Sample records for simulated performance evaluation

  1. Implementation and evaluation of a dilation and evacuation simulation training curriculum.

    PubMed

    York, Sloane L; McGaghie, William C; Kiley, Jessica; Hammond, Cassing

    2016-06-01

    To evaluate obstetrics and gynecology resident physicians' performance following a simulation curriculum on dilation and evacuation (D&E) procedures. This study included two phases: simulation curriculum development and resident physician performance evaluation following training on a D&E simulator. Trainees participated in two evaluations. Simulation training evaluated participants performing six cases on a D&E simulator, measuring procedural time and a 26-step checklist of D&E steps. The operative training portion evaluated residents' performance after training on the simulator using mastery learning techniques. Intra-operative evaluation was based on a 21-step checklist score, Objective Structured Assessment of Technical Skills (OSATS), and percentage of cases completed. Twenty-two residents participated in simulation training, demonstrating improved performance from cases one and two to cases five and six, as measured by checklist score and procedural time (p<.001 and p=.001, respectively). Of 10 participants in the operative training, all performed at least three D&Es, while seven performed at least six cases. While checklist scores did not change significantly from the first to sixth case (mean for first case: 18.3; for sixth case: 19.6; p=.593), OSATS ratings improved from case one (19.7) to case three (23.5; p=.001) and to case six (26.8; p=.005). Trainees completed approximately 71.6% of their first case (range: 21.4-100%). By case six, the six participants performed 81.2% of the case (range: 14.3-100%). D&E simulation using a newly-developed uterine model and simulation curriculum improves resident technical skills. Simulation training with mastery learning techniques transferred to high level of performance in OR using checklist. The OSATS measured skills and showed improvement in performance with subsequent cases. Implementation of a D&E simulation curriculum offers potential for improved surgical training and abortion provision. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Use of the Marshall Space Flight Center solar simulator in collector performance evaluation

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.

    1978-01-01

    Actual measured values from simulator checkout tests are detailed. Problems encountered during initial startup are discussed and solutions described. Techniques utilized to evaluate collector performance from simulator test data are given. Performance data generated in the simulator are compared to equivalent data generated during natural outdoor testing. Finally, a summary of collector performance parameters generated to date as a result of simulator testing are given.

  3. Performance evaluation of an agent-based occupancy simulation model

    DOE PAGES

    Luo, Xuan; Lam, Khee Poh; Chen, Yixing; ...

    2017-01-17

    Occupancy is an important factor driving building performance. Static and homogeneous occupant schedules, commonly used in building performance simulation, contribute to issues such as performance gaps between simulated and measured energy use in buildings. Stochastic occupancy models have been recently developed and applied to better represent spatial and temporal diversity of occupants in buildings. However, there is very limited evaluation of the usability and accuracy of these models. This study used measured occupancy data from a real office building to evaluate the performance of an agent-based occupancy simulation model: the Occupancy Simulator. The occupancy patterns of various occupant types weremore » first derived from the measured occupant schedule data using statistical analysis. Then the performance of the simulation model was evaluated and verified based on (1) whether the distribution of observed occupancy behavior patterns follows the theoretical ones included in the Occupancy Simulator, and (2) whether the simulator can reproduce a variety of occupancy patterns accurately. Results demonstrated the feasibility of applying the Occupancy Simulator to simulate a range of occupancy presence and movement behaviors for regular types of occupants in office buildings, and to generate stochastic occupant schedules at the room and individual occupant levels for building performance simulation. For future work, model validation is recommended, which includes collecting and using detailed interval occupancy data of all spaces in an office building to validate the simulated occupant schedules from the Occupancy Simulator.« less

  4. Performance evaluation of an agent-based occupancy simulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xuan; Lam, Khee Poh; Chen, Yixing

    Occupancy is an important factor driving building performance. Static and homogeneous occupant schedules, commonly used in building performance simulation, contribute to issues such as performance gaps between simulated and measured energy use in buildings. Stochastic occupancy models have been recently developed and applied to better represent spatial and temporal diversity of occupants in buildings. However, there is very limited evaluation of the usability and accuracy of these models. This study used measured occupancy data from a real office building to evaluate the performance of an agent-based occupancy simulation model: the Occupancy Simulator. The occupancy patterns of various occupant types weremore » first derived from the measured occupant schedule data using statistical analysis. Then the performance of the simulation model was evaluated and verified based on (1) whether the distribution of observed occupancy behavior patterns follows the theoretical ones included in the Occupancy Simulator, and (2) whether the simulator can reproduce a variety of occupancy patterns accurately. Results demonstrated the feasibility of applying the Occupancy Simulator to simulate a range of occupancy presence and movement behaviors for regular types of occupants in office buildings, and to generate stochastic occupant schedules at the room and individual occupant levels for building performance simulation. For future work, model validation is recommended, which includes collecting and using detailed interval occupancy data of all spaces in an office building to validate the simulated occupant schedules from the Occupancy Simulator.« less

  5. Simulation Performance and National Council Licensure Examination for Registered Nurses Outcomes: Field Research Perspectives.

    PubMed

    Brackney, Dana E; Lane, Susan Hayes; Dawson, Tyia; Koontz, Angie

    2017-11-01

    This descriptive field study examines processes used to evaluate simulation for senior-level Bachelor of Science in Nursing (BSN) students in a capstone course, discusses challenges related to simulation evaluation, and reports the relationship between faculty evaluation of student performance and National Council Licensure Examination for Registered Nurses (NCLEX-RN) first-time passing rates. Researchers applied seven terms used to rank BSN student performance (n = 41, female, ages 22-24 years) in a senior-level capstone simulation. Faculty evaluation was correlated with students' NCLEX-RN outcomes. Students evaluated as "lacking confidence" and "flawed" were less likely to pass the NCLEX-RN on the first attempt. Faculty evaluation of capstone simulation performance provided additional evidence of student preparedness for practice in the RN role, as evidenced by the relationship between the faculty assessment and NCLEX-RN success. Simulation has been broadly accepted as a powerful educational tool that may also contribute to verification of student achievement of program outcomes and readiness for the RN role.

  6. Performance evaluation using SYSTID time domain simulation. [computer-aid design and analysis for communication systems

    NASA Technical Reports Server (NTRS)

    Tranter, W. H.; Ziemer, R. E.; Fashano, M. J.

    1975-01-01

    This paper reviews the SYSTID technique for performance evaluation of communication systems using time-domain computer simulation. An example program illustrates the language. The inclusion of both Gaussian and impulse noise models make accurate simulation possible in a wide variety of environments. A very flexible postprocessor makes possible accurate and efficient performance evaluation.

  7. Objective Fidelity Evaluation in Multisensory Virtual Environments: Auditory Cue Fidelity in Flight Simulation

    PubMed Central

    Meyer, Georg F.; Wong, Li Ting; Timson, Emma; Perfect, Philip; White, Mark D.

    2012-01-01

    We argue that objective fidelity evaluation of virtual environments, such as flight simulation, should be human-performance-centred and task-specific rather than measure the match between simulation and physical reality. We show how principled experimental paradigms and behavioural models to quantify human performance in simulated environments that have emerged from research in multisensory perception provide a framework for the objective evaluation of the contribution of individual cues to human performance measures of fidelity. We present three examples in a flight simulation environment as a case study: Experiment 1: Detection and categorisation of auditory and kinematic motion cues; Experiment 2: Performance evaluation in a target-tracking task; Experiment 3: Transferrable learning of auditory motion cues. We show how the contribution of individual cues to human performance can be robustly evaluated for each task and that the contribution is highly task dependent. The same auditory cues that can be discriminated and are optimally integrated in experiment 1, do not contribute to target-tracking performance in an in-flight refuelling simulation without training, experiment 2. In experiment 3, however, we demonstrate that the auditory cue leads to significant, transferrable, performance improvements with training. We conclude that objective fidelity evaluation requires a task-specific analysis of the contribution of individual cues. PMID:22957068

  8. A modified F-test for evaluating model performance by including both experimental and simulation uncertainties

    USDA-ARS?s Scientific Manuscript database

    Experimental and simulation uncertainties have not been included in many of the statistics used in assessing agricultural model performance. The objectives of this study were to develop an F-test that can be used to evaluate model performance considering experimental and simulation uncertainties, an...

  9. Predictive validity of driving-simulator assessments following traumatic brain injury: a preliminary study.

    PubMed

    Lew, Henry L; Poole, John H; Lee, Eun Ha; Jaffe, David L; Huang, Hsiu-Chen; Brodd, Edward

    2005-03-01

    To evaluate whether driving simulator and road test evaluations can predict long-term driving performance, we conducted a prospective study on 11 patients with moderate to severe traumatic brain injury. Sixteen healthy subjects were also tested to provide normative values on the simulator at baseline. At their initial evaluation (time-1), subjects' driving skills were measured during a 30-minute simulator trial using an automated 12-measure Simulator Performance Index (SPI), while a trained observer also rated their performance using a Driving Performance Inventory (DPI). In addition, patients were evaluated on the road by a certified driving evaluator. Ten months later (time-2), family members observed patients driving for at least 3 hours over 4 weeks and rated their driving performance using the DPI. At time-1, patients were significantly impaired on automated SPI measures of driving skill, including: speed and steering control, accidents, and vigilance to a divided-attention task. These simulator indices significantly predicted the following aspects of observed driving performance at time-2: handling of automobile controls, regulation of vehicle speed and direction, higher-order judgment and self-control, as well as a trend-level association with car accidents. Automated measures of simulator skill (SPI) were more sensitive and accurate than observational measures of simulator skill (DPI) in predicting actual driving performance. To our surprise, the road test results at time-1 showed no significant relation to driving performance at time-2. Simulator-based assessment of patients with brain injuries can provide ecologically valid measures that, in some cases, may be more sensitive than a traditional road test as predictors of long-term driving performance in the community.

  10. 10 CFR 431.445 - Determination of small electric motor efficiency.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... statistical analysis, computer simulation or modeling, or other analytic evaluation of performance data. (3... statistical analysis, computer simulation or modeling, and other analytic evaluation of performance data on.... (ii) If requested by the Department, the manufacturer shall conduct simulations to predict the...

  11. Evaluation of regional climate simulations over the Great Lakes region driven by three global data sets

    Treesearch

    Shiyuan Zhong; Xiuping Li; Xindi Bian; Warren E. Heilman; L. Ruby Leung; William I. Jr. Gustafson

    2012-01-01

    The performance of regional climate simulations is evaluated for the Great Lakes region. Three 10-year (1990-1999) current-climate simulations are performed using the MM5 regional climate model (RCM) with 36-km horizontal resolution. The simulations employed identical configuration and physical parameterizations, but different lateral boundary conditions and sea-...

  12. Correlation of Simulation Examination to Written Test Scores for Advanced Cardiac Life Support Testing: Prospective Cohort Study.

    PubMed

    Strom, Suzanne L; Anderson, Craig L; Yang, Luanna; Canales, Cecilia; Amin, Alpesh; Lotfipour, Shahram; McCoy, C Eric; Osborn, Megan Boysen; Langdorf, Mark I

    2015-11-01

    Traditional Advanced Cardiac Life Support (ACLS) courses are evaluated using written multiple-choice tests. High-fidelity simulation is a widely used adjunct to didactic content, and has been used in many specialties as a training resource as well as an evaluative tool. There are no data to our knowledge that compare simulation examination scores with written test scores for ACLS courses. To compare and correlate a novel high-fidelity simulation-based evaluation with traditional written testing for senior medical students in an ACLS course. We performed a prospective cohort study to determine the correlation between simulation-based evaluation and traditional written testing in a medical school simulation center. Students were tested on a standard acute coronary syndrome/ventricular fibrillation cardiac arrest scenario. Our primary outcome measure was correlation of exam results for 19 volunteer fourth-year medical students after a 32-hour ACLS-based Resuscitation Boot Camp course. Our secondary outcome was comparison of simulation-based vs. written outcome scores. The composite average score on the written evaluation was substantially higher (93.6%) than the simulation performance score (81.3%, absolute difference 12.3%, 95% CI [10.6-14.0%], p<0.00005). We found a statistically significant moderate correlation between simulation scenario test performance and traditional written testing (Pearson r=0.48, p=0.04), validating the new evaluation method. Simulation-based ACLS evaluation methods correlate with traditional written testing and demonstrate resuscitation knowledge and skills. Simulation may be a more discriminating and challenging testing method, as students scored higher on written evaluation methods compared to simulation.

