Sample records for simulated peak flow

  1. Hydrologic modeling of two glaciated watersheds in Northeast Pennsylvania

    USGS Publications Warehouse

    Srinivasan, M.S.; Hamlett, J.M.; Day, R.L.; Sams, J.I.; Petersen, G.W.

    1998-01-01

    A hydrologic modeling study, using the Hydrologic Simulation Program - FORTRAN (HSPF), was conducted in two glaciated watersheds, Purdy Creek and Ariel Creek in northeastern Pennsylvania. Both watersheds have wetlands and poorly drained soils due to low hydraulic conductivity and presence of fragipans. The HSPF model was calibrated in the Purdy Creek watershed and verified in the Ariel Creek watershed for June 1992 to December 1993 period. In Purdy Creek, the total volume of observed streamflow during the entire simulation period was 13.36 x 106 m3 and the simulated streamflow volume was 13.82 x 106 m3 (5 percent difference). For the verification simulation in Ariel Creek, the difference between the total observed and simulated flow volumes was 17 percent. Simulated peak flow discharges were within two hours of the observed for 30 of 46 peak flow events (discharge greater than 0.1 m3/sec) in Purdy Creek and 27 of 53 events in Ariel Creek. For 22 of the 46 events in Purdy Creek and 24 of 53 in Ariel Creek, the differences between the observed and simulated peak discharge rates were less than 30 percent. These 22 events accounted for 63 percent of total volume of streamflow observed during the selected 46 peak flow events in Purdy Creek. In Ariel Creek, these 24 peak flow events accounted for 62 percent of the total flow observed during all peak flow events. Differences in observed and simulated peak flow rates and volumes (on a percent basis) were greater during the snowmelt runoff events and summer periods than for other times.A hydrologic modeling study, using the Hydrologic Simulation Program - FORTRAN (HSPF), was conducted in two glaciated watersheds, Purdy Creek and Ariel Creek in northeastern Pennsylvania. Both watersheds have wetlands and poorly drained soils due to low hydraulic conductivity and presence of fragipans. The HSPF model was calibrated in the Purdy Creek watershed and verified in the Ariel Creek watershed for June 1992 to December 1993 period. In Purdy Creek, the total volume of observed streamflow during the entire simulation period was 13.36??106 m3 and the simulated streamflow volume was 13.82??106 m3 (5 percent difference). For the verification simulation in Ariel Creek, the difference between the total observed and simulated flow volumes was 17 percent. Simulated peak flow discharges were within two hours of the observed for 30 of 46 peak flow events (discharge greater than 0.1 m3/sec) in Purdy Creek and 27 of 53 events in Ariel Creek. For 22 of the 46 events in Purdy Creek and 24 of 53 in Ariel Creek, the differences between the observed and simulated peak discharge rates were less than 30 percent. These 22 events accounted for 63 percent of total volume of streamflow observed during the selected 46 peak flow events in Purdy Creek. In Ariel Creek, these 24 peak flow events accounted for 62 percent of the total flow observed during all peak flow events. Differences in observed and simulated peak flow rates and volumes (on a percent basis) were greater during the snowmelt runoff events and summer periods than for other times.

  2. Simulated peak flows and water-surface profiles for Scott Creek near Sylva, North Carolina

    USGS Publications Warehouse

    Pope, B.F.

    1996-01-01

    Peak flows were simulated for Scott Creek, just upstream from Sylva, in Jackson County, North Carolina, in order to provide Jackson County officials with information that can be used to improve preparation for and response to flash floods along the reach of Scott Creek that flows through Sylva. A U.S. Geological Survey rainfall-runoff model was calibrated using observed rainfall and streamflow data collected from March 1994 through September 1995. Standard errors for calibration were 34 percent for runoff volumes and 21 percent for peak flows. The calibrated model was used to simulate peak flows resulting from syn- thetic rainfall amounts of 1.0, 2.5, 5.0, and 7.5 inches in 24-hour periods. For each rainfall amount, peak flows were simulated under low-, moderate-, and high-antecedent soil-moisture conditions, represented by selected 3-month periods of daily rainfall and evaporation record from nearby climatic-data measuring stations. Simulated peak flows ranged from 89 to 10,100 cubic feet per second. Profiles of water-surface elevations for selected observed and simu- lated peak flows were computed for the reach of Scott Creek that flows through Sylva, North Carolina. The profiles were computed using the U.S. Army Corps of Engineers HEC-2 Water Surface Profiles computer program and channel cross-section data collected by the Tennessee Valley Authority. The stage-discharge relation for Scott Creek at the simulation site has changed since the collection of the cross-section data. These changes, however, are such that the water-surface profiles presented in this report likely overestimate the true water-surface elevations at the simulation site for a given peak flow

  3. Technique for simulating peak-flow hydrographs in Maryland

    USGS Publications Warehouse

    Dillow, Jonathan J.A.

    1998-01-01

    The efficient design and management of many bridges, culverts, embankments, and flood-protection structures may require the estimation of time-of-inundation and (or) storage of floodwater relating to such structures. These estimates can be made on the basis of information derived from the peak-flow hydrograph. Average peak-flow hydrographs corresponding to a peak discharge of specific recurrence interval can be simulated for drainage basins having drainage areas less than 500 square miles in Maryland, using a direct technique of known accuracy. The technique uses dimensionless hydrographs in conjunction with estimates of basin lagtime and instantaneous peak flow. Ordinary least-squares regression analysis was used to develop an equation for estimating basin lagtime in Maryland. Drainage area, main channel slope, forest cover, and impervious area were determined to be the significant explanatory variables necessary to estimate average basin lagtime at the 95-percent confidence interval. Qualitative variables included in the equation adequately correct for geographic bias across the State. The average standard error of prediction associated with the equation is approximated as plus or minus (+/-) 37.6 percent. Volume correction factors may be applied to the basin lagtime on the basis of a comparison between actual and estimated hydrograph volumes prior to hydrograph simulation. Three dimensionless hydrographs were developed and tested using data collected during 278 significant rainfall-runoff events at 81 stream-gaging stations distributed throughout Maryland and Delaware. The data represent a range of drainage area sizes and basin conditions. The technique was verified by applying it to the simulation of 20 peak-flow events and comparing actual and simulated hydrograph widths at 50 and 75 percent of the observed peak-flow levels. The events chosen are considered extreme in that the average recurrence interval of the selected peak flows is 130 years. The average standard errors of prediction were +/- 61 and +/- 56 percent at the 50 and 75 percent of peak-flow hydrograph widths, respectively.

  4. Improvement in precipitation-runoff model simulations by recalibration with basin-specific data, and subsequent model applications, Onondaga Lake Basin, Onondaga County, New York

    USGS Publications Warehouse

    Coon, William F.

    2011-01-01

    Simulation of streamflows in small subbasins was improved by adjusting model parameter values to match base flows, storm peaks, and storm recessions more precisely than had been done with the original model. Simulated recessional and low flows were either increased or decreased as appropriate for a given stream, and simulated peak flows generally were lowered in the revised model. The use of suspended-sediment concentrations rather than concentrations of the surrogate constituent, total suspended solids, resulted in increases in the simulated low-flow sediment concentrations and, in most cases, decreases in the simulated peak-flow sediment concentrations. Simulated orthophosphate concentrations in base flows generally increased but decreased for peak flows in selected headwater subbasins in the revised model. Compared with the original model, phosphorus concentrations simulated by the revised model were comparable in forested subbasins, generally decreased in developed and wetland-dominated subbasins, and increased in agricultural subbasins. A final revision to the model was made by the addition of the simulation of chloride (salt) concentrations in the Onondaga Creek Basin to help water-resource managers better understand the relative contributions of salt from multiple sources in this particular tributary. The calibrated revised model was used to (1) compute loading rates for the various land types that were simulated in the model, (2) conduct a watershed-management analysis that estimated the portion of the total load that was likely to be transported to Onondaga Lake from each of the modeled subbasins, (3) compute and assess chloride loads to Onondaga Lake from the Onondaga Creek Basin, and (4) simulate precolonization (forested) conditions in the basin to estimate the probable minimum phosphorus loads to the lake.

  5. Debris flow-induced topographic changes: effects of recurrent debris flow initiation.

    PubMed

    Chen, Chien-Yuan; Wang, Qun

    2017-08-12

    Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters' mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.

  6. Comparison Of Quantitative Precipitation Estimates Derived From Rain Gauge And Radar Derived Algorithms For Operational Flash Flood Support.

    NASA Astrophysics Data System (ADS)

    Streubel, D. P.; Kodama, K.

    2014-12-01

    To provide continuous flash flood situational awareness and to better differentiate severity of ongoing individual precipitation events, the National Weather Service Research Distributed Hydrologic Model (RDHM) is being implemented over Hawaii and Alaska. In the implementation process of RDHM, three gridded precipitation analyses are used as forcing. The first analysis is a radar only precipitation estimate derived from WSR-88D digital hybrid reflectivity, a Z-R relationship and aggregated into an hourly ¼ HRAP grid. The second analysis is derived from a rain gauge network and interpolated into an hourly ¼ HRAP grid using PRISM climatology. The third analysis is derived from a rain gauge network where rain gauges are assigned static pre-determined weights to derive a uniform mean areal precipitation that is applied over a catchment on a ¼ HRAP grid. To assess the effect of different QPE analyses on the accuracy of RDHM simulations and to potentially identify a preferred analysis for operational use, each QPE was used to force RDHM to simulate stream flow for 20 USGS peak flow events. An evaluation of the RDHM simulations was focused on peak flow magnitude, peak flow timing, and event volume accuracy to be most relevant for operational use. Results showed RDHM simulations based on the observed rain gauge amounts were more accurate in simulating peak flow magnitude and event volume relative to the radar derived analysis. However this result was not consistent for all 20 events nor was it consistent for a few of the rainfall events where an annual peak flow was recorded at more than one USGS gage. Implications of this indicate that a more robust QPE forcing with the inclusion of uncertainty derived from the three analyses may provide a better input for simulating extreme peak flow events.

  7. Probable effects of the proposed Sulphur Gulch Reservoir on Colorado River quantity and quality near Grand Junction, Colorado

    USGS Publications Warehouse

    Friedel, M.J.

    2004-01-01

    A 16,000 acre-foot reservoir is proposed to be located about 25 miles east of Grand Junction, Colorado, on a tributary of the Colorado River that drains the Sulphur Gulch watershed between De Beque and Cameo, Colorado. The Sulphur Gulch Reservoir, which would be filled by pumping water from the Colorado River, is intended to provide the Colorado River with at least 5,412.5 acre-feet of water during low-flow conditions to meet the East Slopes portion of the 10,825 acre-feet of water required under the December 20, 1999, Final Programmatic Biological Opinion for the Upper Colorado River. The reservoir also may provide additional water in the low-flow period and as much as 10,000 acre-feet of water to supplement peak flows when flows in the Colorado River are between 12,900 and 26,600 cubic feet per second. For this study, an annual stochastic mixing model with a daily time step and 1,500 Monte Carlo trials were used to evaluate the probable effect that reservoir operations may have on water quality in the Colorado River at the Government Highline Canal and the Grand Valley Irrigation Canal. Simulations of the divertible flow (ambient background streamflow), after taking into account demands of downstream water rights, indicate that divertible flow will range from 621,860 acre-feet of water in the driest year to 4,822,732 acrefeet of water in the wettest year. Because of pumping limitations, pumpable flow (amount of streamflow available after considering divertible flow and subsequent pumping constraints) will be less than divertible flow. Assuming a pumping capacity of 150 cubic feet per second and year round pumping, except during reservoir release periods, the simulations indicate that there is sufficient streamflow to fill a 16,000 acre-feet reservoir 100 percent of the time. Simulated pumpable flows in the driest year are 91,669 acre-feet and 109,500 acre-feet in the wettest year. Simulations of carryover storage together with year-round pumping indicate that there is generally sufficient pumpable flow available to refill the reservoir to capacity each year following peak-flow releases of as much as 10,000 acrefeet and low-flow releases of 5,412.5 acre-feet of water. It is assumed that at least 5,412.5 acre-feet of stored water will be released during low-flow conditions irrespective of the hydrologic condition. Simulations indicate that peak-flow release conditions (flows between 12,900 and 26,600 cubic feet per second) to allow release of 10,000 acre-feet of stored water in the spring will occur only about 50 percent of the time. Under typical (5 of 10 years) to moderately dry (3 of 10 years) hydrologic conditions, the duration of the peak-flow conditions will not allow the full 10,000 acre-feet to be released from storage to supplement peak flows. During moderate to extremely dry (2 of 10 years) hydrologic conditions, the peak-flow release conditions will not occur, and there will be no opportunity to release water from storage to supplement peak flows. In general, the simulated daily background dissolved-solids concentrations (salinity) increase due to the reservoir releases as hydrologic conditions go from wet to dry at the Government Highline Canal. For example, the simulated median concentrations during the low-flow period range from 417 milligrams per liter (wet year) to 723 milligrams per liter (dry year), whereas the simulated median concentrations observed during the peak-flow period range from 114 milligrams per liter (wet year) to 698 milligrams per liter (dry year). Background concentration values at the Grand Valley Irrigation Canal are generally only a few percent less than those at the Government Highline Canal except during dry years. Low-flow reservoir releases of 5,412.5 acre-feet and 10,825 acre-feet were simulated for a 30-day period in September, and low-flow releases of 5,412.5 acre-feet were simulated for a 78-day period in the months of August through October. In general, these low-flo

  8. Simulation of ground-water flow and rainfall runoff with emphasis on the effects of land cover, Whittlesey Creek, Bayfield County, Wisconsin, 1999-2001

    USGS Publications Warehouse

    Lenz, Bernard N.; Saad, David A.; Fitzpatrick, Faith A.

    2003-01-01

    The effects of land cover on flooding and base-flow characteristics of Whittlesey Creek, Bayfield County, Wis., were examined in a study that involved ground-water-flow and rainfall-runoff modeling. Field data were collected during 1999-2001 for synoptic base flow, streambed head and temperature, precipitation, continuous streamflow and stream stage, and other physical characteristics. Well logs provided data for potentiometric-surface altitudes and stratigraphic descriptions. Geologic, soil, hydrography, altitude, and historical land-cover data were compiled into a geographic information system and used in two ground-water-flow models (GFLOW and MODFLOW) and a rainfall-runoff model (SWAT). A deep ground-water system intersects Whittlesey Creek near the confluence with the North Fork, producing a steady base flow of 17?18 cubic feet per second. Upstream from the confluence, the creek has little or no base flow; flow is from surface runoff and a small amount of perched ground water. Most of the base flow to Whittlesey Creek originates as recharge through the permeable sands in the center of the Bayfield Peninsula to the northwest of the surface-water-contributing basin. Based on simulations, model-wide changes in recharge caused a proportional change in simulated base flow for Whittlesey Creek. Changing the simulated amount of recharge by 25 to 50 percent in only the ground-water-contributing area results in relatively small changes in base flow to Whittlesey Creek (about 2?11 percent). Simulated changes in land cover within the Whittlesey Creek surface-water-contributing basin would have minimal effects on base flow and average annual runoff, but flood peaks (based on daily mean flows on peak-flow days) could be affected. Based on the simulations, changing the basin land cover to a reforested condition results in a reduction in flood peaks of about 12 to 14 percent for up to a 100-yr flood. Changing the basin land cover to 25 percent urban land or returning basin land cover to the intensive row-crop agriculture of the 1920s results in flood peaks increasing by as much as 18 percent. The SWAT model is limited to a daily time step, which is adequate for describing the surface-water/ground-water interaction and percentage changes. It may not, however, be adequate in describing peak flow because the instantaneous peak flow in Whittlesey Creek during a flood can be more than twice the magnitude of the daily mean flow during that same flood. In addition, the storage and infiltration capacities of wetlands in the basin are not fully understood and need further study.

  9. Simulation of water-surface elevations for a hypothetical 100-year peak flow in Birch Creek at the Idaho National Engineering and Environmental Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berenbrock, C.; Kjelstrom, L.C.

    1997-10-01

    Delineation of areas at the Idaho National Engineering and Environmental Laboratory that would be inundated by a 100-year peak flow in Birch Creek is needed by the US Department of Energy to fulfill flood-plain regulatory requirements. Birch Creek flows southward about 40 miles through an alluvium-filled valley onto the northern part of the Idaho National Engineering and Environmental laboratory site on the eastern Snake River Plain. The lower 10-mile reach of Birch Creek that ends in Birch Creek Playa near several Idaho National Engineering and Environmental Laboratory facilities is of particular concern. Twenty-six channel cross sections were surveyed to developmore » and apply a hydraulic model to simulate water-surface elevations for a hypothetical 100-year peak flow in Birch Creek. Model simulation of the 100-year peak flow (700 cubic feet per second) in reaches upstream from State Highway 22 indicated that flow was confined within channels even when all flow was routed to one channel. Where the highway crosses Birch Creek, about 315 cubic feet per second of water was estimated to move downstream--115 cubic feet per second through a culvert and 200 cubic feet per second over the highway. Simulated water-surface elevation at this crossing was 0.8 foot higher than the elevation of the highway. The remaining 385 cubic feet per second flowed southwestward in a trench along the north side of the highway. Flow also was simulated with the culvert removed. The exact location of flood boundaries on Birch Creek could not be determined because of the highly braided channel and the many anthropogenic features (such as the trench, highway, and diversion channels) in the study area that affect flood hydraulics and flow. Because flood boundaries could not be located exactly, only a generalized flood-prone map was developed.« less

  10. Tests of peak flow scaling in simulated self-similar river networks

    USGS Publications Warehouse

    Menabde, M.; Veitzer, S.; Gupta, V.; Sivapalan, M.

    2001-01-01

    The effect of linear flow routing incorporating attenuation and network topology on peak flow scaling exponent is investigated for an instantaneously applied uniform runoff on simulated deterministic and random self-similar channel networks. The flow routing is modelled by a linear mass conservation equation for a discrete set of channel links connected in parallel and series, and having the same topology as the channel network. A quasi-analytical solution for the unit hydrograph is obtained in terms of recursion relations. The analysis of this solution shows that the peak flow has an asymptotically scaling dependence on the drainage area for deterministic Mandelbrot-Vicsek (MV) and Peano networks, as well as for a subclass of random self-similar channel networks. However, the scaling exponent is shown to be different from that predicted by the scaling properties of the maxima of the width functions. ?? 2001 Elsevier Science Ltd. All rights reserved.

  11. Evidence of equilibrium peak runoff rates in steep tropical terrain on the island of Dominica during Tropical Storm Erika, August 27, 2015

    NASA Astrophysics Data System (ADS)

    Ogden, Fred L.

    2016-11-01

    Tropical Storm Erika was a weakly organized tropical storm when its center of circulation passed more than 150 km north of the island of Dominica on August 27, 2015. Hurricane hunter flights had difficulty finding the center of circulation as the storm encountered a high shear environment. Satellite and radar observations showed gyres imbedded within the broader circulation. Radar observations from Guadeloupe show that one of these gyres formed in convergent mid-level flow triggered by orographic convection over the island of Dominica. Gauge-adjusted radar rainfall data indicated between 300 and 750 mm of rainfall on Dominica, most of it over a four hour period. The result was widespread flooding, destruction of property, and loss of life. The extremity of the rainfall on steep watersheds covered with shallow soils was hypothesized to result in near-equilibrium runoff conditions where peak runoff rates equal the watershed-average peak rainfall rate minus a small constant loss rate. Rain gauge adjusted radar rainfall estimates and indirect peak discharge (IPD) measurements from 16 rivers at watershed areas ranging from 0.9 to 31.4 km2 using the USGS Slope-Area method allowed testing of this hypothesis. IPD measurements were compared against the global envelope of maximum observed flood peaks versus drainage area and against simulations using the U.S. Army Corps of Engineers Gridded Surface/Subsurface Hydrologic Analysis (GSSHA) model to detect landslide-affected peak flows. Model parameter values were estimated from the literature. Reasonable agreement was found between GSSHA simulated peak flows and IPD measurements in some watersheds. Results showed that landslide dam failure affected peak flows in 5 of the 16 rivers, with peak flows significantly greater than the envelope curve values for the flood of record for like-sized watersheds on the planet. GSSHA simulated peak discharges showed that the remaining 11 peak flow values were plausible. Simulations of an additional 24 watersheds ranging in size from 2.2 to 75.4 km2 provided confirmation that the IPD measurements varied from 40 to nearly 100% of the envelope curve value depending on storm-total rainfall. Results presented in this paper support the hypothesis that on average, the peak discharges scaled linearly with drainage area, and the constant of proportionality was equivalent to 134 mm h-1, or a unit discharge of 37.22 m3 s-1 km-2. The results also indicate that after the available watershed storage was filled after approximately 450-500 mm of rain fell, runoff efficiencies exceeded 50-60%, and peak runoff rates were more than 80% of the peak rainfall rate minus a small constant loss rate of 20 mm h-1. These findings have important implications for design of resilient infrastructure, and means that rainfall rate was the primary determinant of peak flows once the available storage was filled in the absences of landslide dam failure.

  12. Effect of detention basin release rates on flood flows - Application of a model to the Blackberry Creek Watershed in Kane County, Illinois

    USGS Publications Warehouse

    Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.

    2009-01-01

    The effects of stormwater detention basins with specified release rates are examined on the watershed scale with a Hydrological Simulation Program - FORTRAN (HSPF) continuous-simulation model. Modeling procedures for specifying release rates from detention basins with orifice and weir discharge configurations are discussed in this report. To facilitate future detention modeling as a tool for watershed management, a chart relating watershed impervious area to detention volume is presented. The report also presents a case study of the Blackberry Creek watershed in Kane County, Ill., a rapidly urbanizing area seeking to avoid future flood damages from increased urbanization, to illustrate the effects of various detention basin release rates on flood peaks and volumes and flood frequencies. The case study compares flows simulated with a 1996 land-use HSPF model to those simulated with four different 2020 projected land-use HSPF model scenarios - no detention, and detention basins with release rates of 0.08, 0.10, and 0.12 cubic feet per second per acre (ft3/s-acre), respectively. Results of the simulations for 15 locations, which included the downstream ends of all tributaries and various locations along the main stem, showed that a release rate of 0.10 ft3/s-acre, in general, can maintain postdevelopment 100-year peak-flood discharge at a similar magnitude to that of 1996 land-use conditions. Although the release rate is designed to reduce the 100-year peak flow, reduction of the 2-year peak flow is also achieved for a smaller proportion of the peak. Results also showed that the 0.10 ft3/s-acre release rate was less effective in watersheds with relatively high percentages of preexisting (1996) development than in watersheds with less preexisting development.

  13. Tradeoffs among watershed model calibration targets for parameter estimation

    EPA Science Inventory

    Hydrologic models are commonly calibrated by optimizing a single objective function target to compare simulated and observed flows, although individual targets are influenced by specific flow modes. Nash-Sutcliffe efficiency (NSE) emphasizes flood peaks in evaluating simulation f...

  14. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Schaefer, Jacob; Brown, Nelson

    2013-01-01

    A peak-seeking control approach for real-time trim configuration optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control approach is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an FA-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are controlled for optimization of fuel flow. This presentation presents the design and integration of this peak-seeking controller on a modified NASA FA-18 airplane with research flight control computers. A research flight was performed to collect data to build a realistic model of the performance function and characterize measurement noise. This model was then implemented into a nonlinear six-degree-of-freedom FA-18 simulation along with the peak-seeking control algorithm. With the goal of eventual flight tests, the algorithm was first evaluated in the improved simulation environment. Results from the simulation predict good convergence on minimum fuel flow with a 2.5-percent reduction in fuel flow relative to the baseline trim of the aircraft.

  15. Peak-Seeking Optimization of Trim for Reduced Fuel Consumption: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Schaefer, Jacob; Brown, Nelson A.

    2013-01-01

    A peak-seeking control approach for real-time trim configuration optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control approach is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) are controlled for optimization of fuel flow. This paper presents the design and integration of this peak-seeking controller on a modified NASA F/A-18 airplane with research flight control computers. A research flight was performed to collect data to build a realistic model of the performance function and characterize measurement noise. This model was then implemented into a nonlinear six-degree-of-freedom F/A-18 simulation along with the peak-seeking control algorithm. With the goal of eventual flight tests, the algorithm was first evaluated in the improved simulation environment. Results from the simulation predict good convergence on minimum fuel flow with a 2.5-percent reduction in fuel flow relative to the baseline trim of the aircraft.

  16. Study of the Transition from MRI to Magnetic Turbulence via Parasitic Instability by a High-order MHD Simulation Code

    NASA Astrophysics Data System (ADS)

    Hirai, Kenichiro; Katoh, Yuto; Terada, Naoki; Kawai, Soshi

    2018-02-01

    Magnetic turbulence in accretion disks under ideal magnetohydrodynamic (MHD) conditions is expected to be driven by the magneto-rotational instability (MRI) followed by secondary parasitic instabilities. We develop a three-dimensional ideal MHD code that can accurately resolve turbulent structures, and carry out simulations with a net vertical magnetic field in a local shearing box disk model to investigate the role of parasitic instabilities in the formation process of magnetic turbulence. Our simulations reveal that a highly anisotropic Kelvin–Helmholtz (K–H) mode parasitic instability evolves just before the first peak in turbulent stress and then breaks large-scale shear flows created by MRI. The wavenumber of the enhanced parasitic instability is larger than the theoretical estimate, because the shear flow layers sometimes become thinner than those assumed in the linear analysis. We also find that interaction between antiparallel vortices caused by the K–H mode parasitic instability induces small-scale waves that break the shear flows. On the other hand, at repeated peaks in the nonlinear phase, anisotropic wavenumber spectra are observed only in the small wavenumber region and isotropic waves dominate at large wavenumbers unlike for the first peak. Restructured channel flows due to MRI at the peaks in nonlinear phase seem to be collapsed by the advection of small-scale shear structures into the restructured flow and resultant mixing.

  17. Simulating land-use changes and stormwater-detention basins and evaluating their effect on peak streamflows and stream-water quality in Irondequoit Creek basin, New York—A user's manual for HSPF and GenScn

    USGS Publications Warehouse

    Coon, William F.

    2003-01-01

    A computer model of hydrologic and water-quality processes of the Irondequoit Creek basin in Monroe and Ontario Counties, N.Y., was developed during 2000-02 to enable water-resources managers to simulate the effects of future development and stormwater-detention basins on peak flows and water quality of Irondequoit Creek and its tributaries. The model was developed with the program Hydrological Simulation Program-Fortran (HSPF) such that proposed or hypothetical land-use changes and instream stormwater-detention basins could be simulated, and their effects on peak flows and loads of total suspended solids, total phosphorus, ammonia-plus-organic nitrogen, and nitrate-plus-nitrite nitrogen could be analyzed, through an interactive computer program known as Generation and Analysis of Model Simulation Scenarios for Watersheds (GenScn). This report is a user's manual written to guide the Irondequoit Creek Watershed Collaborative in (1) the creation of land-use and flow-detention scenarios for simulation by the HSPF model, and (2) the use of GenScn to analyze the results of these simulations. These analyses can, in turn, aid the group in making basin-wide water-resources-management decisions.

  18. Two-dimensional hydrodynamic modeling to quantify effects of peak-flow management on channel morphology and salmon-spawning habitat in the Cedar River, Washington

    USGS Publications Warehouse

    Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.

    2010-01-01

    The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  19. The effects of non-Newtonian blood flow on curved stenotic coronary artery

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Chin, Cheng; Monty, Jason; Barlis, Peter; Ooi, Andrew

    2017-11-01

    Direct numerical simulations (DNS) are carried out using both Newtonian and non-Newtonian viscosity models under a pulsatile physiological flow condition to study the influences of the non-Newtonian blood property on the flow fields in the idealised curved stenotic artery model. Quemada model is adopted to simulate the non-Newtonian blood in the simulations. Both time-averaged and selected instantaneous velocity, vorticity and pressure data are examined and the differences between the Newtonian and non-Newtonian flows are examined. The non-Newtonian simulations tend to have blunted axial velocity profile compared to the Newtonian cases. In the proximal of post-stenotic region, smaller recirculation bubbles are observed because of the non-Newtonian effects. Decreased secondary flow strengths are observed upstream of stenosis while higher magnitudes of secondary flows are found out downstream of stenosis. The deviation of mean cross-sectionally axial vorticity is minimal except at the peak systole, where an additional vortice appears near the centre of the 90 degrees plane that is more pronounced in the Newtonian case. The influence of blood-analog viscosity increases the mean pressure drops. However, lower instantaneous pressure losses at peak systole are observed in contrast to the Newtonian blood analog fluid.

  20. Vortex pairing and reverse cascade in a simulated two-dimensional rocket motor-like flow field

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Kalyana; Chakraborty, Debasis

    2017-07-01

    Two-dimensional large eddy simulation of a flow experiment intended for studying and understanding transition and parietal vortex shedding has brought to light some interesting features that have never been seen in previous similar simulations and have implications for future computational work on combustion instabilities in rocket motors. The frequency spectrum of pressure at head end shows a peak at the expected value associated with parietal vortex shedding but an additional peak at half this frequency emerges at downstream location. Using vorticity spectra at various distances away from the wall, it is shown that the frequency halving is due to vortex pairing as hypothesized by Dunlap et al. ["Internal flow field studies in a simulated cylindrical port rocket chamber," J. Propul. Power 6(6), 690-704 (1990)] for a similar experiment. As the flow transitions to turbulence towards the nozzle end, inertial range with Kolmogorov scaling becomes evident in the velocity spectrum. Given that the simulation is two-dimensional, such a scaling could be associated with a reverse energy cascade as per Kraichnan-Leith-Bachelor theory. By filtering the simulated flow field and identifying where the energy backscatters into the filtered scales, the regions with a reverse cascade are identified. The implications of this finding on combustion modeling are discussed.

  1. Blast Load Simulator Experiments for Computational Model Validation Report 3

    DTIC Science & Technology

    2017-07-01

    establish confidence in the results produced by the simulations. This report describes a set of replicate experiments in which a small, non - responding steel...designed to simulate blast waveforms for explosive yields up to 20,000 lb of TNT equivalent at a peak reflected pressure up to 80 psi and a peak...the pressure loading on a non - responding box-type structure at varying obliquities located in the flow of the BLS simulated blast environment for

  2. Streamflow simulation studies of the Hillsborough, Alafia, and Anclote Rivers, west-central Florida

    USGS Publications Warehouse

    Turner, J.F.

    1979-01-01

    A modified version of the Georgia Tech Watershed Model was applied for the purpose of flow simulation in three large river basins of west-central Florida. Calibrations were evaluated by comparing the following synthesized and observed data: annual hydrographs for the 1959, 1960, 1973 and 1974 water years, flood hydrographs (maximum daily discharge and flood volume), and long-term annual flood-peak discharges (1950-72). Annual hydrographs, excluding the 1973 water year, were compared using average absolute error in annual runoff and daily flows and correlation coefficients of monthly and daily flows. Correlations coefficients for simulated and observed maximum daily discharges and flood volumes used for calibrating range from 0.91 to 0.98 and average standard errors of estimate range from 18 to 45 percent. Correlation coefficients for simulated and observed annual flood-peak discharges range from 0.60 to 0.74 and average standard errors of estimate range from 33 to 44 percent. (Woodard-USGS)

  3. Simulations of cataclysmic outburst floods from Pleistocene Glacial Lake Missoula

    USGS Publications Warehouse

    Denlinger, Roger P.; O'Connell, D. R. H.

    2009-01-01

    Using a flow domain that we constructed from 30 m digital-elevation model data of western United States and Canada and a two-dimensional numerical model for shallow-water flow over rugged terrain, we simulated outburst floods from Pleistocene Glacial Lake Missoula. We modeled a large, but not the largest, flood, using initial lake elevation at 1250 m instead of 1285 m. Rupture of the ice dam, centered on modern Lake Pend Oreille, catastrophically floods eastern Washington and rapidly fills the broad Pasco, Yakima, and Umatilla Basins. Maximum flood stage is reached in Pasco and Yakima Basins 38 h after the dam break, whereas maximum flood stage in Umatilla Basin occurs 17 h later. Drainage of these basins through narrow Columbia gorge takes an additional 445 h. For this modeled flood, peak discharges in eastern Washington range from 10 to 20 × 106 m3/s. However, constrictions in Columbia gorge limit peak discharges to 6 m3/s and greatly extend the duration of flooding. We compare these model results with field observations of scabland distribution and high-water indicators. Our model predictions of the locations of maximum scour (product of bed shear stress and average flow velocity) match the distribution of existing scablands. We compare model peak stages to high-water indicators from the Rathdrum-Spokane valley, Walulla Gap, and along Columbia gorge. Though peak stages from this less-than-maximal flood model attain or exceed peak-stage indicators along Rathdrum-Spokane valley and along Columbia gorge, simulated peak stages near Walulla Gap are 10–40 m below observed peak-stage indicators. Despite this discrepancy, our match to field observations in most of the region indicates that additional sources of water other than Glacial Lake Missoula are not required to explain the Missoula floods.

  4. Research on the effect of rainfall flood regulation and control of wetland park based on SWMM model—a case study of wetland park in Yuanjia village, Qishan county, Shaanxi province

    NASA Astrophysics Data System (ADS)

    Xu, Da; Liu, Yijie

    2018-02-01

    Taking the wetland park of Yuan Village in Qishan County of Shaanxi Province as the research object, this paper makes a reasonable generalization of the study area, and establishes two models of low impact development (LID) and traditional development in the park. Meantime, rainwater in the surrounding built up area is introduced to into the park for digestion. SWMM model is used to simulate the variation of the total runoff, peak flow and peak time of two development models in Wetland Park under one-hour rainfall at different recurrence periods.The runoff control effect in each single LID facility in the one-hour rainfall once during five years in the built-up area is simulated. The simulation results show that the SWMM model can not only quantify the runoff reduction effect of different LID facilities, but also provide theoretical basis and data support for the urban rainfall flood problem. LID facilities have effects on runoff reduction and peak delay. However, the combined LID facility has obvious advantages for the peak time delay and peak flow control. A single LID facility is more efficient in a single runoff volume control. The order of runoff reduction by various LID facilities is as follows: Rain garden>combined LID facility> vegetative swale> bio-retention cell > permeable pavement. The order of peak time delay effect by the LID facilities is as follows: combined LID facility> Rain garden> vegetative swale> bio-retention cell > permeable pavement. The order of peak flow reduction efficiency by various LID facilities is: combined LID facility> Rain garden> bio-retention cell > vegetative swale> permeable pavement.

  5. Dispersion-convolution model for simulating peaks in a flow injection system.

    PubMed

    Pai, Su-Cheng; Lai, Yee-Hwong; Chiao, Ling-Yun; Yu, Tiing

    2007-01-12

    A dispersion-convolution model is proposed for simulating peak shapes in a single-line flow injection system. It is based on the assumption that an injected sample plug is expanded due to a "bulk" dispersion mechanism along the length coordinate, and that after traveling over a distance or a period of time, the sample zone will develop into a Gaussian-like distribution. This spatial pattern is further transformed to a temporal coordinate by a convolution process, and finally a temporal peak image is generated. The feasibility of the proposed model has been examined by experiments with various coil lengths, sample sizes and pumping rates. An empirical dispersion coefficient (D*) can be estimated by using the observed peak position, height and area (tp*, h* and At*) from a recorder. An empirical temporal shift (Phi*) can be further approximated by Phi*=D*/u2, which becomes an important parameter in the restoration of experimental peaks. Also, the dispersion coefficient can be expressed as a second-order polynomial function of the pumping rate Q, for which D*(Q)=delta0+delta1Q+delta2Q2. The optimal dispersion occurs at a pumping rate of Qopt=sqrt[delta0/delta2]. This explains the interesting "Nike-swoosh" relationship between the peak height and pumping rate. The excellent coherence of theoretical and experimental peak shapes confirms that the temporal distortion effect is the dominating reason to explain the peak asymmetry in flow injection analysis.

  6. PIC simulation of the vacuum power flow for a 5 terawatt, 5 MV, 1 MA pulsed power system

    NASA Astrophysics Data System (ADS)

    Liu, Laqun; Zou, Wenkang; Liu, Dagang; Guo, Fan; Wang, Huihui; Chen, Lin

    2018-03-01

    In this paper, a 5 Terawatt, 5 MV, 1 MA pulsed power system based on vacuum magnetic insulation is simulated by the particle-in-cell (PIC) simulation method. The system consists of 50 100-kV linear transformer drive (LTD) cavities in series, using magnetically insulated induction voltage adder (MIVA) technology for pulsed power addition and transmission. The pulsed power formation and the vacuum power flow are simulated when the system works in self-limited flow and load-limited flow. When the pulsed power system isn't connected to the load, the downstream magnetically insulated transmission line (MITL) works in the self-limited flow, the maximum of output current is 1.14 MA and the amplitude of voltage is 4.63 MV. The ratio of the electron current to the total current is 67.5%, when the output current reached the peak value. When the impedance of the load is 3.0 Ω, the downstream MITL works in the self-limited flow, the maximums of output current and the amplitude of voltage are 1.28 MA and 3.96 MV, and the ratio of the electron current to the total current is 11.7% when the output current reached the peak value. In addition, when the switches are triggered in synchronism with the passage of the pulse power flow, it effectively reduces the rise time of the pulse current.

  7. Combined effects of projected sea level rise, storm surge, and peak river flows on water levels in the Skagit Floodplain

    USGS Publications Warehouse

    Hamman, Josheph J; Hamlet, Alan F.; Fuller, Roger; Grossman, Eric E.

    2016-01-01

    Current understanding of the combined effects of sea level rise (SLR), storm surge, and changes in river flooding on near-coastal environments is very limited. This project uses a suite of numerical models to examine the combined effects of projected future climate change on flooding in the Skagit floodplain and estuary. Statistically and dynamically downscaled global climate model scenarios from the ECHAM-5 GCM were used as the climate forcings. Unregulated daily river flows were simulated using the VIC hydrology model, and regulated river flows were simulated using the SkagitSim reservoir operations model. Daily tidal anomalies (TA) were calculated using a regression approach based on ENSO and atmospheric pressure forcing simulated by the WRF regional climate model. A 2-D hydrodynamic model was used to estimate water surface elevations in the Skagit floodplain using resampled hourly hydrographs keyed to regulated daily flood flows produced by the reservoir simulation model, and tide predictions adjusted for SLR and TA. Combining peak annual TA with projected sea level rise, the historical (1970–1999) 100-yr peak high water level is exceeded essentially every year by the 2050s. The combination of projected sea level rise and larger floods by the 2080s yields both increased flood inundation area (+ 74%), and increased average water depth (+ 25 cm) in the Skagit floodplain during a 100-year flood. Adding sea level rise to the historical FEMA 100-year flood resulted in a 35% increase in inundation area by the 2040's, compared to a 57% increase when both SLR and projected changes in river flow were combined.

  8. Numerical simulations on unsteady operation processes of N2O/HTPB hybrid rocket motor with/without diaphragm

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Hu, Fan; Wang, Donghui; Okolo. N, Patrick; Zhang, Weihua

    2017-07-01

    Numerical simulations on processes within a hybrid rocket motor were conducted in the past, where most of these simulations carried out majorly focused on steady state analysis. Solid fuel regression rate strongly depends on complicated physicochemical processes and internal fluid dynamic behavior within the rocket motor, which changes with both space and time during its operation, and are therefore more unsteady in characteristics. Numerical simulations on the unsteady operational processes of N2O/HTPB hybrid rocket motor with and without diaphragm are conducted within this research paper. A numerical model is established based on two dimensional axisymmetric unsteady Navier-Stokes equations having turbulence, combustion and coupled gas/solid phase formulations. Discrete phase model is used to simulate injection and vaporization of the liquid oxidizer. A dynamic mesh technique is applied to the non-uniform regression of fuel grain, while results of unsteady flow field, variation of regression rate distribution with time, regression process of burning surface and internal ballistics are all obtained. Due to presence of eddy flow, the diaphragm increases regression rate further downstream. Peak regression rates are observed close to flow reattachment regions, while these peak values decrease gradually, and peak position shift further downstream with time advancement. Motor performance is analyzed accordingly, and it is noticed that the case with diaphragm included results in combustion efficiency and specific impulse efficiency increase of roughly 10%, and ground thrust increase of 17.8%.

  9. [Simulation of rainfall and snowmelt runoff reduction in a northern city based on combination of green ecological strategies.

    PubMed

    Han, Jin Feng; Liu, Shuo; Dai, Jun; Qiu, Hao

    2018-02-01

    With the aim to control and reduce rainfall and snowmelt runoff in northern cities in China, the summer runoff and spring snowmelt runoff in the studied area were simulated with the establishment of storm water management model (SWMM). According to the climate characteristics and the situation of the studied area, the low impact development (LID) green ecological strategies suitable for the studied area were established. There were three kinds of management strategies being used, including extended green roof, snow and rainwater harvesting devices, and grass-swales or trenches. We examined the impacts of those integrated green ecological measures on the summer rainfall and spring snowmelt runoff and their mitigation effects on the drainage network pressure. The results showed that the maximum flow rates of the measured rainfall in May 24th, June 10th and July 18th 2016 were 2.7, 6.2 and 7.4 m 3 ·s -1 respectively. The peak flow rates at different return periods of 1, 2, 5, 10 years were 2.39, 3.91, 6.24 and 7.85 m 3 ·s -1 , respectively. In the snowmelt period, the peak flow appeared at the beginning of March. The LID measures had positive effect on peak flow reduction, and thus delayed peak time and relieved drainage pressure. The flow reduction rate was as high as 70%. Moreover, the snow harvesting devices played a positive role in controlling snowmelt runoff in spring.

  10. Impact of urban WWTP and CSO fluxes on river peak flow extremes under current and future climate conditions.

    PubMed

    Keupers, Ingrid; Willems, Patrick

    2013-01-01

    The impact of urban water fluxes on the river system outflow of the Grote Nete catchment (Belgium) was studied. First the impact of the Waste Water Treatment Plant (WWTP) and the Combined Sewer Overflow (CSO) outflows on the river system for the current climatic conditions was determined by simulating the urban fluxes as point sources in a detailed, hydrodynamic river model. Comparison was made of the simulation results on peak flow extremes with and without the urban point sources. In a second step, the impact of climate change scenarios on the urban fluxes and the consequent impacts on the river flow extremes were studied. It is shown that the change in the 10-year return period hourly peak flow discharge due to climate change (-14% to +45%) was in the same order of magnitude as the change due to the urban fluxes (+5%) in current climate conditions. Different climate change scenarios do not change the impact of the urban fluxes much except for the climate scenario that involves a strong increase in rainfall extremes in summer. This scenario leads to a strong increase of the impact of the urban fluxes on the river system.

  11. Quadrature Moments Method for the Simulation of Turbulent Reactive Flows

    NASA Technical Reports Server (NTRS)

    Raman, Venkatramanan; Pitsch, Heinz; Fox, Rodney O.

    2003-01-01

    A sub-filter model for reactive flows, namely the DQMOM model, was formulated for Large Eddy Simulation (LES) using the filtered mass density function. Transport equations required to determine the location and size of the delta-peaks were then formulated for a 2-peak decomposition of the FDF. The DQMOM scheme was implemented in an existing structured-grid LES solver. Simulations of scalar shear layer using an experimental configuration showed that the first and second moments of both reactive and inert scalars are in good agreement with a conventional Lagrangian scheme that evolves the same FDF. Comparisons with LES simulations performed using laminar chemistry assumption for the reactive scalar show that the new method provides vast improvements at minimal computational cost. Currently, the DQMOM model is being implemented for use with the progress variable/mixture fraction model of Pierce. Comparisons with experimental results and LES simulations using a single-environment for the progress-variable are planned. Future studies will aim at understanding the effect of increase in environments on predictions.

  12. A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil

    NASA Astrophysics Data System (ADS)

    Peche, Aaron; Graf, Thomas; Fuchs, Lothar; Neuweiler, Insa

    2017-12-01

    In urban water pipe networks, pipe leakage may lead to subsurface contamination or to reduced waste water treatment efficiency. The quantification of pipe leakage is challenging due to inaccessibility and unknown hydraulic properties of the soil. A novel physically-based model for three-dimensional numerical simulation of pipe leakage in variably saturated soil is presented. We describe the newly implemented coupling between the pipe flow simulator HYSTEM-EXTRAN and the groundwater flow simulator OpenGeoSys and its validation. We further describe a novel upscaling of leakage using transfer functions derived from numerical simulations. This upscaling enables the simulation of numerous pipe defects with the benefit of reduced computation times. Finally, we investigate the response of leakage to different time-dependent pipe flow events and conclude that larger pipe flow volume and duration lead to larger leakage while the peak position in time has a small effect on leakage.

  13. [Dynamic road vehicle emission inventory simulation study based on real time traffic information].

    PubMed

    Huang, Cheng; Liu, Juan; Chen, Chang-Hong; Zhang, Jian; Liu, Deng-Guo; Zhu, Jing-Yu; Huang, Wei-Ming; Chao, Yuan

    2012-11-01

    The vehicle activity survey, including traffic flow distribution, driving condition, and vehicle technologies, were conducted in Shanghai. The databases of vehicle flow, VSP distribution and vehicle categories were established according to the surveyed data. Based on this, a dynamic vehicle emission inventory simulation method was designed by using the real time traffic information data, such as traffic flow and average speed. Some roads in Shanghai city were selected to conduct the hourly vehicle emission simulation as a case study. The survey results show that light duty passenger car and taxi are major vehicles on the roads of Shanghai city, accounting for 48% - 72% and 15% - 43% of the total flow in each hour, respectively. VSP distribution has a good relationship with the average speed. The peak of VSP distribution tends to move to high load section and become lower with the increase of average speed. Vehicles achieved Euro 2 and Euro 3 standards are majorities of current vehicle population in Shanghai. Based on the calibration of vehicle travel mileage data, the proportions of Euro 2 and Euro 3 standard vehicles take up 11% - 70% and 17% - 51% in the real-world situation, respectively. The emission simulation results indicate that the ratios of emission peak and valley for the pollutants of CO, VOC, NO(x) and PM are 3.7, 4.6, 9.6 and 19.8, respectively. CO and VOC emissions mainly come from light-duty passenger car and taxi, which has a good relationship with the traffic flow. NO(x) and PM emissions are mainly from heavy-duty bus and public buses and mainly concentrate in the morning and evening peak hours. The established dynamic vehicle emission simulation method can reflect the change of actual road emission and output high emission road sectors and hours in real time. The method can provide an important technical means and decision-making basis for transportation environment management.

  14. Effects of land-use changes and stormflow-detention basins on flooding and nonpoint-source pollution, in Irondequoit Creek basin, Monroe and Ontario counties, New York--application of a precipitation-runoff model

    USGS Publications Warehouse

    Coon, William F.; Johnson, Mark S.

    2005-01-01

    Urbanization of the 150-square-mile Irondequoit Creek basin in Monroe and Ontario Counties, N.Y., continues to spread southward and eastward from the City of Rochester, on the shore of Lake Ontario. Conversion of forested land to other uses over the past 40 years has increased to the extent that more than 50 percent of the basin is now developed. This expansion has increased flooding and impaired stream-water quality in the northern (downstream) half of the basin. A precipitation-runoff model of the Irondequoit Creek basin was developed with the model code HSPF (Hydrological Simulation Program--FORTRAN) to simulate the effects of land-use changes and stormflow-detention basins on flooding and nonpoint-source pollution on the basin. Model performance was evaluated through a combination of graphical comparisons and statistical tests, and indicated 'very good' agreement (mean error less than 10 percent) between observed and simulated daily and monthly streamflows, between observed and simulated monthly water temperatures, and between observed total suspended solids loads and simulated sediment loads. Agreement between monthly observed and simulated nutrient loads was 'very good' (mean error less than 15 percent) or 'good' (mean error between 15 and 25 percent). Results of model simulations indicated that peak flows and loads of sediment and total phosphorus would increase in a rural subbasin, where 10 percent of the basin was converted from forest and grassland to pervious and impervious developed areas. Subsequent simulation of a stormflow-detention basin at the mouth of this subbasin indicated that peak flows and constituent loads would decrease below those that were generated by the land-use-change scenario, and, in some cases, below those that were simulated by the original land-use scenario. Other results from model simulations of peak flows over a 30-year period (1970-2000), with and without simulation of 50-percent flow reductions at one existing and nine hypothetical stormflow-detention basins, indicated that stormflow-detention basins would likely decrease peak flows 14 to 17 percent on Allen Creek and 17 to 18 percent on Irondequoit Creek at Blossom Road. The model is intended as a management tool that water-resource managers can use to guide decisions regarding future development in the basin. The model and associated files are designed to permit (1) creation of scenarios that represent planned or hypothetical development in the basin, and (2) assessment of the flooding and chemical loads that are likely to result. Instream stormflow-detention basins can be simulated in separate scenarios to assess their effect on flooding and chemical loads. This report (1) provides examples of how the model can be applied to address these issues, (2) discusses the model revisions required to simulate land-use changes and detention basins, and (3) describes the analytical steps necessary to evaluate the model results.

  15. Temporal evolution modeling of hydraulic and water quality performance of permeable pavements

    NASA Astrophysics Data System (ADS)

    Huang, Jian; He, Jianxun; Valeo, Caterina; Chu, Angus

    2016-02-01

    A mathematical model for predicting hydraulic and water quality performance in both the short- and long-term is proposed based on field measurements for three types of permeable pavements: porous asphalt (PA), porous concrete (PC), and permeable inter-locking concrete pavers (PICP). The model was applied to three field-scale test sites in Calgary, Alberta, Canada. The model performance was assessed in terms of hydraulic parameters including time to peak, peak flow and water balance and a water quality variable (the removal rate of total suspended solids). A total of 20 simulated storm events were used for model calibration and verification processes. The proposed model can simulate the outflow hydrographs with a coefficient of determination (R2) ranging from 0.762 to 0.907, and normalized root-mean-square deviation (NRMSD) ranging from 13.78% to 17.83%. Comparison of the time to peak flow, peak flow, runoff volume and TSS removal rates between the measured and modeled values in model verification phase had a maximum difference of 11%. The results demonstrate that the proposed model is capable of capturing the temporal dynamics of the pavement performance. Therefore, the model has great potential as a practical modeling tool for permeable pavement design and performance assessment.

  16. The spanwise spectra in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei

    2017-12-01

    The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

  17. The spanwise spectra in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei

    2018-06-01

    The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

  18. Examining the effects of urban agglomeration polders on flood events in Qinhuai River basin, China with HEC-HMS model.

    PubMed

    Gao, Yuqin; Yuan, Yu; Wang, Huaizhi; Schmidt, Arthur R; Wang, Kexuan; Ye, Liu

    2017-05-01

    The urban agglomeration polders type of flood control pattern is a general flood control pattern in the eastern plain area and some of the secondary river basins in China. A HEC-HMS model of Qinhuai River basin based on the flood control pattern was established for simulating basin runoff, examining the impact of urban agglomeration polders on flood events, and estimating the effects of urbanization on hydrological processes of the urban agglomeration polders in Qinhuai River basin. The results indicate that the urban agglomeration polders could increase the peak flow and flood volume. The smaller the scale of the flood, the more significant the influence of the polder was to the flood volume. The distribution of the city circle polder has no obvious impact on the flood volume, but has effect on the peak flow. The closer the polder is to basin output, the smaller the influence it has on peak flows. As the level of urbanization gradually improving of city circle polder, flood volumes and peak flows gradually increase compared to those with the current level of urbanization (the impervious rate was 20%). The potential change in flood volume and peak flow with increasing impervious rate shows a linear relationship.

  19. Modeling power flow in the induction cavity with a two dimensional circuit simulation

    NASA Astrophysics Data System (ADS)

    Guo, Fan; Zou, Wenkang; Gong, Boyi; Jiang, Jihao; Chen, Lin; Wang, Meng; Xie, Weiping

    2017-02-01

    We have proposed a two dimensional (2D) circuit model of induction cavity. The oil elbow and azimuthal transmission line are modeled with one dimensional transmission line elements, while 2D transmission line elements are employed to represent the regions inward the azimuthal transmission line. The voltage waveforms obtained by 2D circuit simulation and transient electromagnetic simulation are compared, which shows satisfactory agreement. The influence of impedance mismatch on the power flow condition in the induction cavity is investigated with this 2D circuit model. The simulation results indicate that the peak value of load voltage approaches the maximum if the azimuthal transmission line roughly matches the pulse forming section. The amplitude of output transmission line voltage is strongly influenced by its impedance, but the peak value of load voltage is insensitive to the actual output transmission line impedance. When the load impedance raises, the voltage across the dummy load increases, and the pulse duration at the oil elbow inlet and insulator stack regions also slightly increase.

  20. Providing peak river flow statistics and forecasting in the Niger River basin

    NASA Astrophysics Data System (ADS)

    Andersson, Jafet C. M.; Ali, Abdou; Arheimer, Berit; Gustafsson, David; Minoungou, Bernard

    2017-08-01

    Flooding is a growing concern in West Africa. Improved quantification of discharge extremes and associated uncertainties is needed to improve infrastructure design, and operational forecasting is needed to provide timely warnings. In this study, we use discharge observations, a hydrological model (Niger-HYPE) and extreme value analysis to estimate peak river flow statistics (e.g. the discharge magnitude with a 100-year return period) across the Niger River basin. To test the model's capacity of predicting peak flows, we compared 30-year maximum discharge and peak flow statistics derived from the model vs. derived from nine observation stations. The results indicate that the model simulates peak discharge reasonably well (on average + 20%). However, the peak flow statistics have a large uncertainty range, which ought to be considered in infrastructure design. We then applied the methodology to derive basin-wide maps of peak flow statistics and their associated uncertainty. The results indicate that the method is applicable across the hydrologically active part of the river basin, and that the uncertainty varies substantially depending on location. Subsequently, we used the most recent bias-corrected climate projections to analyze potential changes in peak flow statistics in a changed climate. The results are generally ambiguous, with consistent changes only in very few areas. To test the forecasting capacity, we ran Niger-HYPE with a combination of meteorological data sets for the 2008 high-flow season and compared with observations. The results indicate reasonable forecasting capacity (on average 17% deviation), but additional years should also be evaluated. We finish by presenting a strategy and pilot project which will develop an operational flood monitoring and forecasting system based in-situ data, earth observations, modelling, and extreme statistics. In this way we aim to build capacity to ultimately improve resilience toward floods, protecting lives and infrastructure in the region.

  1. THE SUN’S PHOTOSPHERIC CONVECTION SPECTRUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hathaway, David H.; Teil, Thibaud; Kitiashvili, Irina

    2015-10-01

    Spectra of the cellular photospheric flows are determined from full-disk Doppler velocity observations acquired by the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory spacecraft. Three different analysis methods are used to separately determine spectral coefficients representing the poloidal flows, the toroidal flows, and the radial flows. The amplitudes of these spectral coefficients are constrained by simulated data analyzed with the same procedures as the HMI data. We find that the total velocity spectrum rises smoothly to a peak at a wavenumber of about 120 (wavelength of about 35 Mm), which is typical of supergranules. The spectrummore » levels off out to wavenumbers of about 400, and then rises again to a peak at a wavenumber of about 3500 (wavelength of about 1200 km), which is typical of granules. The velocity spectrum is dominated by the poloidal flow component (horizontal flows with divergence but no curl) at wavenumbers above 30. The toroidal flow component (horizontal flows with curl but no divergence) dominates at wavenumbers less than 30. The radial flow velocity is only about 3% of the total flow velocity at the lowest wavenumbers, but increases in strength to become about 50% at wavenumbers near 4000. The spectrum compares well with the spectrum of giant cell flows at the lowest wavenumbers and with the spectrum of granulation from a 3D radiative-hydrodynamic simulation at the highest wavenumbers.« less

  2. Runoff of small rocky headwater catchments: Field observations and hydrological modeling

    NASA Astrophysics Data System (ADS)

    Gregoretti, C.; Degetto, M.; Bernard, M.; Crucil, G.; Pimazzoni, A.; De Vido, G.; Berti, M.; Simoni, A.; Lanzoni, S.

    2016-10-01

    In dolomitic headwater catchments, intense rainstorms of short duration produce runoff discharges that often trigger debris flows on the scree slopes at the base of rock cliffs. In order to measure these discharges, we placed a measuring facility at the outlet (elevation 1770 m a.s.l.) of a small, rocky headwater catchment (area ˜0.032 km2, average slope ˜320%) located in the Venetian Dolomites (North Eastern Italian Alps). The facility consists of an approximately rectangular basin, ending with a sharp-crested weir. Six runoff events were recorded in the period 2011-2014, providing a unique opportunity for characterizing the hydrological response of the catchment. The measured hydrographs display impulsive shapes, with an abrupt raise up to the peak, followed by a rapidly decreasing tail, until a nearly constant plateau is eventually reached. This behavior can be simulated by means of a distributed hydrological model if the excess rainfall is determined accurately. We show that using the Soil Conservation Service Curve-Number (SCS-CN) method and assuming a constant routing velocity invariably results in an underestimated peak flow and a delayed peak time. A satisfactory prediction of the impulsive hydrograph shape, including peak value and timing, is obtained only by combining the SCS-CN procedure with a simplified version of the Horton equation, and simulating runoff routing along the channel network through a matched diffusivity kinematic wave model. The robustness of the proposed methodology is tested through a comparison between simulated and observed timings of runoff or debris flow occurrence in two neighboring alpine basins.

  3. Measurement of Cyclic Flows in Trachea Using PIV and Numerical simulation

    NASA Astrophysics Data System (ADS)

    Bělka, Miloslav; Elcner, Jakub; Jedelský, Jan; Boiron, Olivier; Knapp, Yannick; Bailly, Lucie

    2015-05-01

    Inhalation of pharmaceutical aerosols is a convenient way to treat lung or even systemic diseases. For effective treatment it is very important to understand air flow characteristics within respiratory airways and determine deposition hot spots. In this paper the air flow in trachea was investigated by numerical simulations. To validate these results we carried out particle image velocimetry experiments and compared resulting velocity fields. Simplified geometry of respiratory airways from oral cavity to 4th generation of branching was employed. Air flow characteristics were analysed during sinusoidal breathing pattern for light activity conditions (period 4 s and tidal volume 1 l). The observed flow fields indicated that the flow in trachea is turbulent during the sinusoidal flow except phases of flow turnarounds. The flow was skewed to front side of the trachea during inspiration and had twin-peak profile during expiration because of the mixing from daughter branches. The methods were compared and good agreement was found. This validation of CFD simulation can result into its further usage in respiratory airflow studies.

  4. Probable flood predictions in ungauged coastal basins of El Salvador

    USGS Publications Warehouse

    Friedel, M.J.; Smith, M.E.; Chica, A.M.E.; Litke, D.

    2008-01-01

    A regionalization procedure is presented and used to predict probable flooding in four ungauged coastal river basins of El Salvador: Paz, Jiboa, Grande de San Miguel, and Goascoran. The flood-prediction problem is sequentially solved for two regions: upstream mountains and downstream alluvial plains. In the upstream mountains, a set of rainfall-runoff parameter values and recurrent peak-flow discharge hydrographs are simultaneously estimated for 20 tributary-basin models. Application of dissimilarity equations among tributary basins (soft prior information) permitted development of a parsimonious parameter structure subject to information content in the recurrent peak-flow discharge values derived using regression equations based on measurements recorded outside the ungauged study basins. The estimated joint set of parameter values formed the basis from which probable minimum and maximum peak-flow discharge limits were then estimated revealing that prediction uncertainty increases with basin size. In the downstream alluvial plain, model application of the estimated minimum and maximum peak-flow hydrographs facilitated simulation of probable 100-year flood-flow depths in confined canyons and across unconfined coastal alluvial plains. The regionalization procedure provides a tool for hydrologic risk assessment and flood protection planning that is not restricted to the case presented herein. ?? 2008 ASCE.

  5. Three-dimensional simulations of National Ignition Facility implosions: Insight into experimental observablesa)

    NASA Astrophysics Data System (ADS)

    Spears, Brian K.; Munro, David H.; Sepke, Scott; Caggiano, Joseph; Clark, Daniel; Hatarik, Robert; Kritcher, Andrea; Sayre, Daniel; Yeamans, Charles; Knauer, James; Hilsabeck, Terry; Kilkenny, Joe

    2015-05-01

    We simulate in 3D both the hydrodynamics and, simultaneously, the X-ray and neutron diagnostic signatures of National Ignition Facility (NIF) implosions. We apply asymmetric radiation drive to study the impact of low mode asymmetry on diagnostic observables. We examine X-ray and neutron images as well as neutron spectra for these perturbed implosions. The X-ray images show hot spot evolution on small length scales and short time scales, reflecting the incomplete stagnation seen in the simulation. The neutron images show surprising differences from the X-ray images. The neutron spectra provide additional measures of implosion asymmetry. Flow in the hot spot alters the neutron spectral peak, namely, the peak location and width. The changes in the width lead to a variation in the apparent temperature with viewing angle that signals underlying hot spot asymmetry. We compare our new expectations based on the simulated data with NIF data. We find that some recent cryogenic layered experiments show appreciable temperature anisotropy indicating residual flow in the hot spot. We also find some trends in the data that do not reflect our simulation and theoretical understanding.

  6. Hydraulic Characteristics of Bedrock Constrictions and Evaluation of One- and Two-Dimensional Models of Flood Flow on the Big Lost River at the Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Berenbrock, Charles; Rousseau, Joseph P.; Twining, Brian V.

    2007-01-01

    A 1.9-mile reach of the Big Lost River, between the Idaho National Engineering and Environmental Laboratory (INEEL) diversion dam and the Pioneer diversion structures, was investigated to evaluate the effects of streambed erosion and bedrock constrictions on model predictions of water-surface elevations. Two one-dimensional (1-D) models, a fixed-bed surface-water flow model (HEC-RAS) and a movable-bed surface-water flow and sediment-transport model (HEC-6), were used to evaluate these effects. The results of these models were compared to the results of a two-dimensional (2-D) fixed-bed model [Transient Inundation 2-Dimensional (TRIM2D)] that had previously been used to predict water-surface elevations for peak flows with sufficient stage and stream power to erode floodplain terrain features (Holocene inset terraces referred to as BLR#6 and BLR#8) dated at 300 to 500 years old, and an unmodified Pleistocene surface (referred to as the saddle area) dated at 10,000 years old; and to extend the period of record at the Big Lost River streamflow-gaging station near Arco for flood-frequency analyses. The extended record was used to estimate the magnitude of the 100-year flood and the magnitude of floods with return periods as long as 10,000 years. In most cases, the fixed-bed TRIM2D model simulated higher water-surface elevations, shallower flow depths, higher flow velocities, and higher stream powers than the fixed-bed HEC-RAS and movable-bed HEC-6 models for the same peak flows. The HEC-RAS model required flow increases of 83 percent [100 to 183 cubic meters per second (m3/s)], and 45 percent (100 to 145 m3/s) to match TRIM2D simulations of water-surface elevations at two paleoindicator sites that were used to determine peak flows (100 m3/s) with an estimated return period of 300 to 500 years; and an increase of 13 percent (150 to 169 m3/s) to match TRIM2D water-surface elevations at the saddle area that was used to establish the peak flow (150 m3/s) of a paleoflood with a return period of 10,000 years. A field survey of the saddle area, however, indicated that the elevation of the lowest point on the saddle area was 1.2 feet higher than indicated on the 2-ft contour map that was used in the TRIM2D model. Because of this elevation discrepancy, HEC-RAS model simulations indicated that a peak flow of at least 210 m3/s would be needed to initiate flow across the 10,000-year old Pleistocene surface. HEC-6 modeling results indicated that to compensate for the effects of streambed scour, additional flow increases would be needed to match HEC-RAS and TRIM2D water-surface elevations along the upper and middle reaches of the river, and to compensate for sediment deposition, a slight decrease in flows would be needed to match HEC-RAS water-surface elevations along the lower reach of the river. Differences in simulated water-surface elevations between the TRIM2D and the HEC-RAS and HEC-6 models are attributed primarily to differences in topographic relief and to differences in the channel and floodplain geometries used in these models. Topographic differences were sufficiently large that it was not possible to isolate the effects of these differences on simulated water-surface elevations from those attributable to the effects of supercritical flow, streambed scour, and sediment deposition.

  7. Characterization of cardiac flow in heart disease patients by computational fluid dynamics and 4D flow MRI

    NASA Astrophysics Data System (ADS)

    Lantz, Jonas; Gupta, Vikas; Henriksson, Lilian; Karlsson, Matts; Persson, Ander; Carhall, Carljohan; Ebbers, Tino

    2017-11-01

    In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables ``what if'' scenarios, such as optimization of valve replacement and other surgical procedures. Funded by the Wallenberg Foundation.

  8. Thermal-hydraulic simulation of mercury target concepts for a pulsed spallation neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siman-Tov, M.; Wendel, M.; Haines, J.

    1996-06-01

    The Oak Ridge Spallation Neutron Source (ORSNS) is a high-power, accelerator-based pulsed spallation neutron source being designed by a multi-laboratory team led by Oak Ridge National Laboratory to achieve very high fluxes of neutrons for scientific experiments. The ORSNS is projected to have a 1 MW proton beam upgradable to 5 MW. About 60% of the beam power (1-5 MW, 17-83 kJ/pulse in 0.5 microsec at 60 cps) is deposited in the liquid metal (mercury) target having the dimensions of 65x30x10 cm (about 19.5 liter). Peak steady state power density is about 150 and 785 MW/m{sup 3} for 1 MWmore » and 5 MW beam respectively, whereas peak pulsed power density is as high as 5.2 and 26.1 GW/m{sup 3}, respectively. The peak pulse temperature rise rate is 14 million C/s (for 5 MW beam) whereas the total pulse temperature rise is only 7 C. In addition to thermal shock and materials compatibility, key feasibility issues for the target are related to its thermal-hydraulic performance. This includes proper flow distribution, flow reversals, possible {open_quotes}hot spots{close_quotes} and the challenge of mitigating the effects of thermal shock through possible injection of helium bubbles throughout the mercury volume or other concepts. The general computational fluid dynamics (CFD) code CFDS-FLOW3D was used to simulate the thermal and flow distribution in three preliminary concepts of the mercury target. Very initial CFD simulation of He bubbles injection demonstrates some potential for simulating behavior of He bubbles in flowing mercury. Much study and development will be required to be able to `predict`, even in a crude way, such a complex phenomena. Future direction in both design and R&D is outlined.« less

  9. Flood reduction as an ecosystem service of constructed wetlands for combined sewer overflow

    NASA Astrophysics Data System (ADS)

    Rizzo, A.; Bresciani, R.; Masi, F.; Boano, F.; Revelli, R.; Ridolfi, L.

    2018-05-01

    Urban runoff negatively impacts the receiving streams and different solutions have been proposed in literature to limit the effect of urbanization on the water balance. These solutions suggest to manage urban runoff in order to switch from a post-development river hydrograph (high peak and short duration) back again to a pre-development hydrograph (low peak and high duration). Combined sewer overflows (CSOs) represent severe pollutant sources for receiving streams due to the combination of first flush of roads and sewers and black water conveyed by combined sewer systems. Constructed wetlands for CSO treatment (CSO-CWs) are adopted with increasing frequency for reducing pollutant inputs to streams. Moreover, these systems exhibit the characteristic to behave similarly to ponds, wetlands, and bioretention systems that provide flood mitigation by decreasing the intensity of peak flows. This work aims to show the additional ecosystem service provided by CSO-CWs in term of limitation of the hydraulic impact of CSO on stream hydrograph. A mathematical model is developed to simulate the hydraulic behavior of a real case study situated in Gorla Maggiore (Italy), which includes vertical flow subsurface beds (VF) as first stage and a free water surface bed (FWS) as second stage. The model simulates the unsaturated flow within VF and the accumulation of water on the top of VF and within FWS. Results show a satisfactory lamination performance of the system for both single and up to 5 consecutive flood events, with a peak flow reduction ranging from 52.7% to 95.4%. Withdrawn of flow rate from the river in order to cope with long dry period does not significantly affect the lamination performances. The considered CSO-CW exhibits an excellent lamination efficiency also during more intense floods events, with a peak flow reduction of 86.2% for a CSO event with return period of 10 years. The flow rate frequency density function determined by the CSO-CW is more shifted towards lower values compared to untreated CSOs. These results indicate that CSO-CWs work properly in terms of reduction of CSO urbanization impact on stream hydrology.

  10. Examining Passenger Flow Choke Points at Airports Using Discrete Event Simulation

    NASA Technical Reports Server (NTRS)

    Brown, Jeremy R.; Madhavan, Poomima

    2011-01-01

    The movement of passengers through an airport quickly, safely, and efficiently is the main function of the various checkpoints (check-in, security. etc) found in airports. Human error combined with other breakdowns in the complex system of the airport can disrupt passenger flow through the airport leading to lengthy waiting times, missing luggage and missed flights. In this paper we present a model of passenger flow through an airport using discrete event simulation that will provide a closer look into the possible reasons for breakdowns and their implications for passenger flow. The simulation is based on data collected at Norfolk International Airport (ORF). The primary goal of this simulation is to present ways to optimize the work force to keep passenger flow smooth even during peak travel times and for emergency preparedness at ORF in case of adverse events. In this simulation we ran three different scenarios: real world, increased check-in stations, and multiple waiting lines. Increased check-in stations increased waiting time and instantaneous utilization. while the multiple waiting lines decreased both the waiting time and instantaneous utilization. This simulation was able to show how different changes affected the passenger flow through the airport.

  11. Evaluation of medium-range ensemble flood forecasting based on calibration strategies and ensemble methods in Lanjiang Basin, Southeast China

    NASA Astrophysics Data System (ADS)

    Liu, Li; Gao, Chao; Xuan, Weidong; Xu, Yue-Ping

    2017-11-01

    Ensemble flood forecasts by hydrological models using numerical weather prediction products as forcing data are becoming more commonly used in operational flood forecasting applications. In this study, a hydrological ensemble flood forecasting system comprised of an automatically calibrated Variable Infiltration Capacity model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated. The hydrological model is optimized by the parallel programmed ε-NSGA II multi-objective algorithm. According to the solutions by ε-NSGA II, two differently parameterized models are determined to simulate daily flows and peak flows at each of the three hydrological stations. Then a simple yet effective modular approach is proposed to combine these daily and peak flows at the same station into one composite series. Five ensemble methods and various evaluation metrics are adopted. The results show that ε-NSGA II can provide an objective determination on parameter estimation, and the parallel program permits a more efficient simulation. It is also demonstrated that the forecasts from ECMWF have more favorable skill scores than other Ensemble Prediction Systems. The multimodel ensembles have advantages over all the single model ensembles and the multimodel methods weighted on members and skill scores outperform other methods. Furthermore, the overall performance at three stations can be satisfactory up to ten days, however the hydrological errors can degrade the skill score by approximately 2 days, and the influence persists until a lead time of 10 days with a weakening trend. With respect to peak flows selected by the Peaks Over Threshold approach, the ensemble means from single models or multimodels are generally underestimated, indicating that the ensemble mean can bring overall improvement in forecasting of flows. For peak values taking flood forecasts from each individual member into account is more appropriate.

  12. Long-term simulation of the activated sludge process at the Hanover-Gümmerwald pilot WWTP.

    PubMed

    Makinia, Jacek; Rosenwinkel, Karl-Heinz; Spering, Volker

    2005-04-01

    The aim of this study was to obtain a validated model, consisting of the Activated Sludge Model No. 3 (ASM3) and the EAWAG bio-P module, which could be used as a decision tool for estimating the maximum allowable peak flow to wastewater treatment plants during stormwater conditions. The databases used for simulations originated from the Hanover-Gummerwald pilot plant subjected to a series of controlled, short-term hydraulic shock loading experiments. The continuous influent wastewater composition was generated using on-line measurements of only three parameters (COD, N-NH4+, P-PO4 3-). Model predictions were compared with on-line data from different locations in the activated sludge system including the aerobic zone (concentrations of N-NH4+, N-NO3-) and secondary effluent (concentrations of P-PO4 3-). The simulations confirmed experimental results concerning the capabilities of the system for handling increased flows during stormwater events. No (or minor) peaks of N-NH4+ were predicted for the line with the double dry weather flowrate, whereas peaks of N-NH4+ at the line with the quadruple dry weather flowrate were normally exceeding 8 g Nm(-3) (similar to the observations).

  13. Modeling hospital surgical delivery process design using system simulation: optimizing patient flow and bed capacity as an illustration.

    PubMed

    Kumar, Sameer

    2011-01-01

    It is increasingly recognized that hospital operation is an intricate system with limited resources and many interacting sources of both positive and negative feedback. The purpose of this study is to design a surgical delivery process in a county hospital in the U.S where patient flow through a surgical ward is optimized. The system simulation modeling is used to address questions of capacity planning, throughput management and interacting resources which constitute the constantly changing complexity that characterizes designing a contemporary surgical delivery process in a hospital. The steps in building a system simulation model is demonstrated using an example of building a county hospital in a small city in the US. It is used to illustrate a modular system simulation modeling of patient surgery process flows. The system simulation model development will enable planners and designers how they can build in overall efficiencies in a healthcare facility through optimal bed capacity for peak patient flow of emergency and routine patients.

  14. Hydrological control of large hurricane-induced lahars: evidence from rainfall-runoff modeling, seismic and video monitoring

    NASA Astrophysics Data System (ADS)

    Capra, Lucia; Coviello, Velio; Borselli, Lorenzo; Márquez-Ramírez, Víctor-Hugo; Arámbula-Mendoza, Raul

    2018-03-01

    The Volcán de Colima, one of the most active volcanoes in Mexico, is commonly affected by tropical rains related to hurricanes that form over the Pacific Ocean. In 2011, 2013 and 2015 hurricanes Jova, Manuel and Patricia, respectively, triggered tropical storms that deposited up to 400 mm of rain in 36 h, with maximum intensities of 50 mm h -1. The effects were devastating, with the formation of multiple lahars along La Lumbre and Montegrande ravines, which are the most active channels in sediment delivery on the south-southwest flank of the volcano. Deep erosion along the river channels and several marginal landslides were observed, and the arrival of block-rich flow fronts resulted in damages to bridges and paved roads in the distal reaches of the ravines. The temporal sequence of these flow events is reconstructed and analyzed using monitoring data (including video images, seismic records and rainfall data) with respect to the rainfall characteristics and the hydrologic response of the watersheds based on rainfall-runoff numerical simulation. For the studied events, lahars occurred 5-6 h after the onset of rainfall, lasted several hours and were characterized by several pulses with block-rich fronts and a maximum flow discharge of 900 m3 s -1. Rainfall-runoff simulations were performer using the SCS-curve number and the Green-Ampt infiltration models, providing a similar result in the detection of simulated maximum watershed peaks discharge. Results show different behavior for the arrival times of the first lahar pulses that correlate with the simulated catchment's peak discharge for La Lumbre ravine and with the peaks in rainfall intensity for Montegrande ravine. This different behavior is related to the area and shape of the two watersheds. Nevertheless, in all analyzed cases, the largest lahar pulse always corresponds with the last one and correlates with the simulated maximum peak discharge of these catchments. Data presented here show that flow pulses within a lahar are not randomly distributed in time, and they can be correlated with rainfall peak intensity and/or watershed discharge, depending on the watershed area and shape. This outcome has important implications for hazard assessment during extreme hydro-meteorological events, as it could help in providing real-time alerts. A theoretical rainfall distribution curve was designed for Volcán de Colima based on the rainfall and time distribution of hurricanes Manuel and Patricia. This can be used to run simulations using weather forecasts prior to the actual event, in order to estimate the arrival time of main lahar pulses, usually characterized by block-rich fronts, which are responsible for most of the damage to infrastructure and loss of goods and lives.

  15. Estimating the Magnitude and Frequency of Floods in Small Urban Streams in South Carolina, 2001

    USGS Publications Warehouse

    Feaster, Toby D.; Guimaraes, Wladimir B.

    2004-01-01

    The magnitude and frequency of floods at 20 streamflowgaging stations on small, unregulated urban streams in or near South Carolina were estimated by fitting the measured wateryear peak flows to a log-Pearson Type-III distribution. The period of record (through September 30, 2001) for the measured water-year peak flows ranged from 11 to 25 years with a mean and median length of 16 years. The drainage areas of the streamflow-gaging stations ranged from 0.18 to 41 square miles. Based on the flood-frequency estimates from the 20 streamflow-gaging stations (13 in South Carolina; 4 in North Carolina; and 3 in Georgia), generalized least-squares regression was used to develop regional regression equations. These equations can be used to estimate the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows for small urban streams in the Piedmont, upper Coastal Plain, and lower Coastal Plain physiographic provinces of South Carolina. The most significant explanatory variables from this analysis were mainchannel length, percent impervious area, and basin development factor. Mean standard errors of prediction for the regression equations ranged from -25 to 33 percent for the 10-year recurrence-interval flows and from -35 to 54 percent for the 100-year recurrence-interval flows. The U.S. Geological Survey has developed a Geographic Information System application called StreamStats that makes the process of computing streamflow statistics at ungaged sites faster and more consistent than manual methods. This application was developed in the Massachusetts District and ongoing work is being done in other districts to develop a similar application using streamflow statistics relative to those respective States. Considering the future possibility of implementing StreamStats in South Carolina, an alternative set of regional regression equations was developed using only main channel length and impervious area. This was done because no digital coverages are currently available for basin development factor and, therefore, it could not be included in the StreamStats application. The average mean standard error of prediction for the alternative equations was 2 to 5 percent larger than the standard errors for the equations that contained basin development factor. For the urban streamflow-gaging stations in South Carolina, measured water-year peak flows were compared with those from an earlier urban flood-frequency investigation. The peak flows from the earlier investigation were computed using a rainfall-runoff model. At many of the sites, graphical comparisons indicated that the variance of the measured data was much less than the variance of the simulated data. Several statistical tests were applied to compare the variances and the means of the measured and simulated data for each site. The results indicated that the variances were significantly different for 11 of the 13 South Carolina streamflow-gaging stations. For one streamflow-gaging station, the test for normality, which is one of the assumptions of the data when comparing variances, indicated that neither the measured data nor the simulated data were distributed normally; therefore, the test for differences in the variances was not used for that streamflow-gaging station. Another statistical test was used to test for statistically significant differences in the means of the measured and simulated data. The results indicated that for 5 of the 13 urban streamflowgaging stations in South Carolina there was a statistically significant difference in the means of the two data sets. For comparison purposes and to test the hypothesis that there may have been climatic differences between the period in which the measured peak-flow data were measured and the period for which historic rainfall data were used to compute the simulated peak flows, 16 rural streamflow-gaging stations with long-term records were reviewed using similar techniques as those used for the measured an

  16. The use of distributed hydrological models for the Gard 2002 flash flood event: Analysis of associated hydrological processes

    NASA Astrophysics Data System (ADS)

    Braud, Isabelle; Roux, Hélène; Anquetin, Sandrine; Maubourguet, Marie-Madeleine; Manus, Claire; Viallet, Pierre; Dartus, Denis

    2010-11-01

    SummaryThis paper presents a detailed analysis of the September 8-9, 2002 flash flood event in the Gard region (southern France) using two distributed hydrological models: CVN built within the LIQUID® hydrological platform and MARINE. The models differ in terms of spatial discretization, infiltration and water redistribution representation, and river flow transfer. MARINE can also account for subsurface lateral flow. Both models are set up using the same available information, namely a DEM and a pedology map. They are forced with high resolution radar rainfall data over a set of 18 sub-catchments ranging from 2.5 to 99 km2 and are run without calibration. To begin with, models simulations are assessed against post field estimates of the time of peak and the maximum peak discharge showing a fair agreement for both models. The results are then discussed in terms of flow dynamics, runoff coefficients and soil saturation dynamics. The contribution of the subsurface lateral flow is also quantified using the MARINE model. This analysis highlights that rainfall remains the first controlling factor of flash flood dynamics. High rainfall peak intensities are very influential of the maximum peak discharge for both models, but especially for the CVN model which has a simplified overland flow transfer. The river bed roughness also influences the peak intensity and time. Soil spatial representation is shown to have a significant role on runoff coefficients and on the spatial variability of saturation dynamics. Simulated soil saturation is found to be strongly related with soil depth and initial storage deficit maps, due to a full saturation of most of the area at the end of the event. When activated, the signature of subsurface lateral flow is also visible in the spatial patterns of soil saturation with higher values concentrating along the river network. However, the data currently available do not allow the assessment of both patterns. The paper concludes with a set of recommendations for enhancing field observations in order to progress in process understanding and gather a larger set of data to improve the realism of distributed models.

  17. Pulsatility Index as a Diagnostic Parameter of Reciprocating Wall Shear Stress Parameters in Physiological Pulsating Waveforms

    PubMed Central

    Avrahami, Idit; Kersh, Dikla

    2016-01-01

    Arterial wall shear stress (WSS) parameters are widely used for prediction of the initiation and development of atherosclerosis and arterial pathologies. Traditional clinical evaluation of arterial condition relies on correlations of WSS parameters with average flow rate (Q) and heart rate (HR) measurements. We show that for pulsating flow waveforms in a straight tube with flow reversals that lead to significant reciprocating WSS, the measurements of HR and Q are not sufficient for prediction of WSS parameters. Therefore, we suggest adding a third quantity—known as the pulsatility index (PI)—which is defined as the peak-to-peak flow rate amplitude normalized by Q. We examine several pulsating flow waveforms with and without flow reversals using a simulation of a Womersley model in a straight rigid tube and validate the simulations through experimental study using particle image velocimetry (PIV). The results indicate that clinically relevant WSS parameters such as the percentage of negative WSS (P[%]), oscillating shear index (OSI) and the ratio of minimum to maximum shear stress rates (min/max), are better predicted when the PI is used in conjunction with HR and Q. Therefore, we propose to use PI as an additional and essential diagnostic quantity for improved predictability of the reciprocating WSS. PMID:27893801

  18. Comparison of tricuspid inflow and superior vena caval Doppler velocities in acute simulated hypovolemia: new non-invasive indices for evaluating right ventricular preload.

    PubMed

    Liu, Jie; Cao, Tie-Sheng; Yuan, Li-Jun; Duan, Yun-You; Yang, Yi-Lin

    2006-05-16

    Assessment of cardiac preload is important for clinical management of some emergencies related to hypovolemia. Effects of acute simulated hypovolemia on Doppler blood flow velocity indices of tricuspid valve (TV) and superior vena cava (SVC) were investigated in order to find sensitive Doppler indices for predicting right ventricular preload. Doppler flow patterns of SVC and TV in 12 healthy young men were examined by transthoracic echocardiography (TTE) during graded lower body negative pressure (LBNP) of up to -60 mm Hg which simulated acute hypovolemia. Peak velocities of all waves and their related ratios (SVC S/D and tricuspid E/A) were measured, calculated and statistically analyzed. Except for the velocity of tricuspid A wave, velocities of all waves and their related ratios declined during volume decentralization. Of all indices measured, the peak velocities of S wave and AR wave in SVC correlated most strongly with levels of LBNP (r = -0.744 and -0.771, p < 0.001). The S and AR velocities are of good values in assessing right ventricular preload. Monitoring SVC flow may provide a relatively noninvasive means to assess direct changes in right ventricular preload.

  19. The Role of Nonlocal Heat Flow in Hohlraums

    NASA Astrophysics Data System (ADS)

    Town, R. P. J.; Short, R. W.; Verdon, C. P.; Afeyan, B. B.; Glenzer, S. H.; Suter, L. J.

    1997-11-01

    Glenzer,(Submitted to Physical Review Letters.)* using the Thomson scattering technique, has measured the time evolution of the electron temperature in scale-1 hohlraums. The measured peak electron temperature was 5 keV. Lasnex simulations, using a flux-limited Spitzer heat diffusion model with the standard sharp-cutoff flux limiter of 0.05, gave a peak electron temperature of only 3 keV. Good agreement between simulation and experiment was found when Lasnex simulations employed a time-varying flux limiter, which had a value of 0.01 when the main drive came on. The need to severly inhibit heat transport over the entire volume of hot plasma at late time suggests that nonlocal heat flow could be important in explaining these experimental observations. In this presentation we will report on Fokker--Planck calculations of idealized hohlraums and compare them to standard hydrodynamic calculations using flux-limited Spitzer heat flow. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460. Also, work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

  20. Green roof hydrologic performance and modeling: a review.

    PubMed

    Li, Yanling; Babcock, Roger W

    2014-01-01

    Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.

  1. Computational representation and hemodynamic characterization of in vivo acquired severe stenotic renal artery geometries using turbulence modeling.

    PubMed

    Kagadis, George C; Skouras, Eugene D; Bourantas, George C; Paraskeva, Christakis A; Katsanos, Konstantinos; Karnabatidis, Dimitris; Nikiforidis, George C

    2008-06-01

    The present study reports on computational fluid dynamics in the case of severe renal artery stenosis (RAS). An anatomically realistic model of a renal artery was reconstructed from CT scans, and used to conduct CFD simulations of blood flow across RAS. The recently developed shear stress transport (SST) turbulence model was pivotally applied in the simulation of blood flow in the region of interest. Blood flow was studied in vivo under the presence of RAS and subsequently in simulated cases before the development of RAS, and after endovascular stent implantation. The pressure gradients in the RAS case were many orders of magnitude larger than in the healthy case. The presence of RAS increased flow resistance, which led to considerably lower blood flow rates. A simulated stent in place of the RAS decreased the flow resistance at levels proportional to, and even lower than, the simulated healthy case without the RAS. The wall shear stresses, differential pressure profiles, and net forces exerted on the surface of the atherosclerotic plaque at peak pulse were shown to be of relevant high distinctiveness, so as to be considered potential indicators of hemodynamically significant RAS.

  2. Relating a Jet-Surface Interaction Experiment to a Commercial Supersonic Transport Aircraft Using Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F. III; Friedlander, David

    2017-01-01

    Reynolds-Averaged Navier-Stokes (RANS) simulations were performed for a commercial supersonic transport aircraft concept and experimental hardware models designed to represent the installed propulsion system of the conceptual aircraft in an upcoming test campaign. The purpose of the experiment is to determine the effects of jet-surface interactions from supersonic aircraft on airport community noise. RANS simulations of the commercial supersonic transport aircraft concept were performed to relate the representative experimental hardware to the actual aircraft. RANS screening simulations were performed on the proposed test hardware to verify that it would be free from potential rig noise and to predict the aerodynamic forces on the model hardware to assist with structural design. The simulations showed a large region of separated flow formed in a junction region of one of the experimental configurations. This was dissimilar with simulations of the aircraft and could invalidate the noise measurements. This configuration was modified and a subsequent RANS simulation showed that the size of the flow separation was greatly reduced. The aerodynamic forces found on the experimental models were found to be relatively small when compared to the expected loads from the model’s own weight.Reynolds-Averaged Navier-Stokes (RANS) simulations were completed for two configurations of a three-stream inverted velocity profile (IVP) nozzle and a baseline single-stream round nozzle (mixed-flow equivalent conditions). For the Sideline and Cutback flow conditions, while the IVP nozzles did not reduce the peak turbulent kinetic energy on the lower side of the jet plume, the IVP nozzles did significantly reduce the size of the region of peak turbulent kinetic energy when compared to the jet plume of the baseline nozzle cases. The IVP nozzle at Sideline conditions did suffer a region of separated flow from the inner stream nozzle splitter that did produce an intense, but small, region of turbulent kinetic energy in the vicinity of the nozzle exit. When viewed with the understanding that jet noise is directly related to turbulent kinetic energy, these IVP nozzle simulations show the potential to reduce noise to observers located below the nozzle. However, these RANS simulations also show that some modifications may be needed to prevent the small region of separated flow-induced turbulent kinetic energy from the inner stream nozzle splitter at Sideline conditions.

  3. Computer simulation of storm runoff for three watersheds in Albuquerque, New Mexico

    USGS Publications Warehouse

    Knutilla, R.L.; Veenhuis, J.E.

