated to clarify the charging effects in the SONOS memory cells. When the program voltage was supplied to each gate of the NAND SONOS flash memory cells, the electrons were trapped in the nitride region of the oxide-nitride-oxide layer under the gate to supply the program voltage. The electrons were accumulated without affecting the other gate during the programming operation, indicating the absence of cross-talk between two trap charge regions. It is expected that the inference effect will be suppressed by the lower program voltage than the program voltage of the conventional NAND flash memory. The simulation results indicate that the proposed unique NAND SONOS memory cells with a SCG can be used to increase memory density.
NASA Technical Reports Server (NTRS)
Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.
1990-01-01
The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.
NASA Astrophysics Data System (ADS)
Zhang, Yuewei; Liu, Jinghai; Wu, Guan; Chen, Wei
2012-08-01
Energy captured directly from sunlight provides an attractive approach towards fulfilling the need for green energy resources on the terawatt scale with minimal environmental impact. Collecting and storing solar energy into fuel through photocatalyzed water splitting to generate hydrogen in a cost-effective way is desirable. To achieve this goal, low cost and environmentally benign urea was used to synthesize the metal-free photocatalyst graphitic carbon nitride (g-C3N4). A porous structure is achieved via one-step polymerization of the single precursor. The porous structure with increased BET surface area and pore volume shows a much higher hydrogen production rate under simulated sunlight irradiation than thiourea-derived and dicyanamide-derived g-C3N4. The presence of an oxygen atom is presumed to play a key role in adjusting the textural properties. Further improvement of the photocatalytic function can be expected with after-treatment due to its rich chemistry in functionalization.Energy captured directly from sunlight provides an attractive approach towards fulfilling the need for green energy resources on the terawatt scale with minimal environmental impact. Collecting and storing solar energy into fuel through photocatalyzed water splitting to generate hydrogen in a cost-effective way is desirable. To achieve this goal, low cost and environmentally benign urea was used to synthesize the metal-free photocatalyst graphitic carbon nitride (g-C3N4). A porous structure is achieved via one-step polymerization of the single precursor. The porous structure with increased BET surface area and pore volume shows a much higher hydrogen production rate under simulated sunlight irradiation than thiourea-derived and dicyanamide-derived g-C3N4. The presence of an oxygen atom is presumed to play a key role in adjusting the textural properties. Further improvement of the photocatalytic function can be expected with after-treatment due to its rich chemistry in functionalization. Electronic supplementary information (ESI) available: Methods for preparing and characterizing UCN, TCN and DCN samples. Methods for examining the photocatalytic hydrogen production. FTIR, XPS, and digital photos of three products are shown in Fig. S1-6. See DOI: 10.1039/c2nr30948c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamashita, S.; Masubuchi, Y.; Nakazawa, Y.
2012-10-15
Slight enhancement of saturation magnetization to 219 A m{sup 2} kg{sup -1} was observed from 199 A m{sup 2} kg{sup -1} for the original {alpha}-Fe on the intermediate nitrided mixture of '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' with residual {alpha}-Fe among the low temperature ammonia nitridation products under 5 T magnetic field at room temperature. The value changed not linearly against the yield as had been expected. Crystal structure refinement indicated that the phase similar to {alpha} Prime Prime -Fe{sub 16}N{sub 2} had deviations on its lattice constants and positional parameters, compared to previously reported values for {alpha} Prime Primemore » -Fe{sub 16}N{sub 2}. Spin-polarized total energy calculations were performed using the projector-augmented wave method as implemented in the Vienna ab-initio simulation package (VASP) to calculate magnetic moment on the refined crystal structure of the intermediate '{alpha} Prime Prime -Fe{sub 16}N{sub 2}'. The calculations supported the observed magnetization enhancement in the intermediate nitridation product. - Graphical abstract: Crystal structural parameters slightly change in the intermediate nitrided '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' from those in {alpha} Prime Prime -Fe{sub 16}N{sub 2} to show the magnetization maxima in the mixture of '{alpha} Prime Prime -Fe{sub 16}N{sub 2}' and the residual {alpha}-F. Highlights: Black-Right-Pointing-Pointer Larger magnetization was observed than the value of Fe{sub 16}N{sub 2} on its intermediate nitrided mixture with residual {alpha}-Fe. Black-Right-Pointing-Pointer The enhancement was related to the crystal structural deviation from Fe{sub 16}N{sub 2} on the intermediate nitride. Black-Right-Pointing-Pointer It was supported by spin-polarized total energy calculation using the deviated structure.« less
Molecular dynamics simulations of trihalomethanes removal from water using boron nitride nanosheets.
Azamat, Jafar; Khataee, Alireza; Joo, Sang Woo
2016-04-01
Molecular dynamics simulations were performed to investigate the separation of trihalomethanes (THMs) from water using boron nitride nanosheets (BNNSs). The studied systems included THM molecules and a functionalized BNNS membrane immersed in an aqueous solution. An external pressure was applied to the z axis of the systems. Two functionalized BNNSs with large fluorinated-hydrogenated pore (F-H-pores) and small hydrogen-hydroxyl pore (H-OH-pores) were used. The pores of the BNNS membrane were obtained by passivating each nitrogen and boron atoms at the pore edges with fluorine and hydrogen atoms in the large pore or with hydroxyl and hydrogen atoms in the small pore. The results show that the BNNS with a small functionalized pore was impermeable to THM molecules, in contrast to the BNNS with a large functionalized pore. Using these membranes, water contaminants can be removed at lower cost.
Mechanism study and numerical simulation of Uranium nitriding induced by high energy laser
NASA Astrophysics Data System (ADS)
Zhu, Yuan; Xu, Jingjing; Qi, Yanwen; Li, Shengpeng; Zhao, Hui
2018-06-01
The gradients of interfacial tension induced by local heating led to Marangoni convection, which had a significant effect on surface formation and the process of mass transport in the laser nitriding of uranium. An experimental observation of the underlying processes was very difficult. In present study, the Marangoni convection was considered and the computational fluid dynamic (CFD) analysis technique of FLUENT program was performed to determine the physical processes such as heat transfer and mass transport. The progress of gas-liquid falling film desorption was presented by combining phase-change model with fluid volume function (VOF) model. The time-dependent distribution of the temperature had been derived. Moreover, the concentration and distribution of nitrogen across the laser spot are calculated. The simulation results matched with the experimental data. The numerical resolution method provided a better approach to know the physical processes and dependencies of the coating formation.
Poostforooshan, Jalal; Badiei, Alireza; Kolahdouz, Mohammadreza; Weber, Alfred P
2016-08-24
Here we report a novel, facile, and sustainable approach for the preparation of spherical submicrometer carbon nitride-based polymer composites by a continuous aerosol-photopolymerization process. In this regard, spherical mesoporous carbon nitride (SMCN) nanoparticles were initially prepared via a nanocasting approach using spray-drying synthesized spherical mesoporous silica (SMS) nanoparticles as hard templates. In addition to experimental characterization, the effect of porosity on the light absorption enhancement and consequently the generation rate of electron-hole pairs inside the SMCN was simulated using a three-dimensional finite difference time-domain (FDTD) method. To produce the carbon nitride-based polymer composite, SMCN nanoparticles exhibit excellent performance in photopolymerization of butyl acrylate (PBuA) monomer in the presence of n-methyldiethanolamine (MDEA) as a co-initiator in a continuous aerosol-based process. In this one-pot synthesis, SMCN nanoparticles act not only as photoinitiators but at the same time as fillers and templates. The average aerosol residence time in the photoreactor is about 90 s. The presented aerosol-photopolymerization process avoids the need for solvent and surfactant, operates at room temperature, and, more importantly, is suitable to produce the spherical composite with hydrophobic polymers. Furthermore, we simulated the condition of SMCN nanoparticles during illumination in the gas phase process, which can freely rotate. The results demonstrated that the hole (h(+)) density is almost equally distributed in the whole part of the SMCN nanoparticles due to their rotation, leading to efficient light harvesting and more homogeneous photoreaction. The combination of the outstanding features of environmentally friendly SMCN, photopolymerization, and aerosol processing might open new avenues, especially in green chemistry, to produce novel polymer composites with multifunctional properties.
NASA Astrophysics Data System (ADS)
Almoussawi, M.; Smith, A. J.
2018-05-01
Poly Crystalline Boron Nitride (PCBN) tool wear during the friction stir welding of high melting alloys is an obstacle to commercialize the process. This work simulates the friction stir welding process and tool wear during the plunge/dwell period of 14.8 mm EH46 thick plate steel. The Computational Fluid Dynamic (CFD) model was used for simulation and the wear of the tool is estimated from temperatures and shear stress profile on the tool surface. Two sets of tool rotational speeds were applied including 120 and 200 RPM. Seven plunge/dwell samples were prepared using PCBN FSW tool, six thermocouples were also embedded around each plunge/dwell case in order to record the temperatures during the welding process. Infinite focus microscopy technique was used to create macrographs for each case. The CFD result has been shown that a shear layer around the tool shoulder and probe-side denoted as thermo-mechanical affected zone (TMAZ) was formed and its size increase with tool rotational speed increase. Maximum peak temperature was also found to increase with tool rotational speed increase. PCBN tool wear under shoulder was found to increase with tool rotational speed increase as a result of tool's binder softening after reaching to a peak temperature exceeds 1250 °C. Tool wear also found to increase at probe-side bottom as a result of high shear stress associated with the decrease in the tool rotational speed. The amount of BN particles revealed by SEM in the TMAZ were compared with the CFD model.
APCVD hexagonal boron nitride thin films for passive near-junction thermal management of electronics
NASA Astrophysics Data System (ADS)
KC, Pratik; Rai, Amit; Ashton, Taylor S.; Moore, Arden L.
2017-12-01
The ability of graphene to serve as an ultrathin heat spreader has been previously demonstrated with impressive results. However, graphene is electrically conductive, making its use in contact with electronic devices problematic from a reliability and integration perspective. As an alternative, hexagonal boron nitride (h-BN) is a similarly structured material with large in-plane thermal conductivity but which possesses a wide band gap, thereby giving it potential to be utilized for directing contact, near-junction thermal management of electronics without shorting or the need for an insulating intermediate layer. In this work, the viability of using large area, continuous h-BN thin films as direct contact, near-junction heat spreaders for electronic devices is experimentally evaluated. Thin films of h-BN several square millimeters in size were synthesized via an atmospheric pressure chemical vapor deposition (APCVD) method that is both simple and scalable. These were subsequently transferred onto a microfabricated test device that simulated a multigate transistor while also allowing for measurements of the device temperature at various locations via precision resistance thermometry. Results showed that these large-area h-BN films with thicknesses of 77-125 nm are indeed capable of significantly lowering microdevice temperatures, with the best sample showing the presence of the h-BN thin film reduced the effective thermal resistance by 15.9% ± 4.6% compared to a bare microdevice at the same power density. Finally, finite element simulations of these experiments were utilized to estimate the thermal conductivity of the h-BN thin films and identify means by which further heat spreading performance gains could be attained.
Panchal, Mitesh B; Upadhyay, Sanjay H
2014-09-01
In this study, the feasibility of single walled boron nitride nanotube (SWBNNT)-based biosensors has been ensured considering the continuum modelling-based simulation approach, for mass-based detection of various bacterium/viruses. Various types of bacterium or viruses have been taken into consideration at the free-end of the cantilevered configuration of the SWBNNT, as a biosensor. Resonant frequency shift-based analysis has been performed with the adsorption of various bacterium/viruses considered as additional mass to the SWBNNT-based sensor system. The continuum mechanics-based analytical approach, considering effective wall thickness has been considered to validate the finite element method (FEM)-based simulation results, based on continuum volume-based modelling of the SWBNNT. As a systematic analysis approach, the FEM-based simulation results are found in excellent agreement with the analytical results, to analyse the SWBNNTs for their wide range of applications such as nanoresonators, biosensors, gas-sensors, transducers and so on. The obtained results suggest that by using the SWBNNT of smaller size the sensitivity of the sensor system can be enhanced and detection of the bacterium/virus having mass of 4.28 × 10⁻²⁴ kg can be effectively performed.
Modeling of Laser Vaporization and Plume Chemistry in a Boron Nitride Nanotube Production Rig
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Fay, Catharine C.
2012-01-01
Flow in a pressurized, vapor condensation (PVC) boron nitride nanotube (BNNT) production rig is modeled. A laser provides a thermal energy source to the tip of a boron ber bundle in a high pressure nitrogen chamber causing a plume of boron-rich gas to rise. The buoyancy driven flow is modeled as a mixture of thermally perfect gases (B, B2, N, N2, BN) in either thermochemical equilibrium or chemical nonequilibrium assuming steady-state melt and vaporization from a 1 mm radius spot at the axis of an axisymmetric chamber. The simulation is intended to define the macroscopic thermochemical environment from which boron-rich species, including nanotubes, condense out of the plume. Simulations indicate a high temperature environment (T > 4400K) for elevated pressures within 1 mm of the surface sufficient to dissociate molecular nitrogen and form BN at the base of the plume. Modifications to Program LAURA, a finite-volume based solver for hypersonic flows including coupled radiation and ablation, are described to enable this simulation. Simulations indicate that high pressure synthesis conditions enable formation of BN vapor in the plume that may serve to enhance formation of exceptionally long nanotubes in the PVC process.
Effect of small scattering centers on the thermoelectric properties of p-type SiGe alloys
NASA Technical Reports Server (NTRS)
Beaty, John S.; Rolfe, Jonathan L.; Vandersande, Jan W.
1991-01-01
Theory predicts that the addition of ultra-fine, inert, phonon-scattering centers to thermoelectric materials will reduce their thermal conductivity. To investigate this prediction, ultrafine particulates (20 to 120 A) of silicon nitride have been added to boron-doped, p-type, 80/20 SiGe. All of the SiGe samples produced from ultrafine powder have lower thermal conductivities than standard SiGe, but high-temperature heat treatment increases the thermal conductivity back to the value for standard SiGe. However, the SiGe samples with silicon nitride, inert, phonon-scattering centers retained the lower thermal conductivity after several heat treatments. A reduction of approximately 25 percent in thermal conductivity has been achieved in these samples. The magnitude of the reduction agrees with theoretical predictions.
NASA Astrophysics Data System (ADS)
Skibinski, Jakub; Caban, Piotr; Wejrzanowski, Tomasz; Kurzydlowski, Krzysztof J.
2014-10-01
In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S is addressed. Epitaxial growth means crystal growth that progresses while inheriting the laminar structure and the orientation of substrate crystals. One of the technological problems is to obtain homogeneous growth rate over the main deposit area. Since there are many agents influencing reaction on crystal area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. According to the fact that it's impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, modeling is the only solution to understand the process precisely. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in numerical model allows to calculate the growth rate of the substrate and estimate the optimal process conditions for obtaining the most homogeneous product.
NASA Astrophysics Data System (ADS)
Lee, Junsu; Kim, Minjung; Chelikowsky, James R.; Kim, Gunn
2016-07-01
Using ab initio density functional calculations, we predict subatomic-resolution atomic force microscopy (AFM) and scanning tunneling microscopy (STM) images of vertical heterostructures of graphene/hexagonal boron nitride (h-BN) with an intercalated metal atom (Li, K, Cr, Mn, Co, or Cu), and study the effects of the extrinsic metal defect on the interfacial coupling. We find that the structural deformation of the graphene/h-BN layer caused by the metal defect strongly affects the AFM images, whereas orbital hybridization between the metal defect and the graphene/h-BN layer characterizes the STM images.
Angle-resolved electron energy loss spectroscopy in hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Fossard, Frédéric; Sponza, Lorenzo; Schué, Léonard; Attaccalite, Claudio; Ducastelle, François; Barjon, Julien; Loiseau, Annick
2017-09-01
Electron energy loss spectra were measured on hexagonal boron nitride single crystals employing an electron energy loss spectroscopic setup composed of an electron microscope equipped with a monochromator and an in-column filter. This setup provides high-quality energy-loss spectra and allows also for the imaging of energy-filtered diffraction patterns. These two acquisition modes provide complementary pieces of information, offering a global view of excitations in reciprocal space. As an example of the capabilities of the method we show how easily the core loss spectra at the K edges of boron and nitrogen can be measured and imaged. Low losses associated with interband and/or plasmon excitations are also measured. This energy range allows us to illustrate that our method provides results whose quality is comparable to that obtained from nonresonant x-ray inelastic scattering but with advantageous specificities such as an enhanced sensitivity at low q and a much greater simplicity and versatility that make it well adapted to the study of two-dimensional materials and related heterostructures. Finally, by comparing theoretical calculations to our measures, we are able to relate the range of applicability of ab initio calculations to the anisotropy of the sample and assess the level of approximation required for a proper simulation of our acquisition method.
Zhang, Zhaofu; Qian, Qingkai; Li, Baikui; Chen, Kevin J
2018-05-23
Interface engineering is a key strategy to deal with the two-dimensional (2D)/three-dimensional (3D) hybrid heterostructure, since the properties of this atomic-layer-thick 2D material can easily be impacted by the substrate environment. In this work, the structural, electronic, and optical properties of the 2D/3D heterostructure of monolayer MoS 2 on wurtzite GaN surface without and with nitridation interfacial layer are systematically investigated by first-principles calculation and experimental analysis. The nitridation interfacial layer can be introduced into the 2D/3D heterostructure by remote N 2 plasma treatment to GaN sample surface prior to stacking monolayer MoS 2 on top. The calculation results reveal that the 2D/3D integrated heterostructure is energetically favorable with a negative formation energy. Both interfaces demonstrate indirect band gap, which is a benefit for longer lifetime of the photoexcited carriers. Meanwhile, the conduction band edge and valence band edge of the MoS 2 side increases after nitridation treatment. The modification to band alignment is then verified by X-ray photoelectron spectroscopy measurement on MoS 2 /GaN heterostructures constructed by a modified wet-transfer technique, which indicates that the MoS 2 /GaN heterostructure without nitridation shows a type-II alignment with a conduction band offset (CBO) of only 0.07 eV. However, by the deployment of interface nitridation, the band edges of MoS 2 move upward for ∼0.5 eV as a result of the nitridized substrate property. The significantly increased CBO could lead to better electron accumulation capability at the GaN side. The nitridized 2D/3D heterostructure with effective interface treatment exhibits a clean band gap and substantial optical absorption ability and could be potentially used as practical photocatalyst for hydrogen generation by water splitting using solar energy.
In vitro bio-functionality of gallium nitride sensors for radiation biophysics.
Hofstetter, Markus; Howgate, John; Schmid, Martin; Schoell, Sebastian; Sachsenhauser, Matthias; Adigüzel, Denis; Stutzmann, Martin; Sharp, Ian D; Thalhammer, Stefan
2012-07-27
There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth dynamics of adherent cells were compared to control samples. The impact of ionizing radiation on DNA, along with the associated cellular repair mechanisms, is well characterized and serves as a reference tool for evaluation of substrate effects. The results indicate that gallium nitride does not require specific surface treatments to ensure biocompatibility and suggest that cell signaling is not affected by micro-environmental alterations arising from gallium nitride-cell interactions. The observation that gallium nitride provides no bio-functional influence on the cellular environment confirms that this material is well suited for future biosensing applications without the need for additional chemical surface modification. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Garcia-Giron, A.; Romano, J. M.; Liang, Y.; Dashtbozorg, B.; Dong, H.; Penchev, P.; Dimov, S. S.
2018-05-01
The paper reports a laser patterning method for producing surfaces with dual scale topographies on ferritic stainless steel plates that are hardened by low temperature plasma surface alloying. Nitrogen and carbon based gasses were used in the alloying process to obtain surface layers with an increased hardness from 172 HV to 1001 HV and 305 HV, respectively. Then, a nanosecond infrared laser was used to pattern the plasma treated surfaces and thus to obtain super-hydrophobicity, by creating cell- or channel-like surface structures. The combined surface hardening and laser patterning approach allowed super-hydrophobic surfaces to be produced on both nitrided and carburised stainless steel plates with effective contact angles higher than 150°. The hardened layers on nitrided samples had cracks and was delaminated after the laser patterning while on plasma carburised samples remained intact. The results showed that by applying the proposed combined approach it is possible to retain the higher hardness of the nitrided stainless steel plates and at the same time to functionalise them to obtain super-hydrophobic properties.
Extraction of titanium from low-iron nitrided Malaysian ilmenite by chlorination
NASA Astrophysics Data System (ADS)
Ibrahim, Najwa; Ahmadi, Eltefat; Rahman, Shaik Abdul; Fauzi, M. N. Ahmad; Rezan, Sheikh Abdul
2017-01-01
In this paper, production of TiCl4 from low-iron nitrided ilmenite samples at relatively low temperature using chlorine gas generated from the reaction between KMnO4 and HCl has been investigated. The effects of chlorination soaking time, potassium permanganate (KMnO4) to hydrochloric acid (HCl) molar ratio and aluminium powder catalyst in chlorine gas generation on titanium extraction from nitrided Malaysian ilmenite were examined. The low-iron nitrided Malaysian ilmenite contained titanium oxycarbonitride (TiOxCyNz) after carbothermal reduction and nitridation with subsequent leaching. Chlorination process was performed at 500°C for 30 - 60 minutes. Statistical analysis of the data was done by Design of Experiment (DOE) to identify the significant variables and their interactions. The results achieved in this study showed that the highest extent of chlorination was about 98.34% at 500°C for 60 minutes. The lowest extent of chlorination was about 68.51% obtained in KMnO4 to HCl molar ratio of 2.0 and 0.35 g of aluminium powder. The chlorinated titanium oxycarbonitride powders and TiCl4 solutions were analyzed by X-ray diffraction (XRD) and inductively coupled plasma-optical emission spectroscopy (ICP-OES), respectively. The purpose of this study was to explore the relationship between the processing parameters on extracting titanium via pyrometallurgical technique.
Second-harmonic generation in substoichiometric silicon nitride layers
NASA Astrophysics Data System (ADS)
Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca
2013-03-01
Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.
NASA Astrophysics Data System (ADS)
Evans, D. A.; McGlynn, A. G.; Towlson, B. M.; Gunn, M.; Jones, D.; Jenkins, T. E.; Winter, R.; Poolton, N. R. J.
2008-02-01
Using synchrotron-based luminescence excitation spectroscopy in the energy range 4-20 eV at 8 K, the indirect Γ-X optical band-gap transition in cubic boron nitride is determined as 6.36 ± 0.03 eV, and the quasi-direct band-gap energy of hexagonal boron nitride is determined as 5.96 ± 0.04 eV. The composition and structure of the materials are self-consistently established by optically detected x-ray absorption spectroscopy, and both x-ray diffraction and Raman measurements on the same samples give independent confirmation of their chemical and structural purity: together, the results are therefore considered as providing definitive measurements of the optical band-gap energies of the two materials.
Processing and testing of high toughness silicon nitride ceramics
NASA Technical Reports Server (NTRS)
Tikare, Veena; Sanders, William A.; Choi, Sung R.
1993-01-01
High toughness silicon nitride ceramics were processed with the addition of small quantities of beta-Si3N4 whiskers in a commercially available alpha-Si3N4 powder. These whiskers grew preferentially during sintering resulting in large, elongated beta-grains, which acted to toughen the matrix by crack deflection and grain pullout. The fracture toughness of these samples seeded with beta-Si3N4 whiskers ranged from 8.7 to 9.5 MPa m(exp 0.5) depending on the sintering additives.
The Physics and Chemistry of carbides, Nitrides and Borides. Volume 185
1990-01-01
and C-B-C chains [15,17]. Clearly, the use of boron-rich solids as electronic materials will place new demands on the quality of materials. In this...first heated in a pyrolytic boron nitride (PBN) crucible ( Union Carbide Corp.) under high vacuum (< 50 mTorr) to 1900°C. This removed surface...contamination of the sample. The powders were loaded into a graphite die with a high-purity BN die liner ( Union Carbide Grade HBC) with inner diameter of 3/8
Rare-Earth Doping and Co-Doping of GaN for Magnetic and Luminescent Applications
2010-08-16
The main focus of this project is the study of Gadolinium doped Gallium Nitride. Calculations were carried out to elucidate the origin of the reported...Ga vacancies in the triple negative charge state, which is the most likely charge state in semi-insulating samples, 1. REPORT DATE (DD-MM-YYYY) 4...applications Report Title ABSTRACT The main focus of this project is the study of Gadolinium doped Gallium Nitride. Calculations were carried out to
Attaccalite, Claudio; Wirtz, Ludger; Marini, Andrea; Rubio, Angel
2013-01-01
Boron nitride is a promising material for nanotechnology applications due to its two-dimensional graphene-like, insulating, and highly-resistant structure. Recently it has received a lot of attention as a substrate to grow and isolate graphene as well as for its intrinsic UV lasing response. Similar to carbon, one-dimensional boron nitride nanotubes (BNNTs) have been theoretically predicted and later synthesised. Here we use first principles simulations to unambiguously demonstrate that i) BN nanotubes inherit the highly efficient UV luminescence of hexagonal BN; ii) the application of an external perpendicular field closes the electronic gap keeping the UV lasing with lower yield; iii) defects in BNNTS are responsible for tunable light emission from the UV to the visible controlled by a transverse electric field (TEF). Our present findings pave the road towards optoelectronic applications of BN-nanotube-based devices that are simple to implement because they do not require any special doping or complex growth. PMID:24060843
Interaction of Boron Nitride Nanosheets with Model Cell Membranes.
Hilder, Tamsyn A; Gaston, Nicola
2016-06-03
Boron nitride nanomaterials have attracted attention for biomedical applications, due to their improved biocompatibility when compared with carbon nanomaterials. Recently, graphene and graphene oxide nanosheets have been shown, both experimentally and computationally, to destructively extract phospholipids from Escherichia coli. Boron nitride nanosheets (BNNSs) have exciting potential biological and environmental applications, for example the ability to remove oil from water. These applications are likely to increase the exposure of prokaryotes and eukaryotes to BNNSs. Yet, despite their promise, the interaction between BNNSs and cell membranes has not yet been investigated. Here, all-atom molecular dynamics simulations were used to demonstrate that BNNSs are spontaneously attracted to the polar headgroups of the lipid bilayer. The BNNSs do not passively cross the lipid bilayer, most likely due to the large forces experienced by the BNNSs. This study provides insight into the interaction of BNNSs with cell membranes and may aid our understanding of their improved biocompatibility. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Back scattering involving embedded silicon nitride (SiN) nanoparticles for c-Si solar cells
NASA Astrophysics Data System (ADS)
Ghosh, Hemanta; Mitra, Suchismita; Siddiqui, M. S.; Saxena, A. K.; Chaudhuri, Partha; Saha, Hiranmay; Banerjee, Chandan
2018-04-01
A novel material, structure and method of synthesis for dielectric light trapping have been presented in this paper. First, the light scattering behaviour of silicon nitride nanoparticles have been theoretically studied in order to find the optimized size for dielectric back scattering by FDTD simulations from Lumerical Inc. The optical results have been used in electrical analysis and thereby, estimate the effect of nanoparticles on efficiency of the solar cells depending on substrate thickness. Experimentally, silicon nitride (SiN) nanoparticles have been formed using hydrogen plasma treatment on SiN layer deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD). The size and area coverage of the nanoparticles were controlled by varying the working pressure, power density and treatment duration. The nanoparticles were integrated with partial rear contact c-Si solar cells as dielectric back reflector structures for the light trapping in thin silicon solar cells. Experimental results revealed the increases of current density by 2.7% in presence of SiN nanoparticles.
Thermal transport in boron nitride nanotorus—towards a nanoscopic thermal shield
NASA Astrophysics Data System (ADS)
Loh, G. C.; Baillargeat, D.
2013-11-01
Nanotori, or nanorings, are topological variants of nanotubes and are conceived to have different properties from their tubular form. In this study, the toroidal arrangement of boron nitride is introduced. Using classical molecular dynamics simulations, the thermal behaviour (thermal conductivity and thermal stability) of the boron nitride nanotorus and its relationship with the structural characteristics are investigated. Its circumferential thermal rectification strength displays a linear dependence on the bending coefficient of the nanostructure. Surface kinks are relatively inconsequential on its circumferential mode of conduction, as compared to its axial sense. The circumferential conductivity in the diffusive regime is calculated to be approximately 10 W/m K, while the axial conductivity is more than tenfold of this value. All nanotori with different toroidal characters show excellent thermal stability at extremely high temperatures approaching 3400 K. With consideration to its favourable properties, a thermal shield made up of a parallel row of nanotori is proposed as a nanoscale thermal insulation device.
Superconducting bolometers for millimeter and sub-millimeter wavelengths
NASA Astrophysics Data System (ADS)
Jethava, N.; Kreysa, E.; Siringo, G.; Esch, W.; Gemünd, H.-P.; Menten, K. M.; May, T.; Anders, S.; Fritzsch, L.; Boucher, R.; Zakosarenko, V.; Meyer, H.-G.
2008-07-01
We present the experimental results and a bolometer model of the voltage-biased superconducting bolometer on the low stress silicon nitride (Si3N4) membrane, developed in collaboration between the Max-Planck-Institut fur Radioastronomie (MPIfR), Bonn and the Institute for Photonic Technology (IPHT), Jena, Germany. The superconducting thermistor, deposited on the low stress silicon nitride membrane, is a bilayer of gold-palladium and molybdenum and is designed for a transition temperature of 450 mK. Bolometers for the 1.2 mm atmospheric window were designed, built and tested. The thermal conductance of the bolometer is tuned by structuring the silicon nitride membrane into spider-like geometries. The incident radiation is absorbed by crossed dipoles made from gold-palladium alloy with a surface resistance of 10 Ω/. Using the COSMOS finite element analysis package, the thermal conductance is obtained for the bolometers of different geometries. FEA simulations showed that the deposition of a gold ring around the absorbing area could increase the sensitivity of the bolometer. Therefore, a gold ring is deposited around the center absorbing patch of the silicon nitride membrane. For the bolometer with a gold ring, the measured NEP is 1.7 × 10-16W/√ Hz and the time constant is in the range between 1.4 and 2 ms.
Behura, Sanjay; Nguyen, Phong; Debbarma, Rousan; Che, Songwei; Seacrist, Michael R; Berry, Vikas
2017-05-23
Hexagonal boron nitride (h-BN) is an ideal platform for interfacing with two-dimensional (2D) nanomaterials to reduce carrier scattering for high-quality 2D electronics. However, scalable, transfer-free growth of hexagonal boron nitride (h-BN) remains a challenge. Currently, h-BN-based 2D heterostructures require exfoliation or chemical transfer of h-BN grown on metals resulting in small areas or significant interfacial impurities. Here, we demonstrate a surface-chemistry-influenced transfer-free growth of large-area, uniform, and smooth h-BN directly on silicon (Si)-based substrates, including Si, silicon nitride (Si 3 N 4 ), and silicon dioxide (SiO 2 ), via low-pressure chemical vapor deposition. The growth rates increase with substrate electronegativity, Si < Si 3 N 4 < SiO 2 , consistent with the adsorption rates calculated for the precursor molecules via atomistic molecular dynamics simulations. Under graphene with high grain density, this h-BN film acts as a polymer-free, planar-dielectric interface increasing carrier mobility by 3.5-fold attributed to reduced surface roughness and charged impurities. This single-step, chemical interaction guided, metal-free growth mechanism of h-BN for graphene heterostructures establishes a potential pathway for the design of complex and integrated 2D-heterostructured circuitry.
NASA Astrophysics Data System (ADS)
Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Margalith, T.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.
2015-08-01
We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (Jth) of ˜3.5 kA/cm2, compared to the ITO VCSEL Jth of 8 kA/cm2. The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ˜550 μW, compared to ˜80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing in the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL.
Identification of sigma and chi phases in duplex stainless steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llorca-Isern, Núria, E-mail: nullorca@ub.edu; López-Luque, Héctor, E-mail: hlopezlu7@alumnes.ub.edu; López-Jiménez, Isabel, E-mail: ilopezji9@alumnes.ub.edu
The aim of this work is to find out the most suitable method for detecting and analyzing accurately the formation conditions of secondary phases, particularly Sigma-phase (σ-phase) and Chi-phase (χ-phase) in duplex stainless steels (UNS S32205 and UNS S32750). The microstructure was characterized after a solution annealing at 1080 °C followed by an isothermal heating at 830 °C for different time ranges, ranging from 1 min to 9 h, in order to enlighten the controversial point concerning the mechanism of χ-phase nucleation in relation with the σ-phase. Etched samples were observed using optical microscopy (MO), and scanning electron microscopy (FESEM)more » with a backscattered electron detector (BSE) was used on unetched samples. Compositional microanalysis (EDS) was carried out for identifying the different phases present in the steels. Sigma phase was easily observed using different etching procedures, whereas χ-phase was only clearly detected with FESEM–BSE on unetched samples. The compositional analyses showed that the molybdenum content in χ-phase almost doubles the content of this element in σ-phase, and as a result the kinetics of nucleation and growth were also found to be remarkably faster when the alloy content in the steel is higher. In addition, chromium nitrides and carbides were also observed to precipitate as a result of the heat treatments and, in the case of the chromium nitrides, they act as a favorable site for the nucleation of σ-phase and χ-phase. - Highlights: • Microscopy was used on heat treated duplex steels for microstructure identification. • FESEM–BSE observation on unetched samples provided the best contrast between phases. • Analyses of carbides, nitrides, chi and sigma phases were possible by EDS and WDS. • Chromium nitrides act as favorable site for the nucleation of chi and sigma phases. • Secondary phases nucleation kinetics are faster in superduplex than in duplex steels.« less
Tribological behavior of DLC films deposited on nitrided and post-oxidized stainless steel by PACVD
NASA Astrophysics Data System (ADS)
Dalibon, E. L.; Brühl, S. P.; Heim, D.
2012-06-01
In this work, the tribological behavior and adhesion of DLC films deposited by PACVD on AISI 420 martensitic stainless steel was evaluated. Prior to DLC deposition, the samples were nitrided and some of them also post-oxidized. The films were characterized by Raman and EDS, microhardness was assessed with Vickers indenter and the microstructure was analyzed by OM, SEM, FIB. Fretting and linear reciprocating sliding tests were performed using a WC ball as counterpart, and the adhesion of the DLC films was characterized using the Scratch Test and Rockwell C indentation. Corrosion behavior was evaluated by the Salt Spray Fog Test. The film showed a hardness of only about 1500 HV but it was about 15-20 microns thick. The results of the mechanical tests showed that pre-treatments (nitriding and oxidizing) of the substrate did not have a big influence in the tribological behavior of the coating. However, the nitriding treatment before the DLC coating process reduced the interface stress and enhanced the adhesion. Additionally, all the films evidenced good corrosion resistance in a saline environment, better than the AISI 420 itself.
Processing of Silver-Implanted Aluminum Nitride for Energy Harvesting Devices
NASA Astrophysics Data System (ADS)
Alleyne, Fatima Sierre
One of the more attractive sources of green energy has roots in the popular recycling theme of other green technologies, now known by the term "energy scavenging." In its most promising conformation, energy scavenging converts cyclic mechanical vibrations in the environment or random mechanical pressure pulses, caused by sources ranging from operating machinery to human footfalls, into electrical energy via piezoelectric transducers. While commercial piezoelectrics have evolved to favor lead zirconate titanate (PZT) for its combination of superior properties, the presence of lead in these ceramic compounds raises resistance to their application in anything "green" due to potential health implications during their manufacturing, recycling, or in-service application, if leaching occurs. Therefore in this study we have pursued the application of aluminum nitride (AlN) as a non-toxic alternative to PZT, seeking processing pathways to augment the modest piezoelectric performance of AlN and exploit its compatibility with complementary-metal-oxide semiconductor (CMOS) manufacturing. Such piezoelectric transducers have been categorized as microelectromechanical systems (MEMS), which despite more than a decade of research in this field, is plagued by delamination at the electrode/piezoelectric interface. Consequently the electric field essential to generate and sustain the piezoelectric response of these devices is lost, resulting in device failure. Working on the hypothesis that buried conducting layers can both mitigate the delamination problem and generate sufficient electric field to engage the operation of resonator devices, we have undertaken a study of silver ion implantation to experimentally assess its feasibility. As with most ion implantation procedures employed in semiconductor fabrication, the implanted sample is subjected to a thermal treatment, encouraging diffusion-assisted precipitation of the implanted species at high enough concentrations. The objective of this study is to understand the resulting phase transformation behavior during Ag precipitation with the intent to ultimately control the electrical operation of AlN piezoelectric resonators in energy scavenging applications. In this work, multiple source reactive ion sputtering was employed to deposit a thin film of AlN on a 525 microns thick Si substrate, followed by ion implantation (Ag cathode) into the aluminum nitride, and subsequent thermal annealing. Computer simulations were conducted to elucidate the projected range of the silver in the AlN epilayer as a result of the ion implantation process. A myriad of characterization methods including Rutherford Backscattering Spectrometry (RBS), x-ray diffraction (XRD), rocking curve, electron microscopy was employed to quantify the concentration of silver, morphology of silver precipitates, as well as the composition, crystallinity and degree of damage in the ion-implanted AlN samples with respect to thermal annealing conditions. The presence, or lack of precipitates in the samples was utilized to draw conclusions about the feasibility of developing a buried conductive layer in a ceramic matrix via ion implantation. Computer simulations results obtained via TRIM and TRIDYN confirmed that the maximum concentration of silver lied within 30 -- 47 nm from the surface. The RBS data verified the presence of Si, Al, N, Ag, and O2 , whose concentration varied with temperature. X-ray diffraction and electron microscopy corroborated the crystallinity of the AlN epilayer. Electron diffraction confirmed both the epitaxy of the AlN film on the (001) Si substrate and the crystalline quality of the epilayer prior to and after the thermal annealing treatment. Electron microscopy revealed that the sputtered AlN film grew epitaxially in a columnar morphology and silver precipitates did form in some of the aluminum nitride samples implanted but only in those implanted with a higher concentration of Ag under high-energy implantation conditions. It is concluded that the Ag implanted region does indeed have potential as a buried contact layer for piezoelectric activation and sensing if the critical concentration and appropriate thermal conditions can be attained.