  13. Performance analysis of static locking in replicated distributed database systems

    NASA Technical Reports Server (NTRS)

    Kuang, Yinghong; Mukkamala, Ravi

    1991-01-01

    Data replication and transaction deadlocks can severely affect the performance of distributed database systems. Many current evaluation techniques ignore these aspects, because it is difficult to evaluate through analysis and time consuming to evaluate through simulation. A technique is used that combines simulation and analysis to closely illustrate the impact of deadlock and evaluate performance of replicated distributed database with both shared and exclusive locks.

  14. Heart rate and performance during combat missions in a flight simulator.

    PubMed

    Lahtinen, Taija M M; Koskelo, Jukka P; Laitinen, Tomi; Leino, Tuomo K

    2007-04-01

    The psychological workload of flying has been shown to increase heart rate (HR) during flight simulator operation. The association between HR changes and flight performance remains unclear. There were 15 pilots who performed a combat flight mission in a Weapons Tactics Trainer simulator of an F-18 Hornet. An electrocardiogram (ECG) was recorded, and individual incremental heart rates (deltaHR) from the HR during rest were calculated for each flight phase and used in statistical analyses. The combat flight period was divided into 13 phases, which were evaluated on a scale of 1 to 5 by the flight instructor. HR increased during interceptions (from a mean resting level of 79.0 to mean value of 96.7 bpm in one of the interception flight phases) and decreased during the return to base and slightly increased during the ILS approach and landing. DeltaHR appeared to be similar among experienced and less experienced pilots. DeltaHR responses during the flight phases did not correlate with simulator flight performance scores. Overall simulator flight performance correlated statistically significantly (r = 0.50) with the F-18 Hornet flight experience. HR reflected the amount of cognitive load during the simulated flight. Hence, HR analysis can be used in the evaluation of the psychological workload of military simulator flight phases. However, more detailed flight performance evaluation methods are needed for this kind of complex flight simulation to replace the traditional but rough interval scales. Use of a visual analog scale by the flight instructors is suggested for simulator flight performance evaluation.

  15. Simulation and rubrics: technology and grading student performance in nurse anesthesia education.

    PubMed

    Overstreet, Maria; McCarver, Lewis; Shields, John; Patterson, Jordan

    2015-06-01

    The use of simulation technology has introduced a challenge for simulation nurse educators: evaluation of student performance. The subjectivity of student performance evaluation has been in need of improvement. It is imperative to provide clear and consistent information to the learner of expectations for their performance. Educators use objectives to define for the learner what the primary focus will be in the learning activities. Creation of rubrics to replace checklists to evaluate learner performance is a team task. Improved rubrics assist instructors in providing valuable, immediate, and postactivity feedback and consistency among instructors, and improved inter-rater reliability. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Evaluation of high fidelity patient simulator in assessment of performance of anaesthetists.

    PubMed

    Weller, J M; Bloch, M; Young, S; Maze, M; Oyesola, S; Wyner, J; Dob, D; Haire, K; Durbridge, J; Walker, T; Newble, D

    2003-01-01

    There is increasing emphasis on performance-based assessment of clinical competence. The High Fidelity Patient Simulator (HPS) may be useful for assessment of clinical practice in anaesthesia, but needs formal evaluation of validity, reliability, feasibility and effect on learning. We set out to assess the reliability of a global rating scale for scoring simulator performance in crisis management. Using a global rating scale, three judges independently rated videotapes of anaesthetists in simulated crises in the operating theatre. Five anaesthetists then independently rated subsets of these videotapes. There was good agreement between raters for medical management, behavioural attributes and overall performance. Agreement was high for both the initial judges and the five additional raters. Using a global scale to assess simulator performance, we found good inter-rater reliability for scoring performance in a crisis. We estimate that two judges should provide a reliable assessment. High fidelity simulation should be studied further for assessing clinical performance.

  17. Performance analysis of static locking in replicated distributed database systems

    NASA Technical Reports Server (NTRS)

    Kuang, Yinghong; Mukkamala, Ravi

    1991-01-01

    Data replications and transaction deadlocks can severely affect the performance of distributed database systems. Many current evaluation techniques ignore these aspects, because it is difficult to evaluate through analysis and time consuming to evaluate through simulation. Here, a technique is discussed that combines simulation and analysis to closely illustrate the impact of deadlock and evaluate performance of replicated distributed databases with both shared and exclusive locks.

  18. Validity evidence for the Simulated Colonoscopy Objective Performance Evaluation scoring system.

    PubMed

    Trinca, Kristen D; Cox, Tiffany C; Pearl, Jonathan P; Ritter, E Matthew

    2014-02-01

    Low-cost, objective systems to assess and train endoscopy skills are needed. The aim of this study was to evaluate the ability of Simulated Colonoscopy Objective Performance Evaluation to assess the skills required to perform endoscopy. Thirty-eight subjects were included in this study, all of whom performed 4 tasks. The scoring system measured performance by calculating precision and efficiency. Data analysis assessed the relationship between colonoscopy experience and performance on each task and the overall score. Endoscopic trainees' Simulated Colonoscopy Objective Performance Evaluation scores correlated significantly with total colonoscopy experience (r = .61, P = .003) and experience in the past 12 months (r = .63, P = .002). Significant differences were seen among practicing endoscopists, nonendoscopic surgeons, and trainees (P < .0001). When the 4 tasks were analyzed, each showed significant correlation with colonoscopy experience (scope manipulation, r = .44, P = .044; tool targeting, r = .45, P = .04; loop management, r = .47, P = .032; mucosal inspection, r = .65, P = .001) and significant differences in performance between the endoscopist groups, except for mucosal inspection (scope manipulation, P < .0001; tool targeting, P = .002; loop management, P = .0008; mucosal inspection, P = .27). Simulated Colonoscopy Objective Performance Evaluation objectively assesses the technical skills required to perform endoscopy and shows promise as a platform for proficiency-based skills training. Published by Elsevier Inc.

  19. Integrating Soft Set Theory and Fuzzy Linguistic Model to Evaluate the Performance of Training Simulation Systems

    PubMed Central

    Chang, Kuei-Hu; Chang, Yung-Chia; Chain, Kai; Chung, Hsiang-Yu

    2016-01-01

    The advancement of high technologies and the arrival of the information age have caused changes to the modern warfare. The military forces of many countries have replaced partially real training drills with training simulation systems to achieve combat readiness. However, considerable types of training simulation systems are used in military settings. In addition, differences in system set up time, functions, the environment, and the competency of system operators, as well as incomplete information have made it difficult to evaluate the performance of training simulation systems. To address the aforementioned problems, this study integrated analytic hierarchy process, soft set theory, and the fuzzy linguistic representation model to evaluate the performance of various training simulation systems. Furthermore, importance–performance analysis was adopted to examine the influence of saving costs and training safety of training simulation systems. The findings of this study are expected to facilitate applying military training simulation systems, avoiding wasting of resources (e.g., low utility and idle time), and providing data for subsequent applications and analysis. To verify the method proposed in this study, the numerical examples of the performance evaluation of training simulation systems were adopted and compared with the numerical results of an AHP and a novel AHP-based ranking technique. The results verified that not only could expert-provided questionnaire information be fully considered to lower the repetition rate of performance ranking, but a two-dimensional graph could also be used to help administrators allocate limited resources, thereby enhancing the investment benefits and training effectiveness of a training simulation system. PMID:27598390

  20. Integrating Soft Set Theory and Fuzzy Linguistic Model to Evaluate the Performance of Training Simulation Systems.

    PubMed

    Chang, Kuei-Hu; Chang, Yung-Chia; Chain, Kai; Chung, Hsiang-Yu

    2016-01-01

    The advancement of high technologies and the arrival of the information age have caused changes to the modern warfare. The military forces of many countries have replaced partially real training drills with training simulation systems to achieve combat readiness. However, considerable types of training simulation systems are used in military settings. In addition, differences in system set up time, functions, the environment, and the competency of system operators, as well as incomplete information have made it difficult to evaluate the performance of training simulation systems. To address the aforementioned problems, this study integrated analytic hierarchy process, soft set theory, and the fuzzy linguistic representation model to evaluate the performance of various training simulation systems. Furthermore, importance-performance analysis was adopted to examine the influence of saving costs and training safety of training simulation systems. The findings of this study are expected to facilitate applying military training simulation systems, avoiding wasting of resources (e.g., low utility and idle time), and providing data for subsequent applications and analysis. To verify the method proposed in this study, the numerical examples of the performance evaluation of training simulation systems were adopted and compared with the numerical results of an AHP and a novel AHP-based ranking technique. The results verified that not only could expert-provided questionnaire information be fully considered to lower the repetition rate of performance ranking, but a two-dimensional graph could also be used to help administrators allocate limited resources, thereby enhancing the investment benefits and training effectiveness of a training simulation system.

  1. Pharmacy practice simulations: performance of senior pharmacy students at a University in southern Brazil

    PubMed Central

    Galato, Dayani; Alano, Graziela M.; Trauthman, Silvana C.; França, Tainã F.

    Objective A simulation process known as objective structured clinical examination (OSCE) was applied to assess pharmacy practice performed by senior pharmacy students. Methods A cross-sectional study was conducted based on documentary analysis of performance evaluation records of pharmacy practice simulations that occurred between 2005 and 2009. These simulations were related to the process of self-medication and dispensing, and were performed with the use of patients simulated. The simulations were filmed to facilitate the evaluation process. It presents the OSCE educational experience performed by pharmacy trainees of the University of Southern Santa Catarina and experienced by two evaluators. The student general performance was analyzed, and the criteria for pharmacy practice assessment often identified trainees in difficulty. Results The results of 291 simulations showed that students have an average yield performance of 70.0%. Several difficulties were encountered, such as the lack of information about the selected/prescribed treatment regimen (65.1%); inadequate communication style (21.9%); lack of identification of patients’ needs (7.7%) and inappropriate drug selection for self-medication (5.3%). Conclusions These data show that there is a need for reorientation of clinical pharmacy students because they need to improve their communication skills, and have a deeper knowledge of medicines and health problems in order to properly orient their patients. PMID:24367467

  2. Partnering to Establish and Study Simulation in International Nursing Education.

    PubMed

    Garner, Shelby L; Killingsworth, Erin; Raj, Leena

    The purpose of this article was to describe an international partnership to establish and study simulation in India. A pilot study was performed to determine interrater reliability among faculty new to simulation when evaluating nursing student competency performance. Interrater reliability was below the ideal agreement level. Findings in this study underscore the need to obtain baseline interrater reliability data before integrating competency evaluation into a simulation program.

  3. Full immersion simulation: validation of a distributed simulation environment for technical and non-technical skills training in Urology.

    PubMed

    Brewin, James; Tang, Jessica; Dasgupta, Prokar; Khan, Muhammad S; Ahmed, Kamran; Bello, Fernando; Kneebone, Roger; Jaye, Peter

    2015-07-01

    To evaluate the face, content and construct validity of the distributed simulation (DS) environment for technical and non-technical skills training in endourology. To evaluate the educational impact of DS for urology training. DS offers a portable, low-cost simulated operating room environment that can be set up in any open space. A prospective mixed methods design using established validation methodology was conducted in this simulated environment with 10 experienced and 10 trainee urologists. All participants performed a simulated prostate resection in the DS environment. Outcome measures included surveys to evaluate the DS, as well as comparative analyses of experienced and trainee urologist's performance using real-time and 'blinded' video analysis and validated performance metrics. Non-parametric statistical methods were used to compare differences between groups. The DS environment demonstrated face, content and construct validity for both non-technical and technical skills. Kirkpatrick level 1 evidence for the educational impact of the DS environment was shown. Further studies are needed to evaluate the effect of simulated operating room training on real operating room performance. This study has shown the validity of the DS environment for non-technical, as well as technical skills training. DS-based simulation appears to be a valuable addition to traditional classroom-based simulation training. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  4. Using gaming simulation to evaluate bioterrorism and emergency readiness education.