    1994-01-01

    Rainfall-runoff data from three watersheds were selected for calibration and verification of the U.S. Geological Survey's Distributed Routing Rainfall-Runoff Model. The watersheds chosen are residentially developed. The conceptually based model uses an optimization process that adjusts selected parameters to achieve the best fit between measured and simulated runoff volumes and peak discharges. Three of these optimization parameters represent soil-moisture conditions, three represent infiltration, and one accounts for effective impervious area. Each watershed modeled was divided into overland-flow segments and channel segments. The overland-flow segments were further subdivided to reflect pervious and impervious areas. Each overland-flow and channel segment was assigned representative values of area, slope, percentage of imperviousness, and roughness coefficients. Rainfall-runoff data for each watershed were separated into two sets for use in calibration and verification. For model calibration, seven input parameters were optimized to attain a best fit of the data. For model verification, parameter values were set using values from model calibration. The standard error of estimate for calibration of runoff volumes ranged from 19 to 34 percent, and for peak discharge calibration ranged from 27 to 44 percent. The standard error of estimate for verification of runoff volumes ranged from 26 to 31 percent, and for peak discharge verification ranged from 31 to 43 percent.

  4. The effects of Missouri River mainstem reservoir system operations on 2011 flooding using a Precipitation-Runoff Modeling System model: Chapter K in 2011 Floods of the Central United States

    USGS Publications Warehouse

    Haj, Adel E.; Christiansen, Daniel E.; Viger, Roland J.

    2014-01-01

    In 2011 the Missouri River Mainstem Reservoir System (Reservoir System) experienced the largest volume of flood waters since the initiation of record-keeping in the nineteenth century. The high levels of runoff from both snowpack and rainfall stressed the Reservoir System’s capacity to control flood waters and caused massive damage and disruption along the river. The flooding and resulting damage along the Missouri River brought increased public attention to the U.S. Army Corps of Engineers (USACE) operation of the Reservoir System. To help understand the effects of Reservoir System operation on the 2011 Missouri River flood flows, the U.S. Geological Survey Precipitation-Runoff Modeling System was used to construct a model of the Missouri River Basin to simulate flows at streamgages and dam locations with the effects of Reservoir System operation (regulation) on flow removed. Statistical tests indicate that the Missouri River Precipitation-Runoff Modeling System model is a good fit for high-flow monthly and annual stream flow estimation. A comparison of simulated unregulated flows and measured regulated flows show that regulation greatly reduced spring peak flow events, consolidated two summer peak flow events to one with a markedly decreased magnitude, and maintained higher than normal base flow beyond the end of water year 2011. Further comparison of results indicate that without regulation, flows greater than those measured would have occurred and been sustained for much longer, frequently in excess of 30 days, and flooding associated with high-flow events would have been more severe.

  5. Hydrograph separation for karst watersheds using a two-domain rainfall-discharge model

    USGS Publications Warehouse

    Long, Andrew J.

    2009-01-01

    Highly parameterized, physically based models may be no more effective at simulating the relations between rainfall and outflow from karst watersheds than are simpler models. Here an antecedent rainfall and convolution model was used to separate a karst watershed hydrograph into two outflow components: one originating from focused recharge in conduits and one originating from slow flow in a porous annex system. In convolution, parameters of a complex system are lumped together in the impulse-response function (IRF), which describes the response of the system to an impulse of effective precipitation. Two parametric functions in superposition approximate the two-domain IRF. The outflow hydrograph can be separated into flow components by forward modeling with isolated IRF components, which provides an objective criterion for separation. As an example, the model was applied to a karst watershed in the Madison aquifer, South Dakota, USA. Simulation results indicate that this watershed is characterized by a flashy response to storms, with a peak response time of 1 day, but that 89% of the flow results from the slow-flow domain, with a peak response time of more than 1 year. This long response time may be the result of perched areas that store water above the main water table. Simulation results indicated that some aspects of the system are stationary but that nonlinearities also exist.

  6. Building A Simulation Model For The Prediction Of Temperature Distribution In Pulsed Laser Spot Welding Of Dissimilar Low Carbon Steel 1020 To Aluminum Alloy 6061

    NASA Astrophysics Data System (ADS)

    Yousef, Adel K. M.; Taha, Ziad. A.; Shehab, Abeer A.

    2011-01-01

    This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd: YAG laser spot welding of dissimilar metal; low carbon steel (1020) to aluminum alloy (6061). The model is built using ANSYS FLUENT 3.6 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented based on conduction heat transfer out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied. Three peak powers 1, 1.66 and 2.5 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of two pulse durations 4 and 8 ms (with constant peak power), on the transient temperature distribution and weld pool dimension were predicated using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse durations, peak power and interaction time required) during pulsed laser spot welding of dissimilar metals.

  7. Investigation on flow oscillation modes and aero-acoustics generation mechanism in cavity

    NASA Astrophysics Data System (ADS)

    Yang, Dang-Guo; Lu, Bo; Cai, Jin-Sheng; Wu, Jun-Qiang; Qu, Kun; Liu, Jun

    2018-05-01

    Unsteady flow and multi-scale vortex transformation inside a cavity of L/D = 6 (ratio of length to depth) at Ma = 0.9 and 1.5 were studied using the numerical simulation method of modified delayed detached eddy simulation (DDES) in this paper. Aero-acoustic characteristics for the cavity at same flow conditions were obtained by the numerical method and 0.6 m by 0.6 m transonic and supersonic wind-tunnel experiments. The analysis on the computational and experimental results indicates that some vortex generates from flow separation in shear-layer over the cavity, and the vortex moves from forward to downward of the cavity at some velocity, and impingement of the vortex and the rear-wall of the cavity occurs. Some sound waves spread abroad to the cavity fore-wall, which induces some new vortex generation, and the vortex sheds, moves and impinges on the cavity rear-wall. New sound waves occur. The research results indicate that sound wave feedback created by the impingement of the shedding-vortices and rear cavity face leads to flow oscillations and noise generation inside the cavity. Analysis on aero-acoustic characteristics inside the cavity is feasible. The simulated self-sustained flow-oscillation modes and peak sound pressure on typical frequencies inside the cavity agree well with Rossiter’s and Heller’s predicated results. Moreover, the peak sound pressure occurs in the first and second flow-oscillation modes and most of sound energy focuses on the low-frequency region. Compared with subsonic speed (Ma = 0.9), aerodynamic noise is more intense at Ma = 1.5, which is induced by compression wave or shock wave in near region of fore and rear cavity face.

  8. Hydrological Modelling using HEC-HMS for Flood Risk Assessment of Segamat Town, Malaysia

    NASA Astrophysics Data System (ADS)

    Romali, N. S.; Yusop, Z.; Ismail, A. Z.

    2018-03-01

    This paper presents an assessment of the applicability of using Hydrologic Modelling System developed by the Hydrologic Engineering Center (HEC-HMS) for hydrological modelling of Segamat River. The objective of the model application is to assist in the assessment of flood risk by providing the peak flows of 2011 Segamat flood for the generation of flood mapping of Segamat town. The capability of the model was evaluated by comparing the historical observed data with the simulation results of the selected flood events. The model calibration and validation efficiency was verified using Nash-Sutcliffe model efficiency coefficient. The results demonstrate the interest to implement the hydrological model for assessing flood risk where the simulated peak flow result is in agreement with historical observed data. The model efficiency of the calibrated and validated exercises is 0.90 and 0.76 respectively, which is acceptable.

  9. A Streaming Language Implementation of the Discontinuous Galerkin Method

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Knight, Timothy

    2005-01-01

    We present a Brook streaming language implementation of the 3-D discontinuous Galerkin method for compressible fluid flow on tetrahedral meshes. Efficient implementation of the discontinuous Galerkin method using the streaming model of computation introduces several algorithmic design challenges. Using a cycle-accurate simulator, performance characteristics have been obtained for the Stanford Merrimac stream processor. The current Merrimac design achieves 128 Gflops per chip and the desktop board is populated with 16 chips yielding a peak performance of 2 Teraflops. Total parts cost for the desktop board is less than $20K. Current cycle-accurate simulations for discretizations of the 3-D compressible flow equations yield approximately 40-50% of the peak performance of the Merrimac streaming processor chip. Ongoing work includes the assessment of the performance of the same algorithm on the 2 Teraflop desktop board with a target goal of achieving 1 Teraflop performance.

  10. Four-way coupled simulations of small particles in turbulent channel flow: The effects of particle shape and Stokes number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, F.; Wachem, B. G. M. van, E-mail: berend.van.wachem@gmail.com; George, W. K.

    2015-08-15

    This paper investigates the effects of particle shape and Stokes number on the behaviour of non-spherical particles in turbulent channel flow. Although there are a number of studies concerning spherical particles in turbulent flows, most important applications occurring in process, energy, and pharmaceutical industries deal with non-spherical particles. The computation employs a unique and novel four-way coupling with the Lagrangian point-particle approach. The fluid phase at low Reynolds number (Re{sub τ} = 150) is modelled by direct numerical simulation, while particles are tracked individually. Inter-particle and particle-wall collisions are also taken into account. To explore the effects of particles onmore » the flow turbulence, the statistics of the fluid flow such as the fluid velocity, the terms in the turbulence kinetic energy equation, the slip velocity between the two phases and velocity correlations are analysed considering ellipsoidal particles with different inertia and aspect ratio. The results of the simulations show that the turbulence is considerably attenuated, even in the very dilute regime. The reduction of the turbulence intensity is predominant near the turbulence kinetic energy peak in the near wall region, where particles preferentially accumulate. Moreover, the elongated shape of ellipsoids strengthens the turbulence attenuation. In simulations with ellipsoidal particles, the fluid-particle interactions strongly depend on the orientation of the ellipsoids. In the near wall region, ellipsoids tend to align predominantly within the streamwise (x) and wall-normal (y) planes and perpendicular to the span-wise direction, whereas no preferential orientation in the central region of the channel is observed. Important conclusions from this work include the effective viscosity of the flow is not affected, the direct dissipation by the particles is negligible, and the primary mechanism by which the particles affect the flow is by altering the turbulence structure around the turbulence kinetic energy peak.« less

  11. Simulations of blood flow through a stenosed carotid artery

    NASA Astrophysics Data System (ADS)

    Lundin, Staffan; Meder, Samuel; Metcalfe, Ralph

    2000-11-01

    The human carotid artery is often the site of the formation of atherosclerotic lesions that can lead to severe reduction of blood flow to the brain, frequently resulting in a stroke. There is strong evidence that hemodynamic variables such as the wall shear stress and its spatial and temporal derivatives play a role in fostering atherosclerosis. To investigate the potential of these effects, we have performed unsteady, three-dimensional numerical simulations of blood flow through the carotid bifurcation in the presence of stenoses of varying degrees and eccentricities. The simulations indicate that regions of low maximum and minimum shear stress correlate better with lesion prone sites than low average wall shear stress. As the degree of stenosis increases, it is found that the downstream flow changes drastically for stenoses greater than about 25Downstream eddies are generated during systole that create local shear stress peaks on the internal carotid artery wall, resulting in significant reduction in flow rates through the internal carotid artery. Large secondary flows develop, and there are also periods of flow reversal during the systolic/diastolic cycle.

  12. The influence of synthetic hyetograph parameters on simulation results of runoff from urban catchment

    NASA Astrophysics Data System (ADS)

    Mazurkiewicz, Karolina; Skotnicki, Marcin

    2018-02-01

    The paper presents the results of analysis of the influence of the maximum intensity (peak) location in the synthetic hyetograph and rainfall duration on the maximum outflow from urban catchment. For the calculation Chicago hyetographs with a duration from 15 minutes to 180 minutes and peak location between 20% and 50% of the total rainfall duration were design. Runoff simulation was performed using the SWMM5 program for three models of urban catchment with area from 0.9 km2 to 6.7 km2. It was found that the increase in the rainfall peak location causes the increase in the maximum outflow up to 17%. For a given catchment the greatest maximum outflow is generated by the rainfall, which time to peak corresponds to the flow time through the catchment. Presented results may be useful for choosing the rainfall parameters for storm sewer systems modeling.

  13. Plasma sheet low-entropy flow channels and dipolarization fronts from macro to micro scales: Global MHD and PIC simulations

    NASA Astrophysics Data System (ADS)

    Merkin, V. G.; Wiltberger, M. J.; Sitnov, M. I.; Lyon, J.

    2016-12-01

    Observations show that much of plasma and magnetic flux transport in the magnetotail occurs in the form of discrete activations such as bursty bulk flows (BBFs). These flow structures are typically associated with strong peaks of the Z-component of the magnetic field normal to the magnetotail current sheet (dipolarization fronts, DFs), as well as density and flux tube entropy depletions also called plasma bubbles. Extensive observational analysis of these structures has been carried out using data from Geotail spacecraft and more recently from Cluster, THEMIS, and MMS multi-probe missions. Global magnetohydrodynamic (MHD) simulations of the magnetosphere reveal similar plasma sheet flow bursts, in agreement with regional MHD and particle-in-cell (PIC) models. We present results of high-resolution simulations using the Lyon-Fedder-Mobarry (LFM) global MHD model and analyze the properties of the bursty flows including their structure and evolution as they propagate from the mid-tail region into the inner magnetosphere. We highlight similarities and differences with the corresponding observations and discuss comparative properties of plasma bubbles and DFs in our global MHD simulations with their counterparts in 3D PIC simulations.

  14. Measurement of Fracture Aperture Fields Using Ttransmitted Light: An Evaluation of Measurement Errors and their Influence on Simulations of Flow and Transport through a Single Fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detwiler, Russell L.; Glass, Robert J.; Pringle, Scott E.

    Understanding of single and multi-phase flow and transport in fractures can be greatly enhanced through experimentation in transparent systems (analogs or replicas) where light transmission techniques yield quantitative measurements of aperture, solute concentration, and phase saturation fields. Here we quanti@ aperture field measurement error and demonstrate the influence of this error on the results of flow and transport simulations (hypothesized experimental results) through saturated and partially saturated fractures. find that precision and accuracy can be balanced to greatly improve the technique and We present a measurement protocol to obtain a minimum error field. Simulation results show an increased sensitivity tomore » error as we move from flow to transport and from saturated to partially saturated conditions. Significant sensitivity under partially saturated conditions results in differences in channeling and multiple-peaked breakthrough curves. These results emphasize the critical importance of defining and minimizing error for studies of flow and transpoti in single fractures.« less

  15. Modelling of peak temperature during friction stir processing of magnesium alloy AZ91

    NASA Astrophysics Data System (ADS)

    Vaira Vignesh, R.; Padmanaban, R.

    2018-02-01

    Friction stir processing (FSP) is a solid state processing technique with potential to modify the properties of the material through microstructural modification. The study of heat transfer in FSP aids in the identification of defects like flash, inadequate heat input, poor material flow and mixing etc. In this paper, transient temperature distribution during FSP of magnesium alloy AZ91 was simulated using finite element modelling. The numerical model results were validated using the experimental results from the published literature. The model was used to predict the peak temperature obtained during FSP for various process parameter combinations. The simulated peak temperature results were used to develop a statistical model. The effect of process parameters namely tool rotation speed, tool traverse speed and shoulder diameter of the tool on the peak temperature was investigated using the developed statistical model. It was found that peak temperature was directly proportional to tool rotation speed and shoulder diameter and inversely proportional to tool traverse speed.

  16. Intercomparison of hydrological model structures and calibration approaches in climate scenario impact projections

    NASA Astrophysics Data System (ADS)

    Vansteenkiste, Thomas; Tavakoli, Mohsen; Ntegeka, Victor; De Smedt, Florimond; Batelaan, Okke; Pereira, Fernando; Willems, Patrick

    2014-11-01

    The objective of this paper is to investigate the effects of hydrological model structure and calibration on climate change impact results in hydrology. The uncertainty in the hydrological impact results is assessed by the relative change in runoff volumes and peak and low flow extremes from historical and future climate conditions. The effect of the hydrological model structure is examined through the use of five hydrological models with different spatial resolutions and process descriptions. These were applied to a medium sized catchment in Belgium. The models vary from the lumped conceptual NAM, PDM and VHM models over the intermediate detailed and distributed WetSpa model to the fully distributed MIKE SHE model. The latter model accounts for the 3D groundwater processes and interacts bi-directionally with a full hydrodynamic MIKE 11 river model. After careful and manual calibration of these models, accounting for the accuracy of the peak and low flow extremes and runoff subflows, and the changes in these extremes for changing rainfall conditions, the five models respond in a similar way to the climate scenarios over Belgium. Future projections on peak flows are highly uncertain with expected increases as well as decreases depending on the climate scenario. The projections on future low flows are more uniform; low flows decrease (up to 60%) for all models and for all climate scenarios. However, the uncertainties in the impact projections are high, mainly in the dry season. With respect to the model structural uncertainty, the PDM model simulates significantly higher runoff peak flows under future wet scenarios, which is explained by its specific model structure. For the low flow extremes, the MIKE SHE model projects significantly lower low flows in dry scenario conditions in comparison to the other models, probably due to its large difference in process descriptions for the groundwater component, the groundwater-river interactions. The effect of the model calibration was tested by comparing the manual calibration approach with automatic calibrations of the VHM model based on different objective functions. The calibration approach did not significantly alter the model results for peak flow, but the low flow projections were again highly influenced. Model choice as well as calibration strategy hence have a critical impact on low flows, more than on peak flows. These results highlight the high uncertainty in low flow modelling, especially in a climate change context.

  17. Characterizing Macro Scale Patterns Of Uncertainty For Improved Operational Flood Forecasting Over The Conterminous United States

    NASA Astrophysics Data System (ADS)

    Vergara, H. J.; Kirstetter, P.; Gourley, J. J.; Flamig, Z.; Hong, Y.

    2015-12-01

    The macro scale patterns of simulated streamflow errors are studied in order to characterize uncertainty in a hydrologic modeling system forced with the Multi-Radar/Multi-Sensor (MRMS; http://mrms.ou.edu) quantitative precipitation estimates for flood forecasting over the Conterminous United States (CONUS). The hydrologic model is centerpiece of the Flooded Locations And Simulated Hydrograph (FLASH; http://flash.ou.edu) real-time system. The hydrologic model is implemented at 1-km/5-min resolution to generate estimates of streamflow. Data from the CONUS-wide stream gauge network of the United States' Geological Survey (USGS) were used as a reference to evaluate the discrepancies with the hydrological model predictions. Streamflow errors were studied at the event scale with particular focus on the peak flow magnitude and timing. A total of 2,680 catchments over CONUS and 75,496 events from a 10-year period are used for the simulation diagnostic analysis. Associations between streamflow errors and geophysical factors were explored and modeled. It is found that hydro-climatic factors and radar coverage could explain significant underestimation of peak flow in regions of complex terrain. Furthermore, the statistical modeling of peak flow errors shows that other geophysical factors such as basin geomorphometry, pedology, and land cover/use could also provide explanatory information. Results from this research demonstrate the utility of uncertainty characterization in providing guidance to improve model adequacy, parameter estimates, and input quality control. Likewise, the characterization of uncertainty enables probabilistic flood forecasting that can be extended to ungauged locations.

  18. A Microfluidics-based Pulpal Arteriole Blood Flow Phantom for Validation of Doppler Ultrasound Devices in Pulpal Blood Flow Velocity Measurement.

    PubMed

    Kim, Dohyun; Park, Sung-Ho

    2016-11-01

    Recently, Doppler ultrasound has been used for the measurement of pulpal blood flow in human teeth. However, the reliability of this method has not been verified. In this study, we developed a model to simulate arteriole blood flow within the dental pulp by using microfluidics. This arteriole simulator, or flow phantom, was used to determine the reliability of measurements obtained by using a Doppler ultrasound device. A microfluidic chip was fabricated by using the soft lithography technique, and blood-mimicking fluid was pumped through the channel by a microfluidic system. A Doppler ultrasound device was used for the measurement of flow velocity. The peak, mean, and minimal flow velocities obtained from the phantom and the Doppler ultrasound device were compared by using linear regression analysis and Pearson correlation coefficient. Bland-Altman analyses were performed to evaluate the velocity differences between the flow generated by the phantom and the flow measurements made with the Doppler ultrasound device. The microfluidic system was able to generate the flow profiles as intended, and the fluid flow could be monitored and controlled by the software program. There were excellent linear correlations between the peak, mean, and minimal flow velocities of the phantom and those of the Doppler ultrasound device (r = 0.94-0.996, P < .001). However, the velocities were overestimated by the Doppler ultrasound device. This phantom provides opportunities for research and education involving the Doppler ultrasound technique in dentistry. Although Doppler ultrasound can be an effective tool for the measurement of pulpal blood flow velocity, it is essential to validate and calibrate the device before clinical use. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Understanding rotation profile structures in ECH-heated plasmas using nonlinear gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Brian, B.; Ethier, S.; Chen, J.; Startsev, E.; Diamond, P. H.; Lu, Z.

    2015-11-01

    A non-diffusive momentum flux connecting edge momentum sources/sinks and core plasma flow is required to establish the off-axis peaked ion rotation profile typically observed in ECH-heated DIII-D plasmas without explicit external momentum input. The understanding of the formation of such profile structures provides an outstanding opportunity to test the physics of turbulence driving intrinsic rotation, and validate first-principles-based gyrokinetic simulation models. Nonlinear, global gyrokinetic simulations of DIII-D ECH plasmas indicate a substantial ITG fluctuation-induced residual stress generated around the region of peaked toroidal rotation, along with a diffusive momentum flux. The residual stress profile shows an anti-gradient, dipole structure, which is critical for accounting for the formation of the peaked rotation profile. It is showed that both turbulence intensity gradient and zonal flow ExB shear contribute to the generation of k// asymmetry needed for residual stress generation. By balancing the simulated residual stress and the momentum diffusion, a rotation profile is calculated. In general, the radial structure of core rotation profile is largely determined by the residual stress profile, while the amplitude of core rotation depends on the edge toroidal rotation velocity, which is determined by edge physics and used as a boundary condition in our model. The calculated core rotation profile is consistent with the experimental measurements. Also discussed is the modification of turbulence-generated Reynolds stress on poloidal rotation in those plasmas. Work supported by U.S. DOE Contract DE-AC02-09-CH11466.

  20. Investigating the impact of land cover change on peak river flow in UK upland peat catchments, based on modelled scenarios

    NASA Astrophysics Data System (ADS)

    Gao, Jihui; Holden, Joseph; Kirkby, Mike

    2014-05-01

    Changes to land cover can influence the velocity of overland flow. In headwater peatlands, saturation means that overland flow is a dominant source of runoff, particularly during heavy rainfall events. Human modifications in headwater peatlands may include removal of vegetation (e.g. by erosion processes, fire, pollution, overgrazing) or pro-active revegetation of peat with sedges such as Eriophorum or mosses such as Sphagnum. How these modifications affect the river flow, and in particular the flood peak, in headwater peatlands is a key problem for land management. In particular, the impact of the spatial distribution of land cover change (e.g. different locations and sizes of land cover change area) on river flow is not clear. In this presentation a new fully distributed version of TOPMODEL, which represents the effects of distributed land cover change on river discharge, was employed to investigate land cover change impacts in three UK upland peat catchments (Trout Beck in the North Pennines, the Wye in mid-Wales and the East Dart in southwest England). Land cover scenarios with three typical land covers (i.e. Eriophorum, Sphagnum and bare peat) having different surface roughness in upland peatlands were designed for these catchments to investigate land cover impacts on river flow through simulation runs of the distributed model. As a result of hypothesis testing three land cover principles emerged from the work as follows: Principle (1): Well vegetated buffer strips are important for reducing flow peaks. A wider bare peat strip nearer to the river channel gives a higher flow peak and reduces the delay to peak; conversely, a wider buffer strip with higher density vegetation (e.g. Sphagnum) leads to a lower peak and postpones the peak. In both cases, a narrower buffer strip surrounding upstream and downstream channels has a greater effect than a thicker buffer strip just based around the downstream river network. Principle (2): When the area of change is equal, the size of land cover change patches has no effect on river flow for patch sizes up to 40000m2. Principle (3): Bare peat on gentle slopes gives a faster flow response and higher peak value at the catchment outlet, while high density vegetation or re-vegetation on a gentle slope area has larger positive impact on peak river flow delay when compared with the same practices on steeper slopes. These simple principles should be useful to planners who wish to determine resource efficiency and optimisation for peatland protection and restoration works in headwater systems. If practitioners require further detail on impacts of specific spatial changes to land cover in a catchment then this modelling approach can be applied to new catchments of concern.

  1. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers.

    PubMed

    Wang, Fang; Annable, Michael D; Jawitz, James W

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E=0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution. © 2013.

  2. Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Annable, Michael D.; Jawitz, James W.

    2013-09-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E = 0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution.

  3. Simulating the effect of flow path roughness to examine how green infrastructure restores urban runoff timing and magnitude

    Treesearch

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2015-01-01

    Impervious land cover was the choice for many urban development projects in order to accelerate runoff and reduce the depth and duration of local flooding, however this led to increases in downstream runoff characterized by large, flashy peak flows. Urban ecosystem restoration now involves slowing down urban runoff to restore local hydrology with green infrastructure,...

  4. Bedload transport rates in a step-pool channel at near-bankfull flows

    Treesearch

    Daniel A. Marion

    2001-01-01

    This paper examines unit bedload transport rates (BTRs) at near-bankfull flows within a small step-pool channel in the Ouachita Mountains of central Arkansas. For this study, five runoff events with peak discharges between 0.25 and 1.34 cms (1.0- to 1.6-yr recurrence intervals) were produced in a natural channel using a streamflow simulation system. BTRs range from...

  5. Scaling of peak flows with constant flow velocity in random self-similar networks

    USGS Publications Warehouse

    Troutman, Brent M.; Mantilla, Ricardo; Gupta, Vijay K.

    2011-01-01

    A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs) with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E) and φ(E) that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E) and φ(E) and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E) and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit hydrograph theory and flow dynamics. Our results provide a reference framework to study scaling exponents under more complex scenarios of flow dynamics and runoff generation processes using ensembles of RSNs.

  6. An Experimntal Investigation of the 30P30N Multi-Element High-Lift Airfoil

    NASA Technical Reports Server (NTRS)

    Pascioni, Kyle A.; Cattafesta, Louis N.; Choudhari, Meelan M.

    2014-01-01

    High-lift devices often generate an unsteady flow field producing both broadband and tonal noise which radiates from the aircraft. In particular, the leading edge slat is often a dominant contributor to the noise signature. An experimental study of a simplified unswept high-lift configuration, the 30P30N, has been conducted to understand and identify the various flow-induced noise sources around the slat. Closed-wall wind tunnel tests are performed in the Florida State Aeroacoustic Tunnel (FSAT) to characterize the slat cove flow field using a combination of surface and off-body measurements. Mean surface pressures compare well with numerical predictions for the free-air configuration. Consistent with previous measurements and computations for 2D high-lift configurations, the frequency spectra of unsteady surface pressures on the slat surface display several narrowband peaks that decrease in strength as the angle of attack is increased. At positive angles of attack, there are four prominent peaks. The three higher frequency peaks correspond, approximately, to a harmonic sequence related to a feedback resonance involving unstable disturbances in the slat cove shear layer. The Strouhal numbers associated with these three peaks are nearly insensitive to the range of flow speeds (41-58 m/s) and the angles of attack tested (3-8.5 degrees). The first narrow-band peak has an order of magnitude lower frequency than the remaining peaks and displays noticeable sensitivity to the angle of attack. Stereoscopic particle image velocimetry (SPIV) measurements provide supplementary information about the shear layer characteristics and turbulence statistics that may be used for validating numerical simulations.

  7. Variability of 4D flow parameters when subjected to changes in MRI acquisition parameters using a realistic thoracic aortic phantom.

    PubMed

    Montalba, Cristian; Urbina, Jesus; Sotelo, Julio; Andia, Marcelo E; Tejos, Cristian; Irarrazaval, Pablo; Hurtado, Daniel E; Valverde, Israel; Uribe, Sergio

    2018-04-01

    To assess the variability of peak flow, mean velocity, stroke volume, and wall shear stress measurements derived from 3D cine phase contrast (4D flow) sequences under different conditions of spatial and temporal resolutions. We performed controlled experiments using a thoracic aortic phantom. The phantom was connected to a pulsatile flow pump, which simulated nine physiological conditions. For each condition, 4D flow data were acquired with different spatial and temporal resolutions. The 2D cine phase contrast and 4D flow data with the highest available spatio-temporal resolution were considered as a reference for comparison purposes. When comparing 4D flow acquisitions (spatial and temporal resolution of 2.0 × 2.0 × 2.0 mm 3 and 40 ms, respectively) with 2D phase-contrast flow acquisitions, the underestimation of peak flow, mean velocity, and stroke volume were 10.5, 10 and 5%, respectively. However, the calculated wall shear stress showed an underestimation larger than 70% for the former acquisition, with respect to 4D flow, with spatial and temporal resolution of 1.0 × 1.0 × 1.0 mm 3 and 20 ms, respectively. Peak flow, mean velocity, and stroke volume from 4D flow data are more sensitive to changes of temporal than spatial resolution, as opposed to wall shear stress, which is more sensitive to changes in spatial resolution. Magn Reson Med 79:1882-1892, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. How to use your peak flow meter

    MedlinePlus

    Peak flow meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak flow meter ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  9. Development and evaluation of a reservoir model for the Chain of Lakes in Illinois

    USGS Publications Warehouse

    Domanski, Marian M.

    2017-01-27

    Forecasts of flows entering and leaving the Chain of Lakes reservoir on the Fox River in northeastern Illinois are critical information to water-resource managers who determine the optimal operation of the dam at McHenry, Illinois, to help minimize damages to property and loss of life because of flooding on the Fox River. In 2014, the U.S. Geological Survey; the Illinois Department of Natural Resources, Office of Water Resources; and National Weather Service, North Central River Forecast Center began a cooperative study to develop a system to enable engineers and planners to simulate and communicate flows and to prepare proactively for precipitation events in near real time in the upper Fox River watershed. The purpose of this report is to document the development and evaluation of the Chain of Lakes reservoir model developed in this study.The reservoir model for the Chain of Lakes was developed using the Hydrologic Engineering Center–Reservoir System Simulation program. Because of the complex relation between the dam headwater and reservoir pool elevations, the reservoir model uses a linear regression model that relates dam headwater elevation to reservoir pool elevation. The linear regression model was developed using 17 U.S. Geological Survey streamflow measurements, along with the gage height in the reservoir pool and the gage height at the dam headwater. The Nash-Sutcliffe model efficiency coefficients for all three linear regression model variables ranged from 0.90 to 0.98.The reservoir model performance was evaluated by graphically comparing simulated and observed reservoir pool elevation time series during nine periods of high pool elevation. In addition, the peak elevations during these time periods were graphically compared to the closest-in-time observed pool elevation peak. The mean difference in the simulated and observed peak elevations was -0.03 feet, with a standard deviation of 0.19 feet. The Nash-Sutcliffe coefficient for peak prediction was calculated as 0.94. Evaluation of the model based on accuracy of peak prediction and the ability to simulate an elevation time series showed the performance of the model was satisfactory.

  10. Computational fluid dynamics simulation of transcatheter aortic valve degeneration.

    PubMed

    Dwyer, Harry A; Matthews, Peter B; Azadani, Ali; Jaussaud, Nicolas; Ge, Liang; Guy, T Sloane; Tseng, Elaine E

    2009-08-01

    Studied under clinical trials, transcatheter aortic valves (TAV) have demonstrated good short-term feasibility and results in high-risk surgical patients with severe aortic stenosis. However, their long-term safety and durability are unknown. The objective of this study is to evaluate hemodynamic changes within TAV created by bioprosthetic leaflet degeneration. Computational fluid dynamics (CFD) simulations were performed to evaluate the hemodynamics through TAV sclerosis (35% orifice reduction) and stenosis (78% orifice reduction). A three-dimensional surface mesh of the TAV within the aortic root was generated for each simulation. Leaflets were contained within an open, cylindrical body without attachment to the sinus commissures representing the stent. A continuous surface between the annulus and TAV excluded the geometry of the native calcified leaflets and prevented paravalvular leak. Unsteady control volume analysis throughout systole was used to calculate leaflet shear stress and total force on the TAV. Sclerosis increased total force on the TAV by 63% (0.602-0.98 N). Advancement of degeneration from sclerosis to stenosis was accompanied by an 86% increase in total force (1.82 N) but only a 32% increase in peak wall shear stress on the leaflets. Of the total force exerted on the TAV, 99% was in the direction of axial flow. Shear stresses on the TAV were greatest during peak systolic flow with stress concentrations on the tips of the leaflets. In the normal TAV, the aortic root geometry and physiologic flow dominate location and magnitude of shear stress. Following leaflet degeneration, the specific geometry of the stenosis dictates the profile of axial velocity leaving the TAV and shear stress on the leaflets. A dramatic increase in peak leaflet shear stress was observed (115 Pa stenosis vs. 87 Pa sclerosis and 29 Pa normal). CFD simulations in this study provide the first of its kind data quantifying hemodynamics within stenosed TAV. Stenosis leads to significant forces of TAV during systole; however, diastolic forces predominate even with significant stenosis. Substantial changes in peak shear stress occur with TAV degeneration. As the first implanted TAV begin to stenose, the authors recommend watchful examination for device failure.

  11. Optimal frequency-response sensitivity of compressible flow over roughness elements

    NASA Astrophysics Data System (ADS)

    Fosas de Pando, Miguel; Schmid, Peter J.

    2017-04-01

    Compressible flow over a flat plate with two localised and well-separated roughness elements is analysed by global frequency-response analysis. This analysis reveals a sustained feedback loop consisting of a convectively unstable shear-layer instability, triggered at the upstream roughness, and an upstream-propagating acoustic wave, originating at the downstream roughness and regenerating the shear-layer instability at the upstream protrusion. A typical multi-peaked frequency response is recovered from the numerical simulations. In addition, the optimal forcing and response clearly extract the components of this feedback loop and isolate flow regions of pronounced sensitivity and amplification. An efficient parametric-sensitivity framework is introduced and applied to the reference case which shows that first-order increases in Reynolds number and roughness height act destabilising on the flow, while changes in Mach number or roughness separation cause corresponding shifts in the peak frequencies. This information is gained with negligible effort beyond the reference case and can easily be applied to more complex flows.

  12. Simulated flow and solute transport, and mitigation of a hypothetical soluble-contaminant spill for the New River in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1993-01-01

    This report presents the results of a study by the U.S. Geological Survey (USGS), in cooperation with the National Park Service, to investigate the transport and factors affecting mitigation of a hypothetical spill of a soluble contaminant into the New River in the New River Gorge National River, West Virginia. The study reach, 53 miles of the lower New River between Hinton and Fayette, is characterized as a pool-and-riffle stream that becomes narrower, steeper, and deeper in the downstream direction. A USGS unsteady-flow model, DAFLOW (Diffusion Analogy FLOW), and a USGS solute-transport model, BLTM (Branch Lagrangian Transport Model), were applied to the study reach. Increases in discharge caused decreases in peak concentration and traveltime of peak concentration. Decreases in discharge caused increases in peak concentration and traveltime of peak concentration. This study indicated that the effects of an accidental spill could be mitigated by regulating discharge from Bluestone Dam. Knowledge of the chemical characteristics of the spill, location and time of the spill, and discharge of the river can aid in determining a mitigation response.

  13. Using observed postconstruction peak discharges to evaluate a hydrologic and hydraulic design model, Boneyard Creek, Champaign and Urbana, Illinois

    USGS Publications Warehouse

    Over, Thomas M.; Soong, David T.; Holmes, Robert R.

    2011-01-01

    Boneyard Creek—which drains an urbanized watershed in the cities of Champaign and Urbana, Illinois, including part of the University of Illinois at Urbana-Champaign (UIUC) campus—has historically been prone to flooding. Using the Stormwater Management Model (SWMM), a hydrologic and hydraulic model of Boneyard Creek was developed for the design of the projects making up the first phase of a long-term plan for flood control on Boneyard Creek, and the construction of the projects was completed in May 2003. The U.S. Geological Survey, in cooperation with the Cities of Champaign and Urbana and UIUC, installed and operated stream and rain gages in order to obtain data for evaluation of the design-model simulations. In this study, design-model simulations were evaluated by using observed postconstruction precipitation and peak-discharge data. Between May 2003 and September 2008, five high-flow events on Boneyard Creek satisfied the study criterion. The five events were simulated with the design model by using observed precipitation. The simulations were run with two different values of the parameter controlling the soil moisture at the beginning of the storms and two different ways of spatially distributing the precipitation, making a total of four simulation scenarios. The simulated and observed peak discharges and stages were compared at gaged locations along the Creek. The discharge at one of these locations was deemed to be critical for evaluating the design model. The uncertainty of the measured peak discharge was also estimated at the critical location with a method based on linear regression of the stage and discharge relation, an estimate of the uncertainty of the acoustic Doppler velocity meter measurements, and the uncertainty of the stage measurements. For four of the five events, the simulated peak discharges lie within the 95-percent confidence interval of the observed peak discharges at the critical location; the fifth was just outside the upper end of this interval. For two of the four simulation scenarios, the simulation results for one event at the critical location were numerically unstable in the vicinity of the discharge peak. For the remaining scenarios, the simulated peak discharges over the five events at the critical location differ from the observed peak discharges (simulated minus observed) by an average of 7.7 and -1.5 percent, respectively. The simulated peak discharges over the four events for which all scenarios have numerically stable results at the critical location differs from the observed peak discharges (simulated minus observed) by an average of -6.8, 4.0, -5.4, and 1.5 percent, for the four scenarios, respectively. Overall, the discharge peaks simulated for this study at the critical location are approximately balanced between overprediction and underprediction and do not indicate significant model bias or inaccuracy. Additional comparisons were made by using peak stages at the critical location and two additional sites and using peak discharges at one additional site. These comparisons showed the same pattern of differences between observed and simulated values across events but varying biases depending on streamgage and measurement type (discharge or stage). Altogether, the results from this study show no clear evidence that the design model is significantly inaccurate or biased and, therefore, no clear evidence that the modeled flood-control projects in Champaign and on the University of Illinois campus have increased flood stages or discharges downstream in Urbana.

  14. Experimental and numerical investigation of the sound generation mechanisms of sibilant fricatives using a simplified vocal tract model

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Tsukasa; Nozaki, Kazunori; Wada, Shigeo

    2018-03-01

    The sound generation mechanisms of sibilant fricatives were investigated with experimental measurements and large-eddy simulations using a simplified vocal tract model. The vocal tract geometry was simplified to a three-dimensional rectangular channel, and differences in the geometries while pronouncing fricatives /s/ and /∫/ were expressed by shifting the position of the tongue and its constricted flow channel. Experimental results showed that the characteristic peak frequency of the fricatives decreased when the distance between the tongue and teeth increased. Numerical simulations revealed that the jet flow generated from the constriction impinged on the upper teeth wall and caused the main sound source upstream and downstream from the gap between the teeth. While magnitudes of the sound source decreased with increments of the frequency, amplitudes of the pressure downstream from the constriction increased at the peak frequencies of the corresponding tongue position. These results indicate that the sound pressures at the peak frequencies increased by acoustic resonance in the channel downstream from the constriction, and the different frequency characteristics between /s/ and /∫/ were produced by changing the constriction and the acoustic node positions inside the vocal tract.

  15. Modeling the Impact of Stream Discharge Events on Riparian Solute Dynamics.

    PubMed

    Mahmood, Muhammad Nasir; Schmidt, Christian; Fleckenstein, Jan H; Trauth, Nico

    2018-03-22

    The biogeochemical composition of stream water and the surrounding riparian water is mainly defined by the exchange of water and solutes between the stream and the riparian zone. Short-term fluctuations in near stream hydraulic head gradients (e.g., during stream flow events) can significantly influence the extent and rate of exchange processes. In this study, we simulate exchanges between streams and their riparian zone driven by stream stage fluctuations during single stream discharge events of varying peak height and duration. Simulated results show that strong stream flow events can trigger solute mobilization in riparian soils and subsequent export to the stream. The timing and amount of solute export is linked to the shape of the discharge event. Higher peaks and increased durations significantly enhance solute export, however, peak height is found to be the dominant control for overall mass export. Mobilized solutes are transported to the stream in two stages (1) by return flow of stream water that was stored in the riparian zone during the event and (2) by vertical movement to the groundwater under gravity drainage from the unsaturated parts of the riparian zone, which lasts for significantly longer time (> 400 days) resulting in long tailing of bank outflows and solute mass outfluxes. We conclude that strong stream discharge events can mobilize and transport solutes from near stream riparian soils into the stream. The impact of short-term stream discharge variations on solute exchange may last for long times after the flow event. © 2018, National Ground Water Association.

  16. Simulating flow in karst aquifers at laboratory and sub-regional scales using MODFLOW-CFP

    NASA Astrophysics Data System (ADS)

    Gallegos, Josue Jacob; Hu, Bill X.; Davis, Hal

    2013-12-01

    Groundwater flow in a well-developed karst aquifer dominantly occurs through bedding planes, fractures, conduits, and caves created by and/or enlarged by dissolution. Conventional groundwater modeling methods assume that groundwater flow is described by Darcian principles where primary porosity (i.e. matrix porosity) and laminar flow are dominant. However, in well-developed karst aquifers, the assumption of Darcian flow can be questionable. While Darcian flow generally occurs in the matrix portion of the karst aquifer, flow through conduits can be non-laminar where the relation between specific discharge and hydraulic gradient is non-linear. MODFLOW-CFP is a relatively new modeling program that accounts for non-laminar and laminar flow in pipes, like karst caves, within an aquifer. In this study, results from MODFLOW-CFP are compared to those from MODFLOW-2000/2005, a numerical code based on Darcy's law, to evaluate the accuracy that CFP can achieve when modeling flows in karst aquifers at laboratory and sub-regional (Woodville Karst Plain, Florida, USA) scales. In comparison with laboratory experiments, simulation results by MODFLOW-CFP are more accurate than MODFLOW 2005. At the sub-regional scale, MODFLOW-CFP was more accurate than MODFLOW-2000 for simulating field measurements of peak flow at one spring and total discharges at two springs for an observed storm event.

  17. Evaluation of processes affecting 1,2-dibromo-3-chloropropane (DBCP) concentrations in ground water in the eastern San Joaquin Valley, California : analysis of chemical data and ground-water flow and transport simulations

    USGS Publications Warehouse

    Burow, Karen R.; Panshin, Sandra Y.; Dubrovsky, Neil H.; Vanbrocklin, David; Fogg, Graham E.

    1999-01-01

    A conceptual two-dimensional numerical flow and transport modeling approach was used to test hypotheses addressing dispersion, transformation rate, and in a relative sense, the effects of ground- water pumping and reapplication of irrigation water on DBCP concentrations in the aquifer. The flow and transport simulations, which represent hypothetical steady-state flow conditions in the aquifer, were used to refine the conceptual understanding of the aquifer system rather than to predict future concentrations of DBCP. Results indicate that dispersion reduces peak concentrations, but this process alone does not account for the apparent decrease in DBCP concentrations in ground water in the eastern San Joaquin Valley. Ground-water pumping and reapplication of irrigation water may affect DBCP concentrations to the extent that this process can be simulated indirectly using first-order decay. Transport simulation results indicate that the in situ 'effective' half-life of DBCP caused by processes other than dispersion and transformation to BAA could be on the order of 6 years.

  18. In vitro evaluation of the effect of aortic compliance on pediatric intra-aortic balloon pumping.

    PubMed

    Minich, L L; Tani, L Y; Hawkins, J A; Bartkowiak, R R; Royall, M L; Pantalos, G M

    2001-04-01

    OBJECTIVES: To evaluate the effect of aortic compliance on pediatric intra-aortic balloon pumping (IABP). DESIGN: In vitro study using a mechanical model of the pediatric left heart circulation. SETTING: Cardiovascular fluid dynamics research laboratory. SUBJECT: Pulsatile flow system simulating the pediatric left heart circulation and two different aortas with compliances comparable to those of the pediatric aorta (0.12 and 0.07 mL/mm Hg). INTERVENTIONS: Measurements were made at a baseline peak aortic flow of 4 L/min, at simulated shock (1.7 L/min), and with 1:1 IABP (rates, 130 and 150 bpm; balloon volumes, 2.5 and 5.0 mL). MEASUREMENTS AND MAIN RESULTS: Peak flow rates were measured in the ascending aorta, coronary arterial system, and brachiocephalic arterial systems. Aortic pressure was measured in the ascending aorta. For both aortas (0.12 and 0.07 mL/mm Hg), IABP resulted in diastolic augmentation (38 +/- 8 and 43 +/- 16 mm Hg) and afterload reduction (4 +/- 2 and 6 +/- 3 mm Hg). For both aortas, compared to shock, IABP resulted in significant increases in coronary arterial and brachiocephalic arterial flow and aortic pressure for both aortas. Aortic flow significantly increased only in the less-compliant aorta. CONCLUSIONS: In a laboratory model of pediatric left heart circulation, IABP results in diastolic augmentation, afterload reduction, and improved hemodynamics, even in aortas of greater compliance.

  19. A model to simulate the haemodynamic effects of right heart pulsatile flow after modified Fontan procedure.

    PubMed

    Tamaki, S; Kawazoe, K; Yagihara, T; Abe, T

    1992-02-01

    The effect of pulsatile pulmonary flow after the modified Fontan procedure was examined in a model that simulated the right heart. An inlet overflow tank (preload), axial pulsatile pump, Wind-Kessel model (afterload), and an outlet overflow tank were connected in series. The standard conditions were flow 2.00 l/min with 12 mm Hg preload pressure, 3.0 Wood units resistance, and an outlet overflow tank pressure at 6 mm Hg. The pump rate was set at 80 beats/min. The simulated pulmonary arterial pressure and pulmonary flow waves produced by this model closely resembled those obtained from patients who had undergone the modified Fontan procedure. All variables except the preload were fixed and changes in pulmonary flow were examined at preload pressures of 8, 12, 15, and 17 mm Hg. As the peak pulmonary arterial pressure increased so did pulmonary flow, until it was greater than during the non-pulsatile state. Because the afterload of this model was fixed, this result suggests that there was a concomitant decrease in resistance. This model indicates that pulsatile pulmonary blood flow is likely to have a beneficial effect on the pulmonary circulation after the modified Fontan procedure.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Y.; Neal, C.; Salari, K.

    Propagation of a strong shock through a bed of particles results in complex wave dynamics such as a reflected shock, a transmitted shock, and highly unsteady flow inside the particle bed. In this paper we present three-dimensional numerical simulations of shock propagation in air over a random bed of particles. We assume the flow is inviscid and governed by the Euler equations of gas dynamics. Simulations are carried out by varying the volume fraction of the particle bed at a fixed shock Mach number. We compute the unsteady inviscid streamwise and transverse drag coefficients as a function of time formore » each particle in the random bed as a function of volume fraction. We show that (i) there are significant variations in the peak drag for the particles in the bed, (ii) the mean peak drag as a function of streamwise distance through the bed decreases with a slope that increases as the volume fraction increases, and (iii) the deviation from the mean peak drag does not correlate with local volume fraction. We also present the local Mach number and pressure contours for the different volume fractions to explain the various observed complex physical mechanisms occurring during the shock-particle interactions. Since the shock interaction with the random bed of particles leads to transmitted and reflected waves, we compute the average flow properties to characterize the strength of the transmitted and reflected shock waves and quantify the energy dissipation inside the particle bed. Finally, to better understand the complex wave dynamics in a random bed, we consider a simpler approximation of a planar shock propagating in a duct with a sudden area change. We obtain Riemann solutions to this problem, which are used to compare with fully resolved numerical simulations.« less

  1. Radiative Extinction of Gaseous Spherical Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Santa, K. J.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2007-01-01

    Radiative extinction of spherical diffusion flames was investigated experimentally and numerically. The experiments involved microgravity spherical diffusion flames burning ethylene and propane at 0.98 bar. Both normal (fuel flowing into oxidizer) and inverse (oxidizer flowing into fuel) flames were studied, with nitrogen supplied to either the fuel or the oxygen. Flame conditions were chosen to ensure that the flames extinguished within the 2.2 s of available test time; thus extinction occurred during unsteady flame conditions. Diagnostics included color video and thin-filament pyrometry. The computations, which simulated flow from a porous sphere into a quiescent environment, included detailed chemistry, transport and radiation, and yielded transient results. Radiative extinction was observed experimentally and simulated numerically. Extinction time, peak temperature, and radiative loss fraction were found to be independent of flow rate except at very low flow rates. Radiative heat loss was dominated by the combustion products downstream of the flame and was found to scale with flame surface area, not volume. For large transient flames the heat release rate also scaled with surface area and thus the radiative loss fraction was largely independent of flow rate. Peak temperatures at extinction onset were about 1100 K, which is significantly lower than for kinetic extinction. One observation of this work is that while radiative heat losses can drive transient extinction, this is not because radiative losses are increasing with time (flame size) but rather because the heat release rate is falling off as the temperature drops.

  2. User's guide for a general purpose dam-break flood simulation model (K-634)

    USGS Publications Warehouse

    Land, Larry F.

    1981-01-01

    An existing computer program for simulating dam-break floods for forecast purposes has been modified with an emphasis on general purpose applications. The original model was formulated, developed and documented by the National Weather Service. This model is based on the complete flow equations and uses a nonlinear implicit finite-difference numerical method. The first phase of the simulation routes a flood wave through the reservoir and computes an outflow hydrograph which is the sum of the flow through the dam 's structures and the gradually developing breach. The second phase routes this outflow hydrograph through the stream which may be nonprismatic and have segments with subcritical or supercritical flow. The results are discharge and stage hydrographs at the dam as well as all of the computational nodes in the channel. From these hydrographs, peak discharge and stage profiles are tabulated. (USGS)

  3. Simulated and observed 2010 floodwater elevations in the Pawcatuck and Wood Rivers, Rhode Island

    USGS Publications Warehouse

    Zarriello, Phillip J.; Straub, David E.; Smith, Thor E.

    2014-01-01

    Heavy, persistent rains from late February through March 2010 caused severe flooding that set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models of Pawcatuck River (26.9 miles) and Wood River (11.6 miles) were updated from the most recent approved U.S. Department of Homeland Security-Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) for specified flows and boundary conditions. The hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) using steady-state simulations and incorporate new field-survey data at structures, high resolution land-surface elevation data, and updated flood flows from a related study. The models were used to simulate the 0.2-percent annual exceedance probability (AEP) flood, which is the AEP determined for the 2010 flood in the Pawcatuck and Wood Rivers. The simulated WSEs were compared to high-water mark (HWM) elevation data obtained in a related study following the March–April 2010 flood, which included 39 HWMs along the Pawcatuck River and 11 HWMs along the Wood River. The 2010 peak flow generally was larger than the 0.2-percent AEP flow, which, in part, resulted in the FIS and updated model WSEs to be lower than the 2010 HWMs. The 2010 HWMs for the Pawcatuck River averaged about 1.6 feet (ft) higher than the 0.2-percent AEP WSEs simulated in the updated model and 2.5 ft higher than the WSEs in the FIS. The 2010 HWMs for the Wood River averaged about 1.3 ft higher than the WSEs simulated in the updated model and 2.5 ft higher than the WSEs in the FIS. The improved agreement of the updated simulated water elevations to observed 2010 HWMs provides a measure of the hydraulic model performance, which indicates the updated models better represent flooding at other AEPs than the existing FIS models.

  4. SIMULATION OF FLOOD HYDROGRAPHS FOR GEORGIA STREAMS.

    USGS Publications Warehouse

    Inman, E.J.; Armbruster, J.T.

    1986-01-01

    Flood hydrographs are needed for the design of many highway drainage structures and embankments. A method for simulating these flood hydrographs at urban and rural ungauged sites in Georgia is presented. The O'Donnell method was used to compute unit hydrographs from 355 flood events from 80 stations. An average unit hydrograph and an average lag time were computed for each station. These average unit hydrographs were transformed to unit hydrographs having durations of one-fourth, one-third, one-half, and three-fourths lag time and then reduced to dimensionless terms by dividing the time by lag time and the discharge by peak discharge. Hydrographs were simulated for these 355 flood events and their widths were compared with the widths of the observed hydrographs at 50 and 75 percent of peak flow. For simulating hydrographs at sites larger than 500 mi**2, the U. S. Geological Survey computer model CONROUT can be used.

  5. Qualification of CASMO5 / SIMULATE-3K against the SPERT-III E-core cold start-up experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandi, G.; Moberg, L.

    SIMULATE-3K is a three-dimensional kinetic code applicable to LWR Reactivity Initiated Accidents. S3K has been used to calculate several international recognized benchmarks. However, the feedback models in the benchmark exercises are different from the feedback models that SIMULATE-3K uses for LWR reactors. For this reason, it is worth comparing the SIMULATE-3K capabilities for Reactivity Initiated Accidents against kinetic experiments. The Special Power Excursion Reactor Test III was a pressurized-water, nuclear-research facility constructed to analyze the reactor kinetic behavior under initial conditions similar to those of commercial LWRs. The SPERT III E-core resembles a PWR in terms of fuel type, moderator,more » coolant flow rate, and system pressure. The initial test conditions (power, core flow, system pressure, core inlet temperature) are representative of cold start-up, hot start-up, hot standby, and hot full power. The qualification of S3K against the SPERT III E-core measurements is an ongoing work at Studsvik. In this paper, the results for the 30 cold start-up tests are presented. The results show good agreement with the experiments for the reactivity initiated accident main parameters: peak power, energy release and compensated reactivity. Predicted and measured peak powers differ at most by 13%. Measured and predicted reactivity compensations at the time of the peak power differ less than 0.01 $. Predicted and measured energy release differ at most by 13%. All differences are within the experimental uncertainty. (authors)« less

  6. Peak-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  7. Simulation of Flood Profiles for Fivemile Creek at Tarrant, Alabama, 2006

    USGS Publications Warehouse

    Lee, K.G.; Hedgecock, T.S.

    2007-01-01

    A one-dimensional step-backwater model was used to simulate flooding conditions for Fivemile Creek at Tarrant, Alabama. The 100-year flood stage published in the current flood insurance study for Tarrant by the Federal Emergency Management Agency was significantly exceeded by the March 2000 and May 2003 floods in this area. A peak flow of 14,100 cubic feet per second was computed by the U.S. Geological Survey for the May 2003 flood in the vicinity of Lawson Road. Using this estimated peak flow, flood-plain surveys with associated roughness coefficients, and the surveyed high-water profile for the May 2003 flood, a flow model was calibrated to closely match this known event. The calibrated model was then used to simulate flooding for the 10-, 50-, 100-, and 500-year recurrence interval floods. The results indicate that for the 100-year recurrence interval, the flood profile is about 2.5 feet higher, on average, than the profile published by the Federal Emergency Management Agency. The absolute maximum and minimum difference is 6.80 feet and 0.67 foot, respectively. All water-surface elevations computed for the 100-year flood are higher than those published by the Federal Emergency Management Agency, except for cross section H. The results of this study provide the community with flood-profile information that can be used for existing flood-plain mitigation, future development, and safety plans for the city.

  8. Simulations of 6-DOF Motion with a Cartesian Method

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Berger, Marsha J.; Kwak, Dochan (Technical Monitor)

    2003-01-01

    Coupled 6-DOF/CFD trajectory predictions using an automated Cartesian method are demonstrated by simulating a GBU-32/JDAM store separating from an F-18C aircraft. Numerical simulations are performed at two Mach numbers near the sonic speed, and compared with flight-test telemetry and photographic-derived data. Simulation results obtained with a sequential-static series of flow solutions are contrasted with results using a time-dependent flow solver. Both numerical methods show good agreement with the flight-test data through the first half of the simulations. The sequential-static and time-dependent methods diverge over the last half of the trajectory prediction. after the store produces peak angular rates. A cost comparison for the Cartesian method is included, in terms of absolute cost and relative to computing uncoupled 6-DOF trajectories. A detailed description of the 6-DOF method, as well as a verification of its accuracy, is provided in an appendix.

  9. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.

    PubMed

    Satoh, Takafumi; Kishi, Shintaro; Nagashima, Hisayuki; Tachikawa, Masumi; Kanamori-Kataoka, Mieko; Nakagawa, Takao; Kitagawa, Nobuyoshi; Tokita, Kenichi; Yamamoto, Soichiro; Seto, Yasuo

    2015-03-20

    The ion mobility behavior of nineteen chemical warfare agents (7 nerve gases, 5 blister agents, 2 lachrymators, 2 blood agents, 3 choking agents) and related compounds including simulants (8 agents) and organic solvents (39) was comparably investigated by the ion mobility spectrometry instrument utilizing weak electric field linear drift tube with corona discharge ionization, ammonia doping, purified inner air drift flow circulation operated at ambient temperature and pressure. Three alkyl methylphosphonofluoridates, tabun, and four organophosphorus simulants gave the intense characteristic positive monomer-derived ion peaks and small dimer-derived ion peaks, and the later ion peaks were increased with the vapor concentrations. VX, RVX and tabun gave both characteristic positive monomer-derived ions and degradation product ions. Nitrogen mustards gave the intense characteristic positive ion peaks, and in addition distinctive negative ion peak appeared from HN3. Mustard gas, lewisite 1, o-chlorobenzylidenemalononitrile and 2-mercaptoethanol gave the characteristic negative ion peaks. Methylphosphonyl difluoride, 2-chloroacetophenone and 1,4-thioxane gave the characteristic ion peaks both in the positive and negative ion mode. 2-Chloroethylethylsulfide and allylisothiocyanate gave weak ion peaks. The marker ion peaks derived from two blood agents and three choking agents were very close to the reactant ion peak in negative ion mode and the respective reduced ion mobility was fluctuated. The reduced ion mobility of the CWA monomer-derived peaks were positively correlated with molecular masses among structurally similar agents such as G-type nerve gases and organophosphorus simulants; V-type nerve gases and nitrogen mustards. The slope values of the calibration plots of the peak heights of the characteristic marker ions versus the vapor concentrations are related to the detection sensitivity, and within chemical warfare agents examined the slope values for sarin, soman, tabun and nitrogen mustards were higher. Some CWA simulants and organic solvents gave the ion peaks eluting at the similar positions of the CWAs, resulting in false positive alarms. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Can isolated and riparian wetlands mitigate the impact of climate change on watershed hydrology? A case study approach.

    PubMed

    Fossey, M; Rousseau, A N

    2016-12-15

    The effects of wetlands on stream flows are well established, namely mitigating flow regimes through water storage and slow water release. However, their effectiveness in reducing flood peaks and sustaining low flows is mainly driven by climate conditions and wetland type with respect to their connectivity to the hydrographic network (i.e. isolated or riparian wetlands). While some studies have demonstrated these hydrological functions/services, few of them have focused on the benefits to the hydrological regimes and their evolution under climate change (CC) and, thus, some gaps persist. The objective of this study was to further advance our knowledge with that respect. The PHYSITEL/HYDROTEL modelling platform was used to assess current and future states of watershed hydrology of the Becancour and Yamaska watersheds, Quebec, Canada. Simulation results showed that CC will induce similar changes on mean seasonal flows, namely larger and earlier spring flows leading to decreases in summer and fall flows. These expected changes will have different effects on 20-year and 100-year peak flows with respect to the considered watershed. Nevertheless, conservation of current wetland states should: (i) for the Becancour watershed, mitigate the potential increase in 2-year, 20-year and 100-year peak flows; and (ii) for the Yamaska watershed, accentuate the potential decrease in the aforementioned indicators. However, any loss of existing wetlands would be detrimental for 7-day 2-year and 10-year as well as 30-day 5-year low flows. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Historical changes in annual peak flows in Maine and implications for flood-frequency analyses

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2010-01-01

    Flood-frequency analyses use statistical methods to compute peak streamflows for selected recurrence intervals— the average number of years between peak flows that are equal to or greater than a specified peak flow. Analyses are based on annual peak flows at a stream. It has long been assumed that the annual peak streamflows used in these computations were stationary (non-changing) over very long periods of time, except in river basins subject to direct effects of human activities, such as urbanization and regulation. Because of the potential effects of global warming on peak flows, the assumption of peak-flow stationarity has recently been questioned. Maine has many streamgages with 50 to 105 years of recorded annual peak streamflows. In this study, this long-term record has been tested for historical flood-frequency stationarity, to provide some insight into future flood frequency. Changes over time in annual instantaneous peak streamflows at 28 U.S. Geological Survey streamgages with long-term data (50 or more years) and relatively complete records were investigated by examining linear trends for each streamgage’s period of record. None of the 28 streamgages had more than 5 years of missing data. Eight streamgages have substantial streamflow regulation. Because previous studies have suggested that changes over time may have occurred as a step change around 1970, step changes between each streamgage’s older record (start year to 1970) and newer record (1971 to 2006) also were computed. The median change over time for all 28 streamgages is an increase of 15.9 percent based on a linear change and an increase of 12.4 percent based on a step change. The median change for the 20 unregulated streamgages is slightly higher than for all 28 streamgages; it is 18.4 percent based on a linear change and 15.0 percent based on a step change. Peak flows with 100- and 5-year recurrence intervals were computed for the 28 streamgages using the full annual peak-flow record and multiple sub-periods of that record using the guidelines (Bulletin 17B) of the Interagency Advisory Committee on Water Data. Magnitudes of 100- and 5-year peak flows computed from sub-periods then were compared to those computed from the full period. Sub-periods of 30 years with starting years staggered by 10 years were evaluated (1907–36, 1917–46, 1927–56, 1937–66, 1947–76, 1957–86, 1967–96, and 1977–2006). Two other sub-periods were evaluated using older data (start-of-record to 1970) and newer data (1971 to 2006). The 5-year peak flow is used to represent small and relatively frequent flood flows in Maine, whereas the 100-year peak flow is used to represent large flood flows. The 1967–96 sub-period generated the highest 100- and 5-year peak flows overall when compared to peak flows based on the full period of record; the median difference for all 28 streamgages is 8 percent for 100- and 5-year peak flows. The 1977–2006 and 1971–2006 sub-periods also generated 100- and 5-year peak flows higher than peak flows based on the full period of record, but not as high as the peak flows based on the 1967–96 sub-period. The 1937–66 sub-period generated the lowest 100- and 5-year peak flows overall. The median difference from full-period peak flows is -11 percent for 100-year peak flows and -8 percent for 5-year peak flows. Overall, differences between peak flows based on the sub-periods and those based on the full periods, generated using the 20 unregulated streamgages, are similar to differences using all 28 streamgages. Increases in the 5- and 100-year peak flows based on recent years of record are, in general, modest when compared to peak flows based on complete periods of record. The highest peak flows are based on the 1967–96 sub-period rather than the most recent sub-period (1977-2006). Peak flows for selected recurrence intervals are sensitive to very high peak flows that may occur once in a century or even less frequently. It is difficult, therefore, to determine which approach will produce the most reliable future estimates of peak flows for selected recurrence intervals, using only recent years of record or the traditional method using the entire historical period. One possible conservative approach to computing peak flows of selected recurrence intervals would be to compute peak flows using recent annual peak flows and the entire period of record, then choose the higher computed value. Whether recent or entire periods of record are used to compute peak flows of selected recurrence intervals, the results of this study highlight the importance of using recent data in the computation of the peak flows. The use of older records alone could result in underestimation of peak flows, particularly peak flows with short recurrence intervals, such as the 5-year peak flows.

  12. Prediction of soot and thermal radiation in a model gas turbine combustor burning kerosene fuel spray at different swirl levels

    NASA Astrophysics Data System (ADS)

    Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya

    2016-05-01

    Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.

  13. Large eddy simulation of tip-leakage flow in an axial flow fan

    NASA Astrophysics Data System (ADS)

    Park, Keuntae; Choi, Haecheon; Choi, Seokho; Sa, Yongcheol; Kwon, Oh-Kyoung

    2016-11-01

    An axial flow fan with a shroud generates a complicated tip-leakage flow by the interaction of the axial flow with the fan blades and shroud near the blade tips. In this study, large eddy simulation is performed for tip-leakage flow in a forward-swept axial flow fan inside an outdoor unit of an air-conditioner, operating at the design condition of the Reynolds number of 547,000 based on the radius of blade tip and the tip velocity. A dynamic global model is used for a subgrid-scale model, and an immersed boundary method in a non-inertial reference frame is adopted. The present simulation clearly reveals the generation and evolution of tip-leakage vortex near the blade tip by the leakage flow. At the inception of the leakage vortex near the leading edge of the suction-side of the blade tip, the leakage vortex is composed of unsteady multiple vortices containing high-frequency fluctuations. As the leakage vortex develops downstream along a slant line toward the following blade, large and meandering movements of the leakage vortex are observed. Thus low-frequency broad peaks of velocity and pressure occur near the pressure surface. Supported by the KISTI Supercomputing Center (KSC-2016-C3-0027).

  14. Gap Filler Induced Transition on the Mars Science Laboratory Heatshield

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Barnhardt, Michael D.; Tang, Chun Y.; Sozer, Emre; Candler, Graham

    2012-01-01

    Detached Eddy Simulations have been performed to investigate the effects of high-fidelity turbulence modeling on roughness-induced transition to turbulence during Mars entry. Chemically reacting flow solutions will be obtained for a gap filler of Mars Science Laboratory at the peak heating condition.

  15. Natural convection in a cubical cavity with a coaxial heated cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aithal, S. M.

    High-resolution three-dimensional simulations were conducted to investigate the velocity and temperature fields in a cold cubical cavity due to natural convection induced by a centrally placed hot cylinder. Unsteady, incompressible Navier-Stokes equations were solved by using a spectral- element method for Rayleigh numbers ranging from 103 to 109. The effect of spanwise thermal boundary conditions, aspect ratio (radius of the cylinder to the side of the cavity), and spanwise temperature distribution of the inner cylinder on the velocity and thermal fields were investigated for each Rayleigh number. Results from two-dimensional calculations were compared with three-dimensional simulations. The 3D results indicatemore » a complex flow structure in the vicinity of the spanwise walls. The results also show that the imposed thermal wall boundary condition impacts the flow and temperature fields strongly near the spanwise walls. The variation of the local Nusselt number on the cylinder surface and enclosure walls at various spanwise locations was also investigated. The local Nusselt number on the cylinder surface and enclosure walls at the cavity mid-plane (Z = 0) is close to 2D simulations for 103 ≤ Ra ≤ 108. Simulations also show a variation in the local Nusselt number, on both the cylinder surface and the enclosure walls, in the spanwise direction, for all Rayleigh numbers studied in this work. The results also indicate that if the enclosure walls are insulated in the spanwise direction (as opposed to a constant temperature), the peak Nusselt number on the enclosure surface occurs near the spanwise walls and is about 20% higher than the peak Nusselt number at the cavity mid-plane. The temporal characteristics of 3D flows are also different from 2D results for Ra > 108. These results suggest that 3D simulations would be more appropriate for flows with Ra > 108.« less

  16. Climate change impact assessment on flow regime by incorporating spatial correlation and scenario uncertainty

    NASA Astrophysics Data System (ADS)

    Vallam, P.; Qin, X. S.

    2017-07-01

    Flooding risk is increasing in many parts of the world and may worsen under climate change conditions. The accuracy of predicting flooding risk relies on reasonable projection of meteorological data (especially rainfall) at the local scale. The current statistical downscaling approaches face the difficulty of projecting multi-site climate information for future conditions while conserving spatial information. This study presents a combined Long Ashton Research Station Weather Generator (LARS-WG) stochastic weather generator and multi-site rainfall simulator RainSim (CLWRS) approach to investigate flow regimes under future conditions in the Kootenay Watershed, Canada. To understand the uncertainty effect stemming from different scenarios, the climate output is fed into a hydrologic model. The results showed different variation trends of annual peak flows (in 2080-2099) based on different climate change scenarios and demonstrated that the hydrological impact would be driven by the interaction between snowmelt and peak flows. The proposed CLWRS approach is useful where there is a need for projection of potential climate change scenarios.

  17. Dynamics of airflow in a short inhalation

    PubMed Central

    Bates, A. J.; Doorly, D. J.; Cetto, R.; Calmet, H.; Gambaruto, A. M.; Tolley, N. S.; Houzeaux, G.; Schroter, R. C.

    2015-01-01

    During a rapid inhalation, such as a sniff, the flow in the airways accelerates and decays quickly. The consequences for flow development and convective transport of an inhaled gas were investigated in a subject geometry extending from the nose to the bronchi. The progress of flow transition and the advance of an inhaled non-absorbed gas were determined using highly resolved simulations of a sniff 0.5 s long, 1 l s−1 peak flow, 364 ml inhaled volume. In the nose, the distribution of airflow evolved through three phases: (i) an initial transient of about 50 ms, roughly the filling time for a nasal volume, (ii) quasi-equilibrium over the majority of the inhalation, and (iii) a terminating phase. Flow transition commenced in the supraglottic region within 20 ms, resulting in large-amplitude fluctuations persisting throughout the inhalation; in the nose, fluctuations that arose nearer peak flow were of much reduced intensity and diminished in the flow decay phase. Measures of gas concentration showed non-uniform build-up and wash-out of the inhaled gas in the nose. At the carina, the form of the temporal concentration profile reflected both shear dispersion and airway filling defects owing to recirculation regions. PMID:25551147

  18. A computational study of radiation and gravity effect on temperature and soot formation in a methane air co-flow diffusion flame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhowal, Arup Jyoti, E-mail: arupjyoti.bhowal@heritageit.edu; Mandal, Bijan Kumar, E-mail: bkm375@yahoo.co.in

    An effort has been made for a quantitative assessment of the soot formed under steady state in a methane air co flow diffusion flame by a numerical simulation at normal gravity and at lower gravity levels of 0.5 G, 0.1 G and 0.0001 G (microgravity). The peak temperature at microgravity is reduced by about 50 K than that at normal gravity level. There is an augmentation of soot formation at lower gravity levels. Peak value at microgravity multiplies by a factor of ∼7 of that at normal gravity. However, if radiation is not considered, soot formation is found to bemore » much more.« less

  19. Propulsive jet simulation with air and helium in launcher wake flows

    NASA Astrophysics Data System (ADS)

    Stephan, Sören; Radespiel, Rolf

    2017-06-01

    The influence on the turbulent wake of a generic space launcher model due to the presence of an under-expanded jet is investigated experimentally. Wake flow phenomena represent a significant source of uncertainties in the design of a space launcher. Especially critical are dynamic loads on the structure. The wake flow is investigated at supersonic (M=2.9) and hypersonic (M=5.9) flow regimes. The jet flow is simulated using air and helium as working gas. Due to the lower molar mass of helium, higher jet velocities are realized, and therefore, velocity ratios similar to space launchers can be simulated. The degree of under-expansion of the jet is moderate for the supersonic case (p_e/p_∞ ≈ 5) and high for the hypersonic case (p_e/p_∞ ≈ 90). The flow topology is described by Schlieren visualization and mean-pressure measurements. Unsteady pressure measurements are performed to describe the dynamic wake flow. The influences of the under-expanded jet and different jet velocities are reported. On the base fluctuations at a Strouhal number, around St_D ≈ 0.25 dominate for supersonic free-stream flows. With air jet, a fluctuation-level increase on the base is observed for Strouhal numbers above St_D ≈ 0.75 in hypersonic flow regime. With helium jet, distinct peaks at higher frequencies are found. This is attributed to the interactions of wake flow and jet.

  20. Remediation scenarios for attenuating peak flows and reducing sediment transport in Fountain Creek, Colorado, 2013

    USGS Publications Warehouse

    Kohn, Michael S.; Fulton, John W.; Williams, Cory A.; Stogner, Sr., Robert W.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Fountain Creek Watershed, Flood Control and Greenway District assessed remediation scenarios to attenuate peak flows and reduce sediment loads in the Fountain Creek watershed. To evaluate these strategies, the U.S. Army Corps of Engineers Hydrologic Engineering Center (HEC) hydrologic and hydraulic models were employed. The U.S. Army Corps of Engineers modeling system HEC-HMS (Hydrologic Modeling System) version 3.5 was used to simulate runoff in the Fountain Creek watershed, Colorado, associated with storms of varying magnitude and duration. Rain-gage precipitation data and radar-based precipitation data from the April 28–30, 1999, and September 14–15, 2011, storm events were used in the calibration process for the HEC-HMS model. The curve number and lag time for each subwatershed and Manning's roughness coefficients for each channel reach were adjusted within an acceptable range so that the simulated and measured streamflow hydrographs for each of the 12 USGS streamgages approximated each other. The U.S. Army Corps of Engineers modeling system HEC-RAS (River Analysis System) versions 4.1 and 4.2 were used to simulate streamflow and sediment transport, respectively, for the Fountain Creek watershed generated by a particular storm event. Data from 15 USGS streamgages were used for model calibration and 7 of those USGS streamgages were used for model validation. The calibration process consisted of comparing the simulated water-surface elevations and the cross-section-averaged velocities from the model with those surveyed in the field at the cross section at the corresponding 15 and 7 streamgages, respectively. The final Manning’s roughness coefficients were adjusted between –30 and 30 percent at the 15 calibration streamgages from the original left, right, and channel-averaged Manning's roughness coefficients upon completion of calibration. The U.S. Army Corps of Engineers modeling system HEC-RAS version 4.2 was used to simulate streamflow and sediment transport for the Fountain Creek watershed generated by a design-storm event. The Laursen-Copeland sediment-transport function was used in conjunction with the Exner 5 sorting method and the Ruby fall-velocity method to predict sediment transport. Six USGS streamgages equipped with suspended-sediment samplers were used to develop sediment-flow rating curves for the sediment-transport-model calibration. The critical Shields number in the Laursen-Copeland sediment-transport function and the volume of sediment available at a given cross section were adjusted during the HEC-RAS sediment-model calibration process. HEC-RAS model simulations used to evaluate the 14 remediation scenarios were based on unsteady-state streamflows associated with a 24-hour, 1-percent annual exceedance probability (100-year) National Oceanic and Atmospheric Administration Type II precipitation event. Scenario 0 represents the baseline or current conditions in the watershed and was used to compare the remaining 13 scenarios. Scenarios 1–8 and 12 rely on side-detention facilities to reduce peak flows and sediment transport. Scenario 9 has a diversion channel, and scenario 10 has a reservoir. Scenarios 11 and 13 incorporate channel armoring and channel widening, respectively. Scenarios 8 and 10, the scenario with the most side-detention facilities, and the scenario with the reservoir, respectively, were the most effective at reducing sediment transport and peak flow at the Pueblo, Colorado, streamgage. Scenarios 8 and 10 altered the peak flow by –58.9 and –56.4 percent, respectively. In turn, scenarios 8 and 10 altered the sediment transport by –17.7 and –62.1 percent, respectively.

  1. Simulation of extreme reservoir level distribution with the SCHADEX method (EXTRAFLO project)

    NASA Astrophysics Data System (ADS)

    Paquet, Emmanuel; Penot, David; Garavaglia, Federico

    2013-04-01

    The standard practice for the design of dam spillways structures and gates is to consider the maximum reservoir level reached for a given hydrologic scenario. This scenario has several components: peak discharge, flood volumes on different durations, discharge gradients etc. Within a probabilistic analysis framework, several scenarios can be associated with different return times, although a reference return level (e.g. 1000 years) is often prescribed by the local regulation rules or usual practice. Using continuous simulation method for extreme flood estimation is a convenient solution to provide a great variety of hydrological scenarios to feed a hydraulic model of dam operation: flood hydrographs are explicitly simulated by a rainfall-runoff model fed by a stochastic rainfall generator. The maximum reservoir level reached will be conditioned by the scale and the dynamics of the generated hydrograph, by the filling of the reservoir prior to the flood, and by the dam gates and spillway operation during the event. The simulation of a great number of floods will allow building a probabilistic distribution of maximum reservoir levels. A design value can be chosen at a definite return level. An alternative approach is proposed here, based on the SCHADEX method for extreme flood estimation, proposed by Paquet et al. (2006, 2013). SCHADEX is a so-called "semi-continuous" stochastic simulation method in that flood events are simulated on an event basis and are superimposed on a continuous simulation of the catchment saturation hazard using rainfall-runoff modelling. The SCHADEX process works at the study time-step (e.g. daily), and the peak flow distribution is deduced from the simulated daily flow distribution by a peak-to-volume ratio. A reference hydrograph relevant for extreme floods is proposed. In the standard version of the method, both the peak-to-volume and the reference hydrograph are constant. An enhancement of this method is presented, with variable peak-to-volume ratios and hydrographs applied to each simulated event. This allows accounting for different flood dynamics, depending on the season, the generating precipitation event, the soil saturation state, etc. In both cases, a hydraulic simulation of dam operation is performed, in order to compute the distribution of maximum reservoir levels. Results are detailed for an extreme return level, showing that a 1000 years return level reservoir level can be reached during flood events whose components (peaks, volumes) are not necessarily associated with such return level. The presentation will be illustrated by the example of a fictive dam on the Tech River at Reynes (South of France, 477 km²). This study has been carried out within the EXTRAFLO project, Task 8 (https://extraflo.cemagref.fr/). References: Paquet, E., Gailhard, J. and Garçon, R. (2006), Evolution of the GRADEX method: improvement by atmospheric circulation classification and hydrological modeling, La Houille Blanche, 5, 80-90. doi:10.1051/lhb:2006091. Paquet, E., Garavaglia, F., Garçon, R. and Gailhard, J. (2012), The SCHADEX method: a semi-continuous rainfall-runoff simulation for extreme food estimation, Journal of Hydrology, under revision

  2. Comparison of direct numerical simulation databases of turbulent channel flow at Reτ = 180

    NASA Astrophysics Data System (ADS)

    Vreman, A. W.; Kuerten, J. G. M.

    2014-01-01

    Direct numerical simulation (DNS) databases are compared to assess the accuracy and reproducibility of standard and non-standard turbulence statistics of incompressible plane channel flow at Reτ = 180. Two fundamentally different DNS codes are shown to produce maximum relative deviations below 0.2% for the mean flow, below 1% for the root-mean-square velocity and pressure fluctuations, and below 2% for the three components of the turbulent dissipation. Relatively fine grids and long statistical averaging times are required. An analysis of dissipation spectra demonstrates that the enhanced resolution is necessary for an accurate representation of the smallest physical scales in the turbulent dissipation. The results are related to the physics of turbulent channel flow in several ways. First, the reproducibility supports the hitherto unproven theoretical hypothesis that the statistically stationary state of turbulent channel flow is unique. Second, the peaks of dissipation spectra provide information on length scales of the small-scale turbulence. Third, the computed means and fluctuations of the convective, pressure, and viscous terms in the momentum equation show the importance of the different forces in the momentum equation relative to each other. The Galilean transformation that leads to minimum peak fluctuation of the convective term is determined. Fourth, an analysis of higher-order statistics is performed. The skewness of the longitudinal derivative of the streamwise velocity is stronger than expected (-1.5 at y+ = 30). This skewness and also the strong near-wall intermittency of the normal velocity are related to coherent structures.

  3. Hydrograph simulation models of the Hillsborough and Alafia Rivers, Florida: a preliminary report

    USGS Publications Warehouse

    Turner, James F.

    1972-01-01

    Mathematical (digital) models that simulate flood hydrographs from rainfall records have been developed for the following gaging stations in the Hillsborough and Alafia River basins of west-central Florida: Hillsborough River near Tampa, Alafia River at Lithia, and north Prong Alafia River near Keysville. These models, which were developed from historical streamflow and and rainfall records, are based on rainfall-runoff and unit-hydrograph procedures involving an arbitrary separation of the flood hydrograph. These models assume the flood hydrograph to be composed of only two flow components, direct (storm) runoff, and base flow. Expressions describing these two flow components are derived from streamflow and rainfall records and are combined analytically to form algorithms (models), which are programmed for processing on a digital computing system. Most Hillsborough and Alafia River flood discharges can be simulated with expected relative errors less than or equal to 30 percent and flood peaks can be simulated with average relative errors less than 15 percent. Because of the inadequate rainfall network that is used in obtaining input data for the North Prong Alafia River model, simulated peaks are frequently in error by more than 40 percent, particularly for storms having highly variable areal rainfall distribution. Simulation errors are the result of rainfall sample errors and, to a lesser extent, model inadequacy. Data errors associated with the determination of mean basin precipitation are the result of the small number and poor areal distribution of rainfall stations available for use in the study. Model inadequacy, however, is attributed to the basic underlying theory, particularly the rainfall-runoff relation. These models broaden and enhance existing water-management capabilities within these basins by allowing the establishment and implementation of programs providing for continued development in these areas. Specifically, the models serve not only as a basis for forecasting floods, but also for simulating hydrologic information needed in flood-plain mapping and delineating and evaluating alternative flood control and abatement plans.

  4. Bubbling in vibrated granular films.

    PubMed

    Zamankhan, Piroz

    2011-02-01

    With the help of experiments, computer simulations, and a theoretical investigation, a general model is developed of the flow dynamics of dense granular media immersed in air in an intermediate regime where both collisional and frictional interactions may affect the flow behavior. The model is tested using the example of a system in which bubbles and solid structures are produced in granular films shaken vertically. Both experiments and large-scale, three-dimensional simulations of this system are performed. The experimental results are compared with the results of the simulation to verify the validity of the model. The data indicate evidence of formation of bubbles when peak acceleration relative to gravity exceeds a critical value Γ(b). The air-grain interfaces of bubblelike structures are found to exhibit fractal structure with dimension D=1.7±0.05.

  5. Numerical simulations of the NREL S826 airfoil

    NASA Astrophysics Data System (ADS)

    Sagmo, KF; Bartl, J.; Sætran, L.

    2016-09-01

    2D and 3D steady state simulations were done using the commercial CFD package Star-CCM+ with three different RANS turbulence models. Lift and drag coefficients were simulated at different angles of attack for the NREL S826 airfoil at a Reynolds number of 100 000, and compared to experimental data obtained at NTNU and at DTU. The Spalart-Allmaras and the Realizable k-epsilon turbulence models reproduced experimental results for lift well in the 2D simulations. The 3D simulations with the Realizable two-layer k-epsilon model predicted essentially the same lift coefficients as the 2D Spalart-Allmaras simulations. A comparison between 2D and 3D simulations with the Realizable k-epsilon model showed a significantly lower prediction in drag by the 2D simulations. From the conducted 3D simulations surface pressure predictions along the wing span were presented, along with volumetric renderings of vorticity. Both showed a high degree of span wise flow variation when going into the stall region, and predicted a flow field resembling that of stall cells for angles of attack above peak lift.

  6. Aerothermal Analysis of the Project Fire II Afterbody Flow

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; Loomis, Mark; Papadopoulos, Periklis; Arnold, James O. (Technical Monitor)

    2001-01-01

    Computational fluid dynamics (CFD) is used to simulate the wake flow and afterbody heating of the Project Fire II ballistic reentry to Earth at 11.4 km/sec. Laminar results are obtained over a portion of the trajectory between the initial heat pulse and peak afterbody heating. Although non-catalytic forebody convective heating results are in excellent agreement with previous computations, initial predictions of afterbody heating were about a factor of two below the experimental values. Further analysis suggests that significant catalysis may be occurring on the afterbody heat shield. Computations including finite-rate catalysis on the afterbody surface are in good agreement with the data over the early portion of the trajectory, but are conservative near the peak afterbody heating point, especially on the rear portion of the conical frustum. Further analysis of the flight data from Fire II shows that peak afterbody heating occurs before peak forebody heating, a result that contradicts computations and flight data from other entry vehicles. This result suggests that another mechanism, possibly pyrolysis, may be occurring during the later portion of the trajectory, resulting in less total heat transfer than the current predictions.

  7. Sensitivity of potential evapotranspiration and simulated flow to varying meteorological inputs, Salt Creek watershed, DuPage County, Illinois

    USGS Publications Warehouse

    Whitbeck, David E.

    2006-01-01

    The Lamoreux Potential Evapotranspiration (LXPET) Program computes potential evapotranspiration (PET) using inputs from four different meteorological sources: temperature, dewpoint, wind speed, and solar radiation. PET and the same four meteorological inputs are used with precipitation data in the Hydrological Simulation Program-Fortran (HSPF) to simulate streamflow in the Salt Creek watershed, DuPage County, Illinois. Streamflows from HSPF are routed with the Full Equations (FEQ) model to determine water-surface elevations. Consequently, variations in meteorological inputs have potential to propagate through many calculations. Sensitivity of PET to variation was simulated by increasing the meteorological input values by 20, 40, and 60 percent and evaluating the change in the calculated PET. Increases in temperatures produced the greatest percent changes, followed by increases in solar radiation, dewpoint, and then wind speed. Additional sensitivity of PET was considered for shifts in input temperatures and dewpoints by absolute differences of ?10, ?20, and ?30 degrees Fahrenheit (degF). Again, changes in input temperatures produced the greatest differences in PET. Sensitivity of streamflow simulated by HSPF was evaluated for 20-percent increases in meteorological inputs. These simulations showed that increases in temperature produced the greatest change in flow. Finally, peak water-surface elevations for nine storm events were compared among unmodified meteorological inputs and inputs with values predicted 6, 24, and 48 hours preceding the simulated peak. Results of this study can be applied to determine how errors specific to a hydrologic system will affect computations of system streamflow and water-surface elevations.

  8. Hydraulic jumps in inhomogeneous strongly coupled toroidal dust flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piel, Alexander, E-mail: piel@physik.uni-kiel.de; Wilms, Jochen

    2016-07-15

    The inhomogeneous flow of strongly coupled dust particles in a toroidal particle trap with harmonic radial confinement is analyzed in the incompressible fluid limit. It is shown that the flow can spontaneously generate shock-like events, which are similar to the hydraulic jump in open channel flows. A definition of the Froude number for this model is given and the critical speed is recovered as the group velocity of surface waves. This hydraulic model is compared with molecular-dynamics simulations, which show that a sudden bifurcation of the flow lines and a localized temperature peak appear just at the point where themore » critical condition for the hydraulic jump is located.« less

  9. Coupled prediction of flash flood response and debris flow occurrence in an alpine basin

    NASA Astrophysics Data System (ADS)

    Amponsah, William

    2015-04-01

    Coupled prediction of flash flood response and debris flow occurrence in an alpine basin Author(s): William Amponsah1, E.I. Nikolopoulos2, Lorenzo Marchi1, Roberto Dinale4, Francesco Marra3,Davide Zoccatelli2 , Marco Borga2 Affiliation(s): 1CNR - IRPI, Corso Stati Uniti 4, 35127, Padova, ITALY, 2Department of Land, Environment, Agriculture and Forestry, University of Padova,VialeDell'Università 16, 35020, Legnaro PD, ITALY 3Department of Geography, Hebrew University of Jerusalem, ISRAEL 4Ufficio Idrografico, Provincia Autonoma di Bolzano, Bolzano, Italy This contribution examines the main hydrologic and morphologic metrics responsible for widespread triggering of debris-flows associated with flash flood occurrences in headwater alpine catchments.To achieve this objective, we investigate the precipitation forcing, hydrologic responses and landslides and debris-flow occurrences that prevailed during the August 4-5, 2012 extreme flash flood on the 140 km2 Vizze basin in the Eastern Alps of Italy. An intensive post-event survey was carried out a few days after the flood. This included the surveys of cross-sectional geometry and flood marks for the estimation of the peak discharges at multiple river sections and of the initiation and deposition areas of several debris flows. Rainfall estimates are based on careful analysis of weather radar observations and raingauge data. These data and observations permitted the implementation and calibration of a spatially distributed hydrological model, which was used to derive simulated flood hydrographs in 58 tributaries of the Vizze basin. Of these, 33 generated debris-flows, with area ranging from 0.02 km2 to 10 km2, with an average of 1.5 km2. With 130 mm peak event rainfall and a duration of 4 hours (with a max intensity of 90 mm h-1 for 10 min), model-simulated unit peak discharges range from 4 m3 s-1 km-2for elementary catchments up to 10 km2 to 2 m3 s-1 km-2 for catchments in the range of 50 - 100 km2. These are very high values when considering the local runoff regime. We used a threshold criterion based on past works (Tognaccaet al., 2000; Berti and Simoni, 2005; Gregoretti and Dalla Fontana, 2008) to identify tributaries associated to debris flow events. The threshold is defined for each channel grid as a function of the simulated unit width peak flow, of the local channel bed slope and of the mean grain size. Based on assumptions concerning the mean grain size and given the distribution of the threshold values over the river network, we derive a catchment scale threshold index for the tributaries. The results show that the index has considerable skill in identifying the catchments where the studied rainstorm caused debris-flows. Berti, M. andA.Simoni, 2005: Experimental evidences and numerical modelling of debris flow initiated by channel runoff. Landslides, 2 (3), 171-182. Gregoretti, C. and G. Dalla Fontana, 2008:The triggering of debris flow due to channel-bed failure in some alpine headwater basins of the Dolomites: analyses of critical runoff. Hydrol. Process. 22, 2248-2263. Tognacca C., G.R. Bezzola andH.E.Minor, 2000: Threshold criterion fodebrisflow initiation due to channel bed failure. In Proceedings of the Second International Conference on Debris Flow Hazards Mitigation Taipei,August, Wiezczorek, Naeser (eds): 89-97.