Computational Nanomechanics of Carbon Nanotubes and Composites
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Wei, Chenyu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)
2002-01-01
Nanomechanics of individual carbon and boron-nitride nanotubes and their application as reinforcing fibers in polymer composites has been reviewed with interplay of theoretical modeling, computer simulations and experimental observations. The emphasis in this work is on elucidating the multi-length scales of the problems involved, and of different simulation techniques that are needed to address specific characteristics of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular dynamics simulations are shown to be sufficient to describe the generic behavior such as strength and stiffness modulus but are inadequate to describe elastic limit and nature of plastic buckling at large strength. Quantum molecular dynamics simulations are shown to bring out explicit atomic nature dependent behavior of these nanoscale materials objects that are not accessible either via continuum mechanics based descriptions or through classical molecular dynamics based simulations. As examples, we discus local plastic collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of boron-nitride nanotubes. Dependence of the yield strain on the strain rate is addressed through temperature dependent simulations, a transition-state-theory based model of the strain as a function of strain rate and simulation temperature is presented, and in all cases extensive comparisons are made with experimental observations. Mechanical properties of nanotube-polymer composite materials are simulated with diverse nanotube-polymer interface structures (with van der Waals interaction). The atomistic mechanisms of the interface toughening for optimal load transfer through recycling, high-thermal expansion and diffusion coefficient composite formation above glass transition temperature, and enhancement of Young's modulus on addition of nanotubes to polymer are discussed and compared with experimental observations.
NASA Astrophysics Data System (ADS)
Wang, Xuan; Li, Xuebing; Chen, Wenfang; Wang, Rulin; Bian, Wei; Choi, Martin M. F.
2018-06-01
Phosphorus doped graphitic carbon nitride (P-g-C3N4) nanosheets were synthesized by calcination. P-g-C3N4 nanosheets were characterized by XRD, XPS, TEM, fluorescence, ultraviolet-visible absorption and Fourier transform infrared spectroscopy. The fluorescence of the P-g-C3N4 nanosheets was gradually quenched with the increase in the concentration of baicalein at room temperature. The proposed probe was used for the determination of baicalein in the concentration 2.0-30 μM with a detection limit of 53 nM. The quenching mechanism was discussed. The P-g-C3N4 nanosheets have been successfully applied for effective and selective detection of baicalein in human urine samples and blood samples.
Modeling and Investigation of the Wear Resistance of Salt Bath Nitrided Aisi 4140 via ANN
NASA Astrophysics Data System (ADS)
Ekinci, Şerafettin; Akdemir, Ahmet; Kahramanli, Humar
2013-05-01
Nitriding is usually used to improve the surface properties of steel materials. In this way, the wear resistance of steels is improved. We conducted a series of studies in order to investigate the microstructural, mechanical and tribological properties of salt bath nitrided AISI 4140 steel. The present study has two parts. For the first phase, the tribological behavior of the AISI 4140 steel which was nitrided in sulfinuz salt bath (SBN) was compared to the behavior of the same steel which was untreated. After surface characterization using metallography, microhardness and sliding wear tests were performed on a block-on-cylinder machine in which carbonized AISI 52100 steel discs were used as the counter face. For the examined AISI 4140 steel samples with and without surface treatment, the evolution of both the friction coefficient and of the wear behavior were determined under various loads, at different sliding velocities and a total sliding distance of 1000 m. The test results showed that wear resistance increased with the nitriding process, friction coefficient decreased due to the sulfur in salt bath and friction coefficient depended systematically on surface hardness. For the second part of this study, four artificial neural network (ANN) models were designed to predict the weight loss and friction coefficient of the nitrided and unnitrided AISI 4140 steel. Load, velocity and sliding distance were used as input. Back-propagation algorithm was chosen for training the ANN. Statistical measurements of R2, MAE and RMSE were employed to evaluate the success of the systems. The results showed that all the systems produced successful results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddiqua, Poppy; O'Leary, Stephen K., E-mail: stephen.oleary@ubc.ca
2016-09-07
Within the framework of a semi-classical three-valley Monte Carlo simulation approach, we analyze the steady-state and transient electron transport that occurs within bulk zinc-blende gallium nitride. In particular, we examine how the steady-state and transient electron transport that occurs within this material changes in response to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley. These results are then contrasted with those corresponding to a number of other compound semiconductors of interest.
Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev
2016-06-25
In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)-gallium nitride (GaN) slot waveguide structure is presented-to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530-1565 nm) into four output ports with low insertion losses (0.07 dB).
Thermal expansion of quaternary nitride coatings
NASA Astrophysics Data System (ADS)
Tasnádi, Ferenc; Wang, Fei; Odén, Magnus; Abrikosov, Igor A.
2018-04-01
The thermal expansion coefficient of technologically relevant multicomponent cubic nitride alloys are predicted using the Debye model with ab initio elastic constants calculated at 0 K and an isotropic approximation for the Grüneisen parameter. Our method is benchmarked against measured thermal expansion of TiN and Ti(1-x)Al x N as well as against results of molecular dynamics simulations. We show that the thermal expansion coefficients of Ti(1-x-y)X y Al x N (X = Zr, Hf, Nb, V, Ta) solid solutions monotonously increase with the amount of alloying element X at all temperatures except for Zr and Hf, for which they instead decrease for y≳ 0.5 .
NASA Technical Reports Server (NTRS)
Brandenburf, G. P.; Hoffman, E. E.; Smith, J. P.
1974-01-01
The performance was determined of refractory metal alloys and uranium nitride fuel element specimens in flowing 1900F (1083C) lithium. The results demonstrate the suitability of the selected materials to perform satisfactorily from a chemical compatibility standpoint.
Li, Hui; Zeng, Xiao Cheng
2012-03-27
Born-Oppenheim quantum molecular dynamics (QMD) simulations are performed to investigate wetting, diffusive, and interfacial properties of water nanodroplets in contact with a graphene sheet or a monolayer boron-nitride (BN) sheet. Contact angles of the water nanodroplets on the two sheets are computed for the first time using QMD simulations. Structural and dynamic properties of the water droplets near the graphene or BN sheet are also studied to gain insights into the interfacial interaction between the water droplet and the substrate. QMD simulation results are compared with those from previous classic MD simulations and with the experimental measurements. The QMD simulations show that the graphene sheet yields a contact angle of 87°, while the monolayer BN sheet gives rise to a contact angle of 86°. Hence, like graphene, the monolayer BN sheet is also weakly hydrophobic, even though the BN bonds entail a large local dipole moment. QMD simulations also show that the interfacial water can induce net positive charges on the contacting surface of the graphene and monolayer BN sheets, and such charge induction may affect electronic structure of the contacting graphene in view that graphene is a semimetal. Contact angles of nanodroplets of water in a supercooled state on the graphene are also computed. It is found that under the supercooled condition, water nanodroplets exhibit an appreciably larger contact angle than under the ambient condition. © 2012 American Chemical Society
Berg, Nora G; Nolan, Michael W; Paskova, Tania; Ivanisevic, Albena
2014-12-30
An aqueous surface modification of gallium nitride was employed to attach biomolecules to the surface. The modification was a simple two-step process using a single linker molecule and mild temperatures. The presence of the peptide on the surface was confirmed with X-ray photoelectron spectroscopy. Subsequently, the samples were placed in water baths and exposed to ionizing radiation to examine the effects of the radiation on the material in an environment similar to the body. Surface analysis confirmed degradation of the surface of GaN after radiation exposure in water; however, the peptide molecules successfully remained on the surface following exposure to ionizing radiation. We hypothesize that during radiation exposure of the samples, the radiolysis of water produces peroxide and other reactive species on the sample surface. Peroxide exposure promotes the formation of a more stable layer of gallium oxyhydroxide which passivates the surface better than other oxide species.
NASA Astrophysics Data System (ADS)
Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Sidorov, S. V.
2017-05-01
The paper presents the results of metallographic researches and erosion tests of ion-plasma coatings (based on titanium, aluminum and their nitrides), which were formed on samples of 12Kh13 and EI961 blade steels. Erosion tests and studies of characteristics of obtained by magnetron sputtering coatings were carried out by using a set of research equipment UNU “Erosion-M” NRU “MPEI”. It was found that the formed Ti/Al-TiN/AlN coatings increase the duration of blade steels erosion wear incubation period by at least in 1.5 times and have a layered structure with thicknesses of nitride layers 1.3-1.6 μm and intermediate metallic layers 0.3-0.5 μm, with a total thickness of coatings of 10-14 μm for 12Kh13steel samples and 19-21 μm for EI961 steel samples.
NASA Astrophysics Data System (ADS)
Hoshino, Masato; Aoki, Sadao
2006-02-01
A laser plasma soft X-ray microscope with Wolter mirrors was developed so that specimens could be set in the atmosphere. Silicon nitride membranes 100 nm thick were used as vacuum-tight windows. Using relatively large windows (0.46× 0.46 mm2), an adequate working distance for samples, which was approximately 1.2 mm, was assured. The endurance of the vacuum-tight window was measured briefly. Dry biological cells could be observed with resolution better than 100 nm. A preliminary observation of wet biological cells was carried out using a wet environmental sample holder which was composed of only two sheets of silicon nitride membrane. An X-ray micrograph of wet red blood cells from a chicken was obtained without apparent effects of radiation damage. The properties of a vacuum-tight window and a wet sample holder are discussed.
Effects of Radiation and Long-Term Thermal Cycling on EPC 1001 Gallium Nitride Transistors
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad
2012-01-01
Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Data obtained on long-term thermal cycling of new un-irradiated and irradiated samples of EPC1001 gallium nitride enhancement-mode transistors are presented. This work was done by a collaborative effort including GRC, GSFC, and support the NASA www.nasa.gov 1 JPL in of Electronic Parts and Packaging (NEPP) Program
A simple method to synthesize polyhedral hexagonal boron nitride nanofibers
NASA Astrophysics Data System (ADS)
Lin, Liang-xu; Zheng, Ying; Li, Zhao-hui; shen, Xiao-nv; Wei, Ke-mei
2007-12-01
Hexagonal boron nitride (h-BN) fibers with polyhedral morphology were synthesized with a simple-operational, large-scale and low-cost method. The sample obtained was studied by X-ray photoelectron spectrometer (XPS), electron energy lose spectroscopy (EELS), X-ray powder diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), etc., which matched with h-BN. Environment scanning electron microscopy (ESEM) and transmission electron microscope (TEM) indicated that the BN fibers possess polyhedral morphology. The diameter of the BN fibers is mainly in the range of 100-500 nm.
Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas
2007-06-01
models is of great interest in space applications. By increasing the efficiency of photovoltaics, the number of solar panels is decreased. Therefore...obtained in single-junction solar cells by using Gallium Arsenide. Monocrystalline Gallium Arsenide has a maximum efficiency of approximately 25.1% [10
Study of the characteristics current-voltage and capacitance-voltage in nitride GaAs Schottky diode
NASA Astrophysics Data System (ADS)
Rabehi, Abdelaziz; Amrani, Mohamed; Benamara, Zineb; Akkal, Boudali; Hatem-Kacha, Arslane; Robert-Goumet, Christine; Monier, Guillaume; Gruzza, Bernard
2015-10-01
This article reports the study of Au/GaN/GaAs Schottky diodes, where the thin GaN film is prepared by nitridation of GaAs substrates with thicknesses of 0.7 and 0.8 nm. The resulting GaN sample with thickness 0.8 nm is then treated with an annealing operation (heating to 620 °C) to improve the current transport. The current-voltage (I-V) and capacitance-voltage (C-V) of the Au/GaN/GaAs structures were investigated at room temperature. In fact, the I-V characteristics show that the annealed sample has low series resistance (Rs) and ideality factor (n) (63 Ω, 2.27 respectively) when compared to the values obtained in the untreated sample (1.83 kΩ, 3.31 respectively). The formation of the GaN layer on the gallium arsenide surface is investigated through calculation of the interface state density NSS with and without the presence of series resistance Rs. The value of the interface state density NSS(E) close to the mid-gap was estimated to be in the order of 4.7×1012 cm-2 eV-1 and 1.02× 1013 cm-2 eV-1 with and without the annealing operation, respectively. However, nitridation with the annealing operation at 620 °C improves the electrical properties of the resultant Schottky diode.
Marzi Khosrowshahi, Elnaz; Razmi, Habib
2018-02-08
A green biocomposite of sunflower stalks and graphitic carbon nitride nanosheets has been applied as a solid-phase extraction adsorbent for sample preparation of five polycyclic aromatic hydrocarbons in different solutions using high-performance liquid chromatography with ultraviolet detection. Before the modification, sunflower stalks exhibited relatively low adsorption to the polycyclic aromatic hydrocarbons extraction. The modified sunflower stalks showed increased adsorption to the analytes extraction due to the increase in surface and existence of a π-π interaction between the analytes and graphitic carbon nitride nanosheets on the surface. Under the optimal conditions, the limits of detection and quantification for five polycyclic aromatic hydrocarbons compounds could reach 0.4-32 and 1.2-95 ng/L, respectively. The method accuracy was evaluated using recovery measurements in spiked real samples and good recoveries from 71 to 115% with relative standard deviations of <10% have been achieved. The developed method was successfully applied for polycyclic aromatic hydrocarbons determination in various samples-well water, tap water, soil, vegetable, and barbequed meat (kebab)-with analytes contents ranging from 0.065 to 13.3 μg/L. The prepared green composite as a new sorbent has some advantages including ease of preparation, low cost, and good reusability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Dubovsky, O. A.; Semenov, V. A.; Orlov, A. V.; Sudarev, V. V.
2014-09-01
The microdynamics of large-amplitude nonlinear vibrations of uranium nitride diatomic lattices has been investigated using the computer simulation and neutron scattering methods at temperatures T = 600-2500°C near the thresholds of the dissociation and destruction of the reactor fuel materials. It has been found using the computer simulation that, in the spectral gap between the frequency bands of acoustic and optical phonons in crystals with an open surface, there are resonances of new-type harmonic surface vibrations and a gap-filling band of their genetic successors, i.e., nonlinear surface vibrations. Experimental measurements of the slow neutron scattering spectra of uranium nitride on the DIN-2PI neutron spectrometer have revealed resonances and bands of these surface vibrations in the spectral gap, as well as higher optical vibration overtones. It has been shown that the solitons and bisolitons initiate the formation and collapse of dynamic pores with the generation of surface vibrations at the boundaries of the cavities, evaporation of atoms and atomic clusters, formation of cracks, and destruction of the material. It has been demonstrated that the mass transfer of nitrogen in cracks and along grain boundaries can occur through the revealed microdynamics mechanism of the surfing diffusion of light nitrogen atoms at large-amplitude soliton waves propagating in the stabilizing sublattice of heavy uranium atoms and in the nitrogen sublattice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, J. T., E-mail: jtleona01@gmail.com; Young, E. C.; Yonkee, B. P.
2015-08-31
We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (J{sub th}) of ∼3.5 kA/cm{sup 2}, compared to the ITO VCSEL J{sub th} of 8 kA/cm{sup 2}. The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ∼550 μW, compared to ∼80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing inmore » the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL.« less
Structural transformations of carbon and boron nitride nanoscrolls at high impact collisions.
Woellner, C F; Machado, L D; Autreto, P A S; de Sousa, J M; Galvao, D S
2018-02-14
The behavior of nanostructures under high strain-rate conditions has been the object of theoretical and experimental investigations in recent years. For instance, it has been shown that carbon and boron nitride nanotubes can be unzipped into nanoribbons at high-velocity impacts. However, the response of many nanostructures to high strain-rate conditions is still unknown. In this work, we have investigated the mechanical behavior of carbon (CNS) and boron nitride nanoscrolls (BNS) colliding against solid targets at high velocities, using fully atomistic reactive (ReaxFF) molecular dynamics (MD) simulations. CNS (BNS) are graphene (boron nitride) membranes rolled up into papyrus-like structures. Their open-ended topology leads to unique properties not found in their close-ended analogs, such as nanotubes. Our results show that collision products are mainly determined by impact velocities and by two orientation angles, which define the position of the scroll (i) axis and (ii) open edge relative to the target. Our MD results showed that for appropriate velocities and orientations, large-scale deformations and nanoscroll fractures could occur. We also observed unscrolling (scrolls going back to quasi-planar membranes), scroll unzipping into nanoribbons, and significant reconstruction due to breaking and/or formation of new chemical bonds. For particular edge orientations and velocities, conversion from open to close-ended topology is also possible, due to the fusion of nanoscroll walls.
Structural transformations of carbon and boron nitride nanoscrolls at high impact collisions
NASA Astrophysics Data System (ADS)
Woellner, C. F.; Machado, L. D.; Autreto, P. A. S.; de Sousa, J. M.; Galvao, D. S.
The behavior of nanostructures under high strain-rate conditions has been object of theoretical and experimental investigations in recent years. For instance, it has been shown that carbon and boron nitride nanotubes can be unzipped into nanoribbons at high velocity impacts. However, the response of many nanostructures to high strain-rate conditions is still not completely understood. In this work we have investigated through fully atomistic reactive (ReaxFF) molecular dynamics (MD) simulations the mechanical behavior of carbon (CNS) and boron nitride nanoscrolls (BNS) colliding against solid targets at high velocities,. CNS (BNS) nanoscrolls are graphene (boron nitride) membranes rolled up into papyrus-like structures. Their open-ended topology leads to unique properties not found in close-ended analogues, such as nanotubes. Our results show that the collision products are mainly determined by impact velocities and by two impact angles, which define the position of the scroll (i) axis and (ii) open edge relative to the target. Our MD results showed that for appropriate velocities and orientations large-scale deformations and nanoscroll fracture can occur. We also observed unscrolling (scrolls going back to quasi-planar membranes), scroll unzipping into nanoribbons, and significant reconstruction due to breaking and/or formation of new chemical bonds. For particular edge orientations and velocities, conversion from open to close-ended topology is also possible, due to the fusion of nanoscroll walls.
Silicon nitride equation of state
NASA Astrophysics Data System (ADS)
Brown, Robert C.; Swaminathan, Pazhayannur K.
2017-01-01
This report presents the development of a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4).1 Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonal β-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data that have indicated a complex and slow time dependent phase change to the c-Si3N4 phase. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products; however, the need for a kinetic approach is suggested to combine with the single component solid models to simulate and further investigate the global phase coexistences.
Methods of forming boron nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J
A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boronmore » nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.« less
Hexagonal boron nitride: a promising substrate for graphene with high heat dissipation
NASA Astrophysics Data System (ADS)
Zhang, Zhongwei; Hu, Shiqian; Chen, Jie; Li, Baowen
2017-06-01
Supported graphene on a standard SiO2 substrate exhibits unsatisfactory heat dissipation performance that is far inferior to the intrinsic ultrahigh thermal conductivity of a suspended sample. A suitable substrate for enhancing thermal transport in supported graphene is highly desirable for the development of graphene devices for thermal management. By using molecular dynamics simulations, here we demonstrate that bulk hexagonal boron nitride (h-BN) is a more appealing substrate to achieve high performance heat dissipation in supported graphene. Notable length dependence and high thermal conductivity are observed in h-BN-supported single-layer graphene (SLG), suggesting that the thermal transport characteristics are close to that of suspended SLG. At room temperature, the thermal conductivity of h-BN-supported SLG is as high as 1347.3 ± 20.5 Wm-1 K-1, which is about 77% of that for the suspended case, and is more than twice that of the SiO2-supported SLG. Furthermore, we find that the smooth and atomically flat h-BN substrate gives rise to a regular and weak stress distribution in graphene, resulting in a less affected phonon relaxation time and dominant phonon mean free path. We also find that stacking and rotation significantly impacts the thermal transport in h-BN-supported graphene. Our study provides valuable insights towards the design of graphene devices on realistic substrate for high performance heat dissipation applications.
Nitriding of AISI 4140 steel by a low energy broad ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochoa, E. A.; Figueroa, C. A.; Alvarez, F.
2006-11-15
A comprehensive study of the thermochemical nitriding process of steel AISI 4140 by low energy ion implantation (Kaufmann cell) is reported. Different times of implantation were employed and the studied samples were characterized by x-ray diffraction, in situ photoemission electron spectroscopy, scanning electron microscopy, and hardness (nanoindentation) measurements. The linear relationship between nitrogen content and hardness was verified. The structure of the nitrided layer was characterized yielding that the compound layer is formed by coarse precipitates, around small grains, constituted principally by {epsilon}-Fe{sub 2-3}N and {gamma}-Fe{sub 4}N phases and the diffusion zone is formed by fine precipitates, around big grainsmore » of the original martensitic phase, constituted principally by {gamma}-Fe{sub 4}N phase. Finally, a diffusion model for multiphase systems was applied to determine effective diffusion coefficients of nitrogen in the different phases.« less
Park, Tae-Eon; Park, Youn Ho; Lee, Jong-Min; Kim, Sung Wook; Park, Hee Gyum; Min, Byoung-Chul; Kim, Hyung-jun; Koo, Hyun Cheol; Choi, Heon-Jin; Han, Suk Hee; Johnson, Mark; Chang, Joonyeon
2017-01-01
Semiconductor spintronics is an alternative to conventional electronics that offers devices with high performance, low power and multiple functionality. Although a large number of devices with mesoscopic dimensions have been successfully demonstrated at low temperatures for decades, room-temperature operation still needs to go further. Here we study spin injection in single-crystal gallium nitride nanowires and report robust spin accumulation at room temperature with enhanced spin injection polarization of 9%. A large Overhauser coupling between the electron spin accumulation and the lattice nuclei is observed. Finally, our single-crystal gallium nitride samples have a trigonal cross-section defined by the (001), () and () planes. Using the Hanle effect, we show that the spin accumulation is significantly different for injection across the (001) and () (or ()) planes. This provides a technique for increasing room temperature spin injection in mesoscopic systems. PMID:28569767
NASA Astrophysics Data System (ADS)
Goharrizi, A. Yazdanpanah; Sanaeepur, M.; Sharifi, M. J.
2015-09-01
Device performance of 10 nm length armchair graphene nanoribbon field effect transistors with 1.5 nm and 4 nm width (13 and 33 atoms in width respectively) are compared in terms of Ion /Ioff , trans-conductance, and sub-threshold swing. While narrow devices suffer from edge roughness wider devices are subject to more substrate surface roughness and reduced bandgap. Boron Nitride doping is employed to compensate reduced bandgap in wider devices. Simultaneous effects of edge and substrate surface roughness are considered. Results show that in the presence of both the edge and substrate surface roughness the 4 nm wide device with boron nitride doping shows improved performance with respect to the 1.5 nm one (both of which incorporate the same bandgap AGNR as channel material). Electronic simulations are performed via NEGF method along with tight-binding Hamiltonian. Edge and surface roughness are created by means of one and two dimensional auto correlation functions respectively. Electronic characteristics are averaged over a large number of devices due to statistic nature of both the edge and surface roughness.
Ju, Guangxu; Highland, Matthew J; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A; Zhou, Hua; Brennan, Sean M; Stephenson, G Brian; Fuoss, Paul H
2017-03-01
We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.
NASA Astrophysics Data System (ADS)
Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; Thompson, Carol; Eastman, Jeffrey A.; Zhou, Hua; Brennan, Sean M.; Stephenson, G. Brian; Fuoss, Paul H.
2017-03-01
We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.
Red-emitting manganese-doped aluminum nitride phosphor
NASA Astrophysics Data System (ADS)
Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.; Åberg, Daniel; Seeley, Zachary M.; Holliday, Kiel S.; Tran, Ich C.; Zhou, Fei; Martinez, H. Paul; Demeyer, Jessica M.; Drobshoff, Alexander D.; Srivastava, Alok M.; Camardello, Samuel J.; Comanzo, Holly A.; Schlagel, Deborah L.; Lograsso, Thomas A.
2016-04-01
We report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter to improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.
Red-emitting manganese-doped aluminum nitride phosphor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.
2016-02-10
Here, we report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter tomore » improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.« less
NASA Astrophysics Data System (ADS)
Ramezani, Amir Hoshang; Habibi, Maryam; Ghoranneviss, Mahmood
2014-08-01
In this research, for the first time, we synthesize magnesium nitride thin films on 304-type stainless steel substrates using a Mather-type (2 kJ) plasma focus (PF) device. The films of magnesium nitride are coated with different number of focus shots (like 15, 25 and 35) at a distance of 8 cm from the anode tip and at 0° angular position with respect to the anode axis. For investigation of the structural properties and surface morphology of magnesium nitride films, we utilized the X-ray diffractometer (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) analysis, respectively. Also, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. Furthermore, Vicker's microhardness is used to study the mechanical properties of the deposited films. The results show that the degree of crystallinity of deposited thin films (from XRD), the average size of particles and surface roughness (from AFM), crystalline growth of structures (from SEM) and the hardness values of the films depend on the number of focus shots. The EDX analysis demonstrates the existence of the elemental composition of magnesium in the deposited samples.
Indium Gallium Nitride/Gallium Nitride (InGaN/GaN) Nanorods Superlattice (SL)
2006-03-29
Final Report (Technical) 3. DATES COVERED 29-03-2005 to 29-05-2006 4. TITLE AND SUBTITLE Indium Gallium Nitride/ Gallium Nitride (InGaN/GaN...Institution: Quantum functional Semiconductor Research Center (QSRC), Dongguk University - Title of project: Indium Gallium Nitride/ Gallium Nitride...Accepted with minor revision Indium Gallium Nitride / Gallium Nitride (InGaN/ GaN) Nanorods Superlattice (SL) Abstract The growth condition, electrical
Hybrid-PIC Simulation of Backsputtered Carbon Transport in the Near-Field Plume of a Hall Thruster
NASA Technical Reports Server (NTRS)
Choi, Maria; Yim, John T.; Williams, George J.; Herman, Daniel A.; Gilland, James H.
2017-01-01
Magnetic shielding has eliminated boron nitride erosion as the life limiting mechanism in a Hall thruster but has resulted in erosion of the front magnetic field pole pieces. Recent experiments show that the erosion of graphite pole covers, which are added to protect the magnetic field pole pieces, causes carbon to redeposit on other surfaces, such as boron nitride discharge channel and cathode keeper surfaces. As a part of the risk-reduction activities for AEPS thruster development, this study models transport of backsputtered carbon from the graphite front pole covers and vacuum facility walls. Fluxes, energy distributions, and redeposition rates of backsputtered carbon on the anode, discharge channel, and graphite cathode keeper surfaces are predicted.
Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev
2016-01-01
In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)–gallium nitride (GaN) slot waveguide structure is presented—to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530–1565 nm) into four output ports with low insertion losses (0.07 dB). PMID:28773638
Superconducting structure with layers of niobium nitride and aluminum nitride
Murduck, James M.; Lepetre, Yves J.; Schuller, Ivan K.; Ketterson, John B.
1989-01-01
A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.
Superconducting structure with layers of niobium nitride and aluminum nitride
Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.
1989-07-04
A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.
Imaging Gallium Nitride High Electron Mobility Transistors to Identify Point Defects
2014-03-01
streamline the sample preparation procedure to maximize the yield of successful samples to be analyzed chemically in an energy dispersive spectrometry...transmission electron microscope (STEM), sample preparation 15. NUMBER OF PAGES 103 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT...Computer Engineering iii THIS PAGE INTENTIONALLY LEFT BLANK iv ABSTRACT The purpose of this thesis is to streamline the sample preparation
Jones, Adam M; DeRose, Christopher T; Lentine, Anthony L; Trotter, Douglas C; Starbuck, Andrew L; Norwood, Robert A
2013-05-20
We explore the design space for optimizing CMOS compatible waveguide crossings on a silicon photonics platform. This paper presents simulated and experimental excess loss and crosstalk suppression data for vertically integrated silicon nitride over silicon-on-insulator waveguide crossings. Experimental results show crosstalk suppression exceeding -49/-44 dB with simulation results as low as -65/-60 dB for the TE/TM mode in a waveguide crossing with a 410 nm vertical gap.
Han, Longtao; Irle, Stephan; Nakai, Hiromi
2018-01-01
We performed nanosecond timescale computer simulations of clusterization and agglomeration processes of boron nitride (BN) nanostructures in hot, high pressure gas, starting from eleven different atomic and molecular precursor systems containing boron, nitrogen and hydrogen at various temperatures from 1500 to 6000 K. The synthesized BN nanostructures self-assemble in the form of cages, flakes, and tubes as well as amorphous structures. The simulations facilitate the analysis of chemical dynamics and we are able to predict the optimal conditions concerning temperature and chemical precursor composition for controlling the synthesis process in a high temperature gas volume, at high pressure. We identify the optimal precursor/temperature choices that lead to the nanostructures of highest quality with the highest rate of synthesis, using a novel parameter of the quality of the synthesis (PQS). Two distinct mechanisms of BN nanotube growth were found, neither of them based on the root-growth process. The simulations were performed using quantum-classical molecular dynamics (QCMD) based on the density-functional tight-binding (DFTB) quantum mechanics in conjunction with a divide-and-conquer (DC) linear scaling algorithm, as implemented in the DC-DFTB-K code, enabling the study of systems as large as 1300 atoms in canonical NVT ensembles for 1 ns time. PMID:29780513
Influence of interfaces density and thermal processes on mechanical stress of PECVD silicon nitride
NASA Astrophysics Data System (ADS)
Picciotto, A.; Bagolini, A.; Bellutti, P.; Boscardin, M.
2009-10-01
The paper focuses on a particular silicon nitride thin film (SiN x) produced by plasma enahanced chemical vapor deposition (PECVD) technique with high deposition rate (26 nm/min) and low values of mechanical stress (<100 MPa). This was perfomed with mixed frequency procedure varying the modulation of high frequency at 13.56 MHz and low frequency at 308 kHz of RF power supply during the deposition, without changing the ratio of reaction gases. Low stress silicon nitride is commonly obtained by tailoring the thickness ratio of high frequency vs. low frequency silicon nitride layers. The attention of this work was directed to the influence of the number of interfaces per thickness unit on the stress characteristics of the deposited material. Two sets of wafer samples were deposited with low stress silicon nitride, with a thickness of 260 nm and 2 μm, respectively. Thermal annealing processes at 380 and 520 °C in a inert enviroment were also performed on the wafers. The Stoney-Hoffman model was used to estimate the stress values by wafer curvature measurement with a mechanical surface profilometer: the stress was calculated for the as-deposited layer, and after each annealing process. The thickness and the refractive index of the SiN x were also measured and charaterized by variable angle spectra elliposometry (VASE) techinique. The experimental measurements were performed at the MT-LAB, IRST (Istituto per la Ricerca Scientifica e Tecnologica) of Bruno Kessler Foundation for Research in Trento.
Using Noise and Fluctuations for In Situ Measurements of Nitrogen Diffusion Depth.
Samoila, Cornel; Ursutiu, Doru; Schleer, Walter-Harald; Jinga, Vlad; Nascov, Victor
2016-10-05
In manufacturing processes involving diffusion (of C, N, S, etc.), the evolution of the layer depth is of the utmost importance: the success of the entire process depends on this parameter. Currently, nitriding is typically either calibrated using a "post process" method or controlled via indirect measurements (H2, O2, H2O + CO2). In the absence of "in situ" monitoring, any variation in the process parameters (gas concentration, temperature, steel composition, distance between sensors and furnace chamber) can cause expensive process inefficiency or failure. Indirect measurements can prevent process failure, but uncertainties and complications may arise in the relationship between the measured parameters and the actual diffusion process. In this paper, a method based on noise and fluctuation measurements is proposed that offers direct control of the layer depth evolution because the parameters of interest are measured in direct contact with the nitrided steel (represented by the active electrode). The paper addresses two related sets of experiments. The first set of experiments consisted of laboratory tests on nitrided samples using Barkhausen noise and yieded a linear relationship between the frequency exponent in the Hooge equation and the nitriding time. For the second set, a specific sensor based on conductivity noise (at the nitriding temperature) was built for shop-floor experiments. Although two different types of noise were measured in these two sets of experiments, the use of the frequency exponent to monitor the process evolution remained valid.
Using Noise and Fluctuations for In Situ Measurements of Nitrogen Diffusion Depth
Samoila, Cornel; Ursutiu, Doru; Schleer, Walter-Harald; Jinga, Vlad; Nascov, Victor
2016-01-01
In manufacturing processes involving diffusion (of C, N, S, etc.), the evolution of the layer depth is of the utmost importance: the success of the entire process depends on this parameter. Currently, nitriding is typically either calibrated using a “post process” method or controlled via indirect measurements (H2, O2, H2O + CO2). In the absence of “in situ” monitoring, any variation in the process parameters (gas concentration, temperature, steel composition, distance between sensors and furnace chamber) can cause expensive process inefficiency or failure. Indirect measurements can prevent process failure, but uncertainties and complications may arise in the relationship between the measured parameters and the actual diffusion process. In this paper, a method based on noise and fluctuation measurements is proposed that offers direct control of the layer depth evolution because the parameters of interest are measured in direct contact with the nitrided steel (represented by the active electrode). The paper addresses two related sets of experiments. The first set of experiments consisted of laboratory tests on nitrided samples using Barkhausen noise and yielded a linear relationship between the frequency exponent in the Hooge equation and the nitriding time. For the second set, a specific sensor based on conductivity noise (at the nitriding temperature) was built for shop-floor experiments. Although two different types of noise were measured in these two sets of experiments, the use of the frequency exponent to monitor the process evolution remained valid. PMID:28773941
Laser pyrolysis fabrication of ferromagnetic gamma'-Fe4N and FeC nanoparticles
NASA Technical Reports Server (NTRS)
Grimes, C. A.; Qian, D.; Dickey, E. C.; Allen, J. L.; Eklund, P. C.
2000-01-01
Using the laser pyrolysis method, single phase gamma'-Fe4N nanoparticles were prepared by a two step method involving preparation of nanoscale iron oxide and a subsequent gas-solid nitridation reaction. Single phase Fe3C and Fe7C3 could be prepared by laser pyrolysis from Fe(CO)5 and 3C2H4 directly. Characterization techniques such as XRD, TEM and vibrating sample magnetometer were used to measure phase structure, particle size and magnetic properties of these nanoscale nitride and carbide particles. c2000 American Journal of Physics.