    PubMed

    Olson, Debra K; Scheller, Amy; Larson, Susan; Lindeke, Linda; Edwardson, Sandra

    2010-01-01

    We performed an outcome evaluation of the impact of public health preparedness training as a group comparison posttest design to determine the differences in the way individuals who had participated in training performed in a simulated emergency. The Experimental Group 1 included students who had graduated from or were currently enrolled in the bioterrorism and emergency readiness (BT/ER) curriculum at the University of Minnesota School of Public Health. The comparison groups included individuals who had access to the Internet and were aware of the 2006 online simulation Disaster in Franklin County: A Public Health Simulation. The evaluation process employed surveys and the gaming simulation as sources for primary data. Participants in the BT/ER curriculum (p=0.0001) and other participants completing at least 45 hours of training in the past year (p=0.0001) demonstrated higher effectiveness scores (accuracy of chosen responses within the simulation) than participants who did not report significant amounts of training. This evaluation research demonstrated that training is significantly associated with better performance in a simulated emergency using gaming technology.

  5. Evaluating performance of risk identification methods through a large-scale simulation of observational data.

    PubMed

    Ryan, Patrick B; Schuemie, Martijn J

    2013-10-01

    There has been only limited evaluation of statistical methods for identifying safety risks of drug exposure in observational healthcare data. Simulations can support empirical evaluation, but have not been shown to adequately model the real-world phenomena that challenge observational analyses. To design and evaluate a probabilistic framework (OSIM2) for generating simulated observational healthcare data, and to use this data for evaluating the performance of methods in identifying associations between drug exposure and health outcomes of interest. Seven observational designs, including case-control, cohort, self-controlled case series, and self-controlled cohort design were applied to 399 drug-outcome scenarios in 6 simulated datasets with no effect and injected relative risks of 1.25, 1.5, 2, 4, and 10, respectively. Longitudinal data for 10 million simulated patients were generated using a model derived from an administrative claims database, with associated demographics, periods of drug exposure derived from pharmacy dispensings, and medical conditions derived from diagnoses on medical claims. Simulation validation was performed through descriptive comparison with real source data. Method performance was evaluated using Area Under ROC Curve (AUC), bias, and mean squared error. OSIM2 replicates prevalence and types of confounding observed in real claims data. When simulated data are injected with relative risks (RR) ≥ 2, all designs have good predictive accuracy (AUC > 0.90), but when RR < 2, no methods achieve 100 % predictions. Each method exhibits a different bias profile, which changes with the effect size. OSIM2 can support methodological research. Results from simulation suggest method operating characteristics are far from nominal properties.

  6. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  7. On the Fidelity of Semi-distributed Hydrologic Model Simulations for Large Scale Catchment Applications

    NASA Astrophysics Data System (ADS)

    Ajami, H.; Sharma, A.; Lakshmi, V.

    2017-12-01

    Application of semi-distributed hydrologic modeling frameworks is a viable alternative to fully distributed hyper-resolution hydrologic models due to computational efficiency and resolving fine-scale spatial structure of hydrologic fluxes and states. However, fidelity of semi-distributed model simulations is impacted by (1) formulation of hydrologic response units (HRUs), and (2) aggregation of catchment properties for formulating simulation elements. Here, we evaluate the performance of a recently developed Soil Moisture and Runoff simulation Toolkit (SMART) for large catchment scale simulations. In SMART, topologically connected HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are equivalent cross sections (ECS) representative of a hillslope in first order sub-basins. Earlier investigations have shown that formulation of ECSs at the scale of a first order sub-basin reduces computational time significantly without compromising simulation accuracy. However, the implementation of this approach has not been fully explored for catchment scale simulations. To assess SMART performance, we set-up the model over the Little Washita watershed in Oklahoma. Model evaluations using in-situ soil moisture observations show satisfactory model performance. In addition, we evaluated the performance of a number of soil moisture disaggregation schemes recently developed to provide spatially explicit soil moisture outputs at fine scale resolution. Our results illustrate that the statistical disaggregation scheme performs significantly better than the methods based on topographic data. Future work is focused on assessing the performance of SMART using remotely sensed soil moisture observations using spatially based model evaluation metrics.

  8. Performance evaluation for pinhole collimators of small gamma camera by MTF and NNPS analysis: Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Jeon, Hosang; Kim, Hyunduk; Cha, Bo Kyung; Kim, Jong Yul; Cho, Gyuseong; Chung, Yong Hyun; Yun, Jong-Il

    2009-06-01

    Presently, the gamma camera system is widely used in various medical diagnostic, industrial and environmental fields. Hence, the quantitative and effective evaluation of its imaging performance is essential for design and quality assurance. The National Electrical Manufacturers Association (NEMA) standards for gamma camera evaluation are insufficient to perform sensitive evaluation. In this study, modulation transfer function (MTF) and normalized noise power spectrum (NNPS) will be suggested to evaluate the performance of small gamma camera with changeable pinhole collimators using Monte Carlo simulation. We simulated the system with a cylinder and a disk source, and seven different pinhole collimators from 1- to 4-mm-diameter pinhole with lead. The MTF and NNPS data were obtained from output images and were compared with full-width at half-maximum (FWHM), sensitivity and differential uniformity. In the result, we found that MTF and NNPS are effective and novel standards to evaluate imaging performance of gamma cameras instead of conventional NEMA standards.

  9. Switching performance of OBS network model under prefetched real traffic

    NASA Astrophysics Data System (ADS)

    Huang, Zhenhua; Xu, Du; Lei, Wen

    2005-11-01

    Optical Burst Switching (OBS) [1] is now widely considered as an efficient switching technique in building the next generation optical Internet .So it's very important to precisely evaluate the performance of the OBS network model. The performance of the OBS network model is variable in different condition, but the most important thing is that how it works under real traffic load. In the traditional simulation models, uniform traffics are usually generated by simulation software to imitate the data source of the edge node in the OBS network model, and through which the performance of the OBS network is evaluated. Unfortunately, without being simulated by real traffic, the traditional simulation models have several problems and their results are doubtable. To deal with this problem, we present a new simulation model for analysis and performance evaluation of the OBS network, which uses prefetched IP traffic to be data source of the OBS network model. The prefetched IP traffic can be considered as real IP source of the OBS edge node and the OBS network model has the same clock rate with a real OBS system. So it's easy to conclude that this model is closer to the real OBS system than the traditional ones. The simulation results also indicate that this model is more accurate to evaluate the performance of the OBS network system and the results of this model are closer to the actual situation.

  10. Efficient evaluation of wireless real-time control networks.

    PubMed

    Horvath, Peter; Yampolskiy, Mark; Koutsoukos, Xenofon

    2015-02-11

    In this paper, we present a system simulation framework for the design and performance evaluation of complex wireless cyber-physical systems. We describe the simulator architecture and the specific developments that are required to simulate cyber-physical systems relying on multi-channel, multihop mesh networks. We introduce realistic and efficient physical layer models and a system simulation methodology, which provides statistically significant performance evaluation results with low computational complexity. The capabilities of the proposed framework are illustrated in the example of WirelessHART, a centralized, real-time, multi-hop mesh network designed for industrial control and monitor applications.

  11. Evaluation of outbreak detection performance using multi-stream syndromic surveillance for influenza-like illness in rural Hubei Province, China: a temporal simulation model based on healthcare-seeking behaviors.

    PubMed

    Fan, Yunzhou; Wang, Ying; Jiang, Hongbo; Yang, Wenwen; Yu, Miao; Yan, Weirong; Diwan, Vinod K; Xu, Biao; Dong, Hengjin; Palm, Lars; Nie, Shaofa

    2014-01-01

    Syndromic surveillance promotes the early detection of diseases outbreaks. Although syndromic surveillance has increased in developing countries, performance on outbreak detection, particularly in cases of multi-stream surveillance, has scarcely been evaluated in rural areas. This study introduces a temporal simulation model based on healthcare-seeking behaviors to evaluate the performance of multi-stream syndromic surveillance for influenza-like illness. Data were obtained in six towns of rural Hubei Province, China, from April 2012 to June 2013. A Susceptible-Exposed-Infectious-Recovered model generated 27 scenarios of simulated influenza A (H1N1) outbreaks, which were converted into corresponding simulated syndromic datasets through the healthcare-behaviors model. We then superimposed converted syndromic datasets onto the baselines obtained to create the testing datasets. Outbreak performance of single-stream surveillance of clinic visit, frequency of over the counter drug purchases, school absenteeism, and multi-stream surveillance of their combinations were evaluated using receiver operating characteristic curves and activity monitoring operation curves. In the six towns examined, clinic visit surveillance and school absenteeism surveillance exhibited superior performances of outbreak detection than over the counter drug purchase frequency surveillance; the performance of multi-stream surveillance was preferable to signal-stream surveillance, particularly at low specificity (Sp <90%). The temporal simulation model based on healthcare-seeking behaviors offers an accessible method for evaluating the performance of multi-stream surveillance.

  12. Simulator certification methods and the vertical motion simulator

    NASA Technical Reports Server (NTRS)

    Showalter, T. W.

    1981-01-01

    The vertical motion simulator (VMS) is designed to simulate a variety of experimental helicopter and STOL/VTOL aircraft as well as other kinds of aircraft with special pitch and Z axis characteristics. The VMS includes a large motion base with extensive vertical and lateral travel capabilities, a computer generated image visual system, and a high speed CDC 7600 computer system, which performs aero model calculations. Guidelines on how to measure and evaluate VMS performance were developed. A survey of simulation users was conducted to ascertain they evaluated and certified simulators for use. The results are presented.

  13. Correspondence between Simulator and On-Road Drive Performance: Implications for Assessment of Driving Safety.

    PubMed

    Aksan, Nazan; Hacker, Sarah D; Sager, Lauren; Dawson, Jeffrey; Anderson, Steven; Rizzo, Matthew

    2016-03-01

    Forty-two younger (Mean age = 35) and 37 older drivers (Mean age = 77) completed four similar simulated drives. In addition, 32 younger and 30 older drivers completed a standard on-road drive in an instrumented vehicle. Performance in the simulated drives was evaluated using both electronic drive data and video-review of errors. Safety errors during the on-road drive were evaluated by a certified driving instructor blind to simulator performance, using state Department of Transportation criteria. We examined the degree of convergence in performance across the two platforms on various driving tasks including lane change, lane keeping, speed control, stopping, turns, and overall performance. Differences based on age group indicated a pattern of strong relative validity for simulator measures. However, relative rank-order in specific metrics of performance suggested a pattern of moderate relative validity. The findings have implications for the use of simulators in assessments of driving safety as well as its use in training and/or rehabilitation settings.

  14. Correspondence between Simulator and On-Road Drive Performance: Implications for Assessment of Driving Safety

    PubMed Central

    Aksan, Nazan; Hacker, Sarah D.; Sager, Lauren; Dawson, Jeffrey; Anderson, Steven; Rizzo, Matthew

    2017-01-01

    Forty-two younger (Mean age = 35) and 37 older drivers (Mean age = 77) completed four similar simulated drives. In addition, 32 younger and 30 older drivers completed a standard on-road drive in an instrumented vehicle. Performance in the simulated drives was evaluated using both electronic drive data and video-review of errors. Safety errors during the on-road drive were evaluated by a certified driving instructor blind to simulator performance, using state Department of Transportation criteria. We examined the degree of convergence in performance across the two platforms on various driving tasks including lane change, lane keeping, speed control, stopping, turns, and overall performance. Differences based on age group indicated a pattern of strong relative validity for simulator measures. However, relative rank-order in specific metrics of performance suggested a pattern of moderate relative validity. The findings have implications for the use of simulators in assessments of driving safety as well as its use in training and/or rehabilitation settings. PMID:28649572

  15. Corrosion protection performance of corrosion inhibitors and epoxy-coated reinforcing steel in a simulated concrete pore water solution.