  10. The Influence of Preferential Flow on Pressure Propagation and Landslide Triggering of the Rocca Pitigliana Landslide

    NASA Astrophysics Data System (ADS)

    Shao, W.; Bogaard, T.; Bakker, M.; Berti, M.; Savenije, H. H. G.

    2016-12-01

    The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately.

  11. Effects of Pannus Formation on the Flow around a Bileaflet Mechanical Heart Valve

    NASA Astrophysics Data System (ADS)

    Kim, Woojin; Choi, Haecheon; Kweon, Jihoon; Yang, Dong Hyun; Kim, Namkug; Kim, Young-Hak

    2013-11-01

    A pannus, an abnormal layer of fibrovascular tissue observed on a bileaflet mechanical heart valve (BMHV), induces dysfunctions of BMHV such as the time delay and incomplete valve closing. We numerically simulate the flows around an intra-annular type BMHV model with and without pannus formation, respectively, and investigate the flow and bileaflet-movement modifications due to the pannus formation. Simulations are conducted at a physiological condition (mean flow rate of 5 l/min, cycle duration of 866 ms, and the Reynolds number of 7200 based on the inflow peak bulk velocity and inflow diameter). We model the pannus as an annulus with fixed outer radius and vary the inner radius of the pannus. Our preliminary results indicate that the flow field changes significantly and the bileaflet does not close properly due to the pannus formation. The detailed results will be given at the final presentation. Supported by the NRF Programs (NRF-2011-0028032, NRF-2012M2A8A4055647).

  12. Numerical Simulation of Dry Granular Flow Impacting a Rigid Wall Using the Discrete Element Method

    PubMed Central

    Wu, Fengyuan; Fan, Yunyun; Liang, Li; Wang, Chao

    2016-01-01

    This paper presents a clump model based on Discrete Element Method. The clump model was more close to the real particle than a spherical particle. Numerical simulations of several tests of dry granular flow impacting a rigid wall flowing in an inclined chute have been achieved. Five clump models with different sphericity have been used in the simulations. By comparing the simulation results with the experimental results of normal force on the rigid wall, a clump model with better sphericity was selected to complete the following numerical simulation analysis and discussion. The calculation results of normal force showed good agreement with the experimental results, which verify the effectiveness of the clump model. Then, total normal force and bending moment of the rigid wall and motion process of the granular flow were further analyzed. Finally, comparison analysis of the numerical simulations using the clump model with different grain composition was obtained. By observing normal force on the rigid wall and distribution of particle size at the front of the rigid wall at the final state, the effect of grain composition on the force of the rigid wall has been revealed. It mainly showed that, with the increase of the particle size, the peak force at the retaining wall also increase. The result can provide a basis for the research of relevant disaster and the design of protective structures. PMID:27513661

  13. Fluid-structure interaction of a pulsatile flow with an aortic valve model: A combined experimental and numerical study.

    PubMed

    Sigüenza, Julien; Pott, Desiree; Mendez, Simon; Sonntag, Simon J; Kaufmann, Tim A S; Steinseifer, Ulrich; Nicoud, Franck

    2018-04-01

    The complex fluid-structure interaction problem associated with the flow of blood through a heart valve with flexible leaflets is investigated both experimentally and numerically. In the experimental test rig, a pulse duplicator generates a pulsatile flow through a biomimetic rigid aortic root where a model of aortic valve with polymer flexible leaflets is implanted. High-speed recordings of the leaflets motion and particle image velocimetry measurements were performed together to investigate the valve kinematics and the dynamics of the flow. Large eddy simulations of the same configuration, based on a variant of the immersed boundary method, are also presented. A massively parallel unstructured finite-volume flow solver is coupled with a finite-element solid mechanics solver to predict the fluid-structure interaction between the unsteady flow and the valve. Detailed analysis of the dynamics of opening and closure of the valve are conducted, showing a good quantitative agreement between the experiment and the simulation regarding the global behavior, in spite of some differences regarding the individual dynamics of the valve leaflets. A multicycle analysis (over more than 20 cycles) enables to characterize the generation of turbulence downstream of the valve, showing similar flow features between the experiment and the simulation. The flow transitions to turbulence after peak systole, when the flow starts to decelerate. Fluctuations are observed in the wake of the valve, with maximum amplitude observed at the commissure side of the aorta. Overall, a very promising experiment-vs-simulation comparison is shown, demonstrating the potential of the numerical method. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Computational Aerothermodynamic Assessment of Space Shuttle Orbiter Tile Damage: Open Cavities

    NASA Technical Reports Server (NTRS)

    Pulsonetti, Maria; Wood, William

    2005-01-01

    Computational aerothermodynamic simulations of Orbiter windside tile damage in flight were performed in support of the Space Shuttle Return-to-Flight effort. The simulations were performed for both hypervelocity flight and low-enthalpy wind tunnel conditions and contributed to the Return-to-Flight program by providing information to support a variety of damage scenario analyses. Computations at flight conditions were performed at or very near the peak heating trajectory point for multiple damage scenarios involving damage windside acreage reaction cured glass (RCG) coated silica tile(s). The cavities formed by the missing tile examined in this study were relatively short leading to flow features which indicated open cavity behavior. Results of the computations indicated elevated heating bump factor levels predicted for flight over the predictions for wind tunnel conditions. The peak heating bump factors, defined as the local heating to a reference value upstream of the cavity, on the cavity floor for flight simulation were 67% larger than the peak wind tunnel simulation value. On the downstream face of the cavity the flight simulation values were 60% larger than the wind tunnel simulation values. On the outer mold line (OML) downstream of the cavity, the flight values are about 20% larger than the wind tunnel simulation values. The higher heating bump factors observed in the flight simulations were due to the larger driving potential in terms of energy entering the cavity for the flight simulations. This is evidenced by the larger rate of increase in the total enthalpy through the boundary layer prior to the cavity for the flight simulation.

  15. Numerical simulation for turbulent heating around the forebody fairing of H-II rocket

    NASA Astrophysics Data System (ADS)

    Nomura, Shigeaki; Yamamoto, Yukimitsu; Fukushima, Yukio

    Concerning the heat transfer distributions around the nose fairing of the Japanese new launch vehicle H-II rocket, numerical simulations have been conducted for the conditions along its nominal ascent trajectory and some experimental tests have been conducted additionally to confirm the numerical results. The thin layer approximated Navier-Stokes equations with Baldwin-Lomax's algebraic turbulent model were solved by the time dependent finite difference method. Results of numerical simulations showed that a high peak heating would occur near the stagnation point on the spherical nose portion due to the transition to turbulent flow during the period when large stagnation point heating was predicted. The experiments were conducted under the condition of M = 5 and Re = 10 to the 6th which was similar to the flight condition where the maximum stagnation point heating would occur. The experimental results also showed a high peak heating near the stagnation point over the spherical nose portion.

  16. Measuring Your Peak Flow Rate

    MedlinePlus

    ... Living with Asthma > Managing Asthma Measuring Your Peak Flow Rate Download Instructions A peak flow meter is ... to use. Who Benefits from Using a Peak Flow Meter? Many healthcare providers believe that people who ...

  17. A risk-based framework to assess long-term effects of policy and water supply changes on water resources systems

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard; Gober, Patricia

    2015-04-01

    Climate uncertainty can affect water resources availability and management decisions. Sustainable water resources management therefore requires evaluation of policy and management decisions under a wide range of possible future water supply conditions. This study proposes a risk-based framework to integrate water supply uncertainty into a forward-looking decision making context. To apply this framework, a stochastic reconstruction scheme is used to generate a large ensemble of flow series. For the Rocky Mountain basins considered here, two key characteristics of the annual hydrograph are its annual flow volume and the timing of the seasonal flood peak. These are perturbed to represent natural randomness and potential changes due to future climate. 30-year series of perturbed flows are used as input to the SWAMP model - an integrated water resources model that simulates regional water supply-demand system and estimates economic productivity of water and other sustainability indicators, including system vulnerability and resilience. The simulation results are used to construct 2D-maps of net revenue of a particular water sector; e.g., hydropower, or for all sectors combined. Each map cell represents a risk scenario of net revenue based on a particular annual flow volume, timing of the peak flow, and 200 stochastic realizations of flow series. This framework is demonstrated for a water resources system in the Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada. Critical historical drought sequences, derived from tree-ring reconstructions of several hundred years of annual river flows, are used to evaluate the system's performance (net revenue risk) under extremely low flow conditions and also to locate them on the previously produced 2D risk maps. This simulation and analysis framework is repeated under various reservoir operation strategies (e.g., maximizing flood protection or maximizing water supply security); development proposals, such as irrigation expansion; and change in energy prices. Such risk-based analysis demonstrates relative reduction/increase of risk associated with management and policy decisions and allow decision makers to explore the relative importance of policy versus natural water supply change in a water resources system.

  18. Accuracy of 4D Flow measurement of cerebrospinal fluid dynamics in the cervical spine: An in vitro verification against numerical simulation

    PubMed Central

    Pahlavian, Soroush Heidari; Bunck, Alexander C.; Thyagaraj, Suraj; Giese, Daniel; Loth, Francis; Hedderich, Dennis M.; Kröger, Jan Robert; Martin, Bryn A.

    2016-01-01

    Abnormal alterations in cerebrospinal fluid (CSF) flow are thought to play an important role in pathophysiology of various craniospinal disorders such as hydrocephalus and Chiari malformation. Three directional phase contrast MRI (4D Flow) has been proposed as one method for quantification of the CSF dynamics in healthy and disease states, but prior to further implementation of this technique, its accuracy in measuring CSF velocity magnitude and distribution must be evaluated. In this study, an MR-compatible experimental platform was developed based on an anatomically detailed 3D printed model of the cervical subarachnoid space and subject specific flow boundary conditions. Accuracy of 4D Flow measurements was assessed by comparison of CSF velocities obtained within the in vitro model with the numerically predicted velocities calculated from a spatially averaged computational fluid dynamics (CFD) model based on the same geometry and flow boundary conditions. Good agreement was observed between CFD and 4D Flow in terms of spatial distribution and peak magnitude of through-plane velocities with an average difference of 7.5% and 10.6% for peak systolic and diastolic velocities, respectively. Regression analysis showed lower accuracy of 4D Flow measurement at the timeframes corresponding to low CSF flow rate and poor correlation between CFD and 4D Flow in-plane velocities. PMID:27043214

  19. An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Li, Chung-Gang; Tsubokura, Makoto

    2017-09-01

    The original Roe scheme is well-known to be unsuitable in simulations of turbulence because the dissipation that develops is unsatisfactory. Simulations of turbulent channel flow for Reτ = 180 show that, with the 'low-Mach-fix for Roe' (LMRoe) proposed by Rieper [J. Comput. Phys. 230 (2011) 5263-5287], the Roe dissipation term potentially equates the simulation to an implicit large eddy simulation (ILES) at low Mach number. Thus inspired, a new implicit turbulence model for low Mach numbers is proposed that controls the Roe dissipation term appropriately. Referred to as the automatic dissipation adjustment (ADA) model, the method of solution follows procedures developed previously for the truncated Navier-Stokes (TNS) equations and, without tuning of parameters, uses the energy ratio as a criterion to automatically adjust the upwind dissipation. Turbulent channel flow at two different Reynold numbers and the Taylor-Green vortex were performed to validate the ADA model. In simulations of turbulent channel flow for Reτ = 180 at Mach number of 0.05 using the ADA model, the mean velocity and turbulence intensities are in excellent agreement with DNS results. With Reτ = 950 at Mach number of 0.1, the result is also consistent with DNS results, indicating that the ADA model is also reliable at higher Reynolds numbers. In simulations of the Taylor-Green vortex at Re = 3000, the kinetic energy is consistent with the power law of decaying turbulence with -1.2 exponents for both LMRoe with and without the ADA model. However, with the ADA model, the dissipation rate can be significantly improved near the dissipation peak region and the peak duration can be also more accurately captured. With a firm basis in TNS theory, applicability at higher Reynolds number, and ease in implementation as no extra terms are needed, the ADA model offers to become a promising tool for turbulence modeling.

  20. Quantifying radar-rainfall uncertainties in urban drainage flow modelling

    NASA Astrophysics Data System (ADS)

    Rico-Ramirez, M. A.; Liguori, S.; Schellart, A. N. A.

    2015-09-01

    This work presents the results of the implementation of a probabilistic system to model the uncertainty associated to radar rainfall (RR) estimates and the way this uncertainty propagates through the sewer system of an urban area located in the North of England. The spatial and temporal correlations of the RR errors as well as the error covariance matrix were computed to build a RR error model able to generate RR ensembles that reproduce the uncertainty associated with the measured rainfall. The results showed that the RR ensembles provide important information about the uncertainty in the rainfall measurement that can be propagated in the urban sewer system. The results showed that the measured flow peaks and flow volumes are often bounded within the uncertainty area produced by the RR ensembles. In 55% of the simulated events, the uncertainties in RR measurements can explain the uncertainties observed in the simulated flow volumes. However, there are also some events where the RR uncertainty cannot explain the whole uncertainty observed in the simulated flow volumes indicating that there are additional sources of uncertainty that must be considered such as the uncertainty in the urban drainage model structure, the uncertainty in the urban drainage model calibrated parameters, and the uncertainty in the measured sewer flows.

  1. Application of RANS Simulations for Contact Time Predictions in Turbulent Reactor Tanks for Water Purification Process

    NASA Astrophysics Data System (ADS)

    Nickles, Cassandra; Goodman, Matthew; Saez, Jose; Issakhanian, Emin

    2016-11-01

    California's current drought has renewed public interest in recycled water from Water Reclamation Plants (WRPs). It is critical that the recycled water meets public health standards. This project consists of simulating the transport of an instantaneous conservative tracer through the WRP chlorine contact tanks. Local recycled water regulations stipulate a minimum 90-minute modal contact time during disinfection at peak dry weather design flow. In-situ testing is extremely difficult given flowrate dependence on real world sewage line supply and recycled water demand. Given as-built drawings and operation parameters, the chlorine contact tanks are modeled to simulate extreme situations, which may not meet regulatory standards. The turbulent flow solutions are used as the basis to model the transport of a turbulently diffusing conservative tracer added instantaneously to the inlet of the reactors. This tracer simulates the transport through advection and dispersion of chlorine in the WRPs. Previous work validated the models against experimental data. The current work shows the predictive value of the simulations.

  2. Buoyancy-assisted mixed convective flow over backward-facing step in a vertical duct using nanofluids

    NASA Astrophysics Data System (ADS)

    Mohammed, H. A.; Al-aswadi, A. A.; Yusoff, M. Z.; Saidur, R.

    2012-03-01

    Laminar mixed convective buoyancy assisting flow through a two-dimensional vertical duct with a backward-facing step using nanofluids as a medium is numerically simulated using finite volume technique. Different types of nanoparticles such as Au, Ag, Al2O3, Cu, CuO, diamond, SiO2 and TiO2 with 5 % volume fraction are used. The wall downstream of the step was maintained at a uniform wall temperature, while the straight wall that forms the other side of the duct was maintained at constant temperature equivalent to the inlet fluid temperature. The walls upstream of the step and the backward-facing step were considered as adiabatic surfaces. The duct has a step height of 4.9 mm and an expansion ratio of 1.942, while the total length in the downstream of the step is 0.5 m. The downstream wall was fixed at uniform wall temperature 0 ≤ Δ T≤ 30 °C, which was higher than the inlet flow temperature. The Reynolds number in the range of 75 ≤ Re ≤ 225 was considered. It is found that a recirculation region was developed straight behind the backward-facing step which appeared between the edge of the step and few millimeters before the corner which connect the step and the downstream wall. In the few millimeters gap between the recirculation region and the downstream wall, a U-turn flow was developed opposite to the recirculation flow which mixed with the unrecirculated flow and traveled along the channel. Two maximum and one minimum peaks in Nusselt number were developed along the heated downstream wall. It is inferred that Au nanofluid has the highest maximum peaks while diamond nanofluid has the highest minimum peak. Nanofluids with a higher Prandtl number have a higher peak of Nusselt numbers after the separation and the recirculation flow disappeared.

  3. Swirling flow in bileaflet mechanical heart valve

    NASA Astrophysics Data System (ADS)

    Gataulin, Yakov A.; Khorobrov, Svyatoslav V.; Yukhnev, Andrey D.

    2018-05-01

    Bileaflet mechanical valves are most commonly used for heart valve replacement. Nowadays swirling blood flow is registered in different parts of the cardiovascular system: left ventricle, aorta, arteries and veins. In present contribution for the first time the physiological swirling flow inlet conditions are used for numerical simulation of aortic bileaflet mechanical heart valve hemodynamics. Steady 3-dimensional continuity and RANS equations are employed to describe blood motion. The Menter SST model is used to simulate turbulence effects. Boundary conditions are corresponded to systolic peak flow. The domain was discretized into hybrid tetrahedral and hexahedral mesh with an emphasis on wall boundary layer. A system of equations was solved in Ansys Fluent finite-volume package. Noticeable changes in the flow structure caused by inlet swirl are shown. The swirling flow interaction with the valve leaflets is analyzed. A central orifice jet changes its cross-section shape, which leads to redistribution of wall shear stress on the leaflets. Transvalvular pressure gradient and area-averaged leaflet wall shear stress increase. Physiological swirl intensity noticeably reduces downstream of the valve.

  4. The Peak Flow Working Group: test of portable peak flow meters by explosive decompression.

    PubMed

    Pedersen, O F; Miller, M R

    1997-02-01

    In 1991, 50 new Vitalograph peak flow meters and 27 previously used mini-Wright peak flow meters were tested at three peak flows by use of a calibrator applying explosive decompression. The mini-Wright peak flow meters were also compared with eight new meters. For both makes of meter there was an excellent within-meter and between-meter variation. The accuracy, however, was poor, with a maximal overestimation of true flows of 50 and 70 L.min-1 in the interval from 200 to 400 L.min-1 for the Vitalograph and mini-Wright meters, respectively. The deviation is explained by the physical characteristics of the variable orifice peak flow meters. They have been supplied with equidistant scales, which give non-linear readings.

  5. Simulations of Flooding on Pea River and Whitewater Creek in the Vicinity of the Proposed Elba Bypass at Elba, Alabama

    USGS Publications Warehouse

    Hedgecock, T. Scott

    2003-01-01

    A two-dimensional finite-element surface-water model was used to study the effects of proposed modifications to the State Highway 203 corridor (proposed Elba Bypass/relocated U.S. Highway 84) on water-surface elevations and flow distributions during flooding in the Pea River and Whitewater Creek Basins at Elba, Coffee County, Alabama. Flooding was first simulated for the March 17, 1990, flood, using the 1990 flood-plain conditions to calibrate the model to match measured data collected by the U.S. Geological Survey and the U.S. Army Corps of Engineers after the flood. After model calibration, the effects of flooding were simulated for four scenarios: (1) floods having the 50- and 100-year recurrence intervals for the existing flood-plain, bridge, highway, and levee conditions; (2) floods having the 50- and 100-year recurrence intervals for the existing flood-plain and levee conditions with the State Highway 203 embankment and bridge removed; (3) floods having the 50- and 100-year recurrence intervals for the existing flood-plain, bridge, and highway conditions with proposed modifications (elevating) to the levee; and (4) floods having the 50- and 100-year recurrence intervals for the proposed conditions reflecting the Elba Bypass and modified levee. The simulation of floodflow for the Pea River and Whitewater Creek flood of March 17, 1990, in the study reach compared closely to flood profile data obtained after the flood. The flood of March 17, 1990, had an estimated peak discharge of 58,000 cubic feet per second at the gage (just below the confluence) and was estimated to be between a 50-year and 100-year flood event. The estimated peak discharge for Pea River and Whitewater Creek was 40,000 and 42,000 cubic feet per second, respectively. Simulation of floodflows for the 50-year flood (51,400 cubic feet per second) at the gage for existing flood-plain, bridge, highway, and levee conditions indicated that about 31 percent of the peak flow was conveyed by the State Highway 203 bridge over Whitewater Creek, approximately 12 percent overtopped the State Highway 203 embankment, and about 57 percent was conveyed by the Pea River flood plain east of State Highway 125. For this simulation, flow from Pea River (2,380 cubic feet per second) overtopped State Highway 125 and crossed over into the Whitewater Creek flood plain north of State Highway 203, creating one common flood plain. The water-surface elevation estimated at the downstream side of the State Highway 203 bridge crossing Whitewater Creek was 202.82 feet. The girders for both the State Highway 203 and U.S. Highway 84 bridges were partially submerged, but U.S. Highway 84 was not overtopped. For the 100-year flood (63,500 cubic feet per second) at the gage, the simulation indicated that about 25 percent of the peak flow was conveyed by the State Highway 203 bridge over Whitewater Creek, approximately 24 percent overtopped the State Highway 203 embankment, and about 51 percent was conveyed by the Pea River flood plain east of State Highway 125. The existing levee adjacent to Whitewater Creek was overtopped by a flow of 3,200 cubic feet per second during the 100-year flood. For this simulation, flow from Pea River (6,710 cubic feet per second) overtopped State Highway 125 and crossed over into the Whitewater Creek flood plain north of State Highway 203. The water-surface elevation estimated at the downstream side of the State Highway 203 bridge crossing Whitewater Creek was 205.60 feet. The girders for both the State Highway 203 and U.S. Highway 84 bridges were partially submerged, and the west end of the U.S. Highway 84 bridge was overtopped. Simulation of floodflows for the 50-year flood at the gage for existing flood-plain and levee conditions, but with the State Highway 203 embankment and bridge removed, yielded a lower water-surface elevation (202.90 feet) upstream of this bridge than that computed for the existing conditions. For the 100-year flood, the simulation indi

  6. The U.S. Geological Survey Peak-Flow File Data Verification Project, 2008–16

    USGS Publications Warehouse

    Ryberg, Karen R.; Goree, Burl B.; Williams-Sether, Tara; Mason, Robert R.

    2017-11-21

    Annual peak streamflow (peak flow) at a streamgage is defined as the maximum instantaneous flow in a water year. A water year begins on October 1 and continues through September 30 of the following year; for example, water year 2015 extends from October 1, 2014, through September 30, 2015. The accuracy, characterization, and completeness of the peak streamflow data are critical in determining flood-frequency estimates that are used daily to design water and transportation infrastructure, delineate flood-plain boundaries, and regulate development and utilization of lands throughout the United States and are essential to understanding the implications of climate and land-use change on flooding and high-flow conditions.As of November 14, 2016, peak-flow data existed for 27,240 unique streamgages in the United States and its territories. The data, collectively referred to as the “peak-flow file,” are available as part of the U.S. Geological Survey (USGS) public web interface, the National Water Information System, at https://nwis.waterdata.usgs.gov/usa/nwis/peak. Although the data have been routinely subjected to periodic review by the USGS Office of Surface Water and screening at the USGS Water Science Center level, these data were not reviewed in a national, systematic manner until 2008 when automated scripts were developed and applied to detect potential errors in peak-flow values and their associated dates, gage heights, and peak-flow qualification codes, as well as qualification codes associated with the gage heights. USGS scientists and hydrographers studied the resulting output, accessed basic records and field notes, and corrected observed errors or, more commonly, confirmed existing data as correct.This report summarizes the changes in peak-flow file data at a national level, illustrates their nature and causation, and identifies the streamgages affected by these changes. Specifically, the peak-flow data were compared for streamgages with peak flow measured as of November 19, 2008 (before the automated scripts were widely applied) and on November 14, 2016 (after several rounds of corrections). There were 659,332 peak-flow values in the 2008 dataset and 731,965 peak-flow values in the 2016 dataset. When compared to the 2016 dataset, 5,179 (0.79 percent) peak-flow values had changed; 36,506 (5.54 percent) of the peak-flow qualification codes had changed; 1,938 (0.29 percent) peak-flow dates had changed; 18,599 (2.82 percent) of the peak-flow gage heights had changed; and 20,683 (3.14 percent) of the gage-height qualification codes had changed—most as a direct result of the peak-flow file data verification effort led by USGS personnel. The various types of changes are summarized and mapped in this report. In addition to this report, a corresponding USGS data release is provided to identify changes in peak flows at individual streamgages. The data release and the procedures to access the data release are described in this report.

  7. Evaluation of the expected moments algorithm and a multiple low-outlier test for flood frequency analysis at streamgaging stations in Arizona

    USGS Publications Warehouse

    Paretti, Nicholas V.; Kennedy, Jeffrey R.; Cohn, Timothy A.

    2014-01-01

    Flooding is among the costliest natural disasters in terms of loss of life and property in Arizona, which is why the accurate estimation of flood frequency and magnitude is crucial for proper structural design and accurate floodplain mapping. Current guidelines for flood frequency analysis in the United States are described in Bulletin 17B (B17B), yet since B17B’s publication in 1982 (Interagency Advisory Committee on Water Data, 1982), several improvements have been proposed as updates for future guidelines. Two proposed updates are the Expected Moments Algorithm (EMA) to accommodate historical and censored data, and a generalized multiple Grubbs-Beck (MGB) low-outlier test. The current guidelines use a standard Grubbs-Beck (GB) method to identify low outliers, changing the determination of the moment estimators because B17B uses a conditional probability adjustment to handle low outliers while EMA censors the low outliers. B17B and EMA estimates are identical if no historical information or censored or low outliers are present in the peak-flow data. EMA with MGB (EMA-MGB) test was compared to the standard B17B (B17B-GB) method for flood frequency analysis at 328 streamgaging stations in Arizona. The methods were compared using the relative percent difference (RPD) between annual exceedance probabilities (AEPs), goodness-of-fit assessments, random resampling procedures, and Monte Carlo simulations. The AEPs were calculated and compared using both station skew and weighted skew. Streamgaging stations were classified by U.S. Geological Survey (USGS) National Water Information System (NWIS) qualification codes, used to denote historical and censored peak-flow data, to better understand the effect that nonstandard flood information has on the flood frequency analysis for each method. Streamgaging stations were also grouped according to geographic flood regions and analyzed separately to better understand regional differences caused by physiography and climate. The B17B-GB and EMA-MGB RPD-boxplot results showed that the median RPDs across all streamgaging stations for the 10-, 1-, and 0.2-percent AEPs, computed using station skew, were approximately zero. As the AEP flow estimates decreased (that is, from 10 to 0.2 percent AEP) the variability in the RPDs increased, indicating that the AEP flow estimate was greater for EMA-MGB when compared to B17B-GB. There was only one RPD greater than 100 percent for the 10- and 1-percent AEP estimates, whereas 19 RPDs exceeded 100 percent for the 0.2-percent AEP. At streamgaging stations with low-outlier data, historical peak-flow data, or both, RPDs ranged from −84 to 262 percent for the 0.2-percent AEP flow estimate. When streamgaging stations were separated by the presence of historical peak-flow data (that is, no low outliers or censored peaks) or by low outlier peak-flow data (no historical data), the results showed that RPD variability was greatest for the 0.2-AEP flow estimates, indicating that the treatment of historical and (or) low-outlier data was different between methods and that method differences were most influential when estimating the less probable AEP flows (1, 0.5, and 0.2 percent). When regional skew information was weighted with the station skew, B17B-GB estimates were generally higher than the EMA-MGB estimates for any given AEP. This was related to the different regional skews and mean square error used in the weighting procedure for each flood frequency analysis. The B17B-GB weighted skew analysis used a more positive regional skew determined in USGS Water Supply Paper 2433 (Thomas and others, 1997), while the EMA-MGB analysis used a more negative regional skew with a lower mean square error determined from a Bayesian generalized least squares analysis. Regional groupings of streamgaging stations reflected differences in physiographic and climatic characteristics. Potentially influential low flows (PILFs) were more prevalent in arid regions of the State, and generally AEP flows were larger with EMA-MGB than with B17B-GB for gaging stations with PILFs. In most cases EMA-MGB curves would fit the largest floods more accurately than B17B-GB. In areas of the State with more baseflow, such as along the Mogollon Rim and the White Mountains, streamgaging stations generally had fewer PILFs and more positive skews, causing estimated AEP flows to be larger with B17B-GB than with EMA-MGB. The effect of including regional skew was similar for all regions, and the observed pattern was increasingly greater B17B-GB flows (more negative RPDs) with each decreasing AEP quantile. A variation on a goodness-of-fit test statistic was used to describe each method’s ability to fit the largest floods. The mean absolute percent difference between the measured peak flows and the log-Pearson Type 3 (LP3)-estimated flows, for each method, was averaged over the 90th, 75th, and 50th percentiles of peak-flow data at each site. In most percentile subsets, EMA-MGB on average had smaller differences (1 to 3 percent) between the observed and fitted value, suggesting that the EMA-MGB-LP3 distribution is fitting the observed peak-flow data more precisely than B17B-GB. The smallest EMA-MGB percent differences occurred for the greatest 10 percent (90th percentile) of the peak-flow data. When stations were analyzed by USGS NWIS peak flow qualification code groups, the stations with historical peak flows and no low outliers had average percent differences as high as 11 percent greater for B17B-GB, indicating that EMA-MGB utilized the historical information to fit the largest observed floods more accurately. A resampling procedure was used in which 1,000 random subsamples were drawn, each comprising one-half of the observed data. An LP3 distribution was fit to each subsample using B17B-GB and EMA-MGB methods, and the predicted 1-percent AEP flows were compared to those generated from distributions fit to the entire dataset. With station skew, the two methods were similar in the median percent difference, but with weighted skew EMA-MGB estimates were generally better. At two gages where B17B-GB appeared to perform better, a large number of peak flows were deemed to be PILFs by the MGB test, although they did not appear to depart significantly from the trend of the data (step or dogleg appearance). At two gages where EMA-MGB performed better, the MGB identified several PILFs that were affecting the fitted distribution of the B17B-GB method. Monte Carlo simulations were run for the LP3 distribution using different skews and with different assumptions about the expected number of historical peaks. The primary benefit of running Monte Carlo simulations is that the underlying distribution statistics are known, meaning that the true 1-percent AEP is known. The results showed that EMA-MGB performed as well or better in situations where the LP3 distribution had a zero or positive skew and historical information. When the skew for the LP3 distribution was negative, EMA-MGB performed significantly better than B17B-GB and EMA-MGB estimates were less biased by more closely estimating the true 1-percent AEP for 1, 2, and 10 historical flood scenarios.

  8. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise

    PubMed Central

    Lau, Kevin D.; Asrress, Kaleab N.; Redwood, Simon R.; Figueroa, C. Alberto

    2016-01-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. PMID:26945076

  9. A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise.

    PubMed

    Arthurs, Christopher J; Lau, Kevin D; Asrress, Kaleab N; Redwood, Simon R; Figueroa, C Alberto

    2016-05-01

    This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. Copyright © 2016 the American Physiological Society.

  10. Significance of flow clustering and sequencing on sediment transport: 1D sediment transport modelling

    NASA Astrophysics Data System (ADS)

    Hassan, Kazi; Allen, Deonie; Haynes, Heather

    2016-04-01

    This paper considers 1D hydraulic model data on the effect of high flow clusters and sequencing on sediment transport. Using observed flow gauge data from the River Caldew, England, a novel stochastic modelling approach was developed in order to create alternative 50 year flow sequences. Whilst the observed probability density of gauge data was preserved in all sequences, the order in which those flows occurred was varied using the output from a Hidden Markov Model (HMM) with generalised Pareto distribution (GP). In total, one hundred 50 year synthetic flow series were generated and used as the inflow boundary conditions for individual flow series model runs using the 1D sediment transport model HEC-RAS. The model routed graded sediment through the case study river reach to define the long-term morphological changes. Comparison of individual simulations provided a detailed understanding of the sensitivity of channel capacity to flow sequence. Specifically, each 50 year synthetic flow sequence was analysed using a 3-month, 6-month or 12-month rolling window approach and classified for clusters in peak discharge. As a cluster is described as a temporal grouping of flow events above a specified threshold, the threshold condition used herein is considered as a morphologically active channel forming discharge event. Thus, clusters were identified for peak discharges in excess of 10%, 20%, 50%, 100% and 150% of the 1 year Return Period (RP) event. The window of above-peak flows also required cluster definition and was tested for timeframes 1, 2, 10 and 30 days. Subsequently, clusters could be described in terms of the number of events, maximum peak flow discharge, cumulative flow discharge and skewness (i.e. a description of the flow sequence). The model output for each cluster was analysed for the cumulative flow volume and cumulative sediment transport (mass). This was then compared to the total sediment transport of a single flow event of equivalent flow volume. Results illustrate that clustered flood events generated sediment loads up to an order of magnitude greater than that of individual events of the same flood volume. Correlations were significant for sediment volume compared to both maximum flow discharge (R2<0.8) and number of events (R2 -0.5 to -0.7) within the cluster. The strongest correlations occurred for clusters with a greater number of flow events only slightly above-threshold. This illustrates that the numerical model can capture a degree of the non-linear morphological response to flow magnitude. Analysis of the relationship between morphological change and the skewness of flow events within each cluster was also determined, illustrating only minor sensitivity to cluster peak distribution skewness. This is surprising and discussion is presented on model limitations, including the capability of sediment transport formulae to effectively account for temporal processes of antecedent flow, hysteresis, local supply etc.

  11. Simulation of flood hydrographs for Georgia streams

    USGS Publications Warehouse

    Inman, Ernest J.

    1987-01-01

    Flood hydrographs are needed for the design of many highway drainage structures and embankments. A method for simulating these flood hydrographs at ungaged sites in Georgia is presented in this report. The O'Donnell method was used to compute unit hydrographs and lagtimes for 355 floods at 80 gaging stations. An average unit hydrograph and an average lagtime were computed for each station. These average unit hydrographs were transformed to unit hydrographs having durations of one-fourth, one-third, one-half, and three-fourths lagtime, then reduced to dimensionless terms by dividing the time by lagtime and the discharge by peak discharge. Hydrographs were simulated for these 355 floods and their widths were compared with the widths of the observed hydrographs at 50 and 75 percent of peak flow. The dimensionless hydrograph based on one-half lagtime duration provided the best fit of the observed data. Multiple regression analysis was then used to define relations between lagtime and certain physical basin characteristics; of these characteristics, drainage area and slope were found to be significant for the rural-stream equations and drainage area, slope, and impervious area were found to be significant for the Atlanta urban-stream equation. A hydrograph can be simulated from the dimensionless hydrograph, the peak discharge of a specific recurrence interval, and the lagtime obtained from regression equations for any site in Georgia having a drainage area of less than 500 square miles. For simulating hydrographs at sites having basins larger than 500 square miles, the U.S. Geological Survey computer model CONROUT can be used. This model routes streamflow from an upstream channel location to a user-defined location downstream. The product of CONROUT is a simulated discharge hydrograph for the downstream site that has a peak discharge of a specific recurrence interval.

  12. How important is exact knowledge of preferential flowpath locations and orientations for understanding spatiotemporally integrated spring hydrologic and transport response?

    NASA Astrophysics Data System (ADS)

    Henson, W.; De Rooij, R.; Graham, W. D.

    2016-12-01

    The Upper Floridian Aquifer is hydrogeologically complex; limestone dissolution has led to vertical and horizontal preferential flow paths. Locations of karst conduits are unknown and conduit properties are poorly constrained. Uncertainty in effects of conduit location, size, and density, network geometry and connectivity on hydrologic and transport responses is not well quantified, leading to limited use of discrete-continuum models that incorporate conduit networks for regional-scale hydrologic regulatory models. However, conduit networks typically dominate flow and contaminant transport in karst aquifers. We evaluated sensitivity of simulated water and nitrate fluxes and flow paths to karst conduit geometry in a springshed representative of Silver Springs, Florida, using a novel calcite dissolution conduit-generation algorithm coupled with a discrete-continuum flow and transport model (DisCo). Monte Carlo simulations of conduit generation, groundwater flow, and conservative solute transport indicate that, if a first magnitude spring system conduit network developed (i.e., spring flow >2.8 m3/s), the uncertainty in hydraulic and solute pulse response metrics at the spring vent was minimally related to locational uncertainty of network elements. Across the ensemble of realizations for various distributions of conduits, first magnitude spring hydraulic pulse metrics (e.g., steady-flow, peak flow, and recession coefficients) had < 0.01 coefficient of variation (CV). Similarly, spring solute breakthrough curve moments had low CV (<0.08); peak arrival had CV=0.06, mean travel time had CV=0.05, and travel time standard deviation had CV=0.08. Nevertheless, hydraulic and solute pulse response metrics were significantly different than those predicted by an equivalent porous-media model. These findings indicate that regional-scale decision models that incorporate karst preferential flow paths within an uncertainty framework can be used to better constrain aquifer-vulnerability estimates, despite lacking information about actual conduit locations.

  13. Observations relating extreme multi-basin river flows to very severe gales

    NASA Astrophysics Data System (ADS)

    Hillier, John; De Luca, Paolo; Wilby, Rob; Quinn, Nevil; Harrigan, Shaun

    2017-04-01

    Fluvial foods are typically investigated as 'events' at the single basin scale. However, applying a recently developed methodology to identify the largest multi-basin peak flow events allows a statistically significant relationship between them and episodes of very severe gales (VSG) to be identified; such a systematic link has previously only very tentatively been proposed for extra-tropical cyclone seasons, where damaging wind and rain are commonly non-synchronous. Annual maximum river peak flow (AMAX) data during 1975-2014 for 261 non-nested catchments (i.e. with no other sites upstream) in Great Britain are used, and a 13-day window is selected. A simple correlation between metrics that are proxies for damaging wind and flooding is statistically significant (r = 0.41, p = 0.0088). Also, taking the most severe 50% and 30% of years for wind and flow respectively, co-occurrence is expected 6.6 times in 40 years whilst 10 are observed (p = 0.021; simulation with n = 10,000), making co-occurrence of the extremes 52% more likely than expected by chance. This has implications for emergency response and financial planning (e.g. insurance).

  14. Molecular characteristics of stress overshoot for polymer melts under start-up shear flow.

    PubMed

    Jeong, Sohdam; Kim, Jun Mo; Baig, Chunggi

    2017-12-21

    Stress overshoot is one of the most important nonlinear rheological phenomena exhibited by polymeric liquids undergoing start-up shear at sufficient flow strengths. Despite considerable previous research, the fundamental molecular characteristics underlying stress overshoot remain unknown. Here, we analyze the intrinsic molecular mechanisms behind the overshoot phenomenon using atomistic nonequilibrium molecular dynamics simulations of entangled linear polyethylene melts under shear flow. Through a detailed analysis of the transient rotational chain dynamics, we identify an intermolecular collision angular regime in the vicinity of the chain orientation angle θ ≈ 20° with respect to the flow direction. The shear stress overshoot occurs via strong intermolecular collisions between chains in the collision regime at θ = 15°-25°, corresponding to a peak strain of 2-4, which is an experimentally well-known value. The normal stress overshoot appears at approximately θ = 10°, at a corresponding peak strain roughly equivalent to twice that for the shear stress. We provide plausible answers to several basic questions regarding the stress overshoot, which may further help understand other nonlinear phenomena of polymeric systems.

  15. Dynamics of rain-induced pollutographs of solubles in sewers.

    PubMed

    Rutsch, M; Müller, I; Krebs, P

    2005-01-01

    When looking at acute receiving water impacts due to combined sewer overflows the characteristics of the background diurnal sewage flux variation may influence the peak loads from combined sewer overflows (CSO) and wastewater treatment plant (WWTP) effluent significantly. In this paper, effects on the dynamic compounds transported in the sewer, on CSO discharges and WWTP loading are evaluated by means of hydrodynamic simulations. The simulations are based on different scenarios for diurnal dry-weather flow variations induced by different infiltration rates.

  16. The influence of preferential flow on pressure propagation and landslide triggering of the Rocca Pitigliana landslide

    NASA Astrophysics Data System (ADS)

    Shao, Wei; Bogaard, Thom; Bakker, Mark; Berti, Matteo

    2016-12-01

    The fast pore water pressure response to rain events is an important triggering factor for slope instability. The fast pressure response may be caused by preferential flow that bypasses the soil matrix. Currently, most of the hydro-mechanical models simulate pore water pressure using a single-permeability model, which cannot quantify the effects of preferential flow on pressure propagation and landslide triggering. Previous studies showed that a model based on the linear-diffusion equation can simulate the fast pressure propagation in near-saturated landslides such as the Rocca Pitigliana landslide. In such a model, the diffusion coefficient depends on the degree of saturation, which makes it difficult to use the model for predictions. In this study, the influence of preferential flow on pressure propagation and slope stability is investigated with a 1D dual-permeability model coupled with an infinite-slope stability approach. The dual-permeability model uses two modified Darcy-Richards equations to simultaneously simulate the matrix flow and preferential flow in hillslopes. The simulated pressure head is used in an infinite-slope stability analysis to identify the influence of preferential flow on the fast pressure response and landslide triggering. The dual-permeability model simulates the height and arrival of the pressure peak reasonably well. Performance of the dual-permeability model is as good as or better than the linear-diffusion model even though the dual-permeability model is calibrated for two single pulse rain events only, while the linear-diffusion model is calibrated for each rain event separately. In conclusion, the 1D dual-permeability model is a promising tool for landslides under similar conditions.

  17. Revisiting the accuracy of peak flow meters: a double-blind study using formal methods of agreement.

    PubMed

    Nazir, Z; Razaq, S; Mir, S; Anwar, M; Al Mawlawi, G; Sajad, M; Shehab, A; Taylor, R S

    2005-05-01

    There is widespread use of peak flow meters in both hospitals and general practice. Previous studies to assess peak flow meter accuracy have shown significant differences in the values obtained from different meters. However, many of these studies did not use human subjects for peak flow measurements and did not compare meters of varying usage. In this study human subjects have been used with meters of varying usage. Participants were tested using two new (meters A and C) and one old peak flow meter (meter B) in random order. The study was double-blinded. Participants were recruited from the university campus. Four hundred and nine individuals participated. The difference between peak flow means of A and B was -9.93 l/min (95% CI: -12.37 to -7.48, P<0.0001). The difference between peak flow means of B and C was 20.08 l/min (95% CI: 17.85-22.29, P<0.0001). The difference between peak flow means of A and C was 10.15 l/min (95% CI: 7.68-12.61, P<0.0001). There was a significant difference between the values obtained from the new and old peak flow meters and also between the two new peak flow meters. We conclude that there is need for caution in interchangeably using flow meters in clinical practice.

  18. Can standard cosmological models explain the observed Abell cluster bulk flow?

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Cen, Renyue; Ostriker, Jeremiah P.; Laure, Tod R.; Postman, Marc

    1995-01-01

    Lauer and Postman (LP) observed that all Abell clusters with redshifts less than 15,000 km/s appear to be participating in a bulk flow of 689 km/s with respect to the cosmic microwave background. We find this result difficult to reconcile with all popular models for large-scale structure formation that assume Gaussian initial conditions. This conclusion is based on Monte Carlo realizations of the LP data, drawn from large particle-mesh N-body simulations for six different models of the initial power spectrum (standard, tilted, and Omega(sub 0) = 0.3 cold dark matter, and two variants of the primordial baryon isocurvature model). We have taken special care to treat properly the longest-wavelength components of the power spectra. The simulations are sampled, 'observed,' and analyzed as identically as possible to the LP cluster sample. Large-scale bulk flows as measured from clusters in the simulations are in excellent agreement with those measured from the grid: the clusters do not exhibit any strong velocity bias on large scales. Bulk flows with amplitude as large as that reported by LP are not uncommon in the Monte Carlo data stes; the distribution of measured bulk flows before error bias subtraction is rougly Maxwellian, with a peak around 400 km/s. However the chi squared of the observed bulk flow, taking into account the anisotropy of the error ellipsoid, is much more difficult to match in the simulations. The models examined are ruled out at confidence levels between 94% and 98%.

  19. Effect of flow velocity on the photoacoustic detection for glucose aqueous solutions

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Ding, Yu; Yao, Qingkai

    2018-01-01

    The blood glucose non-invasive detection has become the research hot-spot. The photoacoustic spectroscopy is a well-promising, high-efficient and noninvasive detection method because it combines the advantages of the pure optic and pure ultrasonic. In practice, the photoacoustic detection of blood glucose is impacted by many factors because the human body is a complicated bio-system. To study the effect of flow velocity in the blood vessel on the photoacoustic detection of blood glucose, a photoacoustic detection system based on optical parameter oscillator (OPO) pulsed laser induced ultrasonic was established. In this system, a 532nm pumped Nd: YAG OPO pulsed laser was used as the excitation source, and the photoacoustic signals of glucose were captured by ultrasonic transducer. Moreover, a set of blood circulation system was built to simulate the real blood flow situation in the human body. The experiments of the photoacoustic detection of glucose aqueous solutions with different concentrations at different flow velocities were experimentally investigated. Experimental results show that the photoacoustic peak-to-peak value linearly increases with the glucose concentration, but it decreases with the increase of the flow velocity although the profiles of photoacoustic signals don't change.

  20. Historical and Future Projected Hydrologic Extremes over the Midwest and Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Byun, K.; Hamlet, A. F.; Chiu, C. M.

    2016-12-01

    There is an increasing body of evidence from observed data that climate variability combined with regional climate change has had a significant impact on hydrologic cycles, including both seasonal patterns of runoff and altered hydrologic extremes (e.g. floods and extreme stormwater events). To better understand changing patterns of extreme high flows in Midwest and Great Lakes region, we analyzed long-term historical observations of peak streamflow at different gaging stations. We also conducted hydrologic model experiments using the Variable Infiltration Capacity (VIC) at 1/16 degree resolution in order to explore sensitivity of annual peak streamflow, both historically and under temperature and precipitation changes for several future periods. For future projections, the Hybrid Delta statistical downscaling approach applied to the Coupled Model Inter-comparison, Phase5 (CMIP5) Global Climate Model (GCM) scenarios was used to produce driving data for the VIC hydrologic model. Preliminary results for several test basins in the Midwest support the hypothesis that there are consistent and statistically significant changes in the mean annual flood starting before and after about 1975. Future projections using hydrologic model simulations support the hypothesis of higher peak flows due to warming and increasing precipitation projected for the 21st century. We will extend this preliminary analysis using observed data and simulations from 40 river basins in the Midwest to further test these hypotheses.

  1. Modeled future peak streamflows in four coastal Maine rivers

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.

    2013-01-01

    To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). Annual precipitation and air temperature in the northeastern United States are, in general, projected to increase during the 21st century. It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This report, prepared in cooperation with the Maine Department of Transportation (MaineDOT), presents modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. To estimate future peak streamflows at the four basins in this study, historical values for climate (temperature and precipitation) in the basins were adjusted by different amounts and input to a hydrologic model of each study basin. To encompass the projected changes in climate in coastal Maine by the end of the 21st century, air temperatures were adjusted by four different amounts, from -3.6 degrees Fahrenheit (ºF) (-2 degrees Celsius (ºC)) to +10.8 ºF (+6 ºC) of observed temperatures. Precipitation was adjusted by three different percentage values from -15 percent to +30 percent of observed precipitation. The resulting 20 combinations of temperature and precipitation changes (includes the no-change scenarios) were input to Precipitation-Runoff Modeling System (PRMS) watershed models, and annual daily maximum peak flows were calculated for each combination. Modeled peak flows from the adjusted changes in temperature and precipitation were compared to unadjusted (historical) modeled peak flows. Annual daily maximum peak flows increase or decrease, depending on whether temperature or precipitation is adjusted; increases in air temperature (with no change in precipitation) lead to decreases in peak flows, whereas increases in precipitation (with no change in temperature) lead to increases in peak flows. As the magnitude of air temperatures increase in the four basins, peak flows decrease by larger amounts. If precipitation is held constant (no change from historical values), 17 to 26 percent decreases in peak flow occur at the four basins when temperature is increased by 7.2°F. If temperature is held constant, 26 to 38 percent increases in peak flow result from a 15-percent increase in precipitation. The largest decreases in peak flows at the four basins result from 15-percent decreases in precipitation combined with temperature increases of 10.8°F. The largest increases in peak flows generally result from 30-percent increases in precipitation combined with 3.6 °F decreases in temperatures. In many cases when temperature and precipitation both increase, small increases or decreases in annual daily maximum peak flows result. For likely changes projected for the northeastern United States for the middle of the 21st century (temperature increase of 3.6 °F and precipitation increases of 0 to 15 percent), peak-flow changes at the four coastal Maine basins in this study are modeled to be evenly distributed between increases and decreases of less than 25 percent. Peak flows with 50-percent and 1-percent AEPs (equivalent to 2-year and 100-year recurrence interval peak flows, respectively) were calculated for the four basins in the study using the PRMS-modeled annual daily maximum peak flows. Modeled peak flows with 50-percent and 1-percent AEPs with adjusted temperatures and precipitation were compared to unadjusted (historical) modeled values. Changes in peak flows with 50-percent AEPs are similar to changes in annual daily maximum peak flow; changes in peak flows with 1-percent AEPs are similar in pattern to changes in annual daily maximum peak flow, but some of the changes associated with increasing precipitation are much larger than changes in annual daily maximum peak flow. Substantial decreases in maximum annual winter snowpack water equivalent are modeled to occur with increasing air temperatures at the four basins in the study. (Snowpack is the snow on the ground that accumulates during a winter, and water equivalent is the amount of water in a snowpack if it were melted.) The decrease in modeled peak flows with increasing air temperature, given no change in precipitation amount, is likely caused by these decreases in winter snowpack and resulting decreases in snowmelt runoff. This Scientific Investigations Report, prepared in cooperation with the Maine Department of Transportation, presents a summary of modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. The full Fact Sheet (Hodgkins and Dudley, 2013) is available at http://pubs.usgs.gov/fs/2013/3021/.

  2. Impacts of calibration strategies and ensemble methods on ensemble flood forecasting over Lanjiang basin, Southeast China

    NASA Astrophysics Data System (ADS)

    Liu, Li; Xu, Yue-Ping

    2017-04-01

    Ensemble flood forecasting driven by numerical weather prediction products is becoming more commonly used in operational flood forecasting applications.In this study, a hydrological ensemble flood forecasting system based on Variable Infiltration Capacity (VIC) model and quantitative precipitation forecasts from TIGGE dataset is constructed for Lanjiang Basin, Southeast China. The impacts of calibration strategies and ensemble methods on the performance of the system are then evaluated.The hydrological model is optimized by parallel programmed ɛ-NSGAII multi-objective algorithm and two respectively parameterized models are determined to simulate daily flows and peak flows coupled with a modular approach.The results indicatethat the ɛ-NSGAII algorithm permits more efficient optimization and rational determination on parameter setting.It is demonstrated that the multimodel ensemble streamflow mean have better skills than the best singlemodel ensemble mean (ECMWF) and the multimodel ensembles weighted on members and skill scores outperform other multimodel ensembles. For typical flood event, it is proved that the flood can be predicted 3-4 days in advance, but the flows in rising limb can be captured with only 1-2 days ahead due to the flash feature. With respect to peak flows selected by Peaks Over Threshold approach, the ensemble means from either singlemodel or multimodels are generally underestimated as the extreme values are smoothed out by ensemble process.

  3. Regional flood probabilities

    USGS Publications Warehouse

    Troutman, Brent M.; Karlinger, Michael R.

    2003-01-01

    The T‐year annual maximum flood at a site is defined to be that streamflow, that has probability 1/T of being exceeded in any given year, and for a group of sites the corresponding regional flood probability (RFP) is the probability that at least one site will experience a T‐year flood in any given year. The RFP depends on the number of sites of interest and on the spatial correlation of flows among the sites. We present a Monte Carlo method for obtaining the RFP and demonstrate that spatial correlation estimates used in this method may be obtained with rank transformed data and therefore that knowledge of the at‐site peak flow distribution is not necessary. We examine the extent to which the estimates depend on specification of a parametric form for the spatial correlation function, which is known to be nonstationary for peak flows. It is shown in a simulation study that use of a stationary correlation function to compute RFPs yields satisfactory estimates for certain nonstationary processes. Application of asymptotic extreme value theory is examined, and a methodology for separating channel network and rainfall effects on RFPs is suggested. A case study is presented using peak flow data from the state of Washington. For 193 sites in the Puget Sound region it is estimated that a 100‐year flood will occur on the average every 4.5 years.

  4. Comparison of Peak-Flow Estimation Methods for Small Drainage Basins in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Hebson, Charles; Lombard, Pamela J.; Mann, Alexander

    2007-01-01

    Understanding the accuracy of commonly used methods for estimating peak streamflows is important because the designs of bridges, culverts, and other river structures are based on these flows. Different methods for estimating peak streamflows were analyzed for small drainage basins in Maine. For the smallest basins, with drainage areas of 0.2 to 1.0 square mile, nine peak streamflows from actual rainfall events at four crest-stage gaging stations were modeled by the Rational Method and the Natural Resource Conservation Service TR-20 method and compared to observed peak flows. The Rational Method had a root mean square error (RMSE) of -69.7 to 230 percent (which means that approximately two thirds of the modeled flows were within -69.7 to 230 percent of the observed flows). The TR-20 method had an RMSE of -98.0 to 5,010 percent. Both the Rational Method and TR-20 underestimated the observed flows in most cases. For small basins, with drainage areas of 1.0 to 10 square miles, modeled peak flows were compared to observed statistical peak flows with return periods of 2, 50, and 100 years for 17 streams in Maine and adjoining parts of New Hampshire. Peak flows were modeled by the Rational Method, the Natural Resources Conservation Service TR-20 method, U.S. Geological Survey regression equations, and the Probabilistic Rational Method. The regression equations were the most accurate method of computing peak flows in Maine for streams with drainage areas of 1.0 to 10 square miles with an RMSE of -34.3 to 52.2 percent for 50-year peak flows. The Probabilistic Rational Method was the next most accurate method (-38.5 to 62.6 percent). The Rational Method (-56.1 to 128 percent) and particularly the TR-20 method (-76.4 to 323 percent) had much larger errors. Both the TR-20 and regression methods had similar numbers of underpredictions and overpredictions. The Rational Method overpredicted most peak flows and the Probabilistic Rational Method tended to overpredict peak flows from the smaller (less than 5 square miles) drainage basins and underpredict peak flows from larger drainage basins. The results of this study are consistent with the most comprehensive analysis of observed and modeled peak streamflows in the United States, which analyzed statistical peak flows from 70 drainage basins in the Midwest and the Northwest.

  5. Peak-flow frequency estimates through 1994 for gaged streams in South Dakota

    USGS Publications Warehouse

    Burr, M.J.; Korkow, K.L.

    1996-01-01

    Annual peak-flow data are listed for 250 continuous-record and crest-stage gaging stations in South Dakota. Peak-flow frequency estimates for selected recurrence intervals ranging from 2 to 500 years are given for 234 of these 250 stations. The log-Pearson Type III procedure was used to compute the frequency relations for the 234 stations, which in 1994 included 105 active and 129 inactive stations. The log-Pearson Type III procedure is recommended by the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data, 1982, "Guidelines for Determining Flood Flow Frequency."No peak-flow frequency estimates are given for 16 of the 250 stations because: (1) of extreme variability in data set; (2) more than 20 percent of years had no flow; (3) annual peak flows represent large outflow from a spring; (4) of insufficient peak-flow record subsequent to reservoir regulation; and (5) peak-flow records were combined with records from nearby stations.

  6. Application of a sediment-transport model to estimate bridge scour at selected sites in Colorado, 1991-93

    USGS Publications Warehouse

    Vaill, J.E.

    1995-01-01

    A bridge-scour study by the U.S. Geological Survey, in cooperation with the Colorado Department of Transportation, was begun in 1991 to evaluate bridges in the State for potential scour during floods. A part of that study was to apply a computer model for sediment-transport routing to simulate channel aggradation or degradation and pier scour during floods at three bridge sites in Colorado. Stream-channel reaches upstream and downstream from the bridges were simulated using the Bridge Stream Tube model for Alluvial River Simulation (BRI-STARS). Synthetic flood hydrographs for the 500-year floods were developed for Surveyor Creek near Platner and for the Rio Grande at Wagon Wheel Gap. A part of the recorded mean daily hydrograph for the peak flow of record was used for the Yampa River near Maybell. The recorded hydrograph for the peak flow of record exceeded the computed 500-year-flood magnitude for this stream by about 22 percent. Bed-material particle-size distributions were determined from samples collected at Surveyor Creek and the Rio Grande. Existing data were used for the Yampa River. The model was used to compute a sediment-inflow hydrograph using particle-size data collected and a specified sediment-transport equation at each site. Particle sizes ranged from less than 0.5 to 16 millimeters for Surveyor Creek, less than 4 to 128 millimeters for the Yampa River, and 22.5 to 150 millimeters for the Rio Grande. Computed scour at the peak steamflows ranged from -2.32 feet at Surveyor Creek near Platner to +0.63 foot at the Rio Grande at Wagon Wheel Gap. Pier- scour depths computed at the peak streamflows ranged from 4.46 feet at the Rio Grande at Wagon Wheel Gap to 5.94 feet at the Yampa River near Maybell. The number of streamtubes used in the model varied at each site.

  7. The unique contribution of manual chest compression-vibrations to airflow during physiotherapy in sedated, fully ventilated children.

    PubMed

    Gregson, Rachael K; Shannon, Harriet; Stocks, Janet; Cole, Tim J; Peters, Mark J; Main, Eleanor

    2012-03-01

    This study aimed to quantify the specific effects of manual lung inflations with chest compression-vibrations, commonly used to assist airway clearance in ventilated patients. The hypothesis was that force applied during the compressions made a significant additional contribution to increases in peak expiratory flow and expiratory to inspiratory flow ratio over and above that resulting from accompanying increases in inflation volume. Prospective observational study. Cardiac and general pediatric intensive care. Sedated, fully ventilated children. Customized force-sensing mats and a commercial respiratory monitor recorded force and respiration during physiotherapy. Percentage changes in peak expiratory flow, peak expiratory to inspiratory flow ratios, inflation volume, and peak inflation pressure between baseline and manual inflations with and without compression-vibrations were calculated. Analysis of covariance determined the relative contribution of changes in pressure, volume, and force to influence changes in peak expiratory flow and peak expiratory to inspiratory flow ratio. Data from 105 children were analyzed (median age, 1.3 yrs; range, 1 wk to 15.9 yrs). Force during compressions ranged from 15 to 179 N (median, 46 N). Peak expiratory flow increased on average by 76% during compressions compared with baseline ventilation. Increases in peak expiratory flow were significantly related to increases in inflation volume, peak inflation pressure, and force with peak expiratory flow increasing by, on average, 4% for every 10% increase in inflation volume (p < .001), 5% for every 10% increase in peak inflation pressure (p = .005), and 3% for each 10 N of applied force (p < .001). By contrast, increase in peak expiratory to inspiratory flow ratio was only related to applied force with a 4% increase for each 10 N of force (p < .001). These results provide evidence of the unique contribution of compression forces in increasing peak expiratory flow and peak expiratory to inspiratory flow ratio bias over and above that related to accompanying changes from manual hyperinflations. Force generated during compression-vibrations was the single significant factor in multivariable analysis to explain the increases in expiratory flow bias. Such increases in the expiratory bias provide theoretically optimal physiological conditions for cephalad mucus movement in fully ventilated children.

  8. Computational Modeling of Blood Flow in the TrapEase Inferior Vena Cava Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, M A; Henshaw, W D; Wang, S L

    To evaluate the flow hemodynamics of the TrapEase vena cava filter using three dimensional computational fluid dynamics, including simulated thrombi of multiple shapes, sizes, and trapping positions. The study was performed to identify potential areas of recirculation and stagnation and areas in which trapped thrombi may influence intrafilter thrombosis. Computer models of the TrapEase filter, thrombi (volumes ranging from 0.25mL to 2mL, 3 different shapes), and a 23mm diameter cava were constructed. The hemodynamics of steady-state flow at Reynolds number 600 was examined for the unoccluded and partially occluded filter. Axial velocity contours and wall shear stresses were computed. Flowmore » in the unoccluded TrapEase filter experienced minimal disruption, except near the superior and inferior tips where low velocity flow was observed. For spherical thrombi in the superior trapping position, stagnant and recirculating flow was observed downstream of the thrombus; the volume of stagnant flow and the peak wall shear stress increased monotonically with thrombus volume. For inferiorly trapped spherical thrombi, marked disruption to the flow was observed along the cava wall ipsilateral to the thrombus and in the interior of the filter. Spherically shaped thrombus produced a lower peak wall shear stress than conically shaped thrombus and a larger peak stress than ellipsoidal thrombus. We have designed and constructed a computer model of the flow hemodynamics of the TrapEase IVC filter with varying shapes, sizes, and positions of thrombi. The computer model offers several advantages over in vitro techniques including: improved resolution, ease of evaluating different thrombus sizes and shapes, and easy adaptation for new filter designs and flow parameters. Results from the model also support a previously reported finding from photochromic experiments that suggest the inferior trapping position of the TrapEase IVC filter leads to an intra-filter region of recirculating/stagnant flow with very low shear stress that may be thrombogenic.« less

  9. An integrated approach to place Green Infrastructure strategies in marginalized communities and evaluate stormwater mitigation

    NASA Astrophysics Data System (ADS)

    Garcia-Cuerva, Laura; Berglund, Emily Zechman; Rivers, Louie

    2018-04-01

    Increasing urbanization augments impervious surface area, which results in increased run off volumes and peak flows. Green Infrastructure (GI) approaches are a decentralized alternative for sustainable urban stormwater and provide an array of ecosystem services and foster community building by enhancing neighborhood aesthetics, increasing property value, and providing shared green spaces. While projects involving sustainability concepts and environmental design are favored in privileged communities, marginalized communities have historically been located in areas that suffer from environmental degradation. Underprivileged communities typically do not receive as many social and environmental services as advantaged communities. This research explores GI-based management strategies that are evaluated at the watershed scale to improve hydrological performance by mitigating storm water run off volumes and peak flows. GI deployment strategies are developed to address environmental justice issues by prioritizing placement in communities that are underprivileged and locations with high outreach potential. A hydrologic/hydraulic stormwater model is developed using the Storm Water Management Model (SWMM 5.1) to simulate the impacts of alternative management strategies. Management scenarios include the implementation of rain water harvesting in private households, the decentralized implementation of bioretention cells in private households, the centralized implementation of bioretention cells in municipally owned vacant land, and combinations of those strategies. Realities of implementing GI on private and public lands are taken into account to simulate various levels of coverage and routing for bioretention cell scenarios. The effects of these strategies are measured by the volumetric reduction of run off and reduction in peak flow; social benefits are not evaluated. This approach is applied in an underprivileged community within the Walnut Creek Watershed in Raleigh, North Carolina.

  10. Interrupted infusion of echocardiographic contrast as a basis for accurate measurement of myocardial perfusion: ex vivo validation and analysis procedures.

    PubMed

    Toledo, Eran; Collins, Keith A; Williams, Ursula; Lammertin, Georgeanne; Bolotin, Gil; Raman, Jai; Lang, Roberto M; Mor-Avi, Victor

    2005-12-01

    Echocardiographic quantification of myocardial perfusion is based on analysis of contrast replenishment after destructive high-energy ultrasound impulses (flash-echo). This technique is limited by nonuniform microbubble destruction and the dependency on exponential fitting of a small number of noisy time points. We hypothesized that brief interruptions of contrast infusion (ICI) would result in uniform contrast clearance followed by slow replenishment and, thus, would allow analysis from multiple data points without exponential fitting. Electrocardiographic-triggered images were acquired in 14 isolated rabbit hearts (Langendorff) at 3 levels of coronary flow (baseline, 50%, and 15%) during contrast infusion (Definity) with flash-echo and with a 20-second infusion interruption. Myocardial videointensity was measured over time from flash-echo sequences, from which characteristic constant beta was calculated using an exponential fit. Peak contrast inflow rate was calculated from ICI data using analysis of local time derivatives. Computer simulations were used to investigate the effects of noise on the accuracy of peak contrast inflow rate and beta calculations. ICI resulted in uniform contrast clearance and baseline replenishment times of 15 to 25 cardiac cycles. Calculated peak contrast inflow rate followed the changes in coronary flow in all hearts at both levels of reduced flow (P < .05) and had a low intermeasurement variability of 7 +/- 6%. With flash-echo, contrast clearance was less uniform and baseline replenishment times were only 4 to 6 cardiac cycles. beta Decreased significantly only at 15% flow, and had intermeasurement variability of 42 +/- 33%. Computer simulations showed that measurement errors in both perfusion indices increased with noise, but beta had larger errors at higher rates of contrast inflow. ICI provides the basis for accurate and reproducible quantification of myocardial perfusion using fast and robust numeric analysis, and may constitute an alternative to the currently used techniques.

  11. On the hydrological-hydraulic modelling of hillslope dry-stone walls

    NASA Astrophysics Data System (ADS)

    Perlotto, Chiara; Michelini, Tamara; D'Agostino, Vincenzo

    2015-04-01

    Terraces are among the most evident human signatures on the landscape as they cover large cultivated territories of the Earth. The importance of dry-stone walls to realize bench terraces has always played a key role in the management of the agricultural hilly/mountain areas. These works are generally built to allow tractors and ploughs to operate under acceptable conditions, to make human work in the slopes easy and comfortable, and to promote irrigation. Few studies in literature are available on rainfall-runoff transformation and flood risk mitigation in terrace areas. Then, research results in this field are still scarce. Bench terraces reduce the terrain slope and the length of the overland flow, quantitatively controlling the runoff flow velocity, facilitating the drainage and thus leading to a reduction of soil erosion. As to the hydrological response, a terraced slope should result in a reduction in the peak runoff at the toe of hillslope and in a delay in the passage of the peak flows. This fact occurs mainly due to the change of the original land topography. The goal of this study is highlighting the benefit in terms of runoff reduction, which is provided by sequence of dry-stone walls under different space arrangements along the hillslope. In particular, the FLO-2D model was recursively applied to a schematic hillslope simulating both the local variations of the hydrological soil characteristics and the morphological stepped profile of the bench terraces. The simulations have been carried out by varying the main parameters underlying the design of the terrace system (spacing, height and number of terraces). The results have shown an interesting clear linkage between the peak-discharge reduction of the overland flows and the area extent, which is consolidated by means of the dry-stone walls. The modelling outcomes well support and inform design criteria, cost-benefit analysis and the assessment of the functionality level of this historical consolidation system.

  12. CFD Analysis and Design of Detailed Target Configurations for an Accelerator-Driven Subcritical System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Adam; Merzari, Elia; Sofu, Tanju

    2016-08-01

    High-fidelity analysis has been utilized in the design of beam target options for an accelerator driven subcritical system. Designs featuring stacks of plates with square cross section have been investigated for both tungsten and uranium target materials. The presented work includes the first thermal-hydraulic simulations of the full, detailed target geometry. The innovative target cooling manifold design features many regions with complex flow features, including 90 bends and merging jets, which necessitate three-dimensional fluid simulations. These were performed using the commercial computational fluid dynamics code STAR-CCM+. Conjugate heat transfer was modeled between the plates, cladding, manifold structure, and fluid. Steady-statemore » simulations were performed but lacked good residual convergence. Unsteady simulations were then performed, which converged well and demonstrated that flow instability existed in the lower portion of the manifold. It was established that the flow instability had little effect on the peak plate temperatures, which were well below the melting point. The estimated plate surface temperatures and target region pressure were shown to provide sufficient margin to subcooled boiling for standard operating conditions. This demonstrated the safety of both potential target configurations during normal operation.« less

  13. Field-scale Prediction of Enhanced DNAPL Dissolution Using Partitioning Tracers and Flow Pattern Effects

    NASA Astrophysics Data System (ADS)

    Wang, F.; Annable, M. D.; Jawitz, J. W.

    2012-12-01

    The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.

  14. Convection in a Very Compressible Fluid: Comparison of Simulations With Experiments

    NASA Technical Reports Server (NTRS)

    Meyer, H.; Furukawa, A.; Onuki, A.; Kogan, A. B.

    2003-01-01

    The time profile (Delta)T(t) of the temperature difference, measured across a very compressible fluid layer of supercritical He-3 after the start of a heat flow, shows a damped oscillatory behavior before steady state convection is reached. The results for (Delta)T(t) obtained from numerical simulations and from laboratory experiments are compared over a temperature range where the compressibility varies by a factor of approx. = 40. First the steady-state convective heat current j(sup conv) as a function of the Rayleigh number R(alpha) is presented, and the agreement is found to be good. Second, the shape of the time profile and two characteristic times in the transient part of (Delta)T(t) from simulations and experiments are compared, namely: 1) t(sub osc), the oscillatory period and 2) t(sub p), the time of the first peak after starting the heat flow. These times, scaled by the diffusive time tau(sub D) versus R(alpha), are presented. The agreement is good for t(sup osc)/tau(sub D), where the results collapse on a single curve showing a powerlaw behavior. The simulation hence confirms the universal scaling behavior found experimentally. However for t(sub p)/tau(sub D), where the experimental data also collapse on a single curve, the simulation results show systematic departures from such a behavior. A possible reason for some of the disagreements, both in the time profile and in t(sub p) is discussed. In the Appendix a third characteristic time, t(sub m), between the first peak and the first oscillation minimum is plotted and a comparison between the results of experiments and simulations is made.

  15. Bridging the gap between peak and average loads on science networks

    DOE PAGES

    Nickolay, Sam; Jung, Eun -Sung; Kettimuthu, Rajkumar; ...

    2017-05-12

    Backbone networks are typically overprovisioned in order to support peak loads. Research and education networks (RENs), for example, are often designed to operate at 20–30% of capacity. Thus, Internet2 upgrades its backbone interconnects when the weekly 95th-percentile load is reliably above 30% of link capacity, and analysis of ESnet traffic between major laboratories shows a substantial gap between peak and average utilization. As science data volumes increase exponentially, it is unclear whether this overprovisioning trend can continue into the future. Even if overprovisioning is possible, it may not be the most cost-effective (and desirable) approach going forward. Under the currentmore » mode of free access to RENs, traffic at peak load may include both flows that need to be transferred in near-real time–for example, for computation and instrument monitoring and steering–and flows that are less time-critical, for example, archival and storage replication operations. Thus, peak load does not necessarily indicate the capacity that is absolutely required at that moment. We thus examine how data transfers are impacted when the average network load is increased while the network capacity is kept at the current levels. We also classify data transfers into on-demand (time-critical) and best-effort (less time-critical) and study the impact on both classes for different proportions of both the number of on-demand transfers and amount of bandwidth allocated for on-demand transfers. For our study, we use real transfer logs from production GridFTP servers to do simulation-based experiments as well as real experiments on a testbed. We find that when the transfer load is doubled and the network capacity is fixed at the current level, the gap between peak and average throughput decreases by an average of 18% in the simulation experiments and 16% in the testbed experiments, and the average slowdown experienced by the data transfers is under 1.5×. Moreover, when transfers are classified as on-demand or best-effort, on-demand transfers experience almost no slowdown and the mean slowdown experienced by best-effort transfers is under 2× in the simulation experiments and under 1.2× in the testbed experiments.« less

  16. Bridging the gap between peak and average loads on science networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickolay, Sam; Jung, Eun -Sung; Kettimuthu, Rajkumar

    Backbone networks are typically overprovisioned in order to support peak loads. Research and education networks (RENs), for example, are often designed to operate at 20–30% of capacity. Thus, Internet2 upgrades its backbone interconnects when the weekly 95th-percentile load is reliably above 30% of link capacity, and analysis of ESnet traffic between major laboratories shows a substantial gap between peak and average utilization. As science data volumes increase exponentially, it is unclear whether this overprovisioning trend can continue into the future. Even if overprovisioning is possible, it may not be the most cost-effective (and desirable) approach going forward. Under the currentmore » mode of free access to RENs, traffic at peak load may include both flows that need to be transferred in near-real time–for example, for computation and instrument monitoring and steering–and flows that are less time-critical, for example, archival and storage replication operations. Thus, peak load does not necessarily indicate the capacity that is absolutely required at that moment. We thus examine how data transfers are impacted when the average network load is increased while the network capacity is kept at the current levels. We also classify data transfers into on-demand (time-critical) and best-effort (less time-critical) and study the impact on both classes for different proportions of both the number of on-demand transfers and amount of bandwidth allocated for on-demand transfers. For our study, we use real transfer logs from production GridFTP servers to do simulation-based experiments as well as real experiments on a testbed. We find that when the transfer load is doubled and the network capacity is fixed at the current level, the gap between peak and average throughput decreases by an average of 18% in the simulation experiments and 16% in the testbed experiments, and the average slowdown experienced by the data transfers is under 1.5×. Moreover, when transfers are classified as on-demand or best-effort, on-demand transfers experience almost no slowdown and the mean slowdown experienced by best-effort transfers is under 2× in the simulation experiments and under 1.2× in the testbed experiments.« less

  17. Techniques for Estimating the Magnitude and Frequency of Peak Flows on Small Streams in Minnesota Based on Data through Water Year 2005

    USGS Publications Warehouse

    Lorenz, David L.; Sanocki, Chris A.; Kocian, Matthew J.

    2010-01-01

    Knowledge of the peak flow of floods of a given recurrence interval is essential for regulation and planning of water resources and for design of bridges, culverts, and dams along Minnesota's rivers and streams. Statistical techniques are needed to estimate peak flow at ungaged sites because long-term streamflow records are available at relatively few places. Because of the need to have up-to-date peak-flow frequency information in order to estimate peak flows at ungaged sites, the U.S. Geological Survey (USGS) conducted a peak-flow frequency study in cooperation with the Minnesota Department of Transportation and the Minnesota Pollution Control Agency. Estimates of peak-flow magnitudes for 1.5-, 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are presented for 330 streamflow-gaging stations in Minnesota and adjacent areas in Iowa and South Dakota based on data through water year 2005. The peak-flow frequency information was subsequently used in regression analyses to develop equations relating peak flows for selected recurrence intervals to various basin and climatic characteristics. Two statistically derived techniques-regional regression equation and region of influence regression-can be used to estimate peak flow on ungaged streams smaller than 3,000 square miles in Minnesota. Regional regression equations were developed for selected recurrence intervals in each of six regions in Minnesota: A (northwestern), B (north central and east central), C (northeastern), D (west central and south central), E (southwestern), and F (southeastern). The regression equations can be used to estimate peak flows at ungaged sites. The region of influence regression technique dynamically selects streamflow-gaging stations with characteristics similar to a site of interest. Thus, the region of influence regression technique allows use of a potentially unique set of gaging stations for estimating peak flow at each site of interest. Two methods of selecting streamflow-gaging stations, similarity and proximity, can be used for the region of influence regression technique. The regional regression equation technique is the preferred technique as an estimate of peak flow in all six regions for ungaged sites. The region of influence regression technique is not appropriate for regions C, E, and F because the interrelations of some characteristics of those regions do not agree with the interrelations throughout the rest of the State. Both the similarity and proximity methods for the region of influence technique can be used in the other regions (A, B, and D) to provide additional estimates of peak flow. The peak-flow-frequency estimates and basin characteristics for selected streamflow-gaging stations and regional peak-flow regression equations are included in this report.

  18. The remarkable ability of turbulence model equations to describe transition

    NASA Technical Reports Server (NTRS)

    Wilcox, David C.

    1992-01-01

    This paper demonstrates how well the k-omega turbulence model describes the nonlinear growth of flow instabilities from laminar flow into the turbulent flow regime. Viscous modifications are proposed for the k-omega model that yield close agreement with measurements and with Direct Numerical Simulation results for channel and pipe flow. These modifications permit prediction of subtle sublayer details such as maximum dissipation at the surface, k approximately y(exp 2) as y approaches 0, and the sharp peak value of k near the surface. With two transition specific closure coefficients, the model equations accurately predict transition for an incompressible flat-plate boundary layer. The analysis also shows why the k-epsilon model is so difficult to use for predicting transition.

  19. Impact of Wet-Weather Peak Flow Blending on Disinfection Performance

    EPA Science Inventory

    A U.S. EPA study evaluated the impact on disinfection during peak flows (wet-weather flow events) when a portion of the flow to the wastewater treatment plant (WWTP) bypasses secondary treatment prior to disinfection. The practice of bypassing secondary treatment during peak flow...

  20. Experimental aerodynamic heating to simulated space shuttle tiles in laminar and turbulent boundary layers with variable flow angles at a nominal Mach number of 7. M.S. Thesis - George Washington Univ., Nov. 1983

    NASA Technical Reports Server (NTRS)

    Avery, D. E.

    1985-01-01

    The heat transfer to simulated shuttle thermal protection system tiles was investigated experimentally by using a highly instrumented metallic thin wall tile arranged with other metal tiles in a staggered tile array. Cold wall heating rate data for laminar and turbulent flow were obtained in the Langley 8 foot high Temperature Tunnel at a nominal Mach number of 7, a nominal total temperature of 3300R, a free stream unit Reynolds number from 3.4 x 10 sup 5 to 2.2 10 sup 6 per foot, and a free stream dynamic pressure from 2.1 to 9.0 psia. Experimental data are presented to illustrate the effects of flow angularity and gap width on both local peak heating and overall heating loads. For the conditions of the present study, the results show that localized and total heating are sensitive to changes in flow angle only for the test conditions of turbulent boundary layer flow with high kinetic energy and that a flow angle from 30 deg to 50 deg will minimize the local heating.

  1. Direct numerical simulation of flow over dissimilar, randomly distributed roughness elements: A systematic study on the effect of surface morphology on turbulence

    NASA Astrophysics Data System (ADS)

    Forooghi, Pourya; Stroh, Alexander; Schlatter, Philipp; Frohnapfel, Bettina

    2018-04-01

    Direct numerical simulations are used to investigate turbulent flow in rough channels, in which topographical parameters of the rough wall are systematically varied at a fixed friction Reynolds number of 500, based on a mean channel half-height h and friction velocity. The utilized roughness generation approach allows independent variation of moments of the surface height probability distribution function [thus root-mean-square (rms) surface height, skewness, and kurtosis], surface mean slope, and standard deviation of the roughness peak sizes. Particular attention is paid to the effect of the parameter Δ defined as the normalized height difference between the highest and lowest roughness peaks. This parameter is used to understand the trends of the investigated flow variables with departure from the idealized case where all roughness elements have the same height (Δ =0 ). All calculations are done in the fully rough regime and for surfaces with high slope (effective slope equal to 0.6-0.9). The rms roughness height is fixed for all cases at 0.045 h and the skewness and kurtosis of the surface height probability density function vary in the ranges -0.33 to 0.67 and 1.9 to 2.6, respectively. The goal of the paper is twofold: first, to investigate the possible effect of topographical parameters on the mean turbulent flow, Reynolds, and dispersive stresses particularly in the vicinity of the roughness crest, and second, to investigate the possibility of using the wall-normal turbulence intensity as a physical parameter for parametrization of the flow. Such a possibility, already suggested for regular roughness in the literature, is here extended to irregular roughness.

  2. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.

    PubMed

    Milenkovic, J; Alexopoulos, A H; Kiparissides, C

    2014-01-30

    In this work the dynamic flow as well as the particle motion and deposition in a commercial dry powder inhaler, DPI (i.e., Turbuhaler) is described using computational fluid dynamics, CFD. The dynamic flow model presented here is an extension of a steady flow model previously described in Milenkovic et al. (2013). The model integrates CFD simulations for dynamic flow, an Eulerian-fluid/Lagrangian-particle description of particle motion as well as a particle/wall interaction model providing the sticking efficiency of particles colliding with the DPI walls. The dynamic flow is imposed by a time varying outlet pressure and the particle injections into the DPI are assumed to occur instantaneously and follow a prescribed particle size distribution, PSD. The total particle deposition and the production of fine particles in the DPI are determined for different peak inspiratory flow rates, PIFR, flow increase rates, FIR, and particle injection times. The simulation results for particle deposition are found to agree well with available experimental data for different values of PIFR and FIR. The predicted values of fine particle fraction are in agreement with available experimental results when the mean size of the injected PSD is taken to depend on the PIFR. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Large-eddy simulations of mechanical and thermal processes within boundary layer of the Graciosa Island

    NASA Astrophysics Data System (ADS)

    Sever, G.; Collis, S. M.; Ghate, V. P.

    2017-12-01

    Three-dimensional numerical experiments are performed to explore the mechanical and thermal impacts of Graciosa Island on the sampling of oceanic airflow and cloud evolution. Ideal and real configurations of flow and terrain are planned using high-resolution, large-eddy resolving (e.g., Δ < 100 meter) simulations. Ideal configurations include model initializations with ideal dry and moist temperature and wind profiles to capture flow features over an island-like topography. Real configurations will use observations from different climatological background states over the Eastern Northern Atlantic, Atmospheric Radiation Measurement (ENA-ARM) site on Graciosa Island. Initial small-domain large-eddy simulations (LES) of dry airflow produce cold-pool formation upstream of an ideal two-kilometer island, with von Kármán like vortices propagation downstream. Although the peak height of Graciosa is less than half kilometer, the Azores island chain has a mountain over 2 km, which may be leading to more complex flow patterns when simulations are extended to a larger domain. Preliminary idealized low-resolution moist simulations indicate that the cloud field is impacted due to the presence of the island. Longer simulations that are performed to capture diurnal evolution of island boundary layer show distinct land/sea breeze formations under quiescent flow conditions. Further numerical experiments are planned to extend moist simulations to include realistic atmospheric profiles and observations of surface fluxes coupled with radiative effects. This work is intended to produce a useful simulation framework coupled with instruments to guide airborne and ground sampling strategies during the ACE-ENA field campaign which is aimed to better characterize marine boundary layer clouds.

  4. Ensemble Simulation of Sierra Nevada Snowmelt Runoff Using a Regional Climate Modeling Approach

    NASA Astrophysics Data System (ADS)

    Holtzman, N.; Pavelsky, T.; Wrzesien, M.

    2017-12-01

    The snowmelt-dominated watersheds on the western slopes of the California Sierra Nevada drain into reservoirs that generate electricity and help irrigate Central Valley farms. At the end of the wet season of each year, around April 1, most of the water that will become runoff in these basins is stored as snow at high elevations. Snow measurements provide a good estimate of the total annual runoff to come. For efficient water management, however, it is also useful to know the timing of runoff. When and how large will the peak flow into a reservoir be, and how fast will the flow decline after it peaks? We address such questions using a coupled regional climate and land surface model, WRF and Noah-MP, to dynamically downscale the North American Regional Reanalysis (NARR) with an ensemble approach. First, we assess several methods of deriving melt-season runoff from WRF. We run WRF for a complete water year, and also test initializing WRF snow from observation-based datasets at the approximate date of peak snow water equivalent. By aggregating the modeled runoffs over the drainage basins of reservoirs and comparing to naturalized flow data, we can assess the basin-scale snow accumulation accuracy of WRF and the other datasets in the Sierra. After choosing a procedure to set the model snow at the end of the wet season, we apply in WRF the melt-season meteorology from 20 different past years of NARR to produce an ensemble of simulations, each with modeled flows into 8 reservoirs spanning the Sierra. We use the ensemble to characterize the likely spread in the timing and magnitude of hydrologic outcomes during the melt season. Probabilistic forecasts can help water-energy systems operate more efficiently. The ensemble also shows the effect of warm-season temperature extremes on flow timing, allowing human systems to prepare for those possibilities. Finally, the ensemble provides a baseline estimate of the maximum variability in runoff timing that could be generated by past conditions. If future runoff patterns consistently exceed the extremes found in the ensemble, nonstationary hydroclimate can be inferred.

  5. Application of the Water Erosion Prediction Project (WEPP) Model to simulate streamflow in a PNW forest watershed

    Treesearch

    A. Srivastava; M. Dobre; E. Bruner; W. J. Elliot; I. S. Miller; J. Q. Wu

    2011-01-01

    Assessment of water yields from watersheds into streams and rivers is critical to managing water supply and supporting aquatic life. Surface runoff typically contributes the most to peak discharge of a hydrograph while subsurface flow dominates the falling limb of hydrograph and baseflow contributes to streamflow from shallow unconfined aquifers primarily during the...

  6. Equal-mobility bed load transport in a small, step-pool channel in the Ouachita Mountains

    Treesearch

    Daniel A. Marion; Frank Weirich

    2003-01-01

    Abstract: Equal-mobility transport (EMT) of bed load is more evident than size-selective transport during near-bankfull flow events in a small, step-pool channel in the Ouachita Mountains of central Arkansas. Bed load transport modes were studied by simulating five separate runoff events with peak discharges between 0.25 and 1.34 m3...

  7. Reactive-transport simulation of phosphorus in the sewage plume at the Massachusetts Military Reservation, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Parkhurst, David L.; Stollenwerk, Kenneth G.; Colman, John A.

    2003-01-01

    The subsurface transport of phosphorus introduced by the disposal of treated sewage effluent to ground-infiltration disposal beds at the Massachusetts Military Reservation on western Cape Cod was simulated with a three-dimensional reactive-transport model. The simulations were used to estimate the load of phosphorus transported to Ashumet Pond during operation of the sewage-treatment plant?from 1936 to 1995?and for 60 years following cessation of sewage disposal. The model accounted for spatial and temporal changes in water discharge from the sewage-treatment plant, ground-water flow, transport of associated chemical constituents, and a set of chemical reactions, including phosphorus sorption on aquifer materials, dissolution and precipitation of iron- and manganese-oxyhydroxide and iron phosphate minerals, organic carbon sorption and decomposition, cation sorption, and irreversible denitrification. The flow and transport in the aquifer were simulated by using parameters consistent with those used in previous flow models of this area of Cape Cod, except that numerical dispersion was much larger than the physical dispersion estimated in previous studies. Sorption parameters were fit to data derived from phosphorus sorption and desorption laboratory column experiments. Rates of organic carbon decomposition were adjusted to match the location of iron concentrations in an anoxic iron zone within the sewage plume. The sensitivity of the simulated load of phosphorus transported to Ashumet Pond was calculated for a variety of processes and input parameters. Model limitations included large uncertainties associated with the loading of the sewage beds, the flow system, and the chemistry and sorption characteristics in the aquifer. The results of current model simulations indicate a small load of phosphorus transported to Ashumet Pond during 1965?85, but this small load was particularly sensitive to model parameters that specify flow conditions and the chemical process by which non-desorbable phosphorus is incorporated in the sediments. The uncertainties were large enough to make it difficult to determine whether loads of phosphorus transported to Ashumet Pond in the 1990s were greater or less than loads during the previous two decades. The model simulations indicate substantial discharge of phosphorus to Ashumet Pond after about 1965. After the period 2000?10 the simulations indicate that the load of phosphorus transported to Ashumet Pond decreases continuously, but the load of phosphorus remains substantial for many decades. The current simulations indicate a peak in phosphorus discharge to Ashumet Pond of about 1,000 kilograms per year during the 1990s; however, comparisons of simulated phosphorus concentrations with measured concentrations in 1993 indicate that the peak in phosphorus load transported to Ashumet Pond may be larger and moving more quickly in the model simulations than in the aquifer. The results of the three-dimensional reactive-transport simulations are consistent with the loading history, experimental laboratory data, and field measurements. The results of the simulations adequately reproduce the spatial distribution of phosphorus concentrations measured in 1993, the magnitude of changes in phosphorus concentration with time in a profile near the disposal beds following cessation of sewage disposal, the observed iron zone in the sewage plume, the approximate flow of treated sewage effluent into Ashumet Valley, and laboratory-column data for phosphorus sorption and desorption.

  8. Near-field acoustic radiation by high-speed turbulence: amplitude, structure, gas-stiffness, and dilatational dissipation

    NASA Astrophysics Data System (ADS)

    Buchta, David; Freund, Jonathan

    2017-11-01

    High-speed (supersonic) turbulent shear flows are well-known to radiate pressure-wave patterns that have higher positive peaks than negative valleys, which yields a notable skewness, usually with Sk > 0.4 . Direct numerical simulations (DNS) of planar turbulent mixing layers at different Mach numbers (M) are used to examine this. The baseline simulations, of an air-like gas at speeds up to M = 3.5 , reproduced the observed behavior of jets. Simulations initialized with corresponding instability modes show that Sk increases linearly with the velocity amplitude (Mt =√{ui' ui'} /co), reflecting the M dependence of the DNS, which can be related to simpler gas dynamic flows. Simulations with a stiffened-gas equation of state (often used to model liquids) show essentially the same Mach-number dependence, despite the nominally greater resistance to compressibility. Turbulence simulations with an artificial energy reallocation mechanism, imposed to alter its structure, show little change in Sk. Finally, we also consider significantly increased bulk viscosity to suppress dilatation. In this case, Sk diminishes along with the sound-field intensity, though the turbulence stresses themselves are nearly unchanged.