Zheng, Hao-Bo; Ding, Jun; Zheng, Shu-Jian; Zhu, Gang-Tian; Yuan, Bi-Feng; Feng, Yu-Qi
2016-01-01
In this study, we proposed a method to fabricate magnetic carbon nitride (CN) nanosheets by simple physical blending. Low-cost CN nanosheets prepared by urea possessed a highly π-conjugated structure; therefore the obtained composites were employed as magnetic solid-phase extraction (MSPE) sorbent for extraction of polycyclic aromatic hydrocarbons (PAHs) in edible oil samples. Moreover, sample pre-treatment time could be carried out within 10 min. Thus, a simple and cheap method for the analysis of PAHs in edible oil samples was established by coupling magnetic CN nanosheets-based MSPE with gas chromatography-mass spectrometry (GC/MS) analysis. Limits of quantitation (LOQs) for eight PAHs ranged from 0.4 to 0.9 ng/g. The intra- and inter-day relative standard deviations (RSDs) were less than 15.0%. The recoveries of PAHs for spiked soybean oil samples ranged from 91.0% to 124.1%, with RSDs of less than 10.2%. Taken together, the proposed method offers a simple and cost-effective option for the convenient analysis of PAHs in oil samples. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellakhal, N
2002-12-01
The exposure of a titanium sample to an NH{sub 3} low pressure plasma leads to the formation of a nitriding layer. The products formed at the titanium surface were identified by XRD spectroscopy. The modification of the corrosion resistance characteristics of titanium due to the NH{sub 3} plasma treatment were investigated by electrochemical tests. The recorded polarization curves of the treated titanium samples were used to determine the values of the corrosion potential E{sub corr}. This study confirms the increasing of the corrosion resistance as a function of the time exposure and the injected electric power in the silica reactor.more » The plasma treatment also induces drastic changes of the titanium target in hardness.« less
Ju, Guangxu; Highland, Matthew J.; Yanguas-Gil, Angel; ...
2017-03-21
Here, we describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and filmmore » structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.« less
NASA Astrophysics Data System (ADS)
Belkin, P. N.; Kusmanov, S. A.; Dyakov, I. G.; Silkin, S. A.; Smirnov, A. A.
2017-05-01
In our previous studies, we have shown that anode plasma electrolytic saturation of titanium alloys with nitrogen and carbon can improve their tribological properties. Obtained structure containing oxide layer and solid solution of diffused element in titanium promotes the enhancement of running-in ability and the decrease in the wear rate in some special cases. In this paper, further investigations are reported regarding the tribological properties of alpha- and beta-titanium alloys in wear test against hardened steel (50 HRC) disk using pin-on-disk geometry and balls of Al2O3 (6.25 mm in diameter) or bearing steel (9.6 mm in diameter) with ball-on-plate one and normal load from 5 to 209 N. Reproducible results were obtained under testing samples treated by means of the plasma electrolytic nitriding (PEN) with the mechanical removal of the oxide layer. Friction coefficient of nitrided samples is 0.5-0.9 which is somewhat higher than that for untreated one (0.48-0.75) during dry sliding against Al2O3 ball. An increase in the sliding speed results in the polishing of nitrided samples and reduction of their wear rate by 60 times. This result is obtained for 5 min at 850 °C using PEN in electrolyte containing 5 wt.% ammonia and 10 wt.% ammonium chloride followed by quenching in solution. Optical microscope was employed to assist in the evaluation of the wear behavior. Sizes of wear tracks were measured by profilometer TR200.
NASA Astrophysics Data System (ADS)
Aziz, Tareque; Rumaiz, Abdul
Titanium Nitride (TiNx) thin films were prepared by reactive dc sputtering in presence of Ar-N2 plasma. The thin films were grown on Quartz and pure Si surfaces. The Ar-N2 content ratio was gradually varied while the substrate and the Titanium target were kept at room temperature. Structural properties, optical and electrical properties of the thin films were studied by using X-ray Photoelectron Spectroscopy (XPS) and XRD and 4 probe resistivity measurement. Target poisoning of the Ti target was also studied by varying reactive gas concentration and measuring the target current. A study of target current vs growth rate of the films was performed to investigate the onset of ``poison'' mode.Although there was an insignificant drop in plasma current, we noticed a drop in the deposition rate. This result was tested against Monte Carlo simulations using SRIM simulations. Effects of annealing on the crystallinity and the sheet resistance will also be discussed. The work has been supported by BSA,DOE.
NASA Astrophysics Data System (ADS)
Yousefi, Mahdieh; Faraji, Monireh; Asgari, Reza; Moshfegh, Alireza Z.
2018-05-01
We study the effect of boron (B) and phosphorous (P) doping and B/P codoping on electronic and optical properties of graphitic carbon nitride (g-C3N4 or GCN) monolayers using density functional simulations. The energy band structure indicates that the incorporation of both B and P into a hexagonal lattice of GCN reduces the energy band gap from 3.1 for pristine GCN to 1.9 eV, thus extending light absorption toward the visible region. Moreover, on the basis of calculating absorption spectra and dielectric function, the codoped system exhibits an improved absorption intensity in the visible region and more electronic transitions, which named π* electronic transitions that occurred and were prohibited in the pristine GCN. These transitions can be attributed to charge redistribution upon doping, caused by distorted configurable B/P-codoped GCN confirmed by both electron density and Mulliken charge population. Therefore, B/P-codoped GCN is expected to be an auspicious candidate to be used as a promising photoelectrode in photoelectrochemical water splitting reactions leading to efficient solar H2 production.
Accurate atomistic potentials and training sets for boron-nitride nanostructures
NASA Astrophysics Data System (ADS)
Tamblyn, Isaac
Boron nitride nanotubes exhibit exceptional structural, mechanical, and thermal properties. They are optically transparent and have high thermal stability, suggesting a wide range of opportunities for structural reinforcement of materials. Modeling can play an important role in determining the optimal approach to integrating nanotubes into a supporting matrix. Developing accurate, atomistic scale models of such nanoscale interfaces embedded within composites is challenging, however, due to the mismatch of length scales involved. Typical nanotube diameters range from 5-50 nm, with a length as large as a micron (i.e. a relevant length-scale for structural reinforcement). Unlike their carbon-based counterparts, well tested and transferable interatomic force fields are not common for BNNT. In light of this, we have developed an extensive training database of BN rich materials, under conditions relevant for BNNT synthesis and composites based on extensive first principles molecular dynamics simulations. Using this data, we have produced an artificial neural network potential capable of reproducing the accuracy of first principles data at significantly reduced computational cost, allowing for accurate simulation at the much larger length scales needed for composite design.
Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel
2018-04-05
Hexagonal boron nitride (hBN) is an up-and-coming two-dimensional material, with applications in electronic devices, tribology, and separation membranes. Herein, we utilize density-functional-theory-based ab initio molecular dynamics (MD) simulations and lattice dynamics calculations to develop a classical force field (FF) for modeling hBN. The FF predicts the crystal structure, elastic constants, and phonon dispersion relation of hBN with good accuracy and exhibits remarkable agreement with the interlayer binding energy predicted by random phase approximation calculations. We demonstrate the importance of including Coulombic interactions but excluding 1-4 intrasheet interactions to obtain the correct phonon dispersion relation. We find that improper dihedrals do not modify the bulk mechanical properties and the extent of thermal vibrations in hBN, although they impact its flexural rigidity. Combining the FF with the accurate TIP4P/Ice water model yields excellent agreement with interaction energies predicted by quantum Monte Carlo calculations. Our FF should enable an accurate description of hBN interfaces in classical MD simulations.
Performance analysis and simulation of vertical gallium nitride nanowire transistors
NASA Astrophysics Data System (ADS)
Witzigmann, Bernd; Yu, Feng; Frank, Kristian; Strempel, Klaas; Fatahilah, Muhammad Fahlesa; Schumacher, Hans Werner; Wasisto, Hutomo Suryo; Römer, Friedhard; Waag, Andreas
2018-06-01
Gallium nitride (GaN) nanowire transistors are analyzed using hydrodynamic simulation. Both p-body and n-body devices are compared in terms of threshold voltage, saturation behavior and transconductance. The calculations are calibrated using experimental data. The threshold voltage can be tuned from enhancement to depletion mode with wire doping. Surface states cause a shift of threshold voltage and saturation current. The saturation current depends on the gate design, with a composite gate acting as field plate in the p-body device. He joined Bell Laboratories, Murray Hill, NJ, as a Technical Staff Member. In October 2001, he joined the Optical Access and Transport Division, Agere Systems, Alhambra, CA. In 2004, he was appointed an Assistant Professor at ETH Zurich,. Since 2008, at the University of Kassel, Kassel, Germany, and he has been a Professor the Head of the Computational Electronics and Photonics Group, and co-director of CINSaT since 2010. His research interests include computational optoelectronics, process and device design of semiconductor photonic devices, microwave components, and electromagnetics modeling for nanophotonics. Dr. Witzigmann is a senior member of the SPIE and IEEE.
NASA Astrophysics Data System (ADS)
Greczynski, G.; Mráz, S.; Hultman, L.; Schneider, J. M.
2016-11-01
Carbide signatures are ubiquitous in the surface analyses of industrially sputter-deposited transition metal nitride thin films grown with carbon-less source materials in typical high-vacuum systems. We use high-energy-resolution photoelectron spectroscopy to reveal details of carbon temporal chemical state evolution, from carbide formed during film growth to adventitious carbon adsorbed upon contact with air. Using in-situ grown Al capping layers that protect the as-deposited transition metal nitride surfaces from oxidation, it is shown that the carbide forms during film growth rather than as a result of post deposition atmosphere exposure. The XPS signature of carbides is masked by the presence of adventitious carbon contamination, appearing as soon as samples are exposed to atmosphere, and eventually disappears after one week-long storage in lab atmosphere. The concentration of carbon assigned to carbide species varies from 0.28 at% for ZrN sample, to 0.25 and 0.11 at% for TiN and HfN, respectively. These findings are relevant for numerous applications, as unintentionally formed impurity phases may dramatically alter catalytic activity, charge transport and mechanical properties by offsetting the onset of thermally-induced phase transitions. Therefore, the chemical state of C impurities in PVD-grown films should be carefully investigated.
Yang, Fann-Wei; Chen, Yu-Yu; Feng, Shih-Wei; Sun, Qian; Han, Jung
2016-12-01
In this study, effects of the thickness of a low temperature (LT) buffer and impurity incorporation on the characteristics of Nitrogen (N)-polar GaN are investigated. By using either a nitridation or thermal annealing step before the deposition of a LT buffer, three N-polar GaN samples with different thicknesses of LT buffer and different impurity incorporations are prepared. It is found that the sample with the thinnest LT buffer and a nitridation step proves to be the best in terms of a fewer impurity incorporations, strong PL intensity, fast mobility, small biaxial strain, and smooth surface. As the temperature increases at ~10 K, the apparent donor-acceptor-pair band is responsible for the decreasing integral intensity of the band-to-band emission peak. In addition, the thermal annealing of the sapphire substrates may cause more impurity incorporation around the HT-GaN/LT-GaN/sapphire interfacial regions, which in turn may result in a lower carrier mobility, larger biaxial strain, larger bandgap shift, and stronger yellow luminescence. By using a nitridation step, both a thinner LT buffer and less impurity incorporation are beneficial to obtaining a high quality N-polar GaN.
Thermo-mechanical properties of boron nitride nanoribbons: A molecular dynamics simulation study.
Mahdizadeh, Sayyed Jalil; Goharshadi, Elaheh K; Akhlamadi, Golnoosh
2016-07-01
Thermo-mechanical properties of boron nitride nanoribbons (BNNRs) were computed using molecular dynamics simulation with optimized Tersoff empirical potential. Thermal conductivity (TC) and heat transport properties of BNNRs were calculated as functions of both temperature and nanoribbon's length. The results show that TC of BNNRs decreases with raising temperature by T(-1.5) up to 1000K. The phonon-phonon scattering relaxation time, mean free path of phonons, and contribution of high frequency optical phonons in TC of BNNRs were calculated at various temperatures. TC decreases as nanoribbon size increases and it converges to ∼500Wm(-1)K(-1) for nanoribbons with length longer than 30nm. The mechanical properties, including Gruneisen parameter, stress-strain response curves, Young's modulus, intrinsic strength, critical strain, and poisson's ratio were calculated in the temperature range of 137-1000K. The simulation results show that Gruneisen parameter and poisson's ratio of BNNRs are -0.092 and 0.245, respectively. The Young's modulus of BNNRs decreases with raising temperature and its value is 630GPa at 300K. According to the results, BNNRs duo to their extraordinary thermo-mechanical properties, are the promising candidate for the future nano-device manufacturing. Copyright © 2016 Elsevier Inc. All rights reserved.
Position and mode dependent optical detection back-action in cantilever beam resonators
NASA Astrophysics Data System (ADS)
Larsen, T.; Schmid, S.; Dohn, S.; Sader, J. E.; Boisen, A.; Villanueva, L. G.
2017-03-01
Optical detection back-action in cantilever resonant or static detection presents a challenge when striving for state-of-the-art performance. The origin and possible routes for minimizing optical back-action have received little attention in literature. Here, we investigate the position and mode dependent optical back-action on cantilever beam resonators. A high power heating laser (100 µW) is scanned across a silicon nitride cantilever while its effect on the first three resonance modes is detected via a low-power readout laser (1 µW) positioned at the cantilever tip. We find that the measured effect of back-action is not only dependent on position but also the shape of the resonance mode. Relevant silicon nitride material parameters are extracted by fitting finite element (FE) simulations to the temperature-dependent frequency response of the first three modes. In a second round of simulations, using the extracted parameters, we successfully fit the FEM results with the measured mode and position dependent back-action. From the simulations, we can conclude that the observed frequency tuning is due to temperature induced changes in stress. Effects of changes in material properties and dimensions are negligible. Finally, different routes for minimizing the effect of this optical detection back-action are described, allowing further improvements of cantilever-based sensing in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddiqua, Poppy; Hadi, Walid A.; Salhotra, Amith K.
2015-03-28
Within the framework of an ensemble semi-classical three-valley Monte Carlo electron transport simulation approach, we critically contrast the nature of the electron transport that occurs within the wurtzite and zinc-blende phases of indium nitride in response to the application of a constant and uniform electric field. We use the electron energy distribution and its relationship with the electron transport characteristics in order to pursue this analysis. For the case of zinc-blende indium nitride, only a peak corresponding to the electrons within the lowest energy conduction band valley is observed, this peak being seen to broaden and shift to higher energiesmore » in response to increases in the applied electric field strength, negligible amounts of upper energy conduction band valley occupancy being observed. In contrast, for the case of wurtzite indium nitride, in addition to the aforementioned lowest energy conduction band valley peak in the electron energy distribution, and its broadening and shifting to higher energies in response to increases in the applied electric field strength, beyond a certain critical electric field strength, 30 kV/cm for the case of this particular material, upper energy conduction band valley occupancy is observed, this occupancy being further enhanced in response to further increases in the applied electric field strength. Reasons for these results are provided. The potential for device consequences is then commented upon.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofstetter, Markus; Howgate, John; Schmid, Martin
Highlights: Black-Right-Pointing-Pointer Gallium nitride based sensors show promising characteristics to monitor cellular parameters. Black-Right-Pointing-Pointer Cell growth experiments reveal excellent biocompatibiltiy of the host GaN material. Black-Right-Pointing-Pointer We present a biofunctionality assay using ionizing radiation. Black-Right-Pointing-Pointer DNA repair is utilized to evaluate material induced alterations in the cellular behavior. Black-Right-Pointing-Pointer GaN shows no bio-functional influence on the cellular environment. -- Abstract: There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriatemore » sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth dynamics of adherent cells were compared to control samples. The impact of ionizing radiation on DNA, along with the associated cellular repair mechanisms, is well characterized and serves as a reference tool for evaluation of substrate effects. The results indicate that gallium nitride does not require specific surface treatments to ensure biocompatibility and suggest that cell signaling is not affected by micro-environmental alterations arising from gallium nitride-cell interactions. The observation that gallium nitride provides no bio-functional influence on the cellular environment confirms that this material is well suited for future biosensing applications without the need for additional chemical surface modification.« less
Sangiovanni, D G; Gueorguiev, G K; Kakanakova-Georgieva, A
2018-06-19
Metal organic chemical vapor deposition (MOCVD) of group III nitrides on graphene heterostructures offers new opportunities for the development of flexible optoelectronic devices and for the stabilization of conceptually-new two-dimensional materials. However, the MOCVD of group III nitrides is regulated by an intricate interplay of gas-phase and surface reactions that are beyond the resolution of experimental techniques. We use density-functional ab initio molecular dynamics (AIMD) with van der Waals corrections to identify atomistic pathways and associated electronic mechanisms driving precursor/surface reactions during metal organic vapor phase epitaxy at elevated temperatures of aluminum nitride on graphene, considered here as model case study. The results presented provide plausible interpretations of atomistic and electronic processes responsible for delivery of Al, C adatoms, and C-Al, CHx, AlNH2 admolecules on pristine graphene via precursor/surface reactions. In addition, the simulations reveal C adatom permeation across defect-free graphene, as well as exchange of C monomers with graphene carbon atoms, for which we obtain rates of ∼0.3 THz at typical experimental temperatures (1500 K), and extract activation energies Eexca = 0.28 ± 0.13 eV and attempt frequencies Aexc = 2.1 (×1.7±1) THz via Arrhenius linear regression. The results demonstrate that AIMD simulations enable understanding complex precursor/surface reaction mechanisms, and thus propose AIMD to become an indispensable routine prediction-tool toward more effective exploitation of chemical precursors and better control of MOCVD processes during synthesis of functional materials.
Band gap engineering of N-alloyed Ga{sub 2}O{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Dongyu; Li, Bingsheng, E-mail: libingsheng@hit.edu.cn, E-mail: ashen@ccny.cuny.edu; Sui, Yu
2016-06-15
The authors report the tuning of band gap of GaON ternary alloy in a wide range of 2.75 eV. The samples were prepared by a two-step nitridation method. First, the samples were deposited on 2-inch fused silica substrates by megnetron sputtering with NH{sub 3} and Ar gas for 60 minutes. Then they were annealed in NH{sub 3} ambience at different temperatures. The optical band gap energies are calculated from transmittance measurements. With the increase of nitridation temperature, the band gap gradually decreases from 4.8 eV to 2.05 eV. X-ray diffraction results indicate that as-deposited amorphous samples can crystallize into monoclinicmore » and hexagonal structures after they were annealed in oxygen or ammonia ambience, respectively. The narrowing of the band gap is attributed to the enhanced repulsion of N2p -Ga3d orbits and formation of hexagonal structure.« less
NASA Astrophysics Data System (ADS)
Li, Zhi-Ming; Hao, Yue; Zhang, Jin-Cheng; Xu, Sheng-Rui; Ni, Jin-Yu; Zhou, Xiao-Wei
2009-11-01
Electromagnetic field distribution in the vertical metal organic chemical vapour deposition (MOCVD) reactor is simulated by using the finite element method (FEM). The effects of alternating current frequency, intensity, coil turn number and the distance between the coil turns on the distribution of the Joule heat are analysed separately, and their relations to the value of Joule heat are also investigated. The temperature distribution on the susceptor is also obtained. It is observed that the results of the simulation are in good agreement with previous measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaques, Brian; Butt, Darryl P.; Marx, Brian M.
A carbothermic reduction of the metal oxides in a hydrogen/nitrogen mixed gas stream prior to nitriding in a nitrogen gas stream was used to synthesize uranium nitride at 1500 deg. C, cerium nitride at 1400 deg. C, and dysprosium nitride at 1500 deg. C. Cerium nitride and dysprosium nitride were also synthesized via hydriding and nitriding the metal shavings at 900 deg. C and 1500 deg. C, respectively. Also, a novel ball-milling synthesis route was used to produce cerium nitride and dysprosium nitride from the metal shavings at room temperature. Dysprosium nitride was also produced by reacting the metal shavingsmore » in a high purity nitrogen gas stream at 1300 deg. C. All materials were characterized by phase analysis via X-ray diffraction. Only the high purity materials were further analyzed via chemical analysis to characterize the trace oxygen concentration. (authors)« less
Macrosegregation of GeSi Alloys Grown in a Static Magnetic Field
NASA Technical Reports Server (NTRS)
Ritter, T. M.; Volz, M. P.; Cobb, S. D.; Szofran, F. R.
1999-01-01
Axial and radial macrosegregation profiles have been determined for GeSi alloy crystals grown by the vertical Bridgman technique. An axial 5 Tesla magnetic field was applied to several samples during growth to decrease the melt velocities by means of the Lorentz force. Compositions were measured with either energy dispersive X-ray spectroscopy (EDS) on a scanning electron microscope (SEM) or by wavelength dispersive X-ray spectroscopy (WDS) on a microprobe. The crystals were processed in graphite, hot-pressed boron nitride (BN), and pyrolytic boron nitride (PBN) ampoules, which produced various solid-liquid interface shapes during solidification. Those samples grown in a graphite ampoule exhibited radial profiles consistent with a highly concave interface and axial profiles indicative of complete mixing in the melt. The samples grown in BN and PBN ampoules had less radial variation. Axial macrosegregation profiles of these samples fell between the predictions for a completely mixed melt and one where solute transport is dominated by diffusion. Possible explanations for the apparent insufficiency of the magnetic field to achieve diffusion controlled growth conditions are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, K.; Xiao, H. Y.; Zhang, Y.
2014-05-19
Ab initio molecular dynamics simulations are performed to investigate the effects of a boron nitride (BN) substrate on Stone-Wales (SW) defect formation and recovery in graphene. It is found that SW defects can be created by an off-plane recoil atom that interacts with the BN substrate. A mechanism with complete bond breakage for formation of SW defects in suspended graphene is also revealed for recoils at large displacement angles. In addition, further irradiation can result in recovery of the SW defects through a bond rotation mechanism in both graphene and graphene/BN, and the substrate has little effect on the recoverymore » process. This study indicates that the BN substrate enhances the irradiation resistance of graphene.« less
NASA Technical Reports Server (NTRS)
Choi, Maria; Yim, John T.; Williams, George J.; Herman, Daniel A.; Gilland, James H.
2018-01-01
Magnetic shielding has eliminated boron nitride erosion as the life limiting mechanism in a Hall thruster but has resulted in erosion of the front magnetic field pole pieces. Recent experiments show that the erosion of graphite pole covers, which are added to protect the magnetic field pole pieces, causes carbon to redeposit on other surfaces, such as boron nitride discharge channel and cathode keeper surfaces. As a part of the risk-reduction activities for Advanced Electric Propulsion System thruster development, this study models transport of backsputtered carbon from the graphite front pole covers and vacuum facility walls. Fluxes, energy distributions, and redeposition rates of backsputtered carbon on the anode, discharge channel, and graphite cathode keeper surfaces are predicted.
Waveguide silicon nitride grating coupler
NASA Astrophysics Data System (ADS)
Litvik, Jan; Dolnak, Ivan; Dado, Milan
2016-12-01
Grating couplers are one of the most used elements for coupling of light between optical fibers and photonic integrated components. Silicon-on-insulator platform provides strong confinement of light and allows high integration. In this work, using simulations we have designed a broadband silicon nitride surface grating coupler. The Fourier-eigenmode expansion and finite difference time domain methods are utilized in design optimization of grating coupler structure. The fully, single etch step grating coupler is based on a standard silicon-on-insulator wafer with 0.55 μm waveguide Si3N4 layer. The optimized structure at 1550 nm wavelength yields a peak coupling efficiency -2.6635 dB (54.16%) with a 1-dB bandwidth up to 80 nm. It is promising way for low-cost fabrication using complementary metal-oxide- semiconductor fabrication process.
Hexagonal boron nitride and water interaction parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu; Wagner, Lucas K.
2016-04-28
The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics andmore » ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.« less
Sputtering Erosion Measurement on Boron Nitride as a Hall Thruster Material
NASA Technical Reports Server (NTRS)
Britton, Melissa; Waters, Deborah; Messer, Russell; Sechkar, Edward; Banks, Bruce
2002-01-01
The durability of a high-powered Hall thruster may be limited by the sputter erosion resistance of its components. During normal operation, a small fraction of the accelerated ions will impact the interior of the main discharge channel, causing its gradual erosion. A laboratory experiment was conducted to simulate the sputter erosion of a Hall thruster. Tests of sputter etch rate were carried out using 300 to 1000 eV Xenon ions impinging on boron nitride substrates with angles of attack ranging from 30 to 75 degrees from horizontal. The erosion rates varied from 3.41 to 14.37 Angstroms/[sec(mA/sq cm)] and were found to depend on the ion energy and angle of attack, which is consistent with the behavior of other materials.
Multi-walled boron nitride nanotubes as self-excited launchers.
Li, Yifan; Zhou, Yi; Wu, Yan; Huang, Chengchi; Wang, Long; Zhou, Xuyan; Zhao, Zhenyang; Li, Hui
2017-07-27
A self-excited launcher consisting of multi-walled boron nitride nanotubes (BNNTs) has been investigated using molecular dynamics simulation. The results show that, after a period of high frequency oscillation, the innermost BNNT can be spontaneously ejected along its central axis at a relatively fast speed. The launching is caused by the energy transfer between the nanotubes and without absorbing energy from the external environment. Most self-excited launchers could launch their innermost nanotube, although an inappropriate structure of the nanotubes contributes to a blocked or failed launch. In addition, a launch angle corrector and a nanotube receiver associated with a self-excited launcher are also manufactured to precisely control the launch angle and distance of the BNNTs. This study provides the possibility to fabricate and design self-excited launchers using multi-walled nanotubes.
NASA Astrophysics Data System (ADS)
Greczynski, G.; Mráz, S.; Schneider, J. M.; Hultman, L.
2018-02-01
The nitride layer formed in the target race track during the deposition of stoichiometric TiN thin films is a factor 2.5 thicker for high power impulse magnetron sputtering (HIPIMS), compared to conventional dc processing (DCMS). The phenomenon is explained using x-ray photoelectron spectroscopy analysis of the as-operated Ti target surface chemistry supported by sputter depth profiles, dynamic Monte Carlo simulations employing the TRIDYN code, and plasma chemical investigations by ion mass spectrometry. The target chemistry and the thickness of the nitride layer are found to be determined by the implantation of nitrogen ions, predominantly N+ and N2+ for HIPIMS and DCMS, respectively. Knowledge of this method-inherent difference enables robust processing of high quality functional coatings.
Characterization and modeling of electrostatically actuated polysilicon micromechanical devices
NASA Astrophysics Data System (ADS)
Chan, Edward Keat Leem
Sensors, actuators, transducers, microsystems and MEMS (MicroElertroMechanical Systems) are some of the terms describing technologies that interface information processing systems with the physical world. Electrostatically actuated micromechanical devices are important building blocks in many of these technologies. Arrays of these devices are used in video projection displays, fluid pumping systems, optical communications systems, tunable lasers and microwave circuits. Well-calibrated simulation tools are essential for propelling ideas from the drawing board into production. This work characterizes a fabrication process---the widely-used polysilicon MUMPs process---to facilitate the design of electrostatically actuated micromechanical devices. The operating principles of a representative device---a capacitive microwave switch---are characterized using a wide range of electrical and optical measurements of test structures along with detailed electromechanical simulations. Consistency in the extraction of material properties from measurements of both pull-in voltage and buckling amplitude is demonstrated. Gold is identified as an area-dependent source of nonuniformity in polysilicon thicknesses and stress. Effects of stress gradients, substrate curvature, and film coverage are examined quantitatively. Using well-characterized beams as in-situ surface probes, capacitance-voltage and surface profile measurements reveal that compressible surface residue modifies the effective electrical gap when the movable electrode contacts an underlying silicon nitride layer. A compressible contact surface model used in simulations improves the fit to measurements. In addition, the electric field across the nitride causes charge to build up in the nitride, increasing the measured capacitance over time. The rate of charging corresponds to charge injection through direct tunneling. A novel actuator that can travel stably beyond one-third of the initial gap (a trademark limitation of conventional actuators) is demonstrated. A "folded capacitor" design, requiring only minimal modifications to the layout of conventional devices, reduces the parasitic capacitances and modes of deformation that limit performance. This device, useful for optical applications, can travel almost twice the conventional range before succumbing to a tilting instability.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Kiser, James D.; Swickard, Suzanne M.; Szatmary, Steven A.; Kerwin, David P.
1993-01-01
An ultrasonic scan procedure using the pulse-echo contact configuration was employed to obtain maps of pore fraction variations in sintered silicon nitride samples in terms of ultrasonic material properties. Ultrasonic velocity, attenuation coefficient, and reflection coefficient images were obtained simultaneously over a broad band of frequencies (e.g., 30 to 110 MHz) by using spectroscopic analysis. Liquid and membrane (dry) coupling techniques and longitudinal and shear-wave energies were used. The major results include the following: Ultrasonic velocity (longitudinal and shear wave) images revealed and correlated with the extent of average through-thickness pore fraction variations in the silicon nitride disks. Attenuation coefficient images revealed pore fraction nonuniformity due to the scattering that occurred at boundaries between regions of high and low pore fraction. Velocity and attenuation coefficient images were each nearly identical for machined and polished disks, making the method readily applicable to machined materials. Velocity images were similar for wet and membrane coupling. Maps of apparent Poisson's ratio constructed from longitudinal and shear-wave velocities quantified Poisson's ratio variations across a silicon nitride disk. Thermal wave images of a disk indicated transient thermal behavior variations that correlated with observed variations in pore fraction and velocity and attenuation coefficients.
Hard carbon nitride and method for preparing same
Haller, Eugene E.; Cohen, Marvin L.; Hansen, William L.
1992-01-01
Novel crystalline .alpha. (silicon nitride-like)-carbon nitride and .beta. (silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate.
Takahashi, Lauren; Takahashi, Keisuke
2017-03-27
An octagonal allotrope of two dimensional boron nitride is explored through first principles calculations. Calculations show that two dimensional octagonal boron nitride can be formed with a binding energy comparable to two dimensional hexagonal boron nitride. In addition, two dimensional octagonal boron nitride is found to have a band gap smaller than two dimensional hexagonal boron nitride, suggesting the possibility of semiconductive attributes. Two dimensional octagonal boron nitride also has the ability to layer through physisorption. Defects present within two dimensional octagonal boron nitride also lead toward the introduction of a magnetic moment through the absence of boron atoms. The presence of defects is also found to render both hexagonal and octagonal boron nitrides reactive against hydrogen, where greater reactivity is seen in the presence of nitrogen. Thus, two dimensional octagonal boron nitride is confirmed with potential to tailor properties and reactivity through lattice shape and purposeful introduction of defects.
Work functions of hafnium nitride thin films as emitter material for field emitter arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gotoh, Yasuhito, E-mail: gotoh.yasuhito.5w@kyoto-u.ac.jp; Fujiwara, Sho; Tsuji, Hiroshi
The work functions of hafnium nitride thin films prepared by radio-frequency magnetron sputtering were investigated in vacuum, before and after surface cleaning processes, with a view of improving the properties of as-fabricated field emitter arrays comprising hafnium nitride emitters. The measurement of the work function was first performed for the as-deposited films and then for films subjected to surface cleaning process, either thermal treatment or ion bombardment. Thermal treatment at a maximum temperature of 300 °C reduced the work function by 0.7 eV. Once the film was heated, the work function maintained the reduced value, even after cooling to room temperature. Amore » little change in the work function was observed for the second and third thermal treatments. The ion bombardment was conducted by exposing the sample to a thin plasma for different sample bias conditions and processing times. When the sample was biased at −10 V, the work function decreased by 0.6 eV. The work function reduction became saturated in the early stage of the ion bombardment. When the sample was biased at −50 V, the work function exhibited different behaviors, that is, first it decreased rapidly and then increased in response to the increase in processing time. The lowest attainable work function was found to be 4.00 eV. It should be noted that none of the work function values reported in this paper were obtained using surfaces that were demonstrated to be free from oxygen contamination. The present results suggest that the current–voltage characteristics of a field emitter array can be improved by a factor of 25–50 by the examined postprocesses.« less
Enhanced visible light photocatalytic activity in N-doped edge- and corner-truncated octahedral Cu2O
NASA Astrophysics Data System (ADS)
Zou, Mingming; Liu, Honghong; Feng, Lu; Thomas, Tiju; Yang, Minghui
2017-03-01
Edge- and corner-truncated octahedral Cu2O is successfully synthesized using an aqueous mixture of CuCl2, sodium dodecyl sulfate, NaOH, and NH2OH3·HCl. Cu2O1-xNx(150 °C, 30 min) samples are synthesized by nitridation of Cu2O using an ammonothermal process. Cu retains a formal valence state through and beyond the nitridation process. N concentration in this sample is 1.73 at%, out of which 1.08 at% is substitutional in nature. Photocatalytic activity of Cu2O1-xNx(150 °C, 30 min) sample is investigated and compared to that of pristine edge- and corner-truncated octahedral Cu2O. Results show that Cu2O1-xNx(150 °C, 30 min) sample with dominant {110} facets has a higher photocatalytic activity than the pristine Cu2O material. Higher surface energy and a greater density of the ;Cu; dangling bonds on {110} facets of edge- and corner-truncated octahedral Cu2O1-xNx is the plausible reason for the observed optimum catalytic activity. Furthermore defect states induced by nitridation results in improved visible light adsorption. And also the band edge states changes which brought about by N doping. This is an interesting result since it bypasses the usual challenge faced by pristine Cu2O which have band edge states between which transitions are normally forbidden. Selective radical quenching experiments suggest that photocatalytic activity of Cu2O1-xNx is due to formation of hydroxyl radicals in water, subsequent to photogeneration of charge carriers in the photocatalyst.
Hard carbon nitride and method for preparing same
Haller, E.E.; Cohen, M.L.; Hansen, W.L.
1992-05-05
Novel crystalline [alpha](silicon nitride-like)-carbon nitride and [beta](silicon nitride-like)-carbon nitride are formed by sputtering carbon in the presence of a nitrogen atmosphere onto a single crystal germanium or silicon, respectively, substrate. 1 figure.
Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.
2017-02-21
According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.
Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu
2016-01-01
Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred. PMID:28773285
Thermal stability of tungsten sub-nitride thin film prepared by reactive magnetron sputtering
NASA Astrophysics Data System (ADS)
Zhang, X. X.; Wu, Y. Z.; Mu, B.; Qiao, L.; Li, W. X.; Li, J. J.; Wang, P.
2017-03-01
Tungsten sub-nitride thin films deposited on silicon samples by reactive magnetron sputtering were used as a model system to study the phase stability and microstructural evolution during thermal treatments. XRD, SEM&FIB, XPS, RBS and TDS were applied to investigate the stability of tungsten nitride films after heating up to 1473 K in vacuum. At the given experimental parameters a 920 nm thick crystalline film with a tungsten and nitrogen stoichiometry of 2:1 were achieved. The results showed that no phase and microstructure change occurred due to W2N film annealing in vacuum up to 973 K. Heating up to 1073 K led to a partial decomposition of the W2N phase and the formation of a W enrichment layer at the surface. Increasing the annealing time at the same temperature, the further decomposition of the W2N phase was negligible. The complete decomposition of W2N film happened as the temperature reached up to 1473 K.
Yao, Bibo; Zhou, Zhaoyao; Duan, Liuyang; Xiao, Zhiyu
2016-03-04
Powder metallurgy (P/M) technique is usually used for manufacturing porous metal materials. However, some P/M materials are limitedly used in engineering for their performance deficiency. A novel 304 stainless steel P/M material was produced by a solid-state sintering of 304 stainless steel powders and 304 short stainless steel fibers, which were alternately laid in layers according to mass ratio. In this paper, the compressive properties of the P/M materials were characterized by a series of uniaxial compression tests. The effects of fiber content, compaction pressure and high temperature nitriding on compressive properties were investigated. The results indicated that, without nitriding, the samples changed from cuboid to cydariform without damage in the process of compression. The compressive stress was enhanced with increasing fiber content ranging from 0 to 8 wt.%. For compaction pressure from 55 to 75 MPa, greater compaction pressure improved compressive stress. Moreover, high temperature nitriding was able to significantly improve the yield stress, but collapse failure eventually occurred.
Okada, Mitsuhiro; Miyauchi, Yuhei; Matsuda, Kazunari; Taniguchi, Takashi; Watanabe, Kenji; Shinohara, Hisanori; Kitaura, Ryo
2017-03-23
Monolayer transition metal dichalcogenides (TMDCs) including WS 2 , MoS 2 , WSe 2 and WS 2 , are two-dimensional semiconductors with direct bandgap, providing an excellent field for exploration of many-body effects in 2-dimensions (2D) through optical measurements. To fully explore the physics of TMDCs, the prerequisite is preparation of high-quality samples to observe their intrinsic properties. For this purpose, we have focused on high-quality samples, WS 2 grown by chemical vapor deposition method with hexagonal boron nitride as substrates. We observed sharp exciton emissions, whose linewidth is typically 22~23 meV, in photoluminescence spectra at room temperature, which result clearly demonstrates the high-quality of the current samples. We found that biexcitons formed with extremely low-excitation power (240 W/cm 2 ) at 80 K, and this should originate from the minimal amount of localization centers in the present high-quality samples. The results clearly demonstrate that the present samples can provide an excellent field, where one can observe various excitonic states, offering possibility of exploring optical physics in 2D and finding new condensates.
Method of manufacture of atomically thin boron nitride
Zettl, Alexander K
2013-08-06
The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.