    DOT National Transportation Integrated Search

    1998-06-01

    We used a simulated concrete pore water solution to evaluate the corrosion protection performance of concrete corrosion-inhibiting admixtures and epoxy-coated reinforcing bars (ECR). We evaluated three commercial corrosion inhibitors, ECR from three ...

  16. Interactive Graphics Simulator: Design, Development, and Effectiveness/Cost Evaluation. Final Report.

    ERIC Educational Resources Information Center

    Pieper, William J.; And Others

    This study was initiated to design, develop, implement, and evaluate a videodisc-based simulator system, the Interactive Graphics Simulator (IGS) for 6883 Converter Flight Control Test Station training at Lowry Air Force Base, Colorado. The simulator provided a means for performing task analysis online, developing simulations from the task…

  17. Dataflow computing approach in high-speed digital simulation

    NASA Technical Reports Server (NTRS)

    Ercegovac, M. D.; Karplus, W. J.

    1984-01-01

    New computational tools and methodologies for the digital simulation of continuous systems were explored. Programmability, and cost effective performance in multiprocessor organizations for real time simulation was investigated. Approach is based on functional style languages and data flow computing principles, which allow for the natural representation of parallelism in algorithms and provides a suitable basis for the design of cost effective high performance distributed systems. The objectives of this research are to: (1) perform comparative evaluation of several existing data flow languages and develop an experimental data flow language suitable for real time simulation using multiprocessor systems; (2) investigate the main issues that arise in the architecture and organization of data flow multiprocessors for real time simulation; and (3) develop and apply performance evaluation models in typical applications.

  18. NAS-Wide Fast-Time Simulation Study for Evaluating Performance of UAS Detect-and-Avoid Alerting and Guidance Systems

    NASA Technical Reports Server (NTRS)

    Lee, Seung Man; Park, Chunki; Cone, Andrew Clayton; Thipphavong, David P.; Santiago, Confesor

    2016-01-01

    This presentation contains the analysis results of NAS-wide fast-time simulations with UAS and VFR traffic for a single day for evaluating the performance of Detect-and-Avoid (DAA) alerting and guidance systems. This purpose of this study was to help refine and validate MOPS alerting and guidance requirements. In this study, we generated plots of all performance metrics that are specified by RTCA SC-228 Minimum Operational Performance Standards (MOPS): 1) to evaluate the sensitivity of alerting parameters on the performance metrics of each DAA alert type: Preventive, Corrective, and Warning alerts and 2) to evaluate the effect of sensor uncertainty on DAA alerting and guidance performance.

  19. Thermal performance of MSFC hot air collectors under natural and simulated conditions

    NASA Technical Reports Server (NTRS)

    Shih, K., Sr.

    1977-01-01

    The procedures used and the results obtained from an evaluation test program conducted to determine the thermal performance and structural characteristics of selected MSFC--designed hot air collectors under both real and simulated environmental conditions are described. Five collectors were tested in the three phased program. A series of outdoor tests were conducted to determine stagnation temperatures on a typical bright day and to determine each collector's ability to withstand these temperatures. Two of the collectors experienced structural deformation sufficient to eliminate them from the remainder of the test program. A series of outdoor tests to evaluate the thermal performance of collector S/N 10 under certain test conditions were performed followed by a series of indoor tests to evaluate the thermal performance of the collector under closely controlled simulated conditions.

  20. Incorporation of a Cumulus Fraction Scheme in the GRAPES_Meso and Evaluation of Its Performance

    NASA Astrophysics Data System (ADS)

    Zheng, X.

    2016-12-01

    Accurate simulation of cloud cover fraction is a key and difficult issue in numerical modeling studies. Preliminary evaluations have indicated that cloud fraction is generally underestimated in GRAPES_Meso simulations, while the cloud fraction scheme (CFS) of ECMWF can provide more realistic results. Therefore, the ECMWF cumulus fraction scheme is introduced into GRAPES_Meso to replace the original CFS, and the model performance with the new CFS is evaluated based on simulated three-dimensional cloud fractions and surface temperature. Results indicate that the simulated cloud fractions increase and become more accurate with the new CFS; the simulation for vertical cloud structure has improved too; errors in surface temperature simulation have decreased. The above analysis and results suggest that the new CFS has a positive impact on cloud fraction and surface temperature simulation.

  1. Error management training and simulation education.

    PubMed

    Gardner, Aimee; Rich, Michelle

    2014-12-01

    The integration of simulation into the training of health care professionals provides context for decision making and procedural skills in a high-fidelity environment, without risk to actual patients. It was hypothesised that a novel approach to simulation-based education - error management training - would produce higher performance ratings compared with traditional step-by-step instruction. Radiology technology students were randomly assigned to participate in traditional procedural-based instruction (n = 11) or vicarious error management training (n = 11). All watched an instructional video and discussed how well each incident was handled (traditional instruction group) or identified where the errors were made (vicarious error management training). Students then participated in a 30-minute case-based simulation. Simulations were videotaped for performance analysis. Blinded experts evaluated performance using a predefined evaluation tool created specifically for the scenario. Blinded experts evaluated performance using a predefined evaluation tool created specifically for the scenario The vicarious error management group scored higher on observer-rated performance (Mean = 9.49) than students in the traditional instruction group (Mean = 9.02; p < 0.01). These findings suggest that incorporating the discussion of errors and how to handle errors during the learning session will better equip students when performing hands-on procedures and skills. This pilot study provides preliminary evidence for integrating error management skills into medical curricula and for the design of learning goals in simulation-based education. © 2014 John Wiley & Sons Ltd.

  2. Leveraging simulation to evaluate system performance in presence of fixed pattern noise

    NASA Astrophysics Data System (ADS)

    Teaney, Brian P.

    2017-05-01

    The development of image simulation techniques which map the effects of a notional, modeled sensor system onto an existing image can be used to evaluate the image quality of camera systems prior to the development of prototype systems. In addition, image simulation or `virtual prototyping' can be utilized to reduce the time and expense associated with conducting extensive field trials. In this paper we examine the development of a perception study designed to assess the performance of the NVESD imager performance metrics as a function of fixed pattern noise. This paper discusses the development of the model theory and the implementation and execution of the perception study. In addition, other applications of the image simulation component including the evaluation of limiting resolution and other test targets is provided.

  3. Monte Carlo simulation of Ray-Scan 64 PET system and performance evaluation using GATE toolkit

    NASA Astrophysics Data System (ADS)

    Li, Suying; Zhang, Qiushi; Vuletic, Ivan; Xie, Zhaoheng; Yang, Kun; Ren, Qiushi

    2017-02-01

    In this study, we aimed to develop a GATE model for the simulation of Ray-Scan 64 PET scanner and model its performance characteristics. A detailed implementation of system geometry and physical process were included in the simulation model. Then we modeled the performance characteristics of Ray-Scan 64 PET system for the first time, based on National Electrical Manufacturers Association (NEMA) NU-2 2007 protocols and validated the model against experimental measurement, including spatial resolution, sensitivity, counting rates and noise equivalent count rate (NECR). Moreover, an accurate dead time module was investigated to simulate the counting rate performance. Overall results showed reasonable agreement between simulation and experimental data. The validation results showed the reliability and feasibility of the GATE model to evaluate major performance of Ray-Scan 64 PET system. It provided a useful tool for a wide range of research applications.

  4. Accurate Behavioral Simulator of All-Digital Time-Domain Smart Temperature Sensors by Using SIMULINK

    PubMed Central

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, You-Ting

    2016-01-01

    This study proposes a new behavioral simulator that uses SIMULINK for all-digital CMOS time-domain smart temperature sensors (TDSTSs) for performing rapid and accurate simulations. Inverter-based TDSTSs offer the benefits of low cost and simple structure for temperature-to-digital conversion and have been developed. Typically, electronic design automation tools, such as HSPICE, are used to simulate TDSTSs for performance evaluations. However, such tools require extremely long simulation time and complex procedures to analyze the results and generate figures. In this paper, we organize simple but accurate equations into a temperature-dependent model (TDM) by which the TDSTSs evaluate temperature behavior. Furthermore, temperature-sensing models of a single CMOS NOT gate were devised using HSPICE simulations. Using the TDM and these temperature-sensing models, a novel simulator in SIMULINK environment was developed to substantially accelerate the simulation and simplify the evaluation procedures. Experiments demonstrated that the simulation results of the proposed simulator have favorable agreement with those obtained from HSPICE simulations, showing that the proposed simulator functions successfully. This is the first behavioral simulator addressing the rapid simulation of TDSTSs. PMID:27509507

  5. Optical laboratory solution and error model simulation of a linear time-varying finite element equation

    NASA Technical Reports Server (NTRS)

    Taylor, B. K.; Casasent, D. P.

    1989-01-01

    The use of simplified error models to accurately simulate and evaluate the performance of an optical linear-algebra processor is described. The optical architecture used to perform banded matrix-vector products is reviewed, along with a linear dynamic finite-element case study. The laboratory hardware and ac-modulation technique used are presented. The individual processor error-source models and their simulator implementation are detailed. Several significant simplifications are introduced to ease the computational requirements and complexity of the simulations. The error models are verified with a laboratory implementation of the processor, and are used to evaluate its potential performance.

  6. The use of vestibular models for design and evaluation of flight simulator motion

    NASA Technical Reports Server (NTRS)

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.

    1989-01-01

    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  7. Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.

    1995-01-01

    A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.

  8. Model Performance Evaluation and Scenario Analysis ...

    EPA Pesticide Factsheets

    This tool consists of two parts: model performance evaluation and scenario analysis (MPESA). The model performance evaluation consists of two components: model performance evaluation metrics and model diagnostics. These metrics provides modelers with statistical goodness-of-fit measures that capture magnitude only, sequence only, and combined magnitude and sequence errors. The performance measures include error analysis, coefficient of determination, Nash-Sutcliffe efficiency, and a new weighted rank method. These performance metrics only provide useful information about the overall model performance. Note that MPESA is based on the separation of observed and simulated time series into magnitude and sequence components. The separation of time series into magnitude and sequence components and the reconstruction back to time series provides diagnostic insights to modelers. For example, traditional approaches lack the capability to identify if the source of uncertainty in the simulated data is due to the quality of the input data or the way the analyst adjusted the model parameters. This report presents a suite of model diagnostics that identify if mismatches between observed and simulated data result from magnitude or sequence related errors. MPESA offers graphical and statistical options that allow HSPF users to compare observed and simulated time series and identify the parameter values to adjust or the input data to modify. The scenario analysis part of the too

  9. Simulation verification techniques study: Simulation performance validation techniques document. [for the space shuttle system

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.

    1975-01-01

    Techniques and support software for the efficient performance of simulation validation are discussed. Overall validation software structure, the performance of validation at various levels of simulation integration, guidelines for check case formulation, methods for real time acquisition and formatting of data from an all up operational simulator, and methods and criteria for comparison and evaluation of simulation data are included. Vehicle subsystems modules, module integration, special test requirements, and reference data formats are also described.

  10. 3RIP Evaluation of the Performance of the Search System Using a Realtime Simulation Technique.

    ERIC Educational Resources Information Center

    Lofstrom, Mats

    This report describes a real-time simulation experiment to evaluate the performance of the search and editing system 3RIP, an interactive system written in the language BLISS on a DEC-10 computer. The test vehicle, preliminary test runs, and capacity test are detailed, and the following conclusions are reported: (1) 3RIP performs well up to the…

  11. Multi-mode evaluation of power-maximizing cross-flow turbine controllers

    DOE PAGES

    Forbush, Dominic; Cavagnaro, Robert J.; Donegan, James; ...