  9. Transient Side Load Analysis of Out-of-Round Film-Cooled Nozzle Extensions

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike

    2012-01-01

    There was interest in understanding the impact of out-of-round nozzle extension on the nozzle side load during transient startup operations. The out-of-round nozzle extension could be the result of asymmetric internal stresses, deformation induced by previous tests, and asymmetric loads induced by hardware attached to the nozzle. The objective of this study was therefore to computationally investigate the effect of out-of-round nozzle extension on the nozzle side loads during an engine startup transient. The rocket engine studied encompasses a regeneratively cooled chamber and nozzle, along with a film cooled nozzle extension. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and transient inlet boundary flow properties derived from an engine system simulation. Six three-dimensional cases were performed with the out-of-roundness achieved by three different degrees of ovalization, elongated on lateral y and z axes: one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The results show that the separation line jump was the primary source of the peak side loads. Comparing to the peak side load of the perfectly round nozzle, the peak side loads increased for the slightly and more ovalized nozzle extensions, and either increased or decreased for the two significantly ovalized nozzle extensions. A theory based on the counteraction of the flow destabilizing effect of an exacerbated asymmetrical flow caused by a lower degree of ovalization, and the flow stabilizing effect of a more symmetrical flow, created also by ovalization, is presented to explain the observations obtained in this effort.

  10. Model simulations of flood and debris flow timing in steep catchments after wildfire

    NASA Astrophysics Data System (ADS)

    Rengers, F. K.; McGuire, L. A.; Kean, J. W.; Staley, D. M.; Hobley, D. E. J.

    2016-08-01

    Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most postwildfire debris flows are generated from water runoff. The majority of existing debris flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's n) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall, the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.

  11. Model simulations of flood and debris flow timing in steep catchments after wildfire

    USGS Publications Warehouse

    Rengers, Francis K.; McGuire, Luke; Kean, Jason W.; Staley, Dennis M.; Hobley, D.E.J

    2016-01-01

    Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most post-wildfire debris flows are generated from water runoff. The majority of existing debris-flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's $n$) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.

  12. Effects of simulated flight on the structure and noise of underexpanded jets

    NASA Technical Reports Server (NTRS)

    Norum, T. D.; Shearin, J. G.

    1984-01-01

    Mean plume static and pitot pressures and far-field acoustic pressure were measured for an underexpanded convergent nozzle in simulated flight. Results show that supersonic jet mixing noise behaves in flight in the same way that subsonic jet mixing noise does. Regarding shock-associated noise, the frequencies of both screech and peak broadband shock noise were found to decrease with flight speed. The external flow determines the dominant screech mode over a wide range of nozzle pressure rations. Change in the screech mode strongly affects both the development of the downstream shock structure and the characteristic frequency of the broadband shock-associated noise. When no mode change occurs, the main effect of the external flow is to stretch the axial development of the shock cells.

  13. Uncertainty of the peak flow reconstruction of the 1907 flood in the Ebro River in Xerta (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Ruiz-Bellet, Josep Lluís; Castelltort, Xavier; Balasch, J. Carles; Tuset, Jordi

    2017-02-01

    There is no clear, unified and accepted method to estimate the uncertainty of hydraulic modelling results. In historical floods reconstruction, due to the lower precision of input data, the magnitude of this uncertainty could reach a high value. With the objectives of giving an estimate of the peak flow error of a typical historical flood reconstruction with the model HEC-RAS and of providing a quick, simple uncertainty assessment that an end user could easily apply, the uncertainty of the reconstructed peak flow of a major flood in the Ebro River (NE Iberian Peninsula) was calculated with a set of local sensitivity analyses on six input variables. The peak flow total error was estimated at ±31% and water height was found to be the most influential variable on peak flow, followed by Manning's n. However, the latter, due to its large uncertainty, was the greatest contributor to peak flow total error. Besides, the HEC-RAS resulting peak flow was compared to the ones obtained with the 2D model Iber and with Manning's equation; all three methods gave similar peak flows. Manning's equation gave almost the same result than HEC-RAS. The main conclusion is that, to ensure the lowest peak flow error, the reliability and precision of the flood mark should be thoroughly assessed.

  14. Computational and Experimental Unsteady Pressures for Alternate SLS Booster Nose Shapes

    NASA Technical Reports Server (NTRS)

    Braukmann, Gregory J.; Streett, Craig L.; Kleb, William L.; Alter, Stephen J.; Murphy, Kelly J.; Glass, Christopher E.

    2015-01-01

    Delayed Detached Eddy Simulation (DDES) predictions of the unsteady transonic flow about a Space Launch System (SLS) configuration were made with the Fully UNstructured Three-Dimensional (FUN3D) flow solver. The computational predictions were validated against results from a 2.5% model tested in the NASA Ames 11-Foot Transonic Unitary Plan Facility. The peak C(sub p,rms) value was under-predicted for the baseline, Mach 0.9 case, but the general trends of high C(sub p,rms) levels behind the forward attach hardware, reducing as one moves away both streamwise and circumferentially, were captured. Frequency of the peak power in power spectral density estimates was consistently under-predicted. Five alternate booster nose shapes were assessed, and several were shown to reduce the surface pressure fluctuations, both as predicted by the computations and verified by the wind tunnel results.

  15. Ghost hunting—an assessment of ghost particle detection and removal methods for tomographic-PIV

    NASA Astrophysics Data System (ADS)

    Elsinga, G. E.; Tokgoz, S.

    2014-08-01

    This paper discusses and compares several methods, which aim to remove spurious peaks, i.e. ghost particles, from the volume intensity reconstruction in tomographic-PIV. The assessment is based on numerical simulations of time-resolved tomographic-PIV experiments in linear shear flows. Within the reconstructed volumes, intensity peaks are detected and tracked over time. These peaks are associated with particles (either ghosts or actual particles) and are characterized by their peak intensity, size and track length. Peak intensity and track length are found to be effective in discriminating between most ghosts and the actual particles, although not all ghosts can be detected using only a single threshold. The size of the reconstructed particles does not reveal an important difference between ghosts and actual particles. The joint distribution of peak intensity and track length however does, under certain conditions, allow a complete separation of ghosts and actual particles. The ghosts can have either a high intensity or a long track length, but not both combined, like all the actual particles. Removing the detected ghosts from the reconstructed volume and performing additional MART iterations can decrease the particle position error at low to moderate seeding densities, but increases the position error, velocity error and tracking errors at higher densities. The observed trends in the joint distribution of peak intensity and track length are confirmed by results from a real experiment in laminar Taylor-Couette flow. This diagnostic plot allows an estimate of the number of ghosts that are indistinguishable from the actual particles.

  16. Analyses of flood-flow frequency for selected gaging stations in South Dakota

    USGS Publications Warehouse

    Benson, R.D.; Hoffman, E.B.; Wipf, V.J.

    1985-01-01

    Analyses of flood flow frequency were made for 111 continuous-record gaging stations in South Dakota with 10 or more years of record. The analyses were developed using the log-Pearson Type III procedure recommended by the U.S. Water Resources Council. The procedure characterizes flood occurrence at a single site as a sequence of annual peak flows. The magnitudes of the annual peak flows are assumed to be independent random variables following a log-Pearson Type III probability distribution, which defines the probability that any single annual peak flow will exceed a specified discharge. By considering only annual peak flows, the flood-frequency analysis becomes the estimation of the log-Pearson annual-probability curve using the record of annual peak flows at the site. The recorded data are divided into two classes: systematic and historic. The systematic record includes all annual peak flows determined in the process of conducting a systematic gaging program at a site. In this program, the annual peak flow is determined for each and every year of the program. The systematic record is intended to constitute an unbiased and representative sample of the population of all possible annual peak flows at the site. In contrast to the systematic record, the historic record consists of annual peak flows that would not have been determined except for evidence indicating their unusual magnitude. Flood information acquired from historical sources almost invariably refers to floods of noteworthy, and hence extraordinary, size. Although historic records form a biased and unrepresentative sample, they can be used to supplement the systematic record. (Author 's abstract)

  17. Hemodynamics in a Pediatric Ascending Aorta Using a Viscoelastic Pediatric Blood Model

    PubMed Central

    Good, Bryan C.; Deutsch, Steven; Manning, Keefe B.

    2015-01-01

    Congenital heart disease is the leading cause of infant death in the United States with over 36,000 newborns affected each year. Despite this growing problem there are few mechanical circulatory support devices designed specifically for pediatric and neonate patients. Previous research has been done investigating pediatric ventricular assist devices (PVADs) assuming blood to be a Newtonian fluid in computational fluid dynamics (CFD) simulations, ignoring its viscoelastic and shear-thinning properties. In contrast to adult VADs, PVADs may be more susceptible to hemolysis and thrombosis due to altered flow into the aorta, and therefore, a more accurate blood model should be used. A CFD solver that incorporates a modified Oldroyd-B model designed specifically for pediatric blood is used to investigate important hemodynamic parameters in a pediatric aortic model under pulsatile flow conditions. These results are compared to Newtonian blood simulations at three physiological pediatric hematocrits. Minor differences are seen in both velocity and WSS during early stages of the cardiac systole between the Newtonian and viscoelastic models. During diastole, significant differences are seen in the velocities in the descending aorta (up to 12%) and in the aortic branches (up to 30%) between the two models. Additionally, peak wall shear stress (WSS) differences are seen between the models throughout the cardiac cycle. At the onset of diastole, peak WSS differences of 43% are seen between the Newtonian and viscoelastic model and between the 20 and 60% hematocrit viscoelastic models at peak systole of 41%. PMID:26159560

  18. Attribution of Large-Scale Climate Patterns to Seasonal Peak-Flow and Prospects for Prediction Globally

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Ward, Philip; Block, Paul

    2018-02-01

    Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.

  19. Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: a stability analysis.

    PubMed

    Sharzehee, Mohammadali; Khalafvand, Seyed Saeid; Han, Hai-Chao

    2018-02-01

    Tortuous aneurysmal arteries are often associated with a higher risk of rupture but the mechanism remains unclear. The goal of this study was to analyze the buckling and post-buckling behaviors of aneurysmal arteries under pulsatile flow. To accomplish this goal, we analyzed the buckling behavior of model carotid and abdominal aorta with aneurysms by utilizing fluid-structure interaction (FSI) method with realistic waveforms boundary conditions. FSI simulations were done under steady-state and pulsatile flow for normal (1.5) and reduced (1.3) axial stretch ratios to investigate the influence of aneurysm, pulsatile lumen pressure and axial tension on stability. Our results indicated that aneurysmal artery buckled at the critical buckling pressure and its deflection nonlinearly increased with increasing lumen pressure. Buckling elevates the peak stress (up to 118%). The maximum aneurysm wall stress at pulsatile FSI flow was (29%) higher than under static pressure at the peak lumen pressure of 130 mmHg. Buckling results show an increase in lumen shear stress at the inner side of the maximum deflection. Vortex flow was dramatically enlarged with increasing lumen pressure and artery diameter. Aneurysmal arteries are more susceptible than normal arteries to mechanical instability which causes high stresses in the aneurysm wall that could lead to aneurysm rupture.

  20. Evaluating Titan2D mass-flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Sheridan, M. F.; Stinton, A. J.; Patra, A.; Pitman, E. B.; Bauer, A.; Nichita, C. C.

    2005-01-01

    The Titan2D geophysical mass-flow model is evaluated by comparing its simulation results and those obtained from another flow model, FLOW3D, with published data on the 1963 Little Tahoma Peak avalanches on Mount Rainier, Washington. The avalanches, totaling approximately 10×10 6 m 3 of broken lava blocks and other debris, traveled 6.8 km horizontally and fell 1.8 km vertically ( H/ L=0.246). Velocities calculated from runup range from 24 to 42 m/s and may have been as high as 130 m/s while the avalanches passed over Emmons Glacier. Titan2D is a code for an incompressible Coulomb continuum; it is a depth-averaged, 'shallow-water', granular-flow model. The conservation equations for mass and momentum are solved with a Coulomb-type friction term at the basal interface. The governing equations are solved on multiple processors using a parallel, adaptive mesh, Godunov scheme. Adaptive gridding dynamically concentrates computing power in regions of special interest; mesh refinement and coarsening key on the perimeter of the moving avalanche. The model flow initiates as a pile defined as an ellipsoid by a height ( z) and an elliptical base defined by radii in the x and y planes. Flow parameters are the internal friction angle and bed friction angle. Results from the model are similar in terms of velocity history, lateral spreading, location of runup areas, and final distribution of the Little Tahoma Peak deposit. The avalanches passed over the Emmons Glacier along their upper flow paths, but lower in the valley they traversed stream gravels and glacial outwash deposits. This presents difficulty in assigning an appropriate bed friction angle for the entire deposit. Incorporation of variable bed friction angles into the model using GIS will help to resolve this issue.

  1. Flow Behavior and Constitutive Equation of Ti-6.5Al-2Sn-4Zr-4Mo-1W-0.2Si Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Yang, Xuemei; Guo, Hongzhen; Liang, Houquan; Yao, Zekun; Yuan, Shichong

    2016-04-01

    In order to get a reliable constitutive equation for the finite element simulation, flow behavior of Ti-6.5Al-2Sn-4Zr-4Mo-1W-0.2Si alloy under high temperature was investigated by carrying a series of isothermal compression tests at temperatures of 1153-1293 K and strain rates of 0.01-10.0 s-1 on the Gleeble-1500 simulator. Results showed that the true stress-strain curves exhibited peaks at small strains, after which the flow stress decreased monotonically. Ultimately, the flow curves reached steady state at the strain of 0.6, showing a dynamic flow softening phenomenon. The effects of strain rate, temperature, and strain on the flow behavior were researched by establishing a constitutive equation. The relations among stress exponent, deformation activation energy, and strain were preliminarily discussed by using strain rate sensitivity exponent and dynamic recrystallization kinetics curve. Stress values predicted by the modified constitutive equation showed a good agreement with the experimental ones. The correlation coefficient ( R) and average absolute relative error (AARE) were 98.2% and 4.88%, respectively, which confirmed that the modified constitutive equation could give an accurate estimation of the flow stress for BT25y titanium alloy.

  2. Phased-array vector velocity estimation using transverse oscillations.

    PubMed

    Pihl, Michael J; Marcher, Jonne; Jensen, Jorgen A

    2012-12-01

    A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical applicability of the method. A phased-array transducer has a smaller footprint and a larger field of view than a linear array, and is therefore more suited for, e.g., cardiac imaging. The method relies on suitable TO fields, and a beamforming strategy employing diverging TO beams is proposed. The implementation of the TO method using a phased-array transducer for vector velocity estimation is evaluated through simulation and flow-rig measurements are acquired using an experimental scanner. The vast number of calculations needed to perform flow simulations makes the optimization of the TO fields a cumbersome process. Therefore, three performance metrics are proposed. They are calculated based on the complex TO spectrum of the combined TO fields. It is hypothesized that the performance metrics are related to the performance of the velocity estimates. The simulations show that the squared correlation values range from 0.79 to 0.92, indicating a correlation between the performance metrics of the TO spectrum and the velocity estimates. Because these performance metrics are much more readily computed, the TO fields can be optimized faster for improved velocity estimation of both simulations and measurements. For simulations of a parabolic flow at a depth of 10 cm, a relative (to the peak velocity) bias and standard deviation of 4% and 8%, respectively, are obtained. Overall, the simulations show that the TO method implemented on a phased-array transducer is robust with relative standard deviations around 10% in most cases. The flow-rig measurements show similar results. At a depth of 9.5 cm using 32 emissions per estimate, the relative standard deviation is 9% and the relative bias is -9%. At the center of the vessel, the velocity magnitude is estimated to be 0.25 ± 0.023 m/s, compared with an expected peak velocity magnitude of 0.25 m/s, and the beam-to-flow angle is calculated to be 89.3° ± 0.77°, compared with an expected angle value between 89° and 90°. For steering angles up to ±20° degrees, the relative standard deviation is less than 20%. The results also show that a 64-element transducer implementation is feasible, but with a poorer performance compared with a 128-element transducer. The simulation and experimental results demonstrate that the TO method is suitable for use in conjunction with a phased-array transducer, and that 2-D vector velocity estimation is possible down to a depth of 15 cm.

  3. Simulation of Flood Profiles for Catoma Creek near Montgomery, Alabama, 2008

    USGS Publications Warehouse

    Lee, K.G.; Hedgecock, T.S.

    2008-01-01

    A one-dimensional step-backwater model was used to simulate flooding conditions for Catoma Creek near Montgomery, Alabama. A peak flow of 50,000 cubic feet per second was computed by the U.S. Geological Survey for the March 1990 flood at the Norman Bridge Road gaging station. Using this estimated peak flow, flood-plain surveys with associated roughness coefficients, and surveyed high-water marks for the March 1990 flood, a flow model was calibrated to closely match the known event. The calibrated model then was used to simulate flooding for the 10-, 50-, 100-, and 500-year recurrence-interval floods. The 100-year flood stage for the Alabama River also was computed in the vicinity of the Catoma Creek confluence using observed high-water profiles from the 1979 and 1990 floods and gaging-station data. The results indicate that the 100-year flood profile for Catoma Creek within the 15-mile study reach is about 2.5 feet higher, on average, than the profile published by the Federal Emergency Management Agency. The maximum and minimum differences are 6.0 feet and 0.8 foot, respectively. All water-surface elevations computed for the 100-year flood are higher than those published by the Federal Emergency Management Agency. The 100-year flood stage computed for the Alabama River in the vicinity of the Catoma Creek confluence was about 4.5 feet lower than the elevation published by the Federal Emergency Management Agency. The results of this study provide the community with flood-profile information that can be used for flood-plain mitigation, future development, and safety plans for the city.

  4. Error of the modelled peak flow of the hydraulically reconstructed 1907 flood of the Ebro River in Xerta (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Lluís Ruiz-Bellet, Josep; Castelltort, Xavier; Carles Balasch, J.; Tuset, Jordi

    2016-04-01

    The estimation of the uncertainty of the results of the hydraulic modelling has been deeply analysed, but no clear methodological procedures as to its determination have been formulated when applied to historical hydrology. The main objective of this study was to calculate the uncertainty of the resulting peak flow of a typical historical flood reconstruction. The secondary objective was to identify the input variables that influenced the result the most and their contribution to peak flow total error. The uncertainty of 21-23 October 1907 flood of the Ebro River (NE Iberian Peninsula) in the town of Xerta (83,000 km2) was calculated with a series of local sensitivity analyses of the main variables affecting the resulting peak flow. Besides, in order to see to what degree the result depended on the chosen model, the HEC-RAS resulting peak flow was compared to the ones obtained with the 2D model Iber and with Manning's equation. The peak flow of 1907 flood in the Ebro River in Xerta, reconstructed with HEC-RAS, was 11500 m3·s-1 and its total error was ±31%. The most influential input variable over HEC-RAS peak flow results was water height; however, the one that contributed the most to peak flow error was Manning's n, because its uncertainty was far greater than water height's. The main conclusion is that, to ensure the lowest peak flow error, the reliability and precision of the flood mark should be thoroughly assessed. The peak flow was 12000 m3·s-1 when calculated with the 2D model Iber and 11500 m3·s-1 when calculated with the Manning equation.

  5. Numerical simulation of flows in a circular pipe transversely subjected to a localized impulsive body force with applications to blunt traumatic aortic rupture

    NASA Astrophysics Data System (ADS)

    Di Labbio, G.; Keshavarz-Motamed, Z.; Kadem, L.

    2017-06-01

    Much debate surrounds the mechanisms responsible for the occurrence of blunt traumatic aortic rupture in car accidents, particularly on the role of the inertial body force experienced by the blood due to the abrupt deceleration. The isolated influence of such body forces acting on even simple fluid flows is a fundamental problem in fluid dynamics that has not been thoroughly investigated. This study numerically investigates the fundamental physical problem, where the pulsatile flow in a straight circular pipe is subjected to a transverse body force on a localized volume of fluid. The body force is applied as a brief rectangular impulse in three distinct cases, namely during the accelerating, peak, and decelerating phases of the pulsatile flow. A dimensionless number, termed the degree of influence of the body force (Ψ), is devised to quantify the relative strength of the body force over the flow inertia. The impact induces counter-rotating cross-stream vortices at the boundaries of the forced section accompanied by complex secondary flow structures. This secondary flow is found to develop slowest for an impact occurring during an accelerating flow and fastest during a decelerating flow. The peak skewness of the velocity field, however, occurred at successively later times for the three respective cases. After the impact, these secondary flows act to restore the unforced state and such dominant spatial structures are revealed by proper orthogonal decomposition of the velocity field. This work presents a new class of problems that requires further theoretical and experimental investigation.

  6. Modelling of slaughterhouse solid waste anaerobic digestion: determination of parameters and continuous reactor simulation.

    PubMed

    López, Iván; Borzacconi, Liliana

    2010-10-01

    A model based on the work of Angelidaki et al. (1993) was applied to simulate the anaerobic biodegradation of ruminal contents. In this study, two fractions of solids with different biodegradation rates were considered. A first-order kinetic was used for the easily biodegradable fraction and a kinetic expression that is function of the extracellular enzyme concentration was used for the slowly biodegradable fraction. Batch experiments were performed to obtain an accumulated methane curve that was then used to obtain the model parameters. For this determination, a methodology derived from the "multiple-shooting" method was successfully used. Monte Carlo simulations allowed a confidence range to be obtained for each parameter. Simulations of a continuous reactor were performed using the optimal set of model parameters. The final steady-states were determined as functions of the operational conditions (solids load and residence time). The simulations showed that methane flow peaked at a flow rate of 0.5-0.8 Nm(3)/d/m(reactor)(3) at a residence time of 10-20 days. Simulations allow the adequate selection of operating conditions of a continuous reactor. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Historical changes in annual peak flows in Maine and implications for flood-frequency analyses

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2010-01-01

    To safely and economically design bridges, culverts, and other structures that are in or near streams (fig. 1 for example), it is necessary to determine the magnitude of peak streamflows such as the 100-year flow. Flood-frequency analyses use statistical methods to compute peak flows for selected recurrence intervals (100 years, for example). The recurrence interval is the average number of years between peak flows that are equal to or greater than a specified peak flow. Floodfrequency analyses are based on annual peak flows at a stream. It has long been assumed that annual peak streamflows are stationary over very long periods of time, except in river basins subject to urbanization, regulation, and other direct human activities. Stationarity is the concept that natural systems fluctuate within an envelope of variability that does not change over time (Milly and others, 2008). Because of the potential effects of global warming on peak flows, the assumption of peak-flow stationarity has recently been questioned (Milly and others, 2008). Maine has many streamgaging stations with 50 to 105 years of recorded annual peak streamflows. This long-term record has been tested for historical flood-frequency stationarity, to provide some insight into future flood frequency (Hodgkins, 2010). This fact sheet, prepared by the U.S. Geological Survey (USGS) in cooperation with the Maine Department of Transportation (MaineDOT), provides a partial summary of the results of the study by Hodgkins (2010).

  8. Exchanges of Water between the Upper Floridan Aquifer and the Lower Suwannee and Lower Santa Fe Rivers, Florida

    USGS Publications Warehouse

    Grubbs, J.W.; Crandall, C.A.

    2007-01-01

    Exchanges of water between the Upper Floridan aquifer and the Lower Suwannee River were evaluated using historic and current hydrologic data from the Lower Suwannee River Basin and adjacent areas that contribute ground-water flow to the lowest 76 miles of the Suwannee River and the lowest 28 miles of the Santa Fe River. These and other data were also used to develop a computer model that simulated the movement of water in the aquifer and river, and surface- and ground-water exchanges between these systems over a range of hydrologic conditions and a set of hypothetical water-use scenarios. Long-term data indicate that at least 15 percent of the average annual flow in the Suwannee River near Wilcox (at river mile 36) is derived from ground-water discharge to the Lower Suwannee and Lower Santa Fe Rivers. Model simulations of ground-water flow to this reach during water years 1998 and 1999 were similar to these model-independent estimates and indicated that ground-water discharge accounted for about 12 percent of the flow in the Lower Suwannee River during this time period. The simulated average ground-water discharge to the Lower Suwannee River downstream from the mouth of the Santa Fe River was about 2,000 cubic feet per second during water years 1998 and 1999. Simulated monthly average ground-water discharge rates to this reach ranged from about 1,500 to 3,200 cubic feet per second. These temporal variations in ground-water discharge were associated with climatic phenomena, including periods of strong influence by El Ni?o-associated flooding, and La Ni?a-associated drought. These variations showed a relatively consistent pattern in which the lowest rates of ground-water inflow occurred during periods of peak flood levels (when river levels rose faster than ground-water levels) and after periods of extended droughts (when ground-water storage was depleted). Conversely, the highest rates of ground-water inflow typically occurred during periods of receding levels that followed peak river levels.

  9. Modeling fecal bacteria transport and retention in agricultural and urban soils under saturated and unsaturated flow conditions.

    PubMed

    Balkhair, Khaled S

    2017-03-01

    Pathogenic bacteria, that enter surface water bodies and groundwater systems through unmanaged wastewater land application, pose a great risk to human health. In this study, six soil column experiments were conducted to simulate the vulnerability of agricultural and urban field soils for fecal bacteria transport and retention under saturated and unsaturated flow conditions. HYDRUS-1D kinetic attachment and kinetic attachment-detachment models were used to simulate the breakthrough curves of the experimental data by fitting model parameters. Results indicated significant differences in the retention and drainage of bacteria between saturated and unsaturated flow condition in the two studied soils. Flow under unsaturated condition retained more bacteria than the saturated flow case. The high bacteria retention in the urban soil compared to agricultural soil is ascribed not only to the dynamic attachment and sorption mechanisms but also to the greater surface area of fine particles and low flow rate. All models simulated experimental data satisfactorily under saturated flow conditions; however, under variably saturated flow, the peak concentrations were overestimated by the attachment-detachment model and underestimated by the attachment model with blocking. The good match between observed data and simulated concentrations by the attachment model which was supported by the Akaike information criterion (AIC) for model selection indicates that the first-order attachment coefficient was sufficient to represent the quantitative and temporal distribution of bacteria in the soil column. On the other hand, the total mass balance of the drained and retained bacteria in all transport experiments was in the range of values commonly found in the literature. Regardless of flow conditions and soil texture, most of the bacteria were retained in the top 12 cm of the soil column. The approaches and the models used in this study have proven to be a good tool for simulating fecal bacteria transport under a variety of initial and boundary flow conditions, hence providing a better understanding of the transport mechanism of bacteria as well as soil removal efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The effect of massive neutrinos on the BAO peak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peloso, Marco; Pietroni, Massimo; Viel, Matteo

    2015-07-01

    We study the impact of neutrino masses on the shape and height of the BAO peak of the matter correlation function, both in real and redshift space. In order to describe the nonlinear evolution of the BAO peak we run N-body simulations and compare them with simple analytic formulae. We show that the evolution with redshift of the correlation function and its dependence on the neutrino masses is well reproduced in a simplified version of the Zel'dovich approximation, in which the mode-coupling contribution to the power spectrum is neglected. While in linear theory the BAO peak decreases for increasing neutrinomore » masses, the effect of nonlinear structure formation goes in the opposite direction, since the peak broadening by large scale flows is less effective. As a result of this combined effect, the peak decreases by ∼ 0.6 % for  ∑ m{sub ν} = 0.15 eV and increases by ∼1.2% for  ∑ m{sub ν} = 0.3 eV, with respect to a massless neutrino cosmology with equal value of the other cosmological parameters. We extend our analysis to redshift space and to halos, and confirm the agreement between simulations and the analytic formulae. We argue that all analytical approaches having the Zel'dovich propagator in their lowest order approximation should give comparable performances, irrespectively to their formulation in Lagrangian or in Eulerian space.« less

  11. Fast Plane Wave 2-D Vector Flow Imaging Using Transverse Oscillation and Directional Beamforming.

    PubMed

    Jensen, Jonas; Villagomez Hoyos, Carlos Armando; Stuart, Matthias Bo; Ewertsen, Caroline; Nielsen, Michael Bachmann; Jensen, Jorgen Arendt

    2017-07-01

    Several techniques can estimate the 2-D velocity vector in ultrasound. Directional beamforming (DB) estimates blood flow velocities with a higher precision and accuracy than transverse oscillation (TO), but at the cost of a high beamforming load when estimating the flow angle. In this paper, it is proposed to use TO to estimate an initial flow angle, which is then refined in a DB step. Velocity magnitude is estimated along the flow direction using cross correlation. It is shown that the suggested TO-DB method can improve the performance of velocity estimates compared with TO, and with a beamforming load, which is 4.6 times larger than for TO and seven times smaller than for conventional DB. Steered plane wave transmissions are employed for high frame rate imaging, and parabolic flow with a peak velocity of 0.5 m/s is simulated in straight vessels at beam-to-flow angles from 45° to 90°. The TO-DB method estimates the angle with a bias and standard deviation (SD) less than 2°, and the SD of the velocity magnitude is less than 2%. When using only TO, the SD of the angle ranges from 2° to 17° and for the velocity magnitude up to 7%. Bias of the velocity magnitude is within 2% for TO and slightly larger but within 4% for TO-DB. The same trends are observed in measurements although with a slightly larger bias. Simulations of realistic flow in a carotid bifurcation model provide visualization of complex flow, and the spread of velocity magnitude estimates is 7.1 cm/s for TO-DB, while it is 11.8 cm/s using only TO. However, velocities for TO-DB are underestimated at peak systole as indicated by a regression value of 0.97 for TO and 0.85 for TO-DB. An in vivo scanning of the carotid bifurcation is used for vector velocity estimations using TO and TO-DB. The SD of the velocity profile over a cardiac cycle is 4.2% for TO and 3.2% for TO-DB.

  12. The rod-driven a-wave of the dark-adapted mammalian electroretinogram.

    PubMed

    Robson, John G; Frishman, Laura J

    2014-03-01

    The a-wave of the electroretinogram (ERG) reflects the response of photoreceptors to light, but what determines the exact waveform of the recorded voltage is not entirely understood. We have now simulated the trans-retinal voltage generated by the photocurrent of dark-adapted mammalian rods, using an electrical model based on the in vitro measurements of Hagins et al. (1970) and Arden (1976) in rat retinas. Our simulations indicate that in addition to the voltage produced by extracellular flow of photocurrent from rod outer to inner segments, a substantial fraction of the recorded a-wave is generated by current that flows in the outer nuclear layer (ONL) to hyperpolarize the rod axon and synaptic terminal. This current includes a transient capacitive component that contributes an initial negative "nose" to the trans-retinal voltage when the stimulus is strong. Recordings in various species of the a-wave, including the peak and initial recovery towards the baseline, are consistent with simulations showing an initial transient primarily related to capacitive currents in the ONL. Existence of these capacitive currents can explain why there is always a substantial residual transient a-wave when post-receptoral responses are pharmacologically inactivated in rodents and nonhuman primates, or severely genetically compromised in humans (e.g. complete congenital stationary night blindness) and nob mice. Our simulations and analysis of ERGs indicate that the timing of the leading edge and peak of dark-adapted a-waves evoked by strong stimuli could be used in a simple way to estimate rod sensitivity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. IMPACT ON DISINFECTION AT PEAK FLOWS DURING BLENDING/PARTIAL BYPASSING OF SECONDARY TREATMENT

    EPA Science Inventory

    A U.S EPA study evaluated the impact on disinfection during peak flows when a portion of the flow to the wastewater treatment plant (WWTP) bypasses secondary treatment prior to disinfection. The practice of bypassing secondary treatment during peak flows, referred to as “blending...

  14. The origin of anomalous transport in porous media - is it possible to make a priori predictions?

    NASA Astrophysics Data System (ADS)

    Bijeljic, Branko; Blunt, Martin

    2013-04-01

    Despite the range of significant applications of flow and solute transport in porous rock, including contaminant migration in subsurface hydrology, geological storage of carbon-dioxide and tracer studies and miscible displacement in oil recovery, even the qualitative behavior in the subsurface is uncertain. The non-Fickian nature of dispersive processes in heterogeneous porous media has been demonstrated experimentally from pore to field scales. However, the exact relationship between structure, velocity field and transport has not been fully understood. Advances in X ray imaging techniques made it possible to accurately describe structure of the pore space, helping predict flow and anomalous transport behaviour using direct simulation. This is demonstrated by simulating solute transport through 3D images of rock samples, with resolutions of a few microns, representing geological media of increasing pore-scale complexity: a sandpack, a sandstone, and a carbonate. A novel methodology is developed that predicts solute transport at the pore scale by using probability density functions of displacement (propagators) and probability density function of transit time between the image voxels, and relates it to probability density function of normalized local velocity. A key advantage is that full information on velocity and solute concentration is retained in the models. The methodology includes solving for Stokes flow by Open Foam, solving for advective transport by the novel streamline simulation method, and superimposing diffusive transport diffusion by the random walk method. It is shown how computed propagators for beadpack, sandstone and carbonate depend on the spread in the velocity distribution. A narrow velocity distribution in the beadpack leads to the least anomalous behaviour where the propagators rapidly become Gaussian; the wider velocity distribution in the sandstone gives rise to a small immobile concentration peak, and a large secondary mobile peak moving at approximately the average flow speed; in the carbonate with the widest velocity distribution the stagnant concentration peak is persistent, while the emergence of a smaller secondary mobile peak is observed, leading to a highly anomalous behavior. This defines different generic nature of non-Fickian transport in the three media and quantifies the effect of pore structure on transport. Moreover, the propagators obtained by the model are in a very good agreement with the propagators measured on beadpack, Bentheimer sandstone and Portland carbonate cores in nuclear magnetic resonance experiments. These findings demonstrate that it is possible to make a priori predictions of anomalous transport in porous media. The importance of these findings for transport in complex carbonate rock micro-CT images is discussed, classifying them in terms of degree of anomalous transport that can have an impact at the field scale. Extensions to reactive transport will be discussed.

  15. Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska

    USGS Publications Warehouse

    Soenksen, Philip J.; Miller, Lisa D.; Sharpe, Jennifer B.; Watton, Jason R.

    1999-01-01

    Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data.For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated.The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more data from existing stations, probably would produce the greatest reduction in average sampling errors of the equations.

  16. Modeling pesticide loadings from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    NASA Astrophysics Data System (ADS)

    Chen, H.; Zhang, M.

    2016-12-01

    The Sacramento-San Joaquin Delta is an ecologically rich, hydrologically complex area that serves as the hub of California's water supply. However, pesticides have been routinely detected in the Delta waterways, with concentrations exceeding the benchmark for the protection of aquatic life. Pesticide loadings into the Delta are partially attributed to the San Joaquin watershed, a highly productive agricultural watershed located upstream. Therefore, this study aims to simulate pesticide loadings to the Delta by applying the Soil and Water Assessment Tool (SWAT) model to the San Joaquin watershed, under the support of the USDA-ARS Delta Area-Wide Pest Management Program. Pesticide use patterns in the San Joaquin watershed were characterized by combining the California Pesticide Use Reporting (PUR) database and GIS analysis. Sensitivity/uncertainty analyses and multi-site calibration were performed in the simulation of stream flow, sediment, and pesticide loads along the San Joaquin River. Model performance was evaluated using a combination of graphic and quantitative measures. Preliminary results indicated that stream flow was satisfactorily simulated along the San Joaquin River and the major eastern tributaries, whereas stream flow was less accurately simulated in the western tributaries, which are ephemeral small streams that peak during winter storm events and are mainly fed by irrigation return flow during the growing season. The most sensitive parameters to stream flow were CN2, SOL_AWC, HRU_SLP, SLSUBBSN, SLSOIL, GWQMN and GW_REVAP. Regionalization of parameters is important as the sensitivity of parameters vary significantly spatially. In terms of evaluation metric, NSE tended to overrate model performance when compared to PBIAS. Anticipated results will include (1) pesticide use pattern analysis, (2) calibration and validation of stream flow, sediment, and pesticide loads, and (3) characterization of spatial patterns and temporal trends of pesticide yield.

  17. Peak-flow frequency for tributaries of the Colorado River downstream of Austin, Texas

    USGS Publications Warehouse

    Asquith, William H.

    1998-01-01

    Peak-flow frequency for 38 stations with at least 8 years of data in natural (unregulated and nonurbanized) basins was estimated on the basis of annual peak-streamflow data through water year 1995. Peak-flow frequency represents the peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, 250, and 500 years. The peak-flow frequency and drainage basin characteristics for the stations were used to develop two sets of regression equations to estimate peak-flow frequency for tributaries of the Colorado River in the study area. One set of equations was developed for contributing drainage areas less than 32 square miles, and another set was developed for contributing drainage areas greater than 32 square miles. A procedure is presented to estimate the peak discharge at sites where both sets of equations are considered applicable. Additionally, procedures are presented to compute the 50-, 67-, and 90-percent prediction interval for any estimation from the equations.

  18. Models for coupled fluid flow, mineral reaction, and isotopic alteration during contact metamorphism: The Notch Peak aureole, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferry, J.M.; Dipple, G.M.

    Three different models were developed to simulate the effect of contact metamorphism and fluid-rock interaction on the prograde mineralogical and O isotopic evolution of calcareous argillites from the Notch Peak aureole, Utah. All models assume local mineral-fluid equilibrium, a steady-state temperature profile corresponding to peak metamorphic values, and the thermodynamic data for minerals and fluid of Berman (1988). The preferred model, metamorphism with flow of a time-integrated fluid flux of 2 {plus minus} 0.5 {center dot} 10{sup 4} mol/cm{sup 2} in the direction of increasing temperature, successfully reproduces the principal petrologic and isotopic features of the aureole: (1) occurrence andmore » positions (in map view) of diopside-in, tremolite-out, grossular-in, wollastonite-in, and quartz-out isograds; (2) stable coexistence of tremolite + calcite + quartz + diopside over an {approx}1 km distance between the diopside-in and tremolite-out isograds; (3) variable whole-rock {sup 18}O depletions of {approx}6-9{per thousand} adjacent to the contact; and (4) a gradual and irregular increase in {delta}{sup 18}O with increasing distance from the pluton. Results demonstrate how isotopic and petrologic data for contact aureoles can be integrated to provide quantitative constraints on the magnitude and geometry of metamorphic fluid flow.« less

  19. Impact of Wet-Weather Peak Flow Blending on Disinfection and Treatment: A Case Study at Three Wastewater Treatment Plants

    EPA Science Inventory

    A U.S. EPA study evaluated the impact on disinfection during peak flows (wet-weather flow events) when a portion of the flow to the wastewater treatment plant (WWTP) bypasses secondary treatment prior to disinfection. The practice of bypassing secondary treatment during peak flo...

  20. Impact of Wet Weather Peak Flow Blending on Disinfection and Treatment: A Case Study at Three Wastewater Treatment Plants

    EPA Science Inventory

    A U.S. EPA study evaluated the impact on disinfection during peak flows (wet-weather flow events) when a portion of the flow to the wastewater treatment plant (WWTP) bypasses secondary treatment prior to disinfection. The practice of bypassing secondary treatment during peak flo...

  1. Real-time three-dimensional color Doppler echocardiography for characterizing the spatial velocity distribution and quantifying the peak flow rate in the left ventricular outflow tract

    NASA Technical Reports Server (NTRS)

    Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.; hide

    2001-01-01

    Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.

  2. A Bayesian-based multilevel factorial analysis method for analyzing parameter uncertainty of hydrological model

    NASA Astrophysics Data System (ADS)

    Liu, Y. R.; Li, Y. P.; Huang, G. H.; Zhang, J. L.; Fan, Y. R.

    2017-10-01

    In this study, a Bayesian-based multilevel factorial analysis (BMFA) method is developed to assess parameter uncertainties and their effects on hydrological model responses. In BMFA, Differential Evolution Adaptive Metropolis (DREAM) algorithm is employed to approximate the posterior distributions of model parameters with Bayesian inference; factorial analysis (FA) technique is used for measuring the specific variations of hydrological responses in terms of posterior distributions to investigate the individual and interactive effects of parameters on model outputs. BMFA is then applied to a case study of the Jinghe River watershed in the Loess Plateau of China to display its validity and applicability. The uncertainties of four sensitive parameters, including soil conservation service runoff curve number to moisture condition II (CN2), soil hydraulic conductivity (SOL_K), plant available water capacity (SOL_AWC), and soil depth (SOL_Z), are investigated. Results reveal that (i) CN2 has positive effect on peak flow, implying that the concentrated rainfall during rainy season can cause infiltration-excess surface flow, which is an considerable contributor to peak flow in this watershed; (ii) SOL_K has positive effect on average flow, implying that the widely distributed cambisols can lead to medium percolation capacity; (iii) the interaction between SOL_AWC and SOL_Z has noticeable effect on the peak flow and their effects are dependent upon each other, which discloses that soil depth can significant influence the processes of plant uptake of soil water in this watershed. Based on the above findings, the significant parameters and the relationship among uncertain parameters can be specified, such that hydrological model's capability for simulating/predicting water resources of the Jinghe River watershed can be improved.

  3. Effect of the bifurcation angle on the flow within a synthetic model of lower human airways

    NASA Astrophysics Data System (ADS)

    Espinosa Moreno, Andres Santiago; Duque Daza, Carlos Alberto

    2016-11-01

    The effect of the bifurcation angle on the flow pattern developed during respiratory inhalation and exhalation processes was explored numerically using a synthetic model of lower human airways featuring three generations of a dichotomous morphology as described by a Weibel model. Laminar flow simulations were performed for six bifurcation angles and four Reynolds numbers relevant to human respiratory flow. Numerical results of the inhalation process showed a peak displacement trend of the velocity profile towards the inner walls of the model. This displacement exhibited correlation with Dean-type secondary flow patterns, as well as with the onset and location of vortices. High wall shear stress regions on the inner walls were observed for a range of bifurcation angles. Noteworthy, specific bifurcation angles produced higher values of pressure drop, compared to the average behavior, as well as changes in the volumetric flow through the branches. Results of the simulations for exhalation process showed a different picture, mainly the appearance of symmetrical velocity profiles and the change of location of the regions of high wall shear stress. The use of this modelling methodology for biomedical applications is discussed considering the validity of the obtained results. Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.

  4. Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics

    PubMed Central

    Mao, Wenbin; Li, Kewei; Sun, Wei

    2016-01-01

    Computational modeling of heart valve dynamics incorporating both fluid dynamics and valve structural responses has been challenging. In this study, we developed a novel fully-coupled fluid-structure interaction (FSI) model using smoothed particle hydrodynamics (SPH). A previously developed nonlinear finite element (FE) model of transcatheter aortic valves (TAV) was utilized to couple with SPH to simulate valve leaflet dynamics throughout the entire cardiac cycle. Comparative simulations were performed to investigate the impact of using FE-only models versus FSI models, as well as an isotropic versus an anisotropic leaflet material model in TAV simulations. From the results, substantial differences in leaflet kinematics between FE-only and FSI models were observed, and the FSI model could capture the realistic leaflet dynamic deformation due to its more accurate spatial and temporal loading conditions imposed on the leaflets. The stress and the strain distributions were similar between the FE and FSI simulations. However, the peak stresses were different due to the water hammer effect induced by the flow inertia in the FSI model during the closing phase, which led to 13%–28% lower peak stresses in the FE-only model compared to that of the FSI model. The simulation results also indicated that tissue anisotropy had a minor impact on hemodynamics of the valve. However, a lower tissue stiffness in the radial direction of the leaflets could reduce the leaflet peak stress caused by the water hammer effect. It is hoped that the developed FSI models can serve as an effective tool to better assess valve dynamics and optimize next generation TAV designs. PMID:27844463

  5. Estimating peak-flow frequency statistics for selected gaged and ungaged sites in naturally flowing streams and rivers in Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Skinner, Kenneth D.; Veilleux, Andrea G.

    2016-06-27

    The U.S. Geological Survey, in cooperation with the Idaho Transportation Department, updated regional regression equations to estimate peak-flow statistics at ungaged sites on Idaho streams using recent streamflow (flow) data and new statistical techniques. Peak-flow statistics with 80-, 67-, 50-, 43-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities (1.25-, 1.50-, 2.00-, 2.33-, 5.00-, 10.0-, 25.0-, 50.0-, 100-, 200-, and 500-year recurrence intervals, respectively) were estimated for 192 streamgages in Idaho and bordering States with at least 10 years of annual peak-flow record through water year 2013. The streamgages were selected from drainage basins with little or no flow diversion or regulation. The peak-flow statistics were estimated by fitting a log-Pearson type III distribution to records of annual peak flows and applying two additional statistical methods: (1) the Expected Moments Algorithm to help describe uncertainty in annual peak flows and to better represent missing and historical record; and (2) the generalized Multiple Grubbs Beck Test to screen out potentially influential low outliers and to better fit the upper end of the peak-flow distribution. Additionally, a new regional skew was estimated for the Pacific Northwest and used to weight at-station skew at most streamgages. The streamgages were grouped into six regions (numbered 1_2, 3, 4, 5, 6_8, and 7, to maintain consistency in region numbering with a previous study), and the estimated peak-flow statistics were related to basin and climatic characteristics to develop regional regression equations using a generalized least squares procedure. Four out of 24 evaluated basin and climatic characteristics were selected for use in the final regional peak-flow regression equations.Overall, the standard error of prediction for the regional peak-flow regression equations ranged from 22 to 132 percent. Among all regions, regression model fit was best for region 4 in west-central Idaho (average standard error of prediction=46.4 percent; pseudo-R2>92 percent) and region 5 in central Idaho (average standard error of prediction=30.3 percent; pseudo-R2>95 percent). Regression model fit was poor for region 7 in southern Idaho (average standard error of prediction=103 percent; pseudo-R2<78 percent) compared to other regions because few streamgages in region 7 met the criteria for inclusion in the study, and the region’s semi-arid climate and associated variability in precipitation patterns causes substantial variability in peak flows.A drainage area ratio-adjustment method, using ratio exponents estimated using generalized least-squares regression, was presented as an alternative to the regional regression equations if peak-flow estimates are desired at an ungaged site that is close to a streamgage selected for inclusion in this study. The alternative drainage area ratio-adjustment method is appropriate for use when the drainage area ratio between the ungaged and gaged sites is between 0.5 and 1.5.The updated regional peak-flow regression equations had lower total error (standard error of prediction) than all regression equations presented in a 1982 study and in four of six regions presented in 2002 and 2003 studies in Idaho. A more extensive streamgage screening process used in the current study resulted in fewer streamgages used in the current study than in the 1982, 2002, and 2003 studies. Fewer streamgages used and the selection of different explanatory variables were likely causes of increased error in some regions compared to previous studies, but overall, regional peak‑flow regression model fit was generally improved for Idaho. The revised statistical procedures and increased streamgage screening applied in the current study most likely resulted in a more accurate representation of natural peak-flow conditions.The updated, regional peak-flow regression equations will be integrated in the U.S. Geological Survey StreamStats program to allow users to estimate basin and climatic characteristics and peak-flow statistics at ungaged locations of interest. StreamStats estimates peak-flow statistics with quantifiable certainty only when used at sites with basin and climatic characteristics within the range of input variables used to develop the regional regression equations. Both the regional regression equations and StreamStats should be used to estimate peak-flow statistics only in naturally flowing, relatively unregulated streams without substantial local influences to flow, such as large seeps, springs, or other groundwater-surface water interactions that are not widespread or characteristic of the respective region.

  6. Simulation of Streamflow and Selected Water-Quality Constituents through a Model of the Onondaga Lake Basin, Onondaga County, New York - A Guide to Model Application

    USGS Publications Warehouse

    Coon, William F.

    2008-01-01

    A computer model of hydrologic and water-quality processes of the Onondaga Lake basin in Onondaga County, N.Y., was developed during 2003-07 to assist water-resources managers in making basin-wide management decisions that could affect peak flows and the water quality of tributaries to Onondaga Lake. The model was developed with the Hydrological Simulation Program-Fortran (HSPF) and was designed to allow simulation of proposed or hypothetical land-use changes, best-management practices (BMPs), and instream stormwater-detention basins such that their effects on flows and loads of suspended sediment, orthophosphate, total phosphorus, ammonia, organic nitrogen, and nitrate could be analyzed. Extreme weather conditions, such as intense storms and prolonged droughts, can be simulated through manipulation of the precipitation record. Model results obtained from different scenarios can then be compared and analyzed through an interactive computer program known as Generation and Analysis of Model Simulation Scenarios for Watersheds (GenScn). Background information on HSPF and GenScn is presented to familiarize the user with these two programs. Step-by-step examples are provided on (1) the creation of land-use, BMP, and stormflow-detention scenarios for simulation by the HSPF model, and (2) the analysis of simulation results through GenScn.

  7. Multiobjective optimization of low impact development stormwater controls

    NASA Astrophysics Data System (ADS)

    Eckart, Kyle; McPhee, Zach; Bolisetti, Tirupati

    2018-07-01

    Green infrastructure such as Low Impact Development (LID) controls are being employed to manage the urban stormwater and restore the predevelopment hydrological conditions besides improving the stormwater runoff water quality. Since runoff generation and infiltration processes are nonlinear, there is a need for identifying optimal combination of LID controls. A coupled optimization-simulation model was developed by linking the U.S. EPA Stormwater Management Model (SWMM) to the Borg Multiobjective Evolutionary Algorithm (Borg MOEA). The coupled model is capable of performing multiobjective optimization which uses SWMM simulations as a tool to evaluate potential solutions to the optimization problem. The optimization-simulation tool was used to evaluate low impact development (LID) stormwater controls. A SWMM model was developed, calibrated, and validated for a sewershed in Windsor, Ontario and LID stormwater controls were tested for three different return periods. LID implementation strategies were optimized using the optimization-simulation model for five different implementation scenarios for each of the three storm events with the objectives of minimizing peak flow in the stormsewers, reducing total runoff, and minimizing cost. For the sewershed in Windsor, Ontario, the peak run off and total volume of the runoff were found to reduce by 13% and 29%, respectively.

  8. A solar simulator-pumped atomic iodine laser

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Weaver, W. R.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar-pumped gas laser, was excited with a 4-kW beam from a xenon arc solar simulator. Continuous lasing at 1.315 micron for over 10 ms was obtained for static filling of n-C3F7I vapor. By momentarily flowing the lasant, a 30-Hz pulsed output was obtained for about 200 ms. The peak laser power observed was 4 W for which the system efficiency reached 0.1%. These results indicate that direct solar pumping of a gas laser for power conversion in space is indeed feasible.

  9. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions : An integrated modeling approach

    USGS Publications Warehouse

    Huntington, Justin L.; Niswonger, Richard G.

    2012-01-01

    Previous studies indicate predominantly increasing trends in precipitation across the Western United States, while at the same time, historical streamflow records indicate decreasing summertime streamflow and 25th percentile annual flows. These opposing trends could be viewed as paradoxical, given that several studies suggest that increased annual precipitation will equate to increased annual groundwater recharge, and therefore increased summertime flow. To gain insight on mechanisms behind these potential changes, we rely on a calibrated, integrated surface and groundwater model to simulate climate impacts on surface water/groundwater interactions using 12 general circulation model projections of temperature and precipitation from 2010 to 2100, and evaluate the interplay between snowmelt timing and other hydrologic variables, including streamflow, groundwater recharge, storage, groundwater discharge, and evapotranspiration. Hydrologic simulations show that the timing of peak groundwater discharge to the stream is inversely correlated to snowmelt runoff and groundwater recharge due to the bank storage effect and reversal of hydraulic gradients between the stream and underlying groundwater. That is, groundwater flow to streams peaks following the decrease in stream depth caused by snowmelt recession, and the shift in snowmelt causes a corresponding shift in groundwater discharge to streams. Our results show that groundwater discharge to streams is depleted during the summer due to earlier drainage of shallow aquifers adjacent to streams even if projected annual precipitation and groundwater recharge increases. These projected changes in surface water/groundwater interactions result in more than a 30% decrease in the projected ensemble summertime streamflow. Our findings clarify causality of observed decreasing summertime flow, highlight important aspects of potential climate change impacts on groundwater resources, and underscore the need for integrated hydrologic models in climate change studies.

  10. On an Aerodynamic Mechanism to Enhance Ion Transmission and Sensitivity of FAIMS for Nano-Electrospray Ionization-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Prasad, Satendra; Belford, Michael W.; Dunyach, Jean-Jacques; Purves, Randy W.

    2014-12-01

    Simulations show that significant ion losses occur within the commercial electrospray ionization-field asymmetric waveform ion mobility spectrometer (ESI-FAIMS) interface owing to an angular desolvation gas flow and because of the impact of the FAIMS carrier gas onto the inner rf (radio frequency) electrode. The angular desolvation gas flow diverts ions away from the entrance plate orifice while the carrier gas annihilates ions onto the inner rf electrode. A novel ESI-FAIMS interface is described that optimizes FAIMS gas flows resulting in large improvements in transmission. Simulations with the bromochloroacetate anion showed an improvement of ~9-fold to give ~70% overall transmission). Comparable transmission improvements were attained experimentally for six peptides (2+) in the range of m/z 404.2 to 653.4 at a chromatographic flow rate of 300 nL/min. Selected ion chromatograms (SIC) from nano-LC-FAIMS-MS analyses showed 71% (HLVDEPQNLIK, m/z 653.4, 2+) to 95% (LVNELTEFAK, m/z 582.3, 2+) of ion signal compared with ion signal in the SIC from LC-MS analysis. IGSEVYHNLK (580.3, 2+) showed 24% more ion signal compared with LC-MS and is explained by enhanced desolvation in FAIMS. A 3-10 times lower limits of quantitation (LOQ) (<15% RSD) was achieved for chemical noise limited peaks with FAIMS. Peaks limited by ion statistics showed subtle improvement in RSD and yielded comparable LOQ to that attained with nano-LC-MS (without FAIMS). These improvements were obtained using a reduced FAIMS separation gap (from 2.5 to 1.5 mm) that results in a shorter residence time (13.2 ms ± 3.9 ms) and enables the use of a helium free transport gas (100% nitrogen).

  11. Dual permeability modeling of tile drain management influences on hydrologic and nutrient transport characteristics in macroporous soil

    NASA Astrophysics Data System (ADS)

    Frey, Steven K.; Hwang, Hyoun-Tae; Park, Young-Jin; Hussain, Syed I.; Gottschall, Natalie; Edwards, Mark; Lapen, David R.

    2016-04-01

    Tile drainage management is considered a beneficial management practice (BMP) for reducing nutrient loads in surface water. In this study, 2-dimensional dual permeability models were developed to simulate flow and transport following liquid swine manure and rhodamine WT (strongly sorbing) tracer application on macroporous clay loam soils under controlled (CD) and free drainage (FD) tile management. Dominant flow and transport characteristics were successfully replicated, including higher and more continuous tile discharge and lower peak rhodamine WT concentrations in FD tile effluent; in relation to CD, where discharge was intermittent, peak rhodamine concentrations higher, and mass exchange from macropores into the soil matrix greater. Explicit representation of preferential flow was essential, as macropores transmitted >98% of surface infiltration, tile flow, and tile solute loads for both FD and CD. Incorporating an active 3rd type lower boundary condition that facilitated groundwater interaction was imperative for simulating CD, as the higher (relative to FD) water table enhanced water and soluble nutrient movement from the soil profile into deeper groundwater. Scenario analysis revealed that in conditions where slight upwards hydraulic gradients exist beneath tiles, groundwater upwelling can influence the concentration of surface derived solutes in tile effluent under FD conditions; whereas the higher and flatter CD water table can restrict groundwater upwelling. Results show that while CD can reduce tile discharge, it can also lead to an increase in surface-application derived nutrient concentrations in tile effluent and hence surface water receptors, and it can promote NO3 loading into groundwater. This study demonstrates dual permeability modeling as a tool for increasing the conceptual understanding of tile drainage BMPs.

  12. The generation of spring peak flows by short-term meteorological events

    Treesearch

    Harold F. Haupt

    1968-01-01

    Spring peak flows recorded over a 25-year period in Benton Creek, a small forested watershed in northern Idaho, were studied in their relation to meteorological events. More peak flows were generated by rain-on-snow than by clear-weather snowmelt; the two types of peaks differ in magnitude and in other characteristics. Two rather simple techniques were used to...

  13. Vehicular Traffic Flow Theory and Tunnel Traffic Flow Measurements

    DOT National Transportation Integrated Search

    1971-06-01

    Vehicular traffic flow has been investigated theoretically and experimentally in order that peak hour collective traffic flow dynamics can be understood and that the peak hour flow through the Callahan Tunnel can be improved by means of traffic flow ...

  14. Using Automatic Control Approach In Detention Storages For Storm Water Management In An Urban Watershed

    NASA Astrophysics Data System (ADS)

    Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Increased imperviousness due to rapid urbanization have changed the urban hydrological cycle. As watersheds are urbanized, infiltration and groundwater recharge have decreased, surface runoff hydrograph shows higher peak indicating large volumes of surface runoff in lesser time durations. The ultimate panacea is to reduce the peak of hydrograph or increase the retention time of surface flow. SWMM is widely used hydrologic and hydraulic software which helps to simulate the urban storm water management with the provision to apply different techniques to prevent flooding. A model was setup to simulate the surface runoff and channel flow in a small urban catchment. It provides the temporal and spatial information of flooding in a catchment. Incorporating the detention storages in the drainage network helps achieve reduced flooding. Detention storages provided with predefined algorithms were for controlling the pluvial flooding in urban watersheds. The algorithm based on control theory, automated the functioning of detention storages ensuring that the storages become active on occurrence of flood in the storm water drains and shuts down when flooding is over. Detention storages can be implemented either at source or at several downstream control points. The proposed piece of work helps to mitigate the wastage of rainfall water, achieve desirable groundwater and attain a controlled urban storm water management system.

  15. Computational Fluid Dynamics of Developing Avian Outflow Tract Heart Valves

    PubMed Central

    Bharadwaj, Koonal N.; Spitz, Cassie; Shekhar, Akshay; Yalcin, Huseyin C.; Butcher, Jonathan T.

    2012-01-01

    Hemodynamic forces play an important role in sculpting the embryonic heart and its valves. Alteration of blood flow patterns through the hearts of embryonic animal models lead to malformations that resemble some clinical congenital heart defects, but the precise mechanisms are poorly understood. Quantitative understanding of the local fluid forces acting in the heart has been elusive because of the extremely small and rapidly changing anatomy. In this study, we combine multiple imaging modalities with computational simulation to rigorously quantify the hemodynamic environment within the developing outflow tract (OFT) and its eventual aortic and pulmonary valves. In vivo Doppler ultrasound generated velocity profiles were applied to Micro-Computed Tomography generated 3D OFT lumen geometries from Hamburger-Hamilton (HH) stage 16 to 30 chick embryos. Computational fluid dynamics simulation initial conditions were iterated until local flow profiles converged with in vivo Doppler flow measurements. Results suggested that flow in the early tubular OFT (HH16 and HH23) was best approximated by Poiseuille flow, while later embryonic OFT septation (HH27, HH30) was mimicked by plug flow conditions. Peak wall shear stress (WSS) values increased from 18.16 dynes/cm2 at HH16 to 671.24 dynes/cm2 at HH30. Spatiotemporally averaged WSS values also showed a monotonic increase from 3.03 dynes/cm2 at HH16 to 136.50 dynes/cm2 at HH30. Simulated velocity streamlines in the early heart suggest a lack of mixing, which differed from classical ink injections. Changes in local flow patterns preceded and correlated with key morphogenetic events such as OFT septation and valve formation. This novel method to quantify local dynamic hemodynamics parameters affords insight into sculpting role of blood flow in the embryonic heart and provides a quantitative baseline dataset for future research. PMID:22535311

  16. Characterization of floodflows along the Arkansas River without regulation by Pueblo Reservoir, Portland to John Martin Reservoir, Southeastern Colorado

    USGS Publications Warehouse

    Little, John R.; Bauer, Daniel P.

    1981-01-01

    The need for a method for estimating flow characteristics of flood hydrographs between Portland, Colo., and John Martin Reservoir has been promoted with the construction of the Pueble Reservoir. To meet this need a procedure was developed for predicting floodflow peaks, traveltimes, and volumes at any point along the Arkansas River between Portland and John Martin Reservoir without considering the existing Pueble Reservoir detention effects. A streamflow-routing model was calibrated initially and then typical flood simulations were made for the 164.8-mile study reach. Simulations were completed for varying magnitudes of floods and antecedent streamflow conditions. Multiple regression techniques were then used with simulation results as input to provide predictive relationships for food peak, volume, and traveltime. Management practices that may be used to benefit water users in the area include providing methods for the distribution and allotment of the flood waters upstream of Portland to different downstream water users according to Colorado water law and also under the Arkansas River Compact. (USGS)

  17. Simulation of rain floods on Willow Creek, Valley County, Montana

    USGS Publications Warehouse

    Parrett, Charles

    1986-01-01

    The Hydrologic Engineering Center-1 rainfall-runoff simulation model was used to assess the effects of a system of reservoirs and waterspreaders in the 550-sq mi Willow Creek Basin in northeastern Montana. For simulation purposes, the basin was subdivided into 100 subbasins containing 84 reservoirs and 14 waterspreaders. Precipitation input to the model was a 24-hr duration, 100-yr frequency synthetic rainstorm developed from National Weather Service data. Infiltration and detention losses were computed using the U.S. Soil Conservation Service Curve Number concept, and the dimensionless unit hydrograph developed by the U.S. Soil Conservation Service was used to compute runoff. Channel and reservoir flow routing was based on the modified Puls storage routing procedure. Waterspreaders were simulated by assuming that each dike in a spreader system functions as a reservoir, with only an emergency spillway discharging directly into the next dike. Waterspreader and reservoir volumes were calculated from surface areas measured on maps. The first simulation run was made with no structures in place, and resulted in a 100-yr frequency peak at the mouth of Willow Creek of 22,700 cu ft/sec. With all structures in place, the 100-yr frequency peak was decreased by 74% to 5,870 cu ft/sec. (USGS)

  18. Understanding processes controlling sediment transports at the mouth of a highly energetic inlet system (San Francisco Bay, CA)

    USGS Publications Warehouse

    Elias, Edwin P.L.; Hansen, Jeff E.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    San Francisco Bay is one of the largest estuaries along the U.S. West Coast and is linked to the Pacific Ocean through the Golden Gate, a 100 m deep bedrock inlet. A coupled wave, flow and sediment transport model is used to quantify the sediment linkages between San Francisco Bay, the Golden Gate, and the adjacent open coast. Flow and sediment transport processes are investigated using an ensemble average of 24 climatologically derived wave cases and a 24.8 h representative tidal cycle. The model simulations show that within the inlet, flow and sediment transport is tidally dominated and driven by asymmetry of the ebb and flood tides. Peak ebb velocities exceed the peak flood velocities in the narrow Golden Gate channel as a result of flow convergence and acceleration. Persistent flow and sediment gyres at the headland tips are formed that limit sediment transfer from the ebb-tidal delta to the inlet and into the bay. The residual transport pattern in the inlet is dominated by a lateral segregation with a large ebb-dominant sediment transport (and flow) prevailing along the deeper north side of the Golden Gate channel, and smaller flood dominant transports along the shallow southern margin. The seaward edge of the ebb-tidal delta largely corresponds to the seaward extent of strong tidal flows. On the ebb-tidal delta, both waves and tidal forcing govern flow and sediment transport. Wave focusing by the ebb-tidal delta leads to strong patterns of sediment convergence and divergence along the adjacent Ocean Beach.

  19. Reversed aqueductal cerebrospinal fluid net flow in idiopathic normal pressure hydrocephalus.

    PubMed

    Yin, L K; Zheng, J J; Zhao, L; Hao, X Z; Zhang, X X; Tian, J Q; Zheng, K; Yang, Y M

    2017-11-01

    The changes of CSF flow dynamics in idiopathic normal pressure hydrocephalus (iNPH) are not fully elucidated. Most previous studies took the whole cardiac cycle as a unit. In this work, it is divided into systole and diastole phase and compared between iNPH patients and normal elderly and paid special attention to the change of netflow direction. Twenty iNPH patients according to international guideline and twenty healthy volunteers were included in this study and examined by MRI. Three categories of CSF flow parameters were measured: peak velocity (V peak ), stroke volume (SV), and minute flow volume (MinV) covering the whole cycle; peak velocity (V peak-s , V peak-d ) and flow volume (Vol s , Vol d ) of the systole and diastole, respectively; net flow. Evans index (EI) was also measured and compared statistically between the two groups. EI, V peak , SV, MinV, Vol s , Vol d , and V peak-d significantly increased in iNPH group (P<0.05). V peak-s of the two groups were not significantly different (P>0.05). The net flow of 16 iNPH patients (16/20) was in the caudo-cranial direction, while 15 volunteers (15/20) were in the opposite direction, which showed statistically significant differences (P=.001). INPH patients present hyperdynamic flow with increased velocity and volume both in systole and diastole phase. Degree of rising in diastole phase exceeds that of systole phase. The resulting reversal of netflow direction may play a key role in the occurrence of ventriculomegaly in iNPH patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Whole Watershed Management to Maximize Total Water Storage: Case Study of the American-Cosumnes River Basin

    NASA Astrophysics Data System (ADS)

    Goharian, E.; Gailey, R.; Medellin-Azuara, J.; Maples, S.; Adams, L. E.; Sandoval Solis, S.; Fogg, G. E.; Dahlke, H. E.; Harter, T.; Lund, J. R.

    2016-12-01

    Drought and unrelenting water demands by urban, agricultural and ecological entities present a need to manage and perhaps maximize all the major stores of water, including mountain snowpack and soil moisture, surface reservoirs, and groundwater reservoirs for the future. During drought, the over-exploitations of groundwater, which supplies up to 60% of California's agricultural water demand, has caused serious overdraft in many areas. Moreover, owing to climate change, faster and earlier snowmelt in Mediterranean climate systems such as California dictates that less water can be stored in reservoirs. If we are to substantially compensate for this loss of stored water without drastically cutting back water supply, a new era of radically increased groundwater recharge will be needed. Managed aquifer recharge (MAR) has become a common and fast-growing management option, especially in areas with high water availability variation intra- and inter-annually. Enhancing the recharge by the use of peak runoff requires integrated river basin management to improve prospects to downstream users and ecology. This study implements a quantitative approach to assess the physical and economic feasibility of MAR for American-Cosumnes River basin, CA. For this purpose, two scenarios are considered, the pre-development condition which is represented by unimpaired flows, and the other one in which available peak flow releases from Folsom reservoir derived from the CalSim II hydrologic simulation model will be employed to estimated available water for recharge. Preliminary results show peak flows during winter (Dec-Feb) and extended winter (Nov-Mar) from the American River flow can be captured within a range of 64,000 to 198,000 af/month through the Folsom South Canal for recharge. Changes in groundwater storage are estimated by using California Central Valley Groundwater-Surface Water Simulation Model (C2VSim). Results show increasing groundwater recharge benefits not only the regional groundwater storage, but also increases the groundwater storage in adjacent areas. Finally, results confirm that replenishing excess surface water during wet seasons can reduce the overdraft and help manage the groundwater in a more sustainable fashion. In addition, economic and policy implications of MAR are discussed.

  1. A history of the 2014 Minute 319 environmental pulse flow asdocumented by field measurements and satellite imagery

    USGS Publications Warehouse

    Nelson, Steven M.; Ramirez-Hernandez, Jorge; Rodriguez-Burgeueno, J. Eliana; Milliken, Jeff; Kennedy, Jeffrey R.; Zamora-Arroyo, Francisco; Schlatter, Karen; Santiago-Serrano, Edith; Carrera-Villa, Edgar

    2017-01-01

    As provided in Minute 319 of the U.S.-Mexico Water Treaty of 1944, a pulse flow of approximately 132 million cubic meters (mcm) was released to the riparian corridor of the Colorado River Delta over an eight-week period that began March 23, 2014 and ended May 18, 2014. Peak flows were released in the early part of the pulse to simulate a spring flood, with approximately 101.7 mcm released at Morelos Dam on the U.S.-Mexico border. The remainder of the pulse flow water was released to the riparian corridor via Mexicali Valley irrigation spillway canals, with 20.9 mcm released at Km 27 Spillway (41 km below Morelos Dam) and 9.3 mcm released at Km 18 Spillway (78 km below Morelos Dam). We used sequential satellite images, overflights, ground observations, water discharge measurements, and automated temperature, river stage and water quality loggers to document and describe the progression of pulse flow water through the study area. The rate of advance of the wetted front was slowed by infiltration and high channel roughness as the pulse flow crossed more than 40 km of dry channel which was disconnected from underlying groundwater and partially overgrown with salt cedar. High lag time and significant attenuation of flow resulted in a changing hydrograph as the pulse flow progressed to the downstream delivery points; two peak flows occurred in some lower reaches. The pulse flow advanced more than 120 km downstream from Morelos Dam to reach the Colorado River estuary at the northern end of the Gulf of California.

  2. The 26 May 1982 breakout flows derived from failure of a volcanic dam at El Chichón, Chiapas, Mexico

    USGS Publications Warehouse

    Macias, J.L.; Capra, L.; Scott, K.M.; Espindola, J.M.; Garcia-Palomo, A.; Costa, J.E.

    2004-01-01

    The eruptions of El Chicho??n between 28 March and 4 April 1982 produced a variety of pyroclastic deposits. The climactic phase, on 3 April at 07:35 (4 April at 01:35 GMT), destroyed the central andesitic dome and fed pyroclastic surges and flows that dammed nearby drainages, including the Magdalena River. By late April, a lake had formed, 4 km long and 300-400 m wide, containing a volume of 26 ?? 106 m3 of hot water. At 01:30 on 26 May, the pyroclastic dam was breached and surges of sediment and hot water soon inundated the town of Ostuaca??n, 10 km downstream. This hot flood was finally contained at Pen??itas Hydroelectric Dam, 35 km downstream, where one fatality occurred and three workers were badly scalded. Stratigraphic and sedimentologic evidence indicates that the rapidly draining lake initially discharged two debris flows, followed by five smaller debris flows and water surges. The main debris flows became diluted with distance, and by the time they reached Ostuaca??n, they merged into a single hyperconcentrated flow with a sediment concentration of ???30 vol%. Deposits from this hyperconcentrated flow were emplaced for 15 km, as far as the confluence with another river, the Mas-Pac, below which the flow was diluted to sediment-laden streamflow. The minimum volume of the breakout-flow deposits is estimated at 17 ?? 106 m3. From high-water marks, flow profiles, and simulations utilizing the DAMBRK code from the National Weather Service, we calculated a maximum peak discharge of 11,000 m3/s at the breach; this maximum peak discharge occurred 1 h after initial breaching. The calculations indicated that ???2 h were required to drain the lake.

  3. High spatial-temporal resolution and integrated surface and subsurface precipitation-runoff modelling for a small stormwater catchment

    NASA Astrophysics Data System (ADS)

    Hailegeorgis, Teklu T.; Alfredsen, Knut

    2018-02-01

    Reliable runoff estimation is important for design of water infrastructure and flood risk management in urban catchments. We developed a spatially distributed Precipitation-Runoff (P-R) model that explicitly represents the land cover information, performs integrated modelling of surface and subsurface components of the urban precipitation water cycle and flow routing. We conducted parameter calibration and validation for a small (21.255 ha) stormwater catchment in Trondheim City during Summer-Autumn events and season, and snow-influenced Winter-Spring seasons at high spatial and temporal resolutions of respectively 5 m × 5 m grid size and 2 min. The calibration resulted in good performance measures (Nash-Sutcliffe efficiency, NSE = 0.65-0.94) and acceptable validation NSE for the seasonal and snow-influenced periods. The infiltration excess surface runoff dominates the peak flows while the contribution of subsurface flow to the sewer pipes also augments the peak flows. Based on the total volumes of simulated flow in sewer pipes (Qsim) and precipitation (P) during the calibration periods, the Qsim/P ranges from 21.44% for an event to 56.50% for the Winter-Spring season, which are in close agreement with the observed volumes (Qobs/P). The lowest percentage of precipitation volume that is transformed to the total simulated runoff in the catchment (QT) is 79.77%. Computation of evapotranspiration (ET) indicated that the ET/P is less than 3% for the events and snow-influenced seasons while it is about 18% for the Summer-Autumn season. The subsurface flow contribution to the sewer pipes are markedly higher than the total surface runoff volume for some events and the Summer-Autumn season. The peakiest flow rates correspond to the Winter-Spring season. Therefore, urban runoff simulation for design and management purposes should include two-way interactions between the subsurface runoff and flow in sewer pipes, and snow-influenced seasons. The developed urban P-R model is useful for better computation of runoff generated from different land cover, for assessments of stormwater management techniques (e.g. the Low Impact Development or LID) and the impacts of land cover and climate change. There are some simplifications or limitations such as the runoff routing does not involve detailed sewer hydraulics, effects of leakages from water supply systems and faulty/illegal connections from sanitary sewer are not considered, the model cannot identify actual locations of the interactions between the subsurface runoff and sewer pipes and lacks parsimony.

  4. Turbulent flows over sparse canopies

    NASA Astrophysics Data System (ADS)

    Sharma, Akshath; García-Mayoral, Ricardo

    2018-04-01

    Turbulent flows over sparse and dense canopies exerting a similar drag force on the flow are investigated using Direct Numerical Simulations. The dense canopies are modelled using a homogeneous drag force, while for the sparse canopy, the geometry of the canopy elements is represented. It is found that on using the friction velocity based on the local shear at each height, the streamwise velocity fluctuations and the Reynolds stress within the sparse canopy are similar to those from a comparable smooth-wall case. In addition, when scaled with the local friction velocity, the intensity of the off-wall peak in the streamwise vorticity for sparse canopies also recovers a value similar to a smooth-wall. This indicates that the sparse canopy does not significantly disturb the near-wall turbulence cycle, but causes its rescaling to an intensity consistent with a lower friction velocity within the canopy. In comparison, the dense canopy is found to have a higher damping effect on the turbulent fluctuations. For the case of the sparse canopy, a peak in the spectral energy density of the wall-normal velocity, and Reynolds stress is observed, which may indicate the formation of Kelvin-Helmholtz-like instabilities. It is also found that a sparse canopy is better modelled by a homogeneous drag applied on the mean flow alone, and not the turbulent fluctuations.

  5. Simulations of turbulent asymptotic suction boundary layers

    NASA Astrophysics Data System (ADS)

    Bobke, Alexandra; Örlü, Ramis; Schlatter, Philipp

    2016-02-01

    A series of large-eddy simulations of a turbulent asymptotic suction boundary layer (TASBL) was performed in a periodic domain, on which uniform suction was applied over a flat plate. Three Reynolds numbers (defined as ratio of free-stream and suction velocity) of Re = 333, 400 and 500 and a variety of domain sizes were considered in temporal simulations in order to investigate the turbulence statistics, the importance of the computational domain size, the arising flow structures as well as temporal development length required to achieve the asymptotic state. The effect of these two important parameters was assessed in terms of their influence on integral quantities, mean velocity, Reynolds stresses, higher order statistics, amplitude modulation and spectral maps. While the near-wall region up to the buffer region appears to scale irrespective of Re and domain size, the parameters of the logarithmic law (i.e. von Kármán and additive coefficient) decrease with increasing Re, while the wake strength decreases with increasing spanwise domain size and vanishes entirely once the spanwise domain size exceeds approximately two boundary-layer thicknesses irrespective of Re. The wake strength also reduces with increasing simulation time. The asymptotic state of the TASBL is characterised by surprisingly large friction Reynolds numbers and inherits features of wall turbulence at numerically high Re. Compared to a turbulent boundary layer (TBL) or a channel flow without suction, the components of the Reynolds-stress tensor are overall reduced, but exhibit a logarithmic increase with decreasing suction rates, i.e. increasing Re. At the same time, the anisotropy is increased compared to canonical wall-bounded flows without suction. The reduced amplitudes in turbulence quantities are discussed in light of the amplitude modulation due to the weakened larger outer structures. The inner peak in the spectral maps is shifted to higher wavelength and the strength of the outer peak is much less than for TBLs. An additional spatial simulation was performed, in order to relate the simulation results to wind tunnel experiments, which - in accordance with the results from the temporal simulation - indicate that a truly TASBL is practically impossible to realise in a wind tunnel. Our unique data set agrees qualitatively with existing literature results for both numerical and experimental studies, and at the same time sheds light on the fact why the asymptotic state could not be established in a wind tunnel experiment, viz. because experimental studies resemble our simulation results from too small simulation boxes or insufficient development times.

  6. Performance of a three-dimensional Navier-Stokes code on CYBER 205 for high-speed juncture flows

    NASA Technical Reports Server (NTRS)

    Lakshmanan, B.; Tiwari, S. N.

    1987-01-01

    A vectorized 3D Navier-Stokes code has been implemented on CYBER 205 for solving the supersonic laminar flow over a swept fin/flat plate junction. The code extends MacCormack's predictor-corrector finite volume scheme to a generalized coordinate system in a locally one dimensional time split fashion. A systematic parametric study is conducted to examine the effect of fin sweep on the computed flow field. Calculated results for the pressure distribution on the flat plate and fin leading edge are compared with the experimental measurements of a right angle blunt fin/flat plate junction. The decrease in the extent of the separated flow region and peak pressure on the fin leading edge, and weakening of the two reversed supersonic zones with increase in fin sweep have been clearly observed in the numerical simulation.

  7. Breakthrough dynamics of s-metolachlor metabolites in drinking water wells: Transport pathways and time to trend reversal

    NASA Astrophysics Data System (ADS)

    Farlin, Julien; Gallé, Tom; Bayerle, Michael; Pittois, Denis; Köppchen, Stephan; Krause, Martina; Hofmann, Diana

    2018-06-01

    We present the results of a two years study on the contamination of the Luxembourg Sandstone aquifer by metolachlor-ESA and metolachlor-OXA, two major transformation products of s-metolachlor. The aim of the study was twofold: (i) assess whether elevated concentrations of both transformation products (up to 1000 ng/l) were due to fast flow breakthough events of short duration or the signs of a contamination of the entire aquifer and (ii) estimate the time to trend reversal once the parent compound was withdrawn from the market. These two questions were addressed by a combined use of groundwater monitoring, laboratory experiments and numerical simulations of the fate of the degradation products in the subsurface. Twelve springs were sampled weekly over an eighteen month period, and the degradation rates of both the parent compound and its transformation products were measured on a representative soil in the laboratory using a radiolabeled precursor. Modelling with the numeric code PEARL simulating pesticide fate in soil coupled to a simple transfer function model for the aquifer compartment, and calibrated from the field and laboratory data, predicts a significant damping by the aquifer of the peaks of concentration of both metolachlor-ESA and -OXA leached from the soil. The time to trend reversal following the ban of s-metolachlor in spring protection zones should be observed before the end of the decade, while the return of contaminant concentrations below the drinking water limit of 100 ng/l however is expected to last up to twelve years. The calculated contribution to total water discharge of the fast-flow component from cropland and short-circuiting the aquifer was small in most springs (median of 1.2%), but sufficient to cause additional peaks of concentration of several hundred nanograms per litre in spring water. These peaks are superimposed on the more steady contamination sustained by the base flow, and should cease immediately once application of the parent compound stops.

  8. Recurrence rate and magma effusion rate for the latest volcanism on Arsia Mons, Mars

    NASA Astrophysics Data System (ADS)

    Richardson, Jacob A.; Wilson, James A.; Connor, Charles B.; Bleacher, Jacob E.; Kiyosugi, Koji

    2017-01-01

    Magmatism and volcanism have evolved the Martian lithosphere, surface, and climate throughout the history of Mars. Constraining the rates of magma generation and timing of volcanism on the surface clarifies the ways in which magma and volcanic activity have shaped these Martian systems. The ages of lava flows on other planets are often estimated using impact crater counts, assuming that the number and size-distribution of impact craters per unit area reflect the time the lava flow has been on the surface and exposed to potential impacts. Here we show that impact crater age model uncertainty is reduced by adding stratigraphic information observed at locations where neighboring lavas abut each other, and demonstrate the significance of this reduction in age uncertainty for understanding the history of a volcanic field comprising 29 vents in the 110-km-diameter caldera of Arsia Mons, Mars. Each vent within this caldera produced lava flows several to tens of kilometers in length; these vents are likely among the youngest on Mars, since no impact craters in their lava flows are larger than 1 km in diameter. First, we modeled the age of each vent with impact crater counts performed on their corresponding lava flows and found very large age uncertainties for the ages of individual vents, often spanning the estimated age for the entire volcanic field. The age model derived from impact crater counts alone is broad and unimodal, with estimated peak activity in the field around 130 Ma. Next we applied our volcano event age model (VEAM), which uses a directed graph of stratigraphic relationships and random sampling of the impact crater age determinations to create alternative age models. Monte Carlo simulation was used to create 10,000 possible vent age sets. The recurrence rate of volcanism is calculated for each possible age set, and these rates are combined to calculate the median recurrence rate of all simulations. Applying this approach to the 29 volcanic vents, volcanism likely began around 200-300 Ma then first peaked around 150 Ma, with an average production rate of 0.4 vents per Myr. The recurrence rate estimated including stratigraphic data is distinctly bimodal, with a second, lower peak in activity around 100 Ma. Volcanism then waned until the final vents were produced 10-90 Ma. Based on this model, volume flux is also bimodal, reached a peak rate of 1-8 km3 Myr-1 by 150 Ma and remained above half this rate until about 90 Ma, after which the volume flux diminished greatly. The onset of effusive volcanism from 200-150 Ma might be due to a transition of volcanic style away from explosive volcanism that emplaced tephra on the western flank of Arsia Mons, while the waning of volcanism after the 150 Ma peak might represent a larger-scale diminishing of volcanic activity at Arsia Mons related to the emplacement of flank apron lavas.

  9. Recurrence Rate and Magma Effusion Rate for the Latest Volcanism on Arsia Mons, Mars

    NASA Technical Reports Server (NTRS)

    Richardson, Jacob A.; Wilson, James A.; Connor, Charles B.; Bleacher, Jacob E.; Kiyosugi, Koji

    2016-01-01

    Magmatism and volcanism have evolved the Martian lithosphere, surface, and climate throughout the history of Mars. Constraining the rates of magma generation and timing of volcanism on the surface clarifies the ways in which magma and volcanic activity have shaped these Martian systems. The ages of lava flows on other planets are often estimated using impact crater counts, assuming that the number and size-distribution of impact craters per unit area reflect the time the lava flow has been on the surface and exposed to potential impacts. Here we show that impact crater age model uncertainty is reduced by adding stratigraphic information observed at locations where neighboring lavas abut each other, and demonstrate the significance of this reduction in age uncertainty for understanding the history of a volcanic field comprising 29 vents in the 110-kilometer-diameter caldera of Arsia Mons, Mars. Each vent within this caldera produced lava flows several to tens of kilometers in length; these vents are likely among the youngest on Mars, since no impact craters in their lava flows are larger than 1 kilometer in diameter. First, we modeled the age of each vent with impact crater counts performed on their corresponding lava flows and found very large age uncertainties for the ages of individual vents, often spanning the estimated age for the entire volcanic field. The age model derived from impact crater counts alone is broad and unimodal, with estimated peak activity in the field around 130Ma (megaannum, 1 million years). Next we applied our volcano event age model (VEAM), which uses a directed graph of stratigraphic relationships and random sampling of the impact crater age determinations to create alternative age models. Monte Carlo simulation was used to create 10,000 possible vent age sets. The recurrence rate of volcanism is calculated for each possible age set, and these rates are combined to calculate the median recurrence rate of all simulations. Applying this approach to the 29 volcanic vents, volcanism likely began around 200-300Ma then first peaked around 150Ma, with an average production rate of 0.4 vents per Myr (million years). The recurrence rate estimated including stratigraphic data is distinctly bimodal, with a second, lower peak in activity around 100Ma. Volcanism then waned until the final vents were produced 10-90Ma. Based on this model, volume flux is also bimodal, reached a peak rate of 1-8 cubic kilometers per million years by 150Ma and remained above half this rate until about 90Ma, after which the volume flux diminished greatly. The onset of effusive volcanism from 200-150Ma might be due to a transition of volcanic style away from explosive volcanism that emplaced tephra on the western flank of Arsia Mons, while the waning of volcanism after the 150Ma peak might represent a larger-scale diminishing of volcanic activity at Arsia Mons related to the emplacement of flank apron lavas.

  10. Predicting Peak Flows following Forest Fires

    NASA Astrophysics Data System (ADS)

    Elliot, William J.; Miller, Mary Ellen; Dobre, Mariana

    2016-04-01

    Following forest fires, peak flows in perennial and ephemeral streams often increase by a factor of 10 or more. This increase in peak flow rate may overwhelm existing downstream structures, such as road culverts, causing serious damage to road fills at stream crossings. In order to predict peak flow rates following wildfires, we have applied two different tools. One is based on the U.S.D.A Natural Resource Conservation Service Curve Number Method (CN), and the other is by applying the Water Erosion Prediction Project (WEPP) to the watershed. In our presentation, we will describe the science behind the two methods, and present the main variables for each model. We will then provide an example of a comparison of the two methods to a fire-prone watershed upstream of the City of Flagstaff, Arizona, USA, where a fire spread model was applied for current fuel loads, and for likely fuel loads following a fuel reduction treatment. When applying the curve number method, determining the time to peak flow can be problematic for low severity fires because the runoff flow paths are both surface and through shallow lateral flow. The WEPP watershed version incorporates shallow lateral flow into stream channels. However, the version of the WEPP model that was used for this study did not have channel routing capabilities, but rather relied on regression relationships to estimate peak flows from individual hillslope polygon peak runoff rates. We found that the two methods gave similar results if applied correctly, with the WEPP predictions somewhat greater than the CN predictions. Later releases of the WEPP model have incorporated alternative methods for routing peak flows that need to be evaluated.

  11. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi, E-mail: matsu@hosei.ac.jp

    2015-03-10

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence ismore » weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.« less

  12. Modelling of fluid flow phenomenon in laser+GMAW hybrid welding of aluminum alloy considering three phase coupling and arc plasma shear stress

    NASA Astrophysics Data System (ADS)

    Xu, Guoxiang; Li, Pengfei; Cao, Qingnan; Hu, Qingxian; Gu, Xiaoyan; Du, Baoshuai

    2018-03-01

    The present study aims to develop a unified three dimensional numerical model for fiber laser+GMAW hybrid welding, which is used to study the fluid flow phenomena in hybrid welding of aluminum alloy and the influence of laser power on weld pool dynamic behavior. This model takes into account the coupling of gas, liquid and metal phases. Laser heat input is described using a cone heat source model with changing peak power density, its height being determined based on the keyhole size. Arc heat input is modeled as a double ellipsoid heat source. The arc plasma flow and droplet transfer are simulated through the two simplified models. The temperature and velocity fields for different laser powers are calculated. The computed results are in general agreement with the experimental data. Both the peak and average values of fluid flow velocity during hybrid welding are much higher than those of GMAW. At a low level of laser power, both the arc force and droplet impingement force play a relatively large role on fluid flow in the hybrid welding. Keyhole depth always oscillates within a range. With an increase in laser power, the weld pool behavior becomes more complex. An anti-clockwise vortex is generated and the stability of keyhole depth is improved. Besides, the effects of laser power on different driving forces of fluid flow in weld pool are also discussed.

  13. The predictive power of SIMION/SDS simulation software for modeling ion mobility spectrometry instruments

    NASA Astrophysics Data System (ADS)

    Lai, Hanh; McJunkin, Timothy R.; Miller, Carla J.; Scott, Jill R.; Almirall, José R.

    2008-09-01

    The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOSFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene, 2,7-dinitrofluorene, and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: (1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctly predict the ion drift times; (2) a drift gas composition study evaluates the accuracy in predicting the resolution; (3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.