Cellulose nanofibrils (CNF) filled boron nitride (BN) nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulaiman, Hanisah Syed; Hua, Chia Chin; Zakaria, Sarani
In this study, nanocomposite using cellulose nanofibrils filled with different percentage of boron nitride (CNF-BN) were prepared. The objective of this research is to study the effect of different percentage of BN to the thermal conductivity of the nanocomposite produced. The CNF-BN nanocomposite were characterization by FT-IR, SEM and thermal conductivity. The FT-IR analysis of the CNF-BN nanocomposite shows all the characteristic peaks of cellulose and BN present in all samples. The dispersion of BN in CNF were seen through SEM analysis. The effect of different loading percentage of BN to the thermal conductivity of the nanocomposite were also investigated.
NASA Astrophysics Data System (ADS)
Agyekyan, V. F.; Borisov, E. V.; Serov, A. Yu.; Filosofov, N. G.
2017-12-01
A gallium nitride crystal 5 mm in thickness was grown by chloride-hydride vapor-phase epitaxy on a sapphire substrate, from which the crystal separated during cooling. At an early stage, a three-dimensional growth mode was implemented, followed by a switch to a two-dimensional mode. Spectra of exciton reflection, exciton luminescence, and Raman scattering are studied in several regions characteristic of the sample. Analysis of these spectra and comparison with previously obtained data for thin epitaxial GaN layers with a wide range of silicon doping enabled conclusions about the quality of the crystal lattice in these characteristic regions.
Oxidation Protection of Porous Reaction-Bonded Silicon Nitride
NASA Technical Reports Server (NTRS)
Fox, D. S.
1994-01-01
Oxidation kinetics of both as-fabricated and coated reaction-bonded silicon nitride (RBSN) were studied at 900 and 1000 C with thermogravimetry. Uncoated RBSN exhibited internal oxidation and parabolic kinetics. An amorphous Si-C-O coating provided the greatest degree of protection to oxygen, with a small linear weight loss observed. Linear weight gains were measured on samples with an amorphous Si-N-C coating. Chemically vapor deposited (CVD) Si3N4 coated RBSN exhibited parabolic kinetics, and the coating cracked severely. A continuous-SiC-fiber-reinforced RBSN composite was also coated with the Si-C-O material, but no substantial oxidation protection was observed.
Electrical transport properties of epitaxial titanium nitride nanowire
NASA Astrophysics Data System (ADS)
Makise, K.; Shinozaki, B.
2018-03-01
We have measured the transport properties of epitaxial titanium nitride (TiN) nanowires. Epitaxial TiN layer, deposited by dc magnetron sputtering on MgO(100) substrates at growth temperature T = 1073 K. Samples of nanowire were fabricated by e-beam lithography and reactive ion etching. Although TiN films with 100 nm-thickness have superconducting transition temperature T C ∼ 5 K, nanowires does not appear resistive transition until 0.15 K. The magnetoresistance (MR) are always negative. Furthermore for MR experimental results, we attempt to fit the data using one-dimensional weak localization theory. In addition we observed oscillations of magnetoresistance below 5 K.
Micro-machined thermo-conductivity detector
Yu, Conrad
2003-01-01
A micro-machined thermal conductivity detector for a portable gas chromatograph. The detector is highly sensitive and has fast response time to enable detection of the small size gas samples in a portable gas chromatograph which are in the order of nanoliters. The high sensitivity and fast response time are achieved through micro-machined devices composed of a nickel wire, for example, on a silicon nitride window formed in a silicon member and about a millimeter square in size. In addition to operating as a thermal conductivity detector, the silicon nitride window with a micro-machined wire therein of the device can be utilized for a fast response heater for PCR applications.
Feasibility of Actively Cooled Silicon Nitride Airfoil for Turbine Applications Demonstrated
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.
2001-01-01
Nickel-base superalloys currently limit gas turbine engine performance. Active cooling has extended the temperature range of service of nickel-base superalloys in current gas turbine engines, but the margin for further improvement appears modest. Therefore, significant advancements in materials technology are needed to raise turbine inlet temperatures above 2400 F to increase engine specific thrust and operating efficiency. Because of their low density and high-temperature strength and thermal conductivity, in situ toughened silicon nitride ceramics have received a great deal of attention for cooled structures. However, the high processing costs and low impact resistance of silicon nitride ceramics have proven to be major obstacles for widespread applications. Advanced rapid prototyping technology in combination with conventional gel casting and sintering can reduce high processing costs and may offer an affordable manufacturing approach. Researchers at the NASA Glenn Research Center, in cooperation with a local university and an aerospace company, are developing actively cooled and functionally graded ceramic structures. The objective of this program is to develop cost-effective manufacturing technology and experimental and analytical capabilities for environmentally stable, aerodynamically efficient, foreign-object-damage-resistant, in situ toughened silicon nitride turbine nozzle vanes, and to test these vanes under simulated engine conditions. Starting with computer aided design (CAD) files of an airfoil and a flat plate with internal cooling passages, the permanent and removable mold components for gel casting ceramic slips were made by stereolithography and Sanders machines, respectively. The gel-cast part was dried and sintered to final shape. Several in situ toughened silicon nitride generic airfoils with internal cooling passages have been fabricated. The uncoated and thermal barrier coated airfoils and flat plates were burner rig tested for 30 min without and with air cooling. Without cooling, the surface temperature of the flat plate reached approximately 2350 F. Starting with computer aided design (CAD) files of an airfoil and a flat plate with internal cooling passages, the permanent and removable mold components for gel casting ceramic slips were made by stereolithography and Sanders machines, respectively. The gel-cast part was dried and sintered to final shape. Several in situ toughened silicon nitride generic airfoils with internal cooling passages have been fabricated. The uncoated and thermal barrier coated airfoils and flat plates were burner rig tested for 30 min without and with air cooling. Without cooling, the surface temperature of the flat plate reached approximately 2350 F. With cooling, the surface temperature decreased to approximately 1910 F--a drop of approximately 440 F. This preliminary study demonstrates that a near-net-shape silicon nitride airfoil can be fabricated and that silicon nitride can sustain severe thermal shock and the thermal gradients induced by cooling and, thus, is a viable candidate for cooled components.
NASA Astrophysics Data System (ADS)
Qi, F.; Leng, Y. X.; Huang, N.; Bai, B.; Zhang, P. Ch.
2007-04-01
17-4PH stainless steel was modified by direct current (DC) plasma nitriding and titanium nitride film duplex treatment in this study. The microstructure, wear resistance and corrosion resistance were characterized by X-ray diffraction (XRD), pin-on-disk tribological test and polarization experiment. The results revealed that the DC plasma nitriding pretreatment was in favor of improving properties of titanium nitride film. The corrosion resistance and wear resistance of duplex treatment specimen was more superior to that of only coated titanium nitride film.
NASA Astrophysics Data System (ADS)
Mashovets, N. S.; Pastukh, I. M.; Voloshko, S. M.
2017-01-01
X-ray diffraction analysis, X-ray photoelectron spectroscopy, and Electron Auger-spectroscopy investigation of phase transformation on the surface of the VT8 titanium alloy after a low temperature hydrogen-free nitriding in a glow discharge. Operational characteristics of titanium alloys defined physical-mechanical characteristics of the surface and their phase composition, which depend on the process parameters of nitriding. Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. The main advantage of this method lies in the absence of hydrogen embrittlement and complete environmental safety process. Application of the glow discharge can not only speed up the process by the order of the diffusion surface saturation with nitrogen, but also significantly alters the kinetics of the process and quality of the nitrided layer, in particular its physio-mechanical properties and phase composition. For research purposes, the standards from an α + β alloy Ti-Al6-Cr2-Mo2,5 (VT8) were used. Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Stratified analysis by AES was conducted by etching the surface of the samples' argon ion beam with diameters of 1.5 mm with an energy of 3000 eV and a current density of 400 mA/cm2. The above material shows the promise of the technology of low-temperature hydrogen-nitriding by glow discharge. This greatly expands the range of practical applications of titanium alloys. In addition, changing the technological mode allows you to manage a wide range of modified phase composition of the surface layer and as a result - to form the surface of titanium parts, taking into account the conditions of the subsequent operation.
Ghazali, Norizzawati Mohd; Yasui, Kanji; Hashim, Abdul Manaf
2014-01-01
Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm(2) using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si.
2014-01-01
Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm2 using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si. PMID:25593562
Method of densifying an article formed of reaction bonded silicon nitride
NASA Technical Reports Server (NTRS)
Mangels, John A. (Inventor)
1982-01-01
A method of densifying an article formed of reaction bonded silicon nitride is disclosed. The reaction bonded silicon nitride article is packed in a packing mixture consisting of silicon nitride powder and a densification aid. The reaction bonded silicon nitride article and packing powder are sujected to a positive, low pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause any open porosity originally found in the reaction bonded silicon nitride article to be substantially closed. Thereafter, the reaction bonded silicon nitride article and packing powder are subjected to a positive high pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause a sintering of the reaction bonded silicon nitride article whereby the strength of the reaction bonded silicon nitride article is increased.
NASA Astrophysics Data System (ADS)
Zhang, Shenghong
The intergranular films (IGFs) between the ceramics grains have very important effects on the structure and mechanical properties on the whole ceramics and have been studied for many decades. In the thesis, molecular dynamic (MD) computer simulations were applied to study the IGFs between the alumina and silicon nitride ceramic grains. Preferential adsorption of specific ions from the IGFs to the contacting surfaces of the alumina crystals was observed in the study of calcium-alumino-silicate glassy (CAS) IGFs formed between the combined basal and prism orientations of alpha-Al2O3 crystals. This segregation of specific ions to the interface enables formation of localized, ordered structures between the IGF and the crystals. However, the segregation behavior of the ions is anisotropic, depending on the orientation of the alpha-Al2O 3 crystals. Self-diffusion of calcium ions between these CAS IGFs was also carried out by MD simulations. The results show that the diffusion coefficients adjacent to the interfaces are smaller and the activation energies are much higher than those in the interior of the IGF and in bulk glasses. It was also suggested that Ca transport is mainly though the interior of the IGF and implies that diffusion would be significantly inhibited by sufficiently thin IGFs. The growth of the alumina ceramic grains was simulated in the contacting with IGFs containing high concentrations of aluminum ions. Five different compositions in the IGFs were studied. Results show preferential growth along the [1120] of the (1120) surface in comparison to growth along the [0001] direction on the (0001) surface for compositions near a Ca/Al ratio of 0.5. The simulations also show the mechanism by which Ca ions in the IGF inhibit growth on the basal surface. The simulations provide an atomistic view of attachment onto crystal surfaces, affecting grain growth in alumina. The dissolution of the alumina crystal grains in the silicate melts is another important issue in the application of alumina ceramics. The simulations results showed that alumina grains dissolved into the melts homogeneously at very high temperatures. The orientation of the crystals and the compositions of the melts only take effect at some intermediate temperatures, to make the alumina grains dissolution anisotropic. The fracture phenomena of the pure silica IGFs between the basal silicon nitride crystals were studied by applying the constant tensile strain on the simulated IGF system, as well as for the bulk silica glass for the comparison. The data indicated that the fracture was happened in the interior of the IGFs and the thickness of the IGFs has important effect on the fracture stress/strain relationships.
Nitride stabilized core/shell nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.
Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.
NASA Astrophysics Data System (ADS)
Lin, Li-Hsiang; Chen, Shih-Chung; Wu, Ching-Zong; Hung, Jing-Ming; Ou, Keng-Liang
2011-06-01
Nitriding of AISI 303 austenitic stainless steel using microwave plasma system at various temperatures was conducted in the present study. The nitrided layers were characterized via scanning electron microscopy, glancing angle X-ray diffraction, transmission electron microscopy and Vickers microhardness tester. The antibacterial properties of this nitrided layer were evaluated. During nitriding treatment between 350 °C and 550 °C, the phase transformation sequence on the nitrided layers of the alloys was found to be γ → (γ + γ N) → (γ + α + CrN). The analytical results revealed that the surface hardness of AISI 303 stainless steel could be enhanced with the formation of γ N phase in nitriding process. Antibacterial test also demonstrated the nitrided layer processed the excellent antibacterial properties. The enhanced surface hardness and antibacterial properties make the nitrided AISI 303 austenitic stainless steel to be one of the essential materials in the biomedical applications.
NASA Astrophysics Data System (ADS)
Abd El-Rahman, A. M.; Maitz, M. F.; Kassem, M. A.; El-Hossary, F. M.; Prokert, F.; Reuther, H.; Pham, M. T.; Richter, E.
2007-09-01
The present work describes the surface improvement and biocompatibility of TiAl 24Nb 10 intermetallic alloy using rf plasma nitriding. The nitriding process was carried out at different plasma power from 400 W to 650 W where the other plasma conditions were fixed. Grazing incidence X-ray diffractometry (GIXRD), Auger electron spectroscopy (AES), tribometer and a nanohardness tester were employed to characterize the nitrided layer. Further potentiodynamic polarization method was used to describe the corrosion behavior of the un-nitrided and nitrided alloy. It has been found that the Vickers hardness (HV) and corrosion resistance values of the nitrided layers increase with increasing plasma power while the wear rates of the nitrided layers reduce by two orders of magnitude as compared to those of the un-nitrided layer. This improvement in surface properties of the intermetallic alloy is due to formation of a thin modified layer which is composed of titanium nitride in the alloy surface. Moreover, all modified layers were tested for their sustainability as a biocompatible material. Concerning the application area of biocompatibility, the present treated alloy show good surface properties especially for the nitrided alloy at low plasma power of 400 W.
Nitride alloy layer formation of duplex stainless steel using nitriding process
NASA Astrophysics Data System (ADS)
Maleque, M. A.; Lailatul, P. H.; Fathaen, A. A.; Norinsan, K.; Haider, J.
2018-01-01
Duplex stainless steel (DSS) shows a good corrosion resistance as well as the mechanical properties. However, DSS performance decrease as it works under aggressive environment and at high temperature. At the mentioned environment, the DSS become susceptible to wear failure. Surface modification is the favourable technique to widen the application of duplex stainless steel and improve the wear resistance and its hardness properties. Therefore, the main aim of this work is to nitride alloy layer on the surface of duplex stainless steel by the nitriding process temperature of 400°C and 450°C at different time and ammonia composition using a horizontal tube furnace. The scanning electron microscopy and x-ray diffraction analyzer are used to analyse the morphology, composition and the nitrided alloy layer for treated DSS. The micro hardnesss Vickers tester was used to measure hardness on cross-sectional area of nitrided DSS. After nitriding, it was observed that the hardness performance increased until 1100 Hv0.5kgf compared to substrate material of 250 Hv0.5kgf. The thickness layer of nitride alloy also increased from 5μm until 100μm due to diffusion of nitrogen on the surface of DSS. The x-ray diffraction results showed that the nitride layer consists of iron nitride, expanded austenite and chromium nitride. It can be concluded that nitride alloy layer can be produced via nitriding process using tube furnace with significant improvement of microstructural and hardness properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillinger, M.; Schneider, M.; Bittner, A.
2015-02-14
Aluminium nitride (AlN) is a promising material for challenging sensor applications such as process monitoring in harsh environments (e.g., turbine exhaust), due to its piezoelectric properties, its high temperature stability and good thermal match to silicon. Basically, the operational temperature of piezoelectric materials is limited by the increase of the leakage current as well as by enhanced diffusion effects in the material at elevated temperatures. This work focuses on the characterization of aluminum nitride thin films after post deposition annealings up to temperatures of 1000 °C in harsh environments. For this purpose, thin film samples were temperature loaded for 2 hmore » in pure nitrogen and oxygen gas atmospheres and characterized with respect to the film stress and the leakage current behaviour. The X-ray diffraction results show that AlN thin films are chemically stable in oxygen atmospheres for 2 h at annealing temperatures of up to 900 °C. At 1000 °C, a 100 nm thick AlN layer oxidizes completely. For nitrogen, the layer is stable up to 1000 °C. The activation energy of the samples was determined from leakage current measurements at different sample temperatures, in the range between 25 and 300 °C. Up to an annealing temperature of 700 °C, the leakage current in the thin film is dominated by Poole-Frenkel behavior, while at higher annealing temperatures, a mixture of different leakage current mechanisms is observed.« less
Gap discrete breathers in strained boron nitride
NASA Astrophysics Data System (ADS)
Barani, Elham; Korznikova, Elena A.; Chetverikov, Alexander P.; Zhou, Kun; Dmitriev, Sergey V.
2017-11-01
Linear and nonlinear dynamics of hexagonal boron nitride (h-BN) lattice is studied by means of molecular dynamics simulations with the use of the Tersoff interatomic potentials. It is found that sufficiently large homogeneous elastic strain along zigzag direction opens a wide gap in the phonon spectrum. Extended vibrational mode with boron and nitrogen sublattices vibrating in-plane as a whole in strained h-BN has frequency within the phonon gap. This fact suggests that a nonlinear spatially localized vibrational mode with frequencies in the phonon gap, called discrete breather (also often termed as intrinsic localized mode), can be excited. Properties of the gap discrete breathers in strained h-BN are contrasted with that for analogous vibrational mode found earlier in strained graphene. It is found that h-BN modeled with the Tersoff potentials does not support transverse discrete breathers.
Modeling Proton Irradiation in AlGaN/GaN HEMTs: Understanding the Increase of Critical Voltage
NASA Astrophysics Data System (ADS)
Patrick, Erin; Law, Mark E.; Liu, Lu; Cuervo, Camilo Velez; Xi, Yuyin; Ren, Fan; Pearton, Stephen J.
2013-12-01
A combination of TRIM and FLOODS models the effect of radiation damage on AlGaN/GaN HEMTs. While excellent fits are obtained for threshold voltage shift, the models do not fully explain the increased reliability observed experimentally. In short, the addition of negatively-charged traps in the GaN buffer layer does not significantly change the electric field at the gate edges at radiation fluence levels seen in this study. We propose that negative trapped charge at the nitride/AlGaN interface actually produces the virtual-gate effect that results in decreasing the magnitude of the electric field at the gate edges and thus the increase in critical voltage. Simulation results including nitride interface charge show significant changes in electric field profiles while the I-V device characteristics do not change.
Properties of tetrahedral clusters and medium range order in GaN during rapid solidification
NASA Astrophysics Data System (ADS)
Gao, Tinghong; Li, Yidan; Yao, Zhenzhen; Hu, Xuechen; Xie, Quan
2017-12-01
The solidification process of liquid gallium nitride has been studied by molecular dynamics simulation using the Stillinger-Weber potential at cooling rate of 10 K/ps. The structural properties of gallium nitride during the rapid cooling process were investigated in detail by the radial distribution functions, Voronoi polyhedron index and the visualization technology. The amorphous structures were formed with many medium range order structures at 200 K. The <4 0 0 0> polyhedron as the main polyhedron was more stable than other polyhedron in GaN during the quenching process. The cubic and hexahedral medium range order structures were formed by the close link between <4 0 0 0> polyhedron. The cubic crystal structures grew up through the crystalline surface by a layer-by-layer method to become more stable structures during the quenching process.
Thermophoretically driven water droplets on graphene and boron nitride surfaces
NASA Astrophysics Data System (ADS)
Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P.
2018-05-01
We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.
Bisschop, Suzanne; Guille, Antoine; Van Thourhout, Dries; Hens, Zeger; Brainis, Edouard
2015-06-01
Single-photon (SP) sources are important for a number of optical quantum information processing applications. We study the possibility to integrate triggered solid-state SP emitters directly on a photonic chip. A major challenge consists in efficiently extracting their emission into a single guided mode. Using 3D finite-difference time-domain simulations, we investigate the SP emission from dipole-like nanometer-sized inclusions embedded into different silicon nitride (SiNx) photonic nanowire waveguide designs. We elucidate the effect of the geometry on the emission lifetime and the polarization of the emitted SP. The results show that highly efficient and polarized SP sources can be realized using suspended SiNx slot-waveguides. Combining this with the well-established CMOS-compatible processing technology, fully integrated and complex optical circuits for quantum optics experiments can be developed.
Development of an Advanced Computational Model for OMCVD of Indium Nitride
NASA Technical Reports Server (NTRS)
Cardelino, Carlos A.; Moore, Craig E.; Cardelino, Beatriz H.; Zhou, Ning; Lowry, Sam; Krishnan, Anantha; Frazier, Donald O.; Bachmann, Klaus J.
1999-01-01
An advanced computational model is being developed to predict the formation of indium nitride (InN) film from the reaction of trimethylindium (In(CH3)3) with ammonia (NH3). The components are introduced into the reactor in the gas phase within a background of molecular nitrogen (N2). Organometallic chemical vapor deposition occurs on a heated sapphire surface. The model simulates heat and mass transport with gas and surface chemistry under steady state and pulsed conditions. The development and validation of an accurate model for the interactions between the diffusion of gas phase species and surface kinetics is essential to enable the regulation of the process in order to produce a low defect material. The validation of the model will be performed in concert with a NASA-North Carolina State University project.
Nanowire-templated lateral epitaxial growth of non-polar group III nitrides
Wang, George T [Albuquerque, NM; Li, Qiming [Albuquerque, NM; Creighton, J Randall [Albuquerque, NM
2010-03-02
A method for growing high quality, nonpolar Group III nitrides using lateral growth from Group III nitride nanowires. The method of nanowire-templated lateral epitaxial growth (NTLEG) employs crystallographically aligned, substantially vertical Group III nitride nanowire arrays grown by metal-catalyzed metal-organic chemical vapor deposition (MOCVD) as templates for the lateral growth and coalescence of virtually crack-free Group III nitride films. This method requires no patterning or separate nitride growth step.
2013-02-01
Nord, J.; Albe, K.; Erhart, P.; Nordlund, K. Modelling of Compound Semiconductors: Analytical Bond-order Potential for Gallium , Nitrogen and Gallium ...Control of Defects in Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates by Iskander G. Batyrev, Chi-Chin Wu...Aluminum Gallium Nitride ((Al)GaN) Films on Grown Aluminum Nitride (AlN) Substrates Iskander G. Batyrev and N. Scott Weingarten Weapons and
Penetration of tungsten-alloy rods into composite ceramic targets: Experiments and 2-D simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, Z.; Dekel, E.; Hohler, V.
1998-07-10
A series of terminal ballistics experiments, with scaled tungsten-alloy penetrators, was performed on composite targets consisting of ceramic tiles glued to thick steel backing plates. Tiles of silicon-carbide, aluminum nitride, titanium-dibroide and boron-carbide were 20-80 mm thick, and impact velocity was 1.7 km/s. 2-D numerical simulations, using the PISCES code, were performed in order to simulate these shots. It is shown that a simplified version of the Johnson-Holmquist failure model can account for the penetration depths of the rods but is not enough to capture the effect of lateral release waves on these penetrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadzadeh, Roghayeh, E-mail: r_mohammadzadeh@sut.ac.ir; Akbari, Alireza, E-mail: akbari@sut.ac.ir
2014-07-01
Prolonged exposure at high temperatures during solution nitriding induces grain coarsening which deteriorates the mechanical properties of high nitrogen austenitic stainless steels. In this study, grain refinement of nickel and manganese free Fe–22.75Cr–2.42Mo–1.17N high nitrogen austenitic stainless steel plates was investigated via a two-stage heat treatment procedure. Initially, the coarse-grained austenitic stainless steel samples were subjected to an isothermal heating at 700 °C to be decomposed into the ferrite + Cr{sub 2}N eutectoid structure and then re-austenitized at 1200 °C followed by water quenching. Microstructure and hardness of samples were characterized using X-ray diffraction, optical and scanning electron microscopy, andmore » micro-hardness testing. The results showed that the as-solution-nitrided steel decomposes non-uniformly to the colonies of ferrite and Cr{sub 2}N nitrides with strip like morphology after isothermal heat treatment at 700 °C. Additionally, the complete dissolution of the Cr{sub 2}N precipitates located in the sample edges during re-austenitizing requires longer times than 1 h. In order to avoid this problem an intermediate nitrogen homogenizing heat treatment cycle at 1200 °C for 10 h was applied before grain refinement process. As a result, the initial austenite was uniformly decomposed during the first stage, and a fine grained austenitic structure with average grain size of about 20 μm was successfully obtained by re-austenitizing for 10 min. - Highlights: • Successful grain refinement of Fe–22.75Cr–2.42Mo–1.17N steel by heat treatment • Using the γ → α + Cr{sub 2}N reaction for grain refinement of a Ni and Mn free HNASS • Obtaining a single phase austenitic structure with average grain size of ∼ 20 μm • Incomplete dissolution of Cr{sub 2}N during re-austenitizing at 1200 °C for long times • Reducing re-austenitizing time by homogenizing treatment before grain refinement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolokang, A.S., E-mail: Sylvester.Bolokang@transnet.net; DST/CSIR National Centre for Nano-Structured Materials, Council for Scientific and Industrial Research, Pretoria 0001; Transnet Engineering, Product Development, Private Bag X 528, Kilnerpark 0127
2015-02-15
It is well known that nitriding of titanium is suitable for surface coating of biomaterials and in other applications such as anti-reflective coating, while oxygen-rich titanium oxynitride has been applied in thin film resistors and photocatalysis. Thus in this work anatase was reduced with pure titanium powder during annealing in argon. This was done to avoid any metallic contamination and unwanted residual metal doping. As a result, interesting and different types of particle morphology were synthesized when the pre-milled elemental anatase and titanium powders were mixed. The formation of metastable face centred cubic and monoclinic titanium monoxide was detected bymore » the X-ray diffraction technique. The phases were confirmed by energy dispersive X-ray spectroscopy analysis. Raman analysis revealed weak intensity peaks for samples annealed in argon as compared to those annealed under nitrogen. - Graphical abstract: Display Omitted - Highlights: • Reaction of TiO{sub 2} and Ti induced metastable FCC and monoclinic TiO{sub x}. • Compositions of mixed powder were prepared from the unmilled and pre-milled powders. • Nitridation of TiO{sub x} yielded TiO{sub x}N{sub y} phase. • Mixed morphology was observed on all three powder samples.« less
NASA Astrophysics Data System (ADS)
Raud, J.; Jõgi, I.; Matisen, L.; Navrátil, Z.; Talviste, R.; Trunec, D.; Aarik, J.
2017-12-01
This work characterizes the production and destruction of nitrogen and hydrogen atoms in RF capacitively coupled middle-pressure discharge in argon/nitrogen/hydrogen mixtures. Input power, electron concentration, electric field strength and mean electron energy were determined on the basis of electrical measurements. Gas temperature and concentration of Ar atoms in 1s states were determined from spectral measurements. On the basis of experimentally determined plasma characteristics, main production and loss mechanisms of H and N atoms were discussed. The plasma produced radicals were applied for the nitridation and oxide reduction of gallium arsenide in the afterglow region of discharge. After plasma treatment the GaAs samples were analyzed using x-ray photoelectron spectroscopy (XPS) technique. Successful nitridation of GaAs sample was obtained in the case of Ar/5% N2 discharge. In this gas mixture the N atoms were generated via dissociative recombination of N2+ created by charge transfer from Ar+. The treatment in Ar/5% N2/1% H2 mixture resulted in the reduction of oxide signals in the XPS spectra. Negligible formation of GaN in the latter mixture was connected with reduced concentration of N atoms, which was, in turn, due to less efficient mechanism of N atom production (electron impact dissociation of N2 molecules) and additional loss channel in reaction with H2.
Method for preparing actinide nitrides
Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.
1975-12-01
Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.
Xue, Yafang; Liu, Qian; He, Guanjie; Xu, Kaibing; Jiang, Lin; Hu, Xianghua; Hu, Junqing
2013-01-24
The insulator characteristic of hexagonal boron nitride limits its applications in microelectronics. In this paper, the fluorinated hexagonal boron nitride nanosheets were prepared by doping fluorine into the boron nitride nanosheets exfoliated from the bulk boron nitride in isopropanol via a facile chemical solution method with fluoboric acid; interestingly, these boron nitride nanosheets demonstrate a typical semiconductor characteristic which were studied on a new scanning tunneling microscope-transmission electron microscope holder. Since this property changes from an insulator to a semiconductor of the boron nitride, these nanosheets will be able to extend their applications in designing and fabricating electronic nanodevices.
Hard and low friction nitride coatings and methods for forming the same
Erdemir, Ali; Urgen, Mustafa; Cakir, Ali Fuat; Eryilmaz, Osman Levent; Kazmanli, Kursat; Keles, Ozgul
2007-05-01
An improved coating material possessing super-hard and low friction properties and a method for forming the same. The improved coating material includes the use of a noble metal or soft metal homogeneously distributed within a hard nitride material. The addition of small amounts of such metals into nitrides such as molybdenum nitride, titanium nitride, and chromium nitride results in as much as increasing of the hardness of the material as well as decreasing the friction coefficient and increasing the oxidation resistance.
Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene
NASA Astrophysics Data System (ADS)
Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J. M. J.
2018-04-01
Van der Waals heterostructures comprising of hexagonal boron nitride and graphene are promising building blocks for novel two-dimensional devices such as atomically thin transistors or capacitors. However, demonstrators of those devices have been so far mostly fabricated by mechanical assembly, a non-scalable and time-consuming method, where transfer processes can contaminate the surfaces. Here, we investigate a direct growth process for the fabrication of insulating hexagonal boron nitride on high quality epitaxial graphene using plasma assisted molecular beam epitaxy. Samples were grown at varying temperatures and times and studied using atomic force microscopy, revealing a growth process limited by desorption at high temperatures. Nucleation was mostly commencing from morphological defects in epitaxial graphene, such as step edges or wrinkles. Raman spectroscopy combined with x-ray photoelectron measurements confirm the formation of hexagonal boron nitride and prove the resilience of graphene against the nitrogen plasma used during the growth process. The electrical properties and defects in the heterostructures were studied with high lateral resolution by tunneling current and Kelvin probe force measurements. This correlated approach revealed a nucleation apart from morphological defects in epitaxial graphene, which is mediated by point defects. The presented results help understanding the nucleation and growth behavior during van der Waals epitaxy of 2D materials, and point out a route for a scalable production of van der Waals heterostructures.
Structure and magnetic behaviors of melt-spun SmFeSiB ribbons and their nitrides
NASA Astrophysics Data System (ADS)
Luo, Y.; Zhang, K.; Li, K. S.; Yu, D. B.; Ling, J. J.; Men, K.; Dou, Q. Y.; Yan, W. L.; Xie, J. J.; Yang, Y. F.
2016-05-01
SmFe9.3+xSi0.2B0.1 (x=0, 0.5, 1.0) ribbons and their nitrides were prepared by melt-spinning, followed by annealing and subsequent nitriding. The structure and magnetic properties have been investigated by means of powder X-ray diffraction, vibrating sample magnetometer and Mossbauer spectroscopy. Rietveld analysis shows that the augment of Fe content gives rise to an increase of the c/a ratio and cell volume. The increasing amount of Fe atoms occupying the 2e sites results in the change of initial structure. It is indicated that the isomer shift of 3g and 6l atom remains quasi-constant while the 2e atom shows a noticeable increase with the increase of iron content, which further conforms the preferential occupation of excessive Fe atoms at this site. Consistent with Tc, the mean hyperfine field 〈Bhf〉 has the highest value of 25.7 T when x=0.5. The hyperfine fields at different Fe sites follow the order H2e>H3g>H6l. The highest curie temperature of 477.68 K and the hyperfine field of 25.7 T in the as-quenched ribbons were obtained when x=0.5. Meanwhile, the highest magnetic properties of Hcj=4.31 kOe, (BH)m=3.5 MGOe in the nitride powders were found.
Molten-Salt-Based Growth of Group III Nitrides
Waldrip, Karen E.; Tsao, Jeffrey Y.; Kerley, Thomas M.
2008-10-14
A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.
Materials Analysis of Transient Plasma-Wall Interactions
2014-05-13
such as copper, aluminum, zirconium, titanium, and tungsten) and ceramics (beryllia, aluminum nitride, silicon carbide , etc.). These materials were...formation of silicon carbide . Therefore, a flat Macor disk was polished, and prepared for deuterium exposure by sonicating the sample in both methanol...of silicon constituents whereas the exposed sample clearly shows the addition of carbide and silicon segregation on the surface. 10 AFOSR
Blueish green photoluminescence from nitrided GaAs(100) surfaces
NASA Astrophysics Data System (ADS)
Shimaoka, Goro; Udagawa, Takashi
1999-04-01
Optical and structural studies were made on the Si-doped (100)GaAs surfaces nitrided at a temperature between 650° and 750°C for 15 min in the flowing NH 3 gas. The wavelength of photoluminescence (PL) spectra were observed to be shortened from 820 nm of the GaAs nitrided at 650°C with increasing nitridation temperature. Blueish green PL with wavelengths of approx. 490 nm and 470 nm were emitted from the nitrided surfaces at 700° and 750°C, respectively. Results of AES and SIMS indicated that the surfaces are nitrided as GaAs 1- xN x, (0< x≤1) alloy layer, and the nitrided region also tended to increase as the temperature raised. High-resolution transmission electron microscopic (HRTEM), transmission electron diffraction (TED) and energy dispersive X-ray (EDX) results showed that films peeled off from the nitrided surfaces consisted mainly of hexagonal, wurtzite-type gallium nitride (GaN) with stacking faults and microtwins.
1993-12-01
the Device ........................ 13 2.3.1 Silicon Nitride Passivation ................. 13 2.3.2 Polyimide Passivation ................... 14 2.4...Coating .......... ... 49 5.4 Applying the Polyimide ........................ 50 5.4.1 Application of the Polyimide ............ ... 52 5.4.2 Negative...Photo-resist Process ............... 52 5.4.3 Polyimide Etch ........................ 53 5.4.4 Final Cure ............................ 54 5.4.5
Mehrjouei, Esmat; Akbarzadeh, Hamed; Shamkhali, Amir Nasser; Abbaspour, Mohsen; Salemi, Sirous; Abdi, Pooya
2017-07-03
In this work, liberation of cisplatin molecules from interior of a nanotube due to entrance of an Ag-nanowire inside it was simulated by classical molecular dynamics method. The aim of this simulation was investigation on the effects of diameter, chirality, and composition of the nanotube, as well as the influence of temperature on this process. For this purpose, single walled carbon, boron nitride, and silicon carbide nanotube were considered. In order for a more concise comparison of the results, a new parameter namely efficiency of drug release, was introduced. The results demonstrated that the efficiency of drug release is sensitive to its adsorption on outer surface of the nanotube. Moreover, this efficiency is also sensitive to the nanotube composition and its diameter. For the effect of nanotube composition, the results indicated that silicon carbide nanotube has the least efficiency for drug release, due to its strong drug-nanotube. Also, the most important acting forces on drug delivery are van der Waals interactions. Finally, the kinetic of drug release is fast and is not related to the structural parameters of the nanotube and temperature, significantly.
NASA Astrophysics Data System (ADS)
Chanana, Anuja; Sengupta, Amretashis; Mahapatra, Santanu
2014-01-01
We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of width ˜5 nm, the simulated ON current is found to be in the range of 265 μA-280 μA with an ON/OFF ratio 7.1 × 106-7.4 × 106 for a VDD = 0.68 V corresponding to 10 nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%.
Chemical synthesis of hexagonal indium nitride nanocrystallines at low temperature
NASA Astrophysics Data System (ADS)
Wang, Liangbiao; Shen, Qianli; Zhao, Dejian; Lu, Juanjuan; Liu, Weiqiao; Zhang, Junhao; Bao, Keyan; Zhou, Quanfa
2017-08-01
In this study, hexagonal indium nitride nanocystallines with high crystallinity have been prepared by the reaction of InCl3·4H2O, sulfur and NaNH2 in an autoclave at 160 °C. The crystal structures and morphologies of the obtained InN sample are characterized by X-ray diffraction and scanning electron microscope. As InCl3·4H2O is substituted by In(NO3)3·4.5H2O, InN nanocrystallines could also be obtained by using the similar method. The photoluminescence spectrum shows that the InN emits a broad peak positioned at 2.3 eV.
Scanning Tunneling Spectroscopy of Potassium on Graphene
NASA Astrophysics Data System (ADS)
Cormode, Daniel; Leroy, Brian; Yankowitz, Matthew
2012-02-01
We investigate the effect of charged impurities on the electronic properties of large single crystal CVD grown graphene using scanning tunneling microscopy. Mono- and multilayer crystals were prepared by transferring graphene from copper onto exfoliated boron nitride flakes on 300 nm SiO2 substrates. The boron nitride provides an ultra flat surface for the graphene. Potassium atoms are controllably deposited on the graphene at low temperature by heating a nearby getter source. Scanning tunneling spectroscopy and transport measurements were performed in ultra high vacuum at 4.5 K. Transport measurements demonstrate the shifting of the Dirac point as the samples are doped, while STM measurements demonstrate the size, arrangement and local electronic influence of the potassium atoms.