    2017-09-21

    A general method for predicting and evaluating the performance of three candidate cross-flow turbine power-maximizing controllers is presented in this paper using low-order dynamic simulation, scaled laboratory experiments, and full-scale field testing. For each testing mode and candidate controller, performance metrics quantifying energy capture (ability of a controller to maximize power), variation in torque and rotation rate (related to drive train fatigue), and variation in thrust loads (related to structural fatigue) are quantified for two purposes. First, for metrics that could be evaluated across all testing modes, we considered the accuracy with which simulation or laboratory experiments could predict performancemore » at full scale. Second, we explored the utility of these metrics to contrast candidate controller performance. For these turbines and set of candidate controllers, energy capture was found to only differentiate controller performance in simulation, while the other explored metrics were able to predict performance of the full-scale turbine in the field with various degrees of success. Finally, effects of scale between laboratory and full-scale testing are considered, along with recommendations for future improvements to dynamic simulations and controller evaluation.« less

  12. Multi-mode evaluation of power-maximizing cross-flow turbine controllers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbush, Dominic; Cavagnaro, Robert J.; Donegan, James

    A general method for predicting and evaluating the performance of three candidate cross-flow turbine power-maximizing controllers is presented in this paper using low-order dynamic simulation, scaled laboratory experiments, and full-scale field testing. For each testing mode and candidate controller, performance metrics quantifying energy capture (ability of a controller to maximize power), variation in torque and rotation rate (related to drive train fatigue), and variation in thrust loads (related to structural fatigue) are quantified for two purposes. First, for metrics that could be evaluated across all testing modes, we considered the accuracy with which simulation or laboratory experiments could predict performancemore » at full scale. Second, we explored the utility of these metrics to contrast candidate controller performance. For these turbines and set of candidate controllers, energy capture was found to only differentiate controller performance in simulation, while the other explored metrics were able to predict performance of the full-scale turbine in the field with various degrees of success. Finally, effects of scale between laboratory and full-scale testing are considered, along with recommendations for future improvements to dynamic simulations and controller evaluation.« less

  13. Real time digital propulsion system simulation for manned flight simulators

    NASA Technical Reports Server (NTRS)

    Mihaloew, J. R.; Hart, C. E.

    1978-01-01

    A real time digital simulation of a STOL propulsion system was developed which generates significant dynamics and internal variables needed to evaluate system performance and aircraft interactions using manned flight simulators. The simulation ran at a real-to-execution time ratio of 8.8. The model was used in a piloted NASA flight simulator program to evaluate the simulation technique and the propulsion system digital control. The simulation is described and results shown. Limited results of the flight simulation program are also presented.

  14. Performance assessment of geospatial simulation models of land-use change--a landscape metric-based approach.

    PubMed

    Sakieh, Yousef; Salmanmahiny, Abdolrassoul

    2016-03-01

    Performance evaluation is a critical step when developing land-use and cover change (LUCC) models. The present study proposes a spatially explicit model performance evaluation method, adopting a landscape metric-based approach. To quantify GEOMOD model performance, a set of composition- and configuration-based landscape metrics including number of patches, edge density, mean Euclidean nearest neighbor distance, largest patch index, class area, landscape shape index, and splitting index were employed. The model takes advantage of three decision rules including neighborhood effect, persistence of change direction, and urbanization suitability values. According to the results, while class area, largest patch index, and splitting indices demonstrated insignificant differences between spatial pattern of ground truth and simulated layers, there was a considerable inconsistency between simulation results and real dataset in terms of the remaining metrics. Specifically, simulation outputs were simplistic and the model tended to underestimate number of developed patches by producing a more compact landscape. Landscape-metric-based performance evaluation produces more detailed information (compared to conventional indices such as the Kappa index and overall accuracy) on the model's behavior in replicating spatial heterogeneity features of a landscape such as frequency, fragmentation, isolation, and density. Finally, as the main characteristic of the proposed method, landscape metrics employ the maximum potential of observed and simulated layers for a performance evaluation procedure, provide a basis for more robust interpretation of a calibration process, and also deepen modeler insight into the main strengths and pitfalls of a specific land-use change model when simulating a spatiotemporal phenomenon.

  15. Comparison of virtual patient simulation with mannequin-based simulation for improving clinical performances in assessing and managing clinical deterioration: randomized controlled trial.

    PubMed

    Liaw, Sok Ying; Chan, Sally Wai-Chi; Chen, Fun-Gee; Hooi, Shing Chuan; Siau, Chiang

    2014-09-17

    Virtual patient simulation has grown substantially in health care education. A virtual patient simulation was developed as a refresher training course to reinforce nursing clinical performance in assessing and managing deteriorating patients. The objective of this study was to describe the development of the virtual patient simulation and evaluate its efficacy, by comparing with a conventional mannequin-based simulation, for improving the nursing students' performances in assessing and managing patients with clinical deterioration. A randomized controlled study was conducted with 57 third-year nursing students who were recruited through email. After a baseline evaluation of all participants' clinical performance in a simulated environment, the experimental group received a 2-hour fully automated virtual patient simulation while the control group received 2-hour facilitator-led mannequin-based simulation training. All participants were then re-tested one day (first posttest) and 2.5 months (second posttest) after the intervention. The participants from the experimental group completed a survey to evaluate their learning experiences with the newly developed virtual patient simulation. Compared to their baseline scores, both experimental and control groups demonstrated significant improvements (P<.001) in first and second post-test scores. While the experimental group had significantly lower (P<.05) second post-test scores compared with the first post-test scores, no significant difference (P=.94) was found between these two scores for the control group. The scores between groups did not differ significantly over time (P=.17). The virtual patient simulation was rated positively. A virtual patient simulation for a refreshing training course on assessing and managing clinical deterioration was developed. Although the randomized controlled study did not show that the virtual patient simulation was superior to mannequin-based simulation, both simulations have demonstrated to be effective refresher learning strategies for improving nursing students' clinical performance. Given the greater resource requirements of mannequin-based simulation, the virtual patient simulation provides a more promising alternative learning strategy to mitigate the decay of clinical performance over time.

  16. Learning Performance with Interactive Simulations in Medical Education: Lessons Learned from Results of Learning Complex Physiological Models with the HAEMOdynamics SIMulator

    ERIC Educational Resources Information Center

    Holzinger, Andreas; Kickmeier-Rust, Michael D.; Wassertheurer, Sigi; Hessinger, Michael

    2009-01-01

    Objective: Since simulations are often accepted uncritically, with excessive emphasis being placed on technological sophistication at the expense of underlying psychological and educational theories, we evaluated the learning performance of simulation software, in order to gain insight into the proper use of simulations for application in medical…

  17. Management systems research study

    NASA Technical Reports Server (NTRS)

    Bruno, A. V.

    1975-01-01

    The development of a Monte Carlo simulation of procurement activities at the NASA Ames Research Center is described. Data cover: simulation of the procurement cycle, construction of a performance evaluation model, examination of employee development, procedures and review of evaluation criteria for divisional and individual performance evaluation. Determination of the influences and apparent impact of contract type and structure and development of a management control system for planning and controlling manpower requirements.

  18. Performance Analysis of Live-Virtual-Constructive and Distributed Virtual Simulations: Defining Requirements in Terms of Temporal Consistency

    DTIC Science & Technology

    2009-12-01

    events. Work associated with aperiodic tasks have the same statistical behavior and the same timing requirements. The timing deadlines are soft. • Sporadic...answers, but it is possible to calculate how precise the estimates are. Simulation-based performance analysis of a model includes a statistical ...to evaluate all pos- sible states in a timely manner. This is the principle reason for resorting to simulation and statistical analysis to evaluate

  19. Quantifying learning in medical students during a critical care medicine elective: a comparison of three evaluation instruments.

    PubMed

    Rogers, P L; Jacob, H; Rashwan, A S; Pinsky, M R

    2001-06-01

    To compare three different evaluative instruments and determine which is able to measure different aspects of medical student learning. Student learning was evaluated by using written examinations, objective structured clinical examination, and patient simulator that used two clinical scenarios before and after a structured critical care elective, by using a crossover design. Twenty-four 4th-yr students enrolled in the critical care medicine elective. All students took a multiple-choice written examination; evaluated a live simulated critically ill patient, requested data from a nurse, and intervened as appropriate at different stations (objective structured clinical examination); and evaluated the computer-controlled patient simulator and intervened as appropriate. Students' knowledge was assessed by using a multiple-choice examination containing the same data incorporated into the other examinations. Student performance on the objective structured clinical examination was evaluated at five stations. Both objective structured clinical examination and simulator tests were videotaped for subsequent scores of responses, quality of responses, and response time. The videotapes were reviewed for specific behaviors by faculty masked to time of examination. Students were expected to perform the following: a) assess airway, breathing, and circulation; b) prepare a mannequin for intubation; c) provide appropriate ventilator settings; d) manage hypotension; and e) request, interpret, and provide appropriate intervention for pulmonary artery catheter data. Students were expected to perform identical behaviors during the simulator examination; however, the entire examination was performed on the whole-body computer-controlled mannequin. The primary outcome measure was the difference in examination scores before and after the rotation. The mean preelective scores were 77 +/- 16%, 47 +/- 15%, and 41 +/- 14% for the written examination, objective structured clinical examination, and simulator, respectively, compared with 89 +/- 11%, 76 +/- 12%, and 62 +/- 15% after the elective (p <.0001). Prerotation scores for the written examination were significantly higher than the objective structured clinical examination or the simulator; postrotation scores were highest for the written examination and lowest for the simulator. Written examinations measure acquisition of knowledge but fail to predict if students can apply knowledge to problem solving, whereas both the objective structured clinical examination and the computer-controlled patient simulator can be used as effective performance evaluation tools.

  20. Implementation and Evaluation of Multiple Adaptive Control Technologies for a Generic Transport Aircraft Simulation

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Kaneshige, John T.; Nguyen, Nhan T.; Krishakumar, Kalmanje S.

    2010-01-01

    Presented here is the evaluation of multiple adaptive control technologies for a generic transport aircraft simulation. For this study, seven model reference adaptive control (MRAC) based technologies were considered. Each technology was integrated into an identical dynamic-inversion control architecture and tuned using a methodology based on metrics and specific design requirements. Simulation tests were then performed to evaluate each technology s sensitivity to time-delay, flight condition, model uncertainty, and artificially induced cross-coupling. The resulting robustness and performance characteristics were used to identify potential strengths, weaknesses, and integration challenges of the individual adaptive control technologies

  1. Modeling and Performance Simulation of the Mass Storage Network Environment

    NASA Technical Reports Server (NTRS)

    Kim, Chan M.; Sang, Janche

    2000-01-01

    This paper describes the application of modeling and simulation in evaluating and predicting the performance of the mass storage network environment. Network traffic is generated to mimic the realistic pattern of file transfer, electronic mail, and web browsing. The behavior and performance of the mass storage network and a typical client-server Local Area Network (LAN) are investigated by modeling and simulation. Performance characteristics in throughput and delay demonstrate the important role of modeling and simulation in network engineering and capacity planning.

  2. Current concepts in simulation-based trauma education.

    PubMed

    Cherry, Robert A; Ali, Jameel

    2008-11-01

    The use of simulation-based technology in trauma education has focused on providing a safe and effective alternative to the more traditional methods that are used to teach technical skills and critical concepts in trauma resuscitation. Trauma team training using simulation-based technology is also being used to develop skills in leadership, team-information sharing, communication, and decision-making. The integration of simulators into medical student curriculum, residency training, and continuing medical education has been strongly recommended by the American College of Surgeons as an innovative means of enhancing patient safety, reducing medical errors, and performing a systematic evaluation of various competencies. Advanced human patient simulators are increasingly being used in trauma as an evaluation tool to assess clinical performance and to teach and reinforce essential knowledge, skills, and abilities. A number of specialty simulators in trauma and critical care have also been designed to meet these educational objectives. Ongoing educational research is still needed to validate long-term retention of knowledge and skills, provide reliable methods to evaluate teaching effectiveness and performance, and to demonstrate improvement in patient safety and overall quality of care.

  3. GPU-based Green's function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models.

    PubMed

    Yang, Yiqun; Urban, Matthew W; McGough, Robert J

    2018-05-15

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green's functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs.