  14. The Predictive Power of SIMION/SDS Simulation Software for Modeling Ion Mobility Spectrometry Instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanh Lai; Timothy R. McJunkin; Carla J. Miller

    2008-09-01

    The combined use of SIMION 7.0 and the statistical diffusion simulation (SDS) user program in conjunction with SolidWorks® with COSMSOFloWorks® fluid dynamics software to model a complete, commercial ion mobility spectrometer (IMS) was demonstrated for the first time and compared to experimental results for tests using compounds of immediate interest in the security industry (e.g., 2,4,6-trinitrotoluene and cocaine). The effort of this research was to evaluate the predictive power of SIMION/SDS for application to IMS instruments. The simulation was evaluated against experimental results in three studies: 1) a drift:carrier gas flow rates study assesses the ability of SIMION/SDS to correctlymore » predict the ion drift times; 2) a drift gas composition study evaluates the accuracy in predicting the resolution; and 3) a gate width study compares the simulated peak shape and peak intensity with the experimental values. SIMION/SDS successfully predicted the correct drift time, intensity, and resolution trends for the operating parameters studied. Despite the need for estimations and assumptions in the construction of the simulated instrument, SIMION/SDS was able to predict the resolution between two ion species in air within 3% accuracy. The preliminary success of IMS simulations using SIMION/SDS software holds great promise for the design of future instruments with enhanced performance.« less

  15. Amplification of postwildfire peak flow by debris

    NASA Astrophysics Data System (ADS)

    Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.

    2016-08-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  16. Amplification of postwildfire peak flow by debris

    USGS Publications Warehouse

    Kean, Jason W.; McGuire, Luke; Rengers, Francis K.; Smith, Joel B.; Staley, Dennis M.

    2016-01-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  17. A Novel Topology Link-Controlling Approach for Active Defense of a Node in a Network.

    PubMed

    Li, Jun; Hu, HanPing; Ke, Qiao; Xiong, Naixue

    2017-03-09

    With the rapid development of virtual machine technology and cloud computing, distributed denial of service (DDoS) attacks, or some peak traffic, poses a great threat to the security of the network. In this paper, a novel topology link control technique and mitigation attacks in real-time environments is proposed. Firstly, a non-invasive method of deploying virtual sensors in the nodes is built, which uses the resource manager of each monitored node as a sensor. Secondly, a general topology-controlling approach of resisting the tolerant invasion is proposed. In the proposed approach, a prediction model is constructed by using copula functions for predicting the peak of a resource through another resource. The result of prediction determines whether or not to initiate the active defense. Finally, a minority game with incomplete strategy is employed to suppress attack flows and improve the permeability of the normal flows. The simulation results show that the proposed approach is very effective in protecting nodes.

  18. Hot deformation constitutive equation and processing map of Alloy 690

    NASA Astrophysics Data System (ADS)

    Feng, Han; Zhang, Songchuang; Ma, Mingjuan; Song, Zhigang

    The hot deformation behavior of alloy 690 was studied in the temperature range of 800-1300 C and strain rate range of 0.1-10 s-1 by hot compression tests in a Gleeble 1500+ thermal mechanical simulator. The results indicated that flow stress of alloy 690 is sensitive to deformation temperature and strain rate and peak stress increases with decreasing of temperature and increasing of strain rate. In addition, the hot deformation parameters of deformation activation were calculated and the apparent activation energy of this alloy is about 300 kJ/mol. The constitutive equation which can be used to relate peak stress to the absolute temperature and strain rate was obtained. It's further found that the processing maps exhibited two domains which are considered as the optimum windows for hot working. The microstructure observations of the specimens deformed in this domain showed the full dynamic recrystallization (DRX) structure. There was a flow instability domain in the processing map where hot working should be avoided.

  19. Saturation of a toroidal Alfvén eigenmode due to enhanced damping of nonlinear sidebands

    NASA Astrophysics Data System (ADS)

    Todo, Y.; Berk, H. L.; Breizman, B. N.

    2012-09-01

    This paper examines nonlinear magneto-hydrodynamic effects on the energetic particle driven toroidal Alfvén eigenmode (TAE) for lower dissipation coefficients and with higher numerical resolution than in the previous simulations (Todo et al 2010 Nucl. Fusion 50 084016). The investigation is focused on a TAE mode with toroidal mode number n = 4. It is demonstrated that the mechanism of mode saturation involves generation of zonal (n = 0) and higher-n (n ⩾ 8) sidebands, and that the sidebands effectively increase the mode damping rate via continuum damping. The n = 0 sideband includes the zonal flow peaks at the TAE gap locations. It is also found that the n = 0 poloidal flow represents a balance between the nonlinear driving force from the n = 4 components and the equilibrium plasma response to the n = 0 fluctuations. The spatial profile of the n = 8 sideband peaks at the n = 8 Alfvén continuum, indicating enhanced dissipation due to continuum damping.

  20. A Novel Topology Link-Controlling Approach for Active Defense of Nodes in Networks

    PubMed Central

    Li, Jun; Hu, HanPing; Ke, Qiao; Xiong, Naixue

    2017-01-01

    With the rapid development of virtual machine technology and cloud computing, distributed denial of service (DDoS) attacks, or some peak traffic, poses a great threat to the security of the network. In this paper, a novel topology link control technique and mitigation attacks in real-time environments is proposed. Firstly, a non-invasive method of deploying virtual sensors in the nodes is built, which uses the resource manager of each monitored node as a sensor. Secondly, a general topology-controlling approach of resisting the tolerant invasion is proposed. In the proposed approach, a prediction model is constructed by using copula functions for predicting the peak of a resource through another resource. The result of prediction determines whether or not to initiate the active defense. Finally, a minority game with incomplete strategy is employed to suppress attack flows and improve the permeability of the normal flows. The simulation results show that the proposed approach is very effective in protecting nodes. PMID:28282962

  1. Methods and results of peak-flow frequency analyses for streamgages in and bordering Minnesota, through water year 2011

    USGS Publications Warehouse

    Kessler, Erich W.; Lorenz, David L.; Sanocki, Christopher A.

    2013-01-01

    Peak-flow frequency analyses were completed for 409 streamgages in and bordering Minnesota having at least 10 systematic peak flows through water year 2011. Selected annual exceedance probabilities were determined by fitting a log-Pearson type III probability distribution to the recorded annual peak flows. A detailed explanation of the methods that were used to determine the annual exceedance probabilities, the historical period, acceptable low outliers, and analysis method for each streamgage are presented. The final results of the analyses are presented.

  2. Peak-flow frequency analyses and results based on data through water year 2011 for selected streamflow-gaging stations in or near Montana: Chapter C in Montana StreamStats

    USGS Publications Warehouse

    Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.

    2016-04-05

    Chapter C of this Scientific Investigations Report documents results from a study by the U.S. Geological Survey, in cooperation with the Montana Department of Transportation and the Montana Department of Natural Resources, to provide an update of statewide peak-flow frequency analyses and results for Montana. The purpose of this report chapter is to present peak-flow frequency analyses and results for 725 streamflow-gaging stations in or near Montana based on data through water year 2011. The 725 streamflow-gaging stations included in this study represent nearly all streamflowgaging stations in Montana (plus some from adjacent states or Canadian Provinces) that have at least 10 years of peak-flow records through water year 2011. For 29 of the 725 streamflow-gaging stations, peak-flow frequency analyses and results are reported for both unregulated and regulated conditions. Thus, peak-flow frequency analyses and results are reported for a total of 754 analyses. Estimates of peak-flow magnitudes for 66.7-, 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities are reported. These annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals.

  3. Numerical simulation of the compressible Orszag-Tang vortex 2. Supersonic flow

    NASA Technical Reports Server (NTRS)

    Picone, J. M.; Dahlburg, Russell B.

    1990-01-01

    The numerical investigation of the Orszag-Tang vortex system in compressible magnetofluids will consider initial conditions with embedded supersonic regions. The simulations have initial average Mach numbers 1.0 and 1.5 and beta 10/3 with Lundquist numbers 50, 100, or 200. The behavior of the system differs significantly from that found previously for the incompressible and subsonic analogs. Shocks form at the downstream boundaries of the embedded supersonic regions outside the central magnetic X-point and produce strong local current sheets which dissipate appreciable magnetic energy. Reconnection at the central X-point, which dominates the incompressible and subsonic systems, peaks later and has a smaller impact as M increases from 0.6 to 1.5. Similarly, correlation between the momentum and magnetic field begins significant growth later than in subsonic and incompressible flows. The shocks bound large compression regions, which dominate the wavenumber spectra of autocorrelations in mass density, velocity, and magnetic field.

  4. Paramagnetic particles and mixing in micro-scale flows.

    PubMed

    Calhoun, R; Yadav, A; Phelan, P; Vuppu, A; Garcia, A; Hayes, M

    2006-02-01

    Mixing in microscale flows with rotating chains of paramagnetic particles can be enhanced by adjusting the ratio of viscous to magnetic forces so that chains dynamically break and reform. Lattice Boltzmann (LB) simulations were used to calculate the interaction between the fluid and suspended paramagnetic particles under the influence of a rotating magnetic field. Fluid velocities obtained from the LB simulations are used to solve the advection diffusion equation for massless tracer particles. At relatively high Mason numbers, small chains result in low edge velocities, and hence mixing is slower than at other Mason numbers. At low Mason numbers, long, stable chains form and produce little mixing toward the center of the chains. A peak in mixing rate is observed when chains break and reform. The uniformity of mixing is greater at higher Mason numbers because more small chains result in a larger number of small mixing areas.

  5. Comparison of 4D Phase-Contrast MRI Flow Measurements to Computational Fluid Dynamics Simulations of Cerebrospinal Fluid Motion in the Cervical Spine

    PubMed Central

    Yiallourou, Theresia I.; Kröger, Jan Robert; Stergiopulos, Nikolaos; Maintz, David

    2012-01-01

    Cerebrospinal fluid (CSF) dynamics in the cervical spinal subarachnoid space (SSS) have been thought to be important to help diagnose and assess craniospinal disorders such as Chiari I malformation (CM). In this study we obtained time-resolved three directional velocity encoded phase-contrast MRI (4D PC MRI) in three healthy volunteers and four CM patients and compared the 4D PC MRI measurements to subject-specific 3D computational fluid dynamics (CFD) simulations. The CFD simulations considered the geometry to be rigid-walled and did not include small anatomical structures such as nerve roots, denticulate ligaments and arachnoid trabeculae. Results were compared at nine axial planes along the cervical SSS in terms of peak CSF velocities in both the cranial and caudal direction and visual interpretation of thru-plane velocity profiles. 4D PC MRI peak CSF velocities were consistently greater than the CFD peak velocities and these differences were more pronounced in CM patients than in healthy subjects. In the upper cervical SSS of CM patients the 4D PC MRI quantified stronger fluid jets than the CFD. Visual interpretation of the 4D PC MRI thru-plane velocity profiles showed greater pulsatile movement of CSF in the anterior SSS in comparison to the posterior and reduction in local CSF velocities near nerve roots. CFD velocity profiles were relatively uniform around the spinal cord for all subjects. This study represents the first comparison of 4D PC MRI measurements to CFD of CSF flow in the cervical SSS. The results highlight the utility of 4D PC MRI for evaluation of complex CSF dynamics and the need for improvement of CFD methodology. Future studies are needed to investigate whether integration of fine anatomical structures and gross motion of the brain and/or spinal cord into the computational model will lead to a better agreement between the two techniques. PMID:23284970

  6. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge.

    PubMed

    Steinman, David A; Hoi, Yiemeng; Fahy, Paul; Morris, Liam; Walsh, Michael T; Aristokleous, Nicolas; Anayiotos, Andreas S; Papaharilaou, Yannis; Arzani, Amirhossein; Shadden, Shawn C; Berg, Philipp; Janiga, Gábor; Bols, Joris; Segers, Patrick; Bressloff, Neil W; Cibis, Merih; Gijsen, Frank H; Cito, Salvatore; Pallarés, Jordi; Browne, Leonard D; Costelloe, Jennifer A; Lynch, Adrian G; Degroote, Joris; Vierendeels, Jan; Fu, Wenyu; Qiao, Aike; Hodis, Simona; Kallmes, David F; Kalsi, Hardeep; Long, Quan; Kheyfets, Vitaly O; Finol, Ender A; Kono, Kenichi; Malek, Adel M; Lauric, Alexandra; Menon, Prahlad G; Pekkan, Kerem; Esmaily Moghadam, Mahdi; Marsden, Alison L; Oshima, Marie; Katagiri, Kengo; Peiffer, Véronique; Mohamied, Yumnah; Sherwin, Spencer J; Schaller, Jens; Goubergrits, Leonid; Usera, Gabriel; Mendina, Mariana; Valen-Sendstad, Kristian; Habets, Damiaan F; Xiang, Jianping; Meng, Hui; Yu, Yue; Karniadakis, George E; Shaffer, Nicholas; Loth, Francis

    2013-02-01

    Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.

  7. River analysis and floodplain modeling using HEC-GeoRAS/RAS, GIS and ArcGIS: a case study for the Salinas River

    NASA Astrophysics Data System (ADS)

    Mishra, P. K.; Bernini Campos, H. E.

    2016-12-01

    The lower portion of the Salinas River in Monterey bay, California has a history of flood, lots of study has been made ab out the water quality since the river provides water for the crops around, but is still in need a detailed study about the river behavior and flood analysis. The floods did significant damage, affecting valuable landing farms, residences and businesses in Monterey County. The first step for this study is comprehend and collect the river bathymetry and surroundings and then analyze the discharge and how it is going to change with time. This thesis develops a model about the specific site, recruiting real data from GIS and performing a flow simulation according to flow data provided by USGS, to verify water surface elevation and floodplain. The ArcMap, developed by ESRI, was used along with an extension (HEC-GeoRAS) because it was indeed the most appropriate model to work with the Digital Elevation Model, develop the floodplain and characterizing the land surface accurately in the study site. The HEC-RAS software, developed by US Army Corp of Engineers, was used to compute one-dimension steady flow and two-dimension unsteady flow, providing flow velocity, water surface elevation and profiles, total surface area, head and friction loss and other characteristics, allowing the analysis of the flow. A mean discharge, a mean peak streamflow and a peak discharge were used for the steady flow and a Hydrograph was used for the unsteady flow, both are based on the 1995 flood and discharge history. This study provides important information about water surface elevation and water flow, allowing stakeholders and the government to analyze solutions to avoid damage to the society and landowners.

  8. Computational Fluid Dynamics simulations of the Late Pleistocene Lake Bonneville Flood

    NASA Astrophysics Data System (ADS)

    Abril-Hernández, José M.; Periáñez, Raúl; O'Connor, Jim E.; Garcia-Castellanos, Daniel

    2018-06-01

    At approximately 18.0 ka, pluvial Lake Bonneville reached its maximum level. At its northeastern extent it was impounded by alluvium of the Marsh Creek Fan, which breached at some point north of Red Rock Pass (Idaho), leading to one of the largest floods on Earth. About 5320 km3 of water was discharged into the Snake River drainage and ultimately into the Columbia River. We use a 0D model and a 2D non-linear depth-averaged hydrodynamic model to aid understanding of outflow dynamics, specifically evaluating controls on the amount of water exiting the Lake Bonneville basin exerted by the Red Rock Pass outlet lithology and geometry as well as those imposed by the internal lake geometry of the Bonneville basin. These models are based on field evidence of prominent lake levels, hypsometry and terrain elevations corrected for post-flood isostatic deformation of the lake basin, as well as reconstructions of the topography at the outlet for both the initial and final stages of the flood. Internal flow dynamics in the northern Lake Bonneville basin during the flood were affected by the narrow passages separating the Cache Valley from the main body of Lake Bonneville. This constriction imposed a water-level drop of up to 2.7 m at the time of peak-flow conditions and likely reduced the peak discharge at the lake outlet by about 6%. The modeled peak outlet flow is 0.85·106 m3 s-1. Energy balance calculations give an estimate for the erodibility coefficient for the alluvial Marsh Creek divide of ∼0.005 m y-1 Pa-1.5, at least two orders of magnitude greater than for the underlying bedrock at the outlet. Computing quasi steady-state water flows, water elevations, water currents and shear stresses as a function of the water-level drop in the lake and for the sequential stages of erosion in the outlet gives estimates of the incision rates and an estimate of the outflow hydrograph during the Bonneville Flood: About 18 days would have been required for the outflow to grow from 10% to 100% of its peak value. At the time of peak flow, about 10% of the lake volume would have already exited; eroding about 1 km3 of alluvium from the outlet, and the lake level would have dropped by about 10.6 m.

  9. Methods for peak-flow frequency analysis and reporting for streamgages in or near Montana based on data through water year 2015

    USGS Publications Warehouse

    Sando, Steven K.; McCarthy, Peter M.

    2018-05-10

    This report documents the methods for peak-flow frequency (hereinafter “frequency”) analysis and reporting for streamgages in and near Montana following implementation of the Bulletin 17C guidelines. The methods are used to provide estimates of peak-flow quantiles for 50-, 42.9-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for selected streamgages operated by the U.S. Geological Survey Wyoming-Montana Water Science Center (WY–MT WSC). These annual exceedance probabilities correspond to 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Standard procedures specific to the WY–MT WSC for implementing the Bulletin 17C guidelines include (1) the use of the Expected Moments Algorithm analysis for fitting the log-Pearson Type III distribution, incorporating historical information where applicable; (2) the use of weighted skew coefficients (based on weighting at-site station skew coefficients with generalized skew coefficients from the Bulletin 17B national skew map); and (3) the use of the Multiple Grubbs-Beck Test for identifying potentially influential low flows. For some streamgages, the peak-flow records are not well represented by the standard procedures and require user-specified adjustments informed by hydrologic judgement. The specific characteristics of peak-flow records addressed by the informed-user adjustments include (1) regulated peak-flow records, (2) atypical upper-tail peak-flow records, and (3) atypical lower-tail peak-flow records. In all cases, the informed-user adjustments use the Expected Moments Algorithm fit of the log-Pearson Type III distribution using the at-site station skew coefficient, a manual potentially influential low flow threshold, or both.Appropriate methods can be applied to at-site frequency estimates to provide improved representation of long-term hydroclimatic conditions. The methods for improving at-site frequency estimates by weighting with regional regression equations and by Maintenance of Variance Extension Type III record extension are described.Frequency analyses were conducted for 99 example streamgages to indicate various aspects of the frequency-analysis methods described in this report. The frequency analyses and results for the example streamgages are presented in a separate data release associated with this report consisting of tables and graphical plots that are structured to include information concerning the interpretive decisions involved in the frequency analyses. Further, the separate data release includes the input files to the PeakFQ program, version 7.1, including the peak-flow data file and the analysis specification file that were used in the peak-flow frequency analyses. Peak-flow frequencies are also reported in separate data releases for selected streamgages in the Beaverhead River and Clark Fork Basins and also for selected streamgages in the Ruby, Jefferson, and Madison River Basins.

  10. Morphodynamic simulation of sediment deposition patterns on a recently stripped bedrock anastomosed channel

    NASA Astrophysics Data System (ADS)

    Milan, David; Heritage, George; Entwistle, Neil; Tooth, Stephen

    2018-04-01

    Some mixed bedrock-alluvial dryland rivers are known to undergo cycles of alluvial building during low flow periods, punctuated by stripping events during rare high magnitude flows. We focus on the Olifants River, Kruger National Park, South Africa, and present 2-D morphodynamic simulations of hydraulics and sediment deposition patterns over an exposed bedrock anastomosed pavement. We examine the assumptions underlying a previous conceptual model, namely that sedimentation occurs preferentially on bedrock highs. Our modelling results and local field observations in fact show that sediment thicknesses are greater over bedrock lows, suggesting these are the key loci for deposition, barform initiation and island building. During peak flows, velocities in the topographic lows tend to be lower than in intermediate topographic areas. It is likely that intermediate topographic areas supply sediment to the topographic lows at this flow stage, which is then deposited in the lows on the falling limb of the hydrograph as velocities reduce. Subsequent vegetation establishment on deposits in the topographic lows is likely to play a key role in additional sedimentation and vegetation succession, both through increasing the cohesive strength of alluvial units and by capturing new sediments and propagules.

  11. High-resolution CFD detects high-frequency velocity fluctuations in bifurcation, but not sidewall, aneurysms.

    PubMed

    Valen-Sendstad, Kristian; Mardal, Kent-André; Steinman, David A

    2013-01-18

    High-frequency flow fluctuations in intracranial aneurysms have previously been reported in vitro and in vivo. On the other hand, the vast majority of image-based computational fluid dynamics (CFD) studies of cerebral aneurysms report periodic, laminar flow. We have previously demonstrated that transitional flow, consistent with in vivo reports, can occur in a middle cerebral artery (MCA) bifurcation aneurysm when ultra-high-resolution direct numerical simulation methods are applied. The object of the present study was to investigate if such high-frequency flow fluctuations might be more widespread in adequately-resolved CFD models. A sample of N=12 anatomically realistic MCA aneurysms (five unruptured, seven ruptured), was digitally segmented from CT angiograms. Four were classified as sidewall aneurysms, the other eight as bifurcation aneurysms. Transient CFD simulations were carried out assuming a steady inflow velocity of 0.5m/s, corresponding to typical peak systolic conditions at the MCA. To allow for detection of clinically-reported high-frequency flow fluctuations and resulting flow structures, temporal and spatial resolutions of the CFD simulations were in the order of 0.1 ms and 0.1 mm, respectively. A transient flow response to the stationary inflow conditions was found in five of the 12 aneurysms, with energetic fluctuations up to 100 Hz, and in one case up to 900 Hz. Incidentally, all five were ruptured bifurcation aneurysms, whereas all four sidewall aneurysms, including one ruptured case, quickly reached a stable, steady state solution. Energetic, rapid fluctuations may be overlooked in CFD models of bifurcation aneurysms unless adequate temporal and spatial resolutions are used. Such fluctuations may be relevant to the mechanobiology of aneurysm rupture, and to a recently reported dichotomy between predictors of rupture likelihood for bifurcation vs. sidewall aneurysms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Chaos in a spatially-developing plane mixing layer

    NASA Technical Reports Server (NTRS)

    Broze, J. G.; Hussain, Fazle; Buell, J. C.

    1988-01-01

    A spatially-developing plane mixing layer was analyzed for chaotic behavior. A direct numerical simulation of the Navier-Stokes equations in a 2-D domain infinite in y and having inflow-outflow boundary conditions in x was used for data. Spectra, correlation dimension and the largest Lyapunov exponent were computed as functions of downstream distance x. When forced at a single (fundamental) frequency with maximum amplitude, the flow is periodic at the inflow but becomes aperiodic with increasing x. The aperiodic behavior is caused by the presence of a noisy subharmonic caused by the feedback between the necessarily nonphysical inflow and outflow boundary conditions. In order to overshadow this noise the flow was also studied with the same fundamental forcing and added random forcing of amplitude upsilon prime sub R/delta U = 0.01 at the inlet. Results were qualitatively the same in both cases: for small x, spectral peaks were sharp and dimension was nearly 1, but as x increased a narrowband spectral peak grew, spectra decayed exponentially at high frequencies and dimension increased to greater than 3. Based on these results, the flow appears to exhibit deterministic chaos. However, at no location was the largest Lyapunov exponent found to be significantly greater than zero.

  13. RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.15)

    USGS Publications Warehouse

    Long, Andrew J.

    2015-01-01

    The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, spring flow, groundwater level, or solute transport for a measurement point in response to a system input of precipitation, recharge, or solute injection. I introduce the first version of RRAWFLOW available for download and public use and describe additional options. The open-source code is written in the R language and is available at http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html along with an example model of streamflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution, i.e., the unit-hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Several options are included to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications (e.g., estimating missing periods in a hydrologic record). RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.

  14. Plane-wave transverse oscillation for high-frame-rate 2-D vector flow imaging.

    PubMed

    Lenge, Matteo; Ramalli, Alessandro; Tortoli, Piero; Cachard, Christian; Liebgott, Hervé

    2015-12-01

    Transverse oscillation (TO) methods introduce oscillations in the pulse-echo field (PEF) along the direction transverse to the ultrasound propagation direction. This may be exploited to extend flow investigations toward multidimensional estimates. In this paper, the TOs are coupled with the transmission of plane waves (PWs) to reconstruct high-framerate RF images with bidirectional oscillations in the pulse-echo field. Such RF images are then processed by a 2-D phase-based displacement estimator to produce 2-D vector flow maps at thousands of frames per second. First, the capability of generating TOs after PW transmissions was thoroughly investigated by varying the lateral wavelength, the burst length, and the transmission frequency. Over the entire region of interest, the generated lateral wavelengths, compared with the designed ones, presented bias and standard deviation of -3.3 ± 5.7% and 10.6 ± 7.4% in simulations and experiments, respectively. The performance of the ultrafast vector flow mapping method was also assessed by evaluating the differences between the estimated velocities and the expected ones. Both simulations and experiments show overall biases lower than 20% when varying the beam-to-flow angle, the peak velocity, and the depth of interest. In vivo applications of the method on the common carotid and the brachial arteries are also presented.

  15. Simulation of three lahars in the Mount St Helens area, Washington using a one-dimensional, unsteady-state streamflow model

    USGS Publications Warehouse

    Laenen, Antonius; Hansen, R.P.

    1988-01-01

    A one-dimensional, unsteady-state, open-channel model was used to analytically reproduce three lahar events. Factors contributing to the success of the modeling were: (1) the lahars were confined to a channel, (2) channel roughness was defined by field information, and (3) the volume of the flow remained relatively unchanged for the duration of the peak. Manning 's 'n ' values used in computing conveyance in the model were subject to the changing rheology of the debris flow and were calculated from field cross-section information (velocities used in these calculations were derived from super-elevation or run-up formulas). For the events modeled in this exercise, Manning 's 'n ' calculations ranged from 0.020 to 0.099. In all lahar simulations, the rheology of the flow changed in a downstream direction during the course of the event. Chen 's 'U ', the mudflow consistency index, changed approximately an order of magnitude for each event. The ' u ' values ranged from 5-2,260 kg/m for three events modeled. The empirical approach adopted in this paper is useful as a tool to help predict debris-flow behavior, but does not lead to understanding the physical processes of debris flows. (Author 's abstract)

  16. Simulation of the Shallow Ground-Water-Flow System near Grindstone Creek and the Community of New Post, Sawyer County, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.; Hunt, Randall J.

    2007-01-01

    A two-dimensional, steady-state ground-water-flow model of Grindstone Creek, the New Post community, and the surrounding areas was developed using the analytic element computer code GFLOW. The parameter estimation code UCODE was used to obtain a best fit of the model to measured water levels and streamflows. The calibrated model was then used to simulate the effect of ground-water pumping on base flow in Grindstone Creek. Local refinements to the regional model were subsequently added in the New Post area, and local water-level data were used to evaluate the regional model calibration. The locally refined New Post model was also used to simulate the areal extent of capture for two existing water-supply wells and two possible replacement wells. Calibration of the regional Grindstone Creek simulation resulted in horizontal hydraulic conductivity values of 58.2 feet per day (ft/d) for the regional glacial and sandstone aquifer and 7.9 ft/d for glacial thrust-mass areas. Ground-water recharge in the calibrated regional model was 10.1 inches per year. Simulation of a golf-course irrigation well, located roughly 4,000 feet away from the creek, and pumping at 46 gallons per minute (0.10 cubic feet per second, ft3/s), reduced base flow in Grindstone Creek by 0.05 ft3/s, or 0.6 percent of the median base flow during water year 2003, compared to the calibrated model simulation without pumping. A simulation of peak pumping periods (347 gallons per minute or 0.77 ft3/s) reduced base flow in Grindstone Creek by 0.4 ft3/s (4.9 percent of the median base flow). Capture zones for existing and possible replacement wells delineated by the local New Post simulation extend from the well locations to an area south of the pumping well locations. Shallow crystalline bedrock, generally located south of the community, limits the extent of the aquifer and thus the southerly extent of the capture zones. Simulated steady-state pumping at a rate of 9,600 gallons per day (gal/d) from a possible replacement well near the Chippewa Flowage induced 70 gal/d of water from the flowage to enter the aquifer. Although no water-quality samples were collected from the Chippewa Flowage or the ground-water system, surface-water leakage into the ground-water system could potentially change the local water quality in the aquifer.

  17. Watershed Models for Decision Support for Inflows to Potholes Reservoir, Washington

    USGS Publications Warehouse

    Mastin, Mark C.

    2009-01-01

    A set of watershed models for four basins (Crab Creek, Rocky Ford Creek, Rocky Coulee, and Lind Coulee), draining into Potholes Reservoir in east-central Washington, was developed as part of a decision support system to aid the U.S. Department of the Interior, Bureau of Reclamation, in managing water resources in east-central Washington State. The project is part of the U.S. Geological Survey and Bureau of Reclamation collaborative Watershed and River Systems Management Program. A conceptual model of hydrology is outlined for the study area that highlights the significant processes that are important to accurately simulate discharge under a wide range of conditions. The conceptual model identified the following factors as significant for accurate discharge simulations: (1) influence of frozen ground on peak discharge, (2) evaporation and ground-water flow as major pathways in the system, (3) channel losses, and (4) influence of irrigation practices on reducing or increasing discharge. The Modular Modeling System was used to create a watershed model for the four study basins by combining standard Precipitation Runoff Modeling System modules with modified modules from a previous study and newly modified modules. The model proved unreliable in simulating peak-flow discharge because the index used to track frozen ground conditions was not reliable. Mean monthly and mean annual discharges were more reliable when simulated. Data from seven USGS streamflow-gaging stations were used to compare with simulated discharge for model calibration and evaluation. Mean annual differences between simulated and observed discharge varied from 1.2 to 13.8 percent for all stations used in the comparisons except one station on a regional ground-water discharge stream. Two thirds of the mean monthly percent differences between the simulated mean and the observed mean discharge for these six stations were between -20 and 240 percent, or in absolute terms, between -0.8 and 11 cubic feet per second. A graphical user interface was developed for the user to easily run the model, make runoff forecasts, and evaluate the results. The models; however, are not reliable for managing short-term operations because of their demonstrated inability to match individual storm peaks and individual monthly discharge values. Short-term forecasting may be improved with real-time monitoring of the extent of frozen ground and the snow-water equivalent in the basin. Despite the models unreliability for short-term runoff forecasts, they are useful in providing long-term, time-series discharge data where no observed data exist.

  18. Measuring peak expiratory flow in general practice: comparison of mini Wright peak flow meter and turbine spirometer.

    PubMed Central

    Jones, K P; Mullee, M A

    1990-01-01

    OBJECTIVE--To compare measurements of the peak expiratory flow rate taken by the mini Wright peak flow meter and the turbine spirometer. DESIGN--Pragmatic study with randomised order of use of recording instruments. Phase 1 compared a peak expiratory flow type expiration recorded by the mini Wright peak flow meter with an expiration to forced vital capacity recorded by the turbine spirometer. Phase 2 compared peak expiratory flow type expirations recorded by both meters. Reproducibility was assessed separately. SETTING--Routine surgeries at Aldermoor Health Centre, Southampton. SUBJECTS--212 Patients aged 4 to 78 presenting with asthma or obstructive airways disease. Each patient contributed only once to each phase (105 in phase 1, 107 in phase 2), but some entered both phases on separate occasions. Reproducibility was tested on a further 31 patients. MAIN OUTCOME MEASURE--95% Limits of agreement between measurements on the two meters. RESULTS--208 (98%) Of the readings taken by the mini Wright meter were higher than the corresponding readings taken by the turbine spirometer, but the 95% limits of agreement (mean difference (2 SD] were wide (1 to 173 l/min). Differences due to errors in reproducibility were not sufficient to predict this level of disagreement. Analysis by age, sex, order of use, and the type of expiration did not detect any significant differences. CONCLUSIONS--The two methods of measuring peak expiratory flow rate were not comparable. The mini Wright meter is likely to remain the preferred instrument in general practice. PMID:2142611

  19. Hydrological and pesticide transfer modeling in a tropical volcanic watershed with the WATPPASS model

    NASA Astrophysics Data System (ADS)

    Mottes, Charles; Lesueur-Jannoyer, Magalie; Charlier, Jean-Baptiste; Carles, Céline; Guéné, Mathilde; Le Bail, Marianne; Malézieux, Eric

    2015-10-01

    Simulation of flows and pollutant transfers in heterogeneous media is widely recognized to be a remaining frontier in hydrology research. We present a new modeling approach to simulate agricultural pollutions in watersheds: WATPPASS, a model for Watershed Agricultural Techniques and Pesticide Practices ASSessment. It is designed to assess mean pesticide concentrations and loads that result from the use of pesticides in horticultural watersheds located on heterogeneous subsoil. WATPPASS is suited for small watershed with significant groundwater flows and complex aquifer systems. The model segments the watershed into fields with independent hydrological and pesticide transfers at the ground surface. Infiltrated water and pesticides are routed toward outlet using a conceptual reservoir model. We applied WATPPASS on a heterogeneous tropical volcanic watershed of Martinique in the French West Indies. We carried out and hydrological analysis that defined modeling constraints: (i) a spatial variability of runoff/infiltration partitioning according to land use, and (ii) a predominance of groundwater flow paths in two overlapping aquifers under permeable soils (50-60% of annual flows). We carried out simulations on a 550 days period at a daily time step for hydrology (Nashsqrt > 0.75). Weekly concentrations and loads of a persistent organic pesticide (chlordecone) were simulated for 67 weeks to evaluate the modeling approach. Pesticide simulations without specific calibration detected the mean long-term measured concentration, leading to a good quantification of the cumulative loads (5% error), but failed to represent the concentration peaks at the correct timing. Nevertheless, we succeed in adjusting the model structure to better represent the temporal dynamic of pesticide concentrations. This modification requires a proper evaluation on an independent dataset. Finally, WATPPASS is a compromise between complexity and easiness of use that makes it suited for cropping system assessment in complex pedological and geological environment.

  20. RNICO: a new simple geometric index for assessing the impact of urban development pattern on peak flows in urban catchments

    NASA Astrophysics Data System (ADS)

    Kasaee Roodsari, B.; Chandler, D. G.

    2016-12-01

    Urban sprawl is widespread across the world and the associated hydrologic impacts are increasing in peri-urban catchments due to increased area of impervious. There is a strong agreement on the positive correlation between the fractional impervious area and peak flows in urban catchments. Nevertheless, the effect of land development pattern on peak flows is not well investigated. In this study, a new simple geometric index, Relative Nearness of Imperviousness to the Catchment Outlet (RNICO), is defined to correlate imperviousness distribution of peri-urban catchments to runoff peak flows. Results of applying RNICO to 20 sub-catchments in New York State showed a strong positive correlation (R2>0.97) between RNICO and runoff peak flows for small peri-urban catchments (A< 42 km2) indicating higher flood risk of downstream urbanization. For large catchments (A> 42 km2), no correlation was indicated between RNICO and peak flows. We highlight the necessity of a greater discharge monitoring network at small peri-urban catchments to support local urban flood forecast.

  1. Peak-flow characteristics of Wyoming streams

    USGS Publications Warehouse

    Miller, Kirk A.

    2003-01-01

    Peak-flow characteristics for unregulated streams in Wyoming are described in this report. Frequency relations for annual peak flows through water year 2000 at 364 streamflow-gaging stations in and near Wyoming were evaluated and revised or updated as needed. Analyses of historical floods, temporal trends, and generalized skew were included in the evaluation. Physical and climatic basin characteristics were determined for each gaging station using a geographic information system. Gaging stations with similar peak-flow and basin characteristics were grouped into six hydrologic regions. Regional statistical relations between peak-flow and basin characteristics were explored using multiple-regression techniques. Generalized least squares regression equations for estimating magnitudes of annual peak flows with selected recurrence intervals from 1.5 to 500 years were developed for each region. Average standard errors of estimate range from 34 to 131 percent. Average standard errors of prediction range from 35 to 135 percent. Several statistics for evaluating and comparing the errors in these estimates are described. Limitations of the equations are described. Methods for applying the regional equations for various circumstances are listed and examples are given.

  2. Accuracy of mini peak flow meters in indicating changes in lung function in children with asthma.

    PubMed Central

    Sly, P. D.; Cahill, P.; Willet, K.; Burton, P.

    1994-01-01

    OBJECTIVE--To assess whether mini flow meters used to measure peak expiratory flow can track changes in lung function and indicate clinically important changes. DESIGN--Comparison of measurements with a spirometer and different brands of mini flow meter; the meters were allocated to subjects haphazardly. SUBJECTS--12 boys with asthma aged 11 to 17 attending boarding school. MAIN OUTCOME MEASURES--Peak expiratory flow measured twice daily for three months with a spirometer and at least one of four brands of mini flow meter. RESULTS--The relation between changes in lung function measured with the spirometer and those measured with the mini flow meters was generally poor. In all, 26 episodes (range 1-3 in an individual child) of clinically important deterioration in lung function were detected from the records obtained with the spirometer. One mini flow meter detected six of 19 episodes, one detected six of 15, one detected six of 18, and one detected three of 21. CONCLUSIONS--Not only are the absolute values of peak expiratory flow obtained with mini flow meters inaccurate but the clinical message may also be incorrect. These findings do not imply that home monitoring of peak expiratory flow has no place in the management of childhood asthma but that the values obtained should be interpreted cautiously. PMID:8148680

  3. Peak-Seeking Optimization of Spanwise Lift Distribution for Wings in Formation Flight

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.; Ryan, Jack

    2012-01-01

    A method is presented for the in-flight optimization of the lift distribution across the wing for minimum drag of an aircraft in formation flight. The usual elliptical distribution that is optimal for a given wing with a given span is no longer optimal for the trailing wing in a formation due to the asymmetric nature of the encountered flow field. Control surfaces along the trailing edge of the wing can be configured to obtain a non-elliptical profile that is more optimal in terms of minimum combined induced and profile drag. Due to the difficult-to-predict nature of formation flight aerodynamics, a Newton-Raphson peak-seeking controller is used to identify in real time the best aileron and flap deployment scheme for minimum total drag. Simulation results show that the peak-seeking controller correctly identifies an optimal trim configuration that provides additional drag savings above those achieved with conventional anti-symmetric aileron trim.

  4. Annual Peak-Flow Frequency Characteristics and (or) Peak Dam-Pool-Elevation Frequency Characteristics of Dry Dams and Selected Streamflow-Gaging Stations in the Great Miami River Basin, Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2009-01-01

    This report describes the results of a study to determine frequency characteristics of postregulation annual peak flows at streamflow-gaging stations at or near the Lockington, Taylorsville, Englewood, Huffman, and Germantown dry dams in the Miami Conservancy District flood-protection system (southwestern Ohio) and five other streamflow-gaging stations in the Great Miami River Basin further downstream from one or more of the dams. In addition, this report describes frequency characteristics of annual peak elevations of the dry-dam pools. In most cases, log-Pearson Type III distributions were fit to postregulation annual peak-flow values through 2007 (the most recent year of published peak-flow values at the time of this analysis) and annual peak dam-pool storage values for the period 1922-2008 to determine peaks with recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years. For one streamflow-gaging station (03272100) with a short period of record, frequency characteristics were estimated by means of a process involving interpolation of peak-flow yields determined for an upstream and downstream gage. Once storages had been estimated for the various recurrence intervals, corresponding dam-pool elevations were determined from elevation-storage ratings provided by the Miami Conservancy District.

  5. Estimating the magnitude of peak flows for streams in Kentucky for selected recurrence intervals

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Martin, Gary R.

    2003-01-01

    This report gives estimates of, and presents techniques for estimating, the magnitude of peak flows for streams in Kentucky for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years. A flowchart in this report guides the user to the appropriate estimates and (or) estimating techniques for a site on a specific stream. Estimates of peak flows are given for 222 U.S. Geological Survey streamflow-gaging stations in Kentucky. In the development of the peak-flow estimates at gaging stations, a new generalized skew coefficient was calculated for the State. This single statewide value of 0.011 (with a standard error of prediction of 0.520) is more appropriate for Kentucky than the national skew isoline map in Bulletin 17B of the Interagency Advisory Committee on Water Data. Regression equations are presented for estimating the peak flows on ungaged, unregulated streams in rural drainage basins. The equations were developed by use of generalized-least-squares regression procedures at 187 U.S. Geological Survey gaging stations in Kentucky and 51 stations in surrounding States. Kentucky was divided into seven flood regions. Total drainage area is used in the final regression equations as the sole explanatory variable, except in Regions 1 and 4 where main-channel slope also was used. The smallest average standard errors of prediction were in Region 3 (from -13.1 to +15.0 percent) and the largest average standard errors of prediction were in Region 5 (from -37.6 to +60.3 percent). One section of this report describes techniques for estimating peak flows for ungaged sites on gaged, unregulated streams in rural drainage basins. Another section references two previous U.S. Geological Survey reports for peak-flow estimates on ungaged, unregulated, urban streams. Estimating peak flows at ungaged sites on regulated streams is beyond the scope of this report, because peak flows on regulated streams are dependent upon variable human activities.

  6. Modeling the effects of LID practices on streams health at watershed scale

    NASA Astrophysics Data System (ADS)

    Shannak, S.; Jaber, F. H.

    2013-12-01

    Increasing impervious covers due to urbanization will lead to an increase in runoff volumes, and eventually increase flooding. Stream channels adjust by widening and eroding stream bank which would impact downstream property negatively (Chin and Gregory, 2001). Also, urban runoff drains in sediment bank areas in what's known as riparian zones and constricts stream channels (Walsh, 2009). Both physical and chemical factors associated with urbanization such as high peak flows and low water quality further stress aquatic life and contribute to overall biological condition of urban streams (Maxted et al., 1995). While LID practices have been mentioned and studied in literature for stormwater management, they have not been studied in respect to reducing potential impact on stream health. To evaluate the performance and the effectiveness of LID practices at a watershed scale, sustainable detention pond, bioretention, and permeable pavement will be modeled at watershed scale. These measures affect the storm peak flows and base flow patterns over long periods, and there is a need to characterize their effect on stream bank and bed erosion, and aquatic life. These measures will create a linkage between urban watershed development and stream conditions specifically biological health. The first phase of this study is to design and construct LID practices at the Texas A&M AgriLife Research and Extension Center-Dallas, TX to collect field data about the performance of these practices on a smaller scale. The second phase consists of simulating the performance of LID practices on a watershed scale. This simulation presents a long term model (23 years) using SWAT to evaluate the potential impacts of these practices on; potential stream bank and bed erosion, and potential impact on aquatic life in the Blunn Watershed located in Austin, TX. Sub-daily time step model simulations will be developed to simulate the effectiveness of the three LID practices with respect to reducing potential erosion from stream beds and banks by studying annual average excess shear and reducing potential impact on aquatic life by studying rapid changes and variation in flow regimes in urban streams. This study will contribute to develop a methodology that evaluates the impact of hydrological changes that occur due to urban development, on aquatic life, stream bank and bed erosion. This is an ongoing research project and results will be shared and discussed at the conference.

  7. LES on Plume Dispersion in the Convective Boundary Layer Capped by a Temperature Inversion

    NASA Astrophysics Data System (ADS)

    Nakayama, Hiromasa; Tamura, Tetsuro; Abe, Satoshi

    Large-eddy simulation (LES) is applied to the problem of plume dispersion in the spatially-developing convective boundary layer (CBL) capped by a temperature inversion. In order to generate inflow turbulence with buoyant forcing, we first, simulate the neutral boundary layer flow (NBL) in the driver region using Lund's method. At the same time, the temperature profile possessing the inversion part is imposed at the entrance of the driver region and the temperature field is calculated as a passive scalar. Next, the buoyancy effect is introduced into the flow field in the main region. We evaluate the applicability of the LES model for atmospheric dispersion in the CBL flow and compare the characteristics of plume dispersion in the CBL flow with those in the neutral boundary layer. The Richardson number based on the temperature increment across the inversion obtained by the present LES model is 22.4 and the capping effect of the temperature inversion can be captured qualitatively in the upper portion of the CBL. Characteristics of flow and temperature fields in the main portion of CBL flow are similar to those of previous experiments[1],[2] and observations[3]. Concerning dispersion behavior, we also find that mean concentrations decrease immediately above the inversion height and the peak values of r.m.s concentrations are located near the inversion height at larger distances from the point source.

  8. A simple, analytic 3-dimensional downburst model based on boundary layer stagnation flow

    NASA Technical Reports Server (NTRS)

    Oseguera, Rosa M.; Bowles, Roland L.

    1988-01-01

    A simple downburst model is developed for use in batch and real-time piloted simulation studies of guidance strategies for terminal area transport aircraft operations in wind shear conditions. The model represents an axisymmetric stagnation point flow, based on velocity profiles from the Terminal Area Simulation System (TASS) model developed by Proctor and satisfies the mass continuity equation in cylindrical coordinates. Altitude dependence, including boundary layer effects near the ground, closely matches real-world measurements, as do the increase, peak, and decay of outflow and downflow with increasing distance from the downburst center. Equations for horizontal and vertical winds were derived, and found to be infinitely differentiable, with no singular points existent in the flow field. In addition, a simple relationship exists among the ratio of maximum horizontal to vertical velocities, the downdraft radius, depth of outflow, and altitude of maximum outflow. In use, a microburst can be modeled by specifying four characteristic parameters, velocity components in the x, y and z directions, and the corresponding nine partial derivatives are obtained easily from the velocity equations.

  9. Streamflow and Erosion Response to Prolonged Intense Rainfall of November 1-2, 2000, Island of Hawaii, Hawaii

    USGS Publications Warehouse

    Fontaine, Richard A.; Hill, Barry R.

    2002-01-01

    A combination of several meteorologic and topographic factors produced extreme rainfall over the eastern part of the island of Hawaii on November 1-2, 2000. Storm rainfall was concentrated in two distinct areas, the Waiakea and Kapapala areas, where maximum rainfall totals of 32.47 and 38.97 inches were recorded. Resultant flooding caused damages in excess of 70 million dollars, among the highest totals associated with flooding in the State's history. Storm rainfall had recurrence intervals that ranged from 10 years or less for maximum 1-hour totals to 100 years or more for maximum 24-hour totals As part of this study, peak flow and/or erosion data were collected at 41 sites. Analyses of these data indicated that peak discharges of record occurred at 6 of 12 sites where historic data were available. Peak flows with estimated recurrence intervals from 50 to over 100 years were recorded at 4 of 11 sites. Peak flows were poorly correlated with total storm rainfall. Critical rainfall durations associated with peak flows ranged from 1 to 12 hours and were about 3 hours at most sites. Rainfall-runoff computations and field observations indicated that infiltration-excess overland flow alone was not sufficient to have caused the observed flood peaks and therefore saturation-excess overland flow and subsurface flow probably contributed to peak flows at most sites Most hillslope erosion associated with the storm took place along or near the Kaoiki Pali in the Kapapala area. Hillslope erosion was predominately caused by overland flow.

  10. Comparison of storm response of streams in small, unmined and valley-filled watersheds, 1999-2001, Ballard fork, West Virginia

    USGS Publications Warehouse

    Messinger, Terence

    2003-01-01

    During storms when rainfall intensity exceeded about 1 inch per hour, peak unit runoff from the Unnamed Tributary (surface-mined and filled) Watershed exceeded peak unit runoff from the Spring Branch (unmined) Watershed in the Ballard Fork Watershed in southern West Virginia. During most storms, those with intensity less than about 1 inch per hour, peak unit (area-normalized) flows were greater from the Spring Branch Watershed than the Unnamed Tributary Watershed. One storm that produced less than an inch of rain before flow from the previous storm had receded caused peak unit flow from the Unnamed Tributary Watershed to exceed peak unit flow from the Spring Branch Watershed. Peak unit flow was usually similar in Spring Branch and Ballard Fork. Peak unit flows are expected to decrease with increasing watershed size in homogeneous watersheds; drainage area and proportion of the three watersheds covered by valley fills are 0.19 square mile (mi?) and 44 percent for the Unnamed Tributary Watershed, 0.53 mi? and 0 percent for the Spring Branch Watershed, and 2.12 mi? and 12 percent for the Ballard Fork Watershed. Following all storms with sufficient rainfall intensity, about 0.25 inches per hour, the storm hydrograph from the Unnamed Tributary Watershed showed a double peak, as a sharp initial rise was followed by a decrease in flow and then a delayed secondary peak of water that had apparently flowed through the valley fill. Hortonian (excess overland) flow may be important in the Unnamed Tributary Watershed during intense storms, and may cause the initial peak on the rising arm of storm hydrographs; the water composing the initial peaks may be conveyed by drainage structures on the mine. Ballard Fork and Spring Branch had hydrographs with single peaks, typical of elsewhere in West Virginia. During all storms with 1-hour rainfall greater than 0.75 inches or 24-hour rainfall greater than 1.75 inches during which all stream gages recorded a complete record, the Unnamed Tributary yielded the most total unit flow. In three selected major storms, total unit flow from the Unnamed Tributary during recessions exceeded storm flow, and its total unit flow was greatest among the streams during all three recessions. Runoff patterns from the mined watershed are influenced by the compaction of soils on the mine, the apparent low maximum rate of infiltration into the valley fill compared to that in the unmined, forested watershed, storage of water in the valley fill, and the absence of interception from trees and leaf litter. No storms during this study produced 1-hour or 24-hour rainfall in excess of the 5-year return period, and streamflow during this study never exceeded a magnitude equivalent to the 1.5-year return period; relative peak unit flow among the three streams in this study could be different in larger storms. Rainfall-runoff relations on altered landscapes are site-specific, and aspects of mining and reclamation practice that affect storm response may vary among mines.

  11. A full scale hydrodynamic simulation of pyrotechnic combustion

    NASA Astrophysics Data System (ADS)

    Kim, Bohoon; Jang, Seung-Gyo; Yoh, Jack

    2017-06-01

    A full scale hydrodynamic simulation that requires an accurate reproduction of shock-induced detonation was conducted for design of an energetic component system. A series of small scale gap tests and detailed hydrodynamic simulations were used to validate the reactive flow model for predicting the shock propagation in a train configuration and to quantify the shock sensitivity of the energetic materials. The energetic component system is composed of four main components, namely a donor unit (HNS + HMX), a bulkhead (STS), an acceptor explosive (RDX), and a propellant (BKNO3) for gas generation. The pressurized gases generated from the burning propellant were purged into a 10 cc release chamber for study of the inherent oscillatory flow induced by the interferences between shock and rarefaction waves. The pressure fluctuations measured from experiment and calculation were investigated to further validate the peculiar peak at specific characteristic frequency (ωc = 8.3 kHz). In this paper, a step-by-step numerical description of detonation of high explosive components, deflagration of propellant component, and deformation of metal component is given in order to facilitate the proper implementation of the outlined formulation into a shock physics code for a full scale hydrodynamic simulation of the energetic component system.

  12. Dissolved nutrients and atrazine removal by column-scale monophasic and biphasic rain garden model systems.

    PubMed

    Yang, Hanbae; McCoy, Edward L; Grewal, Parwinder S; Dick, Warren A

    2010-08-01

    Rain gardens are bioretention systems that have the potential to reduce peak runoff flow and improve water quality in a natural and aesthetically pleasing manner. We compared hydraulic performance and removal efficiencies of nutrients and atrazine in a monophasic rain garden design versus a biphasic design at a column-scale using simulated runoff. The biphasic rain garden was designed to increase retention time and removal efficiency of runoff pollutants by creating a sequence of water saturated to unsaturated conditions. We also evaluated the effect of C substrate availability on pollutant removal efficiency in the biphasic rain garden. Five simulated runoff events with various concentrations of runoff pollutants (i.e. nitrate, phosphate, and atrazine) were applied to the monophasic and biphasic rain gardens once every 5d. Hydraulic performance was consistent over the five simulated runoff events. Peak flow was reduced by approximately 56% for the monophasic design and 80% for the biphasic design. Both rain garden systems showed excellent removal efficiency of phosphate (89-100%) and atrazine (84-100%). However, significantly (p<0.001) higher removal of nitrate was observed in the biphasic (42-63%) compared to the monophasic rain garden (29-39%). Addition of C substrate in the form of glucose increased removal efficiency of nitrate significantly (p<0.001), achieving up to 87% removal at a treatment C/N ratio of 2.0. This study demonstrates the importance of retention time, environmental conditions (i.e. saturated/unsaturated conditions), and availability of C substrate for bioremediation of pollutants, especially nitrates, in rain gardens. (c) 2010 Elsevier Ltd. All rights reserved.

  13. The role of electron heating physics in images and variability of the Galactic Centre black hole Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Chael, Andrew; Rowan, Michael; Narayan, Ramesh; Johnson, Michael; Sironi, Lorenzo

    2018-05-01

    The accretion flow around the Galactic Centre black hole Sagittarius A* (Sgr A*) is expected to have an electron temperature that is distinct from the ion temperature, due to weak Coulomb coupling in the low-density plasma. We present four two-temperature general relativistic radiative magnetohydrodynamic (GRRMHD) simulations of Sgr A* performed with the code KORAL. These simulations use different electron heating prescriptions, motivated by different models of the underlying plasma microphysics. We compare the Landau-damped turbulent cascade model used in previous work with a new prescription we introduce based on the results of particle-in-cell simulations of magnetic reconnection. With the turbulent heating model, electrons are preferentially heated in the polar outflow, whereas with the reconnection model electrons are heated by nearly the same fraction everywhere in the accretion flow. The spectra of the two models are similar around the submillimetre synchrotron peak, but the models heated by magnetic reconnection produce variability more consistent with the level observed from Sgr A*. All models produce 230 GHz images with distinct black hole shadows which are consistent with the image size measured by the Event Horizon Telescope, but only the turbulent heating produces an anisotropic `disc-jet' structure where the image is dominated by a polar outflow or jet at frequencies below the synchrotron peak. None of our models can reproduce the observed radio spectral slope, the large near-infrared and X-ray flares, or the near-infrared spectral index, all of which suggest non-thermal electrons are needed to fully explain the emission from Sgr A*.

  14. Numerical analysis of buoyancy effects during the dissolution and transport of oxygenated gasoline in groundwater

    NASA Astrophysics Data System (ADS)

    Molson, J.; Mocanu, M.; Barker, J.

    2008-07-01

    Dissolution of oxygenated gasoline, as well as buoyancy-driven groundwater flow and transport of the multicomponent dissolved phase plumes, is simulated numerically in three dimensions. The simulations are based on a field experiment described by Mocanu (2007) in which three oxygenated gasoline sources were emplaced as nonaqueous phase liquids (NAPLs) below the water table of the shallow sand aquifer at Canadian Forces Base Borden, Ontario. The sources were composed of an ethanol-free gasoline mixture spiked with 9.8% methyl tert-butyl ether and 0.2% tert-butyl alcohol (GMT-E0), a gasoline with 10% ethanol (E10), and a source with 95% ethanol (E95). The numerical model includes dissolution of gasoline as a NAPL, density-dependent groundwater flow, advective-dispersive transport of the dissolved components, and ethanol cosolvency and degradation. Buoyancy effects in the dissolved plumes were compared under a homogeneous hydraulic conductivity field as well as with five realizations of spatially correlated random fields representing the Borden aquifer. The simulations showed that buoyancy was most significant in the E95 source plumes within the homogeneous system, having induced after 150 days a net upward displacement of the local peak concentrations for all but the least soluble component of approximately 1.5 m. The peak rise in ethanol from the GMT-E0 and E10 plumes was about 0.6 m. The results highlight the importance of shallow monitoring wells when monitoring high oxygenate fraction gasoline spills in groundwater and have implications for assessing mass fluxes and biodegradation rates.

  15. Analysis and mapping of post-fire hydrologic hazards for the 2002 Hayman, Coal Seam, and Missionary Ridge wildfires, Colorado

    USGS Publications Warehouse

    Elliott, J.G.; Smith, M.E.; Friedel, M.J.; Stevens, M.R.; Bossong, C.R.; Litke, D.W.; Parker, R.S.; Costello, C.; Wagner, J.; Char, S.J.; Bauer, M.A.; Wilds, S.R.

    2005-01-01

    Wildfires caused extreme changes in the hydrologic, hydraulic, and geomorphologic characteristics of many Colorado drainage basins in the summer of 2002. Detailed assessments were made of the short-term effects of three wildfires on burned and adjacent unburned parts of drainage basins. These were the Hayman, Coal Seam, and Missionary Ridge wildfires. Longer term runoff characteristics that reflect post-fire drainage basin recovery expected to develop over a period of several years also were analyzed for two affected stream reaches: the South Platte River between Deckers and Trumbull, and Mitchell Creek in Glenwood Springs. The 10-, 50-, 100-, and 500-year flood-plain boundaries and water-surface profiles were computed in a detailed hydraulic study of the Deckers-to-Trumbull reach. The Hayman wildfire burned approximately 138,000 acres (216 square miles) in granitic terrain near Denver, and the predominant potential hazard in this area is flooding by sediment-laden water along the large tributaries to and the main stem of the South Platte River. The Coal Seam wildfire burned approximately 12,200 acres (19.1 square miles) near Glenwood Springs, and the Missionary Ridge wildfire burned approximately 70,500 acres (110 square miles) near Durango, both in areas underlain by marine shales where the predominant potential hazard is debris-flow inundation of low-lying areas. Hydrographs and peak discharges for pre-burn and post-burn scenarios were computed for each drainage basin and tributary subbasin by using rainfall-runoff models because streamflow data for most tributary subbasins were not available. An objective rainfall-runoff model calibration method based on nonlinear regression and referred to as the ?objective calibration method? was developed and applied to rainfall-runoff models for three burned areas. The HEC-1 rainfall-runoff model was used to simulate the pre-burn rainfall-runoff processes in response to the 100-year storm, and HEC-HMS was used for runoff hydrograph generation. Post-burn rainfall-runoff parameters were determined by adjusting the runoff-curve numbers on the basis of a weighting procedure derived from the U.S. Soil Conservation Service (now the National Resources Conservation Service) equation for precipitation excess and the effect of burn severity. This weighting procedure was determined to be more appropriate than simple area weighting because of the potentially marked effect of even small burned areas on the runoff hydrograph in individual drainage basins. Computed water-peak discharges from HEC-HMS models were increased volumetrically to account for increased sediment concentrations that are expected as a result of accelerated erosion after burning. Peak discharge estimates for potential floods in the South Platte River were increased by a factor that assumed a volumetric sediment concentration (Cv) of 20 percent. Flood hydrographs for the South Platte River and Mitchell Creek were routed down main-stem channels using watershed-routing algorithms included in the HEC-HMS rainfall-runoff model. In areas subject to debris flows in the Coal Seam and Missionary Ridge burned areas, debris-flow discharges were simulated by 100-year rainfall events, and the inflow hydrographs at tributary mouths were simulated by using the objective calibration method. Sediment concentrations (Cv) used in debris-flow simulations were varied through the event, and were initial Cv 20 percent, mean Cv approximately 31 percent, maximum Cv 48 percent, Cv 43 percent at the time of the water hydrograph peak, and Cv 20 percent for the duration of the event. The FLO-2D flood- and debris-flow routing model was used to delineate the area of unconfined debris-flow inundation on selected alluvial fan and valley floor areas. A method was developed to objectively determine the post-fire recovery period for the Hayman and Coal Seam burned areas using runoff-curve numbers (RCN) for all drainage basins for a 50-year period. A

  16. Estimation of cardiac reserve by peak power: validation and initial application of a simplified index

    NASA Technical Reports Server (NTRS)

    Armstrong, G. P.; Carlier, S. G.; Fukamachi, K.; Thomas, J. D.; Marwick, T. H.

    1999-01-01

    OBJECTIVES: To validate a simplified estimate of peak power (SPP) against true (invasively measured) peak instantaneous power (TPP), to assess the feasibility of measuring SPP during exercise and to correlate this with functional capacity. DESIGN: Development of a simplified method of measurement and observational study. SETTING: Tertiary referral centre for cardiothoracic disease. SUBJECTS: For validation of SPP with TPP, seven normal dogs and four dogs with dilated cardiomyopathy were studied. To assess feasibility and clinical significance in humans, 40 subjects were studied (26 patients; 14 normal controls). METHODS: In the animal validation study, TPP was derived from ascending aortic pressure and flow probe, and from Doppler measurements of flow. SPP, calculated using the different flow measures, was compared with peak instantaneous power under different loading conditions. For the assessment in humans, SPP was measured at rest and during maximum exercise. Peak aortic flow was measured with transthoracic continuous wave Doppler, and systolic and diastolic blood pressures were derived from brachial sphygmomanometry. The difference between exercise and rest simplified peak power (Delta SPP) was compared with maximum oxygen uptake (VO(2)max), measured from expired gas analysis. RESULTS: SPP estimates using peak flow measures correlated well with true peak instantaneous power (r = 0.89 to 0.97), despite marked changes in systemic pressure and flow induced by manipulation of loading conditions. In the human study, VO(2)max correlated with Delta SPP (r = 0.78) better than Delta ejection fraction (r = 0.18) and Delta rate-pressure product (r = 0.59). CONCLUSIONS: The simple product of mean arterial pressure and peak aortic flow (simplified peak power, SPP) correlates with peak instantaneous power over a range of loading conditions in dogs. In humans, it can be estimated during exercise echocardiography, and correlates with maximum oxygen uptake better than ejection fraction or rate-pressure product.

  17. The Effects of More Extreme Rainfall Patterns on Infiltration and Nutrient Losses in Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.

    2015-12-01

    In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to in conventional soils. Our results suggest that exposure to more extreme rainfall patterns will likely increase infiltration depth and nutrient losses in agricultural soils. In particular, soils under no-till management, which leads to development of preferential flow paths, may be particularly vulnerable to vertical nutrient losses.

  18. Influence of peak flow changes on the macroinvertebrate drift downstream of a Brazilian hydroelectric dam.

    PubMed

    Castro, D M P; Hughes, R M; Callisto, M

    2013-11-01

    Successive daily peak flows from hydropower plants can disrupt aquatic ecosystems and alter the composition and structure of macroinvertebrates downstream. We evaluated the influence of peak flow changes on macroinvertebrate drift downstream of a hydroelectric plant as a basis for determining ecological flows that might reduce the disturbance of aquatic biota. The aim of this study was to assess the influence of flow fluctuations on the seasonal and daily drift patterns of macroinvertebrates. We collected macroinvertebrates during fixed flow rates (323 m3.s-1 in the wet season and 111 m3.s-1 in the dry season) and when peak flows fluctuated (378 to 481 m3.s-1 in the wet season, and 109 to 173 m3.s-1 in the dry season) in 2010. We collected 31,924 organisms belonging to 46 taxa in the four sampling periods. Taxonomic composition and densities of drifting invertebrates differed between fixed and fluctuating flows, in both wet and dry seasons, but family richness varied insignificantly. We conclude that macroinvertebrate assemblages downstream of dams are influenced by daily peak flow fluctuations. When making environmental flow decisions for dams, it would be wise to consider drifting macroinvertebrates because they reflect ecological changes in downstream biological assemblages.

  19. Methods for estimating peak-flow frequencies at ungaged sites in Montana based on data through water year 2011: Chapter F in Montana StreamStats

    USGS Publications Warehouse

    Sando, Roy; Sando, Steven K.; McCarthy, Peter M.; Dutton, DeAnn M.

    2016-04-05

    The U.S. Geological Survey (USGS), in cooperation with the Montana Department of Natural Resources and Conservation, completed a study to update methods for estimating peak-flow frequencies at ungaged sites in Montana based on peak-flow data at streamflow-gaging stations through water year 2011. The methods allow estimation of peak-flow frequencies (that is, peak-flow magnitudes, in cubic feet per second, associated with annual exceedance probabilities of 66.7, 50, 42.9, 20, 10, 4, 2, 1, 0.5, and 0.2 percent) at ungaged sites. The annual exceedance probabilities correspond to 1.5-, 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals, respectively.Regional regression analysis is a primary focus of Chapter F of this Scientific Investigations Report, and regression equations for estimating peak-flow frequencies at ungaged sites in eight hydrologic regions in Montana are presented. The regression equations are based on analysis of peak-flow frequencies and basin characteristics at 537 streamflow-gaging stations in or near Montana and were developed using generalized least squares regression or weighted least squares regression.All of the data used in calculating basin characteristics that were included as explanatory variables in the regression equations were developed for and are available through the USGS StreamStats application (http://water.usgs.gov/osw/streamstats/) for Montana. StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. The primary purpose of the Montana StreamStats application is to provide estimates of basin characteristics and streamflow characteristics for user-selected ungaged sites on Montana streams. The regional regression equations presented in this report chapter can be conveniently solved using the Montana StreamStats application.Selected results from this study were compared with results of previous studies. For most hydrologic regions, the regression equations reported for this study had lower mean standard errors of prediction (in percent) than the previously reported regression equations for Montana. The equations presented for this study are considered to be an improvement on the previously reported equations primarily because this study (1) included 13 more years of peak-flow data; (2) included 35 more streamflow-gaging stations than previous studies; (3) used a detailed geographic information system (GIS)-based definition of the regulation status of streamflow-gaging stations, which allowed better determination of the unregulated peak-flow records that are appropriate for use in the regional regression analysis; (4) included advancements in GIS and remote-sensing technologies, which allowed more convenient calculation of basin characteristics and investigation of many more candidate basin characteristics; and (5) included advancements in computational and analytical methods, which allowed more thorough and consistent data analysis.This report chapter also presents other methods for estimating peak-flow frequencies at ungaged sites. Two methods for estimating peak-flow frequencies at ungaged sites located on the same streams as streamflow-gaging stations are described. Additionally, envelope curves relating maximum recorded annual peak flows to contributing drainage area for each of the eight hydrologic regions in Montana are presented and compared to a national envelope curve. In addition to providing general information on characteristics of large peak flows, the regional envelope curves can be used to assess the reasonableness of peak-flow frequency estimates determined using the regression equations.

  20. Plasma Wake Simulations and Object Charging in a Shadowed Lunar Crater During a Solar Storm

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Jackson, T. L.; Farrell, W. W.; Stubbs, T. J.

    2012-01-01

    Within a permanently shadowed lunar crater the horizontal flow of solar wind is obstructed by upstream topography, forming a plasma wake that electrostatically diverts ions toward the crater floor and generates a surface potential that can reach kilovolts. In the present work kinetic plasma simulations are employed to investigate the morphology of a lunar crater wake during passage of a solar storm. Results are cast in terms of leading dimensionless ratios including the ion Mach number, ratio of crater depth to plasma Debye length, peak secondary electron yield, and electron temperature vs. electron impact energy at peak secondary yield. This small set of ratios allows generalization to a much wider range of scenarios. The kinetic simulation results are fed forward into an equivalent-circuit model of a roving astronaut. In very low-plasma-current environments triboelectric charging of the astronaut suit becomes effectively perpetual, representing a critical engineering concern for roving within shadowed lunar regions. Finally, simulated ion fluxes are used to explore sputtering and implantation processes within an idealized crater. It is suggested that the physics of plasma mini-wakes formed in the vicinity of permanently shadowed topography may play a critical role in modulating the enigmatic spatial distribution of volatiles at the lunar poles.

  1. Plasma wake simulations and object charging in a shadowed lunar crater during a solar storm

    NASA Astrophysics Data System (ADS)

    Zimmerman, M. I.; Jackson, T. L.; Farrell, W. M.; Stubbs, T. J.

    2012-08-01

    Within a permanently shadowed lunar crater the horizontal flow of solar wind is obstructed by upstream topography, forming a plasma wake that electrostatically diverts ions toward the crater floor and generates a surface potential that can reach kilovolts. In the present work kinetic plasma simulations are employed to investigate the morphology of a lunar crater wake during passage of a solar storm. Results are cast in terms of leading dimensionless ratios including the ion Mach number, ratio of crater depth to plasma Debye length, peak secondary electron yield, and electron temperature versus electron impact energy at peak secondary yield. This small set of ratios allows generalization to a much wider range of scenarios. The kinetic simulation results are fed forward into an equivalent-circuit model of a roving astronaut. In very low-plasma-current environments triboelectric charging of the astronaut suit becomes effectively perpetual, representing a critical engineering concern for roving within shadowed lunar regions. Finally, simulated ion fluxes are used to explore sputtering and implantation processes within an idealized crater. It is suggested that the physics of plasma miniwakes formed in the vicinity of permanently shadowed topography may play a critical role in modulating the enigmatic spatial distribution of volatiles at the lunar poles.

  2. Adjustment of spatio-temporal precipitation patterns in a high Alpine environment

    NASA Astrophysics Data System (ADS)

    Herrnegger, Mathew; Senoner, Tobias; Nachtnebel, Hans-Peter

    2018-01-01

    This contribution presents a method for correcting the spatial and temporal distribution of precipitation fields in a mountainous environment. The approach is applied within a flood forecasting model in the Upper Enns catchment in the Central Austrian Alps. Precipitation exhibits a large spatio-temporal variability in Alpine areas. Additionally the density of the monitoring network is low and measurements are subjected to major errors. This can lead to significant deficits in water balance estimation and stream flow simulations, e.g. for flood forecasting models. Therefore precipitation correction factors are frequently applied. For the presented study a multiplicative, stepwise linear correction model is implemented in the rainfall-runoff model COSERO to adjust the precipitation pattern as a function of elevation. To account for the local meteorological conditions, the correction model is derived for two elevation zones: (1) Valley floors to 2000 m a.s.l. and (2) above 2000 m a.s.l. to mountain peaks. Measurement errors also depend on the precipitation type, with higher magnitudes in winter months during snow fall. Therefore, additionally, separate correction factors for winter and summer months are estimated. Significant improvements in the runoff simulations could be achieved, not only in the long-term water balance simulation and the overall model performance, but also in the simulation of flood peaks.

  3. Aortic Valve Stenosis Increases Helical Flow and Flow Complexity: A Study of Intra-Operative Cardiac Vector Flow Imaging.

    PubMed

    Hansen, Kristoffer Lindskov; Møller-Sørensen, Hasse; Kjaergaard, Jesper; Jensen, Maiken Brit; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2017-08-01

    Aortic valve stenosis alters blood flow in the ascending aorta. Using intra-operative vector flow imaging on the ascending aorta, secondary helical flow during peak systole and diastole, as well as flow complexity of primary flow during systole, were investigated in patients with normal, stenotic and replaced aortic valves. Peak systolic helical flow, diastolic helical flow and flow complexity during systole differed between the groups (p < 0.0001), and correlated to peak systolic velocity (R = 0.94, 0.87 and 0.88, respectively). The study indicates that aortic valve stenosis increases helical flow and flow complexity, which are measurable with vector flow imaging. For assessment of aortic stenosis and optimization of valve surgery, vector flow imaging may be useful. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Estimation of a Stopping Criterion for Geophysical Granular Flows Based on Numerical Experimentation

    NASA Astrophysics Data System (ADS)

    Yu, B.; Dalbey, K.; Bursik, M.; Patra, A.; Pitman, E. B.

    2004-12-01

    Inundation area may be the most important factor for mitigation of natural hazards related to avalanches, debris flows, landslides and pyroclastic flows. Run-out distance is the key parameter for inundation because the front deposits define the leading edge of inundation. To define the run-out distance, it is necessary to know when a flow stops. Numerical experiments are presented for determining a stopping criterion and exploring the suitability of a Savage-Hutter granular model for computing inundation areas of granular flows. The TITAN2D model was employed to run numerical experiments based on the Savage-Hutter theory. A potentially reasonable stopping criterion was found as a function of dimensionless average velocity, aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Slumping piles on a horizontal surface and geophysical flows over complex topography were simulated. Several mountainous areas, including Colima volcano (MX), Casita (Nic.), Little Tahoma Peak (WA, USA) and the San Bernardino Mountains (CA, USA) were used to simulate geophysical flows. Volcanic block and ash flows, debris avalanches and debris flows occurred in these areas and caused varying degrees of damage. The areas have complex topography, including locally steep open slopes, sinuous channels, and combinations of these. With different topography and physical scaling, slumping piles and geophysical flows have a somewhat different dependence of dimensionless stopping velocity on power-law constants associated with aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Visual comparison of the details of the inundation area obtained from the TITAN2D model with models that contain some form of viscous dissipation point out weaknesses in the model that are not evident by investigation of the stopping criterion alone.

  5. Regional regression equations to estimate peak-flow frequency at sites in North Dakota using data through 2009

    USGS Publications Warehouse

    Williams-Sether, Tara

    2015-08-06

    Annual peak-flow frequency data from 231 U.S. Geological Survey streamflow-gaging stations in North Dakota and parts of Montana, South Dakota, and Minnesota, with 10 or more years of unregulated peak-flow record, were used to develop regional regression equations for exceedance probabilities of 0.5, 0.20, 0.10, 0.04, 0.02, 0.01, and 0.002 using generalized least-squares techniques. Updated peak-flow frequency estimates for 262 streamflow-gaging stations were developed using data through 2009 and log-Pearson Type III procedures outlined by the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data. An average generalized skew coefficient was determined for three hydrologic zones in North Dakota. A StreamStats web application was developed to estimate basin characteristics for the regional regression equation analysis. Methods for estimating a weighted peak-flow frequency for gaged sites and ungaged sites are presented.

  6. The Effect of Strain Rate on the Evolution of Plane Wakes Subjected to Irrotational Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    Direct numerical simulations of time-evolving turbulent plane wakes developing in the presence of irrotational plane strain applied at three different strain rates have been generated. The strain geometry is such that the flow is compressed in the streamwise direction and expanded in the cross-stream direction with the spanwise direction being unstrained. This geometry is the temporally evolving analogue of a spatially evolving wake in an adverse pressure gradient. A pseudospectral numerical method with up to 16 million modes is used to solve the equations in a reference frame moving with the irrotational strain. The initial condition for each simulation is taken from a previous turbulent self-similar plane wake direct numerical simulation at a velocity deficit Reynolds number, Re, of about 2,000. Although the evolutions of many statistics are nearly collapsed when plotted against total strain, there are some differences owing to the different strain rate histories. The impact of strain-rate on the wake spreading rate, the peak velocity deficit, the Reynolds stress profiles, and the flow structure is examined.

  7. Multi-Dimensional, Inviscid Flux Reconstruction for Simulation of Hypersonic Heating on Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2009-01-01

    The quality of simulated hypersonic stagnation region heating on tetrahedral meshes is investigated by using a three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. Two test problems are investigated: hypersonic flow over a three-dimensional cylinder with special attention to the uniformity of the solution in the spanwise direction and hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problem provides a sensitive test for algorithmic effects on heating. This investigation is believed to be unique in its focus on three-dimensional, rotated upwind schemes for the simulation of hypersonic heating on tetrahedral grids. This study attempts to fill the void left by the inability of conventional (quasi-one-dimensional) approaches to accurately simulate heating in a tetrahedral grid system. Results show significant improvement in spanwise uniformity of heating with some penalty of ringing at the captured shock. Issues with accuracy near the peak shear location are identified and require further study.

  8. DNS/LES Simulations of Separated Flows at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2015-01-01

    Direct numerical simulations (DNS) and large-eddy simulations (LES) simulations of flow through a periodic channel with a constriction are performed using the dynamic Smagorinsky model at two Reynolds numbers of 2800 and 10595. The LES equations are solved using higher order compact schemes. DNS are performed for the lower Reynolds number case using a fine grid and the data are used to validate the LES results obtained with a coarse and a medium size grid. LES simulations are also performed for the higher Reynolds number case using a coarse and a medium size grid. The results are compared with an existing reference data set. The DNS and LES results agreed well with the reference data. Reynolds stresses, sub-grid eddy viscosity, and the budgets for the turbulent kinetic energy are also presented. It is found that the turbulent fluctuations in the normal and spanwise directions have the same magnitude. The turbulent kinetic energy budget shows that the production peaks near the separation point region and the production to dissipation ratio is very high on the order of five in this region. It is also observed that the production is balanced by the advection, diffusion, and dissipation in the shear layer region. The dominant term is the turbulent diffusion that is about two times the molecular dissipation.

  9. Study of the velocity gradient tensor in turbulent flow

    NASA Technical Reports Server (NTRS)

    Cheng, Wei-Ping; Cantwell, Brian

    1996-01-01

    The behavior of the velocity gradient tensor, A(ij)=delta u(i)/delta x(j), was studied using three turbulent flows obtained from direct numerical simulation The flows studies were: an inviscid calculation of the interaction between two vortex tubes, a homogeneous isotropic flow, and a temporally evolving planar wake. Self-similar behavior for each flow was obtained when A(ij) was normalized with the mean strain rate. The case of the interaction between two vortex tubes revealed a finite sized coherent structure with topological characteristics predictable by a restricted Euler model. This structure was found to evolve with the peak vorticity as the flow approached singularity. Invariants of A(ij) within this structure followed a straight line relationship of the form: gamma(sup 3)+gammaQ+R=0, where Q and R are the second and third invariants of A(ij), and the eigenvalue gamma is nearly constant over the volume of this structure. Data within this structure have local strain topology of unstable-node/saddle/saddle. The characteristics of the velocity gradient tensor and the anisotropic part of a related acceleration gradient tensor H(ij) were also studied for a homogeneous isotropic flow and a temporally evolving planar wake. It was found that the intermediate principal eigenvalue of the rate-of-strain tensor of H(ij) tended to be negative, with local strain topology of the type stable-node/saddle/saddle. There was also a preferential eigenvalue direction. The magnitude of H(ij) in the wake flow was found to be very small when data were conditioned at high local dissipation regions. This result was not observed in the relatively low Reynolds number simulation of homogeneous isotropic flow. A restricted Euler model of the evolution of A(ij) was found to reproduce many of the topological features identified in the simulations.

  10. Linkage of Rainfall-Runoff and Hurricane Storm Surge in Galveston Bay

    NASA Astrophysics Data System (ADS)

    Deitz, R.; Christian, J.; Wright, G.; Fang, N.; Bedient, P.

    2012-12-01

    In conjunction with the SSPEED Center, large rainfall events in the upper Gulf of Mexico are being studied in an effort to help design a surge gate to protect the Houston Ship Channel during hurricane events. The ship channel is the world's second largest petrochemical complex and the Coast Guard estimates that a one-month closure would have a $60 billion dollar impact on the national economy. In this effort, statistical design storms, such as the 24-hour PMP, as well as historical storms, like Hurricane Ike, Hurricane Katrina, and Hurricane Rita, are being simulated in a hydrologic/hydraulic model using radar and rain gauge data. VfloTM, a distributed hydrologic model, is being used to quantify the effect that storm size, intensity, and location has on timing and peak flows in the in the upper drainage area. These hydrographs were input to a hydraulic model with various storm surges from Galveston Bay. Results indicate that there is a double peak phenomenon with flows from the west draining days earlier than flows from the north. With storm surge typically lasting 36-48 hours, this indicates the flows from the west are interacting with the storm surge, whereas flows from the north would arrive once the storm surge is receding. Gate operations were optimized in the model to account for the relative timing of upland runoff and hurricane surge, and to quantify the capability of the gate structure to protect the Ship Channel industry.

  11. Morphotype-Dependent Flow Characteristics in Bicuspid Aortic Valve Ascending Aortas: A Benchtop Particle Image Velocimetry Study

    PubMed Central

    McNally, Andrew; Madan, Ashish; Sucosky, Philippe

    2017-01-01

    The bicuspid aortic valve (BAV) is a major risk factor for secondary aortopathy such as aortic dilation. The heterogeneous BAV morphotypes [left-right-coronary cusp fusion (LR), right-non-coronary cusp fusion (RN), and left-non-coronary cusp fusion (LN)] are associated with different dilation patterns, suggesting a role for hemodynamics in BAV aortopathogenesis. However, assessment of this theory is still hampered by the limited knowledge of the hemodynamic abnormalities generated by the distinct BAV morphotypes. The objective of this study was to compare experimentally the hemodynamics of a normal (i.e., non-dilated) ascending aorta (AA) subjected to tricuspid aortic valve (TAV), LR-BAV, RN-BAV, and NL-BAV flow. Tissue BAVs reconstructed from porcine TAVs were subjected to physiologic pulsatile flow conditions in a left-heart simulator featuring a realistic aortic root and compliant aorta. Phase-locked particle image velocimetry experiments were carried out to characterize the flow in the aortic root and in the tubular AA in terms of jet skewness and displacement, as well as mean velocity, viscous shear stress and Reynolds shear stress fields. While all three BAVs generated skewed and asymmetrical orifice jets (up to 1.7- and 4.0-fold increase in flow angle and displacement, respectively, relative to the TAV at the sinotubular junction), the RN-BAV jet was out of the plane of observation. The LR- and NL-BAV exhibited a 71% increase in peak-systolic orifice jet velocity relative to the TAV, suggesting an inherent degree of stenosis in BAVs. While these two BAV morphotypes subjected the convexity of the aortic wall to viscous shear stress overloads (1.7-fold increase in maximum peak-systolic viscous shear stress relative to the TAV-AA), the affected sites were morphotype-dependent (LR-BAV: proximal AA, NL-BAV: distal AA). Lastly, the LR- and NL-BAV generated high degrees of turbulence in the AA (up to 2.3-fold increase in peak-systolic Reynolds shear stress relative to the TAV) that were sustained from peak systole throughout the deceleration phase. This in vitro study reveals substantial flow abnormalities (increased jet skewness, asymmetry, jet velocity, turbulence, and shear stress overloads) in non-dilated BAV aortas, which differ from those observed in dilated aortas but still coincide with aortic wall regions prone to dilation. PMID:28203207

  12. Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Guidos, Mike

    2008-01-01

    Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.

  13. Nonuniform Moving Boundary Method for Computational Fluid Dynamics Simulation of Intrathecal Cerebrospinal Flow Distribution in a Cynomolgus Monkey.

    PubMed

    Khani, Mohammadreza; Xing, Tao; Gibbs, Christina; Oshinski, John N; Stewart, Gregory R; Zeller, Jillynne R; Martin, Bryn A

    2017-08-01

    A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s.

  14. Call-Center Based Disease Management of Pediatric Asthmatics

    DTIC Science & Technology

    2005-04-01

    study locations. Purchase peak flow meters. Prepare and reproduce patient education materials, and informed consent work sheets. Contract Oracle data...identified. Electronic peak flow meters have been purchased. Patient education materials and informed consent documents have been reproduced. A web-based...Research Center * Study population identified via military and Foundation Health databases * Electronic peak flow meters purchased * Patient education materials

  15. Impact of Reservoir Operation to the Inflow Flood - a Case Study of Xinfengjiang Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, L.

    2017-12-01

    Building of reservoir shall impact the runoff production and routing characteristics, and changes the flood formation. This impact, called as reservoir flood effect, could be divided into three parts, including routing effect, volume effect and peak flow effect, and must be evaluated in a whole by using hydrological model. After analyzing the reservoir flood formation, the Liuxihe Model for reservoir flood forecasting is proposed. The Xinfengjiang Reservoir is studied as a case. Results show that the routing effect makes peak flow appear 4 to 6 hours in advance, volume effect is bigger for large flood than small one, and when rainfall focus on the reservoir area, this effect also increases peak flow largely, peak flow effect makes peak flow increase 6.63% to 8.95%. Reservoir flood effect is obvious, which have significant impact to reservoir flood. If this effect is not considered in the flood forecasting model, the flood could not be forecasted accurately, particularly the peak flow. Liuxihe Model proposed for Xinfengjiang Reservoir flood forecasting has a good performance, and could be used for real-time flood forecasting of Xinfengjiang Reservoir.Key words: Reservoir flood effect, reservoir flood forecasting, physically based distributed hydrological model, Liuxihe Model, parameter optimization

  16. Ensemble catchment hydrological modelling for climate change impact analysis

    NASA Astrophysics Data System (ADS)

    Vansteenkiste, Thomas; Ntegeka, Victor; Willems, Patrick

    2014-05-01

    It is vital to investigate how the hydrological model structure affects the climate change impact given that future changes not in the range for which the models were calibrated or validated are likely. Thus an ensemble modelling approach which involves a diversity of models with different structures such as spatial resolutions and process descriptions is crucial. The ensemble modelling approach was applied to a set of models: from the lumped conceptual models NAM, PDM and VHM, an intermediate detailed and distributed model WetSpa, to the highly detailed and fully distributed model MIKE-SHE. Explicit focus was given to the high and low flow extremes. All models were calibrated for sub flows and quick flows derived from rainfall and potential evapotranspiration (ETo) time series. In general, all models were able to produce reliable estimates of the flow regimes under the current climate for extreme peak and low flows. An intercomparison of the low and high flow changes under changed climatic conditions was made using climate scenarios tailored for extremes. Tailoring was important for two reasons. First, since the use of many scenarios was not feasible it was necessary to construct few scenarios that would reasonably represent the range of extreme impacts. Second, scenarios would be more informative as changes in high and low flows would be easily traced to changes of ETo and rainfall; the tailored scenarios are constructed using seasonal changes that are defined using different levels of magnitude (high, mean and low) for rainfall and ETo. After simulation of these climate scenarios in the five hydrological models, close agreement was found among the models. The different models predicted similar range of peak flow changes. For the low flows, however, the differences in the projected impact range by different hydrological models was larger, particularly for the drier scenarios. This suggests that the hydrological model structure is critical in low flow predictions, more than in high flow conditions. Hence, the mechanism of the slow flow component simulation requires further attention. It is concluded that a multi-model ensemble approach where different plausible model structures are applied, is extremely useful. It improves the reliability of climate change impact results and allows decision making to be based on uncertainty assessment that includes model structure related uncertainties. References: Ntegeka, V., Baguis, P., Roulin, E., Willems, P., 2014. Developing tailored climate change scenarios for hydrological impact assessments. Journal of Hydrology, 508C, 307-321 Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., Willems, P., De Smedt, F., Batelaan, O., 2013. Climate change impact on river flows and catchment hydrology: a comparison of two spatially distributed models. Hydrological Processes, 27(25), 3649-3662. Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., Van Steenbergen, N., De Smedt, F., Batelaan, O., Pereira, F., Willems, P., 2014. Intercomparison of five lumped and distributed models for catchment runoff and extreme flow simulation. Journal of Hydrology, in press. Vansteenkiste, Th., Tavakoli, M., Ntegeka, V., De Smedt, F., Batelaan, O., Pereira, F., Willems, P., 2014. Intercomparison of climate scenario impact predictions by a lumped and distributed model ensemble. Journal of Hydrology, in revision.

  17. Peak-flow frequency estimates based on data through water year 2001 for selected streamflow-gaging stations in South Dakota

    USGS Publications Warehouse

    Sando, Steven K.; Driscoll, Daniel G.; Parrett, Charles

    2008-01-01

    Numerous users, including the South Dakota Department of Transportation, have continuing needs for peak-flow information for the design of highway infrastructure and many other purposes. This report documents results from a cooperative study between the South Dakota Department of Transportation and the U.S. Geological Survey to provide an update of peak-flow frequency estimates for South Dakota. Estimates of peak-flow magnitudes for 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals are reported for 272 streamflow-gaging stations, which include most gaging stations in South Dakota with 10 or more years of systematic peak-flow records through water year 2001. Recommended procedures described in Bulletin 17B were used as primary guidelines for developing peak-flow frequency estimates. The computer program PEAKFQ developed by the U.S. Geological Survey was used to run the frequency analyses. Flood frequencies for all stations were initially analyzed by using standard Bulletin 17B default procedures for fitting the log-Pearson III distribution. The resulting preliminary frequency curves were then plotted on a log-probability scale, and fits of the curves with systematic data were evaluated. In many cases, results of the default Bulletin 17B analyses were determined to be satisfactory. In other cases, however, the results could be improved by using various alternative procedures for frequency analysis. Alternative procedures for some stations included adjustments to skew coefficients or use of user-defined low-outlier criteria. Peak-flow records for many gaging stations are strongly influenced by low- or zero-flow values. This situation often results in a frequency curve that plots substantially above the systematic record data points at the upper end of the frequency curve. Adjustments to low-outlier criteria reduced the influence of very small peak flows and generally focused the analyses on the upper parts of the frequency curves (10- to 500-year recurrence intervals). The most common alternative procedures involved several different methods to extend systematic records, which was done primarily to address biases resulting from nonrepresentative climatic conditions during several specific periods of record and to reduce inconsistencies among multiple gaging stations along common stream channels with different periods of record. In some cases, records for proximal stations could be combined directly. In other cases, the two-station comparison procedure recommended in Bulletin 17B was used to adjust the mean and standard deviation of the logs of the systematic data for a target station on the basis of correlation with concurrent records from a nearby long-term index station. In some other cases, a 'mixed-station procedure' was used to adjust the log-distributional parameters for a target station, on the basis of correlation with one or more index stations, for the purpose of fitting the log-Pearson III distribution. Historical adjustment procedures were applied to peak-flow frequency analyses for 17 South Dakota gaging stations. A historical adjustment period extending back to 1881 (121 years) was used for 12 gaging stations in the James and Big Sioux River Basins, and various other adjustment periods were used for additional stations. Large peak flows that occurred in 1969 and 1997 accounted for 13 of the 17 historical adjustments. Other years for which historical peak flows were used include 1957, 1962, 1992, and 2001. A regional mixed-population analysis was developed to address complications associated with many high outliers for the Black Hills region. This analysis included definition of two populations of flood events. The population of flood events that composes the main body of peak flows for a given station is considered the 'ordinary-peaks population,' and the population of unusually large peak flows that plot substantially above the main body of peak flows on log-probability scale is co

  18. A Characterization of the Radiation from a Rod-Pinch Diode

    NASA Astrophysics Data System (ADS)

    Swanekamp, Stephen B.; Allen, Raymond J.; Hinshelwood, David D.; Mosher, David; Schumer, Joseph W.