2013-01-01
The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10−6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV). PMID:23360596
Feasibility study of silicon nitride protection of plastic encapsulated semiconductors
NASA Technical Reports Server (NTRS)
Peters, J. W.; Hall, T. C.; Erickson, J. J.; Gebhart, F. L.
1979-01-01
The application of low temperature silicon nitride protective layers on wire bonded integrated circuits mounted on lead frame assemblies is reported. An evaluation of the mechanical and electrical compatibility of both plasma nitride and photochemical silicon nitride (photonitride) passivations (parallel evaluations) of integrated circuits which were then encapsulated in plastic is described. Photonitride passivation is compatible with all wire bonded lead frame assemblies, with or without initial chip passivation. Plasma nitride passivation of lead frame assemblies is possible only if the chip is passivated before lead frame assembly. The survival rate after the environmental test sequence of devices with a coating of plasma nitride on the chip and a coating of either plasma nitride or photonitride over the assembled device is significantly greater than that of devices assembled with no nitride protective coating over either chip or lead frame.
Crystalline boron nitride aerogels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.
This disclosure provides methods and materials related to boron nitride aerogels. For example, one aspect relates to a method for making an aerogel comprising boron nitride, comprising: (a) providing boron oxide and an aerogel comprising carbon; (b) heating the boron oxide to melt the boron oxide and heating the aerogel; (c) mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide; and (d) converting at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride. Another aspect relates to a method for making an aerogel comprising boron nitride, comprising heating boron oxidemore » and an aerogel comprising carbon under flow of a nitrogen-containing gas, wherein boron oxide vapor and the nitrogen-containing gas convert at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride.« less
Monte Carlo simulations of disorder in ZnSn N 2 and the effects on the electronic structure
Lany, Stephan; Fioretti, Angela N.; Zawadzki, Paweł P.; ...
2017-08-10
In multinary compound semiconductors, cation disorder can decisively alter the electronic properties and impact potential applications. ZnSnN 2 is a ternary nitride of interest for photovoltaics, which forms in a wurtzite-derived crystal structure. In the ground state, every N anion is coordinated by two Zn and two Sn cations, thereby observing the octet rule locally. Using a motif-based model Hamiltonian, we performed Monte Carlo simulations that provide atomistic representations of ZnSnN 2 with varying degrees of cation disorder. Subsequent electronic structure calculations describe the evolution of band gaps, optical properties, and carrier localization effects as a function of the disorder.more » We find that octet-rule conserving disorder is practically impossible to avoid but perfectly benign, with hardly any effects on the electronic structure. In contrast, a fully random cation distribution would be very detrimental, but fortunately it is energetically highly unfavorable. A degree of disorder that can realistically be expected for nonequilibrium thin-film deposition leads to a moderate band-gap reduction and to moderate carrier localization effects. Comparing the simulated structures with experimental samples grown by sputtering, we find evidence that these samples indeed incorporate a certain degree of octet-rule violating disorder, which is reflected in the x-ray diffraction and in the optical absorption spectra. This study demonstrates that the electronic properties of ZnSnN 2 are dominated by changes of the local coordination environments rather than long-range ordering effects.« less
Monte Carlo simulations of disorder in ZnSn N 2 and the effects on the electronic structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lany, Stephan; Fioretti, Angela N.; Zawadzki, Paweł P.
In multinary compound semiconductors, cation disorder can decisively alter the electronic properties and impact potential applications. ZnSnN 2 is a ternary nitride of interest for photovoltaics, which forms in a wurtzite-derived crystal structure. In the ground state, every N anion is coordinated by two Zn and two Sn cations, thereby observing the octet rule locally. Using a motif-based model Hamiltonian, we performed Monte Carlo simulations that provide atomistic representations of ZnSnN 2 with varying degrees of cation disorder. Subsequent electronic structure calculations describe the evolution of band gaps, optical properties, and carrier localization effects as a function of the disorder.more » We find that octet-rule conserving disorder is practically impossible to avoid but perfectly benign, with hardly any effects on the electronic structure. In contrast, a fully random cation distribution would be very detrimental, but fortunately it is energetically highly unfavorable. A degree of disorder that can realistically be expected for nonequilibrium thin-film deposition leads to a moderate band-gap reduction and to moderate carrier localization effects. Comparing the simulated structures with experimental samples grown by sputtering, we find evidence that these samples indeed incorporate a certain degree of octet-rule violating disorder, which is reflected in the x-ray diffraction and in the optical absorption spectra. This study demonstrates that the electronic properties of ZnSnN 2 are dominated by changes of the local coordination environments rather than long-range ordering effects.« less
Influence of Applied Thermal Gradients and a Static Magnetic Field on Bridgman-Grown GeSi Alloys
NASA Technical Reports Server (NTRS)
Volz, M. P.; Szofran, F. R.; Cobb, S. D.; Ritter, T. M.
1999-01-01
The effect of applied axial and radial thermal gradients and an axial static magnetic field on the macrosegregation profiles of Bridgman-grown GeSi alloy crystals has been assessed. The axial thermal gradients were adjusted by changing the control setpoints of a seven-zone vertical Bridgman furnace. The radial thermal gradients were affected by growing samples in ampoules with different thermal conductivities, namely graphite, hot-pressed boron nitride (BN), and pyrolytic boron nitride (PBN). Those samples grown in a graphite ampoule exhibited radial profiles consistent with a highly concave interface and axial profiles indicative of complete mixing in the melt. The samples grown in BN and PBN ampoules had less radial variation. Axial macrosegregation profiles of these samples fell between the predictions for a completely mixed melt and one where solute transport is dominated by diffusion. All of the samples were grown on Ge seeds. This resulted in a period of free growth until the Si concentration in the solid was in equilibrium with the Si concentration in the liquid. The length of crystal grown during this period was inversely proportional to the applied axial thermal gradient. Several samples were grown in an axial 5 Tesla magnetic field. Measured macroscopic segregation profiles on these samples indicate that the magnetic field did not, in general, reduce the melt flow velocities to below the growth velocities.
Crystalline boron nitride aerogels
Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta
2017-04-04
This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.
NASA Technical Reports Server (NTRS)
Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.
1983-01-01
A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.
NASA Astrophysics Data System (ADS)
Sharifi Malvajerdi, S.; Salar Elahi, A.; Habibi, M.
2017-04-01
A new deposition formation was observed with a Mather-type Plasma Focus Device (MPFD). MPFD was unitized to fabricate porous Gallium Nitride (GaN) on p-type Silicon (Si) substrate with a (100) crystal orientation for the first time in a deposition process. GaN was deposited on Si with 4 and 7 shots. The samples were subjected to a 3 phase annealing procedure. First, the semiconductors were annealed in the PFD with nitrogen plasma shots after their deposition. Second, a thermal chemical vapor deposition annealed the samples for 1 h at 1050 °C by nitrogen gas at a pressure of 1 Pa. Finally, an electric furnace annealed the samples for 1 h at 1150 °C with continuous flow of nitrogen. Porous GaN structures were observed by Field emission scanning electron microscopy and atomic force microscopy. Furthermore, X-Ray diffraction analysis was carried out to determine the crystallinity of GaN after the samples were annealed. Energy-Dispersive X-Ray Spectroscopy indicated the amount of gallium, nitrogen, and oxygen due to the self-oxidation of the samples. Photoluminescence spectroscopy revealed emissions at 2.94 eV and 3.39 eV, which shows that hexagonal wurtzite crystal structures were formed.
Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells
2014-01-01
Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912
Jang, A-Rang; Hong, Seokmo; Hyun, Chohee; Yoon, Seong In; Kim, Gwangwoo; Jeong, Hu Young; Shin, Tae Joo; Park, Sung O; Wong, Kester; Kwak, Sang Kyu; Park, Noejung; Yu, Kwangnam; Choi, Eunjip; Mishchenko, Artem; Withers, Freddie; Novoselov, Kostya S; Lim, Hyunseob; Shin, Hyeon Suk
2016-05-11
Large-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order. A facile method for transferring hexagonal boron nitride onto other target substrates was developed, which provides the opportunity for using hexagonal boron nitride as a substrate in practical electronic circuits. A graphene field effect transistor fabricated on our hexagonal boron nitride sheets shows clear quantum oscillation and highly improved carrier mobility because the ultraflatness of the hexagonal boron nitride surface can reduce the substrate-induced degradation of the carrier mobility of two-dimensional materials.
Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.
Shayeganfar, Farzaneh; Shahsavari, Rouzbeh
2016-12-20
Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.
Modeling and Simulation of Capacitance-Voltage Characteristics of a Nitride GaAs Schottky Diode
NASA Astrophysics Data System (ADS)
Ziane, Abderrezzaq; Amrani, Mohammed; Benamara, Zineb; Rabehi, Abdelaziz
2018-06-01
A nitride GaAs Schottky diode has been fabricated by the nitridation of GaAs substrates using a radio frequency discharge nitrogen plasma source with a layer thickness of approximately 0.7 nm of GaN. The capacitance-voltage (C-V) characteristics of the Au/GaN/GaAs structure were investigated at room temperature for different frequencies, ranging from 1 kHz to 1 MHz. The C-V measurements for the Au/GaN/GaAs Schottky diode were found to be strongly dependent on the bias voltage and the frequency. The capacitance curves depict an anomalous peak and a negative capacitance phenomenon, indicating the presence of continuous interface state density behavior. A numerical drift-diffusion model based on the Scharfetter-Gummel algorithm was elaborated to solve a system composed of the Poisson and continuities equations. In this model, we take into account the continuous interface state density, and we have considered exponential and Gaussian distributions of trap states in the band gap. The effects of the GaAs doping concentration and the trap state density are discussed. We deduce the shape and values of the trap states, then we validate the developed model by fitting the computed C-V curves with experimental measurements at low frequency.
2015-01-01
One-dimensional (1D) boron nitride nanotube (BNNT) and 2D hexagonal BN (h-BN) are attractive for demonstrating fundamental physics and promising applications in nano-/microscale devices. However, there is a high anisotropy associated with these BN allotropes as their excellent properties are either along the tube axis or in-plane directions, posing an obstacle in their widespread use in technological and industrial applications. Herein, we report a series of 3D BN prototypes, namely, pillared boron nitride (PBN), by fusing single-wall BNNT and monolayer h-BN aimed at filling this gap. We use density functional theory and molecular dynamics simulations to probe the diverse mechano-mutable properties of PBN prototypes. Our results demonstrate that the synergistic effect of the tubes, junctions, and sheets imparts cooperative deformation mechanisms, which overcome the intrinsic limitations of the PBN constituents and provide a number of superior characteristics including 3D balance of strength and toughness, emergence of negative Poisson’s ratio, and elimination of strain softening along the armchair orientation. These features, combined with the ultrahigh surface area and lightweight structure, render PBN as a 3D multifunctional template for applications in graphene-based nanoelectronics, optoelectronics, gas storage, and functional composites with fascinating in-plane and out-of-plane tailorable properties. PMID:25289114
NASA Astrophysics Data System (ADS)
Raga, Rahul; Khader, Iyas; Zdeněk, Chlup; Kailer, Andreas
2017-05-01
The focus of the work was to investigate crack initiation and propagation mechanisms in silicon nitride undergoing non-conforming hybrid contact under various tribological conditions. In order to understand the prevailing modes of damage in silicon nitride, two distinct model experiments were proposed, namely, rolling contact and cyclic contact experiments. The rolling contact experiment was designed in order to mimic the contact conditions appearing in hybrid bearings at contact pressures ranging from 3 to 6 GPa. On the other hand, cyclic contact experiments with stresses ranging from 4 to 15 GPa under different media were carried out to study damage under localised stresses. In addition, the experimentally observed cracks were implemented in a finite element model to study the stress redistribution and correlate the generated stresses with the corresponding mechanisms. Crack propagation under rolling contact was attributed to two different mechanisms, namely, fatigue induced fracture and lubricant driven crack propagation. The numerical simulations shed light on the tensile stress driven surface and subsurface crack propagation mechanisms. On the other hand, the cyclic contact experiments showed delayed crack formation for lubricated cyclic contact. Ceramographic cross-sectional analysis showed crack patterns similar to Hertzian crack propagation under cyclic contact load.
Haldorai, Yuvaraj; Hwang, Seung-Kyu; Gopalan, Anantha-Iyengar; Huh, Yun Suk; Han, Young-Kyu; Voit, Walter; Sai-Anand, Gopalan; Lee, Kwang-Pill
2016-05-15
In this report, titanium nitride (TiN) nanoparticles decorated multi-walled carbon nanotube (MWCNTs) nanocomposite is fabricated via a two-step process. These two steps involve the decoration of titanium dioxide nanoparticles onto the MWCNTs surface and a subsequent thermal nitridation. Transmission electron microscopy shows that TiN nanoparticles with a mean diameter of ≤ 20 nm are homogeneously dispersed onto the MWCNTs surface. Direct electrochemistry and electrocatalysis of cytochrome c immobilized on the MWCNTs-TiN composite modified on a glassy carbon electrode for nitrite sensing are investigated. Under optimum conditions, the current response is linear to its concentration from 1 µM to 2000 µM with a sensitivity of 121.5 µA µM(-1)cm(-2) and a low detection limit of 0.0014 µM. The proposed electrode shows good reproducibility and long-term stability. The applicability of the as-prepared biosensor is validated by the successful detection of nitrite in tap and sea water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Cardelino, Carlos
1999-01-01
A computational chemical vapor deposition (CVD) model is presented, that couples chemical reaction mechanisms with fluid dynamic simulations for vapor deposition experiments. The chemical properties of the systems under investigation are evaluated using quantum, molecular and statistical mechanics models. The fluid dynamic computations are performed using the CFD-ACE program, which can simulate multispecies transport, heat and mass transfer, gas phase chemistry, chemistry of adsorbed species, pulsed reactant flow and variable gravity conditions. Two experimental setups are being studied, in order to fabricate films of: (a) indium nitride (InN) from the gas or surface phase reaction of trimethylindium and ammonia; and (b) 4-(1,1)dicyanovinyl-dimethylaminoaniline (DCVA) by vapor deposition. Modeling of these setups requires knowledge of three groups of properties: thermodynamic properties (heat capacity), transport properties (diffusion, viscosity, and thermal conductivity), and kinetic properties (rate constants for all possible elementary chemical reactions). These properties are evaluated using computational methods whenever experimental data is not available for the species or for the elementary reactions. The chemical vapor deposition model is applied to InN and DCVA. Several possible InN mechanisms are proposed and analyzed. The CVD model simulations of InN show that the deposition rate of InN is more efficient when pulsing chemistry is used under conditions of high pressure and microgravity. An analysis of the chemical properties of DCVA show that DCVA dimers may form under certain conditions of physical vapor transport. CVD simulations of the DCVA system suggest that deposition of the DCVA dimer may play a small role in the film and crystal growth processes.
Wang, Congyue; Jagirdar, Preeti; Naserifar, Saber; Sahimi, Muhammad
2016-02-25
We study the possibility of using polymer composites made of a polymer and boron nitride nanotubes (BNNTs) as a new type of membranes for gas separation. The polymer used is amorphous poly(ether imide) (PEI), and zigzag BNNTs are used to generate the composites with the PEI. The solubilities and self-diffusivities of CO2 and CH4 in the PEI and its composites with the BNNTs are calculated by molecular dynamics (MD) simulations. The molecular models of the PEI and its composites with the BNNTs are generated using energy minimization and MD simulation, and the Universal Force Field is used to represent the interactions between all the atoms. The morhology of the composites are characterized and are compared with that of PEI. The accuracy of the computations is tested by calculating the gases' solubilities and self-diffsivities in the pure PEI and comparing them with the experimental data. Good agreement is obtained with the data. The computed diffusivities and solubilities in the polymer-BNNTs composites are much larger than those in the pure polymer, which are attributed to the changes that the BNNTs induce in the polymer composite's free-volume distribution. As the mechanical properties of the polymer-BNNTs composites are superior over those of the pure PEI, their use as a membrane for gas separation offers distinct advantages over the pure polymer. We also demonstrate that, calculating the diffusion coefficients with MD simulations in the NPT ensemble, as opposed to the common practice of utilizing the NVT ensemble, leads to much more accurate results.
Permeability of two-dimensional graphene and hexagonal-boron nitride to hydrogen atom
NASA Astrophysics Data System (ADS)
Gupta, Varun; Kumar, Ankit; Ray, Nirat
2018-05-01
The permeability of atomic hydrogen in monolayer hexagonal Boron Nitride(h-BN) and graphene has been studied using first-principles density functional theory based simulations. For the specific cases of physisorption and chemisoroption, barrier heights are calculated using the nudged elastic band approach. We find that the barrier potential for physisorption through the ring is lower for graphene than h-BN. In the case of chemisorption, where the H atom passes through by making bonds with the atoms in the ring, the barrier potential for the graphene was found to be higher than that of h-BN. We conclude that the penetration of H atom with notable kinetic energy (<3eV) through physiosorption is more probable for graphene as compared to h-BN. Whereas through chemisorption, lower kinetic energy (>3eV) H-atoms have a higher chance to penetrate through h-BN than graphene.
Orgaz, Felipe; Amat, Daniel; Szycht, Olga; Dzika, Aleksandra; Barba, Flora; Becerra, José; Santos-Ruiz, Leonor
2015-01-01
A novel bioactive glass scaffold ICIE16/BSG has been prepared from a mixture of two different melt-derived glasses: a silicate bioglass (ICIE16) and a borosilicate bioglass (BSG). Combined processing techniques (gel casting and foam replication) were used to form three-dimensional, interconnected porous monolith scaffolds (Orgaz et al., 2016) [1]. They were then nitrided with a hot ammonia flow as described in (Aleixandre et al., 1973) [3] and (Nieto, 1984) [4] to synthesize the ICIE16/BSG-NITRI bioglass (Orgaz et al., 2016) [1]. Herein we present a flow chart summarizing the forming process, plus images of the resulting scaffold after sintering and drying. Bioactivity was characterized in vitro by immersion in simulated body fluid (SBF) for up to seven days. Data of ionic release kinetics upon SBF immersion are presented. PMID:26858981
Orgaz, Felipe; Amat, Daniel; Szycht, Olga; Dzika, Aleksandra; Barba, Flora; Becerra, José; Santos-Ruiz, Leonor
2016-03-01
A novel bioactive glass scaffold ICIE16/BSG has been prepared from a mixture of two different melt-derived glasses: a silicate bioglass (ICIE16) and a borosilicate bioglass (BSG). Combined processing techniques (gel casting and foam replication) were used to form three-dimensional, interconnected porous monolith scaffolds (Orgaz et al., 2016) [1]. They were then nitrided with a hot ammonia flow as described in (Aleixandre et al., 1973) [3] and (Nieto, 1984) [4] to synthesize the ICIE16/BSG-NITRI bioglass (Orgaz et al., 2016) [1]. Herein we present a flow chart summarizing the forming process, plus images of the resulting scaffold after sintering and drying. Bioactivity was characterized in vitro by immersion in simulated body fluid (SBF) for up to seven days. Data of ionic release kinetics upon SBF immersion are presented.
Spatial signal correlation from an III-nitride synaptic device
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Zhu, Bingcheng; Shi, Zheng; Yuan, Jialei; Jiang, Yuan; Shen, Xiangfei; Cai, Wei; Yang, Yongchao; Wang, Yongjin
2017-10-01
The mechanism by which the external environment affects the internal nervous system is investigated via the spatial correlation of an III-nitride synaptic device, which combines in-plane and out-of-plane illumination. The InGaN/GaN multiple-quantum-well collector (MQW-collector) demonstrates a simultaneous light emission and light detection mode due to the unique property of the MQW-diode. The MQW-collector absorbs the internal incoming light and the external illumination at the same time to generate an integration of the excitatory postsynaptic voltages (EPSVs). Signal cognition can be distinctly decoded from the integrated EPSVs because the signal differences are maintained, which is in good agreement with the simulation results. These results suggest that the nervous system can simultaneously amplify the EPSV amplitude and achieve signal cognition by spatial EPSV summation, which can be further optimized to explore the connections between the internal nervous system and the external environment.
Thermophoretically driven water droplets on graphene and boron nitride surfaces.
Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P
2018-05-25
We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.
3500-hour durability testing of ceramic materials for automotive gas turbine engines
NASA Technical Reports Server (NTRS)
Carruthers, W. D.; Richerson, D. W.; Benn, K. W.
1980-01-01
A two-year durability program was performed by AiResearch Phoenix to evaluate four commercially available ceramic materials under simulated automotive gas turbine combustor discharge conditions. These conditions included extended cyclic thermal exposures up to 2500 F and 3500 hr. The four materials selected for evaluation were Norton NCX-34 hot pressed silicon nitride, AiResearch RBN 101 reaction bonded silicon nitride, Carborundum pressureless sintered alpha-SiC and Pure Carbon Co. (British Nuclear Fuels, Ltd.) Refel reaction sintered silicon carbide. These materials were initially exposed to 350 hr/1750 cycles at 1200 and 1370 C. Subsequent exposures to 1050, 2100 and 3500 hr were performed on those materials maintaining 50% of baseline strength after the initial exposure. Additional evaluations of exposed bars included dimensional and weight changes, dye penetrant, specific damping capacity changes, SEM fractography, and X-ray diffraction.
Advanced Computational Modeling of Vapor Deposition in a High-Pressure Reactor
NASA Technical Reports Server (NTRS)
Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus
2004-01-01
In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.
Advanced Computational Modeling of Vapor Deposition in a High-pressure Reactor
NASA Technical Reports Server (NTRS)
Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus
2004-01-01
In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.
NASA Astrophysics Data System (ADS)
Li, Fu-Hai; Chiu, Yung-Yueh; Lee, Yen-Hui; Chang, Ru-Wei; Yang, Bo-Jun; Sun, Wein-Town; Lee, Eric; Kuo, Chao-Wei; Shirota, Riichiro
2013-04-01
In this study, we precisely investigate the charge distribution in SiN layer by dynamic programming of channel hot hole induced hot electron injection (CHHIHE) in p-channel silicon-oxide-nitride-oxide-silicon (SONOS) memory device. In the dynamic programming scheme, gate voltage is increased as a staircase with fixed step amplitude, which can prohibits the injection of holes in SiN layer. Three-dimensional device simulation is calibrated and is compared with the measured programming characteristics. It is found, for the first time, that the hot electron injection point quickly traverses from drain to source side synchronizing to the expansion of charged area in SiN layer. As a result, the injected charges quickly spread over on the almost whole channel area uniformly during a short programming period, which will afford large tolerance against lateral trapped charge diffusion by baking.
Two-dimensional nitrides as highly efficient potential candidates for CO2 capture and activation.
Morales-Salvador, Raul; Morales-García, Ángel; Viñes, Francesc; Illas, Francesc
2018-06-13
The performance of novel two-dimensional nitrides in carbon capture and storage (CCS) is analyzed for a broad range of pressures and temperatures. Employing an integrated theoretical framework where CO2 adsorption/desorption rates on the M2N (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) surfaces are derived from transition state theory and density functional theory based calculations, the present theoretical simulations consistently predict that, depending on the particular composition, CO2 can be strongly adsorbed and even activated at temperatures above 1000 K. For practical purposes, Ti2N, Zr2N, Hf2N, V2N, Nb2N, and Ta2N are predicted as the best suited materials for CO2 activation. Moreover, the estimated CO2 uptake of 2.32-7.96 mol CO2 kg-1 reinforces the potential of these materials for CO2 abatement.
Slot silicon-gallium nitride waveguide in MMI structures based 1x8 wavelength demultiplexer
NASA Astrophysics Data System (ADS)
Ben Zaken, Bar Baruch; Zanzury, Tal; Malka, Dror
2017-06-01
We propose a novel 8-channel wavelength multimode interference (MMI) demultiplexer in slot waveguide structures that operated at 1530 nm, 1535 nm, 1540 nm, 1545 nm, 1550 nm, 1555 nm, 1560 nm and 1565 nm wavelengths. Gallium nitride (GaN) surrounded by silicon (Si) was founded as suitable materials for the slot-waveguide structures. The proposed device was designed by seven 1x2 MMI couplers, fourteen S-band and one input taper. Numerical investigations were carried out on the geometrical parameters by using a full vectorial-beam propagation method (FVBPM). Simulation results show that the proposed device can transmit 8-channel that works in the whole C-band (1530- 1565 nm) with low crosstalk ((-19.97)-(-13.77) dB) and bandwidth (1.8-3.6 nm). Thus, the device can be very useful in optical networking systems that work on dense wavelength division multiplexing (DWDM) technology.
Synthesis and Study of Metallonitride Complexes and Polymers
1992-03-02
heterobimetallic nitride-bridged complexes, examples of homobimetallic nitride-bridged complexes, and new linear chain metallonitride polymers. We...the Nitride Bridge. Synthesis and Reactivity of Early-Late Heterobimetallic Nitride-Bridged Complexes," C. M. Jones, D. M.-T. Chan, J. C. Calabrese
Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Palczer, A. R.
1998-01-01
Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.
Thermo-Elastic Analysis of Internally Cooled Structures Using a Higher Order Theory
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Bednarcyk, Brett A.; Aboudi, Jacob
2001-01-01
This paper presents the results of a study on the thermomechanical behavior of internally cooled silicon nitride structures. Silicon nitride is under consideration for elevated temperature aerospace engine applications. and techniques for lowering the operating temperature of structures composed of this material are under development. Lowering the operating temperature provides a large payoff in terms of fatigue life and may be accomplished through the use of thermal barrier coatings (TBC's) and the novel concept of included cooling channels. Herein, an in-depth study is performed on the behavior of a flame-impinged silicon nitride plate with a TBC and internal channels cooled by forced air. The analysis is performed using the higher order theory for functionally graded materials (HOTFGM), which has been developed through NASA Glenn Research Center funding over the past several years. HOTFGM was chosen over the traditional finite element approach as a prelude to an examination of functionally graded silicon nitride structures for which HOTFGM is ideally suited. To accommodate the analysis requirement% of the internally cooled plate problem, two crucial enhancements were made to the two-dimensional Cartesian-based version of HOTFGM. namely, incorporation of internal boundary capabilities and incorporation of convective boundary conditions. Results indicate the viability and large benefits of cooling the plate via forced air through cooling channels. Furthermore, cooling can positively impact the stress and displacement fields present in the plate, yielding an additional payoff in terms of fatigue life. Finally, a spin-off capability resulted from inclusion of internal boundaries within HOTFGM; the ability to simulate the thermo-elastic response of structures with curved surfaces. This new capability is demonstrated, and through comparison with an analytical solution, shown to be viable and accurate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odlyzko, Michael L.; Held, Jacob T.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu
2016-07-15
Quantitatively calibrated annular dark field scanning transmission electron microscopy (ADF-STEM) imaging experiments were compared to frozen phonon multislice simulations adapted to include chemical bonding effects. Having carefully matched simulation parameters to experimental conditions, a depth-dependent bonding effect was observed for high-angle ADF-STEM imaging of aluminum nitride. This result is explained by computational predictions, systematically examined in the preceding portion of this study, showing the propagation of the converged STEM beam to be highly sensitive to net interatomic charge transfer. Thus, although uncertainties in experimental conditions and simulation accuracy remain, the computationally predicted experimental bonding effect withstands the experimental testing reportedmore » here.« less
A simple method for the enrichment of bisphenols using boron nitride.
Fischnaller, Martin; Bakry, Rania; Bonn, Günther K
2016-03-01
A simple solid-phase extraction method for the enrichment of 5 bisphenol derivatives using hexagonal boron nitride (BN) was developed. BN was applied to concentrate bisphenol derivatives in spiked water samples and the compounds were analyzed using HPLC coupled to fluorescence detection. The effect of pH and organic solvents on the extraction efficiency was investigated. An enrichment factor up to 100 was achieved without evaporation and reconstitution. The developed method was applied for the determination of bisphenol A migrated from some polycarbonate plastic products. Furthermore, bisphenol derivatives were analyzed in spiked and non-spiked canned food and beverages. None of the analyzed samples exceeded the migration limit set by the European Union of 0.6mg/kg food. The method showed good recovery rates ranging from 80% to 110%. Validation of the method was performed in terms of accuracy and precision. The applied method is robust, fast, efficient and easily adaptable to different analytical problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
A high-mobility electronic system at an electrolyte-gated oxide surface
Gallagher, Patrick; Lee, Menyoung; Petach, Trevor A.; ...
2015-03-12
Electrolyte gating is a powerful technique for accumulating large carrier densities at a surface. Yet this approach suffers from significant sources of disorder: electrochemical reactions can damage or alter the sample, and the ions of the electrolyte and various dissolved contaminants sit Angstroms from the electron system. Accordingly, electrolyte gating is well suited to studies of superconductivity and other phenomena robust to disorder, but of limited use when reactions or disorder must be avoided. Here we demonstrate that these limitations can be overcome by protecting the sample with a chemically inert, atomically smooth sheet of hexagonal boron nitride. We illustratemore » our technique with electrolyte-gated strontium titanate, whose mobility when protected with boron nitride improves more than 10-fold while achieving carrier densities nearing 10 14 cm –2. In conclusion, our technique is portable to other materials, and should enable future studies where high carrier density modulation is required but electrochemical reactions and surface disorder must be minimized.« less
NASA Astrophysics Data System (ADS)
Dutt, R. N.; Meena, D. K.; Kar, S.; Soni, V.; Nadaf, A.; Das, A.; Singh, F.; Datta, T. S.
2017-02-01
A system for carrying out automatic experimental measurements of various electrical transport characteristics and their relation to magnetic fields for samples mounted on the sample holder on a Variable Temperature Insert (VTI) of the Cryogen Free Superconducting Magnet System (CFMS) has been developed. The control and characterization system is capable of monitoring, online plotting and history logging in real-time of cryogenic temperatures with the Silicon (Si) Diode and Zirconium Oxy-Nitride sensors installed inside the magnet facility. Electrical transport property measurements have been automated with implementation of current reversal resistance measurements and automatic temperature set-point ramping with the parameters of interest available in real-time as well as for later analysis. The Graphical User Interface (GUI) based system is user friendly to facilitate operations. An ingenious electronics for reading Zirconium Oxy-Nitride temperature sensors has been used. Price to performance ratio has been optimized by using in house developed measurement techniques mixed with specialized commercial cryogenic measurement / control equipment.
Influence of the nitrogen content on the optical properties of CNx films.
Abd El-Kader, F H; Moharram, M A; Khafagia, M G; Mamdouh, Fathia
2012-11-01
Polycrystalline carbon nitride thin films were prepared by electrolysis of methanol-urea solution at different concentrations of urea to methanol and applied voltage 800 volts for 10h. Grazing incidence X-ray diffraction (GIXRD) revealed that the crystalline structure of carbon nitride films at moderate nitrogen content changed from amorphous phase to polycrystalline α-C(3)N(4), and β-C(3)N(4) phases. The optical transmission analysis of the films revealed that the band gap value for indirect allowed transitions increased with increasing nitrogen content, while the associated phonon energy value showed the opposite behavior. The refractive index and the extinction coefficient of the samples deposited with different concentrations were determined as a function of wavelength. The refractive index decreases with increasing both nitrogen content and crystallinity. The refractive index dispersion for the investigated samples is discussed in terms of the single oscillator model and oscillator parameters. Copyright © 2012. Published by Elsevier B.V.
Modification of Low-Alloy Steel Surface by High-Temperature Gas Nitriding Plus Tempering
NASA Astrophysics Data System (ADS)
Jiao, Dongling; Li, Minsong; Ding, Hongzhen; Qiu, Wanqi; Luo, Chengping
2018-02-01
The low-alloy steel was nitrided in a pure NH3 gas atmosphere at 640 660 °C for 2 h, i.e., high-temperature gas nitriding (HTGN), followed by tempering at 225 °C, which can produce a high property surface coating without brittle compound (white) layer. The steel was also plasma nitriding for comparison. The composition, microstructure and microhardness of the nitrided and tempered specimens were examined, and their tribological behavior investigated. The results showed that the as-gas-nitrided layer consisted of a white layer composed of FeN0.095 phase (nitrided austenite) and a diffusional zone underneath the white layer. After tempering, the white layer was decomposed to a nano-sized (α-Fe + γ'-Fe4N + retained austenite) bainitic microstructure with a high hardness of 1150HV/25 g. Wear test results showed that the wear resistance and wear coefficient yielded by the complex HTGN plus tempering were considerably higher and lower, respectively, than those produced by the conventional plasma nitriding.
NASA Astrophysics Data System (ADS)
Murugan, A.; Rajeswarapalanichamy, R.; Santhosh, M.; Iyakutti, K.
2015-07-01
The structural, electronic and mechanical properties of rare earth nitrides REN (RE=Pm, Eu and Yb) are investigated in NaCl and CsCl, and zinc blende structures using first principles calculations based on density functional theory. The calculated lattice parameters are in good agreement with the available results. Among the considered structures, these nitrides are most stable in NaCl structure. A pressure induced structural phase transition from NaCl to CsCl phase is observed in all these nitrides. The electronic structure reveals that these rare earth nitrides are half metallic at normal pressure. These nitrides are found to be covalent and ionic in the stable phase. The computed elastic constants indicate that these nitrides are mechanically stable and elastically anisotropic. Our results confirm that these nitrides are ferromagnetic in nature. A ferromagnetic to non-magnetic phase transition is observed at the pressures of 21.5 GPa and 46.1 GPa in PmN and YbN respectively.
RF sputtered silicon and hafnium nitrides as applied to 440C steel
NASA Technical Reports Server (NTRS)
Grill, A.; Aron, P. R.
1984-01-01
Silicon nitride and hafnium nitride coatings were deposited on oxidized and unoxidized 440C stainless steel substrates. Sputtering was done in mixtures of argon and nitrogen gases from pressed powder silicon nitride and from hafnium metal targets. The coatings and the interface between the coating and substrate were investigated by X-ray diffractometry, scanning electron microscopy, energy dispersive X-ray analysis and Auger electron spectroscopy. Oxide was found at all interfaces with an interface width of at least 600 A for the oxidized substrates and at least 300 A for the unoxidized substrates. Scratch test results demonstrate that the adhesion of hafnium nitride to both oxidized and unoxidized 440C is superior to that of silicon nitride. Oxidized 440C is found to have increased adhesion, to both nitrides, over that of unoxidized 440C. Coatings of both nitrides deposited at 8 mtorr were found to have increased adhesion to both oxidized and unoxidized 440C over those deposited at 20 mtorr.
NASA Astrophysics Data System (ADS)
Ahmadi, Eltefat; Fauzi, Ahmad; Hussin, Hashim; Baharun, Norlia; Ariffin, Kamar Shah; Rezan, Sheikh Abdul
2017-04-01
An innovative and sustainable carbothermal reduction and nitridation (CTRN) process of ilmenite (FeTiO3) using a mixture of polyethylene terephthalate (PET) and coal as the primary reductant under an H2-N2 atmosphere was proposed. The use of PET as an alternative source of carbon not only enhances the porosity of the pellets but also results in the separation of Fe from titanium oxycarbonitride (TiO x C y N z ) particles because of the differences in surface tension. The experiments were carried out at 1250°C for 3 h using four different PET contents ranging from 25wt% to 100wt% in the reductant. X-ray diffraction (XRD), scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDX), and LECO elemental analysis were used to study the phases and microstructures of the reduced samples. In the case of 75wt% PET, iron distinctly separated from the synthesized TiO x C y N z phase. With increasing PET content in the sample, the reduction and nitridation rates substantially increased. The synthesis of an oxycarbonitride with stoichiometry of TiO0.02C0.13N0.85 with minimal intermediate titanium sub-oxides was achieved. The results also showed that the iron particles formed from CTRN of FeTiO3 exhibited a spherical morphology, which is conducive for Fe removal via the Becher process.
NASA Astrophysics Data System (ADS)
Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; Mills, Gerald D.; Romero-Romero, Elisa; Stracener, Daniel W.
2015-10-01
We present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al2O3 targets. However, Al2O3 is not an ideal source material because it does not form a prolific beam of Al- required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al2O3), aluminum nitride (AlN), mixed Al2O3-AlN as well as aluminum fluoride (AlF3) were tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al2O3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al2O3 with graphite powder at 1600 °C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. The potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.
Janzen, Meghan S.; Galindo-Uribarri, Alfredo; Liu, Yuan; ...