  4. Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program–Fortran in a Mesoscale Monsoon Watershed, China

    PubMed Central

    Luo, Chuan; Jiang, Kaixia; Wan, Rongrong; Li, Hengpeng

    2017-01-01

    The Hydrological Simulation Program–Fortran (HSPF) is a hydrological and water quality computer model that was developed by the United States Environmental Protection Agency. Comprehensive performance evaluations were carried out for hydrological and nutrient simulation using the HSPF model in the Xitiaoxi watershed in China. Streamflow simulation was calibrated from 1 January 2002 to 31 December 2007 and then validated from 1 January 2008 to 31 December 2010 using daily observed data, and nutrient simulation was calibrated and validated using monthly observed data during the period from July 2009 to July 2010. These results of model performance evaluation showed that the streamflows were well simulated over the study period. The determination coefficient (R2) was 0.87, 0.77 and 0.63, and the Nash-Sutcliffe coefficient of efficiency (Ens) was 0.82, 0.76 and 0.65 for the streamflow simulation in annual, monthly and daily time-steps, respectively. Although limited to monthly observed data, satisfactory performance was still achieved during the quantitative evaluation for nutrients. The R2 was 0.73, 0.82 and 0.92, and the Ens was 0.67, 0.74 and 0.86 for nitrate, ammonium and orthophosphate simulation, respectively. Some issues may affect the application of HSPF were also discussed, such as input data quality, parameter values, etc. Overall, the HSPF model can be successfully used to describe streamflow and nutrients transport in the mesoscale watershed located in the East Asian monsoon climate area. This study is expected to serve as a comprehensive and systematic documentation of understanding the HSPF model for wide application and avoiding possible misuses. PMID:29257117

  5. Comprehensive Performance Evaluation for Hydrological and Nutrients Simulation Using the Hydrological Simulation Program-Fortran in a Mesoscale Monsoon Watershed, China.

    PubMed

    Li, Zhaofu; Luo, Chuan; Jiang, Kaixia; Wan, Rongrong; Li, Hengpeng

    2017-12-19

    The Hydrological Simulation Program-Fortran (HSPF) is a hydrological and water quality computer model that was developed by the United States Environmental Protection Agency. Comprehensive performance evaluations were carried out for hydrological and nutrient simulation using the HSPF model in the Xitiaoxi watershed in China. Streamflow simulation was calibrated from 1 January 2002 to 31 December 2007 and then validated from 1 January 2008 to 31 December 2010 using daily observed data, and nutrient simulation was calibrated and validated using monthly observed data during the period from July 2009 to July 2010. These results of model performance evaluation showed that the streamflows were well simulated over the study period. The determination coefficient ( R ²) was 0.87, 0.77 and 0.63, and the Nash-Sutcliffe coefficient of efficiency (Ens) was 0.82, 0.76 and 0.65 for the streamflow simulation in annual, monthly and daily time-steps, respectively. Although limited to monthly observed data, satisfactory performance was still achieved during the quantitative evaluation for nutrients. The R ² was 0.73, 0.82 and 0.92, and the Ens was 0.67, 0.74 and 0.86 for nitrate, ammonium and orthophosphate simulation, respectively. Some issues may affect the application of HSPF were also discussed, such as input data quality, parameter values, etc. Overall, the HSPF model can be successfully used to describe streamflow and nutrients transport in the mesoscale watershed located in the East Asian monsoon climate area. This study is expected to serve as a comprehensive and systematic documentation of understanding the HSPF model for wide application and avoiding possible misuses.

  6. New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiss, T.; Chaney, L.; Meyer, J.

    Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic systemmore » simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.« less

  7. Development of IR imaging system simulator

    NASA Astrophysics Data System (ADS)

    Xiang, Xinglang; He, Guojing; Dong, Weike; Dong, Lu

    2017-02-01

    To overcome the disadvantages of the tradition semi-physical simulation and injection simulation equipment in the performance evaluation of the infrared imaging system (IRIS), a low-cost and reconfigurable IRIS simulator, which can simulate the realistic physical process of infrared imaging, is proposed to test and evaluate the performance of the IRIS. According to the theoretical simulation framework and the theoretical models of the IRIS, the architecture of the IRIS simulator is constructed. The 3D scenes are generated and the infrared atmospheric transmission effects are simulated using OGRE technology in real-time on the computer. The physical effects of the IRIS are classified as the signal response characteristic, modulation transfer characteristic and noise characteristic, and they are simulated on the single-board signal processing platform based on the core processor FPGA in real-time using high-speed parallel computation method.

  8. Sliding Mode Control of Real-Time PNU Vehicle Driving Simulator and Its Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Lee, Min Cheol; Park, Min Kyu; Yoo, Wan Suk; Son, Kwon; Han, Myung Chul

    This paper introduces an economical and effective full-scale driving simulator for study of human sensibility and development of new vehicle parts and its control. Real-time robust control to accurately reappear a various vehicle motion may be a difficult task because the motion platform is the nonlinear complex system. This study proposes the sliding mode controller with a perturbation compensator using observer-based fuzzy adaptive network (FAN). This control algorithm is designed to solve the chattering problem of a sliding mode control and to select the adequate fuzzy parameters of the perturbation compensator. For evaluating the trajectory control performance of the proposed approach, a tracking control of the developed simulator named PNUVDS is experimentally carried out. And then, the driving performance of the simulator is evaluated by using human perception and sensibility of some drivers in various driving conditions.

  9. Multi-objective optimization for generating a weighted multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Lee, H.

    2017-12-01

    Many studies have demonstrated that multi-model ensembles generally show better skill than each ensemble member. When generating weighted multi-model ensembles, the first step is measuring the performance of individual model simulations using observations. There is a consensus on the assignment of weighting factors based on a single evaluation metric. When considering only one evaluation metric, the weighting factor for each model is proportional to a performance score or inversely proportional to an error for the model. While this conventional approach can provide appropriate combinations of multiple models, the approach confronts a big challenge when there are multiple metrics under consideration. When considering multiple evaluation metrics, it is obvious that a simple averaging of multiple performance scores or model ranks does not address the trade-off problem between conflicting metrics. So far, there seems to be no best method to generate weighted multi-model ensembles based on multiple performance metrics. The current study applies the multi-objective optimization, a mathematical process that provides a set of optimal trade-off solutions based on a range of evaluation metrics, to combining multiple performance metrics for the global climate models and their dynamically downscaled regional climate simulations over North America and generating a weighted multi-model ensemble. NASA satellite data and the Regional Climate Model Evaluation System (RCMES) software toolkit are used for assessment of the climate simulations. Overall, the performance of each model differs markedly with strong seasonal dependence. Because of the considerable variability across the climate simulations, it is important to evaluate models systematically and make future projections by assigning optimized weighting factors to the models with relatively good performance. Our results indicate that the optimally weighted multi-model ensemble always shows better performance than an arithmetic ensemble mean and may provide reliable future projections.

  10. [Training of resident physicians in the recognition and treatment of an anaphylaxis case in pediatrics with simulation models].

    PubMed

    Enríquez, Diego; Lamborizio, María J; Firenze, Lorena; Jaureguizar, María de la P; Díaz Pumará, Estanislao; Szyld, Edgardo

    2017-08-01

    To evaluate the performance of resident physicians in diagnosing and treating a case of anaphylaxis, six months after participating in simulation training exercises. Initially, a group of pediatric residents were trained using simulation techniques in the management of critical pediatric cases. Based on their performance in this exercise, participants were assigned to one of 3 groups. At six months post-training, 4 residents were randomly chosen from each group to be re-tested, using the same performance measure as previously used. During the initial training session, 56 of 72 participants (78%) correctly identified and treated the case. Six months after the initial training, all 12 (100%) resident physicians who were re-tested successfully diagnosed and treated the simulated anaphylaxis case. The training through simulation techniques allowed correction or optimization of the treatment of simulated anaphylaxis cases in resident physicians evaluated after 6 months of the initial training.

  11. Validation of the updated ArthroS simulator: face and construct validity of a passive haptic virtual reality simulator with novel performance metrics.

    PubMed

    Garfjeld Roberts, Patrick; Guyver, Paul; Baldwin, Mathew; Akhtar, Kash; Alvand, Abtin; Price, Andrew J; Rees, Jonathan L

    2017-02-01

    To assess the construct and face validity of ArthroS, a passive haptic VR simulator. A secondary aim was to evaluate the novel performance metrics produced by this simulator. Two groups of 30 participants, each divided into novice, intermediate or expert based on arthroscopic experience, completed three separate tasks on either the knee or shoulder module of the simulator. Performance was recorded using 12 automatically generated performance metrics and video footage of the arthroscopic procedures. The videos were blindly assessed using a validated global rating scale (GRS). Participants completed a survey about the simulator's realism and training utility. This new simulator demonstrated construct validity of its tasks when evaluated against a GRS (p ≤ 0.003 in all cases). Regarding it's automatically generated performance metrics, established outputs such as time taken (p ≤ 0.001) and instrument path length (p ≤ 0.007) also demonstrated good construct validity. However, two-thirds of the proposed 'novel metrics' the simulator reports could not distinguish participants based on arthroscopic experience. Face validity assessment rated the simulator as a realistic and useful tool for trainees, but the passive haptic feedback (a key feature of this simulator) is rated as less realistic. The ArthroS simulator has good task construct validity based on established objective outputs, but some of the novel performance metrics could not distinguish between surgical experience. The passive haptic feedback of the simulator also needs improvement. If simulators could offer automated and validated performance feedback, this would facilitate improvements in the delivery of training by allowing trainees to practise and self-assess.

  12. Test of a Cardiology Patient Simulator with Students in Fourth-Year Electives.

    ERIC Educational Resources Information Center

    Ewy, Gordon A.; And Others

    1987-01-01

    Students at five medical schools participated in an evaluation of a cardiology patient simulator (CPS), a life-size mannequin capable of simulating a wide variety of cardiovascular conditions. The CPS enhances learning both the knowledge and the skills necessary to perform a bedside cardiovascular evaluation. (Author/MLW)

  13. Path selection system simulation and evaluation for a Martian roving vehicle

    NASA Technical Reports Server (NTRS)

    Boheim, S. L.; Prudon, W. C.

    1972-01-01

    The simulation and evaluation of proposed path selection systems for an autonomous Martian roving vehicle was developed. The package incorporates a number of realistic features, such as the simulation of random effects due to vehicle bounce and sensor-reading uncertainty, to increase the reliability of the results. Qualitative and quantitative evaluation criteria were established. The performance of three different path selection systems was evaluated to determine the effectiveness of the simulation package, and to form some preliminary conclusions regarding the tradeoffs involved in a path selection system design.

  14. Model Performance Evaluation and Scenario Analysis (MPESA)

    EPA Pesticide Factsheets

    Model Performance Evaluation and Scenario Analysis (MPESA) assesses the performance with which models predict time series data. The tool was developed Hydrological Simulation Program-Fortran (HSPF) and the Stormwater Management Model (SWMM)

  15. Evaluation of Classifier Performance for Multiclass Phenotype Discrimination in Untargeted Metabolomics.

    PubMed

    Trainor, Patrick J; DeFilippis, Andrew P; Rai, Shesh N

    2017-06-21

    Statistical classification is a critical component of utilizing metabolomics data for examining the molecular determinants of phenotypes. Despite this, a comprehensive and rigorous evaluation of the accuracy of classification techniques for phenotype discrimination given metabolomics data has not been conducted. We conducted such an evaluation using both simulated and real metabolomics datasets, comparing Partial Least Squares-Discriminant Analysis (PLS-DA), Sparse PLS-DA, Random Forests, Support Vector Machines (SVM), Artificial Neural Network, k -Nearest Neighbors ( k -NN), and Naïve Bayes classification techniques for discrimination. We evaluated the techniques on simulated data generated to mimic global untargeted metabolomics data by incorporating realistic block-wise correlation and partial correlation structures for mimicking the correlations and metabolite clustering generated by biological processes. Over the simulation studies, covariance structures, means, and effect sizes were stochastically varied to provide consistent estimates of classifier performance over a wide range of possible scenarios. The effects of the presence of non-normal error distributions, the introduction of biological and technical outliers, unbalanced phenotype allocation, missing values due to abundances below a limit of detection, and the effect of prior-significance filtering (dimension reduction) were evaluated via simulation. In each simulation, classifier parameters, such as the number of hidden nodes in a Neural Network, were optimized by cross-validation to minimize the probability of detecting spurious results due to poorly tuned classifiers. Classifier performance was then evaluated using real metabolomics datasets of varying sample medium, sample size, and experimental design. We report that in the most realistic simulation studies that incorporated non-normal error distributions, unbalanced phenotype allocation, outliers, missing values, and dimension reduction, classifier performance (least to greatest error) was ranked as follows: SVM, Random Forest, Naïve Bayes, sPLS-DA, Neural Networks, PLS-DA and k -NN classifiers. When non-normal error distributions were introduced, the performance of PLS-DA and k -NN classifiers deteriorated further relative to the remaining techniques. Over the real datasets, a trend of better performance of SVM and Random Forest classifier performance was observed.