    2002-12-01

    Coupled PIC-Monte-Carlo simulations of the electron-flow and radiation production in a rod-pinch diode show that multiple scatterings in the rod produce incident electron energies that ranging from zero to slightly higher than the applied voltage. It is speculated that those electrons that gain energy do so by remaining in phase with a rapidly varying electric field near the tip of the rod. The simulations also show that multiple passes in the rod produce a wide spread in incident electron angles. For diode voltages of V=2 MV, the angular distribution of electrons incident on the rod is broad and peaked near 90° to the axis of the rod with a larger fraction of electrons striking the rod at angles less than 90°. The electron angular distribution for V=4 MV is narrower and peaked at 105° with a larger fraction of electrons incident on the rod with angles greater than 90°. The photon distributions are peaked along the direction of the high-energy electrons. For V=2 MV the dose filtered through 21/4-cm thick Plexiglas is peaked at 90° and is 1.8 times higher than the forward-directed [0°] dose. For V=4 MV the dose filtered through 21/4-cm thick Plexiglas is peaked at 120° and is 2.3 times higher than the forward-directed dose. Similar angular variation of the dose has been observed on the 4-MV Asterix accelerator [2] and on 1-2 MV accelerators at the Atomic Weapons Establishment [8].

  19. Rényi information flow in the Ising model with single-spin dynamics.

    PubMed

    Deng, Zehui; Wu, Jinshan; Guo, Wenan

    2014-12-01

    The n-index Rényi mutual information and transfer entropies for the two-dimensional kinetic Ising model with arbitrary single-spin dynamics in the thermodynamic limit are derived as functions of ensemble averages of observables and spin-flip probabilities. Cluster Monte Carlo algorithms with different dynamics from the single-spin dynamics are thus applicable to estimate the transfer entropies. By means of Monte Carlo simulations with the Wolff algorithm, we calculate the information flows in the Ising model with the Metropolis dynamics and the Glauber dynamics, respectively. We find that not only the global Rényi transfer entropy, but also the pairwise Rényi transfer entropy, peaks in the disorder phase.

  20. Two-station comparison of peak flows to improve flood-frequency estimates for seven streamflow-gaging stations in the Salmon and Clearwater River Basins, Central Idaho

    USGS Publications Warehouse

    Berenbrock, Charles

    2003-01-01

    Improved flood-frequency estimates for short-term (10 or fewer years of record) streamflow-gaging stations were needed to support instream flow studies by the U.S. Forest Service, which are focused on quantifying water rights necessary to maintain or restore productive fish habitat. Because peak-flow data for short-term gaging stations can be biased by having been collected during an unusually wet, dry, or otherwise unrepresentative period of record, the data may not represent the full range of potential floods at a site. To test whether peak-flow estimates for short-term gaging stations could be improved, the two-station comparison method was used to adjust the logarithmic mean and logarithmic standard deviation of peak flows for seven short-term gaging stations in the Salmon and Clearwater River Basins, central Idaho. Correlation coefficients determined from regression of peak flows for paired short-term and long-term (more than 10 years of record) gaging stations over a concurrent period of record indicated that the mean and standard deviation of peak flows for all short-term gaging stations would be improved. Flood-frequency estimates for seven short-term gaging stations were determined using the adjusted mean and standard deviation. The original (unadjusted) flood-frequency estimates for three of the seven short-term gaging stations differed from the adjusted estimates by less than 10 percent, probably because the data were collected during periods representing the full range of peak flows. Unadjusted flood-frequency estimates for four short-term gaging stations differed from the adjusted estimates by more than 10 percent; unadjusted estimates for Little Slate Creek and Salmon River near Obsidian differed from adjusted estimates by nearly 30 percent. These large differences probably are attributable to unrepresentative periods of peak-flow data collection.

  1. Simulation of streamflow in the McTier Creek watershed, South Carolina

    USGS Publications Warehouse

    Feaster, Toby D.; Golden, Heather E.; Odom, Kenneth R.; Lowery, Mark A.; Conrads, Paul; Bradley, Paul M.

    2010-01-01

    The McTier Creek watershed is located in the Sand Hills ecoregion of South Carolina and is a small catchment within the Edisto River Basin. Two watershed hydrology models were applied to the McTier Creek watershed as part of a larger scientific investigation to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River Basin. The two models are the topography-based hydrological model (TOPMODEL) and the grid-based mercury model (GBMM). TOPMODEL uses the variable-source area concept for simulating streamflow, and GBMM uses a spatially explicit modified curve-number approach for simulating streamflow. The hydrologic output from TOPMODEL can be used explicitly to simulate the transport of mercury in separate applications, whereas the hydrology output from GBMM is used implicitly in the simulation of mercury fate and transport in GBMM. The modeling efforts were a collaboration between the U.S. Geological Survey and the U.S. Environmental Protection Agency, National Exposure Research Laboratory. Calibrations of TOPMODEL and GBMM were done independently while using the same meteorological data and the same period of record of observed data. Two U.S. Geological Survey streamflow-gaging stations were available for comparison of observed daily mean flow with simulated daily mean flow-station 02172300, McTier Creek near Monetta, South Carolina, and station 02172305, McTier Creek near New Holland, South Carolina. The period of record at the Monetta gage covers a broad range of hydrologic conditions, including a drought and a significant wet period. Calibrating the models under these extreme conditions along with the normal flow conditions included in the record enhances the robustness of the two models. Several quantitative assessments of the goodness of fit between model simulations and the observed daily mean flows were done. These included the Nash-Sutcliffe coefficient of model-fit efficiency index, Pearson's correlation coefficient, the root mean square error, the bias, and the mean absolute error. In addition, a number of graphical tools were used to assess how well the models captured the characteristics of the observed data at the Monetta and New Holland streamflow-gaging stations. The graphical tools included temporal plots of simulated and observed daily mean flows, flow-duration curves, single-mass curves, and various residual plots. The results indicated that TOPMODEL and GBMM generally produced simulations that reasonably capture the quantity, variability, and timing of the observed streamflow. For the periods modeled, the total volume of simulated daily mean flows as compared to the total volume of the observed daily mean flow from TOPMODEL was within 1 to 5 percent, and the total volume from GBMM was within 1 to 10 percent. A noticeable characteristic of the simulated hydrographs from both models is the complexity of balancing groundwater recession and flow at the streamgage when flows peak and recede rapidly. However, GBMM results indicate that groundwater recession, which affects the receding limb of the hydrograph, was more difficult to estimate with the spatially explicit curve number approach. Although the purpose of this report is not to directly compare both models, given the characteristics of the McTier Creek watershed and the fact that GBMM uses the spatially explicit curve number approach as compared to the variable-source-area concept in TOPMODEL, GBMM was able to capture the flow characteristics reasonably well.

  2. A hydrodynamics-informed, radiation model for HESS J0632+057 from radio to gamma rays

    NASA Astrophysics Data System (ADS)

    Barkov, Maxim V.; Bosch-Ramon, Valenti

    2018-06-01

    Relativistic hydrodynamical simulations of the eccentric gamma-ray binary HESS J0632+057 show that the energy of a putative pulsar wind should accumulate in the binary surroundings between periastron and apastron, being released by fast advection close to apastron. To assess whether this could lead to a maximum of the non-thermal emission before apastron, we derive simple prescriptions for the non-thermal energy content, the radiation efficiency, and the impact of energy losses on non-thermal particles, in the simulated hydrodynamical flow. These prescriptions are used to estimate the non-thermal emission in radio, X-rays, GeV, and TeV, from the shocked pulsar wind in a binary system simulated using a simplified 3-dimensional scheme for several orbital cycles. Lightcurves at different wavelengths are derived, together with synthetic radio images for different orbital phases. The dominant peak in the computed lightcurves is broad and appears close to, but before, apastron. This peak is followed by a quasi-plateau shape, and a minor peak only in gamma rays right after periastron. The radio maps show ejection of radio blobs before apastron in the periastron-apastron direction. The results show that a scenario with a highly eccentric high-mass binary hosting a young pulsar can explain the general phenomenology of HESS J0632+057: despite its simplicity, the adopted approach yields predictions that are robust at a semi-quantitative level and consistent with multiwavelength observations.

  3. Computation of Unsteady Flow in Flame Trench For Prediction of Ignition Overpressure Waves

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Kris, Cetin

    2010-01-01

    Computational processes/issues for supporting mission tasks are discussed using an example from launch environment simulation. Entire CFD process has been discussed using an existing code; STS-124 conditions were revisited to support wall repair effort for STS-125 flight; when water bags were not included, computed results indicate that IOP waves with the peak values have been reflected from SRB s own exhaust hole; ARES-1X simulations show that there is a shock wave going through the unused exhaust hole, however, it plays a secondary role; all three ARES-1X cases and STS-1 simulations showed very similar IOP magnitudes and patters on the vehicle; with the addition of water bags and water injection, it will further diminish the IOP effects.

  4. Periodic and aperiodic flow patterns around an airfoil with leading-edge protuberances

    NASA Astrophysics Data System (ADS)

    Cai, Chang; Zuo, Zhigang; Maeda, Takao; Kamada, Yasunari; Li, Qing'an; Shimamoto, Kensei; Liu, Shuhong

    2017-11-01

    Recently leading-edge protuberances have attracted great attention as a passive method for separation control. In this paper, the effect of multiple leading-edge protuberances on the performance of a two-dimensional airfoil is investigated through experimental measurement of aerodynamic forces, surface tuft visualization, and numerical simulation. In contrast to the sharp stall of the baseline airfoil with large hysteresis effect during AOA (angle of attack) increasing and decreasing, the stall process of the modified airfoil with leading-edge protuberances is gentle and stable. Flow visualization revealed that the flow past each protuberance is periodic and symmetric at small AOAs. Streamwise vortices are generated on the shoulders of the protuberance, leading to a larger separation around the valley sections and a longer attachment along the peak sections. When some critical AOA is exceeded, aperiodic and asymmetric flow patterns occur on the protuberances at different spanwise positions, with leading-edge separation on some of the valley sections and non-stalled condition elsewhere. A combined mechanism, involving both the compartmentalization effect of the slender momentum-enhanced attached flows on the protuberance peaks and the downwash effect of the local stalled region with low circulation, is proposed to explain the generation of the aperiodic flow patterns. The influence of the number of protuberances is also investigated, which shows similar aperiodic flow patterns. The distance between the neighboring local stalled valley sections is found to be in the range of 4-7 times the protuberance wavelength. According to the proposed mechanism, it is speculated that the distance between the neighboring local stalled valley sections is inclined to increase with a smaller protuberance amplitude or at a larger AOA.

  5. Effects of Wildfire on the Hydrology of Capulin and Rito de los Frijoles canyons, Bandelier National Monument, New Mexico

    USGS Publications Warehouse

    Veenhuis, Jack E.

    2002-01-01

    In June of 1977, the La Mesa wildfire burned 15,270 acres in and around Frijoles Canyon in Bandelier National Monument and the adjacent Santa Fe National Forest, New Mexico. The Dome wildfire in April of 1996 in Bandelier National Monument burned 16,516 acres in Capulin Canyon and the surrounding Dome Wilderness area. Both watersheds are characterized by abundant and extensive archeological sites that could be affected by increased runoff and accelerated rates of erosion, which typically occur after a wildfire. The U.S. Geological Survey in cooperation with the National Park Service monitored the wildfires' effects on streamflow in both canyons. The magnitude of large stormflows increased dramatically after these wildfires; peak flows at the most downstream streamflow-gaging station in Frijoles and Capulin Canyons increased to about 160 times the maximum recorded flood prior to the fire. Maximum peak flow was 3,030 cubic feet per second at the gaging station in Frijoles Canyon (drainage area equals 18.1 square miles) and 3,630 cubic feet per second at the most downstream crest-stage gage in Capulin Canyon (drainage area equals 14.1 square miles). The pre-fire maximum peak flow recorded in these two canyons was 19 and an estimated 25 cubic feet per second, respectively. As vegetation reestablished itself during the second year, the post-fire annual maximum peak flow decreased to about 10 to 15 times the pre-fire annual maximum peak flow. During the third year, maximum annual peak flows decreased to about three to five times the pre-fire maximum peak flow. In the 22 years since the La Mesa wildfire, flood magnitudes have not completely returned to pre-fire size. Post-fire flood magnitudes in Frijoles and Capulin Canyons do not exceed the maximum floods per drainage area for physiographic regions 5 and 6 in New Mexico. For a burned watershed, however, the peak flows that occur after a wildfire are several orders of magnitude larger than normal forested watershed peak flows. The frequency of larger stormflows also increased in response to the effects of the wildfires in both canyons. In Frijoles Canyon, the number of peak stormflows greater than the pre-fire maximum flow of 19 cubic feet per second was 15 in 1977, 9 in 1978, and 5 in 1979, which is about the magnitude of the maximum pre-fire peak flow in both canyons. Again the hydrologic effects of a wildfire seem to be more pronounced for the 3 years following the date of the fire. Likewise, larger peakflows occurred more frequently in Capulin Canyon for the first 3 years after the 1996 wildfire. Median suspended-sediment concentrations in samples collected in Frijoles Canyon in 1977 were 1,330 milligrams per liter; median concentrations were 16 milligrams per liter after the watershed stabilized in 1993-95. The annual load calculated from regression equations for load compared to flow for the first year after the wildfire was 220 times the annual load for the post-recovery period. To convey the increased frequency and magnitude of average flows in Capulin Canyon after the 1996 Dome wildfire, the stream channel in Capulin Canyon increased in flow capacity by widening and downcutting. As Capulin Canyon peak flows have decreased in both magnitude and frequency with vegetative recovery, the stream channel also has slowly begun to readjust. The channel at the most downstream crest-stage gage, which has the shallowest initial valley slope, is showing the first signs of aggradation.

  6. A precipitation-runoff model for part of the Ninemile Creek Watershed near Camillus, Onondaga County, New York

    USGS Publications Warehouse

    Zarriello, Phillip J.

    1999-01-01

    A precipitation-runoff model, HSPF (Hydrologic Simulation Program Fortran), of a 41.7 square mile part of the Ninemile Creek watershed near Camillus, in central New York, was developed and calibrated to predict the hydrological effects of future suburban development on streamflow, and the effects of stormwater detention on flooding of Ninemile Creek at Camillus. Development was represented in the model in two ways: (1) as a pervious area (open and residential land) that simulates the hydrologic response from mixed pervious and impervious areas that drain to pervious areas, or (2) as an impervious area that drains to channels. Simulations indicate that peak discharges for 30 non-winter storms in 1995-96 would increase by an average of 10 to 37 percent in response to a 10- to 100-percent buildup of developable land represented as open/residential land and by 40 to 68 percent in response to 10 to 100 percent buildup of developable area represented as impervious area. A 10 to 100 percent buildup of developable area represents an impervious area of about 1 to 7 percent of the watershed. A log Pearson Type-III analysis of peak annual discharge for October 1989 through September 1996 for simulations with full development represented as impervious area indicates that stormflows that formerly occurred once every 2 years on average will occur once every 1.5 years, and stormflows that formerly occurred once every 5 years will occur once every 3.3 years.Simulations of a hypothetical 147-acre residential development in the lower part of the watershed with and without stormwater detention indicate that detention basins could cause either increase or decrease downstream flooding of Ninemile Creek at Camillus, depending on the basin.s available storage relative to its inflows and, hence, the timing of its peak outflow in relation to that of the peak discharge in Ninemile Creek; and the degree of flow retention by wetlands and other channel storage that affect the timing of peak discharges. Design and management of detention basins in the watershed will require analysis of each basin.s hydraulic characteristics and location relative to Ninemile Creek to predict their effect on downstream flooding. The runoff model described herein can be used to evaluate alternative detention basin designs and locations.

  7. Wave breaking induced surface wakes and jets observed during a bora event

    NASA Astrophysics Data System (ADS)

    Jiang, Qingfang; Doyle, James D.

    2005-09-01

    An observational and modeling study of a bora event that occurred during the field phase of the Mesoscale Alpine Programme is presented. Research aircraft in-situ measurements and airborne remote-sensing observations indicate the presence of strong low-level wave breaking and alternating surface wakes and jets along the Croatian coastline over the Adriatic Sea. The observed features are well captured by a high-resolution COAMPS simulation. Analysis of the observations and modeling results indicate that the long-extending wakes above the boundary layer are induced by dissipation associated with the low-level wave breaking, which locally tends to accelerate the boundary layer flow beneath the breaking. Farther downstream of the high peaks, a hydraulic jump occurs in the boundary layer, which creates surface wakes. Downstream of lower-terrain (passes), the boundary layer flow stays strong, resembling supercritical flow.

  8. Analysis of flow patterns in a patient-specific aortic dissection model.

    PubMed

    Cheng, Z; Tan, F P P; Riga, C V; Bicknell, C D; Hamady, M S; Gibbs, R G J; Wood, N B; Xu, X Y

    2010-05-01

    Aortic dissection is the most common acute catastrophic event affecting the thoracic aorta. The majority of patients presenting with an uncomplicated type B dissection are treated medically, but 25% of these patients develop subsequent aneurysmal dilatation of the thoracic aorta. This study aimed at gaining more detailed knowledge of the flow phenomena associated with this condition. Morphological features and flow patterns in a dissected aortic segment of a presurgery type B dissection patient were analyzed based on computed tomography images acquired from the patient. Computational simulations of blood flow in the patient-specific model were performed by employing a correlation-based transitional version of Menter's hybrid k-epsilon/k-omega shear stress transport turbulence model implemented in ANSYS CFX 11. Our results show that the dissected aorta is dominated by locally highly disturbed, and possibly turbulent, flow with strong recirculation. A significant proportion (about 80%) of the aortic flow enters the false lumen, which may further increase the dilatation of the aorta. High values of wall shear stress have been found around the tear on the true lumen wall, perhaps increasing the likelihood of expanding the tear. Turbulence intensity in the tear region reaches a maximum of 70% at midsystolic deceleration phase. Incorporating the non-Newtonian behavior of blood into the same transitional flow model has yielded a slightly lower peak wall shear stress and higher maximum turbulence intensity without causing discernible changes to the distribution patterns. Comparisons between the laminar and turbulent flow simulations show a qualitatively similar distribution of wall shear stress but a significantly higher magnitude with the transitional turbulence model.

  9. Water balance in irrigation districts. Uncertainty in on-demand pressurized networks

    NASA Astrophysics Data System (ADS)

    Sánchez-Calvo, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco Vicente

    2015-04-01

    In on-demand pressurized irrigation distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions. A pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. Theoretical flow rates values have been introduced into a PRV behavioral model, validated in laboratory, coupled with an on-demand irrigation district waterworks, composed by a distribution network and a multi-pump station. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of both the PRV and the water distribution network. In this work the estimation of water balance terms during the irrigation events in an irrigation campaign has been simulated. The effect of demand concentration peaks has been estimated.

  10. The Role of Small Impoundments on Flow Alteration Within River Networks

    NASA Astrophysics Data System (ADS)

    Brogan, C. O.; Keys, T.; Scott, D.; Burgholzer, R.; Kleiner, J.

    2017-12-01

    Numerous water quality and quantity models have been established to illustrate the ecologic and hydrologic effects of large reservoirs. Smaller, unregulated ponds are often assumed to have a negligible impact on watershed flow regimes even though they overwhelmingly outnumber larger waterbodies. Individually, these small impoundments impart merely a fraction of the flow alteration larger reservoirs do; however, a network of ponds may act cumulatively to alter the flow regime. Many models have attempted to study smaller impoundments but rely on selectively available rating curves or bathymetry surveys. This study created a generalized process to model impoundments of varying size across a 58 square mile watershed exclusively using satellite imagery and publicly available information as inputs. With information drawn from public Army Corps of Engineers databases and LiDAR surveys, it was found that impoundment surface and drainage area served as useful explanatory variables, capable of predicting both pond bathymetry and outlet structure area across the 37 waterbodies modeled within the study area. Working within a flow routing model with inputs from the Chesapeake Bay HSPF model and verified with USGS gauge data, flow simulations were conducted with increasing number of impoundments to quantify how small ponds affect the overall flow regime. As the total impounded volume increased, simulations showed a notable reduction in both low and peak flows. Medium-sized floods increased as the network of ponds and reservoirs stabilized the catchment's streamflow. The results of this study illustrate the importance of including ponded waters into river corridor models to improve downstream management of both water quantity and quality.

  11. RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.15)

    NASA Astrophysics Data System (ADS)

    Long, A. J.

    2015-03-01

    The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, spring flow, groundwater level, or solute transport for a measurement point in response to a system input of precipitation, recharge, or solute injection. I introduce the first version of RRAWFLOW available for download and public use and describe additional options. The open-source code is written in the R language and is available at http://sd.water.usgs.gov/projects/RRAWFLOW/RRAWFLOW.html along with an example model of streamflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution, i.e., the unit-hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Several options are included to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications (e.g., estimating missing periods in a hydrologic record). RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.

  12. Predicting the occurrence of channelized debris flow by an integrated cascading model: A case study of a small debris flow-prone catchment in Zhejiang Province, China

    NASA Astrophysics Data System (ADS)

    Wei, Zhen-lei; Xu, Yue-Ping; Sun, Hong-yue; Xie, Wei; Wu, Gang

    2018-05-01

    Excessive water in a channel is an important factor that triggers channelized debris flows. Floods and debris flows often occur in a cascading manner, and thus, calculating the amount of runoff accurately is important for predicting the occurrence of debris flows. In order to explore the runoff-rainfall relationship, we placed two measuring facilities at the outlet of a small, debris flow-prone headwater catchment to explore the hydrological response of the catchment. The runoff responses generally consisted of a rapid increase in runoff followed by a slower decrease. The peak runoff often occurred after the rainfall ended. The runoff discharge data were simulated by two different modeling approaches, i.e., the NAM model and the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model. The results showed that the NAM model performed better than the HEC-HMS model. The NAM model provided acceptable simulations, while the HEC-HMS model did not. Then, we coupled the calculated results of the NAM model with an empirically based debris flow initiation model to obtain a new integrated cascading disaster modeling system to provide improved disaster preparedness and hazard management. In this case study, we found that the coupled model could correctly predict the occurrence of debris flows. Furthermore, we evaluated the effect of the range of input parameter values on the hydrographical shape of the runoff. We also used the grey relational analysis to conduct a sensitivity analysis of the parameters of the model. This study highlighted the important connections between rainfall, hydrological processes, and debris flow, and it provides a useful prototype model system for operational forecasting of debris flows.

  13. 3-D Vector Flow Estimation With Row-Column-Addressed Arrays.

    PubMed

    Holbek, Simon; Christiansen, Thomas Lehrmann; Stuart, Matthias Bo; Beers, Christopher; Thomsen, Erik Vilain; Jensen, Jorgen Arendt

    2016-11-01

    Simulation and experimental results from 3-D vector flow estimations for a 62 + 62 2-D row-column (RC) array with integrated apodization are presented. A method for implementing a 3-D transverse oscillation (TO) velocity estimator on a 3-MHz RC array is developed and validated. First, a parametric simulation study is conducted, where flow direction, ensemble length, number of pulse cycles, steering angles, transmit/receive apodization, and TO apodization profiles and spacing are varied, to find the optimal parameter configuration. The performance of the estimator is evaluated with respect to relative mean bias ~B and mean standard deviation ~σ . Second, the optimal parameter configuration is implemented on the prototype RC probe connected to the experimental ultrasound scanner SARUS. Results from measurements conducted in a flow-rig system containing a constant laminar flow and a straight-vessel phantom with a pulsating flow are presented. Both an M-mode and a steered transmit sequence are applied. The 3-D vector flow is estimated in the flow rig for four representative flow directions. In the setup with 90° beam-to-flow angle, the relative mean bias across the entire velocity profile is (-4.7, -0.9, 0.4)% with a relative standard deviation of (8.7, 5.1, 0.8)% for ( v x , v y , v z ). The estimated peak velocity is 48.5 ± 3 cm/s giving a -3% bias. The out-of-plane velocity component perpendicular to the cross section is used to estimate volumetric flow rates in the flow rig at a 90° beam-to-flow angle. The estimated mean flow rate in this setup is 91.2 ± 3.1 L/h corresponding to a bias of -11.1%. In a pulsating flow setup, flow rate measured during five cycles is 2.3 ± 0.1 mL/stroke giving a negative 9.7% bias. It is concluded that accurate 3-D vector flow estimation can be obtained using a 2-D RC-addressed array.

  14. Characteristics of the April 2007 Flood at 10 Streamflow-Gaging Stations in Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.; Carlson, Carl S.

    2009-01-01

    A large 'nor'easter' storm on April 15-18, 2007, brought heavy rains to the southern New England region that, coupled with normal seasonal high flows and associated wet soil-moisture conditions, caused extensive flooding in many parts of Massachusetts and neighboring states. To characterize the magnitude of the April 2007 flood, a peak-flow frequency analysis was undertaken at 10 selected streamflow-gaging stations in Massachusetts to determine the magnitude of flood flows at 5-, 10-, 25-, 50-, 100-, 200-, and 500-year return intervals. The magnitude of flood flows at various return intervals were determined from the logarithms of the annual peaks fit to a Pearson Type III probability distribution. Analysis included augmenting the station record with longer-term records from one or more nearby stations to provide a common period of comparison that includes notable floods in 1936, 1938, and 1955. The April 2007 peak flow was among the highest recorded or estimated since 1936, often ranking between the 3d and 5th highest peak for that period. In general, the peak-flow frequency analysis indicates the April 2007 peak flow has an estimated return interval between 25 and 50 years; at stations in the northeastern and central areas of the state, the storm was less severe resulting in flows with return intervals of about 5 and 10 years, respectively. At Merrimack River at Lowell, the April 2007 peak flow approached a 100-year return interval that was computed from post-flood control records and the 1936 and 1938 peak flows adjusted for flood control. In general, the magnitude of flood flow for a given return interval computed from the streamflow-gaging station period-of-record was greater than those used to calculate flood profiles in various community flood-insurance studies. In addition, the magnitude of the updated flood flow and current (2008) stage-discharge relation at a given streamflow-gaging station often produced a flood stage that was considerably different than the flood stage indicated in the flood-insurance study flood profile at that station. Equations for estimating the flow magnitudes for 5-, 10-, 25-, 50-, 100-, 200-, and 500-year floods were developed from the relation of the magnitude of flood flows to drainage area calculated from the six streamflow-gaging stations with the longest unaltered record. These equations produced a more conservative estimate of flood flows (higher discharges) than the existing regional equations for estimating flood flows at ungaged rivers in Massachusetts. Large differences in the magnitude of flood flows for various return intervals determined in this study compared to results from existing regional equations and flood insurance studies indicate a need for updating regional analyses and equations for estimating the expected magnitude of flood flows in Massachusetts.

  15. Performance of a solar augmented heat pump

    NASA Astrophysics Data System (ADS)

    Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.

  16. Hydrodynamic and Longitudinal Impedance Analysis of Cerebrospinal Fluid Dynamics at the Craniovertebral Junction in Type I Chiari Malformation

    PubMed Central

    Martin, Bryn A.; Kalata, Wojciech; Shaffer, Nicholas; Fischer, Paul; Luciano, Mark; Loth, Francis

    2013-01-01

    Elevated or reduced velocity of cerebrospinal fluid (CSF) at the craniovertebral junction (CVJ) has been associated with type I Chiari malformation (CMI). Thus, quantification of hydrodynamic parameters that describe the CSF dynamics could help assess disease severity and surgical outcome. In this study, we describe the methodology to quantify CSF hydrodynamic parameters near the CVJ and upper cervical spine utilizing subject-specific computational fluid dynamics (CFD) simulations based on in vivo MRI measurements of flow and geometry. Hydrodynamic parameters were computed for a healthy subject and two CMI patients both pre- and post-decompression surgery to determine the differences between cases. For the first time, we present the methods to quantify longitudinal impedance (LI) to CSF motion, a subject-specific hydrodynamic parameter that may have value to help quantify the CSF flow blockage severity in CMI. In addition, the following hydrodynamic parameters were quantified for each case: maximum velocity in systole and diastole, Reynolds and Womersley number, and peak pressure drop during the CSF cardiac flow cycle. The following geometric parameters were quantified: cross-sectional area and hydraulic diameter of the spinal subarachnoid space (SAS). The mean values of the geometric parameters increased post-surgically for the CMI models, but remained smaller than the healthy volunteer. All hydrodynamic parameters, except pressure drop, decreased post-surgically for the CMI patients, but remained greater than in the healthy case. Peak pressure drop alterations were mixed. To our knowledge this study represents the first subject-specific CFD simulation of CMI decompression surgery and quantification of LI in the CSF space. Further study in a larger patient and control group is needed to determine if the presented geometric and/or hydrodynamic parameters are helpful for surgical planning. PMID:24130704

  17. An experimental investigation on the subcritical instability in plane Poieseuille flow

    NASA Technical Reports Server (NTRS)

    Nishioka, T.; Honda, S.; Kamibayashi, S.

    1981-01-01

    The relationship between the three dimensional properties of the fundamental flow of a plane Poieseuille flow and subcritical stability was studied. An S-T wave was introduced into the flow and the three dimensional development of the wave observed. Results indicate that: (1) the T-S wave has three dimensional properties which are synchronous with the fundamental flow, but there is damping at microamplitude; (2) when the amplitude reaches a certain threshold, subcritical instability and peak valley bifurcation occur simultaneously and a peak valley structure is formed; (3) this threshold depends to a great extent on the frequency; and (4) after the peak valley bifurcation there is a transition to a turbulent flow by the process of laminar flow collapse identical to that in Blasius flow.

  18. Aerodynamic heating effects on wall-modeled large-eddy simulations of high-speed flows

    NASA Astrophysics Data System (ADS)

    Yang, Xiang; Urzay, Javier; Moin, Parviz

    2017-11-01

    Aerospace vehicles flying at high speeds are subject to increased wall-heating rates because of strong aerodynamic heating in the near-wall region. In wall-modeled large-eddy simulations (WMLES), this near-wall region is typically not resolved by the computational grid. As a result, the effects of aerodynamic heating need to be modeled using an LES wall model. In this investigation, WMLES of transitional and fully turbulent high-speed flows are conducted to address this issue. In particular, an equilibrium wall model is employed in high-speed turbulent Couette flows subject to different combinations of thermal boundary conditions and grid sizes, and in transitional hypersonic boundary layers interacting with incident shock waves. Specifically, the WMLES of the Couette-flow configuration demonstrate that the shear-stress and heat-flux predictions made by the wall model show only a small sensitivity to the grid resolution even in the most adverse case where aerodynamic heating prevails near the wall and generates a sharp temperature peak there. In the WMLES of shock-induced transition in boundary layers, the wall model is tested against DNS and experiments, and it is shown to capture the post-transition aerodynamic heating and the overall heat transfer rate around the shock-impingement zone. This work is supported by AFOSR.

  19. Suppression of Helmholtz resonance using inside acoustic liner

    NASA Astrophysics Data System (ADS)

    Hong, Zhiliang; Dai, Xiwen; Zhou, Nianfa; Sun, Xiaofeng; Jing, Xiaodong

    2014-08-01

    When a Helmholtz resonator is exposed to grazing flow, an unstable shear layer at the opening can cause the occurrence of acoustic resonance under appropriate conditions. In this paper, in order to suppress the flow-induced resonance, the effects of inside acoustic liners placed on the side wall or the bottom of a Helmholtz resonator are investigated. Based on the one-dimensional sound propagation theory, the time domain impedance model of a Helmholtz resonator with inside acoustic liner is derived, and then combined with a discrete vortex model the resonant behavior of the resonator under grazing flow is simulated. Besides, an experiment is conducted to validate the present model, showing significant reduction of the peak sound pressure level achieved by the use of the side-wall liners. And the simulation results match reasonably well with the experimental data. The present results reveal that the inside acoustic liner can not only absorb the resonant sound pressure, but also suppress the fluctuation motion of the shear layer over the opening of the resonator. In all, the impact of the acoustic liners is to dampen the instability of the flow-acoustic coupled system. This demonstrates that it is a convenient and effective method for suppressing Helmholtz resonance by using inside acoustic liner.

  20. Theory to predict particle migration and margination in the pressure-driven channel flow of blood

    NASA Astrophysics Data System (ADS)

    Qi, Qin M.; Shaqfeh, Eric S. G.

    2017-09-01

    The inhomogeneous concentration distribution of erythrocytes and platelets in microchannel flows particularly in directions normal to the mean flow plays a significant role in hemostasis, drug delivery, and microfluidic applications. In this paper, we develop a coarse-grained theory to predict these distributions in pressure-driven channel flow at zero Reynolds number and compare them to experiments and simulations. We demonstrate that the balance between the deformability-induced lift force and the shear-induced diffusion created by hydrodynamic interactions in the suspension results in both a peak concentration of red blood cells at the channel center and a cell-free or Fahraeus-Lindqvist layer near the walls. On the other hand, the absence of a lift force and the strong red blood cell-platelet interactions result in an excess concentration of platelets in the cell-free layer. We demonstrate a strong role of hematocrit (i.e., erythrocyte volume fraction) in determining the cell-free layer thickness and the degree of platelet margination. We also demonstrate that the capillary number of the erythrocytes, based on the membrane shear modulus, plays a relatively insignificant role in the regimes that we have studied. Our theory serves as a good and simple alternative to large-scale computer simulations of the cross-stream transport processes in these mixtures.

  1. Observed and simulated hydrologic response for a first-order catchment during extreme rainfall 3 years after wildfire disturbance

    USGS Publications Warehouse

    Ebel, Brian A.; Rengers, Francis K.; Tucker, Gregory E.

    2016-01-01

    Hydrologic response to extreme rainfall in disturbed landscapes is poorly understood because of the paucity of measurements. A unique opportunity presented itself when extreme rainfall in September 2013 fell on a headwater catchment (i.e., <1 ha) in Colorado, USA that had previously been burned by a wildfire in 2010. We compared measurements of soil-hydraulic properties, soil saturation from subsurface sensors, and estimated peak runoff during the extreme rainfall with numerical simulations of runoff generation and subsurface hydrologic response during this event. The simulations were used to explore differences in runoff generation between the wildfire-affected headwater catchment, a simulated unburned case, and for uniform versus spatially variable parameterizations of soil-hydraulic properties that affect infiltration and runoff generation in burned landscapes. Despite 3 years of elapsed time since the 2010 wildfire, observations and simulations pointed to substantial surface runoff generation in the wildfire-affected headwater catchment by the infiltration-excess mechanism while no surface runoff was generated in the unburned case. The surface runoff generation was the result of incomplete recovery of soil-hydraulic properties in the burned area, suggesting recovery takes longer than 3 years. Moreover, spatially variable soil-hydraulic property parameterizations produced longer duration but lower peak-flow infiltration-excess runoff, compared to uniform parameterization, which may have important hillslope sediment export and geomorphologic implications during long duration, extreme rainfall. The majority of the simulated surface runoff in the spatially variable cases came from connected near-channel contributing areas, which was a substantially smaller contributing area than the uniform simulations.

  2. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble

    PubMed Central

    Dankers, Rutger; Arnell, Nigel W.; Clark, Douglas B.; Falloon, Pete D.; Fekete, Balázs M.; Gosling, Simon N.; Heinke, Jens; Kim, Hyungjun; Masaki, Yoshimitsu; Satoh, Yusuke; Stacke, Tobias; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20–45%) of the global land grid points, particularly in areas where the hydrograph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5–30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies. PMID:24344290

  3. On the utilization of hydrological modelling for road drainage design under climate and land use change.

    PubMed

    Kalantari, Zahra; Briel, Annemarie; Lyon, Steve W; Olofsson, Bo; Folkeson, Lennart

    2014-03-15

    Road drainage structures are often designed using methods that do not consider process-based representations of a landscape's hydrological response. This may create inadequately sized structures as coupled land cover and climate changes can lead to an amplified hydrological response. This study aims to quantify potential increases of runoff in response to future extreme rain events in a 61 km(2) catchment (40% forested) in southwest Sweden using a physically-based hydrological modelling approach. We simulate peak discharge and water level (stage) at two types of pipe bridges and one culvert, both of which are commonly used at Swedish road/stream intersections, under combined forest clear-cutting and future climate scenarios for 2050 and 2100. The frequency of changes in peak flow and water level varies with time (seasonality) and storm size. These changes indicate that the magnitude of peak flow and the runoff response are highly correlated to season rather than storm size. In all scenarios considered, the dimensions of the current culvert are insufficient to handle the increase in water level estimated using a physically-based modelling approach. It also appears that the water level at the pipe bridges changes differently depending on the size and timing of the storm events. The findings of the present study and the approach put forward should be considered when planning investigations on and maintenance for areas at risk of high water flows. In addition, the research highlights the utility of physically-based hydrological models to identify the appropriateness of road drainage structure dimensioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the Piru, Simi, and Verdale Fires of 2003, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.

    2003-01-01

    These maps present preliminary assessments of the probability of debris-flow activity and estimates of peak discharges that can potentially be generated by debris-flows issuing from basins burned by the Piru, Simi and Verdale Fires of October 2003 in southern California in response to the 25-year, 10-year, and 2-year 1-hour rain storms. The probability maps are based on the application of a logistic multiple regression model that describes the percent chance of debris-flow production from an individual basin as a function of burned extent, soil properties, basin gradients and storm rainfall. The peak discharge maps are based on application of a multiple-regression model that can be used to estimate debris-flow peak discharge at a basin outlet as a function of basin gradient, burn extent, and storm rainfall. Probabilities of debris-flow occurrence for the Piru Fire range between 2 and 94% and estimates of debris flow peak discharges range between 1,200 and 6,640 ft3/s (34 to 188 m3/s). Basins burned by the Simi Fire show probabilities for debris-flow occurrence between 1 and 98%, and peak discharge estimates between 1,130 and 6,180 ft3/s (32 and 175 m3/s). The probabilities for debris-flow activity calculated for the Verdale Fire range from negligible values to 13%. Peak discharges were not estimated for this fire because of these low probabilities. These maps are intended to identify those basins that are most prone to the largest debris-flow events and provide information for the preliminary design of mitigation measures and for the planning of evacuation timing and routes.

  5. Effects of forest practices on peak flows and consequent channel response: a state-of-science report for western Oregon and Washington.

    Treesearch

    Gordon E. Grant; Sarah L. Lewis; Frederick J. Swanson; John H. Cissel; Jeffrey J. McDonnell

    2008-01-01

    This is a state-of-the-science synthesis of the effects of forest harvest activities on peak flows and channel morphology in the Pacific Northwest, with a specific focus on western Oregon and Washington. We develop a database of relevant studies reporting peak flow data across rain-, transient-, and snow-dominated hydrologic zones, and provide a quantitative comparison...

  6. Simulation of late inspiratory rise in airway pressure during pressure support ventilation.

    PubMed

    Yu, Chun-Hsiang; Su, Po-Lan; Lin, Wei-Chieh; Lin, Sheng-Hsiang; Chen, Chang-Wen

    2015-02-01

    Late inspiratory rise in airway pressure (LIRAP, Paw/ΔT) caused by inspiratory muscle relaxation or expiratory muscle contraction is frequently seen during pressure support ventilation (PSV), although the modulating factors are unknown. We investigated the effects of respiratory mechanics (normal, obstructive, restrictive, or mixed), inspiratory effort (-2, -8, or -15 cm H2O), flow cycle criteria (5-40% peak inspiratory flow), and duration of inspiratory muscle relaxation (0.18-0.3 s) on LIRAP during PSV using a lung simulator and 4 types of ventilators. LIRAP occurred with all lung models when inspiratory effort was medium to high and duration of inspiratory muscle relaxation was short. The normal lung model was associated with the fastest LIRAP, whereas the obstructive lung model was associated with the slowest. Unless lung mechanics were normal or mixed, LIRAP was unlikely to occur when inspiratory effort was low. Different ventilators were also associated with differences in LIRAP speed. Except for within the restrictive lung model, changes in flow cycle level did not abolish LIRAP if inspiratory effort was medium to high. Increased duration of inspiratory relaxation also led to the elimination of LIRAP. Simulation of expiratory muscle contraction revealed that LIRAP occurred only when expiratory muscle contraction occurred sometime after the beginning of inspiration. Our simulation study reveals that both respiratory resistance and compliance may affect LIRAP. Except for under restrictive lung conditions, LIRAP is unlikely to be abolished by simply lowering flow cycle criteria when inspiratory effort is strong and relaxation time is rapid. LIRAP may be caused by expiratory muscle contraction when it occurs during inspiration. Copyright © 2015 by Daedalus Enterprises.

  7. Using Caspar Creek flow records to test peak flow estimation methods applicable to crossing design

    Treesearch

    Peter H. Cafferata; Leslie M. Reid

    2017-01-01

    Long-term flow records from sub-watersheds in the Caspar Creek Experimental Watersheds were used to test the accuracy of four methods commonly used to estimate peak flows in small forested watersheds: the Rational Method, the updated USGS Magnitude and Frequency Method, flow transference methods, and the NRCS curve number method. Comparison of measured and calculated...

  8. Pairing top-down and bottom-up approaches to analyze catchment scale management of water quality and quantity

    NASA Astrophysics Data System (ADS)

    Lovette, J. P.; Duncan, J. M.; Band, L. E.

    2016-12-01

    Watershed management requires information on the hydrologic impacts of local to regional land use, land cover and infrastructure conditions. Management of runoff volumes, storm flows, and water quality can benefit from large scale, "top-down" screening tools, using readily available information, as well as more detailed, "bottom-up" process-based models that explicitly track local runoff production and routing from sources to receiving water bodies. Regional scale data, available nationwide through the NHD+, and top-down models based on aggregated catchment information provide useful tools for estimating regional patterns of peak flows, volumes and nutrient loads at the catchment level. Management impacts can be estimated with these models, but have limited ability to resolve impacts beyond simple changes to land cover proportions. Alternatively, distributed process-based models provide more flexibility in modeling management impacts by resolving spatial patterns of nutrient source, runoff generation, and uptake. This bottom-up approach can incorporate explicit patterns of land cover, drainage connectivity, and vegetation extent, but are typically applied over smaller areas. Here, we first model peak flood flows and nitrogen loads across North Carolina's 70,000 NHD+ catchments using USGS regional streamflow regression equations and the SPARROW model. We also estimate management impact by altering aggregated sources in each of these models. To address the missing spatial implications of the top-down approach, we further explore the demand for riparian buffers as a management strategy, simulating the accumulation of nutrient sources along flow paths and the potential mitigation of these sources through forested buffers. We use the Regional Hydro-Ecological Simulation System (RHESSys) to model changes across several basins in North Carolina's Piedmont and Blue Ridge regions, ranging in size from 15 - 1,130 km2. The two approaches provide a complementary set of tools for large area screening, followed by smaller, more process based assessment and design tools.

  9. Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification.

    PubMed

    Kellman, Peter; Hansen, Michael S; Nielles-Vallespin, Sonia; Nickander, Jannike; Themudo, Raquel; Ugander, Martin; Xue, Hui

    2017-04-07

    Quantification of myocardial blood flow requires knowledge of the amount of contrast agent in the myocardial tissue and the arterial input function (AIF) driving the delivery of this contrast agent. Accurate quantification is challenged by the lack of linearity between the measured signal and contrast agent concentration. This work characterizes sources of non-linearity and presents a systematic approach to accurate measurements of contrast agent concentration in both blood and myocardium. A dual sequence approach with separate pulse sequences for AIF and myocardial tissue allowed separate optimization of parameters for blood and myocardium. A systems approach to the overall design was taken to achieve linearity between signal and contrast agent concentration. Conversion of signal intensity values to contrast agent concentration was achieved through a combination of surface coil sensitivity correction, Bloch simulation based look-up table correction, and in the case of the AIF measurement, correction of T2* losses. Validation of signal correction was performed in phantoms, and values for peak AIF concentration and myocardial flow are provided for 29 normal subjects for rest and adenosine stress. For phantoms, the measured fits were within 5% for both AIF and myocardium. In healthy volunteers the peak [Gd] was 3.5 ± 1.2 for stress and 4.4 ± 1.2 mmol/L for rest. The T2* in the left ventricle blood pool at peak AIF was approximately 10 ms. The peak-to-valley ratio was 5.6 for the raw signal intensities without correction, and was 8.3 for the look-up-table (LUT) corrected AIF which represents approximately 48% correction. Without T2* correction the myocardial blood flow estimates are overestimated by approximately 10%. The signal-to-noise ratio of the myocardial signal at peak enhancement (1.5 T) was 17.7 ± 6.6 at stress and the peak [Gd] was 0.49 ± 0.15 mmol/L. The estimated perfusion flow was 3.9 ± 0.38 and 1.03 ± 0.19 ml/min/g using the BTEX model and 3.4 ± 0.39 and 0.95 ± 0.16 using a Fermi model, for stress and rest, respectively. A dual sequence for myocardial perfusion cardiovascular magnetic resonance and AIF measurement has been optimized for quantification of myocardial blood flow. A validation in phantoms was performed to confirm that the signal conversion to gadolinium concentration was linear. The proposed sequence was integrated with a fully automatic in-line solution for pixel-wise mapping of myocardial blood flow and evaluated in adenosine stress and rest studies on N = 29 normal healthy subjects. Reliable perfusion mapping was demonstrated and produced estimates with low variability.

  10. Coupling impervious surface rate derived from satellite remote sensing with distributed hydrological model for highly urbanized watershed flood forecasting

    NASA Astrophysics Data System (ADS)

    Dong, L.

    2017-12-01

    Abstract: The original urban surface structure changed a lot because of the rapid development of urbanization. Impermeable area has increased a lot. It causes great pressure for city flood control and drainage. Songmushan reservoir basin with high degree of urbanization is taken for an example. Pixel from Landsat is decomposed by Linear spectral mixture model and the proportion of urban area in it is considered as impervious rate. Based on impervious rate data before and after urbanization, an physically based distributed hydrological model, Liuxihe Model, is used to simulate the process of hydrology. The research shows that the performance of the flood forecasting of high urbanization area carried out with Liuxihe Model is perfect and can meet the requirement of the accuracy of city flood control and drainage. The increase of impervious area causes conflux speed more quickly and peak flow to be increased. It also makes the time of peak flow advance and the runoff coefficient increase. Key words: Liuxihe Model; Impervious rate; City flood control and drainage; Urbanization; Songmushan reservoir basin

  11. Peak Flow Responses to Forest Harvesting and Roads in the Maritime Regions of the Pacific Northwest: A Preferential Hillslope Runoff Perspective

    NASA Astrophysics Data System (ADS)

    Alila, Y.; Schnorbus, M.

    2005-12-01

    The debate regarding peak flow responses to forest clearcutting and road building in the maritime regions of the Pacific Northwest has attracted much attention over the past several decades and its outcome is an important scientific and operational concern. Although there appears to be general consensus that small peak discharge events are increased following forest management activities, little conclusive evidence exists regarding the impact of forest management activities on large events. Statistical tests in traditional paired watershed studies have been used to accept or reject hypotheses regarding peak flow responses to clearcutting and roads but provided no insight into watershed processes and other factors leading to their outcome. Furthermore, statistical analyses of peak flow responses to forestry activities in traditional paired watershed studies are confounded by the many factors that may contribute to management effects on watershed hydrology as well as by issues such as shortness of streamflow records and climate variability. To this end, a new perspective is offered in the debate regarding peak flow responses to clearcutting and road building in the maritime regions of the Pacific Northwest by combining numerical modeling with high-quality hydro-meteorological data collected at the 10-km2 Carnation Creek on the west coast of Vancouver Island, British Columbia (BC). In this approach we explicitly account for changes in evapotranspiration loss, forest road construction and, in particular, introduce the concept of the competing influences of matrix versus preferential hillslope runoff. For scenarios involving road construction, forest clearcutting (52% cut rate) and roads and clearcutting combined, peak discharge increases decrease with decreasing event frequency and statistically significant ( = 0.05) increases in peak flow are confined to events with a 1 year or lower return period. For a range of return periods from 0.17 to 20 years, the effect (i.e. increase in peak discharge) of clearcutting alone is more severe than roads alone whereas the combined effect of roads and clearcutting is equal to the addition of the isolated treatments effects. The lower efficiency of the forest canopy in intercepting rainfall for large storms compared to small storms and the increasing proportion of preferential flow in hillslope runoff as event size increases appears to be the main reason for the declining peak flow response to clearcutting. Changes in soil moisture conditions are thought to be relatively unimportant given the significance of preferential hillslope runoff. The weakening response of peak flows to roads with increasing event size is related to higher subsurface flow rates associated with preferential flow coupled with a general lowering of the water table below road cuts; this reduces direct channel interception of hillslope runoff and tends to offset gains in channel flow from direct culvert discharge from the road network.

  12. Evaluating the efficacy of distributed detention structures to reduce downstream flooding under variable rainfall, antecedent soil, and structural storage conditions

    NASA Astrophysics Data System (ADS)

    Thomas, Nicholas W.; Arenas Amado, Antonio; Schilling, Keith E.; Weber, Larry J.

    2016-10-01

    This research systematically analyzed the influence of antecedent soil wetness, rainfall depth, and the subsequent impact on peak flows in a 45 km2 watershed. Peak flows increased with increasing antecedent wetness and rainfall depth, with the highest peak flows occurring under intense precipitation on wet soils. Flood mitigation structures were included and investigated under full and empty initial storage conditions. Peak flows were reduced at the outlet of the watershed by 3-17%. The highest peak flow reductions occurred in scenarios with dry soil, empty project storage, and low rainfall depths. These analyses showed that with increased rainfall depth, antecedent moisture conditions became increasingly less impactful. Scaling invariance of peak discharges were shown to hold true within this basin and were fit through ordinary least squares regression for each design scenario. Scale-invariance relationships were extrapolated beyond the outlet of the analyzed basin to the point of intersection of with and without structure scenarios. In each scenario extrapolated peak discharge benefits depreciated at a drainage area of approximately 100 km2. The associated drainage area translated to roughly 2 km downstream of the Beaver Creek watershed outlet. This work provides an example of internal watershed benefits of structural flood mitigation efforts, and the impact the may exert outside of the basin. Additionally, the influence of 1.8 million in flood reduction tools was not sufficient to routinely address downstream flood concerns, shedding light on the additional investment required to alter peak flows in large basins.

  13. Computational fluid dynamics simulations of the Late Pleistocene Lake Bonneville flood

    USGS Publications Warehouse

    Abril-Hernández, José M.; Periáñez, Raúl; O'Connor, Jim E.; Garcia-Castellanos, Daniel

    2018-01-01

    At approximately 18.0 ka, pluvial Lake Bonneville reached its maximum level. At its northeastern extent it was impounded by alluvium of the Marsh Creek Fan, which breached at some point north of Red Rock Pass (Idaho), leading to one of the largest floods on Earth. About 5320 km3 of water was discharged into the Snake River drainage and ultimately into the Columbia River. We use a 0D model and a 2D non-linear depth-averaged hydrodynamic model to aid understanding of outflow dynamics, specifically evaluating controls on the amount of water exiting the Lake Bonneville basin exerted by the Red Rock Pass outlet lithology and geometry as well as those imposed by the internal lake geometry of the Bonneville basin. These models are based on field evidence of prominent lake levels, hypsometry and terrain elevations corrected for post-flood isostatic deformation of the lake basin, as well as reconstructions of the topography at the outlet for both the initial and final stages of the flood. Internal flow dynamics in the northern Lake Bonneville basin during the flood were affected by the narrow passages separating the Cache Valley from the main body of Lake Bonneville. This constriction imposed a water-level drop of up to 2.7 m at the time of peak-flow conditions and likely reduced the peak discharge at the lake outlet by about 6%. The modeled peak outlet flow is 0.85·106 m3 s−1. Energy balance calculations give an estimate for the erodibility coefficient for the alluvial Marsh Creek divide of ∼0.005 m y−1 Pa−1.5, at least two orders of magnitude greater than for the underlying bedrock at the outlet. Computing quasi steady-state water flows, water elevations, water currents and shear stresses as a function of the water-level drop in the lake and for the sequential stages of erosion in the outlet gives estimates of the incision rates and an estimate of the outflow hydrograph during the Bonneville Flood: About 18 days would have been required for the outflow to grow from 10% to 100% of its peak value. At the time of peak flow, about 10% of the lake volume would have already exited; eroding about 1 km3 of alluvium from the outlet, and the lake level would have dropped by about 10.6 m.

  14. Dam failure analysis for the Lago El Guineo Dam, Orocovis, Puerto Rico

    USGS Publications Warehouse

    Gómez-Fragoso, Julieta; Heriberto Torres-Sierra,

    2016-08-09

    The U.S. Geological Survey, in cooperation with the Puerto Rico Electric Power Authority, completed hydrologic and hydraulic analyses to assess the potential hazard to human life and property associated with the hypothetical failure of the Lago El Guineo Dam. The Lago El Guineo Dam is within the headwaters of the Río Grande de Manatí and impounds a drainage area of about 4.25 square kilometers.The hydrologic assessment was designed to determine the outflow hydrographs and peak discharges for Lago El Guineo and other subbasins in the Río Grande de Manatí hydrographic basin for three extreme rainfall events: (1) a 6-hour probable maximum precipitation event, (2) a 24-hour probable maximum precipitation event, and (3) a 24-hour, 100-year recurrence rainfall event. The hydraulic study simulated a dam failure of Lago El Guineo Dam using flood hydrographs generated from the hydrologic study. The simulated dam failure generated a hydrograph that was routed downstream from Lago El Guineo Dam through the lower reaches of the Río Toro Negro and the Río Grande de Manatí to determine water-surface profiles developed from the event-based hydrologic scenarios and “sunny day” conditions. The Hydrologic Engineering Center’s Hydrologic Modeling System (HEC–HMS) and Hydrologic Engineering Center’s River Analysis System (HEC–RAS) computer programs, developed by the U.S. Army Corps of Engineers, were used for the hydrologic and hydraulic modeling, respectively. The flow routing in the hydraulic analyses was completed using the unsteady flow module available in the HEC–RAS model.Above the Lago El Guineo Dam, the simulated inflow peak discharges from HEC–HMS resulted in about 550 and 414 cubic meters per second for the 6- and 24-hour probable maximum precipitation events, respectively. The 24-hour, 100-year recurrence storm simulation resulted in a peak discharge of about 216 cubic meters per second. For the hydrologic analysis, no dam failure conditions are considered within the model. The results of the hydrologic simulations indicated that for all hydrologic conditions scenarios, the Lago El Guineo Dam would not experience overtopping. For the dam breach hydraulic analysis, failure by piping was the selected hypothetical failure mode for the Lago El Guineo Dam.Results from the simulated dam failure of the Lago El Guineo Dam using the HEC–RAS model for the 6- and 24-hour probable maximum precipitation events indicated peak discharges below the dam of 1,342.43 and 1,434.69 cubic meters per second, respectively. Dam failure during the 24-hour, 100-year recurrence rainfall event resulted in a peak discharge directly downstream from Lago El Guineo Dam of 1,183.12 cubic meters per second. Dam failure during sunny-day conditions (no precipitation) produced a peak discharge at Lago El Guineo Dam of 1,015.31 cubic meters per second assuming the initial water-surface elevation was at the morning-glory spillway invert elevation.The results of the hydraulic analysis indicate that the flood would extend to many inhabited areas along the stream banks from the Lago El Guineo Dam to the mouth of the Río Grande as a result of the simulated failure of the Lago El Guineo Dam. Low-lying regions in the vicinity of Ciales, Manatí, and Barceloneta, Puerto Rico, are among the regions that would be most affected by failure of the Lago El Guineo Dam. Effects of the flood control (levee) structure constructed in 2000 to provide protection to the low-lying populated areas of Barceloneta, Puerto Rico, were considered in the hydraulic analysis of dam failure. The results indicate that overtopping can be expected in the aforementioned levee during 6- and 24-hour probable maximum precipitation events. The levee was not overtopped during dam failure scenarios under the 24-hour, 100-year recurrence rainfall event or sunny-day conditions.

  15. Optimization of groundwater sampling approach under various hydrogeological conditions using a numerical simulation model

    NASA Astrophysics Data System (ADS)

    Qi, Shengqi; Hou, Deyi; Luo, Jian

    2017-09-01

    This study presents a numerical model based on field data to simulate groundwater flow in both the aquifer and the well-bore for the low-flow sampling method and the well-volume sampling method. The numerical model was calibrated to match well with field drawdown, and calculated flow regime in the well was used to predict the variation of dissolved oxygen (DO) concentration during the purging period. The model was then used to analyze sampling representativeness and sampling time. Site characteristics, such as aquifer hydraulic conductivity, and sampling choices, such as purging rate and screen length, were found to be significant determinants of sampling representativeness and required sampling time. Results demonstrated that: (1) DO was the most useful water quality indicator in ensuring groundwater sampling representativeness in comparison with turbidity, pH, specific conductance, oxidation reduction potential (ORP) and temperature; (2) it is not necessary to maintain a drawdown of less than 0.1 m when conducting low flow purging. However, a high purging rate in a low permeability aquifer may result in a dramatic decrease in sampling representativeness after an initial peak; (3) the presence of a short screen length may result in greater drawdown and a longer sampling time for low-flow purging. Overall, the present study suggests that this new numerical model is suitable for describing groundwater flow during the sampling process, and can be used to optimize sampling strategies under various hydrogeological conditions.

  16. Comparison of phase-contrast MR and flow simulations for the study of CSF dynamics in the cervical spine.

    PubMed

    Lindstrøm, Erika Kristina; Schreiner, Jakob; Ringstad, Geir Andre; Haughton, Victor; Eide, Per Kristian; Mardal, Kent-Andre

    2018-06-01

    Background Investigators use phase-contrast magnetic resonance (PC-MR) and computational fluid dynamics (CFD) to assess cerebrospinal fluid dynamics. We compared qualitative and quantitative results from the two methods. Methods Four volunteers were imaged with a heavily T2-weighted volume gradient echo scan of the brain and cervical spine at 3T and with PC-MR. Velocities were calculated from PC-MR for each phase in the cardiac cycle. Mean pressure gradients in the PC-MR acquisition through the cardiac cycle were calculated with the Navier-Stokes equations. Volumetric MR images of the brain and upper spine were segmented and converted to meshes. Models of the subarachnoid space were created from volume images with the Vascular Modeling Toolkit. CFD simulations were performed with a previously verified flow solver. The flow patterns, velocities and pressures were compared in PC-MR and CFD flow images. Results PC-MR images consistently revealed more inhomogeneous flow patterns than CFD, especially in the anterolateral subarachnoid space where spinal nerve roots are located. On average, peak systolic and diastolic velocities in PC-MR exceeded those in CFD by 31% and 41%, respectively. On average, systolic and diastolic pressure gradients calculated from PC-MR exceeded those of CFD by 11% and 39%, respectively. Conclusions PC-MR shows local flow disturbances that are not evident in typical CFD. The velocities and pressure gradients calculated from PC-MR are systematically larger than those calculated from CFD.

  17. Turbulence in the trachea and its effect on micro-particle deposition

    NASA Astrophysics Data System (ADS)

    Geisler, Taylor; Shaqfeh, Eric; Iaccarino, Gianluca

    2017-11-01

    The health effects of inhaled aerosols are often predicted by extrapolating experimental data taken using nonhuman primate animal studies to humans. While the existence of a laminar-to-turbulent flow transition in the human larynx is widely reported in the literature, it was previously unknown, to our knowledge, whether a similar flow behavior exists in the airways of rhesus monkeys. By using Large Eddy Simulation (LES) in the CT-based airway models of rhesus monkeys we demonstrate the existence of such a flow transition at elevated inspiratory flow rates. The geometries comprise the nasal cavity, larynx, and trachea. We observe turbulence intensity values that peak after the larynx and decay throughout the trachea similar to that of humans. Deposition of inhaled micro-particles is also computed and validated using experiments in 3D-printed model airways with excellent agreement. Deposition in the turbulent regions of the airway (larynx and trachea) is shown to be substantial at elevated flow rates and to depend on the flow unsteadiness. These results provide insight into the fate of inhaled particles in rhesus monkey animal experiments and their connection to human inhalation.

  18. Effects of nearshore recharge on groundwater interactions with a lake in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie M.

    2000-01-01

    The recharge and discharge of groundwater were investigated for a lake basin in the mantled karst terrain of central Florida to determine the relative importance of transient groundwater inflow to the lake water budget. Variably saturated groundwater flow modeling simulated water table responses observed beneath two hillsides radiating outward from the groundwater flow‐through lake. Modeling results indicated that transient water table mounding and groundwater flow reversals in the nearshore region following large daily rainfall events generated most of the net groundwater inflow to the lake. Simulated daily groundwater inflow was greatest following water table mounding near the lake, not following subsequent peaks in the water level of upper basin wells. Transient mounding generated net groundwater inflow to the lake, that is, groundwater inflow in excess of the outflow occurring through the deeper lake bottom. The timing of the modeled net groundwater inflow agreed with an independent lake water budget; however, the quantity was considerably less than the budget‐derived value.

  19. Numerical simulation of the compressible Orszag-Tang vortex. II. Supersonic flow. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picone, J.M.; Dahlburg, R.B.

    The numerical investigation of the Orszag-Tang vortex system in compressible magnetofluids will consider initial conditions with embedded supersonic regions. The simulations have initial average Mach numbers M = 1.0 and 1.5 and beta = 10/3 with Lundquist numbers S = 50, 100, or 200. The behavior of the system differs significantly from that found previously for the incompressible and subsonic analogs. Shocks form at the downstream boundaries of the embedded supersonic regions outside the central magnetic X-point and produce strong local current sheets which dissipate appreciable magnetic energy. Reconnection at the central X-point, which dominates the incompressible and subsonic systems,more » peaks later and has a smaller impact as M increases from 0.6 to 1.5. Similarly, correlation between the momentum and magnetic field begins significant growth later than in subsonic and incompressible flows. The shocks bound large compression regions, which dominate the wavenumber spectra of autocorrelations in mass density, velocity, and magnetic field.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dionne, B.; Tzanos, C. P.

    To support the safety analyses required for the conversion of the Belgian Reactor 2 (BR2) from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, the simulation of a number of loss-of-flow tests, with or without loss of pressure, has been undertaken. These tests were performed at BR2 in 1963 and used instrumented fuel assemblies (FAs) with thermocouples (TC) imbedded in the cladding as well as probes to measure the FAs power on the basis of their coolant temperature rise. The availability of experimental data for these tests offers an opportunity to better establish the credibility of the RELAP5-3D model andmore » methodology used in the conversion analysis. In order to support the HEU to LEU conversion safety analyses of the BR2 reactor, RELAP simulations of a number of loss-of-flow/loss-of-pressure tests have been undertaken. Preliminary analyses showed that the conservative power distributions used historically in the BR2 RELAP model resulted in a significant overestimation of the peak cladding temperature during the transient. Therefore, it was concluded that better estimates of the steady-state and decay power distributions were needed to accurately predict the cladding temperatures measured during the tests and establish the credibility of the RELAP model and methodology. The new approach ('best estimate' methodology) uses the MCNP5, ORIGEN-2 and BERYL codes to obtain steady-state and decay power distributions for the BR2 core during the tests A/400/1, C/600/3 and F/400/1. This methodology can be easily extended to simulate any BR2 core configuration. Comparisons with measured peak cladding temperatures showed a much better agreement when power distributions obtained with the new methodology are used.« less

  1. Estimates of Flow Duration, Mean Flow, and Peak-Discharge Frequency Values for Kansas Stream Locations

    USGS Publications Warehouse

    Perry, Charles A.; Wolock, David M.; Artman, Joshua C.

    2004-01-01

    Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean flow, and peak-discharge frequency values determined at available gaging stations were used to interpolate the regression-estimated flows for the stream locations where available. Streamflow statistics for locations that had uncontrolled flow were interpolated using data from gaging stations weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled reaches of Kansas streams, the streamflow statistics were interpolated between gaging stations using only gaged data weighted by drainage area.

  2. Symmetry Breaking by Parallel Flow Shear

    NASA Astrophysics Data System (ADS)

    Li, Jiacong; Diamond, Patrick

    2015-11-01

    Plasma rotation is important in reducing turbulent transport, suppressing MHD instabilities, and is beneficial to confinement. Intrinsic rotation without an external momentum input is of interest for its plausible application on ITER. k∥ spectrum asymmetry is required for residual Reynolds stress that drives the intrinsic rotation. Parallel flows are reported in linear devices without magnetic shear. In CSDX, parallel flows are mostly peaked in the core [Thakur et al., 2014]; more robust flows and reversed profiles are seen in PANTA [Oldenburger, et al. 2012]. A novel mechanism for symmetry breaking in momentum transport is proposed. Magnetic shear or mean flow profile are not required. A seed parallel flow shear (PFS) sets the sign of residual stress by selecting certain modes to grow faster. The resulted spectrum imbalance leads to a nonzero residual stress, which further drives a parallel flow with ∇n as the free energy source, adding to the shear until saturated by diffusion. Balanced flow gradient is set by Π∥Res /χϕ . Residual stress is calculated for ITG turbulence and collisional drift wave turbulence where electron-ion and electron-neutral collisions are discussed and compared. Numerical simulation is proposed for testing the effect of PFS.

  3. Drag Reduction by Riblets & Sharkskin Denticles: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Boomsma, Aaron

    Riblet films are a passive method of turbulent boundary layer control that can reduce viscous drag. They have been studied with great detail for over 30 years. Although common riblet applications include flows with Adverse Pressure Gradients (APG), nearly all research thus far has been performed in channel flows. Recent research has provided motivation to study riblets in more complicated turbulent flows with claims that riblet drag reduction can double in mild APG common to airfoils at moderate angles of attack. Therefore, in this study, we compare drag reduction by scalloped riblet films between riblets in a zero pressure gradient and those in a mild APG using high-resolution large eddy simulations. In order to gain a fundamental understanding of the relationship between drag reduction and pressure gradient, we simulated several different riblet sizes that encompassed a broad range of s + (riblet width in wall units), similarly to many experimental studies. We found that there was only a slight improvement in drag reduction for riblets in the mild APG. We also observed that peak values of streamwise turbulence intensity, turbulent kinetic energy, and streamwise vorticity scale with riblet width. Primary Reynolds shear stresses and turbulence kinetic energy production however scale with the ability of the riblet to reduce skin-friction. Another turbulent roughness of similar shape and size to riblets is sharkskin. The hydrodynamic function of sharkskin has been under investigation for the past 30 years. Current literature conflicts on whether sharkskin is able to reduce skin friction similarly to riblets. To contribute insights toward reconciling these conflicting views, Direct Numerical Simulations (DNS) are carried out to obtain detailed flow fields around realistic denticles. A sharp interface immersed boundary method is employed to simulate two arrangements of actual sharkskin denticles (from Isurus oxyrinchus) in a turbulent boundary layer at Retau ≈ 180. For comparison, turbulent flow over drag-reducing scalloped riblets is also simulated with similar flow conditions and with the same numerical method. Although the denticles resemble riblets, both sharkskin arrangements increase total drag by 44-50%, while the riblets reduce drag by 5%. Analysis of the simulated flow fields shows that the turbulent flow around denticles is highly three-dimensional and separated, with 25% of the total drag being form drag. The complex three-dimensional shape of the denticles gives rise to a mean flow dominated by strong secondary flows in sharp contrast with the mean flow generated by riblets, which is largely two-dimensional. The so resulting three-dimensionality of sharkskin flows leads to an increase in the magnitude of the turbulence statistics near the denticles, which further contributes to increasing the total drag. The simulations also show that, at least for the simulated arrangements, sharkskin, in sharp contrast with drag-reducing riblets, is unable to isolate high shear stress near denticle ridges causing a significant portion of the denticle surface to be exposed to high mean shear. Lastly, it has been theorized that sharkskin might act similarly to vortex generators and prevent separation. In order to test this theory, we have conducted simulations with and without sharkskin upstream of a steady separation bubble. Using large eddy simulation, our study shows that sharkskin worsened the weak separation region and enlarged the separation bubble's boundaries. The cause was shown to originate due to the denticles acting as blockages, rather than vortex generators. In fact, our results showed that separation occurred just after the second row of denticles and that the turbulent flow was unable to recover its lost momentum. Streamwise turbulence intensities were decreased compared to the baseline case. Finally, in the present case, the sharkskin induced reversed flow within the denticles---something that was not observed with sharkskin in channel flow.

  4. Numerical Simulation of the Vortex-Induced Vibration of A Curved Flexible Riser in Shear Flow

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-jun; Lin, Peng-zhi

    2018-06-01

    A series of fully three-dimensional (3D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185-1015. The numerical results obtained by the two-way fluid-structure interaction (FSI) simulations are in good agreement with the experimental results reported in the earlier study. It is further found that the frequency transition is out of phase not only in the inline (IL) and crossflow (CF) directions but also along the span direction. The mode competition leads to the non-zero nodes of the rootmean- square (RMS) amplitude and the relatively chaotic trajectories. The fluid-structure interaction is to some extent reflected by the transverse velocity of the ambient fluid, which reaches the maximum value when the riser reaches the equilibrium position. Moreover, the local maximum transverse velocities occur at the peak CF amplitudes, and the values are relatively large when the vibration is in the resonance regions. The 3D vortex columns are shed nearly parallel to the axis of the curved flexible riser. As the local Reynolds number increases from 0 at the bottom of the riser to the maximum value at the top, the wake undergoes a transition from a two-dimensional structure to a 3D one. More irregular small-scale vortices appeared at the wake region of the riser, undergoing large amplitude responses.

  5. Pulsatile flow in a compliant stenosed asymmetric model

    NASA Astrophysics Data System (ADS)

    Usmani, Abdullah Y.; Muralidhar, K.

    2016-12-01

    Time-varying velocity field in an asymmetric constricted tube is experimentally studied using a two-dimensional particle image velocimetry system. The geometry resembles a vascular disease which is characterized by arterial narrowing due to plaque deposition. The present study compares the nature of flow patterns in rigid and compliant asymmetric constricted tubes for a range of dimensionless parameters appearing in a human artery. A blood analogue fluid is employed along with a pump that mimics cardioflow conditions. The peak Reynolds number range is Re 300-800, while the Womersley number range considered in experiments is Wo 6-8. These values are based on the peak velocity in a straight rigid tube connected to the model, over a pulsation frequency range of 1.2-2.4 Hz. The medial-plane velocity distribution is used to investigate the nature of flow patterns. Temporal distribution of stream traces and hemodynamic factors including WSS, TAWSS and OSI at important phases of the pulsation cycle are discussed. The flow patterns obtained from PIV are compared to a limited extent against numerical simulation. Results show that the region downstream of the constriction is characterized by a high-velocity jet at the throat, while a recirculation zone, attached to the wall, evolves in time. Compliant models reveal large flow disturbances upstream during the retrograde flow. Wall shear stress values are lower in a compliant model as compared to the rigid. Cross-plane flow structures normal to the main flow direction are visible at select phases of the cycle. Positive values of largest Lyapunov exponent are realized for wall movement and are indicative of chaotic motion transferred from the flow to the wall. These exponents increase with Reynolds number as well as compliance. Period doubling is observed in wall displacement of highly compliant models, indicating possible triggering of hemodynamic events in a real artery that may cause fissure in the plaque deposits.

  6. RRAWFLOW: Rainfall-Response Aquifer and Watershed Flow Model (v1.11)

    NASA Astrophysics Data System (ADS)

    Long, A. J.

    2014-09-01

    The Rainfall-Response Aquifer and Watershed Flow Model (RRAWFLOW) is a lumped-parameter model that simulates streamflow, springflow, groundwater level, solute transport, or cave drip for a measurement point in response to a system input of precipitation, recharge, or solute injection. The RRAWFLOW open-source code is written in the R language and is included in the Supplement to this article along with an example model of springflow. RRAWFLOW includes a time-series process to estimate recharge from precipitation and simulates the response to recharge by convolution; i.e., the unit hydrograph approach. Gamma functions are used for estimation of parametric impulse-response functions (IRFs); a combination of two gamma functions results in a double-peaked IRF. A spline fit to a set of control points is introduced as a new method for estimation of nonparametric IRFs. Other options include the use of user-defined IRFs and different methods to simulate time-variant systems. For many applications, lumped models simulate the system response with equal accuracy to that of distributed models, but moreover, the ease of model construction and calibration of lumped models makes them a good choice for many applications. RRAWFLOW provides professional hydrologists and students with an accessible and versatile tool for lumped-parameter modeling.

  7. Preferential Flow and Transport of Cryptosporidium Parvum Oocysts Through Vadose Zone: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Darnault, C. J.; Darnault, C. J.; Garnier, P.; Kim, Y.; Oveson, K.; Jenkins, M.; Ghiorse, W.; Baveye, P.; Parlange, J.; Steenhuis, T.

    2001-12-01

    Oocysts of the protozoan Cryptosporidium parvum, when they contaminate drinking water supplies, can cause outbreaks of Cryptosporidiosis, a common waterborne disease. Of the different pathways by which oocysts can wind up in drinking water, one has received very little attention to date; because soils are often considered to be perfect filters, the transport of oocysts through the subsoil to groundwater by preferential flow is generally ignored. To evaluate its significance, three set of laboratory experiments investigated transport of oocysts through vadose zone. Experiment set I was carried out in a vertical 50 cm-long column filled with silica sand, under conditions known to foster fingered flow. Experiment set II investigates the effect of gas-water interfaces by modifying the hydrodynamical conditions in the sand columns with water-repellent sand barriers. Experiment III involved undisturbed soil columns subjected to macropores flow. The sand and soil columns were subjected to artificial rainfall and were allowed to reach steady-state. At that point, feces of contaminated calves were applied at the surface, along with a known amount of KCl to serve as tracer, and rainfall was continued at the same rate. The breakthrough of oocysts and Cl-, monitored in the effluent, demonstrate the importance of preferential flow - fingered flow and macropore flow - on the transport of oocysts through vadose zone. Peak oocyst concentrations were not appreciably delayed, compared to Cl-, and in some cases, occurred even before the Cl- peak. However, the numbers of oocysts present in the effluents were still orders of magnitude higher than the 5 to 10 oocysts per liter that are considerable sufficient to cause cryptosporidiosis in healthy adults. The transport of oocysts was simulated based on a partitioning the soil profile in both a distribution zone and a preferential zone, In particular, the model simulates accurately the markedly asymmetric breakthrough patterns, and the long exponential tailing. The spatial distribution of oocysts suggest a close relationship between oocyst retention and the extent of gas-water interfaces; sharp increases in oocyst numbers are consistently observed in regions of the sand where the water content has steep gradients, and therefore where one expects capillary meniscii to have maximal extent. These observations imply that oocyst transport in the vadose zone is likely to be very limited in the absence of preferential flow. However, experimental results suggest that the transport of oocysts in the subsurface via preferential flow may create a significant risk of groundwater contamination in some situations.

  8. Combination of a higher-tier flow-through system and population modeling to assess the effects of time-variable exposure of isoproturon on the green algae Desmodesmus subspicatus and Pseudokirchneriella subcapitata.

    PubMed

    Weber, Denis; Schaefer, Dieter; Dorgerloh, Michael; Bruns, Eric; Goerlitz, Gerhard; Hammel, Klaus; Preuss, Thomas G; Ratte, Hans Toni

    2012-04-01

    A flow-through system was developed to investigate the effects of time-variable exposure of pesticides on algae. A recently developed algae population model was used for simulations supported and verified by laboratory experiments. Flow-through studies with Desmodesmus subspicatus and Pseudokirchneriella subcapitata under time-variable exposure to isoproturon were performed, in which the exposure patterns were based on the results of FOrum for Co-ordination of pesticide fate models and their USe (FOCUS) model calculations for typical exposure situations via runoff or drain flow. Different types of pulsed exposure events were realized, including a whole range of repeated pulsed and steep peaks as well as periods of constant exposure. Both species recovered quickly in terms of growth from short-term exposure and according to substance dissipation from the system. Even at a peak 10 times the maximum predicted environmental concentration of isoproturon, only transient effects occurred on algae populations. No modified sensitivity or reduced growth was observed after repeated exposure. Model predictions of algal growth in the flow-through tests agreed well with the experimental data. The experimental boundary conditions and the physiological properties of the algae were used as the only model input. No calibration or parameter fitting was necessary. The combination of the flow-through experiments with the algae population model was revealed to be a powerful tool for the assessment of pulsed exposure on algae. It allowed investigating the growth reduction and recovery potential of algae after complex exposure, which is not possible with standard laboratory experiments alone. The results of the combined approach confirm the beneficial use of population models as supporting tools in higher-tier risk assessments of pesticides. Copyright © 2012 SETAC.

  9. Investigation of Unsteady Flow Behavior in Transonic Compressor Rotors with LES and PIV Measurements

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Voges, Melanie; Mueller, Martin; Schiffer, Heinz-Peter

    2009-01-01

    In the present study, unsteady flow behavior in a modern transonic axial compressor rotor is studied in detail with large eddy simulation (LES) and particle image velocimetry (PIV). The main purpose of the study is to advance the current understanding of the flow field near the blade tip in an axial transonic compressor rotor near the stall and peak-efficiency conditions. Flow interaction between the tip leakage vortex and the passage shock is inherently unsteady in a transonic compressor. Casing-mounted unsteady pressure transducers have been widely applied to investigate steady and unsteady flow behavior near the casing. Although many aspects of flow have been revealed, flow structures below the casing cannot be studied with casing-mounted pressure transducers. In the present study, unsteady velocity fields are measured with a PIV system and the measured unsteady flow fields are compared with LES simulations. The currently applied PIV measurements indicate that the flow near the tip region is not steady even at the design condition. This self-induced unsteadiness increases significantly as the compressor rotor operates near the stall condition. Measured data from PIV show that the tip clearance vortex oscillates substantially near stall. The calculated unsteady characteristics of the flow from LES agree well with the PIV measurements. Calculated unsteady flow fields show that the formation of the tip clearance vortex is intermittent and the concept of vortex breakdown from steady flow analysis does not seem to apply in the current flow field. Fluid with low momentum near the pressure side of the blade close to the leading edge periodically spills over into the adjacent blade passage. The present study indicates that stall inception is heavily dependent on unsteady behavior of the flow field near the leading edge of the blade tip section for the present transonic compressor rotor.

  10. Insight from simulations of single-well injection-withdrawal tracer tests on simple and complex fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, C.-F.; Doughty, C.

    2009-08-06

    The single-well injection withdrawal (SWIW) test, a tracer test utilizing only one well, is proposed as a useful contribution to site characterization of fractured rock, as well as providing parameters relevant to tracer diffusion and sorption. The usual conceptual model of flow and solute transport through fractured rock with low matrix permeability involves solute advection and dispersion through a fracture network coupled with diffusion and sorption into the surrounding rock matrix. Unlike two-well tracer tests, results of SWIW tests are ideally independent of advective heterogeneity, channeling and flow dimension, and, instead, focus on diffusive and sorptive characteristics of tracer (solute)more » transport. Thus, they can be used specifically to study such characteristics and evaluate the diffusive parameters associated with tracer transport through fractured media. We conduct simulations of SWIW tests on simple and complex fracture models, the latter being defined as having two subfractures with altered rock blocks in between and gouge material in their apertures. Using parameters from the Aspo site in Sweden, we calculate and study SWIW tracer breakthrough curves (BTCs) from a test involving four days of injection and then withdrawal. By examining the peak concentration C{sub pk} of the SWIW BTCs for a variety of parameters, we confirm that C{sub pk} is largely insensitive to the fracture advective flow properties, in particular to permeability heterogeneity over the fracture plane or to subdividing the flow into two subfractures in the third dimension orthogonal to the fracture plane. The peak arrival time t{sub pk} is not a function of fracture or rock properties, but is controlled by the time schedule of the SWIW test. The study shows that the SWIW test is useful for the study of tracer diffusion-sorption processes, including the effect of the so-called flow-wetted surface (FWS) of the fracture. Calculations with schematic models with different FWS values are conducted and the possibility of direct in situ measurement of FWS with SWIW tests is demonstrated.« less

  11. Performance assessment of retrospective meteorological inputs for use in air quality modeling during TexAQS 2006

    NASA Astrophysics Data System (ADS)

    Ngan, Fong; Byun, Daewon; Kim, Hyuncheol; Lee, Daegyun; Rappenglück, Bernhard; Pour-Biazar, Arastoo

    2012-07-01

    To achieve more accurate meteorological inputs than was used in the daily forecast for studying the TexAQS 2006 air quality, retrospective simulations were conducted using objective analysis and 3D/surface analysis nudging with surface and upper observations. Model ozone using the assimilated meteorological fields with improved wind fields shows better agreement with the observation compared to the forecasting results. In the post-frontal conditions, important factors for ozone modeling in terms of wind patterns are the weak easterlies in the morning for bringing in industrial emissions to the city and the subsequent clockwise turning of the wind direction induced by the Coriolis force superimposing the sea breeze, which keeps pollutants in the urban area. Objective analysis and nudging employed in the retrospective simulation minimize the wind bias but are not able to compensate for the general flow pattern biases inherited from large scale inputs. By using an alternative analyses data for initializing the meteorological simulation, the model can re-produce the flow pattern and generate the ozone peak location closer to the reality. The inaccurate simulation of precipitation and cloudiness cause over-prediction of ozone occasionally. Since there are limitations in the meteorological model to simulate precipitation and cloudiness in the fine scale domain (less than 4-km grid), the satellite-based cloud is an alternative way to provide necessary inputs for the retrospective study of air quality.

  12. Simulation of flow and evaluation of bridge scour at Horse Island Chute Bridge near Chester, Illinois

    USGS Publications Warehouse

    Huizinga, Richard J.; Rydlund, Jr., Paul H.

    2001-01-01

    The evaluation of scour at bridges throughout the State of Missouri has been ongoing since 1991, and most of these evaluations have used one-dimensional hydraulic analysis and application of conventional scour depth equations. Occasionally, the conditions of a site dictate that a more thorough hydraulic assessment is required. To provide the hydraulic parameters required to determine the potential scour depths at the bridge over Horse Island Chute near Chester, Illinois, a two-dimensional finite-element surface-water model (FESWMS-2DH) was used to simulate flood flows in the vicinity of the Missouri State Highway 51 crossing of the Mississippi River and Horse Island Chute. The model was calibrated using flood-flow information collected during the 1993 flood. A flood profile along the Illinois side of the Mississippi River on August 5, 1993, with a corresponding measured discharge of 944,000 cubic feet per second was used to calibrate the model. Two additional flood-flow simulations were run: the flood peak that occurred on August 6, 1993, with a maximum discharge of 1,000,000 cubic feet per second, and the discharge that caused impending overtopping of the road embankment in the vicinity of the Horse Island Chute bridge, with a discharge of 894,000 cubic feet per second (impendent discharge). Hydraulic flow parameters obtained from the simulations were applied to scour depth equations to determine general contraction and local pier and abutment scour depths at the Horse Island Chute bridge. The measured discharge of 944,000 cubic feet per second resulted in 13.3 feet of total combined contraction and local pier scour at Horse Island Chute bridge. The maximum discharge of 1,000,000 cubic feet per second resulted in 15.8 feet of total scour and the impendent discharge of 894,000 cubic feet per second resulted in 11.6 feet of total scour.

  13. Formation of the peak amplitude of blood flow oscillations at a frequency of 0.1 Hz in the human cardiovascular system by the noise effect on the heart

    NASA Astrophysics Data System (ADS)

    Grinevich, Andrey A.; Tankanag, Arina V.; Chemeris, Nikolay K.

    2017-04-01

    In the framework of our previous hypothesis about the participation of structural and hydrodynamic properties of the vascular bed in the formation of the 0.1-Hz component of blood flow oscillations in the human cardiovascular system and on the basis of the reduced hydrodynamic model, the role of additive stochastic perturbations of the operation of the single-chamber pump that simulates the heart was investigated. It was shown that aperiodic noise modulation of the rigidity of the walls of the pump or its valves generates low-frequency oscillations of pressure of arterial vascular bed with the spectral components at a frequency close to 0.1 Hz.

  14. Integrating remotely sensed surface water extent into continental scale hydrology

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Wanders, Niko; Burek, Peter; Salamon, Peter; de Roo, Ad

    2016-12-01

    In hydrological forecasting, data assimilation techniques are employed to improve estimates of initial conditions to update incorrect model states with observational data. However, the limited availability of continuous and up-to-date ground streamflow data is one of the main constraints for large-scale flood forecasting models. This is the first study that assess the impact of assimilating daily remotely sensed surface water extent at a 0.1° × 0.1° spatial resolution derived from the Global Flood Detection System (GFDS) into a global rainfall-runoff including large ungauged areas at the continental spatial scale in Africa and South America. Surface water extent is observed using a range of passive microwave remote sensors. The methodology uses the brightness temperature as water bodies have a lower emissivity. In a time series, the satellite signal is expected to vary with changes in water surface, and anomalies can be correlated with flood events. The Ensemble Kalman Filter (EnKF) is a Monte-Carlo implementation of data assimilation and used here by applying random sampling perturbations to the precipitation inputs to account for uncertainty obtaining ensemble streamflow simulations from the LISFLOOD model. Results of the updated streamflow simulation are compared to baseline simulations, without assimilation of the satellite-derived surface water extent. Validation is done in over 100 in situ river gauges using daily streamflow observations in the African and South American continent over a one year period. Some of the more commonly used metrics in hydrology were calculated: KGE', NSE, PBIAS%, R2, RMSE, and VE. Results show that, for example, NSE score improved on 61 out of 101 stations obtaining significant improvements in both the timing and volume of the flow peaks. Whereas the validation at gauges located in lowland jungle obtained poorest performance mainly due to the closed forest influence on the satellite signal retrieval. The conclusion is that remotely sensed surface water extent holds potential for improving rainfall-runoff streamflow simulations, potentially leading to a better forecast of the peak flow.

  15. Estimated Magnitudes and Recurrence Intervals of Peak Flows on the Mousam and Little Ossipee Rivers for the Flood of April 2007 in Southern Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Stewart, Gregory J.; Cohn, Timothy A.; Dudley, Robert W.

    2007-01-01

    Large amounts of rain fell on southern Maine from the afternoon of April 15, 2007, to the afternoon of April 16, 2007, causing substantial damage to houses, roads, and culverts. This report provides an estimate of the peak flows on two rivers in southern Maine--the Mousam River and the Little Ossipee River--because of their severe flooding. The April 2007 estimated peak flow of 9,230 ft3/s at the Mousam River near West Kennebunk had a recurrence interval between 100 and 500 years; 95-percent confidence limits for this flow ranged from 25 years to greater than 500 years. The April 2007 estimated peak flow of 8,220 ft3/s at the Little Ossipee River near South Limington had a recurrence interval between 100 and 500 years; 95-percent confidence limits for this flow ranged from 50 years to greater than 500 years.

  16. Problems with indirect determinations of peak streamflows in steep, desert stream channels

    USGS Publications Warehouse

    Glancy, Patrick A.; Williams, Rhea P.

    1994-01-01

    Many peak streamflow values used in flood analyses for desert areas are derived using the Manning equation. Data used in the equation are collected after the flow has subsided, and peak flow is thereby determined indirectly. Most measurement problems and associated errors in peak-flow determinations result from (1) channel erosion or deposition that cannot be discerned or properly evaluated after the fact, (2) unsteady and non-uniform flow that rapidly changes in magnitude, and (3) appreciable sediment transport that has unknown effects on energy dissipation. High calculated velocities and Froude numbers are unacceptable to some investigators. Measurement results could be improved by recording flows with a video camera, installing a recording stream gage and recording rain gages, measuring channel scour with buried chains, analyzing measured data by multiple techniques, and supplementing indirect measurements with direct measurements of stream velocities in similar ephemeral streams.