2015-06-29
In this paper, we present results and discuss the use of aluminum nitride as a promising source material for Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beams (RIBs) science applications of 26Al isotopes. The measurement of 26Al in geological samples by AMS is typically conducted on Al 2O 3 targets. However, Al 2O 3 is not an ideal source material because it does not form a prolific beam of Al - required for measuring low-levels of 26Al. Multiple samples of aluminum oxide (Al 2O 3), aluminum nitride (AlN), mixed Al 2O 3–AlN as well as aluminum fluoride (AlF 3) weremore » tested and compared using the ion source test facility and the stable ion beam (SIB) injector platform at the 25-MV tandem electrostatic accelerator at Oak Ridge National Laboratory. Negative ion currents of atomic and molecular aluminum were examined for each source material. It was found that pure AlN targets produced substantially higher beam currents than the other materials and that there was some dependence on the exposure of AlN to air. The applicability of using AlN as a source material for geological samples was explored by preparing quartz samples as Al 2O 3 and converting them to AlN using a carbothermal reduction technique, which involved reducing the Al 2O 3 with graphite powder at 1600°C within a nitrogen atmosphere. The quartz material was successfully converted to AlN. Thus far, AlN proves to be a promising source material and could lead towards increasing the sensitivity of low-level 26Al AMS measurements. In conclusion, the potential of using AlN as a source material for nuclear physics is also very promising by placing 26AlN directly into a source to produce more intense radioactive beams of 26Al.« less
Method to synthesize bulk iron nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monson, Todd; Lavernia, Enrique J.; Zheng, Baolong
Bulk iron nitride can be synthesized from iron nitride powder by spark plasma sintering. The iron nitride can be spark plasma sintered at a temperature of less than 600°C. and a pressure of less than 600 MPa, with 400 MPa or less most often being sufficient. High pressure SPS can consolidate dense iron nitrides at a lower temperature to avoid decomposition. The higher pressure and lower temperature of spark discharge sintering avoids decomposition and limits grain growth, enabling enhanced magnetic properties. The method can further comprise synthesis of nanocrystalline iron nitride powders using two-step reactive milling prior to high-pressure sparkmore » discharge sintering.« less
Low pressure growth of cubic boron nitride films
NASA Technical Reports Server (NTRS)
Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)
1997-01-01
A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.
NASA Astrophysics Data System (ADS)
Luo, Yan; Zhang, Lifeng; Li, Ming; Sridhar, Seetharaman
2018-06-01
A complex nitride of Al x Mg(1- x)N was observed in silicon steels. A thermodynamic model was developed to predict the ferrite/nitride equilibrium in the Fe-Al-Mg-N alloy system, using published binary solubility products for stoichiometric phases. The model was used to estimate the solubility product of nitride compound, equilibrium ferrite, and nitride compositions, and the amounts of each phase, as a function of steel composition and temperature. In the current model, the molar ratio Al/(Al + Mg) in the complex nitride was great due to the low dissolved magnesium in steel. For a steel containing 0.52 wt pct Als, 10 ppm T.Mg., and 20 ppm T.N. at 1100 K (827 °C), the complex nitride was expressed by Al0.99496Mg0.00504N and the solubility product of this complex nitride was 2.95 × 10-7. In addition, the solution temperature of the complex nitride increased with increasing the nitrogen and aluminum in steel. The good agreement between the prediction and the detected precipitate compositions validated the current model.
NASA Astrophysics Data System (ADS)
Zhang, Xiangfeng; Wang, Jun; Fan, Hongyuan; Pan, Dong
2018-05-01
The low-temperature liquid nitriding of stainless steels can result in the formation of a surface zone of so-called expanded austenite (S-phase) by the dissolution of large amounts of nitrogen in the solid solution and formation of a precipitate-free layer supersaturated with high hardness. Erosion-corrosion measurements were performed on low-temperature nitrided and non-nitrided 316L stainless steels. The total erosion-corrosion, erosion-only, and corrosion-only wastages were measured directly. As expected, it was shown that low-temperature nitriding dramatically reduces the degree of erosion-corrosion in stainless steels, caused by the impingement of particles in a corrosive medium. The nitrided 316L stainless steels exhibited an improvement of almost 84% in the erosion-corrosion resistance compared to their non-nitrided counterparts. The erosion-only rates and synergistic levels showed a general decline after low-temperature nitriding. Low-temperature liquid nitriding can not only reduce the weight loss due to erosion but also significantly reduce the weight loss rate of interactions, so that the total loss of material decreased evidently. Therefore, 316L stainless steels displayed excellent erosion-corrosion behaviors as a consequence of their highly favorable corrosion resistances and superior wear properties.
NASA Astrophysics Data System (ADS)
Yao, Y.; Ishikawa, Y.; Sugawara, Y.; Takahashi, Y.; Hirano, K.
2018-04-01
Synchrotron monochromatic-beam x-ray topography observation has been performed on high-quality ammonothermal gallium nitride single crystal to evaluate threading dislocations (TD) in a nondestructive manner. Asymmetric diffractions with six equivalent g-vectors of 11-26, in addition to a symmetric diffraction with g = 0008, were applied to determine the Burgers vectors (b) of dislocations. It was found that pure edge-type TDs with \\varvec b = < {11 - 20} > /3 did not exist in the sample. A dominant proportion of TDs were of mixed type with \\varvec b = < {11 - 20} > /3 + < {0001} > , i.e., so-called c + a dislocations. Pure 1c screw dislocations with \\varvec b = < {0001} > and TDs with c-component larger than 1c were also observed.
Degradation of GaAs/AlGaAs Quantized Hall Resistors With Alloyed AuGe/Ni Contacts.
Lee, Kevin C
1998-01-01
Careful testing over a period of 6 years of a number of GaAs/AlGaAs quantized Hall resistors (QHR) made with alloyed AuGe/Ni contacts, both with and without passivating silicon nitride coatings, has resulted in the identification of important mechanisms responsible for degradation in the performance of the devices as resistance standards. Covering the contacts with a film, such as a low-temperature silicon nitride, that is impervious to humidity and other contaminants in the atmosphere prevents the contacts from degrading. The devices coated with silicon nitride used in this study, however, showed the effects of a conducting path in parallel with the 2-dimensional electron gas (2-DEG) at temperatures above 1.1 K which interferes with their use as resistance standards. Several possible causes of this parallel conduction are evaluated. On the basis of this work, two methods are proposed for protecting QHR devices with alloyed AuGe/Ni contacts from degradation: the heterostructure can be left unpassivated, but the alloyed contacts can be completely covered with a very thick (> 3 μm) coating of gold; or the GaAs cap layer can be carefully etched away after alloying the contacts and prior to depositing a passivating silicon nitride coating over the entire sample. Of the two, the latter is more challenging to effect, but preferable because both the contacts and the heterostructure are protected from corrosion and oxidation.
Nanostructured silicon nitride from wheat and rice husks
NASA Astrophysics Data System (ADS)
Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.; Wollmershauser, J. A.; Feng, C. R.
2016-04-01
Nanoparticles, submicron-diameter tubes, and rods of Si3N4 were synthesized from the thermal treatment of wheat and rice husks at temperatures at and above 1300 °C in a nitrogen atmosphere. The whole pattern Rietveld analysis of the observed diffraction data from treatments at 1300 °C showed the formation of only hexagonal α-phase of Si3N4 with an R-factor of 1%, whereas samples treated at 1400 °C and above showed both α- and β-phases with an R-factor of 2%. Transmission electron microscopy showed the presence of tubes, rods, and nanoparticles of Si3N4. In a two-step process, where pure SiC was produced first from rice or wheat husk in an argon atmosphere and subsequently treated in a nitrogen atmosphere at 1450 °C, a nanostructured composite material having α- and β-phases of Si3N4 combined with cubic phase of SiC was formed. The thermodynamics of the formation of silicon nitride is discussed in terms of the solid state reaction between organic matter (silica content), which is inherently present in the wheat and rice husks, with the nitrogen from the furnace atmosphere. Nanostructures of silicon nitride formed by a single direct reaction or their composites with SiC formed in a two-step process of agricultural byproducts provide an uncomplicated sustainable synthesis route for silicon nitride used in mechanical, biotechnology, and electro-optic nanotechnology applications.
NASA Astrophysics Data System (ADS)
Zhang, Taihong; Yun, Sining; Li, Xue; Huang, Xinlei; Hou, Yuzhi; Liu, Yanfang; Li, Jing; Zhou, Xiao; Fang, Wen
2017-02-01
Transition metal compounds (TMCs), as a representative family of functional materials, have attracted great attention in the field of renewable energy. Herein, Nb3.49N4.56O0.44 and NbN are prepared from the nitridation of NbO2 in an NH3 atmosphere. These dual-functional Nb-based compounds were applied to dye-sensitized solar cells (DSSCs) and anaerobic digestion (AD), and the efficiency and stability of these DSSCs and AD systems were systematically evaluated. The Nb3.49N4.56O0.44 counter electrode (CE) exhibited considerable electrocatalytic activity and stability in I3- reduction in DSSCs, achieving photovoltaic performance comparable with Pt (6.36% vs. 7.19%). Furthermore, as accelerants, Nb-based compounds can greatly improve the AD environment, increasing substrate utilization and decreasing the hazards in the digestate. Compared with the control sample (409.2 mL/g·VS and 29.55%), substantially higher cumulative biogas production (437.1-522.7 mL/g·VS) and chemical oxygen demand removal rates (56.08%-65.19%) were achieved using Nb-based accelerants in the AD system. The nitridation technique is an effective and general means of converting Nb-based oxides into oxynitrides and nitrides. The Nb-based compounds with high electrocatalytic activities showed promise for DSSCs applications, while greatly enhancing the biodegradability of the AD system as accelerants. These findings could pave the way for multifunctional applications of TMCs in renewable energy fields.
Sputtering Erosion in Ion and Plasma Thrusters
NASA Technical Reports Server (NTRS)
Ray, Pradosh K.
1996-01-01
Low energy sputtering of molybdenum, tantalum and boron nitride with xenon ions are being studied using secondary neutral and secondary ion mass spectrometry (SNMS/SIMS). An ultrahigh vacuum chamber was used to conduct the experiment at a base pressure of 1x10(exp -9) torr. The primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a spot size of approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and 90 deg to the primary ion beam direction. SNMS and SIMS spectra were collected at various incident angles and different ion energies. For boron nitride sputtering, the target was flooded with an electron beam to neutralize the charge buildup on the surface. In the SNMS mode, sputtering of Mo and Ta can be detected at an ion energy as low as 100 eV whereas in boron nitride the same was observed up to an energy of 300 eV. However, in the positive-SIMS mode, the sputtering of Mo was observed at 10 eV incident ion energy. The SIMS spectra obtained for boron nitride clearly identifies the two isotopes of boron as well as cluster ions such as B2(sup +) and molecular ions such as BN(sup +). From the angle versus yields measurements, it was found that the maximum SNMS yield shifts towards lower incident angles at low ion energies for all three samples.
NASA Technical Reports Server (NTRS)
Salik, J.
1984-01-01
The application of the ion beam technique to the nitriding of steels is described. It is indicated that the technique can be successfully applied to nitriding. Some of the structural changes obtained by this technique are similar to those obtained by ion nitriding. The main difference is the absence of the iron nitride diffraction lines. It is found that the dependence of the resultant microhardness on beam voltage for super nitralloy is different from that of 304 stainless steel.
Modulation characteristics of graphene-based thermal emitters
NASA Astrophysics Data System (ADS)
Mahlmeister, Nathan Howard; Lawton, Lorreta Maria; Luxmoore, Isaac John; Nash, Geoffrey Richard
2016-01-01
We have investigated the modulation characteristics of the emission from a graphene-based thermal emitter both experimentally and through simulations using finite element method modelling. Measurements were performed on devices containing square multilayer graphene emitting areas, with the devices driven by a pulsed DC drive current over a range of frequencies. Simulations show that the dominant heat path is from the emitter to the underlying substrate, and that the thermal resistance between the graphene and the substrate determines the modulation characteristics. This is confirmed by measurements made on devices in which the emitting area is encapsulated by hexagonal boron nitride.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tsung-Jui; Wu, Yuh-Renn, E-mail: yrwu@ntu.edu.tw; Shivaraman, Ravi
2014-09-21
In this paper, we describe the influence of the intrinsic indium fluctuation in the InGaN quantum wells on the carrier transport, efficiency droop, and emission spectrum in GaN-based light emitting diodes (LEDs). Both real and randomly generated indium fluctuations were used in 3D simulations and compared to quantum wells with a uniform indium distribution. We found that without further hypothesis the simulations of electrical and optical properties in LEDs such as carrier transport, radiative and Auger recombination, and efficiency droop are greatly improved by considering natural nanoscale indium fluctuations.
NASA Astrophysics Data System (ADS)
Jasinski, J. J.; Fraczek, T.; Kurpaska, L.; Lubas, M.; Sitarz, M.
2018-07-01
The paper presents a structure of a nitrided layer formed with active screen plasma nitriding (ASPN) technique, which is a modification of plasma nitriding. The model investigated material was Fe Armco. The nitriding processes were carried out at 773 K for 6 h and 150 Pa. The main objective of this study was to confirm nitrogen migration effect and its influence on the nitride layer formation in different area of the layer interfaces (ε/ε+γ‧/γ‧). The results of the tests were evaluated using scanning electron microscopy (SEM, SEM/EBSD), transmission electron microscopy - electron energy loss spectroscopy (TEM-EFTEM), secondary ion mass spectroscopy (SIMS) and Wavelength Dispersive X-Ray Spectrometry (WDS). The analysis of the results suggests that the structures of the nitrided layers and nitrides morphology differ for various parameters and are dependent on the surface layer saturation mechanism for each of the temperatures and process parameters. New approaches in diffusion of nitrogen and carbon atoms and optimizing process were also analyzed. Nitrogen and also carbon transport in the sublayer was observed by several effects i.e. uphill diffusion effect which confirmed migration of the atoms in diffusive layer towards top surface (ε/ε+γ‧ interface) and stress change effect in the nitrogen saturation area of the (Fe(C,N)+γ‧) layer. Results showed in the paper might be used both for optimization of ASPN processes, modeling of nitrided layers formation mechanism and for controlling the nitrided layers morphology when nitriding different Fe based materials.
Deuterium permeation behaviors in tungsten implanted with nitrogen
NASA Astrophysics Data System (ADS)
Liang, Chuan-hui; Wang, Dongping; Jin, Wei; Lou, Yuanfu; Wang, Wei; Ye, Xiaoqiu; Chen, Chang-an; Liu, Kezhao; Xu, Haiyan; Wang, Xiaoying; Kleyn, Aart W.
2018-07-01
Surface modification of tungsten due to the cooling species nitrogen seeded in the divertor region, i.e., by nitrogen ion implantation or re-deposition, is considered to affect the permeation behavior of H isotopes. This work focuses on the effect of nitrogen ion implantation into tungsten (W-N) on the deuterium gas-driven permeation behavior. For comparison, both permeation in tungsten implanted with W ion (W-W) and without implantation (pristine W) are studied. These three samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photo-electron spectroscopy (XPS). The SEM results revealed that the W-W sample has various voids on the surface, and the W-N sample has a rough surface with pretty fine microstructures. These are different from the pristine W sample with a smooth and compact surface. The XRD patterns show the disappearance of crystallinity on both W-W and W-N sample surfaces. It indicates that the ion implantation process results in an almost complete conversion from crystalline to amorphous in the sample surfaces. The sputter-depth profiling XPS spectra show that the implanted nitrogen prefers to form a 140 nm thick tungsten nitride layer. In permeation experiments, it was found that the D permeability is temperature dependent. Interestingly, the W-N sample presented a lower D permeability than the W-W sample, but higher than the pristine W sample. Such behavior implies that tungsten nitride acts as a permeation barrier, while defects created by ions implantation can promote permeability. The possible permeation mechanism correlated with sample surface composition and microstructure is consequently discussed in this work.
77 FR 51825 - Ferrovanadium and Nitrided Vanadium From Russia
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
... Nitrided Vanadium From Russia Determination On the basis of the record \\1\\ developed in the subject five... order on ferrovanadium and nitrided vanadium from Russia would not be likely to lead to continuation or... in USITC Publication 4345 (August 2012), entitled Ferrovanadium and Nitrided Vanadium from Russia...
BN Bonded BN fiber article and method of manufacture
Hamilton, Robert S.
1981-08-18
A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising a bonding compound selected from boron oxide and boric acid and a structural fiber selected from the group consisting of boron oxide, boron nitride and partially nitrided boron oxide fibers, heating the composition in an anhydrous gas to a temperature above the melting point of the compound and nitriding the resulting article in ammonia gas.
Exploring electrolyte preference of vanadium nitride supercapacitor electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bo; Chen, Zhaohui; Lu, Gang
Highlights: • Hierarchical VN nanostructures were prepared on graphite foam. • Electrolyte preference of VN supercapacitor electrodes was explored. • VN showed better capacitive property in organic and alkaline electrolytes than LiCl. - Abstract: Vanadium nitride hierarchical nanostructures were prepared through an ammonia annealing procedure utilizing vanadium pentoxide nanostructures grown on graphite foam. The electrochemical properties of hierarchical vanadium nitride was tested in aqueous and organic electrolytes. As a result, the vanadium nitride showed better capacitive energy storage property in organic and alkaline electrolytes. This work provides insight into the charge storage process of vanadium nitride and our findings canmore » shed light on other transition metal nitride-based electrochemical energy storage systems.« less
Dispersible shortened boron nitride nanotubes with improved molecule-loading capacity.
Zhi, Chunyi; Hanagata, Nobutaka; Bando, Yoshio; Golberg, Dmitri
2011-09-05
The oxidation process of boron nitride nanotubes was thoroughly investigated, and a slow oxidation characteristic was clearly revealed. Subsequently, the controllable oxidation process was utilized to break the sturdy structure of the boron nitride nanotubes to fabricate shortened nanotubes. The shortened boron nitride nanotubes were found to possess good solubility in water and many organic solvents. Further experiments demonstrated remarkably improved molecule-loading capacity of the shortened boron nitride nanotubes. These dispersible shortened boron nitride nanotubes might have the potential to be developed as effective delivery systems for various molecules, which may find applications in bio-related fields. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liquid flow cells having graphene on nitride for microscopy
Adiga, Vivekananda P.; Dunn, Gabriel; Zettl, Alexander K.; Alivisatos, A. Paul
2016-09-20
This disclosure provides systems, methods, and apparatus related to liquid flow cells for microscopy. In one aspect, a device includes a substrate having a first and a second oxide layer disposed on surfaces of the substrate. A first and a second nitride layer are disposed on the first and second oxide layers, respectively. A cavity is defined in the first oxide layer, the first nitride layer, and the substrate, with the cavity including a third nitride layer disposed on walls of the substrate and the second oxide layer that define the cavity. A channel is defined in the second oxide layer. An inlet port and an outlet port are defined in the second nitride layer and in fluid communication with the channel. A plurality of viewports is defined in the second nitride layer. A first graphene sheet is disposed on the second nitride layer covering the plurality of viewports.
Thermal insulation for high temperature microwave sintering operations and method thereof
Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.
1995-01-01
Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.
Method of preparing thermal insulation for high temperature microwave sintering operations
Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.
1996-01-01
Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.
Low-temperature nitridation of manganese and iron oxides using NaNH2 molten salt.
Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro
2013-10-21
Manganese and iron nitrides are important functional materials, but their synthesis processes from oxides often require high temperatures. Herein, we show a novel meta-synthesis method for manganese and iron nitrides by low-temperature nitridation of their oxides using NaNH2 molten salt as the nitrogen source in an autoclave at 240 °C. With this method, nitridation of micrometer-sized oxide particles kept their initial morphologies, but the size of the primary particles decreased. The thermodynamic driving force is considered to be the conversion of oxides to sodium hydroxide, and the kinetic of nitridation is improved by the decrease of particle size and the low melting point of NaNH2. This technique as developed here has the advantages of low reaction temperature, reduced consumption of ammonia, employing nonspecialized equipment, and providing facile control of the reactions for producing nitrides from oxides.
Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.
Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali
2013-07-29
We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).
Process for making transition metal nitride whiskers
Bamberger, Carlos E.
1989-01-01
A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.
Maskless laser writing of microscopic metallic interconnects
Maya, Leon
1995-01-01
A method of forming a metal pattern on a substrate. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-06
... nitrided vanadium from the Russian Federation (Russia) would not be likely to lead to continuation or... the antidumping duty order on ferrovanadium and nitrided vanadium from Russia. \\1\\ See Ferrovanadium and Nitrided Vanadium From Russia, 77 FR 51825 (August 27, 2012) (ITC Final). DATES: Effective Date...
Endohedral clusterfullerenes--playing with cluster and cage sizes.
Dunsch, Lothar; Yang, Shangfeng
2007-06-28
The family of endohedral fullerenes was significantly enlarged within the past six years by the clusterfullerenes containing structures like the M(2)C(2) carbides and the M(3)N nitrides. While the carbide clusters are generated under the standard arc burning conditions according to the stabilisation energy the nitride clusterfullerene type is formed by varying the composition of the cooling gas atmosphere in the arc burning process. The special situation in nitride clusterfullerene synthesis is described in detail and the optimum conditions for the production of nitride clusterfullerenes as the main product in fullerene synthesis are discussed. A review of new nitride clusterfullerenes reported recently is given summarizing the structures, properties and the stability of metal nitride clusterfullerenes. It is shown that all cages with even carbon atoms of C(68) and beyond are available as endohedral nitride clusterstructures. Furthermore the nitride clusterfullerenes are that class of endohedral fullerenes forming the largest number of non-IPR structures. Finally the prospects of this evolving field are briefly discussed taking the superior stability of these endohedral clusterfullerenes into account.
NASA Astrophysics Data System (ADS)
Ishiyama, S.; Baba, Y.; Fujii, R.; Nakamura, M.; Imahori, Y.
2012-12-01
To achieve high performance of BNCT (Boron Neutron Capture Therapy) device, Li3N/Li/Pd/Cu four layered Li target was designed and the structures of the synthesized four layered target were characterized by X-ray photoelectron spectroscopy. For the purpose of avoiding the radiation blistering and lithium evaporation, in situ vacuum deposition and nitridation techniques were established for in situ production and repairing maintenance of the lithium target. Following conclusions were derived: Uniform lithium layer of a few hundreds nanometer was formed on Pd/Cu multilayer surface by in situ vacuum deposition technique using metallic lithium as a source material. Lithium nitrides were formed by in situ nitridation reaction by the implantation of low-energy nitrogen ions on the deposited lithium layer surface. The chemical states of the nitridated zone were close to the stoichiometric lithium nitride, Li3N. This nitridated zone formed on surface of four layered lithium target is stable for a long time in air condition. The in situ nitridation is effective to protect lithium target from degradation by unfavorable reactions.
NASA Astrophysics Data System (ADS)
Penta, Naresh K.; Amanapu, H. P.; Peethala, B. C.; Babu, S. V.
2013-10-01
Four different anionic surfactants, sodium dodecyl sulfate, dodecyl benzene sulfonic acid (DBSA), dodecyl phosphate and Sodium lauroyl sarcosine, selected from the sulfate, phosphate, and carboxylic family, were investigated as additives in silica dispersions for selective polishing of silicon dioxide over silicon nitride films. We found that all these anionic surfactants suppress the nitride removal rates (RR) for pH ≤4 while more or less maintaining the oxide RRs, resulting in high oxide-to-nitride RR selectivity. The RR data obtained as a function of pH were explained based on pH dependent distributions of surfactant species, change in the zeta potentials of oxide and nitride surfaces, and thermogravimetric data. It appears that the negatively charged surfactant species preferentially adsorb on the positively charged nitride surface below IEP through its electrostatic interactions and form a bilayer adsorption, resulting in the suppression of nitride RRs. In contrast to the surfactants, K2SO4 interacts only weakly with the nitride surface and hence cannot suppress its RR.
NASA Astrophysics Data System (ADS)
Aizawa, T.; Yoshihara, S.-I.
2018-06-01
The austenitic stainless steels have been widely utilized as a structural component and member as well as a die and mold substrate for stamping. AISI316 dies and molds require for the surface treatment to accommodate the sufficient hardness and wear resistance to them. In addition, the candidate treatment methods must be free from toxicity, energy consumption and inefficiency. The low temperature plasma nitriding process has become one of the most promising methods to make solid-solution hardening by the nitrogen super-saturation. In the present paper, the high density RF/DC plasma nitriding process was applied to form the uniform nitrided layer in the AISI316 matrix and to describe the essential mechanism of inner nitriding in this low temperature nitriding process. In case of the nitrided AISI316 at 673 K for 14.4ks, the nitrided layer thickness became 60 μm with the surface hardness of 1700 HV and the surface nitrogen content of 7 mass %. This inner nitriding process is governed by the synergetic interrelation among the nitrogen super-saturation, the lattice expansion, the phase transformation, the plastic straining, the microstructure refinement and the acceleration of nitrogen diffusion. As far as this interrelation is sustained during the nitriding process, the original austenitic microstructure is homogeneously nitrided to have fine grains with the average size of 0.1 μm and the high crystallographic misorientation angles and to have two phase (γ + α’) structures with the plateau of nitrogen content by 5 mass%. Once this interrelation does not work anymore, the homogeneous microstructure changed itself to the heterogeneous one. The plastic straining took place in the selected coarse grains; they were partially refined into subgrains. This plastic localization accompanied the localized phase transformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chanana, Anuja; Sengupta, Amretashis; Mahapatra, Santanu
2014-01-21
We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of widthmore » ∼5 nm, the simulated ON current is found to be in the range of 265 μA–280 μA with an ON/OFF ratio 7.1 × 10{sup 6}–7.4 × 10{sup 6} for a V{sub DD} = 0.68 V corresponding to 10 nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%.« less
NASA Astrophysics Data System (ADS)
Bañobre, Asahel; Marthi, Sita Rajyalaxmi; Ravindra, N. M.
2018-05-01
To measure, map and control temperature, imaging of materials in a thermal furnace routinely utilizes non-contact sensors, such as pyrometers. These pyrometers require a pre-knowledge of the radiative properties of materials in the desired infrared range of wavelengths. In this study, radiative properties of some commonly used thin films of dielectric materials are investigated within the infrared (IR) spectral range of 1.5-14.2 μm. Radiative properties of aluminum oxide (Al2O3), silicon dioxide (SiO2), aluminum nitride (AlN) and silicon nitride (Si3N4) have been simulated and compared, utilizing a matrix method of representing the optical properties. The simulated results of the radiative properties show that Si3N4 is an excellent choice for the infrared radiation absorbing layer that is currently used in infrared uncooled detectors (microbolometers) because of its optical, mechanical and electrical properties. A case study of the radiative properties of an infrared uncooled microbolometer (Honeywell structure) is presented and discussed in the infrared spectral range of 8-14 μm. The results obtained serve as useful information for the design and fabrication of infrared imaging systems and components such as coatings, detectors, filters, lenses and waveguides.
NASA Astrophysics Data System (ADS)
Ghampson, Isaac Tyrone
The experimental work in this thesis focuses on generating catalysts for two intermediate processes related to the thermal conversion of lignocellulosic biomass: the synthesis and characterization of mesoporous silica supported cobalt catalysts for the Fischer-Tropsch reaction, and an exploration of the reactivity of bulk and supported molybdenum-based nitride catalysts for the hydrodeoxygenation (HDO) of guaiacol, a lignin model compound. The first section of the work details the synthesis of a series of silica-supported cobalt Fischer-Tropsch catalysts with pore diameters ranging from 2-23 nm. Detailed X-ray diffraction measurements were used to determine the composition and particle diameters of the metal fraction, analyzed as a three-phase system containing Cofcc, Cohcp and CoO particles. Catalyst properties were determined at three stages in catalyst history: (1) after the initial calcination step to thermally decompose the catalyst precursor into Co3O4, (2) after the hydrogen reduction step to activate the catalyst to Co and (3) after the FT reaction. From the study, it was observed that larger pore diameters supported higher turnover frequency; smaller pore diameters yielded larger mole fraction of CoO; XRD on post-reduction and post-FTS catalyst samples indicated significant changes in dispersivity after reduction. In the next section, the catalytic behaviors of unsupported, activated carbon-, alumina-, and SBA-15 mesoporous silica-supported molybdenum nitride catalysts were evaluated for the hydrodeoxygenation of guaiacol (2-methoxy phenol) at 300°C and 5 MPa. The nitride catalysts were prepared by thermal decomposition of bulk and supported ammonium heptamolybdate to form MoO 3 followed by nitridation in either flowing ammonia or a nitrogen/hydrogen mixture. The catalytic properties were strongly affected by the nitriding and purging treatment as well as the physical and chemical properties of support. The overall reaction was influenced by the crystalline phase present in the catalyst, dispersion of molybdenum nitride/oxynitride, and the porosity of the support. The hydrodeoxygenation of guaiacol followed two proposed reaction pathways: demethylation (DME) of guaiacol to form catechol, followed by dehydroxylation to form phenol; or a direct demethoxylation (DMO) to form phenol. The selectivity of the reaction was expressed in terms of the phenol/catechol ratio. Phenol was the predominant product for all the catalysts studied, except for the alumina-supported catalysts (an effect of the alumina support). The results from this thesis are encouraging for the application of Mo nitride based catalysts for hydrodeoxygenation of whole pyrolysis oil.
Lin, S; Shi, S; LeGeros, R Z; LeGeros, J P
2000-01-01
The effects of implant shape and size on the stress distribution around high-strength silicon nitride implants under vertical and oblique forces were determined using a three-dimensional finite element analysis. Finite element models were designed using as a basis the serial sections of the mandible. Using Auto-CAD software, the model simulated the placement of implants in the molar region of the left mandible. Results of the analyses demonstrated that mainly the implant root shape and the directions of bite forces influence the stress distributions in the supporting bone around each implant. Implant size is a lesser factor. The serrated implants presented a larger surface area to the bone than either the cylindrical or tapered implants, which resulted in lower compressive stress around the serrated implants. With increasing implant diameter and length, compressive stress decreased. The mean compressive stress distribution on the serrated implants was more flat (platykurtic) than on either the cylindrical or tapered implants. Results of studies on two load directions (vertical and oblique) showed that, in either case, the compressive stress in the cortical bone around the neck of the implant was higher than in the cancellous bone along the length of the implant. The most extreme principal compressive stress was found with oblique force. This study provides the first information on the relationship between shape of the silicon nitride implant and stress on the supporting bone.
Epitaxial hexagonal boron nitride on Ir(111): A work function template
NASA Astrophysics Data System (ADS)
Schulz, Fabian; Drost, Robert; Hämäläinen, Sampsa K.; Demonchaux, Thomas; Seitsonen, Ari P.; Liljeroth, Peter
2014-06-01
Hexagonal boron nitride (h-BN) is a prominent member in the growing family of two-dimensional materials with potential applications ranging from being an atomically smooth support for other two-dimensional materials to templating growth of molecular layers. We have studied the structure of monolayer h-BN grown by chemical vapor deposition on Ir(111) by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) experiments and state-of-the-art density functional theory (DFT) calculations. The lattice mismatch between the h-BN and Ir(111) surface results in the formation of a moiré superstructure with a periodicity of ˜29 Å and a corrugation of ˜0.4 Å. By measuring the field emission resonances above the h-BN layer, we find a modulation of the work function within the moiré unit cell of ˜0.5 eV. DFT simulations for a 13-on-12 h-BN/Ir(111) unit cell confirm our experimental findings and allow us to relate the change in the work function to the subtle changes in the interaction between boron and nitrogen atoms and the underlying substrate atoms within the moiré unit cell. Hexagonal boron nitride on Ir(111) combines weak topographic corrugation with a strong work function modulation over the moiré unit cell. This makes h-BN/Ir(111) a potential substrate for electronically modulated thin film and heterosandwich structures.
The preparation and application of white graphene
NASA Astrophysics Data System (ADS)
Zhou, Chenghong
2014-12-01
In this article, another thin film named white graphene is introduced, containing its properties, preparation and potential applications. White graphene, which has the same structure with graphene but quite different electrical properties, can be exfoliated from its layered crystal, hexagonal boron nitride. Here two preparation methods of white graphene including supersonic cleavage and supercritical cleavage are presented. Inspired by the cleavage of graphene oxide, supersonic is applied to BN and few-layered films are obtained. Compared with supersonic cleavage, supercritical cleavage proves to be more successful. As supercritical fluid can diffuse into interlayer space of the layered hexagonal boron nitride easily, once reduce the pressure of the supercritical system fast, supercritical fluid among layers expands and escapes form interlayer, consequently exfoliating the hexagonal boron nitride into few layered structure. A series of characterization demonstrate that the monolayer white graphene prepared in the process matches its theoretical thickness 0.333nm and has lateral sizes at the order of 10μm. Supercritical cleavage proves to be successful and shows many advantages, such as good production quality and fast production cycle. Furthermore, the band energy of white graphene, which shows quite different from graphene, is simulated via tight-bonding in theory. The excellent properties will lead to extensive applications of white graphene. As white graphene has not received enough concern and exploration, it's potential to play a significant role in the fields of industry and science.
Maskless laser writing of microscopic metallic interconnects
Maya, L.
1995-10-17
A method of forming a metal pattern on a substrate is disclosed. The method includes depositing an insulative nitride film on a substrate and irradiating a laser beam onto the nitride film, thus decomposing the metal nitride into a metal constituent and a gaseous constituent, the metal constituent remaining in the nitride film as a conductive pattern. 4 figs.
NASA Astrophysics Data System (ADS)
Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.
2011-12-01
Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.
Process for making transition metal nitride whiskers
Bamberger, C.E.
1988-04-12
A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.
Silicon nitride ceramic having high fatigue life and high toughness
Yeckley, Russell L.
1996-01-01
A sintered silicon nitride ceramic comprising between about 0.6 mol % and about 3.2 mol % rare earth as rare earth oxide, and between about 85 w/o and about 95 w/o beta silicon nitride grains, wherein at least about 20% of the beta silicon nitride grains have a thickness of greater than about 1 micron.
NASA Astrophysics Data System (ADS)
Ivicheva, S. N.; Lysenkov, A. S.; Ovsyannikov, N. A.; Titov, D. D.; Kargin, Yu F.
2018-04-01
The phase composition and morphological features of sialons were studied under the same conditions of firing (duration, temperature) using different initial components, silicon nitride, aluminum nitride, and a mixture of silicon nitrides and aluminum with the application of nitrides of the corresponding oxide (aluminum or silicon) sol-gel method. The effect of the initial reagents composition on the phase composition of the final product and the morphological features of the sialon powders obtained in a single firing step in a nitrogen atmosphere is shown.
Experimental observation of boron nitride chains.
Cretu, Ovidiu; Komsa, Hannu-Pekka; Lehtinen, Ossi; Algara-Siller, Gerardo; Kaiser, Ute; Suenaga, Kazu; Krasheninnikov, Arkady V
2014-12-23
We report the formation and characterization of boron nitride atomic chains. The chains were made from hexagonal boron nitride sheets using the electron beam inside a transmission electron microscope. We find that the stability and lifetime of the chains are significantly improved when they are supported by another boron nitride layer. With the help of first-principles calculations, we prove the heteroatomic structure of the chains and determine their mechanical and electronic properties. Our study completes the analogy between various boron nitride and carbon polymorphs, in accordance with earlier theoretical predictions.
Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications
Hui, Rongqing [Lenexa, KS; Jiang, Hong-Xing [Manhattan, KS; Lin, Jing-Yu [Manhattan, KS
2008-03-18
The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.
Rolling-element fatigue life of silicon nitride balls: Preliminary test results
NASA Technical Reports Server (NTRS)
Parker, R. J.; Zaretsky, E. V.
1972-01-01
Hot pressed silicon nitride was evaluated as a rolling element bearing material. The five-ball fatigue tester was used to test 12.7 mm (0.500 in.) diameter balls at a maximum Hertz stress of 800,000 psi at a race temperature of 130 F. The fatigue spalls in the silicon nitride resembled those in typical bearing steels. The ten-percent fatigue life of the silicon nitride balls was approximately one-eighth to one-fifth that of typical bearing steels (52100 and M-50). The load capacity of the silicon nitride was approximately one-third that of typical bearing steels. The load capacity of the silicon nitride was significantly higher than previously tested ceramic materials for rolling element bearings.
Molten tin reprocessing of spent nuclear fuel elements
Heckman, Richard A.
1983-01-01
A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support the liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.