  16. Outcomes of a virtual-reality simulator-training programme on basic surgical skills in robot-assisted laparoscopic surgery.

    PubMed

    Phé, Véronique; Cattarino, Susanna; Parra, Jérôme; Bitker, Marc-Olivier; Ambrogi, Vanina; Vaessen, Christophe; Rouprêt, Morgan

    2017-06-01

    The utility of the virtual-reality robotic simulator in training programmes has not been clearly evaluated. Our aim was to evaluate the impact of a virtual-reality robotic simulator-training programme on basic surgical skills. A simulator-training programme in robotic surgery, using the da Vinci Skills Simulator, was evaluated in a population including junior and seasoned surgeons, and non-physicians. Their performances on robotic dots and suturing-skin pod platforms before and after virtual-simulation training were rated anonymously by surgeons experienced in robotics. 39 participants were enrolled: 14 medical students and residents in surgery, 14 seasoned surgeons, 11 non-physicians. Junior and seasoned surgeons' performances on platforms were not significantly improved after virtual-reality robotic simulation in any of the skill domains, in contrast to non-physicians. The benefits of virtual-reality simulator training on several tasks to basic skills in robotic surgery were not obvious among surgeons in our initial and early experience with the simulator. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. WRF-Cordex simulations for Europe: mean and extreme precipitation for present and future climates

    NASA Astrophysics Data System (ADS)

    Cardoso, Rita M.; Soares, Pedro M. M.; Miranda, Pedro M. A.

    2013-04-01

    The Weather Research and Forecast (WRF-ARW) model, version 3.3.1, was used to perform the European domain Cordex simulations, at 50km resolution. A first simulation, forced by ERA-Interim (1989-2009), was carried out to evaluate the models performance to represent the mean and extreme precipitation in present European climate. This evaluation is based in the comparison of WRF results against the ECAD regular gridded dataset of daily precipitation. Results are comparable to recent studies with other models for the European region, at this resolution. For the same domain a control and a future scenario (RCP8.5) simulation was performed to assess the climate change impact on the mean and extreme precipitation. These regional simulations were forced by EC-EARTH model results, and, encompass the periods from 1960-2006 and 2006-2100, respectively.

  18. Evaluation of hazard and integrity monitor functions for integrated alerting and notification using a sensor simulation framework

    NASA Astrophysics Data System (ADS)

    Bezawada, Rajesh; Uijt de Haag, Maarten

    2010-04-01

    This paper discusses the results of an initial evaluation study of hazard and integrity monitor functions for use with integrated alerting and notification. The Hazard and Integrity Monitor (HIM) (i) allocates information sources within the Integrated Intelligent Flight Deck (IIFD) to required functionality (like conflict detection and avoidance) and determines required performance of these information sources as part of that function; (ii) monitors or evaluates the required performance of the individual information sources and performs consistency checks among various information sources; (iii) integrates the information to establish tracks of potential hazards that can be used for the conflict probes or conflict prediction for various time horizons including the 10, 5, 3, and <3 minutes used in our scenario; (iv) detects and assesses the class of the hazard and provide possible resolutions. The HIM monitors the operation-dependent performance parameters related to the potential hazards in a manner similar to the Required Navigation Performance (RNP). Various HIM concepts have been implemented and evaluated using a previously developed sensor simulator/synthesizer. Within the simulation framework, various inputs to the IIFD and its subsystems are simulated, synthesized from actual collected data, or played back from actual flight test sensor data. The framework and HIM functions are implemented in SimulinkR, a modeling language developed by The MathworksTM. This modeling language allows for test and evaluation of various sensor and communication link configurations as well as the inclusion of feedback from the pilot on the performance of the aircraft.

  19. An evaluation of TRAC-PF1/MOD1 computer code performance during posttest simulations of Semiscale MOD-2C feedwater line break transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, D.G.: Watkins, J.C.

    This report documents an evaluation of the TRAC-PF1/MOD1 reactor safety analysis computer code during computer simulations of feedwater line break transients. The experimental data base for the evaluation included the results of three bottom feedwater line break tests performed in the Semiscale Mod-2C test facility. The tests modeled 14.3% (S-FS-7), 50% (S-FS-11), and 100% (S-FS-6B) breaks. The test facility and the TRAC-PF1/MOD1 model used in the calculations are described. Evaluations of the accuracy of the calculations are presented in the form of comparisons of measured and calculated histories of selected parameters associated with the primary and secondary systems. In additionmore » to evaluating the accuracy of the code calculations, the computational performance of the code during the simulations was assessed. A conclusion was reached that the code is capable of making feedwater line break transient calculations efficiently, but there is room for significant improvements in the simulations that were performed. Recommendations are made for follow-on investigations to determine how to improve future feedwater line break calculations and for code improvements to make the code easier to use.« less

  20. Improving prospective memory performance with future event simulation in traumatic brain injury patients.

    PubMed

    Mioni, Giovanna; Bertucci, Erica; Rosato, Antonella; Terrett, Gill; Rendell, Peter G; Zamuner, Massimo; Stablum, Franca

    2017-06-01

    Previous studies have shown that traumatic brain injury (TBI) patients have difficulties with prospective memory (PM). Considering that PM is closely linked to independent living it is of primary interest to develop strategies that can improve PM performance in TBI patients. This study employed Virtual Week task as a measure of PM, and we included future event simulation to boost PM performance. Study 1 evaluated the efficacy of the strategy and investigated possible practice effects. Twenty-four healthy participants performed Virtual Week in a no strategy condition, and 24 healthy participants performed it in a mixed condition (no strategy - future event simulation). In Study 2, 18 TBI patients completed the mixed condition of Virtual Week and were compared with the 24 healthy controls who undertook the mixed condition of Virtual Week in Study 1. All participants also completed a neuropsychological evaluation to characterize the groups on level of cognitive functioning. Study 1 showed that participants in the future event simulation condition outperformed participants in the no strategy condition, and these results were not attributable to practice effects. Results of Study 2 showed that TBI patients performed PM tasks less accurately than controls, but that future event simulation can substantially reduce TBI-related deficits in PM performance. The future event simulation strategy also improved the controls' PM performance. These studies showed the value of future event simulation strategy in improving PM performance in healthy participants as well as in TBI patients. TBI patients performed PM tasks less accurately than controls, confirming prospective memory impairment in these patients. Participants in the future event simulation condition out-performed participants in the no strategy condition. Future event simulation can substantially reduce TBI-related deficits in PM performance. Future event simulation strategy also improved the controls' PM performance. © 2017 The British Psychological Society.

  1. Innovative simulation strategies in education.

    PubMed

    Aebersold, Michelle; Tschannen, Dana; Bathish, Melissa

    2012-01-01

    The use of simulation in the undergraduate nursing curriculum is gaining popularity and is becoming a foundation of many nursing programs. The purpose of this paper is to highlight a new simulation teaching strategy, virtual reality (VR) simulation, which capitalizes on the technological skills of the new generation student. This small-scale pilot study focused on improving interpersonal skills in senior level nursing students using VR simulation. In this study, a repeated-measure design was used to evaluate the effectiveness of VR simulation on improving student's performance over a series of two VR scenarios. Using the Emergency Medicine Crisis Resource Management (EMCRM) tool, student performance was evaluated. Overall, the total EMCRM score improved but not significantly. The subscale areas of communication (P = .047, 95% CI: - 1.06, -.007) and professional behavior (P = .003, 95% CI: - 1.12, -.303) did show a significant improvement between the two scenario exposures. Findings from this study show the potential for virtual reality simulations to have an impact on nursing student performance.

  2. The effectiveness of a simulated scenario to teach nursing students how to perform a bed bath: A randomized clinical trial.

    PubMed

    Miranda, Renata Pinto Ribeiro; de Cássia Lopes Chaves, Érika; Silva Lima, Rogério; Braga, Cristiane Giffoni; Simões, Ivandira Anselmo Ribeiro; Fava, Silvana Maria Coelho Leite; Iunes, Denise Hollanda

    2017-10-01

    Simulation allows students to develop several skills during a bed bath that are difficult to teach only in traditional classroom lectures, such as problem-solving, student interactions with the simulator (patient), reasoning in clinical evaluations, evaluation of responses to interventions, teamwork, communication, security and privacy. This study aimed to evaluate the effectiveness of a simulated bed bath scenario on improving cognitive knowledge, practical performance and satisfaction among nursing students. Randomized controlled clinical trial. Nursing students that were in the fifth period from two educational institutions in Brazil. Nursing students (n=58). The data were collected using the assessments of cognitive knowledge, practical performance and satisfaction were made through a written test about bed baths, an Objective Structured Clinical Examination (OSCE) and a satisfaction questionnaire. We identified that the acquisition and assimilation of cognitive knowledge was significantly higher in the simulation group (p=0.001). The performance was similar in both groups regardless of the teaching strategy (p=0.435). At follow-up, the simulation group had significantly more satisfaction with the teaching method than the control group (p=0.007). The teaching strategy based on a simulated scenario of a bed bath proved to be effective for the acquisition of cognitive knowledge regarding bed baths in clinical practice and improved student satisfaction with the teaching process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Anxiety and performance of nursing students in regard to assessment via clinical simulations in the classroom versus filmed assessments.

    PubMed

    de Souza Teixeira, Carla Regina; Kusumota, Luciana; Alves Pereira, Marta Cristiane; Merizio Martins Braga, Fernanda Titareli; Pirani Gaioso, Vanessa; Mara Zamarioli, Cristina; Campos de Carvalho, Emilia

    2014-01-01

    To compare the level of anxiety and performance of nursing students when performing a clinical simulation through the traditional method of assessment with the presence of an evaluator and through a filmed assessment without the presence of an evaluator. Controlled trial with the participation of Brazilian public university 20 students who were randomly assigned to one of two groups: a) assessment through the traditional method with the presence of an evaluator; or b) filmed assessment. The level of anxiety was assessed using the Zung test and performance was measured based on the number of correct answers. Averages of 32 and 27 were obtained on the anxiety scale by the group assessed through the traditional method before and after the simulation, respectively, while the filmed group obtained averages of 33 and 26; the final scores correspond to mild anxiety. Even though there was a statistically significant reduction in the intra-groups scores before and after the simulation, there was no difference between the groups. As for the performance assessments in the clinical simulation, the groups obtained similar percentages of correct answers (83% in the traditional assessment and 84% in the filmed assessment) without statistically significant differences. Filming can be used and encouraged as a strategy to assess nursing undergraduate students.

  4. Accomplishments and challenges of surgical simulation.

    PubMed

    Satava, R M

    2001-03-01

    For nearly a decade, advanced computer technologies have created extraordinary educational tools using three-dimensional (3D) visualization and virtual reality. Pioneering efforts in surgical simulation with these tools have resulted in a first generation of simulators for surgical technical skills. Accomplishments include simulations with 3D models of anatomy for practice of surgical tasks, initial assessment of student performance in technical skills, and awareness by professional societies of potential in surgical education and certification. However, enormous challenges remain, which include improvement of technical fidelity, standardization of accurate metrics for performance evaluation, integration of simulators into a robust educational curriculum, stringent evaluation of simulators for effectiveness and value added to surgical training, determination of simulation application to certification of surgical technical skills, and a business model to implement and disseminate simulation successfully throughout the medical education community. This review looks at the historical progress of surgical simulators, their accomplishments, and the challenges that remain.