  17. Mineral resources of the Little Black Peak and Carrizozo Lava Flow wilderness study areas, Lincoln County, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeser, D.B.; Senterfit, M.K.; Zelten, J.E.

    1989-01-01

    This book discusses the Little Black Peak and Carrizozo Lava Flow Wilderness Study Areas in east-central New Mexico (24,249 acres) which are underlain by Quaternary basaltic lava flows and upper Paleozoic to Mesozoic sedimentary rocks. The only identified resource is lava from the basalt flows, which is used for road metal, construction materials, and decorative stone. The basalt is classed as an inferred subeconomic resource. Both areas have low resource potential for sediment-hosted uranium and copper oil, gas, coal, and geothermal energy and moderate potential for gypsum and salt. The Little Black Peak area also has low potential for uraniummore » associated with Tertiary alkaline intrusive rocks. Two aeromagnetic anomalies occur beneath the northern part of the Carrizozo lava flow area and the southern part of the Little Black Peak area; the resource potential for these rocks is unknown.« less

  18. Flood of May 2006 in York County, Maine

    USGS Publications Warehouse

    Stewart, Gregory J.; Kempf, Joshua P.

    2008-01-01

    A stalled low-pressure system over coastal New England on Mother's Day weekend, May 13-15, 2006, released rainfall in excess of 15 inches. This flood (sometimes referred to as the 'Mother's Day flood') caused widespread damage to homes, businesses, roads, and structures in southern Maine. The damage to public property in York County was estimated to be $7.5 million. As a result of these damages, a presidential disaster declaration was enacted on May 25, 2006, for York County, Maine. Peak-flow recurrence intervals for eight of the nine streams studied were calculated to be greater than 500 years. The peak-flow recurrence interval of the remaining stream was calculated to be between a 100-year and a 500-year interval. This report provides a detailed description of the May 2006 flood in York County, Maine. Information is presented on peak streamflows and peak-flow recurrence intervals on nine streams, peak water-surface elevations for 80 high-water marks at 25 sites, hydrologic conditions before and after the flood, comparisons with published Flood Insurance Studies, and places the May 2006 flood in context with historical floods in York County. At sites on several streams, differences were observed between peak flows published in the Flood Insurance Studies and those calculated for this study. The differences in the peak flows from the published Flood Insurance Studies and the flows calculated for this report are within an acceptable range for flows calculated at ungaged locations, with the exception of those for the Great Works River and Merriland River. For sites on the Mousam River, Blacksmith Brook, Ogunquit River, and Cape Neddick River, water-surface elevations from Flood Insurance Studies differed with documented water-surface elevations from the 2006 flood.

  19. Color-coded perfusion analysis of CEUS for pre-interventional diagnosis of microvascularisation in cases of vascular malformations.

    PubMed

    Teusch, V I; Wohlgemuth, W A; Piehler, A P; Jung, E M

    2014-01-01

    Aim of our pilot study was the application of a contrast-enhanced color-coded ultrasound perfusion analysis in patients with vascular malformations to quantify microcirculatory alterations. 28 patients (16 female, 12 male, mean age 24.9 years) with high flow (n = 6) or slow-flow (n = 22) malformations were analyzed before intervention. An experienced examiner performed a color-coded Doppler sonography (CCDS) and a Power Doppler as well as a contrast-enhanced ultrasound after intravenous bolus injection of 1 - 2.4 ml of a second-generation ultrasound contrast medium (SonoVue®, Bracco, Milan). The contrast-enhanced examination was documented as a cine sequence over 60 s. The quantitative analysis based on color-coded contrast-enhanced ultrasound (CEUS) images included percentage peak enhancement (%peak), time to peak (TTP), area under the curve (AUC), and mean transit time (MTT). No side effects occurred after intravenous contrast injection. The mean %peak in arteriovenous malformations was almost twice as high as in slow-flow-malformations. The area under the curve was 4 times higher in arteriovenous malformations compared to the mean value of other malformations. The mean transit time was 1.4 times higher in high-flow-malformations compared to slow-flow-malformations. There was no difference regarding the time to peak between the different malformation types. The comparison between all vascular malformation and surrounding tissue showed statistically significant differences for all analyzed data (%peak, TTP, AUC, MTT; p < 0.01). High-flow and slow-flow vascular malformations had statistically significant differences in %peak (p < 0.01), AUC analysis (p < 0.01), and MTT (p < 0.05). Color-coded perfusion analysis of CEUS seems to be a promising technique for the dynamic assessment of microvasculature in vascular malformations.

  20. Decadal oscillations and extreme value distribution of river peak flows in the Meuse catchment

    NASA Astrophysics Data System (ADS)

    De Niel, Jan; Willems, Patrick

    2017-04-01

    In flood risk management, flood probabilities are often quantified through Generalized Pareto distributions of river peak flows. One of the main underlying assumptions is that all data points need to originate from one single underlying distribution (i.i.d. assumption). However, this hypothesis, although generally assumed to be correct for variables such as river peak flows, remains somehow questionable: flooding might indeed be caused by different hydrological and/or meteorological conditions. This study confirms these findings from previous research by showing a clear indication of the link between atmospheric conditions and flooding for the Meuse river in The Netherlands: decadal oscillations of river peak flows can (at least partially) be attributed to the occurrence of westerly weather types. The study further proposes a method to take this correlation between atmospheric conditions and river peak flows into account when calibrating an extreme value distribution for river peak flows. Rather than calibrating one single distribution to the data and potentially violating the i.i.d. assumption, weather type depending extreme value distributions are derived and composed. The study shows that, for the Meuse river in The Netherlands, such approach results in a more accurate extreme value distribution, especially with regards to extrapolations. Comparison of the proposed method with a traditional extreme value analysis approach and an alternative model-based approach for the same case study shows strong differences in the peak flow extrapolation. The design-flood for a 1,250 year return period is estimated at 4,800 m3s-1 for the proposed method, compared with 3,450 m3s-1 and 3,900 m3s-1 for the traditional method and a previous study. The methods were validated based on instrumental and documentary flood information of the past 500 years.

  1. Bora-driven potential vorticity banners over the Adriatic

    NASA Astrophysics Data System (ADS)

    Grubii, Vanda

    2004-10-01

    A case study is presented of the secondary potential vorticity (PV) banners over the northern Adriatic that occurred in an early stage of a bora on 7 November 1999 during the Mesoscale Alpine Programme (MAP) Special Observation Period. The dynamics and structure of the lee-side and cross-mountain flow past the Dinaric Alps were investigated using data collected in a dual-aircraft (NCAR Electra and NOAA P-3) MAP Intensive Observing Period 15 mission over the Adriatic and high-resolution numerical simulations. The observational study employs flight-level, dropsonde, and Scanning Aerosol Backscatter Lidar data. The observed flow structure is compared with simulations results of the COAMPS model run at a horizontal resolution of 3 km. The Dinaric Alps, the north-west/south-east oriented coastal mountain range of Croatia, has an irregular ridge line with a number of peaks in the range of 1.5-2 km with several prominent mountain passes. The identified jet and wake structure within the east-north-easterly bora over the Adriatic was found to be well correlated with the upwind distribution of mountain passes and peaks. The wake flow structure was found also to be in excellent agreement with the climatological profile of the bora strength along the Croatian coast. The attendant secondary PV banners separating individual jets and wakes, diagnosed by computing PV from the flight-level data, were found to have a characteristic horizontal scale of 10-25 km, and a maximum amplitude of up to ~6 pvu within the boundary layer. Over the open sea, the thickness of the boundary layer, within which the east-north-easterly bora also achieved its maximum strength, was approximately 1 km. Detailed comparison with the numerical model results shows that, at the horizontal resolution of 3 km, the COAMPS model reproduces well the overall flow structure. The COAMPS-simulated PV field was found to be in good agreement with the PV derived from observations. The differences in substructure between simulated and experimentally derived PV profiles derive from minor differences between modelled and observed velocity and potential temperature profiles, which are subsequently accentuated by computing differentiated quantities such as vorticity and potential temperature gradients. The high predictability and steadiness of the PV banners, and a good correlation with the geometry of the upwind topography, support the orographic generation mechanism of PV with dissipation in hydraulic jumps and gravity-wave breaking regions as the likely main source of PV.

  2. Transient simulation of coolant peak temperature due to prolonged fan and/or water pump operation after the vehicle is keyed-off

    NASA Astrophysics Data System (ADS)

    Pang, Suh Chyn; Masjuki, Haji Hassan; Kalam, Md. Abul; Hazrat, Md. Ali

    2014-01-01

    Automotive designers should design a robust engine cooling system which works well in both normal and severe driving conditions. When vehicles are keyed-off suddenly after some distance of hill-climbing driving, the coolant temperature tends to increase drastically. This is because heat soak in the engine could not be transferred away in a timely manner, as both the water pump and cooling fan stop working after the vehicle is keyed-off. In this research, we aimed to visualize the coolant temperature trend over time before and after the vehicles were keyed-off. In order to prevent coolant temperature from exceeding its boiling point and jeopardizing engine life, a numerical model was further tested with prolonged fan and/or water pump operation after keying-off. One dimensional thermal-fluid simulation was exploited to model the vehicle's cooling system. The behaviour of engine heat, air flow, and coolant flow over time were varied to observe the corresponding transient coolant temperatures. The robustness of this model was proven by validation with industry field test data. The numerical results provided sensible insights into the proposed solution. In short, prolonging fan operation for 500 s and prolonging both fan and water pump operation for 300 s could reduce coolant peak temperature efficiently. The physical implementation plan and benefits yielded from implementation of the electrical fan and electrical water pump are discussed.

  3. Inner-outer interactions in the convective atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Salesky, S.

    2017-12-01

    Recently, observational and numerical studies have revealed the existence of so-called large scale motions (LSMs) that populate the logarithmic layer of wall-bounded turbulent shear flows and modulate the amplitude and frequency of turbulence dynamics near the ground. Properties of LSMs are well understood in neutrally stratified flows over smooth and rough walls. However, the implications of previous studies for the convective atmospheric boundary layer (CBL) are not entirely clear, since the morphology of both small-scale and large-scale turbulent structures is known to be strongly affected by buoyancy [e.g. Salesky et al., Bound.-Layer Meteorol. 163:41-68 (2017)]. In the present study, inner-outer interactions in the CBL are investigated using a suite of large eddy simulations spanning neutral to highly convective conditions. Simulation results reveal that, as the atmosphere becomes increasingly unstable, the inclination angle of structures near the ground increases from 12-15° to nearly 90°. Furthermore, the scale separation between the inner and outer peaks in the premultiplied velocity spectra decreases until only a single peak remains (comparable in magnitude to the boundary layer depth). The extent to which the amplitude modulation of surface layer turbulence by outer layer structures changes with increasing instability will be considered, following the decoupling procedure proposed by Mathis et al. [J. Fluid Mech., vol 628, 311-337 (2009)]. Frequency modulation of surface layer turbulence also will be examined, following the wavelet analysis approach of Baars et al. [Exp. Fluids, 56:188, (2015)].

  4. Modeling post-fire hydro-geomorphic recovery in the Waldo Canyon Fire

    NASA Astrophysics Data System (ADS)

    Kinoshita, Alicia; Nourbakhshbeidokhti, Samira; Chin, Anne

    2016-04-01

    Wildfire can have significant impacts on watershed hydrology and geomorphology by changing soil properties and removing vegetation, often increasing runoff and soil erosion and deposition, debris flows, and flooding. Watershed systems may take several years or longer to recover. During this time, post-fire channel changes have the potential to alter hydraulics that influence characteristics such as time of concentration and increase time to peak flow, flow capacity, and velocity. Using the case of the 2012 Waldo Canyon Fire in Colorado (USA), this research will leverage field-based surveys and terrestrial Light Detection and Ranging (LiDAR) data to parameterize KINEROS2 (KINematic runoff and EROSion), an event oriented, physically-based watershed runoff and erosion model. We will use the Automated Geospatial Watershed Assessment (AGWA) tool, which is a GIS-based hydrologic modeling tool that uses commonly available GIS data layers to parameterize, execute, and spatially visualize runoff and sediment yield for watersheds impacted by the Waldo Canyon Fire. Specifically, two models are developed, an unburned (Bear Creek) and burned (Williams) watershed. The models will simulate burn severity and treatment conditions. Field data will be used to validate the burned watersheds for pre- and post-fire changes in infiltration, runoff, peak flow, sediment yield, and sediment discharge. Spatial modeling will provide insight into post-fire patterns for varying treatment, burn severity, and climate scenarios. Results will also provide post-fire managers with improved hydro-geomorphic modeling and prediction tools for water resources management and mitigation efforts.

  5. Of cuts and cracks: data analytics on constrained graphs for early prediction of failure in cementitious materials

    NASA Astrophysics Data System (ADS)

    Kahagalage, Sanath; Tordesillas, Antoinette; Nitka, Michał; Tejchman, Jacek

    2017-06-01

    Using data from discrete element simulations, we develop a data analytics approach using network flow theory to study force transmission and failure in a `dog-bone' concrete specimen submitted to uniaxial tension. With this approach, we establish the extent to which the bottlenecks, i.e., a subset of contacts that impedes flow and are prone to becoming overloaded, can predict the location of the ultimate macro-crack. At the heart of this analysis is a capacity function that quantifies, in relative terms, the maximum force that can be transmitted through the different contacts or edges in the network. Here we set this function to be solely governed by the size of the contact area between the deformable spherical grains. During all the initial stages of the loading history, when no bonds are broken, we find the bottlenecks coincide consistently with, and therefore predict, the location of the crack that later forms in the failure regime after peak force. When bonds do start to break, they are spread throughout the specimen: in, near, and far from, the bottlenecks. In one stage leading up to peak force, bonds collectively break in the lower portion of the specimen, momentarily shifting the bottlenecks to this location. Just before and around peak force, however, the bottlenecks return to their original location and remain there until the macro-crack emerges right along the bottlenecks.

  6. Time course of pressure and flow in ascending aorta during ejection.

    PubMed

    Perlini, S; Soldà, P L; Piepoli, M; Calciati, A; Paro, M; Marchetti, G; Meno, F; Finardi, G; Bernardi, L

    1991-02-01

    To analyze aortic flow and pressure relationships, 10 closed-chest anaesthetised dogs were instrumented with electromagnetic aortic flow probes and micromanometers in the left ventricle and ascending aorta. Left ventricular ejection time was divided into: time to peak flow (T1) (both pressure and flow rising), peak flow to peak pressure time (T2) (pressure rising, flow decreasing), and peak pressure to dicrotic notch time (T3) (pressure and flow both decreasing). These time intervals were expressed as percent of total ejection time. Load-active interventions rose markedly T2 (from 4.2 +/- 5.5 to 19.4 +/- 3.5 after phenylephrine (p less than 0.02); from 4.2 +/- 6.5 to 21.2 +/- 5.3 after dextran (p less than 0.02)). Conversely, dobutamine reduced T2 from 4.4 +/- 5.9 to -2.5 +/- 6.5 (p less than 0.05). Thus, during load-active interventions aortic pressure increases for a longer T2 time although forward flow is decreasing, as a result of higher aortic elastic recoil during ejection. Conversely, beta 1-adrenergic stimulation significantly shortens T2. Dynamic pressure-flow relationship is thus continuously changing during ejection. T2 seems to be inversely related to the efficiency of left ventricular ejection dynamics.

  7. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  8. Variable disparity estimation based intermediate view reconstruction in dynamic flow allocation over EPON-based access networks

    NASA Astrophysics Data System (ADS)

    Bae, Kyung-Hoon; Lee, Jungjoon; Kim, Eun-Soo

    2008-06-01

    In this paper, a variable disparity estimation (VDE)-based intermediate view reconstruction (IVR) in dynamic flow allocation (DFA) over an Ethernet passive optical network (EPON)-based access network is proposed. In the proposed system, the stereoscopic images are estimated by a variable block-matching algorithm (VBMA), and they are transmitted to the receiver through DFA over EPON. This scheme improves a priority-based access network by converting it to a flow-based access network with a new access mechanism and scheduling algorithm, and then 16-view images are synthesized by the IVR using VDE. Some experimental results indicate that the proposed system improves the peak-signal-to-noise ratio (PSNR) to as high as 4.86 dB and reduces the processing time to 3.52 s. Additionally, the network service provider can provide upper limits of transmission delays by the flow. The modeling and simulation results, including mathematical analyses, from this scheme are also provided.

  9. Classical and generalized Horton laws for peak flows in rainfall-runoff events.

    PubMed

    Gupta, Vijay K; Ayalew, Tibebu B; Mantilla, Ricardo; Krajewski, Witold F

    2015-07-01

    The discovery of the Horton laws for hydrologic variables has greatly lagged behind geomorphology, which began with Robert Horton in 1945. We define the classical and the generalized Horton laws for peak flows in rainfall-runoff events, which link self-similarity in network geomorphology with river basin hydrology. Both the Horton laws are tested in the Iowa River basin in eastern Iowa that drains an area of approximately 32 400 km(2) before it joins the Mississippi River. The US Geological Survey continuously monitors the basin through 34 stream gauging stations. We select 51 rainfall-runoff events for carrying out the tests. Our findings support the existence of the classical and the generalized Horton laws for peak flows, which may be considered as a new hydrologic discovery. Three different methods are illustrated for estimating the Horton peak-flow ratio due to small sample size issues in peak flow data. We illustrate an application of the Horton laws for diagnosing parameterizations in a physical rainfall-runoff model. The ideas and developments presented here offer exciting new directions for hydrologic research and education.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, A.; Garner, P.; Hanan, N.

    Thermal-hydraulic simulations have been performed using computational fluid dynamics (CFD) for the highly-enriched uranium (HEU) design of the IVG.1M reactor at the Institute of Atomic Energy (IAE) at the National Nuclear Center (NNC) in the Republic of Kazakhstan. Steady-state simulations were performed for both types of fuel assembly (FA), i.e. the FA in rows 1 & 2 and the FA in row 3, as well as for single pins in those FA (600 mm and 800 mm pins). Both single pin calculations and bundle sectors have been simulated for the most conservative operating conditions corresponding to the 10 MW outputmore » power, which corresponds to a pin unit cell Reynolds number of only about 7500. Simulations were performed using the commercial code STAR-CCM+ for the actual twisted pin geometry as well as a straight-pin approximation. Various Reynolds-Averaged Navier-Stokes (RANS) turbulence models gave different results, and so some validation runs with a higher-fidelity Large Eddy Simulation (LES) code were performed given the lack of experimental data. These singled out the Realizable Two-Layer k-ε as the most accurate turbulence model for estimating surface temperature. Single-pin results for the twisted case, based on the average flow rate per pin and peak pin power, were conservative for peak clad surface temperature compared to the bundle results. Also the straight-pin calculations were conservative as compared to the twisted pin simulations, as expected, but the single-pin straight case was not always conservative with regard to the straight-pin bundle. This was due to the straight-pin temperature distribution being strongly influenced by the pin orientation, particularly near the outer boundary. The straight-pin case also predicted the peak temperature to be in a different location than the twisted-pin case. This is a limitation of the straight-pin approach. The peak temperature pin was in a different location from the peak power pin in every case simulated, and occurred at an inner pin just before the enrichment change. The 600 mm case demonstrated a peak clad surface temperature of 370.4 K, while the 800 mm case had a temperature of 391.6 K. These temperatures are well below the necessary temperatures for boiling to occur at the rated pressure. Fuel temperatures are also well below the melting point. Future bundle work will include simulations of the proposed low-enriched uranium (LEU) design. Two transient scenarios were also investigated for the single-pin geometries. Both were “model” problems that were focused on pure thermal-hydraulic behavior, and as such were simple power changes that did not incorporate neutron kinetics modeling. The first scenario was a high-power, ramp increase, while the second scenario was a low-power, step increase. A cylindrical RELAP model was also constructed to investigate its accuracy as compared to the higher-fidelity CFD. Comparisons between the two codes showed good agreement for peak temperatures in the fuel and at the cladding surface for both cases. In the step transient, temperatures at four axial levels were also computed. These showed greater but reasonable discrepancy, with RELAP outputting higher temperatures. These results provide some evidence that RELAP can be used with confidence in modeling transients for IVG.« less

  11. Comparison of Speed-Up Over Hills Derived from Wind-Tunnel Experiments, Wind-Loading Standards, and Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Safaei Pirooz, Amir A.; Flay, Richard G. J.

    2018-03-01

    We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier-Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.

  12. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  13. A comparison of results from a hydrologic transport model (HSPF) with distributions of sulfate and mercury in a mine-impacted watershed in northeastern Minnesota.

    PubMed

    Berndt, Michael E; Rutelonis, Wes; Regan, Charles P

    2016-10-01

    The St. Louis River watershed in northeast Minnesota hosts a major iron mining district that has operated continuously since the 1890s. Concern exists that chemical reduction of sulfate that is released from mines enhances the methylation of mercury in the watershed, leading to increased mercury concentrations in St. Louis River fish. This study tests this idea by simulating the behavior of chemical tracers using a hydrologic flow model (Hydrologic Simulation Program FORTRAN; HSPF) and comparing the results with measured chemistry from several key sites located both upstream and downstream from the mining region. It was found that peaks in measured methylmercury (MeHg), total mercury (THg), dissolved organic carbon (DOC), and dissolved iron (Fe) concentrations correspond to periods in time when modeled recharge was dominated by active groundwater throughout the watershed. This helps explain why the timing and size of the MeHg peaks was nearly the same at sites located just upstream and downstream from the mining region. Both the modeled percentages of mine water and the measured sulfate concentrations were low and computed transit times were short for sites downstream from the mining region at times when measured MeHg reached its peak. Taken together, the data and flow model imply that MeHg is released into groundwater that recharges the river through riparian sediments following periods of elevated summer rainfall. The measured sulfate concentrations at the upstream site reached minimum concentrations of approximately 1 mg/L just as MeHg reached its peak, suggesting that reduction of sulfate from non-point sources exerts an important influence on MeHg concentrations at this site. While mines are the dominant source of sulfate to sites downstream from them, it appears that the background sulfate which is present at only 1-6 mg/L, has the largest influence on MeHg concentrations. This is because point sourced sulfate is transported generally under oxidized conditions and is not flushed through riparian sediments in a gaining stream watershed system. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Effect of Watershed Cover on Overland Flow from a Major Storm in Southwestern Wisconsin

    Treesearch

    Richard S. Sartz

    1969-01-01

    A runoff study in the Driftless Area showed that both total flow and peak rate of flow from a 3-hour, 4-inch rain were strongly affected by the watershed cover. Peak flows ranged from 2.42 inches per hour for alfalfa meadow to 0.010 inch per hour for undisturbed forested watersheds was surprisingly similar.

  15. A case study of the fluid structure interaction of a Francis turbine

    NASA Astrophysics Data System (ADS)

    Müller, C.; Staubli, T.; Baumann, R.; Casartelli, E.

    2014-03-01

    The Francis turbine runners of the Grimsel 2 pump storage power plant showed repeatedly cracks during the last decade. It is assumed that these cracks were caused by flow induced forces acting on blades and eventual resonant runner vibrations lead to high stresses in the blade root areas. The eigenfrequencies of the runner were simulated in water using acoustic elements and compared to experimental data. Unsteady blades pressure distribution determined by a transient CFD simulation of the turbine were coupled to a FEM simulation. The FEM simulation enabled analyzing the stresses in the runner and the eigenmodes of the runner vibrations. For a part-load operating point, transient CFD simulations of the entire turbine, including the spiral case, the runner and the draft tube were carried out. The most significant loads on the turbine runner resulted from the centrifugal forces and the fluid forces. Such forces effect temporally invariant runner blades loads, in contrast rotor stator interaction or draft tube instabilities induce pressure fluctuations which cause the temporally variable forces. The blades pressure distribution resulting from the flow simulation was coupled by unidirectional-harmonic FEM simulation. The dominant transient blade pressure distribution of the CFD simulation were Fourier transformed, and the static and harmonic portion assigned to the blade surfaces in the FEM model. The evaluation of the FEM simulation showed that the simulated part load operating point do not cause critical stress peaks in the crack zones. The pressure amplitudes and frequencies are very small and interact only locally with the runner blades. As the frequencies are far below the modal frequencies of the turbine runner, resonant vibrations obviously are not excited.

  16. Doppler spectra of airborne sound backscattered by the free surface of a shallow turbulent water flow.

    PubMed

    Dolcetti, Giulio; Krynkin, Anton; Horoshenkov, Kirill V

    2017-12-01

    Measurements of the Doppler spectra of airborne ultrasound backscattered by the rough dynamic surface of a shallow turbulent flow are presented in this paper. The interpretation of the observed acoustic signal behavior is provided by means of a Monte Carlo simulation based on the Kirchhoff approximation and on a linear random-phase model of the water surface elevation. Results suggest that the main scattering mechanism is from capillary waves with small amplitude. Waves that travel at the same velocity of the flow, as well as dispersive waves that travel at a range of velocities, are detected, studied, and used in the acoustic Doppler analysis. The dispersive surface waves are not observed when the flow velocity is slow compared to their characteristic velocity. Relatively wide peaks in the experimental spectra also suggest the existence of nonlinear modulations of the short capillary waves, or their propagation in a wide range of directions. The variability of the Doppler spectra with the conditions of the flow can affect the accuracy of the flow velocity estimations based on backscattering Doppler. A set of different methods to estimate this velocity accurately and remotely at different ranges of flow conditions is suggested.

  17. MEASURING THE DIRECTION AND ANGULAR VELOCITY OF A BLACK HOLE ACCRETION DISK VIA LAGGED INTERFEROMETRIC COVARIANCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael D.; Loeb, Abraham; Shiokawa, Hotaka

    2015-11-10

    We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwisemore » or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sgr A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.« less

  18. Investigation of secondary flows in turbulent pipe flows with three-dimensional sinusoidal walls

    NASA Astrophysics Data System (ADS)

    Chan, Leon; MacDonald, Michael; Chung, Daniel; Hutchins, Nicholas; Ooi, Andrew

    2017-11-01

    The occurrence of secondary flows is systematically investigated via Direct Numerical Simulations (DNS) of turbulent flow in a rough wall pipe at friction Reynolds numbers of 540. In this study, the peak-to-trough height of the roughness elements, which consist of three-dimensional sinusoidal roughness, is fixed at 120 viscous units while the wavelength of the roughness elements is varied. The solidity or effective slope (ES) of the roughness ranges from the sparse regime (ES = 0.18) to the closely packed roughness/dense regime (ES = 0.72). The time-independent dispersive stresses, which arise due to the stationary features of the flow, are analysed and are found to increase with increasing roughness wavelength. These dispersive stresses are related to the occurrence of secondary flows and are maximum within the roughness canopy. Above the crest of the roughness elements, the dispersive stresses reduce to zero at wall-normal heights greater than half of the roughness wavelength. This study has found that the size and wall-normal extent of the secondary flows scales with the roughness wavelength and can reach wall-normal heights of almost half of the pipe radius.

  19. Boundary-Layer Phenomena in the Vicinity of an Isolated Mountain: A Climatography Based on an Operational High-Resolution Forecast System

    NASA Astrophysics Data System (ADS)

    Serafin, S.; De Wekker, S.; Knievel, J. C.

    2013-12-01

    Granite Peak, located in the Dugway Proving Ground (DPG) in western Utah, is an isolated mountain rising ~800 m above the surrounding terrain. It has an approximately ellipsoidal shape oriented in the NNW-SSE direction and its main axes are respectively ~10- and ~6-km long. A flat dry lake (playa) lies west and northwest of the peak, while a NW-sloping plain covered by herbaceous vegetation extends to the eastern part of DPG. Because of these topography and land-use features, a variety of different flow phenomena are expected to occur over and around Granite Peak. These include upslope and drainage winds, local breeze systems, gap flows, dynamically accelerated downslope winds and potentially boundary layer separation and the formation of wakes. Consequently, the area is an ideal location for studying the interaction between mountain flows and the atmospheric boundary layer. Since the 1990s, DPG has used a continuously operating meso-gamma-scale analysis and forecast system (4DWX) developed by the NCAR's Research Applications Laboratory (RAL). The system is based on WRF, runs with a grid spacing of 1.1-km in its innermost domain, applies observational nudging in a three-hour cycle, and provides weather analyses and forecasts at hourly intervals. In this study, model output from the 4DWX system is used to build a short-term climatography (2010-2012) of the prevailing boundary layer flow regimes in DPG. Measurements from the network of Surface Area Mesonet Stations (SAMS) operative at DPG are used to verify the quality of 4DWX simulations and their ability to reproduce the dominant flow patterns. The study then focuses on boundary-layer separation (BLS) events: near-surface wind, temperature and pressure fields from 4DWX are analysed in order to identify the most favorable regions for the onset of separation. A limited set of events, identified by means of an objective procedure, is then studied in detail in order to understand the preferred conditions for the development of the phenomenon. S-SW flows with considerable near-surface veering and an embedded low-level jet are found to be the most common scenario leading to leeside boundary-layer separation. Example of a BLS event in the lee of Granite Peak (near gridpoints x=12, y=15). Near-surface wind speed (in m/s) and vectors are displayed on the 4DWX model grid (Δx: 1.1 km).

  20. Effects of recharge, Upper Floridan aquifer heads, and time scale on simulated ground-water exchange with Lake Starr, a seepage lake in central Florida

    USGS Publications Warehouse

    Swancar, Amy; Lee, Terrie Mackin

    2003-01-01

    Lake Starr and other lakes in the mantled karst terrain of Florida's Central Lake District are surrounded by a conductive surficial aquifer system that receives highly variable recharge from rainfall. In addition, downward leakage from these lakes varies as heads in the underlying Upper Floridan aquifer change seasonally and with pumpage. A saturated three-dimensional finite-difference ground-water flow model was used to simulate the effects of recharge, Upper Floridan aquifer heads, and model time scale on ground-water exchange with Lake Starr. The lake was simulated as an active part of the model using high hydraulic conductivity cells. Simulated ground-water flow was compared to net ground-water flow estimated from a rigorously derived water budget for the 2-year period August 1996-July 1998. Calibrating saturated ground-water flow models with monthly stress periods to a monthly lake water budget will result in underpredicting gross inflow to, and leakage from, ridge lakes in Florida. Underprediction of ground-water inflow occurs because recharge stresses and ground-water flow responses during rainy periods are averaged over too long a time period using monthly stress periods. When inflow is underestimated during calibration, leakage also is underestimated because inflow and leakage are correlated if lake stage is maintained over the long term. Underpredicted leakage reduces the implied effect of ground-water withdrawals from the Upper Floridan aquifer on the lake. Calibrating the weekly simulation required accounting for transient responses in the water table near the lake that generated the greater range of net ground-water flow values seen in the weekly water budget. Calibrating to the weekly lake water budget also required increasing the value of annual recharge in the nearshore region well above the initial estimate of 35 percent of the rainfall, and increasing the hydraulic conductivity of the deposits around and beneath the lake. To simulate the total ground-water inflow to lakes, saturated-flow models of lake basins need to account for the potential effects of rapid and efficient recharge in the surficial aquifer system closest to the lake. In this part of the basin, the ability to accurately estimate recharge is crucial because the water table is shallowest and the response time between rainfall and recharge is shortest. Use of the one-dimensional LEACHM model to simulate the effects of the unsaturated zone on the timing and magnitude of recharge in the nearshore improved the simulation of peak values of ground-water inflow to Lake Starr. Results of weekly simulations suggest that weekly recharge can approach the majority of weekly rainfall on the nearshore part of the lake basin. However, even though a weekly simulation with higher recharge in the nearshore was able to reproduce the extremes of ground-water exchange with the lake more accurately, it was not consistently better at predicting net ground-water flow within the water budget error than a simulation with lower recharge. The more subtle effects of rainfall and recharge on ground-water inflow to the lake were more difficult to simulate. The use of variably saturated flow modeling, with time scales that are shorter than weekly and finer spatial discretization, is probably necessary to understand these processes. The basin-wide model of Lake Starr had difficulty simulating the full spectrum of ground-water inflows observed in the water budget because of insufficient information about recharge to ground water, and because of practical limits on spatial and temporal discretization in a model at this scale. In contrast, the saturated flow model appeared to successfully simulate the effects of heads in the Upper Floridan aquifer on water levels and ground-water exchange with the lake at both weekly and monthly stress periods. Most of the variability in lake leakage can be explained by the average vertical head difference between the lake and a re

  1. A Stand-Alone Demography and Landscape Structure Module for Earth System Models: Integration with Inventory Data from Temperate and Boreal Forests

    NASA Astrophysics Data System (ADS)

    Hess, L.; Basso, B.; Hinckley, E. L. S.; Robertson, G. P.; Matson, P. A.

    2014-12-01

    In the coming century, the proportion of total rainfall that falls in heavy storm events is expected to increase in many areas, especially in the US Midwest, a major agricultural region. These changes in rainfall patterns may have consequences for hydrologic flow and nutrient losses, especially in agricultural soils, with potentially negative consequences for receiving ground- and surface waters. We used a tracer experiment to examine how more extreme rainfall patterns may affect the movement of water and solutes through an agricultural soil profile in the upper Midwest, and to what extent tillage may moderate these effects. Two rainfall patterns were created with 5m x 5m rainout shelters at the Kellogg Biological Station LTER site in replicated plots with either conventional tillage or no-till management. Control rainfall treatments received water 3x per week, and extreme rainfall treatments received the same total amount of water but once every two weeks, to simulate less frequent but larger storms. In April 2015, potassium bromide (KBr) was added as a conservative tracer of water flow to all plots, and Br- concentrations in soil water at 1.2m depth were measured weekly from April through July. Soil water Br- concentrations increased and peaked more quickly under the extreme rainfall treatment, suggesting increased infiltration and solute transfer to depth compared to soils exposed to control rainfall patterns. Soil water Br- also increased and peaked more quickly in no-till than in conventional tillage treatments, indicating differences in flow paths between management systems. Soil moisture measured every 15 minutes at 10, 40, and 100cm depths corroborates tracer experiment results: rainfall events simulated in extreme rainfall treatments led to large increases in deep soil moisture, while the smaller rainfall events simulated under control conditions did not. Deep soil moisture in no-till treatments also increased sooner after water application as compared to in conventional soils. Our results suggest that exposure to more extreme rainfall patterns will likely increase infiltration depth and nutrient losses in agricultural soils. In particular, soils under no-till management, which leads to development of preferential flow paths, may be particularly vulnerable to vertical nutrient losses.

  2. Simulated and observed 2010 flood-water elevations in selected river reaches in the Moshassuck and Woonasquatucket River Basins, Rhode Island

    USGS Publications Warehouse

    Zarriello, Phillip J.; Straub, David E.; Westenbroek, Stephen M.

    2014-01-01

    Heavy persistent rains from late February through March 2010 caused severe flooding and set, or nearly set, peaks of record for streamflows and water levels at many long-term U.S. Geological Survey streamgages in Rhode Island. In response to this flood, hydraulic models were updated for selected reaches covering about 33 river miles in Moshassuck and Woonasquatucket River Basins from the most recent approved Federal Emergency Management Agency flood insurance study (FIS) to simulate water-surface elevations (WSEs) from specified flows and boundary conditions. Reaches modeled include the main stem of the Moshassuck River and its main tributary, the West River, and three tributaries to the West River—Upper Canada Brook, Lincoln Downs Brook, and East Branch West River; and the main stem of the Woonasquatucket River. All the hydraulic models were updated to Hydrologic Engineering Center-River Analysis System (HEC-RAS) version 4.1.0 and incorporate new field-survey data at structures, high-resolution land-surface elevation data, and flood flows from a related study. The models were used to simulate steady-state WSEs at the 1- and 2-percent annual exceedance probability (AEP) flows, which is the estimated AEP of the 2010 flood in the Moshassuck River Basin and the Woonasquatucket River, respectively. The simulated WSEs were compared to the high-water mark (HWM) elevation data obtained in these basins in a related study following the March–April 2010 flood, which included 18 HWMs along the Moshassuck River and 45 HWMs along the Woonasquatucket River. Differences between the 2010 HWMs and the simulated 2- and 1-percent AEP WSEs from the FISs and the updated models developed in this study varied along the reach. Most differences could be attributed to the magnitude of the 2- and 1-percent AEP flows used in the FIS and updated model flows. Overall, the updated model and the FIS WSEs were not appreciably different when compared to the observed 2010 HWMs along the Woonasquatucket and Moshassuck Rivers.

  3. Decadal biogeochemical history of the south east Levantine basin: Simulations of the river Nile regimes

    NASA Astrophysics Data System (ADS)

    Suari, Yair; Brenner, Steve

    2015-08-01

    The south eastern Mediterranean is characterized by antiestuarine circulation which leads to extreme oligotrophic conditions. The Nile river that used to transport fresh water and nutrients into the basin was dammed in 1964 which led to a drastic reduction of fresh water fluxes, and later, changes in Egyptian agriculture and diet led to increased nutrient fluxes. In this paper we present the results of simulations with a biogeochemical model of the south eastern Mediterranean. Four experiments were conducted: (1) present day without riverine inputs; (2) Nile before damming (pre-1964); (3) post-damming 1995 Nile; and (4) fresh water and nutrient discharges of Israeli coastal streams. The present day input simulation (control run) successfully reproduced measured nutrient concentrations, with the exception of simulated chlorophyll concentrations which were slightly higher than observed. The pre-1964 Nile simulation showed a salinity reduction of 2 psu near the Egyptian coast and 0.5 psu along the Israeli coast, as well as elevated chlorophyll a concentrations mostly east of the Nile delta and north to Cyprus. The spring bloom extended from its present peak during February-March to a peak during February-May. The 1995 Nile simulation showed increased chlorophyll a concentrations close to the Egyptian coast. The Israeli coastal stream simulation showed that the effect of the Israeli coastal stream winter flow on chlorophyll converged to control concentrations within about one month, demonstrating the stability and sensitivity of the model to external forcing. The results of this study demonstrate the significance of fresh water fluxes in maintaining marine productivity, which may have large scale effects on the marine ecosystem.

  4. On improving cold region hydrological processes in the Canadian Land Surface Scheme

    NASA Astrophysics Data System (ADS)

    Ganji, Arman; Sushama, Laxmi; Verseghy, Diana; Harvey, Richard

    2017-01-01

    Regional and global climate model simulated streamflows for high-latitude regions show systematic biases, particularly in the timing and magnitude of spring peak flows. Though these biases could be related to the snow water equivalent and spring temperature biases in models, a good part of these biases is due to the unaccounted effects of non-uniform infiltration capacity of the frozen ground and other related processes. In this paper, the treatment of frozen water in the Canadian Land Surface Scheme (CLASS), which is used in the Canadian regional and global climate models, is modified to include fractional permeable area, supercooled liquid water and a new formulation for hydraulic conductivity. The impact of these modifications on the regional hydrology, particularly streamflow, is assessed by comparing three simulations performed with the original and two modified versions of CLASS, driven by atmospheric forcing data from the European Centre for Medium-Range Weather Forecast (ECMWF) reanalysis (ERA-Interim) for the 1990-2001 period over a northeast Canadian domain. The two modified versions of CLASS differ in the soil hydraulic conductivity and matric potential formulations, with one version being based on formulations from a previous study and the other one is newly proposed. Results suggest statistically significant decreases in infiltration and therefore soil moisture during the snowmelt season for the simulation with the new hydraulic conductivity and matric potential formulations and fractional permeable area concept compared to the original version of CLASS, which is also reflected in the increased spring surface runoff and streamflows in this simulation with modified CLASS over most of the study domain. The simulated spring peaks and their timing in this simulation are also in better agreement to those observed. This study thus demonstrates the importance of treatment of frozen water for realistic simulation of streamflows.

  5. Numerical Simulations of Vortex Generator Vanes and Jets on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Yao, Chung-Sheng; Lin, John C.

    2002-01-01

    Numerical simulations of a single low-profile vortex generator vane, which is only a small fraction of the boundary-layer thickness, and a vortex generating jet have been performed for flows over a flat plate. The numerical simulations were computed by solving the steady-state solution to the Reynolds-averaged Navier-Stokes equations. The vortex generating vane results were evaluated by comparing the strength and trajectory of the streamwise vortex to experimental particle image velocimetry measurements. From the numerical simulations of the vane case, it was observed that the Shear-Stress Transport (SST) turbulence model resulted in a better prediction of the streamwise peak vorticity and trajectory when compared to the Spalart-Allmaras (SA) turbulence model. It is shown in this investigation that the estimation of the turbulent eddy viscosity near the vortex core, for both the vane and jet simulations, was higher for the SA model when compared to the SST model. Even though the numerical simulations of the vortex generating vane were able to predict the trajectory of the stream-wise vortex, the initial magnitude and decay of the peak streamwise vorticity were significantly under predicted. A comparison of the positive circulation associated with the streamwise vortex showed that while the numerical simulations produced a more diffused vortex, the vortex strength compared very well to the experimental observations. A grid resolution study for the vortex generating vane was also performed showing that the diffusion of the vortex was not a result of insufficient grid resolution. Comparisons were also made between a fully modeled trapezoidal vane with finite thickness to a simply modeled rectangular thin vane. The comparisons showed that the simply modeled rectangular vane produced a streamwise vortex which had a strength and trajectory very similar to the fully modeled trapezoidal vane.

  6. An Evaluation of Selected Extraordinary Floods in the United States Reported by the U.S. Geological Survey and Implications for Future Advancement of Flood Science

    USGS Publications Warehouse

    Costa, John E.; Jarrett, Robert D.

    2008-01-01

    Thirty flood peak discharges determine the envelope curve of maximum floods documented in the United States by the U.S. Geological Survey. These floods occurred from 1927 to 1978 and are extraordinary not just in their magnitude, but in their hydraulic and geomorphic characteristics. The reliability of the computed discharge of these extraordinary floods was reviewed and evaluated using current (2007) best practices. Of the 30 flood peak discharges investigated, only 7 were measured at daily streamflow-gaging stations that existed when the flood occurred, and 23 were measured at miscellaneous (ungaged) sites. Methods used to measure these 30 extraordinary flood peak discharges consisted of 21 slope-area measurements, 2 direct current-meter measurements, 1 culvert measurement, 1 rating-curve extension, and 1 interpolation and rating-curve extension. The remaining four peak discharges were measured using combinations of culvert, slope-area, flow-over-road, and contracted-opening measurements. The method of peak discharge determination for one flood is unknown. Changes to peak discharge or rating are recommended for 20 of the 30 flood peak discharges that were evaluated. Nine floods retained published peak discharges, but their ratings were downgraded. For two floods, both peak discharge and rating were corrected and revised. Peak discharges for five floods that are subject to significant uncertainty due to complex field and hydraulic conditions, were re-rated as estimates. This study resulted in 5 of the 30 peak discharges having revised values greater than about 10 percent different from the original published values. Peak discharges were smaller for three floods (North Fork Hubbard Creek, Texas; El Rancho Arroyo, New Mexico; South Fork Wailua River, Hawaii), and two peak discharges were revised upward (Lahontan Reservoir tributary, Nevada; Bronco Creek, Arizona). Two peak discharges were indeterminate because they were concluded to have been debris flows with peak discharges that were estimated by an inappropriate method (slope-area) (Big Creek near Waynesville, North Carolina; Day Creek near Etiwanda, California). Original field notes and records could not be found for three of the floods, however, some data (copies of original materials, records of reviews) were available for two of these floods. A rating was assigned to each of seven peak discharges that had no rating. Errors identified in the reviews include misidentified flow processes, incorrect drainage areas for very small basins, incorrect latitude and longitude, improper field methods, arithmetic mistakes in hand calculations, omission of measured high flows when developing rating curves, and typographical errors. Common problems include use of two-section slope-area measurements, poor site selection, uncertainties in Manning's n-values, inadequate review, lost data files, and insufficient and inadequately described high-water marks. These floods also highlight the extreme difficulty in making indirect discharge measurements following extraordinary floods. Significantly, none of the indirect measurements are rated better than fair, which indicates the need to improve methodology to estimate peak discharge. Highly unsteady flow and resulting transient hydraulic phenomena, two-dimensional flow patterns, debris flows at streamflow-gaging stations, and the possibility of disconnected flow surfaces are examples of unresolved problems not well handled by current indirect discharge methodology. On the basis of a comprehensive review of 50,000 annual peak discharges and miscellaneous floods in California, problems with individual flood peak discharges would be expected to require a revision of discharge or rating curves at a rate no greater than about 0.10 percent of all floods. Many extraordinary floods create complex flow patterns and processes that cannot be adequately documented with quasi-steady, uniform one-dimensional analyses. These floods are most accura

  7. Laser induced heating of coated carbon steel sheets: Consideration of melting and Marangoni flow

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.

    2013-04-01

    Laser induced melting of coated carbon steel workpiece is simulated. The coating materials include tungsten carbide, alumina, and boron are incorporated in the simulations. The coating thickness is kept constant at 7.5 μm in the analysis. The enthalpy porosity method is used to account for the phase change in the irradiated region. The study is extended to include the influence of laser intensity transverse mode pattern (β) on the resulting melting characteristics. It is found that peak temperature predicted at the surface is higher for alumina and boron coatings than that of tungsten carbide coating. The influence of the laser intensity transverse mode pattern on the melting characteristics is considerable. Surface temperature predicted agrees with the thermocouple data.

  8. Effects of groundwater levels and headwater wetlands on streamflow in the Charlie Creek basin, Peace River watershed, west-central Florida

    USGS Publications Warehouse

    Lee, T.M.; Sacks, L.A.; Hughes, J.D.

    2010-01-01

    The Charlie Creek basin was studied from April 2004 to December 2005 to better understand how groundwater levels in the underlying aquifers and storage and overflow of water from headwater wetlands preserve the streamflows exiting this least-developed tributary basin of the Peace River watershed. The hydrogeologic framework, physical characteristics, and streamflow were described and quantified for five subbasins of the 330-square mile Charlie Creek basin, allowing the contribution of its headwaters area and tributary subbasins to be separately quantified. A MIKE SHE model simulation of the integrated surface-water and groundwater flow processes in the basin was used to simulate daily streamflow observed over 21 months in 2004 and 2005 at five streamflow stations, and to quantify the monthly and annual water budgets for the five subbasins including the changing amount of water stored in wetlands. Groundwater heads were mapped in Zone 2 of the intermediate aquifer system and in the Upper Floridan aquifer, and were used to interpret the location of artesian head conditions in the Charlie Creek basin and its relation to streamflow. Artesian conditions in the intermediate aquifer system induce upward groundwater flow into the surficial aquifer and help sustain base flow which supplies about two-thirds of the streamflow from the Charlie Creek basin. Seepage measurements confirmed seepage inflow to Charlie Creek during the study period. The upper half of the basin, comprised largely of the Upper Charlie Creek subbasin, has lower runoff potential than the lower basin, more storage of runoff in wetlands, and periodically generates no streamflow. Artesian head conditions in the intermediate aquifer system were widespread in the upper half of the Charlie Creek basin, preventing downward leakage from expansive areas of wetlands and enabling them to act as headwaters to Charlie Creek once their storage requirements were met. Currently, the dynamic balance between wetland storage, rainfall-runoff processes, and groundwater-level differences in the upper basin allow it to generate approximately half of the streamflow from the Charlie Creek basin. Therefore, future development in the upper basin that would alter the hydraulic connectivity of wetlands during high flow conditions or expand recharging groundwater conditions could substantially affect streamflow in Charlie Creek. LIDAR (Light detection and ranging) based topographic maps and integrated modeling results were used to quantify the water stored in wetlands and other topographic depressions, and to describe the network of shallow stream channels connecting wetlands to Charlie Creek and its tributaries over distances of several thousand feet. Peak flows at all but one streamflow station were underpredicted in MIKE SHE simulations, possibly because the hydraulics of surface channels connecting wetlands to stream channels were not explicitly simulated in the model. Explicitly simulating the smaller channels connecting wetlands and stream channels should improve the ability of future watershed models to simulate peak flows in streams with headwater wetlands. The runoff potential was greater in the lower half of the Charlie Creek basin than in the upper half, and the streambed of Charlie Creek had greater potential to both directly gain streamflow from groundwater and lose streamflow to groundwater. Charlie Creek is more incised into the surficial aquifer in the lower basin than in the upper basin, and the streambed intersects the top of the intermediate aquifer system at two known locations. Groundwater levels in the intermediate aquifer system varied widely in the lower half of the basin from artesian conditions inducing upward flow toward the surficial aquifer and streams, to recharging conditions allowing downward flow and stream leakage. Recharge areas were greatest in May 2004 when rainfall was at a seasonal low and irrigation pumping was at a seasonal high. Recharge conditions

  9. An Evaluation of Linear Instability Waves as Sources of Sound in a Supersonic Turbulent Jet

    NASA Technical Reports Server (NTRS)

    Mohseni, Kamran; Colonius, Tim; Freund, Jonathan B.

    2002-01-01

    Mach wave radiation from supersonic jets is revisited to better quantify the extent to which linearized equations represent the details of the actual mechanism. To this end, we solve the linearized Navier-Stokes equations (LNS) with precisely the same mean flow and inflow disturbances as a previous direct numerical simulation (DNS) of a perfectly expanded turbulent M = 1.92 jet. We restrict our attention to the first two azimuthal modes, n = 0 and n = 1, which constitute most of the acoustic field. The direction of peak radiation and the peak Strouhal number matches the DNS reasonably well, which is in accord with previous experimental justification of the linear theory. However, it is found that the sound pressure level predicted by LNS is significantly lower than that from DNS. In order to investigate the discrepancy, individual frequency components of the solution are examined. These confirm that near the peak Strouhal number, particularly for the first helical mode n = 1, the amplification of disturbances in the LNS closely matches the DNS. However, away from the peak frequency (and generally for the azimuthal mode n = 0), modes in the LNS are damped while those in the DNS grow at rates comparable to those at the peak Strouhal number.

  10. Flow behaviour and constitutive modelling of a ferritic stainless steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Zhao, Jingwei; Jiang, Zhengyi; Zu, Guoqing; Du, Wei; Zhang, Xin; Jiang, Laizhu

    2016-05-01

    The flow behaviour of a ferritic stainless steel (FSS) was investigated by a Gleeble 3500 thermal-mechanical test simulator over the temperature range of 900-1100 °C and strain rate range of 1-50 s-1. Empirical and phenomenological constitutive models were established, and a comparative study was made on the predictability of them. The results indicate that the flow stress decreases with increasing the temperature and decreasing the strain rate. High strain rate may cause a drop in flow stress after a peak value due to the adiabatic heating. The Zener-Hollomon parameter depends linearly on the flow stress, and decreases with raising the temperature and reducing the strain rate. Significant deviations occur in the prediction of flow stress by the Johnson-Cook (JC) model, indicating that the JC model cannot accurately track the flow behaviour of the FSS during hot deformation. Both the multiple-linear and the Arrhenius-type models can track the flow behaviour very well under the whole hot working conditions, and have much higher accuracy in predicting the flow behaviour than that of the JC model. The multiple-linear model is recommended in the current work due to its simpler structure and less time needed for solving the equations relative to the Arrhenius-type model.

  11. Dynamics of Voluntary Cough Maneuvers

    NASA Astrophysics Data System (ADS)

    Naire, Shailesh

    2008-11-01

    Voluntary cough maneuvers are characterized by transient peak expiratory flows (PEF) exceeding the maximum expiratory flow-volume (MEFV) curve. In some cases, these flows can be well in excess of the MEFV, generally referred to as supramaximal flows. Understanding the flow-structure interaction involved in these maneuvers is the main goal of this work. We present a simple theoretical model for investigating the dynamics of voluntary cough and forced expiratory maneuvers. The core modeling idea is based on a 1-D model of high Reynolds number flow through flexible-walled tubes. The model incorporates key ingredients involved in these maneuvers: the expiratory effort generated by the abdominal and expiratory muscles, the glottis and the flexibility and compliance of the lung airways. Variations in these allow investigation of the expiratory flows generated by a variety of single cough maneuvers. The model successfully reproduces PEF which is shown to depend on the cough generation protocol, the glottis reopening time and the compliance of the airways. The particular highlight is in simulating supramaximal PEF for very compliant tubes. The flow-structure interaction mechanisms behind these are discussed. The wave speed theory of flow limitation is used to characterize the PEF. Existing hypotheses of the origin of PEF, from cough and forced expiration experiments, are also tested using this model.

  12. Development of a spatially-distributed hydroecological model to simulate cottonwood seedling recruitment along rivers.

    PubMed

    Benjankar, Rohan; Burke, Michael; Yager, Elowyn; Tonina, Daniele; Egger, Gregory; Rood, Stewart B; Merz, Norm

    2014-12-01

    Dam operations have altered flood and flow patterns and prevented successful cottonwood seedling recruitment along many rivers. To guide reservoir flow releases to meet cottonwood recruitment needs, we developed a spatially-distributed, GIS-based model that analyzes the hydrophysical requirements for cottonwood recruitment. These requirements are indicated by five physical parameters: (1) annual peak flow timing relative to the interval of seed dispersal, (2) shear stress, which characterizes disturbance, (3) local stage recession after seedling recruitment, (4) recruitment elevation above base flow stage, and (5) duration of winter flooding, which may contribute to seedling mortality. The model categorizes the potential for cottonwood recruitment in four classes and attributes a suitability value at each individual spatial location. The model accuracy was estimated with an error matrix analysis by comparing simulated and field-observed recruitment success. The overall accuracies of this Spatially-Distributed Cottonwood Recruitment model were 47% for a braided reach and 68% for a meander reach along the Kootenai River in Idaho, USA. Model accuracies increased to 64% and 72%, respectively, when fewer favorability classes were considered. The model predicted areas of similarly favorable recruitment potential for 1997 and 2006, two recent years with successful cottonwood recruitment. This model should provide a useful tool to quantify impacts of human activities and climatic variability on cottonwood recruitment, and to prescribe instream flow regimes for the conservation and restoration of riparian woodlands. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The Effects Of Urban Landscape Patterns On Rainfall-Runoff Processes At Small Scale

    NASA Astrophysics Data System (ADS)

    Chen, L.

    2016-12-01

    Many studies have indicated that urban landscape change may alter rainfall-runoff processes. However, how urban landscape pattern affect this process is little addressed. In this study, the hydrological effects of landscape pattern on rainfall-runoff processes at small-scale was explored. Twelve residential blocks with independent drainage systems in Beijing were selected as case study areas. Impervious metrics of these blocks, i.e., total impervious area (TIA) and directly connected impervious area (DCIA), were identified. A drainage index describing catchment general drainage load and the overland flow distance, Ad, was estimated and used as one of the landscape spatial metrics. Three scenarios were designed to test the potential influence of impervious surface pattern on runoff processes. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated under different rainfall conditions by Storm Water Management Model (SWMM). The relationship between landscape patterns and runoff variables were analyzed, and further among the three scenarios. The results demonstrated that, in small urban blocks, spatial patterns have inherent influences on rainfall-runoff processes. Specifically, (1) Imperviousness acts as effective indicators in predicting both Qt and Qp. As rainfall intensity increases, the major affecting factor changes from DCIA to TIA for both Qt and Qp; (2) Increasing the size of drainage area dominated by each drainage inlet will benefit the block peak flow mitigation; (3) Different spatial concentrations of impervious surfaces have inherent influences on Qp, when impervious surfaces located away from the outlet can reduce the peak flow discharge. These findings may provide insights into the role of urban landscape patterns in driving rainfall-runoff responses in urbanization, which is essential for urban planning and stormwater management.

  14. Prediction of the fate and transport processes of atrazine in a reservoir.

    PubMed

    Chung, Se-Woong; Gu, Roy R

    2009-07-01

    The fate and transport processes of a toxic chemical such as atrazine, an herbicide, in a reservoir are significantly influenced by hydrodynamic regimes of the reservoir. The two-dimensional (2D) laterally-integrated hydrodynamics and mass transport model, CE-QUAL-W2, was enhanced by incorporating a submodel for toxic contaminants and applied to Saylorville Reservoir, Iowa. The submodel describes the physical, chemical, and biological processes and predicts unsteady vertical and longitudinal distributions of a toxic chemical. The simulation results from the enhanced 2D reservoir model were validated by measured temperatures and atrazine concentrations in the reservoir. Although a strong thermal stratification was not identified from both observed and predicted water temperatures, the spatial variation of atrazine concentrations was largely affected by seasonal flow circulation patterns in the reservoir. In particular, the results showed the effect of flow circulation on spatial distribution of atrazine during summer months as the river flow formed an underflow within the reservoir and resulted in greater concentrations near the surface of the reservoir. Atrazine concentrations in the reservoir peaked around the end of May and early June. A good agreement between predicted and observed times and magnitudes of peak concentrations was obtained. The use of time-variable decay rates of atrazine led to more accurate prediction of atrazine concentrations, while the use of a constant half-life (60 days) over the entire period resulted in a 40% overestimation of peak concentrations. The results provide a better understanding of the fate and transport of atrazine in the reservoir and information useful in the development of reservoir operation strategies with respect to timing, amount, and depth of withdrawal.

  15. Hemodynamic alterations after stent implantation in 15 cases of intracranial aneurysm.

    PubMed

    Wang, Chao; Tian, Zhongbin; Liu, Jian; Jing, Linkai; Paliwal, Nikhil; Wang, Shengzhang; Zhang, Ying; Xiang, Jianping; Siddiqui, Adnan H; Meng, Hui; Yang, Xinjian

    2016-04-01

    Stent-assisted coiling technology has been widely used in the treatment of intracranial aneurysms. In the current study, we investigated the intra-aneurysmal hemodynamic alterations after stent implantation and their association with the aneurysm location. We first retrospectively studied 15 aneurysm cases [8 internal carotid artery-ophthalmic artery (ICA-OphA) aneurysms and 7 posterior communicating artery (PcoA) aneurysms] treated with Enterprise stents and coils. Then, based on the patient-specific geometries before and after stenting, we built virtual stenting computational fluid dynamics (CFD) simulation models. Before and after the stent deployment, the average wall shear stress (WSS) on the aneurysmal sac at systolic peak changed from 7.04 Pa (4.14 Pa, 15.77 Pa) to 6.04 Pa (3.86 Pa, 11.13 Pa), P = 0.001; the spatially averaged flow velocity in the perpendicular plane of the aneurysm dropped from 0.5 m/s (0.28 m/s, 0.7 m/s) to 0.33 m/s (0.25 m/s, 0.49 m/s), P = 0.001, respectively. Post stent implantation, the WSS in ICA-OphA aneurysms and PcoA aneurysms decreased by 14.4 % (P = 0.012) and 16.6 % (P = 0.018), respectively, and the flow velocity also reduced by 10.3 % (P = 0.029) and 10.5 % (P = 0.013), respectively. Changes in the WSS, flow velocity, and pressure were not significantly different between ICA-OphA and PcoA aneurysms (P > 0.05). Stent implantation did not significantly change the peak systolic pressure in either aneurysm type. After the stent implantation, both the intra-aneurysmal flow velocity and WSS decreased independently of aneurysm type (ICA-OphA and PcoA). Little change was observed in peak systolic pressure.

  16. Hydro-morphodynamic modelling of a volcano-induced sediment-laden outburst flood at Sólheimajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Guan, M.; Wright, N.; Sleigh, P. A.; Carrivick, J.; Staines, K.

    2013-12-01

    Outburst floods are one of the most catastrophic natural hazards for populations and infrastructure. Such high-magnitude sudden onset floods generally comprise of an advancing intense kinematic water wave that can induce considerable sediment transport. The exploration and investigation of sediment-laden outburst floods cannot be limited solely to water flow but must also include the flood-induced sediment transport. Understanding the complex flow-bed interaction process in large (field) scale outburst floods is still limited, not least due to a lack of well-constrained field data, but also because consensus on appropriate modelling schemes has yet to be decided. In recent years, attention has focussed on the numerical models capable of describing the process of erosion, transport and deposition in such flows and they are now at a point at which they provide useful quantitative data. Although the "exact" measure of bed change is still unattainable the numerical models enhance and improve insights into large outburst flood events. In this study, a volcano-induced jökulhlaup or glacial outburst flood (GLOF) at Sólheimajökull, Iceland is reproduced by novel 2D hydro-morphodynamic model that considers both bedload and suspended load based on shallow water theory. The simulation of sediment-laden outburst flood is shown to perform well, with further insights into the flow-bed interaction behaviour obtained from the modelling output. These results are beneficial to flood risk management and hazard prevention and mitigation. In summary, the modelling outputs show that (1) the quantity of bed erosion and deposition are sensitive to the sediment gain size, yet, the influences are not so significant when considering flow discharge; (2) finer resolution of topography increases the computational time significantly yet the results are not affected correspondingly; (3) the bed changes simulated by the present model achieves reasonably good agreement with those by the commercial Delft3D; (4) the flood is accelerated by about 30% due to the incorporation of sediment transport; (5) the rapid sediment-laden outburst flood causes a rapid morphological change and considerable amount of erosion and deposition, and the total erosion and deposition volumes increase simultaneously and tend to an approximate constant value; (6) and the peak erosion rate and deposition rate occurs at the peak flow. Spatial distribution of bed erosion and deposition in the river channel after the GLOF

  17. Numerical analysis and design of upwind sails

    NASA Astrophysics Data System (ADS)

    Shankaran, Sriram

    The use of computational techniques that solve the Euler or the Navier-Stokes equations are increasingly being used by competing syndicates in races like the Americas Cup. For sail configurations, this desire stems from a need to understand the influence of the mast on the boundary layer and pressure distribution on the main sail, the effect of camber and planform variations of the sails on the driving and heeling force produced by them and the interaction of the boundary layer profile of the air over the surface of the water and the gap between the boom and the deck on the performance of the sail. Traditionally, experimental methods along with potential flow solvers have been widely used to quantify these effects. While these approaches are invaluable either for validation purposes or during the early stages of design, the potential advantages of high fidelity computational methods makes them attractive candidates during the later stages of the design process. The aim of this study is to develop and validate numerical methods that solve the inviscid field equations (Euler) to simulate and design upwind sails. The three dimensional compressible Euler equations are modified using the idea of artificial compressibility and discretized on unstructured tetrahedral grids to provide estimates of lift and drag for upwind sail configurations. Convergence acceleration techniques like multigrid and residual averaging are used along with parallel computing platforms to enable these simulations to be performed in a few minutes. To account for the elastic nature of the sail cloth, this flow solver was coupled to NASTRAN to provide estimates of the deflections caused by the pressure loading. The results of this aeroclastic simulation, showed that the major effect of the sail elasticity; was in altering the pressure distribution around the leading edge of the head and the main sail. Adjoint based design methods were developed next and were used to induce changes to the camber distribution of the main sail. The goal of the design process was to reduce the leading edge suction peaks that were considered to be detrimental to the growth of the boundary layer. The deflected shape of the sails obtained from the aeroelastic simulation were used by the design process. The design process resulted in an camber distribution that allowed smooth entry of the flow through the leading edge of the main sail thereby, reducing the leading edge suction peaks.

  18. Creating a Context for Flow: The Importance of Personal Insight and Experience

    ERIC Educational Resources Information Center

    Rathunde, Kevin

    2015-01-01

    Kevin Rathunde reflects on his early studies of flow in Montessori adolescents and surmises that adults need to experience their own flow in order to guide young people to peak levels. He recounts his early music experiences as having "peaked" and that he needed to come back to his flow of the past to fully enter into his work with flow…

  19. Characterization of rainfall-runoff response and estimation of the effect of wetland restoration on runoff, Heron Lake Basin, southwestern Minnesota, 1991-97

    USGS Publications Warehouse

    Jones, Perry M.; Winterstein, Thomas A.

    2000-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources and the Heron Lake Watershed District, conducted a study to characterize the rainfall-runoff response and to examine the effects of wetland restoration on the rainfall-runoff response within the Heron Lake Basin in southwestern Minnesota. About 93 percent of the land cover in the Heron Lake Basin consists of agricultural lands, consisting almost entirely of row crops, with less than one percent consisting of wetlands. The Hydrological Simulation Program – Fortran (HSPF), Version 10, was calibrated to continuous discharge data and used to characterize rainfall-runoff responses in the Heron Lake Basin between May 1991 and August 1997. Simulation of the Heron Lake Basin was done as a two-step process: (1) simulations of five small subbasins using data from August 1995 through August 1997, and (2) simulations of the two large basins, Jack and Okabena Creek Basins, using data from May 1991 through September 1996. Simulations of the five small subbasins was done to determine basin parameters for the land segments and assess rainfall-runoff response variability in the basin. Simulations of the two larger basins were done to verify the basin parameters and assess rainfall-runoff responses over a larger area and for a longer time period. Best-fit calibrations of the five subbasin simulations indicate that the rainfall-runoff response is uniform throughout the Heron Lake Basin, and 48 percent of the total rainfall for storms becomes direct (surface and interflow) runoff. Rainfall-runoff response variations result from variations in the distribution, intensity, timing, and duration of rainfall; soil moisture; evapotranspiration rates; and the presence of lakes in the basin. In the spring, the amount and distribution of rainfall tends to govern the runoff response. High evapotranspiration rates in the summer result in a depletion of moisture from the soils, substantially affecting the rainfall-runoff relation. Five wetland restoration simulations were run for each of five subbasins using data from August 1995 through August 1997, and for the two larger basins, Jack and Okabena Creek Basins, using data from May 1991 through September 1996. Results from linear regression analysis of total simulated direct runoff and total rainfall data for simulated storms in the wetland-restoration simulations indicate that the portion of total rainfall that becomes runoff will be reduced by 46 percent if 45 percent of current cropland is converted to wetland. The addition of wetlands reduced peak runoff in most of the simulations, but the reduction varied with antecedent soil moisture, the magnitude of the peak flow, and the presence of current wetlands and lakes. Reductions in the simulated total and peak runoff from the Jack Creek Basin for most of the simulated storms were greatest when additional wetlands were simulated in the North Branch Jack Creek or the Upper Jack Creek Subbasins. In the Okabena Creek Basin, reductions in simulated peak runoff for most of the storms were greatest when additional wetlands were simulated in the Lower Okabena Creek Subbasin.

  20. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.

    PubMed

    Kelly, Sinead; O'Rourke, Malachy

    2012-04-01

    This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given study.

  1. Screening for Chronic Obstructive Pulmonary Disease (COPD) in an Urban HIV Clinic: A Pilot Study

    PubMed Central

    Kaner, Robert J.; Glesby, Marshall J.

    2015-01-01

    Abstract Increased smoking and a detrimental response to tobacco smoke in the lungs of HIV/AIDS patients result in an increased risk for COPD. We aimed to determine the predictive value of a COPD screening strategy validated in the general population and to identify HIV-related factors associated with decreased lung function. Subjects at least 35 years of age at an HIV clinic in New York City completed a COPD screening questionnaire and peak flow measurement. Those with abnormal results and a random one-third of normal screens had spirometry. 235 individuals were included and 89 completed spirometry. Eleven (12%) had undiagnosed airway obstruction and 5 had COPD. A combination of a positive questionnaire and abnormal peak flow yielded a sensitivity of 20% (specificity 93%) for detection of COPD. Peak flow alone had a sensitivity of 80% (specificity 80%). Abnormal peak flow was associated with an AIDS diagnosis (p=0.04), lower nadir (p=0.001), and current CD4 counts (p=0.001). Nadir CD4 remained associated in multivariate analysis (p=0.05). Decreased FEV1 (<80% predicted) was associated with lower CD4 count nadir (p=0.04) and detectable current HIV viral load (p=0.01) in multivariate analysis. Questionnaire and peak flow together had low sensitivity, but abnormal peak flow shows potential as a screening tool for COPD in HIV/AIDS. These data suggest that lung function may be influenced by HIV-related factors. PMID:25723842

  2. Experimental and Computational Study of Underexpanded Jet Impingement Heat Transfer

    NASA Technical Reports Server (NTRS)

    Rufer, Shann J.; Nowak, Robert J.; Daryabeigi, Kamran; Picetti, Donald

    2009-01-01

    An experiment was performed to assess CFD modeling of a hypersonic-vehicle breach, boundary-layer flow ingestion and internal surface impingement. Tests were conducted in the NASA Langley Research Center 31-Inch Mach 10 Tunnel. Four simulated breaches were tested and impingement heat flux data was obtained for each case using both phosphor thermography and thin film gages on targets placed inside the model. A separate target was used to measure the surface pressure distribution. The measured jet impingement width and peak location are in good agreement with CFD analysis.

  3. Estimating an Impedance-to-Flow Parameter for Flood Peak Prediction in Semi-Arid Watersheds 1997

    USDA-ARS?s Scientific Manuscript database

    The time of concentration equation used in Pima County, Arizona, includes a hydrologic parameter representing the impedance to flow for peak discharge estimation on small (<10 mi2) semiarid watersheds. The impedance-to-flow parameter is similar in function to the hydraulic Manning’s n roughness coef...

  4. Peak Flow Responses and Recession Flow Characteristics After Thinning of Japanese Cypress Forest in a Headwater Catchment

    EPA Science Inventory

    We evaluated the effects of forest thinning on peak flow and recession characteristics of storm runoff in headwater catchments at Mie Prefecture, Japan. In catchment M5, 58.3% of stems were removed, whereas catchment M4 remained untreated as a control catchment. Storm precipitati...

  5. 75 FR 30395 - Stakeholder Input; National Pollutant Discharge Elimination System (NPDES) Permit Requirements...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ..., 2005 draft Peak Flows Policy. This draft Policy attempted to clarify EPA's interpretation that the... treatment plants that are recombined with the flows from the secondary treatment units prior to discharge... peak flow as part of an SSO rulemaking to allow for a holistic and integrated approach to reducing SSOs...

  6. Radioisotope penile plethysmography: A technique for evaluating corpora cavernosal blood flow during early tumescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, A.N.; Graham, M.M.; Ferency, G.F.

    1989-04-01

    Radioisotope penile plethysmography is a nuclear medicine technique which assists in the evaluation of patients with erectile dysfunction. This technique attempts to noninvasively quantitate penile corpora cavernosal blood flow during early penile tumescence using technetium-99m-labeled red blood cells. Penile images and counts were acquired in a steady-state blood-pool phase prior to and after the administration of intracorporal papaverine. Penile counts, images, and time-activity curves were computer analyzed in order to determine peak corporal flow and volume changes. Peak corporal flow rates were compared to arterial integrity (determined by angiography) and venosinusoidal corporal leak (determined by cavernosometry). Peak corporal flow correlatedmore » well with arterial integrity (r = 0.91) but did not correlate with venosinusoidal leak parameters (r = 0.01). This report focuses on the methodology and the assumptions which form the foundation of this technique. The strong correlation of peak corporal flow and angiography suggests that radioisotope penile plethysmography could prove useful in the evaluation of arterial inflow disorders in patients with erectile dysfunction.« less

  7. Anomalous Evolution of the Near-Side Jet Peak Shape in Pb-Pb Collisions at √{sN N}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Llope, W.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Alice Collaboration

    2017-09-01

    The measurement of two-particle angular correlations is a powerful tool to study jet quenching in a pT region inaccessible by direct jet identification. In these measurements pseudorapidity (Δ η ) and azimuthal (Δ φ ) differences are used to extract the shape of the near-side peak formed by particles associated with a higher pT trigger particle (1

  8. Anomalous Evolution of the Near-Side Jet Peak Shape in Pb-Pb Collisions at sqrt[s_{NN}]=2.76  TeV.

    PubMed

    Adam, J; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, S; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; An, M; Andrei, C; Andrews, H A; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Anwar, R; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Balasubramanian, S; Baldisseri, A; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batista Camejo, A; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Bjelogrlic, S; Blair, J T; Blau, D; Blume, C; Bock, F; Bogdanov, A; Boldizsár, L; Bombara, M; Bonora, M; Book, J; Borel, H; Borissov, A; Borri, M; Botta, E; Bourjau, C; Braun-Munzinger, P; Bregant, M; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buhler, P; Buitron, S A I; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cepila, J; Cerello, P; Cerkala, J; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Chelnokov, V; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Crkovská, J; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Deisting, A; Deloff, A; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Duggal, A K; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erhardt, F; Espagnon, B; Esumi, S; Eulisse, G; Eum, J; Evans, D; Evdokimov, S; Eyyubova, G; Fabbietti, L; Fabris, D; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Gangadharan, D R; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Garg, K; Garg, P; Gargiulo, C; Gasik, P; Gauger, E F; Gay Ducati, M B; Germain, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Graczykowski, L K; Graham, K L; Greiner, L; Grelli, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grion, N; Gronefeld, J M; Grosse-Oetringhaus, J F; Grosso, R; Gruber, L; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Guzman, I B; Haake, R; Hadjidakis, C; Hamagaki, H; Hamar, G; Hamon, J C; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, F; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Hladky, J; Horak, D; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Ippolitov, M; Irfan, M; Isakov, V; Islam, M S; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jahnke, C; Jakubowska, M J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Mohisin Khan, M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Khatun, A; Khuntia, A; Kileng, B; Kim, D W; Kim, D J; Kim, D; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kundu, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lazaridis, L; Lea, R; Leardini, L; Lee, S; Lehas, F; Lehner, S; Lehrbach, J; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Llope, W; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Lupi, M; Lutz, T H; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martinengo, P; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazzilli, M; Mazzoni, M A; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Mhlanga, S; Miake, Y; Mieskolainen, M M; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Mishra, T; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Molnar, L; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Myers, C J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Nedosekin, A; Negrao De Oliveira, R A; Nellen, L; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Ohlson, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Pachmayer, Y; Pacik, V; Pagano, D; Pagano, P; Paić, G; Pal, S K; Palni, P; Pan, J; Pandey, A K; Papikyan, V; Pappalardo, G S; Pareek, P; Park, J; Park, W J; Parmar, S; Passfeld, A; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira Da Costa, H; Peresunko, D; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Rana, D B; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Ratza, V; Ravasenga, I; Read, K F; Redlich, K; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rodríguez Cahuantzi, M; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Sahlmuller, B; Sahoo, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Sandoval, A; Sano, M; Sarkar, D; Sarkar, N; Sarma, P; Sas, M H P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sett, P; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shangaraev, A; Sharma, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Song, Z; Soramel, F; Sorensen, S; Sozzi, F; Spiriti, E; Sputowska, I; Srivastava, B K; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Suzuki, K; Swain, S; Szabo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thakur, D; Thomas, D; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Tripathy, S; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Umaka, E N; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vázquez Doce, O; Vechernin, V; Veen, A M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Vértesi, R; Vickovic, L; Vigolo, S; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Virgili, T; Vislavicius, V; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Voscek, D; Vranic, D; Vrláková, J; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Willems, G A; Williams, M C S; Windelband, B; Winn, M; Yalcin, S; Yang, P; Yano, S; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zaporozhets, S; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zinovjev, G; Zmeskal, J

    2017-09-08

    The measurement of two-particle angular correlations is a powerful tool to study jet quenching in a p_{T} region inaccessible by direct jet identification. In these measurements pseudorapidity (Δη) and azimuthal (Δφ) differences are used to extract the shape of the near-side peak formed by particles associated with a higher p_{T} trigger particle (1

  9. Anomalous Evolution of the Near-Side Jet Peak Shape in Pb-Pb Collisions at s N N = 2.76 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, J.; Adamová, D.; Aggarwal, M. M.

    The measurement of two-particle angular correlations is a powerful tool to study jet quenching in a p T region inaccessible by direct jet identification. Here, the differences in the pseudorapidity (Δη) and azimuthal (Δφ) measurements are used to extract the shape of the near-side peak formed by particles associated with a higher pT trigger particle (1 < p T,trig < 8 GeV/c). A combined fit of the near-side peak and long-range correlations is applied to the data allowing the extraction of the centrality evolution of the peak shape in Pb-Pb collisions at √ sNN=2.76 TeV. A significant broadening of themore » peak in the Δη direction at low pT is found from peripheral to central collisions, which vanishes above 4 GeV/c, while in the Δφ direction the peak is almost independent of centrality. For the 10% most central collisions and 1 < p T,assoc < 2 GeV/c, 1 < p T,trig < 3 GeV/c a novel feature is observed: a depletion develops around the center of the peak. Our results are compared to pp collisions at the same center of mass energy and ampt model simulations. The comparison to the investigated models suggests that the broadening and the development of the depletion is connected to the strength of radial and longitudinal flow.« less

  10. Anomalous Evolution of the Near-Side Jet Peak Shape in Pb-Pb Collisions at s N N = 2.76 TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2017-09-08

    The measurement of two-particle angular correlations is a powerful tool to study jet quenching in a p T region inaccessible by direct jet identification. Here, the differences in the pseudorapidity (Δη) and azimuthal (Δφ) measurements are used to extract the shape of the near-side peak formed by particles associated with a higher pT trigger particle (1 < p T,trig < 8 GeV/c). A combined fit of the near-side peak and long-range correlations is applied to the data allowing the extraction of the centrality evolution of the peak shape in Pb-Pb collisions at √ sNN=2.76 TeV. A significant broadening of themore » peak in the Δη direction at low pT is found from peripheral to central collisions, which vanishes above 4 GeV/c, while in the Δφ direction the peak is almost independent of centrality. For the 10% most central collisions and 1 < p T,assoc < 2 GeV/c, 1 < p T,trig < 3 GeV/c a novel feature is observed: a depletion develops around the center of the peak. Our results are compared to pp collisions at the same center of mass energy and ampt model simulations. The comparison to the investigated models suggests that the broadening and the development of the depletion is connected to the strength of radial and longitudinal flow.« less

  11. PIV measurements of a jet impinging on an opened rotor-stator system at low gap spacing

    NASA Astrophysics Data System (ADS)

    Nguyen, Thien; Pellé}, Julien; Harmand, Souad

    2011-11-01

    The current work experimentally investigates the flow characteristics of an air jet impinging to an opened rotor-stator configuration at a low nondimensional spacing G = 0 . 02 and very low aspect ratio e / D = 0 . 25 . The rotational Reynolds numbers varied from 0 . 33 ×105 to 5 . 32 ×105 while the jet Reynolds numbers ranged from 17 . 2 ×103 to 43 ×103 . PIV measurements were performed at three axial planes for the entire disk diameter. The obtained PIV results agreed with those obtained by LDA measurements and numerical simulation reported in Poncet et al. 2005 (Physics of Fluids 17, 075110). A recirculation flow region, which centered at the impinging point and possessed high turbulent intensities, was observed. The mean flow and turbulent intensities were evaluated with the local heat transfer coefficients measured by Pellé and Harmand 2009 (Applied Thermal Engineering 29: 1532-1543). It is shown that the local peaks and the gradually rising of the radial heat transfer coefficients Nu are due to the secondary peaks and the increases near the outer radius of the turbulent intensity distributions respectively. POD analysis was applied to the cases of the impinging jet with and without rotation. It is shown that the first POD mode captured nearly 60 % total kinetic energy and the low-order POD modes revealed a spiral structure in the jet-dominated region.

  12. Comparison of abdominal muscle activity and peak expiratory flow between forced vital capacity and fast expiration exercise.

    PubMed

    Ishida, Hiroshi; Suehiro, Tadanobu; Watanabe, Susumu

    2017-04-01

    [Purpose] The purpose of this investigation was to compare the activities of the abdominal muscles and peak expiratory flow between forced vital capacity and fast expiration exercise. [Subjects and Methods] Fifteen healthy male participated in this study. Peak expiratory flow and electromyographic activities of the rectus abdominis, external oblique, and internal oblique/transversus abdominis muscles were measured during forced vital capacity and fast expiration exercise and then peak amplitude and its appearance time were obtained. [Results] Peak expiratory flow values were significantly higher during fast expiration exercise than during forced vital capacity. The internal oblique/transversus abdominis muscles showed significantly higher peak amplitude during fast expiration exercise than during forced vital capacity. However, there were no significant differences between forced vital capacity and fast expiration exercise in the rectus abdominis and external oblique muscles. There was no difference in the appearance time of the peak amplitude between forced vital capacity and fast expiration exercise in any muscle. [Conclusion] Fast expiration exercise might be beneficial for increasing expiratory speed and neuromuscular activation of the internal oblique/transversus abdominis muscles compared to forced vital capacity. These findings could be considered when recommending a variation of expiratory muscle strength training as part of pulmonary rehabilitation programs.

  13. Methods for estimating magnitude and frequency of peak flows for natural streams in Utah

    USGS Publications Warehouse

    Kenney, Terry A.; Wilkowske, Chris D.; Wright, Shane J.

    2007-01-01

    Estimates of the magnitude and frequency of peak streamflows is critical for the safe and cost-effective design of hydraulic structures and stream crossings, and accurate delineation of flood plains. Engineers, planners, resource managers, and scientists need accurate estimates of peak-flow return frequencies for locations on streams with and without streamflow-gaging stations. The 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows were estimated for 344 unregulated U.S. Geological Survey streamflow-gaging stations in Utah and nearby in bordering states. These data along with 23 basin and climatic characteristics computed for each station were used to develop regional peak-flow frequency and magnitude regression equations for 7 geohydrologic regions of Utah. These regression equations can be used to estimate the magnitude and frequency of peak flows for natural streams in Utah within the presented range of predictor variables. Uncertainty, presented as the average standard error of prediction, was computed for each developed equation. Equations developed using data from more than 35 gaging stations had standard errors of prediction that ranged from 35 to 108 percent, and errors for equations developed using data from less than 35 gaging stations ranged from 50 to 357 percent.

  14. Magnetic resonance imaging-based computational modelling of blood flow and nanomedicine deposition in patients with peripheral arterial disease

    PubMed Central

    Hossain, Shaolie S.; Zhang, Yongjie; Fu, Xiaoyi; Brunner, Gerd; Singh, Jaykrishna; Hughes, Thomas J. R.; Shah, Dipan; Decuzzi, Paolo

    2015-01-01

    Peripheral arterial disease (PAD) is generally attributed to the progressive vascular accumulation of lipoproteins and circulating monocytes in the vessel walls leading to the formation of atherosclerotic plaques. This is known to be regulated by the local vascular geometry, haemodynamics and biophysical conditions. Here, an isogeometric analysis framework is proposed to analyse the blood flow and vascular deposition of circulating nanoparticles (NPs) into the superficial femoral artery (SFA) of a PAD patient. The local geometry of the blood vessel and the haemodynamic conditions are derived from magnetic resonance imaging (MRI), performed at baseline and at 24 months post intervention. A dramatic improvement in blood flow dynamics is observed post intervention. A 500% increase in peak flow rate is measured in vivo as a consequence of luminal enlargement. Furthermore, blood flow simulations reveal a 32% drop in the mean oscillatory shear index, indicating reduced disturbed flow post intervention. The same patient information (vascular geometry and blood flow) is used to predict in silico in a simulation of the vascular deposition of systemically injected nanomedicines. NPs, targeted to inflammatory vascular molecules including VCAM-1, E-selectin and ICAM-1, are predicted to preferentially accumulate near the stenosis in the baseline configuration, with VCAM-1 providing the highest accumulation (approx. 1.33 and 1.50 times higher concentration than that of ICAM-1 and E-selectin, respectively). Such selective deposition of NPs within the stenosis could be effectively used for the detection and treatment of plaques forming in the SFA. The presented MRI-based computational protocol can be used to analyse data from clinical trials to explore possible correlations between haemodynamics and disease progression in PAD patients, and potentially predict disease occurrence as well as the outcome of an intervention. PMID:25878124

  15. Variation in ultrafiltered and LMW organic matter fluorescence properties under simulated estuarine mixing transects: 1. Mixing alone

    NASA Astrophysics Data System (ADS)

    Boyd, Thomas J.; Barham, Bethany P.; Hall, Gregory J.; Osburn, Christopher L.

    2010-09-01

    Ultrafiltered and low molecular weight dissolved organic matter (UDOM and LMW-DOM, respectively) fluorescence was studied under simulated estuarine mixing using samples collected from Delaware, Chesapeake, and San Francisco Bays (USA) transects. UDOM was concentrated by tangential flow ultrafiltration (TFF) from the marine (>33 PSU), mid-estuarine (˜16 PSU), and freshwater (<1 PSU) members. TFF permeates (<1 kDa) from the three members were used to create artificial salinity transects ranging from ˜0 to ˜36, with 4 PSU increments. UDOM from the end- or mid-members was added in equal amounts to each salinity-mix. Three-dimensional fluorescence excitation-emission matrix (EEMs) spectra were generated for each end-member permeate and UDOM through the full estuarine mixing transect. Fluorescence components such as proteinaceous, terrigenous, and marine derived humic peaks, and certain fluorescent ratios were noticeably altered by simulated estuarine mixing, suggesting that LMW DOM and UDOM undergo physicochemical alteration as they move to or from the freshwater, mid-estuarine, or coastal ocean members. LMW fluorescence components fit a decreasing linear mixing model from mid salinities to the ocean end-member, but were more highly fluorescent than mixing alone would predict in lower salinities (<8). Significant shifts were also seen in UDOM peak emission wavelengths with blue-shifting toward the ocean end-member. Humic-type components in UDOM generally showed lower fluorescent intensities at low salinities, higher at mid-salinities, and lower again toward the ocean end-member. T (believed to be proteinaceous) and N (labile organic matter) peaks behaved similarly to each other, but not to B peak fluorescence, which showed virtually no variation in permeate or UDOM mixes with salinity. PCA and PARAFAC models showed similar results suggesting trends could be modeled for DOM end- and mid-member sources. Changes in fluorescence properties due to estuarine mixing may be important when using CDOM as a proxy for DOM cycling in coastal systems.

  16. Particle in cell simulation of peaking switch for breakdown evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umbarkar, Sachin B.; Bindu, S.; Mangalvedekar, H.A.

    2014-07-01

    Marx generator connected to peaking capacitor and peaking switch can generate Ultra-Wideband (UWB) radiation. A new peaking switch is designed for converting the existing nanosecond Marx generator to a UWB source. The paper explains the particle in cell (PIC) simulation for this peaking switch, using MAGIC 3D software. This peaking switch electrode is made up of copper tungsten material and is fixed inside the hermitically sealed derlin material. The switch can withstand a gas pressure up to 13.5 kg/cm{sup 2}. The lower electrode of the switch is connected to the last stage of the Marx generator. Initially Marx generator (withoutmore » peaking stage) in air; gives the output pulse with peak amplitude of 113.75 kV and pulse rise time of 25 ns. Thus, we design a new peaking switch to improve the rise time of output pulse and to pressurize this peaking switch separately (i.e. Marx and peaking switch is at different pressure). The PIC simulation gives the particle charge density, current density, E counter plot, emitted electron current, and particle energy along the axis of gap between electrodes. The charge injection and electric field dependence on ionic dissociation phenomenon are briefly analyzed using this simulation. The model is simulated with different gases (N{sub 2}, H{sub 2}, and Air) under different pressure (2 kg/cm{sup 2}, 5 kg/cm{sup 2}, 10 kg/cm{sup 2}). (author)« less

  17. Chromatogram simulation by area reproduction.

    PubMed

    Boe, Bjarne

    2007-01-12

    A modified Poisson function has been developed for the simulation of chromatographic peaks. The proposed model is shown to have the property of exactly recreating the experimentally determined peak area. Model parameters are obtained directly from the experimental peak, and overlapping peaks are deconvoluted such that the area sum of overlapping peaks is kept unchanged. The method was applied to real, complex chromatograms.

  18. Laboratory-based observations of capillary barriers and preferential flow in layered snow

    NASA Astrophysics Data System (ADS)

    Avanzi, F.; Hirashima, H.; Yamaguchi, S.; Katsushima, T.; De Michele, C.

    2015-12-01

    Several evidences are nowadays available that show how the effects of capillary gradients and preferential flow on water transmission in snow may play a more important role than expected. To observe these processes and to contribute in their characterization, we performed observations on the development of capillary barriers and preferential flow patterns in layered snow during cold laboratory experiments. We considered three different layering (all characterized by a finer-over-coarser texture in grain size) and three different water input rates. Nine samples of layered snow were sieved in a cold laboratory, and subjected to a constant supply of dyed tracer. By means of visual inspection, horizontal sectioning and liquid water content measurements, the processes of ponding and preferential flow were characterized as a function of texture and water input rate. The dynamics of each sample were replicated using the multi-layer physically-based SNOWPACK model. Results show that capillary barriers and preferential flow are relevant processes ruling the speed of liquid water in stratified snow. Ponding is associated with peaks in LWC at the boundary between the two layers equal to ~ 33-36 vol. % when the upper layer is composed by fine snow (grain size smaller than 0.5 mm). The thickness of the ponding layer at the textural boundary is between 0 and 3 cm, depending on sample stratigraphy. Heterogeneity in water transmission increases with grain size, while we do not observe any clear dependency on water input rate. The extensive comparison between observed and simulated LWC profiles by SNOWPACK (using an approximation of Richards Equation) shows high performances by the model in estimating the LWC peak over the boundary, while water speed in snow is underestimated by the chosen water transport scheme.