Friction and transfer behavior of pyrolytic boron nitride in contact with various metals
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1976-01-01
Sliding friction experiments were conducted with pyrolytic boron nitride in sliding contact with itself and various metals. Auger emission spectroscopy was used to monitor transfer of pyrolytic boron nitride to metals and metals to pyrolytic boron nitride. Results indicate that the friction coefficient for pyrolytic boron nitride in contact with metals can be related to the chemical activity of the metals and more particularly to the d valence bond character of the metal. Transfer was found to occur to all metals except silver and gold and the amount of transfer was less in the presence than in the absence of metal oxide. Friction was less for pyrolytic boron nitride in contact with a metal in air than in vacuum.
Safety Assessment of Boron Nitride as Used in Cosmetics.
Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan
2015-01-01
The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of boron nitride which functions in cosmetics as a slip modifier (ie, it has a lubricating effect). Boron nitride is an inorganic compound with a crystalline form that can be hexagonal, spherical, or cubic; the hexagonal form is presumed to be used in cosmetics. The highest reported concentration of use of boron nitride is 25% in eye shadow formulations. Although boron nitride nanotubes are produced, boron nitride is not listed as a nanomaterial used in cosmetic formulations. The Panel reviewed available chemistry, animal data, and clinical data and concluded that this ingredient is safe in the present practices of use and concentration in cosmetic formulations. © The Author(s) 2015.
COATED CARBON ELEMENT FOR USE IN NUCLEAR REACTORS AND THE PROCESS OF MAKING THE ELEMENT
Pyle, R.J.; Allen, G.L.
1963-01-15
S>This patent relates to a carbide-nitride-carbide coating for carbon bodies that are to be subjected to a high temperature nuclear reactor atmosphere, and a method of applying the same. This coating is a highly efficient diffusion barrier and protects the C body from corrosion and erosion by the reactor atmosphere. Preferably, the innermost coating is Zr carbide, the middle coatlng is Zr nitride, and the outermost coating is a mixture of Zr and Nb carbide. The nitride coating acts as a diffusion barrier, while the innermost carbide bonds the nitride to the C body and prevents deleterious reaction between the nitride and C body. The outermost carbide coating protects the nitride coating from the reactor atmosphere. (AEC)
Methods of repairing a substrate
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2011-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
NASA Astrophysics Data System (ADS)
Mindivan, H.
2018-01-01
In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.
Nanoscale Visualization of Elastic Inhomogeneities at TiN Coatings Using Ultrasonic Force Microscopy
NASA Astrophysics Data System (ADS)
Hidalgo, J. A.; Montero-Ocampo, C.; Cuberes, M. T.
2009-12-01
Ultrasonic force microscopy has been applied to the characterization of titanium nitride coatings deposited by physical vapor deposition dc magnetron sputtering on stainless steel substrates. The titanium nitride layers exhibit a rich variety of elastic contrast in the ultrasonic force microscopy images. Nanoscale inhomogeneities in stiffness on the titanium nitride films have been attributed to softer substoichiometric titanium nitride species and/or trapped subsurface gas. The results show that increasing the sputtering power at the Ti cathode increases the elastic homogeneity of the titanium nitride layers on the nanometer scale. Ultrasonic force microscopy elastic mapping on titanium nitride layers demonstrates the capability of the technique to provide information of high value for the engineering of improved coatings.
Adhesion analysis for chromium nitride thin films deposited by reactive magnetron sputtering
NASA Astrophysics Data System (ADS)
Rusu, F. M.; Merie, V. V.; Pintea, I. M.; Molea, A.
2016-08-01
The thin film industry is continuously growing due to the wide range of applications that require the fabrication of advanced components such as sensors, biological implants, micro-electromechanical devices, optical coatings and so on. The selection regarding the deposition materials, as well as the deposition technology influences the properties of the material and determines the suitability of devices for certain real-world applications. This paper is focused on the adhesion force for several chromium nitride thin films obtained by reactive magnetron sputtering. All chromium nitride thin films were deposited on a silicon substrate, the discharge current and the argon flow being kept constant. The main purpose of the paper is to determine the influence of deposition parameters on the adhesion force. Therefore some of the deposition parameters were varied in order to study their effect on the adhesion force. Experimentally, the values of the adhesion force were determined in multiple points for each sample using the spectroscopy in point mode of the atomic force microscope. The obtained values were used to estimate the surface energy of the CrN thin films based on two existing mathematical models for the adhesion force when considering the contact between two bodies.
Effects of varying oxygen partial pressure on molten silicon-ceramic substrate interactions
NASA Technical Reports Server (NTRS)
Ownby, D. P.; Barsoum, M. W.
1980-01-01
The silicon sessile drop contact angle was measured on hot pressed silicon nitride, silicon nitride coated on hot pressed silicon nitride, silicon carbon coated on graphite, and on Sialon to determine the degree to which silicon wets these substances. The post-sessile drop experiment samples were sectioned and photomicrographs were taken of the silicon-substrate interface to observe the degree of surface dissolution and degradation. Of these materials, silicon did not form a true sessile drop on the SiC on graphite due to infiltration of the silicon through the SiC coating, nor on the Sialon due to the formation of a more-or-less rigid coating on the liquid silicon. The most wetting was obtained on the coated Si3N4 with a value of 42 deg. The oxygen concentrations in a silicon ribbon furnace and in a sessile drop furnace were measured using the protable thoria-yttria solid solution electrolyte oxygen sensor. Oxygen partial pressures of 10 to the minus 7 power atm and 10 to the minus 8 power atm were obtained at the two facilities. These measurements are believed to represent nonequilibrium conditions.
Microstructural characterization of Ti-6Al-4V alloy subjected to the duplex SMAT/plasma nitriding.
Pi, Y; Faure, J; Agoda-Tandjawa, G; Andreazza, C; Potiron, S; Levesque, A; Demangel, C; Retraint, D; Benhayoune, H
2013-09-01
In this study, microstructural characterization of Ti-6Al-4V alloy, subjected to the duplex surface mechanical attrition treatment (SMAT)/nitriding treatment, leading to improve its mechanical properties, was carried out through novel and original samples preparation methods. Instead of acid etching which is limited for morphological characterization by scanning electron microscopy (SEM), an original ion polishing method was developed. Moreover, for structural characterization by transmission electron microscopy (TEM), an ion milling method based with the use of two ions guns was also carried out for cross-section preparation. To demonstrate the efficiency of the two developed methods, morphological investigations were done by traditional SEM and field emission gun SEM. This was followed by structural investigations through selected area electron diffraction (SAED) coupled with TEM and X-ray diffraction techniques. The results demonstrated that ionic polishing allowed to reveal a variation of the microstructure according to the surface treatment that could not be observed by acid etching preparation. TEM associated to SAED and X-ray diffraction provided information regarding the nanostructure compositional changes induced by the duplex SMAT/nitriding process. Copyright © 2013 Wiley Periodicals, Inc.
Molecular carbon nitride ion beams for enhanced corrosion resistance of stainless steel
NASA Astrophysics Data System (ADS)
Markwitz, A.; Kennedy, J.
2017-10-01
A novel approach is presented for molecular carbon nitride beams to coat stainless surfaces steel using conventional safe feeder gases and electrically conductive sputter targets for surface engineering with ion implantation technology. GNS Science's Penning type ion sources take advantage of the breaking up of ion species in the plasma to assemble novel combinations of ion species. To test this phenomenon for carbon nitride, mixtures of gases and sputter targets were used to probe for CN+ ions for simultaneous implantation into stainless steel. Results from mass analysed ion beams show that CN+ and a variety of other ion species such as CNH+ can be produced successfully. Preliminary measurements show that the corrosion resistance of stainless steel surfaces increased sharply when implanting CN+ at 30 keV compared to reference samples, which is interesting from an application point of view in which improved corrosion resistance, surface engineering and short processing time of stainless steel is required. The results are also interesting for novel research in carbon-based mesoporous materials for energy storage applications and as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost.
NASA Astrophysics Data System (ADS)
Khan, W. Q.; Wang, Qun; Jin, Xin; Yasin, G.
2017-11-01
Iron nitride thin films of different compositions and thicknesses were deposited on flexible polymer substrate in Ar/N2 atmosphere by reactive magnetron sputtering under varying nitrogen flow rates. The nano structured films were characterized by X-ray diffraction, UV-visible spectrophotometer, electrochemical impedance (EIS), atomic force (AFM) and transmission electron microscopies. The dependence of their functional properties on coating and growth conditions was studied in detail. It was found that the thin films show a uniform permeability in the frequency range of 200 MHz to 1 Ghz and can be used in this range without appreciable changes. Decrease of nitrogen flow rate resulted in the smoother surfaces which in turn increase transmittance quality and corrosion resistance. Functional properties are dependent of nature, relative concentration of the iron nitride phases and film thickness. Surface integrity is excellent for180 nm thick sample because the films appear to be very dense and free from open pores. By keeping sputtering power stable at 110 W, nitrogen flow rate of 10 sccm was ideal to develop the ferromagnetic γʹFe4N phase at room temperature.
NASA Astrophysics Data System (ADS)
To, A.; Hoex, B.
2017-11-01
A novel method for the extraction of fixed interface charge, Qf, and the surface recombination parameters, Sn0 and Sp0, from the injection-level dependent effective minority carrier lifetime measurements is presented. Unlike conventional capacitance-voltage measurements, this technique can be applied to highly doped surfaces provided the surface carrier concentration transitions into strong depletion or inversion with increased carrier injection. By simulating the injection level dependent Auger-corrected inverse lifetime curve of symmetrically passivated and diffused samples after sequential annealing and corona charging, it was revealed that Qf, Sn0, and Sp0 have unique signatures. Therefore, these important electronic parameters, in some instances, can independently be resolved. Furthermore, it was shown that this non-linear lifetime behaviour is exhibited on both p-type and n-type diffused inverted surfaces, by demonstrating the approach with phosphorous diffused n+pn+ structures and boron diffused p+np+ structures passivated with aluminium oxide (AlOx) and silicon nitride, respectively (SiNx). The results show that the approximation of a mid-gap Shockley-Read-Hall defect level with equal capture cross sections is able to, in the samples studied in this work, reproduce the observed injection level dependent lifetime behaviour.
Titanium-nitride-oxide-coated coronary stents: insights from the available evidence.
Karjalainen, Pasi P; Nammas, Wail
2017-06-01
Coating of stent surface with a biocompatible material is suggested to improve stent safety profile. A proprietary process was developed to coat titanium-nitride-oxide on the stent surface, based on plasma technology that uses the nano-synthesis of gas and metal. Preclinical in vitro and in vivo investigation confirmed blood compatibility of titanium (nitride-) oxide films. Titanium-nitride-oxide-coated stents demonstrated a better angiographic outcome, compared with bare-metal stents at mid-term follow-up; however, they failed to achieve non-inferiority for angiographic outcome versus second-generation drug-eluting stents. Observational studies showed adequate clinical outcome at mid-term follow-up. Non-randomized studies showed an outcome of titanium-nitride-oxide-coated stents comparable to - or better than - first-generation drug-eluting stents at long-term follow-up. Two randomized controlled trials demonstrated comparable efficacy outcome, and a better safety outcome of titanium-nitride-oxide-coated stents versus drug-eluting stents at long-term follow-up. Evaluation by optical coherence tomography at mid-term follow-up revealed better neointimal strut coverage associated with titanium-nitride-oxide-coated stents versus drug-eluting stents; yet, neointimal hyperplasia thickness was greater. Key messages Stents coated with titanium-nitride-oxide demonstrated biocompatibility in preclinical studies: they inhibit platelet and fibrin deposition, and reduce neointimal growth. In observational and non-randomized studies, titanium-nitride-oxide-coated stents were associated with adequate safety and efficacy outcome. In randomized trials of patients with acute coronary syndrome, titanium-nitride-oxide-coated stents were associated with a better safety outcome, compared with drug-eluting stents; efficacy outcome was comparable.
Dai, Siyuan; Ma, Qiong; Yang, Yafang; Rosenfeld, Jeremy; Goldflam, Michael D; McLeod, Alex; Sun, Zhiyuan; Andersen, Trond I; Fei, Zhe; Liu, Mengkun; Shao, Yinming; Watanabe, Kenji; Taniguchi, Takashi; Thiemens, Mark; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M; Basov, D N
2017-09-13
We investigated phonon-polaritons in hexagonal boron nitride-a naturally hyperbolic van der Waals material-by means of the scattering-type scanning near-field optical microscopy. Real-space nanoimages we have obtained detail how the polaritons are launched when the light incident on a thin hexagonal boron nitride slab is scattered by various intrinsic and extrinsic inhomogeneities, including sample edges, metallic nanodisks deposited on its top surface, random defects, and surface impurities. The scanned tip of the near-field microscope is itself a polariton launcher whose efficiency proves to be superior to all the other types of polariton launchers we studied. Our work may inform future development of polaritonic nanodevices as well as fundamental studies of collective modes in van der Waals materials.
Synthesis of nano-structure tungsten nitride thin films on silicon using Mather-type plasma focus
NASA Astrophysics Data System (ADS)
Hussnain, A.; Rawat, R. S.; Ahmad, R.; Umar, Z. A.; Hussain, T.; Lee, P.; Chen, Z.
2015-07-01
Nano-structure thin film of tungsten nitride was deposited onto Si-substrate at room temperature using Mather-type plasma focus (3.3 kJ) machine. Substrate was exposed against 10, 20, 30, and 40 deposition shots and its corresponding effect on structure, morphology, conductivity and nano-hardness has been systematically studied. The X-ray diffractormeter spectra of the exposed samples show the presence of various phases of WN and WN2 that depends on number of deposition shots. Surface morphological study revealed the uniform distribution of nano-sized grains on deposited film surface. Hardness and conductivity of exposed substrate improved with higher deposition shots. X-ray photo-electron spectroscopy survey scan of 40 deposition shots confirmed the elemental presence of W and N on Si-substrate.
Osiceanu, Petre; Gloriant, Thierry
2015-01-01
The influence of gas nitriding surface treatment on the superelastic Ti-23Nb-0.7Ta-2Zr-0.5N alloy was evaluated. A thorough characterization of bare and nitrided Ti-based alloy and pure Ti was performed in terms of surface film composition and morphology, electrochemical behaviour, and short term osteoblast response. XPS analysis showed that the nitriding treatment strongly influenced the composition (nitrides and oxynitrides) and surface properties both of the substrate and of the bulk alloy. SEM images revealed that the nitrided surface appears as a similar dotted pattern caused by the formation of N-rich domains coexisting with less nitrided domains, while before treatment only topographical features could be observed. All the electrochemical results confirmed the high chemical stability of the nitride and oxynitride coating and the superiority of the applied treatment. The values of the corrosion parameters ascertained the excellent corrosion resistance of the coated alloy in the real functional conditions from the human body. Cell culture experiments with MG63 osteoblasts demonstrated that the studied biomaterials do not elicit any toxic effects and support cell adhesion and enhanced cell proliferation. Altogether, these data indicate that the nitrided Ti-23Nb-0.7Ta-2Zr-0.5N alloy is the most suitable substrate for application in bone implantology. PMID:26583096
NASA Astrophysics Data System (ADS)
Suharno, B.; Supriadi, S.; Ayuningtyas, S. T.; Widjaya, T.; Baek, E. R.
2018-01-01
Brackets orthodontic create teeth movement by applying force from wire to bracket then transferred to teeth. However, emergence of friction between brackets and wires reduces load for teeth movement towards desired area. In order to overcome these problem, surface treatment like nitriding chosen as a process which could escalate efficiency of transferred force by improving material hardness since hard materials have low friction levels. This work investigated nitriding treatment to form nitride layer which affecting hardness of sintered SS 17-4PH. The nitride layers produced after nitriding process at various temperature i.e. 470°C, 500°C, 530°C with 8hr holding time under 50% NH3 atmosphere. Optical metallography was conducted to compare microstructure of base and surface metal while the increasing of surface hardness then observed using vickers microhardness tester. Hardened surface layer was obtained after gaseous nitriding process because of nitride layer that contains Fe4N, CrN and Fe-αN formed. Hardness layers can achieved value 1051 HV associated with varies thickness from 53 to 119 μm. The presence of a precipitation process occurring in conjunction with nitriding process can lead to a decrease in hardness due to nitrogen content diminishing in solid solution phase. This problem causes weakening of nitrogen expansion in martensite lattice.
Silicon nitride/silicon carbide composite powders
Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.
1996-06-11
Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.
Physical fundamentals of criterial estimation of nitriding technology for parts of friction units
NASA Astrophysics Data System (ADS)
Kuksenova, L. I.; Gerasimov, S. A.; Lapteva, V. G.; Alekseeva, M. S.
2013-03-01
Characteristics of the structure and properties of surface layers of nitrided structural steels and alloys, which affect the level of surface fracture under friction, are studied. A generalized structural parameter for optimizing the nitriding process and a rapid method for estimating the quality of the surface layer of nitrided parts of friction units are developed.
Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Wenhao; Holder, Aaron; Orvañanos, Bernardo
Compared to oxides, the nitrides are relatively unexplored, making them a promising chemical space for novel materials discovery. Of particular interest are nitrogen-rich nitrides, which often possess useful semiconducting properties for electronic and optoelectronic applications. However, such nitrogen-rich compounds are generally metastable, and the lack of a guiding theory for their synthesis has limited their exploration. Here, we review the remarkable metastability of observed nitrides, and examine the thermodynamics of how reactive nitrogen precursors can stabilize metastable nitrogen-rich compositions during materials synthesis. We map these thermodynamic strategies onto a predictive computational search, training a data-mined ionic substitution algorithm specifically formore » nitride discovery, which we combine with grand-canonical DFT-SCAN phase stability calculations to compute stabilizing nitrogen chemical potentials. We identify several new nitrogen-rich binary nitrides for experimental investigation, notably the transition metal nitrides Mn3N4, Cr3N4, V3N4, and Nb3N5, the main group nitride SbN, and the pernitrides FeN2, CrN2, and Cu2N2. By formulating rational thermodynamic routes to metastable compounds, we expand the search space for functional technological materials beyond equilibrium phases and compositions.« less
Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides
Sun, Wenhao; Holder, Aaron; Orvañanos, Bernardo; ...
2017-07-17
Compared to oxides, the nitrides are relatively unexplored, making them a promising chemical space for novel materials discovery. Of particular interest are nitrogen-rich nitrides, which often possess useful semiconducting properties for electronic and optoelectronic applications. However, such nitrogen-rich compounds are generally metastable, and the lack of a guiding theory for their synthesis has limited their exploration. Here, we review the remarkable metastability of observed nitrides, and examine the thermodynamics of how reactive nitrogen precursors can stabilize metastable nitrogen-rich compositions during materials synthesis. We map these thermodynamic strategies onto a predictive computational search, training a data-mined ionic substitution algorithm specifically formore » nitride discovery, which we combine with grand-canonical DFT-SCAN phase stability calculations to compute stabilizing nitrogen chemical potentials. We identify several new nitrogen-rich binary nitrides for experimental investigation, notably the transition metal nitrides Mn3N4, Cr3N4, V3N4, and Nb3N5, the main group nitride SbN, and the pernitrides FeN2, CrN2, and Cu2N2. By formulating rational thermodynamic routes to metastable compounds, we expand the search space for functional technological materials beyond equilibrium phases and compositions.« less
Effect of MoO3 on the synthesis of boron nitride nanotubes over Fe and Ni catalysts.
Nithya, Jeghan Shrine Maria; Pandurangan, Arumugam
2012-05-01
Synthesis of boron nitride nanotubes at reduced temperature is important for industrial manufactures. In this study boron nitride nanotubes were synthesized by thermal evaporation method using B/Fe2O3/MoO3 and B/Ni2O3/MoO3 mixtures separately with ammonia as the nitrogen source. The growth of boron nitride nanotubes occurred at 1100 degrees C, which was relatively lower than other metal oxides assisted growth processes requiring higher than 1200 degrees C. MoO3 promoted formation of B2O2 and aided boron nitride nanotubes growth at a reduced temperature. The boron nitride nanotubes with bamboo shaped, nested cone structured and straight tubes like forms were evident from the high resolution transmission electron microscopy. Metallic Fe and Ni, formed during the process, were the catalysts for the growth of boron nitride nanotubes. Their formation was established by X-ray diffraction. FT Raman showed a peak due to B-N vibration of BNNTs close to 1370 cm(-1). Hence MoO3 assisted growth of boron nitride nanotubes is advantageous, as it significantly reduced the synthesis temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetty, Satish; Shivaprasad, S. M., E-mail: smsprasad@jncasr.ac.in
2016-02-07
We report here a systematic study of the nitridation of the Si (111) surface by nitrogen plasma exposure. The surface and interface chemical composition and surface morphology are investigated by using RHEED, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). At the initial stage of nitridation two superstructures—“8 × 8” and “8/3 × 8/3”—form, and further nitridation leads to 1 × 1 stoichiometric silicon nitride. The interface is seen to have the Si{sup 1+} and Si{sup 3+} states of silicon bonding with nitrogen, which suggests an atomically abrupt and defect-free interface. The initial single crystalline silicon nitride layers are seen to become amorphous at higher thicknesses.more » The AFM image shows that the nitride nucleates at interfacial dislocations that are connected by sub-stoichiometric 2D-nitride layers, which agglomerate to form thick overlayers. The electrical properties of the interface yield a valence band offset that saturates at 1.9 eV and conduction band offset at 2.3 eV due to the evolution of the sub-stoichiometric interface and band bending.« less
Method of preparing thermal insulation for high temperature microwave sintering operations
Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.
1996-07-16
Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.
Thermal insulation for high temperature microwave sintering operations and method thereof
Holcombe, C.E.; Dykes, N.L.; Morrow, M.S.
1995-09-12
Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering. 1 fig.
Spherical boron nitride particles and method for preparing them
Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku
2003-11-25
Spherical and polyhedral particles of boron nitride and method of preparing them. Spherical and polyhedral particles of boron nitride are produced from precursor particles of hexagonal phase boron nitride suspended in an aerosol gas. The aerosol is directed to a microwave plasma torch. The torch generates plasma at atmospheric pressure that includes nitrogen atoms. The presence of nitrogen atoms is critical in allowing boron nitride to melt at atmospheric pressure while avoiding or at least minimizing decomposition. The plasma includes a plasma hot zone, which is a portion of the plasma that has a temperature sufficiently high to melt hexagonal phase boron nitride. In the hot zone, the precursor particles melt to form molten particles that acquire spherical and polyhedral shapes. These molten particles exit the hot zone, cool, and solidify to form solid particles of boron nitride with spherical and polyhedral shapes. The molten particles can also collide and join to form larger molten particles that lead to larger spherical and polyhedral particles.
Validity of "sputtering and re-condensation" model in active screen cage plasma nitriding process
NASA Astrophysics Data System (ADS)
Saeed, A.; Khan, A. W.; Jan, F.; Abrar, M.; Khalid, M.; Zakaullah, M.
2013-05-01
The validity of "sputtering and re-condensation" model in active screen plasma nitriding for nitrogen mass transfer mechanism is investigated. The dominant species including NH, Fe-I, N2+, N-I and N2 along with Hα and Hβ lines are observed in the optical emission spectroscopy (OES) analysis. Active screen cage and dc plasma nitriding of AISI 316 stainless steel as function of treatment time is also investigated. The structure and phases composition of the nitrided layer is studied by X-ray diffraction (XRD). Surface morphology is studied by scanning electron microscopy (SEM) and hardness profile is obtained by Vicker's microhardness tester. Increasing trend in microhardness is observed in both cases but the increase in active screen plasma nitriding is about 3 times greater than that achieved by dc plasma nitriding. On the basis of metallurgical and OES observations the use of "sputtering and re-condensation" model in active screen plasma nitriding is tested.
Nitride microlens arrays for blue and ultraviolet wavelength applications
NASA Astrophysics Data System (ADS)
Oder, T. N.; Shakya, J.; Lin, J. Y.; Jiang, H. X.
2003-05-01
Nitride microlens arrays with sizes as small as 10 μm in diameter have been fabricated on GaN and AlN epilayers using the method of photoresist reflow and inductively coupled plasma dry etching. The focal lengths of the microlenses varied from 7-30 μm as determined by theoretical fitting as well as by the near-field scanning optical microscopy measurement. Scanning electron and atomic force microscopies were used to obtain the surface profile of the microlenses which were found to match very well with hemispherical fitting and a surface roughness value around 1 nm was obtained. Nitride microlens arrays would be naturally chosen for green/blue to deep ultraviolet wavelength applications. In addition, nitride microlenses offer the possibility of integrating nitride-based microsize photonic devices as well as of coupling light into, out of, and between arrays of III-nitride emitters for other applications, such as spatially resolved fluorescence spectroscopy studies of biological and medical systems and optical links, thereby further expanding the applications of III nitrides.
Nitride-Based Materials for Flexible MEMS Tactile and Flow Sensors in Robotics
Abels, Claudio; Mastronardi, Vincenzo Mariano; Guido, Francesco; Dattoma, Tommaso; Qualtieri, Antonio; Megill, William M.; De Vittorio, Massimo; Rizzi, Francesco
2017-01-01
The response to different force load ranges and actuation at low energies is of considerable interest for applications of compliant and flexible devices undergoing large deformations. We present a review of technological platforms based on nitride materials (aluminum nitride and silicon nitride) for the microfabrication of a class of flexible micro-electro-mechanical systems. The approach exploits the material stress differences among the constituent layers of nitride-based (AlN/Mo, SixNy/Si and AlN/polyimide) mechanical elements in order to create microstructures, such as upwardly-bent cantilever beams and bowed circular membranes. Piezoresistive properties of nichrome strain gauges and direct piezoelectric properties of aluminum nitride can be exploited for mechanical strain/stress detection. Applications in flow and tactile sensing for robotics are described. PMID:28489040
Method of fabricating boron containing coatings
Makowiecki, Daniel M.; Jankowski, Alan F.
1999-01-01
Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.
Method of fabricating boron containing coatings
Makowiecki, D.M.; Jankowski, A.F.
1999-04-27
Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.
Molten tin reprocessing of spent nuclear fuel elements. [Patent application; continuous process
Heckman, R.A.
1980-12-19
A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support te liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.
Nitride surface passivation of GaAs nanowires: impact on surface state density.
Alekseev, Prokhor A; Dunaevskiy, Mikhail S; Ulin, Vladimir P; Lvova, Tatiana V; Filatov, Dmitriy O; Nezhdanov, Alexey V; Mashin, Aleksander I; Berkovits, Vladimir L
2015-01-14
Surface nitridation by hydrazine-sulfide solution, which is known to produce surface passivation of GaAs crystals, was applied to GaAs nanowires (NWs). We studied the effect of nitridation on conductivity and microphotoluminescence (μ-PL) of individual GaAs NWs using conductive atomic force microscopy (CAFM) and confocal luminescent microscopy (CLM), respectively. Nitridation is found to produce an essential increase in the NW conductivity and the μ-PL intensity as well evidence of surface passivation. Estimations show that the nitride passivation reduces the surface state density by a factor of 6, which is of the same order as that found for GaAs/AlGaAs nanowires. The effects of the nitride passivation are also stable under atmospheric ambient conditions for six months.
Nitride coating enhances endothelialization on biomedical NiTi shape memory alloy.
Ion, Raluca; Luculescu, Catalin; Cimpean, Anisoara; Marx, Philippe; Gordin, Doina-Margareta; Gloriant, Thierry
2016-05-01
Surface nitriding was demonstrated to be an effective process for improving the biocompatibility of implantable devices. In this study, we investigated the benefits of nitriding the NiTi shape memory alloy for vascular stent applications. Results from cell experiments indicated that, compared to untreated NiTi, a superficial gas nitriding treatment enhanced the adhesion of human umbilical vein endothelial cells (HUVECs), cell spreading and proliferation. This investigation provides data to demonstrate the possibility of improving the rate of endothelialization on NiTi by means of nitride coating. Copyright © 2016 Elsevier B.V. All rights reserved.
Method for locating metallic nitride inclusions in metallic alloy ingots
White, Jack C.; Traut, Davis E.; Oden, Laurance L.; Schmitt, Roman A.
1992-01-01
A method of determining the location and history of metallic nitride and/or oxynitride inclusions in metallic melts. The method includes the steps of labeling metallic nitride and/or oxynitride inclusions by making a coreduced metallic-hafnium sponge from a mixture of hafnium chloride and the chloride of a metal, reducing the mixed chlorides with magnesium, nitriding the hafnium-labeled metallic-hafnium sponge, and seeding the sponge to be melted with hafnium-labeled nitride inclusions. The ingots are neutron activated and the hafnium is located by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.
Hall Effect Thruster Plume Contamination and Erosion Study
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
2000-01-01
The objective of the Hall effect thruster plume contamination and erosion study was to evaluate the impact of a xenon ion plume on various samples placed in the vicinity of a Hall effect thruster for a continuous 100 hour exposure. NASA Glenn Research Center was responsible for the pre- and post-test evaluation of three sample types placed around the thruster: solar cell cover glass, RTV silicone, and Kapton(R). Mass and profilometer), were used to identify the degree of deposition and/or erosion on the solar cell cover glass, RTV silicone, and Kapton@ samples. Transmittance, reflectance, solar absorptance, and room temperature emittance were used to identify the degree of performance degradation of the solar cell cover glass samples alone. Auger spectroscopy was used to identify the chemical constituents found on the surface of the exposed solar cell cover glass samples. Chemical analysis indicated some boron nitride contamination on the samples, from boron nitride insulators used in the body of the thruster. However, erosion outweighted contamination. All samples exhibited some degree of erosion. with the most erosion occurring near the centerline of the plume and the least occurring at the +/- 90 deg positions. For the solar cell cover glass samples, erosion progressed through the antireflective coating and into the microsheet glass itself. Erosion occurred in the solar cell cover glass, RTV silicone and Kapton(R) at different rates. All optical properties changed with the degree of erosion, with solar absorptance and room temperature emittance increasing with erosion. The transmittance of some samples decreased while the reflectance of some samples increased and others decreased. All results are consistent with an energetic plume of xenon ions serving as a source for erosion.
Silicon nitride/silicon carbide composite densified materials prepared using composite powders
Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.
1997-07-01
Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.
Analysis of Time Dependent Electric Field Degradation in AlGaN/GaN HEMTs (POSTPRINT)
2014-10-01
identifying and understanding the failure mechanisms that limit the safe operating area of GaN HEMTs. 15. SUBJECT TERMS aluminum gallium nitride... gallium nitride, HEMTs, semiconductor device reliability, transistors 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER...area of GaN HEMTs. Index Terms— Aluminum gallium nitride, gallium nitride, HEMTs, semiconductor device reliability, transistors. I. INTRODUCTION A
Low-loss binder for hot pressing boron nitride
Maya, Leon
1991-01-01
Borazine derivatives used as low-loss binders and precursors for making ceramic boron nitride structures. The derivative forms the same composition as the boron nitride starting material, thereby filling the voids with the same boron nitride material upon forming and hot pressing. The derivatives have a further advantage of being low in carbon thus resulting in less volatile byproduct that can result in bubble formation during pressing.
Synthesis, Properties, and Applications Of Boron Nitride
NASA Technical Reports Server (NTRS)
Pouch, John J.; Alterovitz, Samuel A.
1993-01-01
Report describes synthesis, properties, and applications of boron nitride. Especially in thin-film form. Boron nitride films useful as masks in x-ray lithography; as layers for passivation of high-speed microelectronic circuits; insulating films; hard, wear-resistant, protective films for optical components; lubricants; and radiation detectors. Present status of single-crystal growth of boron nitride indicates promising candidate for use in high-temperature semiconductor electronics.
Finishing Techniques for Silicon Nitride Bearings
1976-03-01
finishing procedures. Rolling contact fatigue lives of silicon nitride with selected smoother finishes tested at 800 ksi Hertz stress were an order...grinding. Rolling contact fatigue lives of silicon nitride with selected smoother finishes tested at 800 ksi Hertz stress were an order of magnitude...lives of silicon nitride with selected smoother finishes tested at 800 ksi Hertz stress were an order of magnitude longer than those
NASA Astrophysics Data System (ADS)
Unni, Vineet; Sankara Narayanan, E. M.
2017-04-01
This is the first report on the numerical analysis of the performance of nanoscale vertical superjunction structures based on impurity doping and an innovative approach that utilizes the polarisation properties inherent in III-V nitride semiconductors. Such nanoscale vertical polarisation super junction structures can be realized by employing a combination of epitaxial growth along the non-polar crystallographic axes of Wurtzite GaN and nanolithography-based processing techniques. Detailed numerical simulations clearly highlight the limitations of a doping based approach and the advantages of the proposed solution for breaking the unipolar one-dimensional material limits of GaN by orders of magnitude.
Structure refinement for tantalum nitrides nanocrystals with various morphologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lianyun; School of Science, Beijing Jiaotong University, 3 Shang Yuan Cun, Haidian District, Beijing 100044; Huang, Kai
2012-07-15
Graphical abstract: Tantalum nitrides nanocrystals with various phases and morphologies for the first time have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. Highlights: ► The spherical TaN, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. ► The crystal structures of different tantalum nitrides were determined by Rietveld refinement on the X-ray diffraction data and the examinations of electron microcopies. ► The specific surface area of the tantalum nitrides powders was around 10 m{supmore » 2} g{sup −1}. ► Tantalum nitrides powders could be suitable for capacitor with high specific capacitance. -- Abstract: Tantalum nitrides (TaN{sub x}) nanocrystals with different phase and morphology have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. The crystal structures of tantalum nitrides were determined by Rietveld refinement based on the X-ray diffraction data. The morphologies of various tantalum nitrides nanocrystals in high quality were analyzed through the electron microcopies examinations. The spherical TaN nanoparticles, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been selectively prepared at different annealing temperatures. In addition, the specific surface areas of the tantalum nitrides nanocrystals measured by BET method were around 9.87–11.64 m{sup 2} g{sup −1}, indicating that such nano-sized tantalum nitrides could be suitable for capacitor with high specific capacitance.« less
Silicon nitride directional coupler interferometer for surface sensing
NASA Astrophysics Data System (ADS)
Okubo, Kyohei; Uchiyamada, Ken; Asakawa, Kiyoshi; Suzuki, Hiroaki
2017-01-01
A silicon nitride directional coupler (DC) used to create a biosensing device is presented. The DC detects changes in the refractive index of the cladding (nclad) as changes in the relative output intensity. The DC length (L), nclad-dependent sensitivities of the DC, and preferred dimensions of the single-mode DC waveguides are obtained through numerical simulations. The performance of the DC is evaluated through end-fire coupling measurements. The intensities measured after varying the nclad using air, water, and glycerol solutions agree well with the fitting for a wide range of L values between 60 and 600 μm, i.e., corresponding to 6 to 60 times the coupling length. The bulk refractive index sensitivity was investigated using glycerol solutions of different concentrations and was found to be 18.9 optical intensity units per refractive index unit (OIU/RIU). Biotin/streptavidin bindings were detected with a sensitivity of 60 OIU/RIU and a detection limit of 0.13 μM, suggesting the feasibility of the DC for immunosensing.
Piezoelectric effect on the thermal conductivity of monolayer gallium nitride
NASA Astrophysics Data System (ADS)
Zhang, Jin
2018-01-01
Using molecular dynamics and density functional theory simulations, in this work, we find that the heat transport property of the monolayer gallium nitride (GaN) can be efficiently tailored by external electric field due to its unique piezoelectric characteristic. As the monolayer GaN possesses different piezoelectric properties in armchair and zigzag directions, different effects of the external electric field on thermal conductivity are observed when it is applied in the armchair and zigzag directions. Our further study reveals that due to the elastoelectric effect in the monolayer GaN, the external electric field changes the Young's modulus and therefore changes the phonon group velocity. Also, due to the inverse piezoelectric effect, the applied electric field induces in-plane stress in the monolayer GaN subject to a length constraint, which results in the change in the lattice anharmonicity and therefore affects the phonon mean free path. Furthermore, for relatively long GaN monolayers, the in-plane stress may trigger the buckling instability, which can significantly reduce the phonon mean free path.
NASA Astrophysics Data System (ADS)
Voronkov, V. V.; Falster, R.; Kim, TaeHyeong; Park, SoonSung; Torack, T.
2013-07-01
Silicon wafers, coated with a silicon nitride layer and subjected to high temperature Rapid Thermal Annealing (RTA) in Ar, show—upon a subsequent two-step precipitation anneal cycle (such as 800 °C + 1000 °C)—peculiar depth profiles of oxygen precipitate densities. Some profiles are sharply peaked near the wafer surface, sometimes with a zero bulk density. Other profiles are uniform in depth. The maximum density is always the same. These profiles are well reproduced by simulations assuming that precipitation starts from a uniformly distributed small oxide plates originated from RTA step and composed of oxygen atoms and vacancies ("VO2 plates"). During the first step of the precipitation anneal, an oxide layer propagates around this core plate by a process of oxygen attachment, meaning that an oxygen-only ring-shaped plate emerges around the original plate. These rings, depending on their size, then either dissolve or grow during the second part of the anneal leading to a rich variety of density profiles.
Tunable thermal rectification in graphene/hexagonal boron nitride hybrid structures
NASA Astrophysics Data System (ADS)
Chen, Xue-Kun; Hu, Ji-Wen; Wu, Xi-Jun; Jia, Peng; Peng, Zhi-Hua; Chen, Ke-Qiu
2018-02-01
Using non-equilibrium molecular dynamics simulations, we investigate thermal rectification (TR) in graphene/hexagonal boron nitride (h-BN) hybrid structures. Two different structural models, partially substituting graphene into h-BN (CBN) and partially substituting h-BN into graphene (BNC), are considered. It is found that CBN has a significant TR effect while that of BNC is very weak. The observed TR phenomenon can be attributed to the resonance effect between out-of-plane phonons of graphene and h-BN domains in the low-frequency region under negative temperature bias. In addition, the influences of ambient temperature, system size, defect number and substrate interaction are also studied to obtain the optimum conditions for TR. More importantly, the TR ratio could be effectively tuned through chemical and structural diversity. A moderate C/BN ratio and parallel arrangement are found to enhance the TR ratio. Detailed phonon spectra analyses are conducted to understand the thermal transport behavior. This work extends hybrid engineering to 2D materials for achieving TR.
NASA Astrophysics Data System (ADS)
Los, J. H.; Kroes, J. M. H.; Albe, K.; Gordillo, R. M.; Katsnelson, M. I.; Fasolino, A.
2017-11-01
We present an extended Tersoff potential for boron nitride (BN-ExTeP) for application in large scale atomistic simulations. BN-ExTeP accurately describes the main low energy B, N, and BN structures and yields quantitatively correct trends in the bonding as a function of coordination. The proposed extension of the bond order, added to improve the dependence of bonding on the chemical environment, leads to an accurate description of point defects in hexagonal BN (h -BN) and cubic BN (c -BN). We have implemented this potential in the molecular dynamics LAMMPS code and used it to determine some basic properties of pristine 2D h -BN and the elastic properties of defective h -BN as a function of defect density at zero temperature. Our results show that there is a strong correlation between the size of the static corrugation induced by the defects and the weakening of the in-plane elastic moduli.
NASA Astrophysics Data System (ADS)
Nishimoto, Yoshio; Fedorov, Dmitri G.
2018-02-01
The exactly analytic gradient is derived and implemented for the fragment molecular orbital (FMO) method combined with density-functional tight-binding (DFTB) using adaptive frozen orbitals. The response contributions which arise from freezing detached molecular orbitals on the border between fragments are computed by solving Z-vector equations. The accuracy of the energy, its gradient, and optimized structures is verified on a set of representative inorganic materials and polypeptides. FMO-DFTB is applied to optimize the structure of a silicon nano-wire, and the results are compared to those of density functional theory and experiment. FMO accelerates the DFTB calculation of a boron nitride nano-ring with 7872 atoms by a factor of 406. Molecular dynamics simulations using FMO-DFTB applied to a 10.7 μm chain of boron nitride nano-rings, consisting of about 1.2 × 106 atoms, reveal the rippling and twisting of nano-rings at room temperature.
Boron nitride housing cools transistors
NASA Technical Reports Server (NTRS)
1965-01-01
Boron nitride ceramic heat sink cools transistors in r-f transmitter and receiver circuits. Heat dissipated by the transistor is conducted by the boron nitride housing to the metal chassis on which it is mounted.
NASA Astrophysics Data System (ADS)
Fan, Shuai-wei; Wang, Ri-gao; Xu, Pemg
2016-09-01
The electronic structures and magnetism for carbon-doped group III-nitrides are investigated by utilizing the first principle method with the modified Becke-Johnson potential. Calculations show that carbon substituting cations (anions) would induce the group III-nitrides to be paramagnetic metals (half-metallic ferromagnets). Single carbon substituting nitrogen could produce 1.00μB magnetic moment. Electronic structures indicate that the carriers-mediated double-exchange interaction plays a crucial role in forming the ferromagnetism. Based on the mean-field theory, the Curie temperature for carbon-doped group III-nitrides would be above the room temperature. Negative chemical pair interactions imply that carbon dopants tend to form clustering distribution in group III-nitrides. The nitrogen vacancy would make the carbon-doped group III-nitrides lose the half-metallic ferromagnetism.
Low-Temperature Nitriding of Pure Titanium by using Hollow Cathode RF-DC Plasma
NASA Astrophysics Data System (ADS)
Windajanti, J. M.; S, D. J. Djoko H.; Abdurrouf
2017-05-01
Pure titanium is widely used for the structures and mechanical parts due to its high strength, low density, and high corrosion resistance. Unfortunately, titanium products suffer from low hardness and low wear resistance. Titanium’s surface can be modified by nitriding process to overcome such problems, which is commonly conducted at high temperature. Here, we report the low-temperature plasma nitriding process, where pure titanium was utilized by high-density RF-DC plasma combined with hollow cathode device. To this end, a pure titanium plate was set inside a hollow tube placed on the cathode plate. After heating to 450 °C, a pre-sputtering process was conducted for 1 hour to remove the oxide layer and activate the surface for nitriding. Plasma nitriding using N2/H2 gasses was performed in 4 and 8 hours with the RF voltage of 250 V, DC bias of -500 to -600 V, and gas pressure of 75 to 30 Pa. To study the nitriding mechanism as well as the role of hollow cathode, the nitrided specimen was characterized by SEM, EDX, XRD, and micro-hardness equipment. The TiN compound was obtained with the diffusion zone of nitrogen until 5 μm thickness for 4 hours nitriding process, and 8 μm for 8 hours process. The average hardness also increased from 300 HV in the untreated specimen to 624 HV and 792 HV for 4 and 8 hours nitriding, respectively.
Ultralow-Threshold Electrically Pumped Quantum-Dot Photonic-Crystal Nanocavity Laser
2011-05-01
we demonstrate a quantum-dot photonic-crystal nanocavity laser in gallium arsenide pumped by a lateral p–i–n junction formed by ion implantation...330 nm layer of silicon nitride was then deposited on the sample using plasma-enhanced chemical vapour deposition (PECVD) to serve as a mask for ion
Fu, Meizhen; Xing, Hanzhu; Chen, Xiangfeng; Zhao, Rusong; Zhi, Chunyi; Wu, Chiman Lawrence
2014-09-01
Boron nitride nanotube (BNNT) is a novel material that shows potential ability in capturing organic pollutants. In this study, BNNTs fixed on a stainless steel fiber by a sol-gel technique were used as sorbent for solid-phase microextraction. Five polycyclic aromatic hydrocarbons with different numbers of aromatic rings were selected as target analysts. Gas chromatography coupled with tandem mass spectrometry was used for detection and quantitative determination. Under optimized conditions, the experimental results show a wide range of linearity (1 to 1,000 ng L(-1)), less than 10.1 % repeatability of relative standard deviation, and low detection limits (0.08 to 0.39 ng L(-1)). In addition, the fabricated fiber offered good thermal and chemical stability. The proposed method was successfully applied for the analysis of real water samples, and satisfactory results were obtained with relative recoveries ranging from 80.2 to 116.8 %. The results demonstrated that BNNTs could be used as sorbent for the analysis of environmental pollutants at trace levels.
Fabrication of porous silicon nitride ceramics using binder jetting technology
NASA Astrophysics Data System (ADS)
Rabinskiy, L.; Ripetsky, A.; Sitnikov, S.; Solyaev, Y.; Kahramanov, R.
2016-07-01
This paper presents the results of the binder jetting technology application for the processing of the Si3N4-based ceramics. The difference of the developed technology from analogues used for additive manufacturing of silicon nitride ceramics is a method of the separate deposition of the mineral powder and binder without direct injection of suspensions/slurries. It is assumed that such approach allows reducing the technology complexity and simplifying the process of the feedstock preparation, including the simplification of the composite materials production. The binders based on methyl ester of acrylic acid with polyurethane and modified starch were studied. At this stage of the investigations, the technology of green body's fabrication is implemented using a standard HP cartridge mounted on the robotic arm. For the coordinated operation of the cartridge and robot the specially developed software was used. Obtained green bodies of silicon powder were used to produce the ceramic samples via reaction sintering. The results of study of ceramics samples microstructure and composition are presented. Sintered ceramics are characterized by fibrous α-Si3N4 structure and porosity up to 70%.
Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels
NASA Astrophysics Data System (ADS)
Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun
2013-07-01
The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 1017 ions/cm2. The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, CrxCy phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, Hitendra K., E-mail: hkmalik@physics.iitd.ac.in; Singh, Omveer; Dahiya, Raj P.
We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N{sub 2} and 30% H{sub 2} gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples.
Study of Charge Transport in Vertically Aligned Nitride Nanowire Based Core Shell P-I-N Junctions
2016-07-01
Vertically- Aligned Nitride Nanowire Based Core Shell P-I-N Junctions Distribution Statement A. Approved for public release; distribution is...Study of Charge Transport in Vertically- Aligned Nitride Nanowire Based Core Shell P-I-N Junctions Grant Number: HDTRA1-14-1-0003 Principal...Investigator: Abhishek Motayed University of Maryland DISTRIBUTION A: Public Release Study of Charge Transport in Vertically-Aligned Nitride Nanowire
Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold
Lalisse, Adrien; Tessier, Gilles; Plain, Jérome; Baffou, Guillaume
2016-01-01
Metal nitrides have been proposed to replace noble metals in plasmonics for some specific applications. In particular, while titanium nitride (TiN) and zirconium nitride (ZrN) possess localized plasmon resonances very similar to gold in magnitude and wavelength, they benefit from a much higher sustainability to temperature. For this reason, they are foreseen as ideal candidates for applications in nanoplasmonics that require high material temperature under operation, such as heat assisted magnetic recording (HAMR) or thermophotovoltaics. This article presents a detailed investigation of the plasmonic properties of TiN and ZrN nanoparticles in comparison with gold nanoparticles, as a function of the nanoparticle morphology. As a main result, metal nitrides are shown to be poor near-field enhancers compared to gold, no matter the nanoparticle morphology and wavelength. The best efficiencies of metal nitrides as compared to gold in term of near-field enhancement are obtained for small and spherical nanoparticles, and they do not exceed 60%. Nanoparticle enlargements or asymmetries are detrimental. These results mitigate the utility of metal nitrides for high-temperature applications such as HAMR, despite their high temperature sustainability. Nevertheless, at resonance, metal nitrides behave as efficient nanosources of heat and could be relevant for applications in thermoplasmonics, where heat generation is not detrimental but desired. PMID:27934890
Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold.
Lalisse, Adrien; Tessier, Gilles; Plain, Jérome; Baffou, Guillaume
2016-12-09
Metal nitrides have been proposed to replace noble metals in plasmonics for some specific applications. In particular, while titanium nitride (TiN) and zirconium nitride (ZrN) possess localized plasmon resonances very similar to gold in magnitude and wavelength, they benefit from a much higher sustainability to temperature. For this reason, they are foreseen as ideal candidates for applications in nanoplasmonics that require high material temperature under operation, such as heat assisted magnetic recording (HAMR) or thermophotovoltaics. This article presents a detailed investigation of the plasmonic properties of TiN and ZrN nanoparticles in comparison with gold nanoparticles, as a function of the nanoparticle morphology. As a main result, metal nitrides are shown to be poor near-field enhancers compared to gold, no matter the nanoparticle morphology and wavelength. The best efficiencies of metal nitrides as compared to gold in term of near-field enhancement are obtained for small and spherical nanoparticles, and they do not exceed 60%. Nanoparticle enlargements or asymmetries are detrimental. These results mitigate the utility of metal nitrides for high-temperature applications such as HAMR, despite their high temperature sustainability. Nevertheless, at resonance, metal nitrides behave as efficient nanosources of heat and could be relevant for applications in thermoplasmonics, where heat generation is not detrimental but desired.
Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping
2016-01-19
Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.
Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping
2016-01-01
Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets’ interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation. PMID:26783258
Gallium nitride optoelectronic devices
NASA Technical Reports Server (NTRS)
Chu, T. L.; Chu, S. S.
1972-01-01
The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.
FT-IR characterization of the acidic and basic sites on a nanostructured aluminum nitride surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baraton, M.I.; Chen, X.; Gonsalves, K.E.
1997-12-31
A nanostructured aluminum nitride powder prepared by sol-gel type chemical synthesis is analyzed by Fourier transform infrared spectrometry. The surface acidic and basic sites are probed out by adsorption of several organic molecules. Resulting from the unavoidable presence of oxygen, the aluminum nitride surface is an oxinitride layer in fact, and its surface chemistry should present some analogies with alumina. Therefore, a thorough comparison between the acido-basicity of aluminum nitride and aluminum oxide is discussed. The remaining nitrogen atoms in the first atomic layer modify the acidity-basicity relative balance and reveals the specificity of the aluminum nitride surface.
High temperature resistant cermet and ceramic compositions
NASA Technical Reports Server (NTRS)
Phillips, W. M. (Inventor)
1978-01-01
Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.
Growth of single-layer boron nitride dome-shaped nanostructures catalysed by iron clusters.
Torre, A La; Åhlgren, E H; Fay, M W; Ben Romdhane, F; Skowron, S T; Parmenter, C; Davies, A J; Jouhannaud, J; Pourroy, G; Khlobystov, A N; Brown, P D; Besley, E; Banhart, F
2016-08-11
We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures mediated by small iron clusters located on flakes of hexagonal boron nitride. The nanostructures were synthesized in situ at high temperature inside a transmission electron microscope while the e-beam was blanked. The formation process, typically originating at defective step-edges on the boron nitride support, was investigated using a combination of transmission electron microscopy, electron energy loss spectroscopy and computational modelling. Computational modelling showed that the domes exhibit a nanotube-like structure with flat circular caps and that their stability was comparable to that of a single boron nitride layer.
Aluminum nitride insulating films for MOSFET devices
NASA Technical Reports Server (NTRS)
Lewicki, G. W.; Maserjian, J.
1972-01-01
Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.
Design and analysis of novel photocatalytic materials
NASA Astrophysics Data System (ADS)
Boppana, Venkata Bharat Ram
The development of sustainable sources of energy to decrease our dependence on non-renewable fossil fuels and the reduction of emissions causing global warming are important technological challenges of the 21st century. Production of solar fuels by photocatalysis is one potential route to reduce the impact of those problems. The most widely applied photocatalyst is TiO2 because it is stable, non-toxic and inexpensive. Still, it cannot utilize the solar spectrum efficiently as its band gap is 3.2 eV thus able to absorb only 3% of sun light. This thesis therefore explores multiple avenues towards improving the light absorption capability of semiconductor materials without loss in activity. To achieve this objective, the valence band hybridization method of band gap reduction was utilized. This technique is based on introducing new orbitals at the top of valence band of the semiconductor that can then hybridize with existing orbitals. The hybridization then raises the maximum of the valence band thereby reducing the band gap. This technique has the added advantage of increasing the mobility of oxidizing holes in the now dispersed valence band. In practice, this can be achieved by introducing N 2p or Sn 5s orbitals in the valence band of an oxide. We initially designed novel zinc gallium oxy-nitrides, with the spinel structure and band gaps in the visible region of the solar spectrum, by nitridation of a zinc gallate precursor produced by sol-gel synthesis. These spinel oxy-nitrides have band gaps of 2.5 to 2.7 eV, surface areas of 16 to 36 m 2/g, and nitrogen content less than 1.5%. They are active towards degradation of organic molecules in visible light. Density functional theory calculations show that this band gap reduction in part is associated with hybridization between the dopant N 2p states with Zn 3d orbitals at the top of the valence band. While spinel oxy-nitrides are produced under nitridation at 550°C, at higher temperatures they are consumed to form wurzitic oxy-nitrides. The wurzite materials also have band gaps less than 3 eV but their surface areas are 2 to 5 m2/g. The thesis explores in detail the changes associated with the gallium coordination as the spinel zinc gallate precursor transforms into the spinel oxy-nitride at 550°C, and further changes into the wurzite oxy-nitride at 850°C are studied through X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, neutron powder diffraction, X-ray absorption spectroscopy and other techniques. We believe that the protocol developed in this thesis opens an avenue for the synthesis of semiconductors having the spinel crystal structure and band gaps engineered to the visible region with potential applications for opto-electronic devices and photocatalytic processes. Though these spinel oxynitrides are interesting, they suffer from vacancies and low surface areas from the high temperature nitridation step. This could be overcome by synthesizing photocatalysts hydrothermally. We proceeded to explore the interactions of Sn2+ 5s orbitals with O 2p orbitals towards hybridizing the valence band. This led to the development of novel visible-light-active Sn2+ - TiO2 and SnOx -- ZnGa2O4 materials. The former catalysts are prepared from the reaction of titanium butoxide and several tin precursors at 80°C in aqueous solutions. Samples synthesized with SnCl2 have lower band gaps (red-shifted to the visible region) with respect to anatase TiO2. The catalysts are isostructural with anatase TiO2 even at the highest loadings of Sn2+. When the precursor is changed to SnCl4, rutile is the predominant phase obtained but no reduction in the band gap is observed. The experiments also indicate the presence of chlorine in the samples, also influencing the optical and catalytic properties as confirmed by comparison to materials prepared using bromide precursors. These catalysts are photocatalytically active for the degradation of organic molecules with rates higher than the standard (P25 TiO2) and also evidenced from the generation of hydroxyl radicals using visible light. This protocol could be extended to incorporate Sn2+ 5s orbitals into other oxide semiconductors to prepare photocatalysts with interesting electronic properties.
Use of additives to improve microstructures and fracture resistance of silicon nitride ceramics
Becher, Paul F [Oak Ridge, TN; Lin, Hua-Tay [Oak Ridge, TN
2011-06-28
A high-strength, fracture-resistant silicon nitride ceramic material that includes about 5 to about 75 wt-% of elongated reinforcing grains of beta-silicon nitride, about 20 to about 95 wt-% of fine grains of beta-silicon nitride, wherein the fine grains have a major axis of less than about 1 micron; and about 1 to about 15 wt-% of an amorphous intergranular phase comprising Si, N, O, a rare earth element and a secondary densification element. The elongated reinforcing grains have an aspect ratio of 2:1 or greater and a major axis measuring about 1 micron or greater. The elongated reinforcing grains are essentially isotropically oriented within the ceramic microstructure. The silicon nitride ceramic exhibits a room temperature flexure strength of 1,000 MPa or greater and a fracture toughness of 9 MPa-m.sup.(1/2) or greater. The silicon nitride ceramic exhibits a peak strength of 800 MPa or greater at 1200 degrees C. Also included are methods of making silicon nitride ceramic materials which exhibit the described high flexure strength and fracture-resistant values.
Han, Gang Hee; Rodríguez-Manzo, Julio A.; Lee, Chan-Woo; Kybert, Nicholas J.; Lerner, Mitchell B.; Qi, Zhengqing John; Dattoli, Eric N.; Rappe, Andrew M.; Drndic, Marija; Charlie Johnson, A. T.
2013-01-01
Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to microscopy of nano-domains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric. PMID:24182310
Han, Gang Hee; Rodríguez-Manzo, Julio A; Lee, Chan-Woo; Kybert, Nicholas J; Lerner, Mitchell B; Qi, Zhengqing John; Dattoli, Eric N; Rappe, Andrew M; Drndic, Marija; Johnson, A T Charlie
2013-11-26
Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric.
NASA Astrophysics Data System (ADS)
Shishodia, Manmohan Singh; Pathania, Pankaj
2018-04-01
Refractory transition metal nitrides such as zirconium nitride (ZrN), hafnium nitride (HfN) and titanium nitride (TiN) have emerged as viable alternatives to coinage metals based plasmonic materials, e.g., gold (Au) and silver (Ag). The present work assesses the suitability of gain assisted ZrN-, HfN- and TiN-based conventional core-shell nanoparticles (CCSNPs) and multilayered core-shell nanoparticles (MCSNPs) for refractive index sensing. We report that the optical gain incorporation in the dielectric layer leads to multifold enhancement of the scattering efficiency (Qsca), substantial reduction of the spectral full width at half maximum, and a higher figure of merit (FOM). In comparison with CCSNPs, the MCSNP system exhibits superior sensing characteristics such as higher FOM, ˜ 45% reduction in the critical optical gain, response shift towards the biological window, and higher degree of tunability. Inherent biocompatibility, growth compatibility, chemical stability and flexible spectral tuning of refractory nitrides augmented by superior sensing properties in the present work may pave the way for refractory nitrides based low cost sensing.
Liu, Tingting; Li, Mian; Guo, Liping
2018-05-01
Designing high-efficiency electrocatalysts for glucose concentration detection plays a pivotal role in developing various non-enzymatic glucose detection devices. Herein, we have successfully designed and synthesized various cobalt nitrides (Co 4 N) by using different weak bases (i.e. hexamethylenetetramine (HMT), urea, and ammonium hydroxide (AH)) through nitridation treatment in ammonia (NH 3 ) atmosphere. Physical characterization results demonstrate that Co 4 N-NSs (nanosheets) with vast meso/macropores and large BET surface are successfully constructed once adding carbon paper and HMT into precursors. As the synergistic effect of metallic character of Co 4 N phase , excellent electroconductibility of pyrolytic carbon, and large surface area, Co 4 N-NSs surfaces can form more Co 4+ active sites in electrochemical reaction processes. Meanwhile, the abundant meso/macroporous structures constructed in Co 4 N-NSs further promoted its mass transfer ability. Benefitting from the above mentioned advantages, Co 4 N-NSs therefore exhibit more excellent glucose oxidation ability than another three control samples (i.e. Co 4 N-HMT, Co 4 N-Urea and Co 4 N-AH). When used for glucose detection, the optimal Co 4 N-NSs display excellent detection parameters as well, such as: a wide linear range of 0.6-10.0mM, a large sensitivity of 1137.2uAcm -2 mM -1 glucose, a low detection limit of 0.1µM, a small response time of 1.7s, good reproducibility and stability, and the excellent anti-interference to other electroactive molecules and Cl - . Upon utilized for measuring glucose concentrations in human blood serum samples, the detection results on Co 4 N-NSs are accurate and satisfying as well. This work opens a new possibility for boosting electrochemical catalysis abilities of Co 4 N samples by the structure design. Copyright © 2017 Elsevier B.V. All rights reserved.
Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santavicca, Daniel F., E-mail: daniel.santavicca@unf.edu; Adams, Jesse K.; Grant, Lierd E.
2016-06-21
We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires asmore » inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.« less
NASA Astrophysics Data System (ADS)
Zgrabik, Christine Michelle
Transition metal nitrides have recently garnered much interest as alternative materials for robust plasmonic device architecture including potential applications in solar absorbers, photothermal medical therapy, and heat-assisted magnetic recording. Titanium nitride (TiN) is one such potential candidate. One advantage of the transition metal nitrides is that their optical properties are tunable according to the deposition conditions. The controlled achievement of tunability, however, is also a challenge. Although the formation of TiN has been the subject of numerous previous studies, a thorough analysis of the deposition parameters necessary to form metallic TiN films optimized for plasmonic applications had not been demonstrated. Similarly, such TiN films had not been subjected to detailed optical measurements which could be used in FDTD device simulations to optimize plasmonic device designs. To be able to design, simulate and build robust and optimal device structures, in this work a systematic and thorough examination of the effect of varied substrates, temperatures, and reactive gas compositions on magnetron sputtered TiN was conducted. In addition, the effects of application of an additional substrate bias were studied. The resulting optical properties at visible to near-infrared frequencies were the focus of this thesis. The optical properties of each film were measured via spectroscopic ellipsometry with more "metallic" films demonstrating a larger negative value of the real part of the permittivity. These optical measurements were correlated with both the films' deposition conditions and microstructural measurements including x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and transmission electron microscopy (TEM) measurements; the different deposition conditions resulted in TiN and TiOxNy films with widely tunable optical responses. By sputtering under different conditions, the value of the real part of the permittivity was tuned from small positive values, through small and moderate negative values, and finally all of the way to large negative values which are comparable to those measured in gold. It was determined that both the chemical composition as well as the film crystallinity had a significant effect on the resulting properties with the most metallic films in general exhibiting a Ti:N ratio close to 1:1, low oxygen incorporation, more N bound as TiN rather than in oxynitride form, and better crystallinity. Increased substrate temperature in general increased the metallic character while application of a substrate bias reduced crystalline order, however also reduced oxygen incorporation and allowed for deposition of metallic TiN at room temperature. The close lattice match of TiN and MgO allowed for heteroepitaxial growth on this substrate under carefully controlled conditions. Finally, to demonstrate the viability of the optimized TiN thin films for plasmonic applications, three benchmark plasmonic structures were simulated using the measured, optimized optical properties including a plasmonic grating coupler, infrared nanoantennas, and a nanopyramidal array. The devices were successfully fabricated and preliminary measurements show promise for plasmonic applications for example in solar conversion and photothermal medical therapy.
2009-12-01
MINORITY CHARGE CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) by Chiou Perng Ong December... Gallium Nitride Nanowires Using Electron Beam Induced Current (EBIC) 6. AUTHOR(S) Ong, Chiou Perng 5. FUNDING NUMBERS DMR 0804527 7. PERFORMING...CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) Chiou Perng Ong Major, Singapore Armed Forces B
Thermal conversion of an iron nitride-silicon nitride precursor into a ferromagnetic nanocomposite
NASA Astrophysics Data System (ADS)
Maya, L.; Thompson, J. R.; Song, K. J.; Warmack, R. J.
1998-01-01
Iron nitride films, FeN, in a pure form and in the form of a nanocomposite in silicon nitride were prepared by reactive sputtering using iron or iron disilicide, respectively, as targets in a nitrogen plasma. Iron nitride decomposes into the elements by heating in vacuum to 800 °C. Intermediate phases such as Fe2N or Fe4N form at lower temperatures. The nanocomposites contain the iron phases as particles with an average size of ˜5 nm dispersed in the amorphous silicon nitride matrix. The magnetic properties of the nanocomposites were established. The precursor FeN-Si3N4 film is paramagnetic, while the Fe-Si3N4, obtained by heating in vacuum, is ferromagnetic and shows typical superparamagnetic behavior. These films are of interest as recording media with superior chemical and mechanical stability and may be encoded by localized heating.
NASA Astrophysics Data System (ADS)
Rahman, Shakeelur; Momin, Bilal; Higgins M., W.; Annapure, Uday S.; Jha, Neetu
2018-04-01
In recent times, low cost and metal free photocatalyts driven under visible light have attracted a lot of interest. One such photo catalyst researched extensively is bulk graphitic carbon nitride sheets. But the low surface area and weak mobility of photo generated electrons limits its photocatalytic performance in the visible light spectrum. Here we present the facile synthesis of ultrathin graphitic carbon nitride using a cost effective melamine precursor and its application in highly efficient photocatalytic dye degradation of Rhodamine B molecules. Compared to bulk graphitic carbon nitride, the synthesized ultrathin graphitic carbon nitride shows an increase in surface area, a a decrease in optical band gap and effective photogenerated charge separation which facilitates the harvest of visible light irradiation. Due to these optimal properties of ultrathin graphitic carbon nitride, it shows excellent photocatalytic activity with photocatalytic degradation of about 95% rhodamine B molecules in 1 hour.
Yang, Yi; Ling, Yichuan; Wang, Gongming; Lu, Xihong; Tong, Yexiang; Li, Yat
2013-03-07
We report a general strategy for synthesis of gallium nitride (GaN) and indium nitride (InN) nanowires on conductive and flexible carbon cloth substrates. GaN and InN nanowires were prepared via a nanocluster-mediated growth method using a home built chemical vapor deposition (CVD) system with Ga and In metals as group III precursors and ammonia as a group V precursor. Electron microscopy studies reveal that the group III-nitride nanowires are single crystalline wurtzite structures. The morphology, density and growth mechanism of these nanowires are determined by the growth temperature. Importantly, a photoelectrode fabricated by contacting the GaN nanowires through a carbon cloth substrate shows pronounced photoactivity for photoelectrochemical water oxidation. The ability to synthesize group III-nitride nanowires on conductive and flexible substrates should open up new opportunities for nanoscale photonic, electronic and electrochemical devices.
Study of the kinetics and mechanism of the thermal nitridation of SiO2
NASA Technical Reports Server (NTRS)
Vasquez, R. P.; Madhukar, A.; Grunthaner, F. J.; Naiman, M. L.
1985-01-01
X-ray photoelectron spectroscopy (XPS) has been used to study the nitridation time and temperature dependence of the nitrogen distribution in thermally nitrided SiO2 films. The XPS data show that the maximum nitrogen concentration near the (SiO(x)N(y)/Si interface is initially at the interface, but moves 20-25 A away from the interface with increasing nitridation time. Computer modeling of the kinetic processes involved is carried out and reveals a mechanism in which diffusing species, initially consisting primarily of nitrogen, react with the substrate, followed by formation of the oxygen-rich oxynitride due to reaction of the diffusing oxygen displaced by the slower nitridation of the SiO2. The data are consistent with this mechanism provided the influence of the interfacial strain on the nitridation and oxidation kinetics is explicitly accounted for.
Additive Manufacturing of Dense Hexagonal Boron Nitride Objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquez Rossy, Andres E.; Armstrong, Beth L.; Elliott, Amy M.
The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to anmore » azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.« less
The Effect of Polymer Char on Nitridation Kinetics of Silicon
NASA Technical Reports Server (NTRS)
Chan, Rickmond C.; Bhatt, Ramakrishna T.
1994-01-01
Effects of polymer char on nitridation kinetics of attrition milled silicon powder have been investigated from 1200 to 1350 C. Results indicate that at and above 1250 C, the silicon compacts containing 3.5 wt percent polymer char were fully converted to Si3N4 after 24 hr exposure in nitrogen. In contrast, the silicon compacts without polymer char could not be fully converted to Si3N4 at 1350 C under similar exposure conditions. At 1250 and 1350 C, the silicon compacts with polymer char showed faster nitridation kinetics than those without the polymer char. As the polymer char content is increased, the amount of SiC in the nitrided material is also increased. By adding small amounts (approx. 2.5 wt percent) of NiO, the silicon compacts containing polymer char can be completely nitrided at 1200 C. The probable mechanism for the accelerated nitridation of silicon containing polymer char is discussed.
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2009-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
Surface modified stainless steels for PEM fuel cell bipolar plates
Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO
2007-07-24
A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.
Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates
Brady, Michael P [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN
2010-11-09
A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.
A method to monitor the quality of ultra-thin nitride for trench DRAM with a buried strap structure
NASA Astrophysics Data System (ADS)
Wu, Yung-Hsien; Wang, Chun-Yao; Chang, Ian; Kao, Chien-Kang; Kuo, Chia-Ming; Ku, Alex
2007-02-01
A new approach to monitor the quality of an ultra-thin nitride film has been proposed. The nitride quality is monitored by observing the oxide thickness for the nitride film after wet oxidation since the resistance to oxidation strongly depends on its quality. To obtain a stable oxide thickness without interference from extrinsic factors for process monitoring, monitor wafers without dilute HF solution clean are suggested because the native-oxide containing surface is less sensitive to oxygen and therefore forms the nitride film with stable quality. In addition, the correlation between variable retention time (VRT) performance of a real dynamic random access memory (DRAM) product and oxide thickness from different nitride process temperatures can be successfully explained and this correlation can also be used to establish the appropriate oxide thickness range for process monitoring.
Radiation and Thermal Cycling Effects on EPC1001 Gallium Nitride Power Transistors
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Scheick, Leif Z.; Lauenstein, Jean M.; Casey, Megan C.; Hammoud, Ahmad
2012-01-01
Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Information pertaining to performance of electronic parts and systems under hostile environments is very scarce, especially for new devices. Such data is very critical so that proper design is implemented in order to ensure mission success and to mitigate risks associated with exposure of on-board systems to the operational environment. In this work, newly-developed enhancement-mode field effect transistors (FET) based on gallium nitride (GaN) technology were exposed to various particles of ionizing radiation and to long-term thermal cycling over a wide temperature range. Data obtained on control (un-irradiated) and irradiated samples of these power transistors are presented and the results are discussed.
Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material
Dai, S.; Ma, Q.; Andersen, T.; Mcleod, A. S.; Fei, Z.; Liu, M. K.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; Keilmann, F.; Jarillo-Herrero, P.; Fogler, M. M.; Basov, D. N.
2015-01-01
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. In such materials, light propagation is unusual leading to novel and often non-intuitive optical phenomena. Here we report infrared nano-imaging experiments demonstrating that crystals of hexagonal boron nitride, a natural mid-infrared hyperbolic material, can act as a ‘hyper-focusing lens' and as a multi-mode waveguide. The lensing is manifested by subdiffractional focusing of phonon–polaritons launched by metallic disks underneath the hexagonal boron nitride crystal. The waveguiding is revealed through the modal analysis of the periodic patterns observed around such launchers and near the sample edges. Our work opens new opportunities for anisotropic layered insulators in infrared nanophotonics complementing and potentially surpassing concurrent artificial hyperbolic materials with lower losses and higher optical localization. PMID:25902364
NASA Technical Reports Server (NTRS)
Sproul, William D.
1996-01-01
The original program for evaluating the tribological properties several different hard coatings for liquid film bearing applications was curtailed when the time for the program was reduced from 3 years to 1. Of the several different coatings originally planned for evaluation, we decided to concentrate on one coating, carbon nitride. At BIRL, we have been instrumental in the development of reactively sputtered carbon nitride coatings, and we have found that it is a very interesting new material with very good tribological properties. In this program, we found that the reactively sputtered carbon nitride does not bond well directly to hardened 440C stainless steel; but if an interlayer of titanium nitride is added between the carbon nitride and the 440C, the adhesion of the dual coating combination is very good. Statistically designed experiments were run with the dual layer combination, and 3 variables were chosen for the Box-Benken design, which were the titanium nitride interlayer thickness, the nitrogen partial pressure during the reactive sputtering of the carbon nitride, and the carbon nitride substrate bias voltage. Two responses were studied from these three variables; the adhesion of the dual coating combination to the 440C substrate and the friction coefficient of the carbon nitride in dry sliding contact with 52100 steel in air. The best adhesion came with the thickness interlayer thickness studied, which was 4 micrometers, and the lowest coefficient of friction was 0.1, which was achieved when the bias voltage was in the range of -80 to - 120 V and the nitrogen partial pressure was 3 mTorr.
NASA Technical Reports Server (NTRS)
Phillips, W. M. (Inventor)
1978-01-01
High temperature oxidation resistance, high hardness and high abrasion and wear resistance are properties of cermet compositions particularly to provide high temperature resistant refractory coatings on metal substrates, for use as electrical insulation seals for thermionic converters. The compositions comprise a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride are also described.
Low temperature route to uranium nitride
Burrell, Anthony K.; Sattelberger, Alfred P.; Yeamans, Charles; Hartmann, Thomas; Silva, G. W. Chinthaka; Cerefice, Gary; Czerwinski, Kenneth R.
2009-09-01
A method of preparing an actinide nitride fuel for nuclear reactors is provided. The method comprises the steps of a) providing at least one actinide oxide and optionally zirconium oxide; b) mixing the oxide with a source of hydrogen fluoride for a period of time and at a temperature sufficient to convert the oxide to a fluoride salt; c) heating the fluoride salt to remove water; d) heating the fluoride salt in a nitrogen atmosphere for a period of time and at a temperature sufficient to convert the fluorides to nitrides; and e) heating the nitrides under vacuum and/or inert atmosphere for a period of time sufficient to convert the nitrides to mononitrides.
Durable silver coating for mirrors
Wolfe, Jesse D.; Thomas, Norman L.
2000-01-01
A durable multilayer mirror includes reflective layers of aluminum and silver and has high reflectance over a broad spectral range from ultraviolet to visible to infrared. An adhesion layer of a nickel and/or chromium alloy or nitride is deposited on an aluminum surface, and a thin layer of silver is then deposited on the adhesion layer. The silver layer is protected by a passivation layer of a nickel and/or chromium alloy or nitride and by one or more durability layers made of metal oxides and typically a first layer of metal nitride. The durability layers may include a composite silicon aluminum nitride and an oxinitride transition layer to improve bonding between nitride and oxide layers.