  19. Influence of ammonia flow rate for improving properties of polycrystalline GaN

    NASA Astrophysics Data System (ADS)

    Ariff, A.; Ahmad, M. A.; Hassan, Z.; Zainal, N.

    2018-06-01

    Post-annealing treatment in ammonia ambient is widely accepted for GaN material, but less works have been done to investigate the influence of the ammonia (NH3) flow rate for reducing the N-deficiency as well as improving the quality of the material. In this work, we investigated the influence of NH3 flow rate at 1, 2, 3, and 4 slm in improving properties of a ∼1 μm thick polycrystalline GaN layer. Our simulation work suggested that the uniformity of temperature and pressure gradient of the NH3 gas did not lead to the reduction of N-deficiency of the polycrystalline GaN layer. Instead, it was found that the mitigation of the N-deficiency was strongly influenced by the fluid velocity of the NH3 gas, which had passed over the layer. Either at lower or higher fluid velocity, the chance for the active N atoms to incorporate into the GaN lattice structure was low. Therefore, the N-deficiency on the polycrystalline GaN layer could not be minimized under these conditions. As measured by EDX, the N atoms incorporation was the most effective when the NH3 flow rate at 3 slm, suggesting the flow rate significantly improved the N-deficiency of the polycrystalline GaN layer. Furthermore, it favored the formation of larger hexagonal faceted grains, with the smallest FWHM of XRD peaks from the GaN diffractions in (10 1 bar 0), (0002) and (10 1 bar 1) orientations, while allowing the polycrystalline GaN layer to show sharp and intense emissions peak of NBE in a PL spectrum.

  20. Modeled future peak streamflows in four coastal Maine rivers

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.

    2013-01-01

    To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). These peak flows are also needed for effective floodplain management. Annual precipitation and air temperature in the northeastern United States are in general projected to increase during the 21st century (Hayhoe and other, 2007). It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This Fact Sheet, prepared in cooperation with the Maine Department of Transportation, presents a summary of modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. The full Scientific Investigations Report (Hodgkins and Dudley, 2013) is available at http://pubs.usgs.gov/sir/2013/5080/.

  1. Aspen clearcutting increases snowmelt and storm flow peaks in north central Minnesota

    Treesearch

    Elon S. Verry; Jeffrey R. Lewis; Kenneth N. Brooks

    1983-01-01

    Clearcutting aspen from the upland portion of an upland peatland watershed in north central Minnesota caused snowmelt peak discharge to increase 11 to 143 percent. Rainfall peak discharge size increased as much as 250 percent during the first two years after clearcutting, then decreased toward precutting levels in subsequent years. Storm flow volumes from rain during...

  2. Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.

    2004-01-01

    A detailed experimental, theoretical, and computational study of separated nozzle flows has been conducted. Experimental testing was performed at the NASA Langley 16-Foot Transonic Tunnel Complex. As part of a comprehensive static performance investigation, force, moment, and pressure measurements were made and schlieren flow visualization was obtained for a sub-scale, non-axisymmetric, two-dimensional, convergent- divergent nozzle. In addition, two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and algebraic Reynolds stress modeling. For reference, experimental and computational results were compared with theoretical predictions based on one-dimensional gas dynamics and an approximate integral momentum boundary layer method. Experimental results from this study indicate that off-design overexpanded nozzle flow was dominated by shock induced boundary layer separation, which was divided into two distinct flow regimes; three- dimensional separation with partial reattachment, and fully detached two-dimensional separation. The test nozzle was observed to go through a marked transition in passing from one regime to the other. In all cases, separation provided a significant increase in static thrust efficiency compared to the ideal prediction. Results indicate that with controlled separation, the entire overexpanded range of nozzle performance would be within 10% of the peak thrust efficiency. By offering savings in weight and complexity over a conventional mechanical exhaust system, this may allow a fixed geometry nozzle to cover an entire flight envelope. The computational simulation was in excellent agreement with experimental data over most of the test range, and did a good job of modeling internal flow and thrust performance. An exception occurred at low nozzle pressure ratios, where the two-dimensional computational model was inconsistent with the three-dimensional separation observed in the experiment. In general, the computation captured the physics of the shock boundary layer interaction and shock induced boundary layer separation in the nozzle, though there were some differences in shock structure compared to experiment. Though minor, these differences could be important for studies involving flow control or thrust vectoring of separated nozzles. Combined with other observations, this indicates that more detailed, three-dimensional computational modeling needs to be conducted to more realistically simulate shock-separated nozzle flows.

  3. Computation of peak discharge at culverts

    USGS Publications Warehouse

    Carter, Rolland William

    1957-01-01

    Methods for computing peak flood flow through culverts on the basis of a field survey of highwater marks and culvert geometry are presented. These methods are derived from investigations of culvert flow as reported in the literature and on extensive laboratory studies of culvert flow. For convenience in computation, culvert flow has been classified into six types, according to the location of the control section and the relative heights of the head-water and tail-water levels. The type of flow which occurred at any site can be determined from the field data and the criteria given in this report. A discharge equation has been developed for each flow type by combining the energy and continuity equations for the distance between an approach section upstream from the culvert and a terminal section within the culvert barrel. The discharge coefficient applicable to each flow type is listed for the more common entrance geometries. Procedures for computing peak discharge through culverts are outlined in detail for each of the six flow types.

  4. USB flow characteristics related to noise generation

    NASA Technical Reports Server (NTRS)

    Brown, W. H.; Reddy, N. N.

    1976-01-01

    The effects of nozzle and flap geometry on upper surface blown flow field characteristics related to noise generation were examined experimentally using static models. Flow attachment and spreading characteristics were observed using flow visualization techniques. Velocity and turbulence profiles in the trailing edge wake were measured using hot-wire anemometry, and the effects of the geometric variables on peak velocity and turbulence intensity were determined. It is shown that peak trailing edge velocity is a function of the ratio of flow length to modified hydraulic diameter.

  5. Frequency response of portable PEF meters.

    PubMed

    Hankinson, J L; Das, M K

    1995-08-01

    Peak expiratory flow (PEF) is a dynamic parameter and therefore requires a measuring device with a high-frequency response. This study evaluated the frequency-response characteristics of eight commercially available PEF meters, using simulated forced-expiratory maneuvers with a computer-controlled mechanical pump. Three different PEF levels were used (200, 400, and 600 L/min) at six levels of harmonic-frequency content similar to those observed in human subjects. For waveforms with higher frequency content (at the high end or above the physiologic range), the Assess, Vitalograph, Pocket Peak, and Spir-O-Flow PEF meters all overread PEF (greater than 15% difference from target values) at all three PEF levels. These results suggest that the frequency response of PEF meters is an important consideration in the selection of such meters and should be included in device requirements. The current practice of using various levels of American Thoracic Society (ATS) waveform 24 with its low-frequency content may not adequately evaluate the frequency characteristics of PEF meters. An upper range (5% of the fundamental frequency) of 12 Hz, within the range observed in normal subjects, appears to be more practical than an upper limit of 20 Hz.

  6. Arcjet load characteristics

    NASA Technical Reports Server (NTRS)

    Hamley, John A.

    1990-01-01

    Experiments were conducted to define the interface characteristics and constraints of 1 kW class arcjets run on simulated decomposition products of hydrazine and power processors. The impacts of power supply output current ripple on arcjet performance were assessed by variation of the ripple frequency from 100 Hz to 100 kHz with 10 percent peak-to-peak ripple amplitude at 1.2 kW. Ripple had no significant effects on thrust, specific impulse or efficiency. The impact of output ripple on thruster lifetime was not assessed. The static and dynamic impedances of the arcjet were quantified with two thrusters of nearly identical configuration. Superposition of an AC component on the DC arc current was used to characterize the dynamic impedance as a function of flow rate and DC current level. A mathematical model was formulated from these data. Both the static and dynamic impedance magnitude were found to be dependent on mass flow rate. The amplitude of the AC component was found to have little effect on the dynamic impedance. Reducing the DC level from 10 to 8 amps led to a large change in the magnitude of the dynamic impedance with no observable phase change. The impedance data compared favorably between the two thrusters.

  7. Peak flow regression equations For small, ungaged streams in Maine: Comparing map-based to field-based variables

    USGS Publications Warehouse

    Lombard, Pamela J.; Hodgkins, Glenn A.

    2015-01-01

    Regression equations to estimate peak streamflows with 1- to 500-year recurrence intervals (annual exceedance probabilities from 99 to 0.2 percent, respectively) were developed for small, ungaged streams in Maine. Equations presented here are the best available equations for estimating peak flows at ungaged basins in Maine with drainage areas from 0.3 to 12 square miles (mi2). Previously developed equations continue to be the best available equations for estimating peak flows for basin areas greater than 12 mi2. New equations presented here are based on streamflow records at 40 U.S. Geological Survey streamgages with a minimum of 10 years of recorded peak flows between 1963 and 2012. Ordinary least-squares regression techniques were used to determine the best explanatory variables for the regression equations. Traditional map-based explanatory variables were compared to variables requiring field measurements. Two field-based variables—culvert rust lines and bankfull channel widths—either were not commonly found or did not explain enough of the variability in the peak flows to warrant inclusion in the equations. The best explanatory variables were drainage area and percent basin wetlands; values for these variables were determined with a geographic information system. Generalized least-squares regression was used with these two variables to determine the equation coefficients and estimates of accuracy for the final equations.

  8. Correlations and Areal Distribution of the Table Mountain Formation, Stanislaus Group; Central Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Torrez, G.; Carlson, C. W.; Putirka, K. D.; Pluhar, C. J.; Sharma, R. K.

    2011-12-01

    Late Cenozoic evolution of the western Cordillera is a matter of ongoing debate in geologic studies. Volcanic deposits within, and adjacent to the Sierra Nevada have played a significant role in many of these debates. With local faulting coincident with eruption of members of the Stanislaus Group at ca. 38°N, the composition and correlation of these volcanics can greatly aid our understanding of Sierra Nevada tectonics. At the crest of the central Sierra Nevada, 23 trachyandesite lava flows of the Table Mountain Formation, dated at ~10 Ma, cap Sonora Peak. These 23 flows compose the thickest and most complete known stratigraphic section of the Table Mountain Formation in the region. Located ~12 km east of Sonora Peak are 16 flows of trachyandesite at Grouse Meadow. We have collected a detailed set of geochemical and paleomagnetic data for flows of these two sections at Sonora Peak and Grouse Meadows in an attempt to correlate volcanic, paleomagnetic and structural events related to uplift and extension in the Sierra Nevada and the Walker Lane. Correlation of individual flows is possible based on: stratigraphic order, temporal gaps in deposition as determined by paleomagnetic remanence direction and nonconformities, and flow geochemistry. These correlations allow us to infer source localities, flow directions, and temporal changes in flow routes. The large number of flows present at Grouse Meadow provides an additional data set from which to correlate various localities in the region to those units not represented at Sonora Peak. Several flows which occur in the upper portions of the Sonora Peak and Grouse Meadow stratigraphic sections do not correlate between these localities. The causes of stratigraphic discontinuity potentially represent: tectonic isolation across the Sierran Crest, topographic isolation by the emplacement of younger flows, or the combination of the two. Additional to the correlation of individual flows at these localities, this study shows a significant shift in geochemistry across a stratigraphic boundary at both localities.

  9. Traveltime and dispersion in the Potomac River, Cumberland, Maryland, to Washington, D.C.

    USGS Publications Warehouse

    Taylor, Kenneth R.; James, Robert W.; Helinsky, Bernard M.

    1985-01-01

    A travel-time and dispersion study using rhodamine dye was conducted on the Potomac River between Cumberland, Maryland, and Washington, D.C., a distance of 189 miles. The flow during the study was at approximately the 90-percent flow-duration level. A similar study was conducted by Wilson and Forrest in 1964 at a flow duration of approximately 60 percent. The two sets of data were used to develop a generalized procedure for predicting travel-times and downstream concentrations resulting from spillage of water-soluble substances at any point along the river. The procedure will allow the user to calculate travel-time and concentration data for almost any spillage problem that occurs during periods of relatively steady flow between 50- and 95-percent flow duration. A new procedure for calculating unit peak concentration was derived. The new procedure depends on an analogy between a time-concentration curve and a scalene triangle. As a result of this analogy, the unit peak concentration can be expressed in terms of the length of the _lye or contaminant cloud. The new procedure facilitates the calculation of unit peak concentration for long reaches of river. Previously, there was no way to link unit peak concentration curves for studies in which the river was divided into subreaches for study. Variable dispersive characteristics caused mainly by low-head dams precluded useful extrapolation of the unit peak-concentration attenuation curves, as has been done in previous studies. The procedure is applied to a hypothetical situation in which 20,000 pounds of contaminant is spilled at a railroad crossing at Magnolia, West Virginia. The times required for the leading edge, the peak concentration, and the trailing edge of the contaminant cloud to reach Point of Rocks, Maryland (110 river miles downstream), are 295, 375, and 540 hours respectively, during a period when flow is at the 80-percent flow-duration level. The peak conservative concentration would be approximately 340 micrograms per liter at Point of Rocks.

  10. Sediment transport patterns and climate change: the downstream Tuul River case study, Northern Mongolia.

    NASA Astrophysics Data System (ADS)

    Pietroń, Jan; Jarsjö, Jerker

    2014-05-01

    Ongoing changes in the Central Asian climate including increasing temperatures can influence the hydrological regimes of rivers and the waterborne transport of sediments. Changes in the latter, especially in combination with adverse human activities, may severely impact water quality and aquatic ecosystems. However, waterborne transport of sediments is a result of complex processes and varies considerably between, and even within, river systems. There is therefore a need to increase our general knowledge about sediment transport under changing climate conditions. The Tuul River, the case site of this study, is located in the upper part of the basin of the Selenga River that is the main tributary to Lake Baikal, a UNESCO World Heritage Site. Like many other rivers located in the steppes of Northern Mongolia, the Tuul River is characterized by a hydrological regime that is not disturbed by engineered structures such as reservoirs and dams. However, the water quality of the downstream Tuul River is increasingly affected by adverse human activities - including placer gold mining. The largest contribution to the annual river discharge occurs during the relatively warm period in May to August. Typically, there are numerous rainfall events during this period that cause considerable river flow peaks. Parallel work has furthermore shown that due to climate change, the daily variability of discharge and numbers of peak flow events in the Tuul River Basin has increased during the past 60 years. This trend is expected to continue. We here aim at increasing our understanding of future sediment transport patterns in the Tuul River, specifically considering the scenario that peak flow events may become more frequent due to climate change. We use a one-dimensional sediment transport model of the downstream reach of the river to simulate natural patterns of sediment transport for a recent hydrological year. In general, the results show that sediment transport varies considerably spatially and temporally. Peak flow events during the warm period contribute largely to the total annual transport of sediments and also to the erosion of stored bed material. These results suggest that if the number of peak flow events will increase further due to climate change, there will be a significant increase in the annual sediment load and consequently in the load of contaminants that are attached to the sediments, in particular downstream of mining sites. The present results are furthermore consistent with parallel studies on sediment transport and climate change showing that increased water discharges and frequencies of rainfall/flow events can lead to enhanced erosion processes. Furthermore, in addition to climate change effects, human activates can change sediment loads in rivers to even greater extent, as pointed out in several studies. Thus, several different challenges can be expected to face the management of Central Asian rivers such as Tuul and their ecosystems in the future.

  11. Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems

    NASA Astrophysics Data System (ADS)

    Feehan, S.; Ruggiero, P.; Hempel, L. A.; Anderson, D. L.; Cohn, N.

    2016-12-01

    Characterizing Feedbacks Between Environmental Forcing and Sediment Characteristics in Fluvial and Coastal Systems American Geophysical Union, 2016 Fall Meeting: San Francisco, CA Authors: Scott Feehan, Peter Ruggiero, Laura Hempel, and Dylan Anderson Linking transport processes and sediment characteristics within different environments along the source to sink continuum provides critical insight into the dominant feedbacks between grain size distributions and morphological evolution. This research is focused on evaluating differences in sediment size distributions across both fluvial and coastal environments in the U.S. Pacific Northwest. The Cascades' high relief is characterized by diverse flow regimes with high peak/flashy flows and sub-threshold flows occurring in relative proximity and one of the most energetic wave climates in the world. Combining analyses of both fluvial and coastal environments provides a broader understanding of the dominant forces driving differences between each system's grain size distributions, sediment transport processes, and resultant evolution. We consider sediment samples taken during a large-scale flume experiment that simulated floods representative of both high/flashy peak flows analogous to runoff dominated rivers and sub-threshold flows, analogous to spring-fed rivers. High discharge flows resulted in narrower grain size distributions while low flows where less skewed. Relative sediment size showed clear dependence on distance from source and the environments' dominant fluid motion. Grain size distributions and sediment transport rates were also quantified in both wave dominated nearshore and aeolian dominated backshore portions of Long Beach Peninsula, Washington during SEDEX2, the Sandbar-aEolian-Dune EXchange Experiment of summer 2016. The distributions showed spatial patterns in mean grain size, skewness, and kurtosis dependent on the dominant sediment transport process. The feedback between these grain size distributions and the predominant driver of sediment transport controls the potential for geomorphic change on societally relevant time scales in multiple settings.

  12. Development of a Duplex Ultrasound Simulator and Preliminary Validation of Velocity Measurements in Carotid Artery Models.

    PubMed

    Zierler, R Eugene; Leotta, Daniel F; Sansom, Kurt; Aliseda, Alberto; Anderson, Mark D; Sheehan, Florence H

    2016-07-01

    Duplex ultrasound scanning with B-mode imaging and both color Doppler and Doppler spectral waveforms is relied upon for diagnosis of vascular pathology and selection of patients for further evaluation and treatment. In most duplex ultrasound applications, classification of disease severity is based primarily on alterations in blood flow velocities, particularly the peak systolic velocity (PSV) obtained from Doppler spectral waveforms. We developed a duplex ultrasound simulator for training and assessment of scanning skills. Duplex ultrasound cases were prepared from 2-dimensional (2D) images of normal and stenotic carotid arteries by reconstructing the common carotid, internal carotid, and external carotid arteries in 3 dimensions and computationally simulating blood flow velocity fields within the lumen. The simulator displays a 2D B-mode image corresponding to transducer position on a mannequin, overlaid by color coding of velocity data. A spectral waveform is generated according to examiner-defined settings (depth and size of the Doppler sample volume, beam steering, Doppler beam angle, and pulse repetition frequency or scale). The accuracy of the simulator was assessed by comparing the PSV measured from the spectral waveforms with the true PSV which was derived from the computational flow model based on the size and location of the sample volume within the artery. Three expert examiners made a total of 36 carotid artery PSV measurements based on the simulated cases. The PSV measured by the examiners deviated from true PSV by 8% ± 5% (N = 36). The deviation in PSV did not differ significantly between artery segments, normal and stenotic arteries, or examiners. To our knowledge, this is the first simulation of duplex ultrasound that can create and display real-time color Doppler images and Doppler spectral waveforms. The results demonstrate that an examiner can measure PSV from the spectral waveforms using the settings on the simulator with a mean absolute error in the velocity measurement of less than 10%. With the addition of cases with a range of pathologies, this duplex ultrasound simulator will be a useful tool for training health-care providers in vascular ultrasound applications and for assessing their skills in an objective and quantitative manner. © The Author(s) 2016.

  13. South Asia river flow projections and their implications for water resources

    NASA Astrophysics Data System (ADS)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-06-01

    South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990-2006 for ERA-Interim and 1960-2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a benchmark for comparison against the downscaled GCMs. On the basis that these simulations are among the highest resolution climate simulations available we examine how useful they are for understanding the changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows, with timing of maximum river flows broadly matching the available observations and the downscaled ERA-Interim simulation. Typically the RCM simulations over-estimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model although comparison with the downscaled ERA-Interim simulation is more mixed with only a couple of the gauges showing a bias compared with the downscaled GCM runs. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century; this trend is generally masked by the large annual variability of river flows for this region. The future seasonality of river flows does not change with the future maximum river flow rates still occuring during the ASM period, with a magnitude in some cases, greater than the present day natural variability. Increases in river flow during peak flow periods means additional water resource for irrigation, the largest usage of water in this region, but also has implications in terms of inundation risk. Low flow rates also increase which is likely to be important at times of the year when water is historically more scarce. However these projected increases in resource from rivers could be more than countered by changes in demand due to reductions in the quantity and quality of water available from groundwater, increases in domestic use due to a rising population or expansion of other industries such as hydro-electric power generation.

  14. Analysis of the laser ignition of methane/oxygen mixtures in a sub-scale rocket combustion chamber

    NASA Astrophysics Data System (ADS)

    Wohlhüter, Michael; Zhukov, Victor P.; Sender, Joachim; Schlechtriem, Stefan

    2017-06-01

    The laser ignition of methane/oxygen mixtures in a sub-scale rocket combustion chamber has been investigated numerically and experimentally. The ignition test case used in the present paper was generated during the In-Space Propulsion project (ISP-1), a project focused on the operation of propulsion systems in space, the handling of long idle periods between operations, and multiple reignitions under space conditions. Regarding the definition of the numerical simulation and the suitable domain for the current model, 2D and 3D simulations have been performed. Analysis shows that the usage of a 2D geometry is not suitable for this type of simulation, as the reduction of the geometry to a 2D domain significantly changes the conditions at the time of ignition and subsequently the flame development. The comparison of the numerical and experimental results shows a strong discrepancy in the pressure evolution and the combustion chamber pressure peak following the laser spark. The detailed analysis of the optical Schlieren and OH data leads to the conclusion that the pressure measurement system was not able to capture the strong pressure increase and the peak value in the combustion chamber during ignition. Although the timing in flame development following the laser spark is not captured appropriately, the 3D simulations reproduce the general ignition phenomena observed in the optical measurement systems, such as pressure evolution and injector flow characteristics.

  15. ANSYS-MATLAB co-simulation of mucus flow distribution and clearance effectiveness of a new simulated cough device.

    PubMed

    Ren, Shuai; Shi, Yan; Cai, Maolin; Zhao, Hongmei; Zhang, Zhaozhi; Zhang, Xiaohua Douglas

    2018-06-01

    Coughing is an irritable reaction that protects the respiratory system from infection and improves mucus clearance. However, for the patients who cannot cough autonomously, an assisted cough device is essential for mucus clearance. Considering the low efficiency of current assisted cough devices, a new simulated cough device based on the pneumatic system is proposed in this paper. Given the uncertainty of airflow rates necessary to clear mucus from airways, the computational fluid dynamics Eulerian wall film model and cough efficiency (CE) were used in this study to simulate the cough process and evaluate cough effectiveness. The Ansys-Matlab co-simulation model was set up and verified through experimental studies using Newtonian fluids. Next, model simulations were performed using non-Newtonian fluids, and peak cough flow (PCF) and PCF duration time were analyzed to determine their influence on mucus clearance. CE growth rate (λ) was calculated to reflect the CE variation trend. From the numerical simulation results, we find that CE rises as PCF increases while the growth rate trends to slow as PCF increases; when PCF changes from 60 to 360 L/min, CE changes from 3.2% to 51.5% which is approximately 16 times the initial value. Meanwhile, keeping a long PCF duration time could greatly improve CE under the same cough expired volume and PCF. The results indicated that increasing the PCF and PCF duration time can improve the efficiency of mucus clearance. This paper provides a new approach and a research direction for control strategy in simulated cough devices for airway mucus clearance. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Does model structure limit the use of satellite data as hydrologic forcing for distributed operational models?

    NASA Astrophysics Data System (ADS)

    Bowman, A. L.; Franz, K.; Hogue, T. S.

    2015-12-01

    We are investigating the implications for use of satellite data in operational streamflow prediction. Specifically, the consequence of potential hydrologic model structure deficiencies on the ability to achieve improved forecast accuracy through the use of satellite data. We want to understand why advanced data do not lead to improved streamflow simulations by exploring how various fluxes and states differ among models of increasing complexity. In a series of prior studies, we investigated the use of a daily satellite-derived potential evapotranspiration (PET) estimate as input to the National Weather Service (NWS) streamflow forecast models for watersheds in the Upper Mississippi and Red river basins. Although the spatial PET product appears to represent the day-to-day variability in PET more realistically than current climatological methods used by the NWS, the impact of the satellite data on streamflow simulations results in slightly poorer model efficiency overall. Analysis of the model states indicates the model progresses differently between simulations with baseline PET and the satellite-derived PET input, though variation in streamflow simulations overall is negligible. For instance, the upper zone states, responsible for the high flows of a hydrograph, show a profound difference, while simulation of the peak flows tend to show little variation in the timing and magnitude. Using the spatial PET input, the lower zone states show improvement with simulating the recession limb and baseflow portion of the hydrograph. We anticipate that through a better understanding of the relationship between model structure, model states, and simulated streamflow we will be able to diagnose why simulations of discharge from the forecast model have failed to improve when provided seemingly more representative input data. Identifying model limitations are critical to demonstrating the full benefit of a satellite data for operational use.

  17. A comparison of solute-transport solution techniques and their effect on sensitivity analysis and inverse modeling results

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2001-01-01

    Five common numerical techniques for solving the advection-dispersion equation (finite difference, predictor corrector, total variation diminishing, method of characteristics, and modified method of characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using discrete, randomly distributed, homogeneous blocks of five sand types. This experimental model provides an opportunity to compare the solution techniques: the heterogeneous hydraulic-conductivity distribution of known structure can be accurately represented by a numerical model, and detailed measurements can be compared with simulated concentrations and total flow through the tank. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation given the different methods of simulating solute transport. The breakthrough curves show that simulated peak concentrations, even at very fine grid spacings, varied between the techniques because of different amounts of numerical dispersion. Sensitivity-analysis results revealed: (1) a high correlation between hydraulic conductivity and porosity given the concentration and flow observations used, so that both could not be estimated; and (2) that the breakthrough curve data did not provide enough information to estimate individual values of dispersivity for the five sands. This study demonstrates that the choice of assigned dispersivity and the amount of numerical dispersion present in the solution technique influence estimated hydraulic conductivity values to a surprising degree.

  18. On the Frozen Soil Scheme for High Latitude Regions

    NASA Astrophysics Data System (ADS)

    Ganji, A.; Sushama, L.

    2014-12-01

    Regional and global climate model simulated streamflows for high-latitude regions show systematic biases, particularly in the timing and magnitude of spring peak flows. Though these biases could be related to the snow water equivalent and spring temperature biases in models, a good part of these biases is due to the unaccounted effects of non-uniform infiltration capacity of the frozen ground and other related processes. In this paper, the frozen scheme in the Canadian Land Surface Scheme (CLASS), which is used in the Canadian regional and global climate models, is modified to include fractional permeable area, supercooled liquid water and a new formulation for hydraulic conductivity. Interflow is also included in these experiments presented in this study to better explain the steamflows after snow melt season. The impact of these modifications on the regional hydrology, particularly streamflow, is assessed by comparing three simulations, performed with the original and two modified versions of CLASS, driven by atmospheric forcing data from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data (ERA-Interim), for the 1990-2001 period, over a northeast Canadian domain. The two modified versions of CLASS differ in the soil hydraulic conductivity and matric potential formulations, with one version being based on formulations from a previous study and the other one is newly proposed. Results suggest statistically significant decreases in infiltration for the simulation with the new hydraulic conductivity and matric potential formulations and fractional permeable area concept, compared to the original version of CLASS, which is also reflected in the increased spring surface runoff and streamflows in this simulation with modified CLASS, over most of the study domain. The simulated spring peaks and their timing in this simulation is also in better agreement to those observed.

  19. F-16XL Hybrid Reynolds-Averaged Navier-Stokes/Large Eddy Simulation on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Abdol-Hamid, Khaled S.; Elmiligui, Alaa

    2015-01-01

    This study continues the Cranked Arrow Wing Aerodynamics Program, International (CAWAPI) investigation with the FUN3D and USM3D flow solvers. CAWAPI was established to study the F-16XL, because it provides a unique opportunity to fuse fight test, wind tunnel test, and simulation to understand the aerodynamic features of swept wings. The high-lift performance of the cranked-arrow wing planform is critical for recent and past supersonic transport design concepts. Simulations of the low speed high angle of attack Flight Condition 25 are compared: Detached Eddy Simulation (DES), Modi ed Delayed Detached Eddy Simulation (MDDES), and the Spalart-Allmaras (SA) RANS model. Iso- surfaces of Q criterion show the development of coherent primary and secondary vortices on the upper surface of the wing that spiral, burst, and commingle. SA produces higher pressure peaks nearer to the leading-edge of the wing than flight test measurements. Mean DES and MDDES pressures better predict the flight test measurements, especially on the outer wing section. Vorticies and vortex-vortex interaction impact unsteady surface pressures. USM3D showed many sharp tones in volume points spectra near the wing apex with low broadband noise and FUN3D showed more broadband noise with weaker tones. Spectra of the volume points near the outer wing leading-edge was primarily broadband for both codes. Without unsteady flight measurements, the flight pressure environment can not be used to validate the simulations containing tonal or broadband spectra. Mean forces and moment are very similar between FUN3D models and between USM3D models. Spectra of the unsteady forces and moment are broadband with a few sharp peaks for USM3D.

  20. Impacts of logging on storm peak flows, flow volumes and suspended sediment loads in Caspar Creek, California

    Treesearch

    Jack Lewis; Sylvia R. Mori; Elizabeth T. Keppeler; Robert R. Ziemer

    2001-01-01

    Abstract - Models are fit to 11 years of storm peak flows, flow volumes, and suspended sediment loads on a network of 14 stream gaging stations in the North Fork Caspar Creek, a 473-ha coastal watershed bearing a second-growth forest of redwood and Douglas-fir. For the first 4 years of monitoring, the watershed was in a relatively undisturbed state, having last been...

  1. Exploring the feasibility of focusing CW light through a scattering medium into closely spaced twin peaks via numerical solutions of Maxwell’s equations

    NASA Astrophysics Data System (ADS)

    Tseng, Snow H.; Chang, Shih-Hui

    2018-04-01

    Here we present a numerical simulation to analyze the effect of scattering on focusing light into closely-spaced twin peaks. The pseudospectral time-domain (PSTD) is implemented to model continuous-wave (CW) light propagation through a scattering medium. Simulations show that CW light can propagate through a scattering medium and focus into closely-spaced twin peaks. CW light of various wavelengths focusing into twin peaks with sub-diffraction spacing is simulated. In advance, light propagation through scattering media of various number densities is simulated to decipher the dependence of CW light focusing phenomenon on the scattering medium. The reported simulations demonstrate the feasibility of focusing CW light into twin peaks with sub-diffraction dimensions. More importantly, based upon numerical solutions of Maxwell’s equations, research findings show that the sub-diffraction focusing phenomenon can be achieved with scarce or densely-packed scattering media.

  2. User's Manual for Program PeakFQ, Annual Flood-Frequency Analysis Using Bulletin 17B Guidelines

    USGS Publications Warehouse

    Flynn, Kathleen M.; Kirby, William H.; Hummel, Paul R.

    2006-01-01

    Estimates of flood flows having given recurrence intervals or probabilities of exceedance are needed for design of hydraulic structures and floodplain management. Program PeakFQ provides estimates of instantaneous annual-maximum peak flows having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (annual-exceedance probabilities of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002, respectively). As implemented in program PeakFQ, the Pearson Type III frequency distribution is fit to the logarithms of instantaneous annual peak flows following Bulletin 17B guidelines of the Interagency Advisory Committee on Water Data. The parameters of the Pearson Type III frequency curve are estimated by the logarithmic sample moments (mean, standard deviation, and coefficient of skewness), with adjustments for low outliers, high outliers, historic peaks, and generalized skew. This documentation provides an overview of the computational procedures in program PeakFQ, provides a description of the program menus, and provides an example of the output from the program.

  3. Simulation of streamflow and estimation of ground-water recharge in the Upper Cibolo Creek Watershed, south-central Texas, 1992-2004

    USGS Publications Warehouse

    Ockerman, Darwin J.

    2007-01-01

    A watershed model (Hydrological Simulation Program?FORTRAN) was developed, calibrated, and tested by the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, San Antonio River Authority, San Antonio Water System, and Guadalupe-Blanco River Authority, to simulate streamflow and estimate ground-water recharge in the upper Cibolo Creek watershed in south-central Texas. Rainfall, evapotranspiration, and streamflow data were collected during 1992?2004 for model calibrations and simulations. Estimates of average ground-water recharge during 1992?2004 from simulation were 79,800 acre-feet (5.47 inches) per year or about 15 percent of rainfall. Most of the recharge (about 74 percent) occurred as infiltration of streamflow in Cibolo Creek. The remaining recharge occurred as diffuse infiltration of rainfall through the soil and rock layers and karst features. Most recharge (about 77 percent) occurred in the Trinity aquifer outcrop. The remaining 23 percent occurred in the downstream part of the watershed that includes the Edwards aquifer recharge zone (outcrop). Streamflow and recharge in the study area are greatly influenced by large storms. Storms during June 1997, October 1998, and July 2002 accounted for about 11 percent of study-area rainfall, 61 percent of streamflow, and 16 percent of the total ground-water recharge during 1992?2004. Annual streamflow and recharge also were highly variable. During 1999, a dry year with about 16 inches of rain and no measurable runoff at the watershed outlet, recharge in the watershed amounted to only 0.99 inch compared with 13.43 inches during 1992, a relatively wet year with about 54 inches of rainfall. Simulation of flood-control/recharge-enhancement structures showed that certain structures might reduce flood peaks and increase recharge. Simulation of individual structures on tributaries showed relatively little effect. Larger structures on the main stem of Cibolo Creek were more effective than structures on tributaries, both in terms of flood-peak reduction and recharge enhancement. One simulated scenario that incorporated two main-stem structures resulted in a 37-percent reduction of peak flow at the watershed outlet and increases in stream-channel recharge of 6.6 percent in the Trinity aquifer outcrop and 12.6 percent in the Edwards aquifer (recharge zone) outcrop.

  4. Effect of altitude on spirometric parameters and the performance of peak flow meters.

    PubMed Central

    Pollard, A. J.; Mason, N. P.; Barry, P. W.; Pollard, R. C.; Collier, D. J.; Fraser, R. S.; Miller, M. R.; Milledge, J. S.

    1996-01-01

    BACKGROUND: Portable peak flow meters are used in clinical practice for measurement of peak expiratory flow (PEF) at many different altitudes throughout the world. Some PEF meters are affected by gas density. This study was undertaken to establish which type of meter is best for use above sea level and to determine changes in spirometric measurements at altitude. METHODS: The variable orifice mini-Wright peak flow meter was compared with the fixed orifice Micro Medical Microplus turbine microspirometer at sea level and at Everest Base Camp (5300 m). Fifty one members of the 1994 British Mount Everest Medical Expedition were studied (age range, 19-55). RESULTS: Mean forced vital capacity (FVC) fell by 5% and PEF rose by 25.5%. However, PEF recorded with the mini-Wright peak flow meter underestimated PEF by 31%, giving readings 6.6% below sea level values. FVC was lowest in the mornings and did not improve significantly with acclimatisation. Lower PEF values were observed on morning readings and were associated with higher acute mountain sickness scores, although the latter may reflect decreased effort in those with acute mountain sickness. There was no change in forced expiratory volume in one second (FEV1) at altitude when measured with the turbine microspirometer. CONCLUSIONS: The cause of the fall in FVC at 5300 m is unknown but may be attributed to changes in lung blood volume, interstitial lung oedema, or early airways closure. Variable orifice peak flow meters grossly underestimate PEF at altitude and fixed orifice devices are therefore preferable where accurate PEF measurements are required above sea level. PMID:8711651

  5. A prospective multicenter study of factors associated with hospital admission among adults with acute asthma.

    PubMed

    Weber, Ellen J; Silverman, Robert A; Callaham, Michael L; Pollack, Charles V; Woodruff, Prescott G; Clark, Sunday; Camargo, Carlos A

    2002-10-01

    We sought to determine patient characteristics associated with hospital admission after emergency treatment for asthma, and whether disposition guidelines are followed. We performed a prospective multicenter cohort study involving 64 emergency departments in the United States and Canada. Consecutive adult patients with asthma exacerbations were interviewed, and their charts were reviewed using standardized protocols. Telephone follow-up at 2 weeks determined relapse. Of 1805 patients, 363 (20%; 95% confidence interval [CI]: 18% to 22%) were hospitalized. Among patients with severe exacerbations (final peak flow <50% of predicted), 122 (49%; 95% CI: 43% to 55%) were hospitalized. Admission was associated with final peak flow, female sex, nonwhite race, severity of chronic illness, and severity of exacerbation. Admission predictors were similar regardless of hospital funding, region, or size. Among patients with mild or moderate exacerbations of asthma (peak flow >or=50% predicted), the likelihood of admission was associated significantly with the number of predefined risk factors for death from asthma. Of patients who were discharged from the emergency department, 62 (5%; 95% CI: 4% to 6%) relapsed within 72 hours. Relapse was not associated with final peak flow (P = 0.39). Associations between patient characteristics and disposition were similar across sites. Despite guidelines to the contrary, half of patients with final peak flow <50% were discharged. After emergency department treatment and discharge, short-term relapse was uncommon among patients with asthma, suggesting that strict peak flow cutoffs may be unnecessary if risk factors in patients with mild or moderate exacerbations are considered.

  6. A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors

    PubMed Central

    Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Chen, Xiancai; Zhang, Jian; Lin, Jia

    2018-01-01

    A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time. The outstanding heat dissipation performance of the micro-channel heat sink is proven in terms of maximum temperature, cooling speed and heat resistance. The temperature profile along the micro-channel is extracted, and even small temperature perturbations can be detected. The heat source formed temperature peak shifts towards the flow direction with the increasing flow rate. However, the temperature non-uniformity is independent of flow rate, but solely dependent on the heating power. Specific designs for minimizing the temperature non-uniformity are necessary. In addition, the experimental results from the integrated temperature sensors match the simulation results well. This can be used to directly verify the modeling results, helping to build a convincing simulation model. The integrated sensor could be a powerful tool for studying the micro-channel based heat sink. PMID:29351248

  7. Numerical evaluation of lactoperoxidase inactivation during continuous pulsed electric field processing.

    PubMed

    Buckow, Roman; Semrau, Julius; Sui, Qian; Wan, Jason; Knoerzer, Kai

    2012-01-01

    A computational fluid dynamics (CFD) model describing the flow, electric field and temperature distribution of a laboratory-scale pulsed electric field (PEF) treatment chamber with co-field electrode configuration was developed. The predicted temperature increase was validated by means of integral temperature studies using thermocouples at the outlet of each flow cell for grape juice and salt solutions. Simulations of PEF treatments revealed intensity peaks of the electric field and laminar flow conditions in the treatment chamber causing local temperature hot spots near the chamber walls. Furthermore, thermal inactivation kinetics of lactoperoxidase (LPO) dissolved in simulated milk ultrafiltrate were determined with a glass capillary method at temperatures ranging from 65 to 80 °C. Temperature dependence of first order inactivation rate constants was accurately described by the Arrhenius equation yielding an activation energy of 597.1 kJ mol(-1). The thermal impact of different PEF processes on LPO activity was estimated by coupling the derived Arrhenius model with the CFD model and the predicted enzyme inactivation was compared to experimental measurements. Results indicated that LPO inactivation during combined PEF/thermal treatments was largely due to thermal effects, but 5-12% enzyme inactivation may be related to other electro-chemical effects occurring during PEF treatments. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  8. A transverse oscillation approach for estimation of three-dimensional velocity vectors, part I: concept and simulation study.

    PubMed

    Pihl, Michael Johannes; Jensen, Jørgen Arendt

    2014-10-01

    A method for 3-D velocity vector estimation using transverse oscillations is presented. The method employs a 2-D transducer and decouples the velocity estimation into three orthogonal components, which are estimated simultaneously and from the same data. The validity of the method is investigated by conducting simulations emulating a 32 × 32 matrix transducer. The results are evaluated using two performance metrics related to precision and accuracy. The study includes several parameters including 49 flow directions, the SNR, steering angle, and apodization types. The 49 flow directions cover the positive octant of the unit sphere. In terms of accuracy, the median bias is -2%. The precision of v(x) and v(y) depends on the flow angle ß and ranges from 5% to 31% relative to the peak velocity magnitude of 1 m/s. For comparison, the range is 0.4 to 2% for v(z). The parameter study also reveals, that the velocity estimation breaks down with an SNR between -6 and -3 dB. In terms of computational load, the estimation of the three velocity components requires 0.75 billion floating point operations per second (0.75 Gflops) for a realistic setup. This is well within the capability of modern scanners.

  9. A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors.

    PubMed

    Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Chen, Xiancai; Zhang, Jian; Lin, Jia

    2018-01-19

    A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time. The outstanding heat dissipation performance of the micro-channel heat sink is proven in terms of maximum temperature, cooling speed and heat resistance. The temperature profile along the micro-channel is extracted, and even small temperature perturbations can be detected. The heat source formed temperature peak shifts towards the flow direction with the increasing flow rate. However, the temperature non-uniformity is independent of flow rate, but solely dependent on the heating power. Specific designs for minimizing the temperature non-uniformity are necessary. In addition, the experimental results from the integrated temperature sensors match the simulation results well. This can be used to directly verify the modeling results, helping to build a convincing simulation model. The integrated sensor could be a powerful tool for studying the micro-channel based heat sink.

  10. Channel infiltration from floodflows along the Pawnee River and its tributaries, west-central Kansas

    USGS Publications Warehouse

    Gillespie, James B.; Perry, C.A.

    1988-01-01

    Most of the streams is west-central Kansas are ephemeral. Natural recharge to the alluvial aquifers underlying these streams occurs during periods of storm runoff in the ephemeral channels. Proposed flood-retarding structures within the basin will alter the downstream runoff characteristics in these channels by reducing the peak flow and increasing the flow duration. Information concerning channel-infiltration rate, unsaturated and saturated flow, and lithology of the unsaturated zone as related to stream stage and duration was collected along the Pawnee River and its tributaries to determine the effects of the flood-retarding structures. The infiltration rate on ephemeral streams was determined at five sites within the Pawnee River Basin. Tests were conducted in channel infiltrometers constructed by isolating a section of channel with two plastic-lined wooden cofferdams. At two of the sites, perched groundwater mounds intersected the bottom of the channel and reduced the infiltration rate. At two other sites where the perched groundwater mounds did not reach the bottom of the channel, the infiltration rate was directly proportional to the stage. Comparison of infiltration from simulated controlled and uncontrolled floodflows at the five sites indicated an average increase of about 2% with the controlled floodflow. Cumulative infiltration for these simulations ranged from 0.5 to 14.8 acre-ft/mi of channel. (USGS)

  11. Mspire-Simulator: LC-MS shotgun proteomic simulator for creating realistic gold standard data.

    PubMed

    Noyce, Andrew B; Smith, Rob; Dalgleish, James; Taylor, Ryan M; Erb, K C; Okuda, Nozomu; Prince, John T

    2013-12-06

    The most important step in any quantitative proteomic pipeline is feature detection (aka peak picking). However, generating quality hand-annotated data sets to validate the algorithms, especially for lower abundance peaks, is nearly impossible. An alternative for creating gold standard data is to simulate it with features closely mimicking real data. We present Mspire-Simulator, a free, open-source shotgun proteomic simulator that goes beyond previous simulation attempts by generating LC-MS features with realistic m/z and intensity variance along with other noise components. It also includes machine-learned models for retention time and peak intensity prediction and a genetic algorithm to custom fit model parameters for experimental data sets. We show that these methods are applicable to data from three different mass spectrometers, including two fundamentally different types, and show visually and analytically that simulated peaks are nearly indistinguishable from actual data. Researchers can use simulated data to rigorously test quantitation software, and proteomic researchers may benefit from overlaying simulated data on actual data sets.

  12. Modeling E. coli Release And Transport In A Creek During Artificial High-Flow Events

    NASA Astrophysics Data System (ADS)

    Yakirevich, A.; Pachepsky, Y. A.; Gish, T. J.; Cho, K.; Shelton, D. R.; Kuznetsov, M. Y.

    2012-12-01

    In-stream fate and transport of E. coli, is a leading indicator of microbial contamination of natural waters, and so needs to be understood to eventually minimize surface water contamination by microbial organisms. The objective of this work was to simulate E. coli release and transport from soil sediment in a creek bed both during and after high water flow events. The artificial high-water flow events were created by releasing 60-80 m3 of city water on a tarp-covered stream bank at a rate of 60 L/s in four equal allotments in July of 2008, 2009 and 2010. The small first-order creek used in this study is part of the Beaver Dam Creek Tributary and is located at the USDA Optimizing Production inputs for Economic and Environmental Enhancement (OPE3) research site, in Beltsville, Maryland. In 2009 and 2010 a conservative tracer difluorobenzoic acid (DFBA) was added to the released water. Specifically, water flow rates, E. coli and DFBA concentrations as well as water turbidity were monitored with automated samplers at the ends of the three in-stream weirs reaching a total length of 630 m. Sediment particle size distributions and the streambed E. coli concentrations were measured along a creek before and after experiment. The observed DFBA breakthrough curves (BTCs) exhibited long tails after the water pulse and tracer peaks indicating that transient storage might be an important element of the in-stream transport process. Turbidity and E. coli BTCs also exhibited long tails indicative of transient storage and low rates of settling caused by re-entrainment. Typically, turbidity peaked prior to E. coli and returned to lower base-line levels more rapidly. A one-dimensional model was applied to simulate water flow, E. coli and DFBA transport during these experiments. The Saint-Venant equations were used to calculate water depth and discharge while a stream solute transport model accounted for advection-dispersion, lateral inflow/outflow, exchange with the transient storage, and resuspension of bacteria by shear stress from stream bottom sediments. Reach-specific model parameters were estimated by using observed time series of flow rates and concentrations at three weir stations. Transient storage and dispersion parameters were obtained with DFBA BTCs, then critical shear stress and resuspension rate were assessed by fitting computed E. coli BTCs to observations. To obtain a good model fit for E. coli, we generally had to make the transient storage for E. coli larger than for DFBA. Comparison of simulated and measured E. coli concentrations indicated that significant resuspension of E. coli continued when water flow returned to the base level after the water pulse passed and bottom shear stress was small. The hypothetical mechanism of this extended release could be the enhanced boundary layer (water-streambed) exchange due to changes in biofilm properties by erosion and sloughing detachment.

  13. Qualitative Slow Blood Flow in Lower Extremity Deep Veins on Doppler Sonography: Quantitative Assessment and Preliminary Evaluation of Correlation With Subsequent Deep Venous Thrombosis Development in a Tertiary Care Oncology Center.

    PubMed

    Jensen, Corey T; Chahin, Antoun; Amin, Veral D; Khalaf, Ahmed M; Elsayes, Khaled M; Wagner-Bartak, Nicolaus; Zhao, Bo; Zhou, Shouhao; Bedi, Deepak G

    2017-09-01

    To determine whether the qualitative sonographic appearance of slow deep venous flow in the lower extremities correlates with quantitative slow flow and an increased risk of deep venous thrombosis (DVT) in oncology patients. In this Institutional Review Board-approved retrospective study, we reviewed lower extremity venous Doppler sonographic examinations of 975 consecutive patients: 482 with slow flow and 493 with normal flow. The subjective slow venous flow and absence of initial DVT were confirmed by 2 radiologists. Peak velocities were recorded at 3 levels. Each patient was followed for DVT development. The associations between DVT and the presence of slow venous flow were examined by the Fisher exact test; a 2-sample t test was used for peak velocity and DVT group comparisons. The optimal cutoff peak velocity for correlation with the radiologists' perceived slow flow was determined by the Youden index. Deep venous thrombosis development in the slow-flow group (21 of 482 [4.36%]) was almost doubled compared with patients who had normal flow (11 of 493 [2.23%]; P = .0456). Measured peak venous velocities were lower in the slow-venous flow group (P < .001). Patients with subsequent DVT did not have a significant difference in venous velocities compared with their respective patient groups. The sum of 3 venous level velocities resulted in the best cutoff for dichotomizing groups into normal versus slow venous flow. Qualitative slow venous flow in the lower extremities on Doppler sonography accurately correlates with quantitatively slower flow, and this preliminary evaluation suggests an associated mildly increased rate of subsequent DVT development in oncology patients. © 2017 by the American Institute of Ultrasound in Medicine.

  14. Streamflow characteristics and trends along Soldier Creek, Northeast Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.

    2017-08-16

    Historical data for six selected U.S. Geological Survey streamgages along Soldier Creek in northeast Kansas were used in an assessment of streamflow characteristics and trends. This information is required by the Prairie Band Potawatomi Nation for the effective management of tribal water resources, including drought contingency planning. Streamflow data for the period of record at each streamgage were used to assess annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow.Annual mean streamflows along Soldier Creek were characterized by substantial year-to-year variability with no pronounced long-term trends. On average, annual mean base flow accounted for about 20 percent of annual mean streamflow. Mean monthly flows followed a general seasonal pattern that included peak values in spring and low values in winter. Annual peak flows, which were characterized by considerable year-to-year variability, were most likely to occur in May and June and least likely to occur during November through February. With the exception of a weak yet statistically significant increasing trend at the Soldier Creek near Topeka, Kansas, streamgage, there were no pronounced long-term trends in annual peak flows. Annual 1-day, 30-day, and 90-day mean minimum flows were characterized by considerable year-to-year variability with no pronounced long-term trend. During an extreme drought, as was the case in the mid-1950s, there may be zero flow in Soldier Creek continuously for a period of one to several months.

  15. Simple stochastic cellular automaton model for starved beds and implications about formation of sand topographic features in terms of sand flux

    NASA Astrophysics Data System (ADS)

    Endo, Noritaka

    2016-12-01

    A simple stochastic cellular automaton model is proposed for simulating bedload transport, especially for cases with a low transport rate and where available sediments are very sparse on substrates in a subaqueous system. Numerical simulations show that the bed type changes from sheet flow through sand patches to ripples as the amount of sand increases; this is consistent with observations in flume experiments and in the field. Without changes in external conditions, the sand flux calculated for a given amount of sand decreases over time as bedforms develop from a flat bed. This appears to be inconsistent with the general understanding that sand flux remains unchanged under the constant-fluid condition, but it is consistent with the previous experimental data. For areas of low sand abundance, the sand flux versus sand amount (flux-density relation) in the simulation shows a single peak with an abrupt decrease, followed by a long tail; this is very similar to the flux-density relation seen in automobile traffic flow. This pattern (the relation between segments of the curve and the corresponding bed states) suggests that sand sheets, sand patches, and sand ripples correspond respectively to the free-flow phase, congested phase, and jam phase of traffic flows. This implies that sand topographic features on starved beds are determined by the degree of interference between sand particles. Although the present study deals with simple cases only, this can provide a simplified but effective modeling of the more complicated sediment transport processes controlled by interference due to contact between grains, such as the pulsatory migration of grain-size bimodal mixtures with repetition of clustering and scattering.

  16. Numerical simulation of flow in deep open boreholes in a coastal freshwater lens, Pearl Harbor Aquifer, O‘ahu, Hawai‘i

    USGS Publications Warehouse

    Rotzoll, Kolja

    2012-01-01

    The Pearl Harbor aquifer in southern O‘ahu is one of the most important sources of freshwater in Hawai‘i. A thick freshwater lens overlays brackish and saltwater in this coastal aquifer. Salinity profiles collected from uncased deep monitor wells (DMWs) commonly are used to monitor freshwater-lens thickness. However, vertical flow in DMWs can cause the measured salinity to differ from salinity in the adjacent aquifer or in an aquifer without a DWM. Substantial borehole flow and displacement of salinity in DMWs over several hundred feet have been observed in the Pearl Harbor aquifer. The objective of this study was to evaluate the effects of borehole flow on measured salinity profiles from DMWs. A numerical modeling approach incorporated aquifer hydraulic characteristics and recharge and withdrawal rates representative of the Pearl Harbor aquifer. Borehole flow caused by vertical hydraulic gradients associated with both the natural regional flow system and groundwater withdrawals was simulated. Model results indicate that, with all other factors being equal, greater withdrawal rates, closer withdrawal locations, or higher hydraulic conductivities of the well cause greater borehole flow and displacement of salinity in the well. Borehole flow caused by the natural groundwater-flow system is five orders of magnitude greater than vertical flow in a homogeneous aquifer, and borehole-flow directions are consistent with the regional flow system: downward flow in inland recharge areas and upward flow in coastal discharge areas. Displacement of salinity inside the DMWs associated with the regional groundwater-flow system ranges from less than 1 to 220 ft, depending on the location and assumed hydraulic conductivity of the well. For example, upward displacements of the 2 percent and 50 percent salinity depths in a well in the coastal discharge part of the flow system are 17 and 4.4 ft, respectively, and the average salinity difference between aquifer and borehole is 0.65 percent seawater salinity. Groundwater withdrawals and drawdowns generally occur at shallow depths in the freshwater system with respect to the depth of the DMW and cause upward flow in the DMW. Simulated groundwater withdrawal of 4.3 million gallons per day that is 100 ft from a DMW causes thirty times more borehole flow than borehole flow that is induced by the regional flow field alone. The displacement of the 2 percent borehole salinity depth increases from 17 to 33 ft, and the average salinity difference between aquifer and borehole is 0.85 percent seawater salinity. Peak borehole flow caused by local groundwater withdrawal near DMWs is directly proportional to the pumping rate in the nearby production well. Increasing groundwater withdrawal to 16.7 million gallons per day increases upward displacement of the 50 percent salinity depth (midpoint of the transition zone) from 4.6 to 77 ft, and the average salinity difference between aquifer and borehole is 1.4 percent seawater salinity. Simulated groundwater withdrawal that is 3,000 ft away from DMWs causes less borehole flow and salinity displacements than nearby withdrawal. Simulated effects of groundwater withdrawal from a horizontal shaft and withdrawal from a vertical well in a homogeneous aquifer were similar. Generally, the 50 percent salinity depths are less affected by borehole flow than the 2 percent salinity depths. Hence, measured salinity profiles are useful for calibration of regional numerical models despite borehole-flow effects. Commonly, a 1 percent error in salinity is acceptable in numerical modeling studies. Incorporation of heterogeneity in the model is necessary to simulate long vertical steps observed in salinity profiles in southern O‘ahu. A thick zone of low aquifer hydraulic conductivity limits exchange of water between aquifer and well and creates a long vertical step in the salinity profile. A heterogeneous basalt-aquifer scenario simulates observed vertical salinity steps and borehole flow that is consistent with measured borehole flow from DMWs in southern O‘ahu. However, inclusion of local-scale heterogeneities in regional models generally is not warranted.

  17. ATMOSPHERIC CIRCULATION OF BROWN DWARFS: JETS, VORTICES, AND TIME VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xi; Showman, Adam P., E-mail: xiz@lpl.arizona.edu

    2014-06-10

    A variety of observational evidence demonstrates that brown dwarfs exhibit active atmospheric circulations. In this study we use a shallow-water model to investigate the global atmospheric dynamics in the stratified layer overlying the convective zone on these rapidly rotating objects. We show that the existence and properties of the atmospheric circulation crucially depend on key parameters including the energy injection rate and radiative timescale. Under conditions of strong internal heat flux and weak radiative dissipation, a banded flow pattern comprised of east-west jet streams spontaneously emerges from the interaction of atmospheric turbulence with the planetary rotation. In contrast, when themore » internal heat flux is weak and/or radiative dissipation is strong, turbulence injected into the atmosphere damps before it can self-organize into jets, leading to a flow dominated by transient eddies and isotropic turbulence instead. The simulation results are not very sensitive to the form of the forcing. Based on the location of the transition between jet-dominated and eddy-dominated regimes, we suggest that many brown dwarfs may exhibit atmospheric circulations dominated by eddies and turbulence (rather than jets) due to the strong radiative damping on these worlds, but a jet structure is also possible under some realistic conditions. Our simulated light curves capture important features from observed infrared light curves of brown dwarfs, including amplitude variations of a few percent and shapes that fluctuate between single-peak and multi-peak structures. More broadly, our work shows that the shallow-water system provides a useful tool to illuminate fundamental aspects of the dynamics on these worlds.« less

  18. Application of the FluEgg model to predict transport of Asian carp eggs in the Saint Joseph River (Great Lakes tributary)

    USGS Publications Warehouse

    Garcia, Tatiana; Murphy, Elizabeth A.; Jackson, P. Ryan; Garcia, Marcelo H.

    2015-01-01

    The Fluvial Egg Drift Simulator (FluEgg) is a three-dimensional Lagrangian model that simulates the movement and development of Asian carp eggs until hatching based on the physical characteristics of the flow field and the physical and biological characteristics of the eggs. This tool provides information concerning egg development and spawning habitat suitability including: egg plume location, egg vertical and travel time distribution, and egg-hatching risk. A case study of the simulation of Asian carp eggs in the Lower Saint Joseph River, a tributary of Lake Michigan, is presented. The river hydrodynamic input for FluEgg was generated in two ways — using hydroacoustic data and using HEC-RAS model data. The HEC-RAS model hydrodynamic input data were used to simulate 52 scenarios covering a broad range of flows and water temperatures with the eggs at risk of hatching ranging from 0 to 93% depending on river conditions. FluEgg simulations depict the highest percentage of eggs at risk of hatching occurs at the lowest discharge and at peak water temperatures. Analysis of these scenarios illustrates how the interactive relation among river length, hydrodynamics, and water temperature influence egg transport and hatching risk. An improved version of FluEgg, which more realistically simulates dispersion and egg development, is presented. Also presented is a graphical user interface that facilitates the use of FluEgg and provides a set of post-processing analysis tools to support management decision-making regarding the prevention and control of Asian carp reproduction in rivers with or without Asian carp populations.

  19. Peak flow responses to landscape disturbances caused by the cataclysmic 1980 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Major, Jon J.; Mark, Linda E.

    2006-01-01

    Years of discharge measurements that precede and follow the cataclysmic 1980 eruption of Mount St. Helens, Washington, provide an exceptional opportunity to examine the responses of peak flows to abrupt, widespread, devastating landscape disturbance. Multiple basins surrounding Mount St. Helens (300–1300 km2 drainage areas) were variously disturbed by: (1) a debris avalanche that buried 60 km2 of valley; (2) a lateral volcanic blast and associated pyroclastic flow that destroyed 550 km2 of mature forest and blanketed the landscape with silt-capped lithic tephra; (3) debris flows that reamed riparian corridors and deposited tens to hundreds of centimeters of gravelly sand on valley floors; and (4) a Plinian tephra fall that blanketed areas proximal to the volcano with up to tens of centimeters of pumiceous silt, sand, and gravel. The spatially complex disturbances produced a variety of potentially compensating effects that interacted with and influenced hydrological responses. Changes to water transfer on hillslopes and to flow storage and routing along channels both enhanced and retarded runoff. Rapid post-eruption modifications of hillslope surface textures, adjustments of channel networks, and vegetation recovery, in conjunction with the complex nature of the eruptive impacts and strong seasonal variability in regional climate hindered a consistent or persistent shift in peak discharges. Overall, we detected a short-lived (5–10 yr) increase in the magnitudes of autumn and winter peak flows. In general, peak flows were larger, and moderate to large flows (>Q2 yr) were more substantively affected than predicted by early modeling efforts. Proportional increases in the magnitudes of both small and large flows in basins subject to severe channel disturbances, but not in basins subject solely to hillslope disturbances, suggest that eruption-induced modifications to flow efficiency along alluvial channels that have very mobile beds differentially affected flows of various magnitudes and likely played a prominent, and additional, role affecting the nature of the hydrological response.

  20. Laboratory Study Comparing Pharmacopeial Testing of Nebulizers with Evaluation Based on Nephele Mixing Inlet Methodology.

    PubMed

    Svensson, Mårten; Berg, Elna; Mitchell, Jolyon; Sandell, Dennis

    2018-02-01

    Determination of fine droplet dose with preparations for nebulization, currently deemed to be the metric most indicative of lung deposition and thus in vivo responses, involves combining two procedures following practice as described in the United States Pharmacopeia and the European Pharmacopeia. Delivered dose (DD) is established by simulating tidal breathing at the nebulizer, collecting the medication on a filter downstream of the nebulizer mouthpiece/facemask. Fine droplet fraction (FDF

  1. Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I. Macroscopic effects of the electron flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muñoz, P. A., E-mail: munozp@mps.mpg.de; Kilian, P.; Büchner, J.

    In this work, we compare gyrokinetic (GK) with fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (b{sub g}). Here, we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (β{sub i} = 0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficientlymore » high guide field (b{sub g} ≳ 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (b{sub g} ≳ 5). Kinetic PIC simulations using guide fields b{sub g} ≲ 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (β{sub i} = 1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (b{sub g} ≲ 3)« less

  2. Evaluating the use of different precipitation datasets in simulating a flood event

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Ozkaya, A.

    2016-12-01

    Floods caused by convective storms in mountainous regions are sensitive to the temporal and spatial variability of rainfall. Space-time estimates of rainfall from weather radar, satellites and numerical weather prediction models can be a remedy to represent pattern of the rainfall with some inaccuracy. However, there is a strong need for evaluation of the performance and limitations of these estimates in hydrology. This study aims to provide a comparison of gauge, radar, satellite (Hydro-Estimator (HE)) and numerical weather prediciton model (Weather Research and Forecasting (WRF)) precipitation datasets during an extreme flood event (22.11.2014) lasting 40 hours in Samsun-Turkey. For this study, hourly rainfall data from 13 ground observation stations were used in the analyses. This event having a peak discharge of 541 m3/sec created flooding at the downstream of Terme Basin. Comparisons were performed in two parts. First the analysis were performed in areal and point based manner. Secondly, a semi-distributed hydrological model was used to assess the accuracy of the rainfall datasets to simulate river flows for the flood event. Kalman Filtering was used in the bias correction of radar rainfall data compared to gauge measurements. Radar, gauge, corrected radar, HE and WRF rainfall data were used as model inputs. Generally, the HE product underestimates the cumulative rainfall amounts in all stations, radar data underestimates the results in cumulative sense but keeps the consistency in the results. On the other hand, almost all stations in WRF mean statistics computations have better results compared to the HE product but worse than the radar dataset. Results in point comparisons indicated that, trend of the rainfall is captured by the radar rainfall estimation well but radar underestimates the maximum values. According to cumulative gauge value, radar underestimated the cumulative rainfall amount by % 32. Contrary to other datasets, the bias of WRF is positive due to the overestimation of rainfall forecasts. It was seen that radar-based flow predictions demonstrated good potential for successful hydrological modeling. Moreover, flow predictions obtained from bias corrected radar rainfall values produced an increase in the peak flows compared to the ones obtained from radar data itself.

  3. Two-dimensional hybrid simulations of kinetic plasma turbulence: Current and vorticity vs proton temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franci, Luca; INFN-Sezione di Firenze, Via G. Sansone 1, I-50019 Sesto F.no; Hellinger, Petr, E-mail: petr.hellinger@asu.cas.cz

    2016-03-25

    Proton temperature anisotropies between the directions parallel and perpendicular to the mean magnetic field are usually observed in the solar wind plasma. Here, we employ a high-resolution hybrid particle-in-cell simulation in order to investigate the relation between spatial properties of the proton temperature and the peaks in the current density and in the flow vorticity. Our results indicate that, although regions where the proton temperature is enhanced and temperature anisotropies are larger correspond approximately to regions where many thin current sheets form, no firm quantitative evidence supports the idea of a direct causality between the two phenomena. On the othermore » hand, quite a clear correlation between the behavior of the proton temperature and the out-of-plane vorticity is obtained.« less

  4. Formation of Cool Cores in Galaxy Clusters via Hierarchical Mergers

    NASA Astrophysics Data System (ADS)

    Motl, Patrick M.; Burns, Jack O.; Loken, Chris; Norman, Michael L.; Bryan, Greg

    2004-05-01

    We present a new scenario for the formation of cool cores in rich galaxy clusters, based on results from recent high spatial dynamic range, adaptive mesh Eulerian hydrodynamic simulations of large-scale structure formation. We find that cores of cool gas, material that would be identified as a classical cooling flow on the basis of its X-ray luminosity excess and temperature profile, are built from the accretion of discrete stable subclusters. Any ``cooling flow'' present is overwhelmed by the velocity field within the cluster; the bulk flow of gas through the cluster typically has speeds up to about 2000 km s-1, and significant rotation is frequently present in the cluster core. The inclusion of consistent initial cosmological conditions for the cluster within its surrounding supercluster environment is crucial when the evolution of cool cores in rich galaxy clusters is simulated. This new model for the hierarchical assembly of cool gas naturally explains the high frequency of cool cores in rich galaxy clusters, despite the fact that a majority of these clusters show evidence of substructure that is believed to arise from recent merger activity. Furthermore, our simulations generate complex cluster cores in concordance with recent X-ray observations of cool fronts, cool ``bullets,'' and filaments in a number of galaxy clusters. Our simulations were computed with a coupled N-body, Eulerian, adaptive mesh refinement, hydrodynamics cosmology code that properly treats the effects of shocks and radiative cooling by the gas. We employ up to seven levels of refinement to attain a peak resolution of 15.6 kpc within a volume 256 Mpc on a side and assume a standard ΛCDM cosmology.

  5. Moving towards a new paradigm for global flood risk estimation

    NASA Astrophysics Data System (ADS)

    Troy, Tara J.; Devineni, Naresh; Lima, Carlos; Lall, Upmanu

    2013-04-01

    Traditional approaches to flood risk assessment are typically indexed to an instantaneous peak flow event at a specific recording gage on a river, and then extrapolated through hydraulic modeling of that peak flow to the potential area that is likely to be inundated. Recent research shows that property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. The existing notion of a flood return period based on just the instantaneous peak flow rate at a stream gauge consequently needs to be revisited, especially for floods due to persistent rainfall as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Depending on the flood event type considered, different rainfall inducing mechanisms (tropical storm, local convection, frontal system, recurrent tropical waves) may be involved. Each of these will have a characteristic spatial scale, expression and orientation and temporal characteristics. We develop stochastic models that can reproduce these attributes with appropriate intensity-duration-frequency and spatial expression, and hence provide a basis for conditioning basin hydrologic attributes for flood risk assessment. Past work on Non-homogeneous Hidden Markov Models (NHMM) is used as a basis to develop this capability at regional scales. In addition, a dynamic hierarchical Bayesian network model that is continuous and not based on discretization to states is tested and compared against NHMM. The exogenous variables in these models comes from the analysis of key synoptic circulation patterns which will be used as predictors for the regional spatio-temporal models. The stochastic simulations of rainfall are then used as input to a flood modeling system, which consists of a series of physically based models. Rainfall-runoff generation is produced by the Variable Infiltration Capacity (VIC) model. When the modeled streamflow crosses a threshold, a full kinematic wave routing model is implemented at a finer resolution (<=1km) in order to more accurately model streamflow under flood conditions and estimate inundation. This approach allows for efficient computational simulation of the hydrology when not under potential for flooding with high-resolution flood wave modeling when there is flooding potential. We demonstrate the results of this flood risk estimation system for the Ohio River basin in the United States, a large river basin that is historically prone to flooding, with the intention of using it to do global flood risk assessment.

  6. Flood hazards along the Toutle and Cowlitz rivers, Washington, from a hypothetical failure of Castle Lake blockage

    USGS Publications Warehouse

    Laenen, Antonius; Orzol, L.L.

    1987-01-01

    A recent evaluation of groundwater and material in the blockage impounding Castle Lake shows that the blockage is potentially unstable against failure from piping due to heave and internal erosion when groundwater levels are seasonally high. There is also a remote possibility that a 6.8 or greater magnitude earthquake could occur in the Castle Lake area when groundwater levels are critically high. If this situation occurs, the debris blockage that confines Castle Lake could breach from successive slope failure with liquefaction of a portion of the blockage. A dam-break computer model was used to simulate discharge through a hypothetical breach in the Castle Lake blockage that could be caused by failure by heave, internal erosion, or liquefaction. Approximately 18,500 acre-ft of stored water would be released from an assumed breach that fully developed to a 1,000-ft width over a 15-minute time period. The resulting flood, incorporating 3.4 x 10 to the 6th power cu yd of the debris blockage, would reach a peak magnitude of 1,500,000 cu ft/s (cubic feet per second). The flood is also assumed to incorporate an additional 137x10 to the 6th power cu yd of saturated debris material from downstream deposits. Flow is considered to be hyperconcentrated with sediment throughout the course of the flood. The hypothetical hyperconcentrated flow is routed downstream, superimposed on normal winter flood flows by use of a one-dimensional unsteady-state numerical streamflow simulation model. From a starting magnitude of 1,500,000 cu ft/s, the peak increases to 2,100,000 cu ft/s at N-1 Dam (12 mi downstream) and attenuates to 1,200,000 cu ft/s at Kid Valley (25 mi downstream) , to 100,000 cu ft/s at Longview and the confluence of the Columbia River (65 mi downstream). From time of breach, the flood peak would take 2.2 hr to reach Toutle, 3.8 hr to reach Castle Rock, and 8.5 hr to reach Longview. Communities of Toutle , Castle Rock, Kelso, and Longview would experience extreme to moderate flooding for this scenario. (Author 's abstract)

  7. Flow and habitat effects on juvenile fish abundance in natural and altered flow regimes

    USGS Publications Warehouse

    Freeman, Mary C.; Bowen, Z.H.; Bovee, K.D.; Irwin, E.R.

    2001-01-01

    Conserving biological resources native to large river systems increasingly depends on how flow-regulated segments of these rivers are managed. Improving management will require a better understanding of linkages between river biota and temporal variability of flow and instream habitat. However, few studies have quantified responses of native fish populations to multiyear (>2 yr) patterns of hydrologic or habitat variability in flow-regulated systems. To provide these data, we quantified young-of-year (YOY) fish abundance during four years in relation to hydrologic and habitat variability in two segments of the Tallapoosa River in the southeastern United States. One segment had an unregulated flow regime, whereas the other was flow-regulated by a peak-load generating hydropower dam. We sampled fishes annually and explored how continuously recorded flow data and physical habitat simulation models (PHABSIM) for spring (April-June) and summer (July-August) preceding each sample explained fish abundances. Patterns of YOY abundance in relation to habitat availability (median area) and habitat persistence (longest period with habitat area continuously above the long-term median area) differed between unregulated and flow-regulated sites. At the unregulated site, YOY abundances were most frequently correlated with availability of shallow-slow habitat in summer (10 species) and persistence of shallow-slow and shallow-fast habitat in spring (nine species). Additionally, abundances were negatively correlated with 1-h maximum flow in summer (five species). At the flow-regulated site, YOY abundances were more frequently correlated with persistence of shallow-water habitats (four species in spring; six species in summer) than with habitat availability or magnitude of flow extremes. The associations of YOY with habitat persistence at the flow-regulated site corresponded to the effects of flow regulation on habitat patterns. Flow regulation reduced median flows during spring and summer, which resulted in median availability of shallow-water habitats comparable to the unregulated site. However, habitat persistence was severely reduced by flow fluctuations resulting from pulsed water releases for peak-load power generation. Habitat persistence, comparable to levels in the unregulated site, only occurred during summer when low rainfall or other factors occasionally curtailed power generation. As a consequence, summer-spawning species numerically dominated the fish assemblage at the flow-regulated site; five of six spring-spawning species occurring at both study sites were significantly less abundant at the flow-regulated site. Persistence of native fishes in flow-regulated systems depends, in part, on the seasonal occurrence of stable habitat conditions that facilitate reproduction and YOY survival.

  8. Peak Stress Testing Protocol Framework

    EPA Science Inventory

    Treatment of peak flows during wet weather is a common challenge across the country for municipal wastewater utilities with separate and/or combined sewer systems. Increases in wastewater flow resulting from infiltration and inflow (I/I) during wet weather events can result in op...

  9. The influence of geometry on jet plume development

    NASA Astrophysics Data System (ADS)

    Xia, H.; Tucker, P. G.; Eastwood, S.; Mahak, M.

    2012-07-01

    Our recent efforts of using large-eddy simulation (LES) type methods to study complex and realistic geometry single stream and co-flow nozzle jets and acoustics are summarized in this paper. For the LES, since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving a numerical type LES (NLES). To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier-Stokes) model is smoothly blended in the LES making a hybrid RANS-NLES approach. Several complex nozzle geometries including the serrated (chevron) nozzle, realistic co-axial nozzles with eccentricity, pylon and wing-flap are discussed. The hybrid RANS-NLES simulations show encouraging predictions for the chevron jets. The chevrons are known to increase the high frequency noise at high polar angles, but decrease the low frequency noise at lower angles. The deflection effect of the potential core has an important mechanism of noise reduction. As for co-axial nozzles, the eccentricity, the pylon and the deployed wing-flap are shown to influence the flow development, especially the former to the length of potential core and the latter two having a significant impact on peak turbulence levels and spreading rates. The studies suggest that complex and real geometry effects are influential and should be taken into count when moving towards real engine simulations.

  10. Inflow velocities of cold flows streaming into massive galaxies at high redshifts

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Ceverino, Daniel

    2015-07-01

    We study the velocities of the accretion along streams from the cosmic web into massive galaxies at high redshift with the help of three different suites of AMR hydrodynamical cosmological simulations. The results are compared to free-fall velocities and to the sound speeds of the hot ambient medium. The sound speed of the hot ambient medium is calculated using two different methods to determine the medium's temperature. We find that the simulated cold stream velocities are in violent disagreement with the corresponding free-fall profiles. The sound speed is a better albeit not always correct description of the cold flows' velocity. Using these calculations as a first order approximation for the gas inflow velocities vinflow = 0.9 vvir is given. We conclude from the hydrodynamical simulations as our main result that the velocity profiles for the cold streams are constant with radius. These constant inflow velocities seem to have a `parabola-like' dependency on the host halo mass in units of the virial velocity that peaks at Mvir = 1012 M⊙ and we also propose that the best-fitting functional form for the dependency of the inflow velocity on the redshift is a square root power-law relation: v_inflow ∝ √{z + 1} v_vir.

  11. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the Padua Fire of 2003, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.

    2004-01-01

    Results of a present preliminary assessment of the probability of debris-flow activity and estimates of peak discharges that can potentially be generated by debris flows issuing from basins burned by the Padua Fire of October 2003 in southern California in response to 25-year, 10-year, and 2-year recurrence, 1-hour duration rain storms are presented. The resulting probability maps are based on the application of a logistic multiple-regression model (Cannon and others, 2004) that describes the percent chance of debris-flow production from an individual basin as a function of burned extent, soil properties, basin gradients, and storm rainfall. The resulting peak discharge maps are based on application of a multiple-regression model (Cannon and others, 2004) that can be used to estimate debris-flow peak discharge at a basin outlet as a function of basin gradient, burn extent, and storm rainfall. Probabilities of debris-flow occurrence for the Padua Fire range between 0 and 99% and estimates of debris-flow peak discharges range between 1211 and 6,096 ft3/s (34 to 173 m3/s). These maps are intended to identify those basins that are most prone to the largest debris-flow events and provide information for the preliminary design of mitigation measures and for the planning of evacuation timing and routes.

  12. PIV Study on Flow around Leading-Edge Slat of 30P30N Airfoil

    NASA Astrophysics Data System (ADS)

    Ando, Ryosuke; Onishi, Yusaku; Sakakibara, Jun

    2017-11-01

    We measured flow velocity distribution around leading-edge slat using PIV. Simultaneously, noise measurement using microphone was also performed. A leading-edge slat and main wing model having a chord length of 160 mm was placed in the tunnel with free stream velocity of about 26m/s and chord Reynolds number of 2.8 x 105. Angle of attack was changed from 4 degrees to 10 degrees at two degree intervals. In this experiment, we investigated the relationship between the unsteady flow condition and the noise. At 4 degrees in the angle of attack, vortices shedding from the slat cusp were moved to the downstream. At 6 degrees or more, flow velocity distributions show that vortices were reattached on the slat lower surface and the flow in the slat cove recirculated. In FFT analysis of noise measurement, at 6 degrees in the angle of attack, there were some peaks on low frequency area and dominant peak on high frequency area was found. At 8 degrees or more, there were also some peaks on low frequency area. But dominant peak on high frequency area disappeared.

  13. Bedrock erosion by sliding wear in channelized granular flow

    NASA Astrophysics Data System (ADS)

    Hung, C. Y.; Stark, C. P.; Capart, H.; Smith, B.; Maia, H. T.; Li, L.; Reitz, M. D.

    2014-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Bedrock wear can be separated into impact and sliding wear processes. Here we focus on sliding wear. We have conducted experiments with a 40-cm-diameter grainflow-generating rotating drum designed to simulate dry channelized debris flows. To generate sliding erosion, we placed a 20-cm-diameter bedrock plate axially on the back wall of the drum. The rotating drum was half filled with 2.3-mm-diameter grains, which formed a thin grain-avalanching layer with peak flow speed and depth close to the drum axis. The whole experimental apparatus was placed on a 100g-ton geotechnical centrifuge and, in order to scale up the stress level, spun to a range of effective gravity levels. Rates and patterns of erosion of the bedrock plate were mapped after each experiment using 3d micro-photogrammetry. High-speed video and particle tracking were employed to measure granular flow dynamics. The resulting data for granular velocities and flow geometry were used to estimate impulse exchanges and forces on the bedrock plate. To address some of the complexities of granular flow under variable gravity levels, we developed a continuum model framed around a GDR MiDi rheology. This model allowed us to scale up boundary forcing while maintaining the same granular flow regime, and helped us to understand important aspects of the flow dynamics including e.g. fluxes of momentum and kinetic energy. In order to understand the detailed processes of boundary forcing, we performed numerical simulations with a new contact dynamics model. This model confirmed key aspects of our continuum model and provided information on second-order behavior such as fluctuations in the forces acting on the wall. By combining these measurements and theoretical analyses, we have developed and calibrated a constitutive model for sliding wear that is a threshold function of granular velocity and stress.

  14. Correlation Characterization of Particles in Volume Based on Peak-to-Basement Ratio

    PubMed Central

    Vovk, Tatiana A.; Petrov, Nikolay V.

    2017-01-01

    We propose a new express method of the correlation characterization of the particles suspended in the volume of optically transparent medium. It utilizes inline digital holography technique for obtaining two images of the adjacent layers from the investigated volume with subsequent matching of the cross-correlation function peak-to-basement ratio calculated for these images. After preliminary calibration via numerical simulation, the proposed method allows one to quickly distinguish parameters of the particle distribution and evaluate their concentration. The experimental verification was carried out for the two types of physical suspensions. Our method can be applied in environmental and biological research, which includes analyzing tools in flow cytometry devices, express characterization of particles and biological cells in air and water media, and various technical tasks, e.g. the study of scattering objects or rapid determination of cutting tool conditions in mechanisms. PMID:28252020

  15. Marangoni-flow-induced partial coalescence of a droplet on a liquid/air interface

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Zhang, Peng; Che, Zhizhao; Wang, Tianyou

    2018-02-01

    The coalescence of a droplet and a liquid/air interface of lower surface tension was numerically studied by using the lattice Boltzmann phase-field method. The experimental phenomenon of droplet ejection observed by Blanchette et al. [Phys. Fluids 21, 072107 (2009), 10.1063/1.3177339] at sufficiently large surface tension differences was successfully reproduced for the first time. Furthermore, the emergence, disappearance, and re-emergence of "partial coalescence" with increasing surface tension difference was observed and explained. The re-emergence of partial coalescence under large surface tension differences is caused by the remarkable lifting motion of the Marangoni flow, which significantly retards the vertical collapse. Two different modes of partial coalescence were identified by the simulation, namely peak injection occurs at lower Ohnesorge numbers and bottom pinch-off at higher Ohnesorge numbers. By comparing the characteristic timescales of the upward Marangoni flow with that of the downward flow driven by capillary pressure, a criterion for the transition from partial to total coalescence was derived based on scaling analysis and numerically validated.

  16. Four-dimensional Doppler ultrasound measurements in carotid bifurcation models: effect of concentric versus eccentric stenosis

    NASA Astrophysics Data System (ADS)

    Poepping, Tamie L.; Rankin, Richard N.; Holdsworth, David W.

    2001-05-01

    A unique in-vitro system has been developed that incorporates both realistic phantoms and flow. The anthropomorphic carotid phantoms are fabricated in agar with stenosis severity of 30% or 70% (by NASCET standards) and one of two geometric configurations- concentric or eccentric. The phantoms are perfused with a flow waveform that simulates normal common carotid flow. Pulsed Doppler ultrasound data are acquired at a 1 mm grid spacing throughout the lumen of the carotid bifurcation. To obtain a half-lumen volume, symmetric about the mid plane, requires a 13 hour acquisition over 3238 interrogation sites, producing 5.6 Gbytes of data. The spectral analysis produces estimates of parameters such as the peak velocity, mean velocity, spectral-broadening index, and turbulence intensity. Color-encoded or grayscale-encoded maps of these spectral parameters show distinctly different flow patterns resulting from stenoses of equal severity but different eccentricity. The most noticeable differences are seen in the volumes of the recirculation zones and the paths of the high-velocity jets. Elevated levels of turbulence intensity are also seen distal to the stenosis in the 70%-stenosed models.

  17. Implementation of the RAMMS DEBRIS FLOW to Italian case studies

    NASA Astrophysics Data System (ADS)

    Vennari, Carmela; Mc Ardell, Brian; Parise, Mario; Santangelo, Nicoletta; Santo, Antonio

    2016-04-01

    RAMMS (RApid Mass MovementS) Debris Flow runout model solves 2D shallow-water equation using the Voellmy friction law. The model has been developed by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), and the Swiss Federal Institute for Snow and Avalanche Research (SLF). It requires as input the following data: topography, release area or hydrograph, and the friction parameters μ and ξ. Deposition height, velocity, pressure and momentum are the most important outcomes, also in terms of Max values. The model was applied primarily in Alpine catchments to simulate debris flow runout. Beside the Alps, alluvial events are very common even in torrential catchments of the Southern Apennines of Italy, and contribute to build alluvial fans mainly located at the foothill of carbonate and volcanic mountains. During the last decades several events occurred in these areas, often highly populated, and caused serious damage to society and to people. Several case studies have been selected from a database on alluvial events in torrential catchments of Campania region, aimed at applying the RAMMS model to back-analyze the documented events, and to simulate future similar scenarios in different triggering conditions. In order to better understand the obtained data and choose the best results, field data are mandatories. For this reason we focused our attention on torrential events for which field data concerning deposition area and deposition height were available. We simulated different scenarios, with variable peak discharge and friction parameters, reproducing also the influence of anthropogenic structures. To choose the best results, observed data and predicted data were compared in an objective way, by means of a quantitative analysis. Predicted and observed deposition areas were compared in a GIS environment, and the best test was evaluated by computing several statistics accuracy derived from the confusion matrix, including the sensitivity, that provides a measure of the proportion of positives cases that have been correctly identified. As regards deposition height, first of all we: i) classified the RAMMS results and the field data in the same class values, ii) associated to each observed value the predicted value in that point, and iii) calculated the frequency value for each class. Further, for every test we analyzed the wrong results by considering the proximity to the correct class. Application of a quantitative analysis gives the advantage to evaluate impartially the best results, but it is applicable only in those cases for which there field data are available. The RAMMS simulations are useful to understand the anthropogenic influence on flow direction, the most vulnerable areas and the elements at higher risk. On the other hand, RAMMS applications on case studies where no field data is available will be useful to evaluate future scenarios, simulating different triggering events and different peak discharges, but they do not allow to choose the best result among the model outcomes.

  18. Non-Intrusive Velocity Measurements with MTV During DCC Event in the HTTF

    NASA Technical Reports Server (NTRS)

    Andre, M. A.; Bardet, P. M.; Cadell, S. R.; Woods, B.; Burns, R. A.; Danehy, P. M.

    2017-01-01

    Velocity profiles are measured using molecular tagging velocimetry (MTV) in the high temperature test facility (HTTF) at Oregon State University during a depressurized conduction cooldown (DCC) event. The HTTF is a quarter scale electrically heated nuclear reactor simulator designed to replicate various accident scenarios. During a DCC, a double ended guillotine break results in the reactor pressure vessel (RPV) depressurizing into the reactor cavity and ultimately leading to air ingress in the reactor core (lock-exchange and gas diffusion). It is critical to understand the resulting buoyancy-driven flow to characterize the reactor self-cooling capacity through natural circulation. During tests conducted at ambient pressure and temperature, the RPV containing helium is opened (via the hot and cold legs) to a large vessel filled with nitrogen to simulate the atmosphere. The velocity profile on the hot leg pipe centerline is recorded at 10 Hz with MTV based on NO tracers. The precision of the velocimetry was measured to be 0.02 m/s in quiescent flow prior to the tests. A helium flow from the RPV is initially observed in the top quarter of the pipe. During the first 20 seconds of the event, helium flows out of the RPV with a maximum velocity below 2 m/s. The velocity profile transitions from parabolic to linear in character and decays slowly over the rest of the recording; peak velocities of 0.2 m/s are observed after 30 min. A counter-flow of nitrogen is also observed intermittently, which occurs at lower velocities (>0.1 m/s).

  19. Prediction of peak response values of structures with and without TMD subjected to random pedestrian flows

    NASA Astrophysics Data System (ADS)

    Lievens, Klaus; Van Nimmen, Katrien; Lombaert, Geert; De Roeck, Guido; Van den Broeck, Peter

    2016-09-01

    In civil engineering and architecture, the availability of high strength materials and advanced calculation techniques enables the construction of slender footbridges, generally highly sensitive to human-induced excitation. Due to the inherent random character of the human-induced walking load, variability on the pedestrian characteristics must be considered in the response simulation. To assess the vibration serviceability of the footbridge, the statistics of the stochastic dynamic response are evaluated by considering the instantaneous peak responses in a time range. Therefore, a large number of time windows are needed to calculate the mean value and standard deviation of the instantaneous peak values. An alternative method to evaluate the statistics is based on the standard deviation of the response and a characteristic frequency as proposed in wind engineering applications. In this paper, the accuracy of this method is evaluated for human-induced vibrations. The methods are first compared for a group of pedestrians crossing a lightly damped footbridge. Small differences of the instantaneous peak value were found by the method using second order statistics. Afterwards, a TMD tuned to reduce the peak acceleration to a comfort value, was added to the structure. The comparison between both methods in made and the accuracy is verified. It is found that the TMD parameters are tuned sufficiently and good agreements between the two methods are found for the estimation of the instantaneous peak response for a strongly damped structure.

  20. Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches

    NASA Astrophysics Data System (ADS)

    Huang, Rong Fung; Yang, Ten-Fang; Lan, Y.-K.

    2010-03-01

    Pulsatile aqueous glycerol solution flows in the models simulating normal and stenosed human aortic arches are measured by means of particle image velocimetry. Three transparent models were used: normal, 25% stenosed, and 50% stenosed aortic arches. The Womersley parameter, Dean number, and time-averaged Reynolds number are 17.31, 725, and 1,081, respectively. The Reynolds numbers based on the peak velocities of the normal, 25% stenosed, and 50% stenosed aortic arches are 2,484, 3,456, and 3,931, respectively. The study presents the temporal/spatial evolution processes of the flow pattern, velocity distribution, and wall-shear stress during the systolic and diastolic phases. It is found that the flow pattern evolving in the central plane of normal and stenosed aortic arches exhibits (1) a separation bubble around the inner arch, (2) a recirculation vortex around the outer arch wall upstream of the junction of the brachiocephalic artery, (3) an accelerated main stream around the outer arch wall near the junctions of the left carotid and the left subclavian arteries, and (4) the vortices around the entrances of the three main branches. The study identifies and discusses the reasons for the flow physics’ contribution to the formation of these features. The oscillating wall-shear stress distributions are closely related to the featured flow structures. On the outer wall of normal and slightly stenosed aortas, large wall-shear stresses appear in the regions upstream of the junction of the brachiocephalic artery as well as the corner near the junctions of the left carotid artery and the left subclavian artery. On the inner wall, the largest wall-shear stress appears in the region where the boundary layer separates.

Top