  5. Chapter 15: Commercial New Construction Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W.; Keates, Steven

    This protocol is intended to describe the recommended method when evaluating the whole-building performance of new construction projects in the commercial sector. The protocol focuses on energy conservation measures (ECMs) or packages of measures where evaluators can analyze impacts using building simulation. These ECMs typically require the use of calibrated building simulations under Option D of the International Performance Measurement and Verification Protocol (IPMVP).

  6. Small Business Innovations

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The purpose of QASE RT is to enable system analysts and software engineers to evaluate performance and reliability implications of design alternatives. The program resulted from two Small Business Innovation Research (SBIR) projects. After receiving a description of the system architecture and workload from the user, QASE RT translates the system description into simulation models and executes them. Simulation provides detailed performance evaluation. The results of the evaluations are service and response times, offered load and device utilizations and functional availability.

  7. An experimental investigation into the extent social evaluation anxiety impairs performance in simulation-based learning environments amongst final-year undergraduate nursing students.

    PubMed

    Mills, Brennen; Carter, Owen; Rudd, Cobie; Claxton, Louise; O'Brien, Robert

    2016-10-01

    While numerous theoretical and conceptual models suggest social evaluation anxiety would likely influence performance in simulation-based learning environments, there has been surprisingly little research to investigate the extent to which this is true. Final-year Bachelor of Science (Nursing) students (N=70) were randomly assigned to complete one of three clinically identical simulation-based scenarios designed to elicit varying levels of social evaluation anxiety by manipulating the number of other people present with the student during the simulation (1, 2 or 3 others). Rises in acute stress were measured via continuous heart-rate and salivary cortisol. Performance scores were derived from the average of two independent raters' using a structured clinical checklist (/16). Statistically different increases were found within the first minute of the simulation between those students with one versus three other people in the room (+4.13 vs. +14.01beats-per-minute respectively, p=0.01) and salivary cortisol measures suggested significantly different changes in anxiety between these groups (-0.05 vs. +0.11μg/dL respectively, p=0.02). Independent assessments suggested students with only one other person accompanying them in the simulation significantly outperformed those accompanied by three others (12.95 vs. 10.67 respectively, p=0.03). Students accompanied by greater numbers during simulations experienced measurably greater anxiety and measurably poorer performances. These results demonstrate the ability to manipulate social evaluation anxiety within high-fidelity simulation training of undergraduates in order to help students better acclimatise to stressful events prior to practising in real clinical settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Using gaming simulation to evaluate bioterrorism and emergency readiness training.

    PubMed

    Olson, Debra K; Scheller, Amy; Wey, Andrew

    2014-01-01

    The University of Minnesota: Simulations, Exercises and Effective Education: Preparedness and Emergency Response Learning Center uses simulations, which allow trainees to participate in realistic scenarios, to develop and evaluate competency. In a previous study, participants in Disaster in Franklin County: A Public Health Simulation demonstrated that prior bioterrorism and emergency readiness training (BT/ER) is significantly associated with better performance in a simulated emergency. We conducted a second analysis with a larger data set, remapping simulation questions to the Public Health Preparedness and Response Core Competency Model, Version 1.0. We performed an outcome evaluation of the impact of public health preparedness training. In particular, we compared individuals with significant BT/ER training to individuals without training on the basis of performance in a simulated emergency. We grouped participants as group 1 (≥45 hours of BT/ER training) and group 2 (<45 hours). Dependent variables included effectiveness of chosen responses within the gaming simulation, which was measured as the proportion of questions answered correctly for each participant. The relationship of effectiveness with significant BT/ER training was estimated using either multiple linear or logistic regression. For overall effectiveness, group 1 had 2% more correct decisions, on average, than group 2 (P < .001). Group 1 performed significantly better, on average, than group 2 for competency 1.1 (P = .001) and competency 2.3 (P < .001). However, group 1 was significantly worse on competency 1.2 than group 2. Results indicate that prior training is significantly associated with better performance in a simulated emergency using gaming technology. Effectiveness differed by competency, indicating that more training may be needed in certain competency areas. Next steps to enhancing the usefulness of simulations in training should go beyond questioning if the learner learned and included questions related to the organizational factors that contributed to simulation effectiveness, and attributes of the simulation that encouraged competency and capacity building.

  9. Development of automation and robotics for space via computer graphic simulation methods

    NASA Technical Reports Server (NTRS)

    Fernandez, Ken

    1988-01-01

    A robot simulation system, has been developed to perform automation and robotics system design studies. The system uses a procedure-oriented solid modeling language to produce a model of the robotic mechanism. The simulator generates the kinematics, inverse kinematics, dynamics, control, and real-time graphic simulations needed to evaluate the performance of the model. Simulation examples are presented, including simulation of the Space Station and the design of telerobotics for the Orbital Maneuvering Vehicle.

  10. Dynamic Evaluation of Long-Term Air Quality Model Simulations Over the Northeastern U.S.

    EPA Science Inventory

    Dynamic model evaluation assesses a modeling system's ability to reproduce changes in air quality induced by changes in meteorology and/or emissions. In this paper, we illustrate various approaches to dynamic mode evaluation utilizing 18 years of air quality simulations perform...

  11. A new system for evaluation of armrest use in robotic surgery and validation of a new ergonomic concept - armrest load.

    PubMed

    Yang, K; Perez, M; Perrenot, C; Hubert, N; Felblinger, J; Hubert, J

    2016-12-01

    The da Vinci robot provides a sitting position and an armrest to decrease workload and increase dexterity. We investigated the surgeon's ergonomic behaviour by installing force sensors on the dV-Trainer® simulator's armrest to measure the 'armrest load' during the performance of simulated exercises. Five experts and 48 novices performed two robotic simulation exercises on the dV-Trainer. We calculated the armrest load and evaluated their armrest-using habits. Overall score and workspace range were evaluated automatically by the simulator and compared with armrest load. Statistically significant differences exist for overall score, workspace range and armrest load between novices and experts. The armrest load score is a direct, sensitive measure for the ergonomic evaluation of a simulator's armrest use. This experience-dependent ergonomic difference between experts and novices (p = 0.007) highlights the importance of ergonomic training for novice robot users. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Simulation and Flight Test Capability for Testing Prototype Sense and Avoid System Elements

    NASA Technical Reports Server (NTRS)

    Howell, Charles T.; Stock, Todd M.; Verstynen, Harry A.; Wehner, Paul J.

    2012-01-01

    NASA Langley Research Center (LaRC) and The MITRE Corporation (MITRE) have developed, and successfully demonstrated, an integrated simulation-to-flight capability for evaluating sense and avoid (SAA) system elements. This integrated capability consists of a MITRE developed fast-time computer simulation for evaluating SAA algorithms, and a NASA LaRC surrogate unmanned aircraft system (UAS) equipped to support hardware and software in-the-loop evaluation of SAA system elements (e.g., algorithms, sensors, architecture, communications, autonomous systems), concepts, and procedures. The fast-time computer simulation subjects algorithms to simulated flight encounters/ conditions and generates a fitness report that records strengths, weaknesses, and overall performance. Reviewed algorithms (and their fitness report) are then transferred to NASA LaRC where additional (joint) airworthiness evaluations are performed on the candidate SAA system-element configurations, concepts, and/or procedures of interest; software and hardware components are integrated into the Surrogate UAS research systems; and flight safety and mission planning activities are completed. Onboard the Surrogate UAS, candidate SAA system element configurations, concepts, and/or procedures are subjected to flight evaluations and in-flight performance is monitored. The Surrogate UAS, which can be controlled remotely via generic Ground Station uplink or automatically via onboard systems, operates with a NASA Safety Pilot/Pilot in Command onboard to permit safe operations in mixed airspace with manned aircraft. An end-to-end demonstration of a typical application of the capability was performed in non-exclusionary airspace in October 2011; additional research, development, flight testing, and evaluation efforts using this integrated capability are planned throughout fiscal year 2012 and 2013.

  13. Facilitating Co-Design for Extreme-Scale Systems Through Lightweight Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelmann, Christian; Lauer, Frank

    This work focuses on tools for investigating algorithm performance at extreme scale with millions of concurrent threads and for evaluating the impact of future architecture choices to facilitate the co-design of high-performance computing (HPC) architectures and applications. The approach focuses on lightweight simulation of extreme-scale HPC systems with the needed amount of accuracy. The prototype presented in this paper is able to provide this capability using a parallel discrete event simulation (PDES), such that a Message Passing Interface (MPI) application can be executed at extreme scale, and its performance properties can be evaluated. The results of an initial prototype aremore » encouraging as a simple 'hello world' MPI program could be scaled up to 1,048,576 virtual MPI processes on a four-node cluster, and the performance properties of two MPI programs could be evaluated at up to 16,384 virtual MPI processes on the same system.« less

  14. Crew Exploration Vehicle Launch Abort Controller Performance Analysis

    NASA Technical Reports Server (NTRS)

    Sparks, Dean W., Jr.; Raney, David L.

    2007-01-01

    This paper covers the simulation and evaluation of a controller design for the Crew Module (CM) Launch Abort System (LAS), to measure its ability to meet the abort performance requirements. The controller used in this study is a hybrid design, including features developed by the Government and the Contractor. Testing is done using two separate 6-degree-of-freedom (DOF) computer simulation implementations of the LAS/CM throughout the ascent trajectory: 1) executing a series of abort simulations along a nominal trajectory for the nominal LAS/CM system; and 2) using a series of Monte Carlo runs with perturbed initial flight conditions and perturbed system parameters. The performance of the controller is evaluated against a set of criteria, which is based upon the current functional requirements of the LAS. Preliminary analysis indicates that the performance of the present controller meets (with the exception of a few cases) the evaluation criteria mentioned above.

  15. The Effectiveness of Remote Facilitation in Simulation-Based Pediatric Resuscitation Training for Medical Students.

    PubMed

    Ohta, Kunio; Kurosawa, Hiroshi; Shiima, Yuko; Ikeyama, Takanari; Scott, James; Hayes, Scott; Gould, Michael; Buchanan, Newton; Nadkarni, Vinay; Nishisaki, Akira

    2017-08-01

    To assess the effectiveness of pediatric simulation by remote facilitation. We hypothesized that simulation by remote facilitation is more effective compared to simulation by an on-site facilitator. We defined remote facilitation as a facilitator remotely (1) introduces simulation-based learning and simulation environment, (2) runs scenarios, and (3) performs debriefing with an on-site facilitator. A remote simulation program for medical students during pediatric rotation was implemented. Groups were allocated to either remote or on-site facilitation depending on the availability of telemedicine technology. Both groups had identical 1-hour simulation sessions with 2 scenarios and debriefing. Their team performance was assessed with behavioral assessment tool by a trained rater. Perception by students was evaluated with Likert scale (1-7). Fifteen groups with 89 students participated in a simulation by remote facilitation, and 8 groups with 47 students participated in a simulation by on-site facilitation. Participant demographics and previous simulation experience were similar. Both groups improved their performance from first to second scenario: groups by remote simulation (first [8.5 ± 4.2] vs second [13.2 ± 6.2], P = 0.003), and groups by on-site simulation (first [6.9 ± 4.1] vs second [12.4 ± 6.4], P = 0.056). The performance improvement was not significantly different between the 2 groups (P = 0.94). Faculty evaluation by students was equally high in both groups (7 vs 7; P = 0.65). A pediatric acute care simulation by remote facilitation significantly improved students' performance. In this pilot study, remote facilitation seems as effective as a traditional, locally facilitated simulation. The remote simulation can be a strong alternative method, especially where experienced facilitators are limited.

  16. Ion manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90° turn and a switch

    DOE PAGES

    Garimella, Sandilya V. B.; Ibrahim, Yehia. M.; Webb, Ian K.; ...

    2015-08-19

    The process of redirecting ions through 90° turns and ‘tee’ switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated using theoretical and simulation methods at 4 Torr pressure. SIMION simulations were used to optimize and evaluate conditions for performing turns without loss of signal intensity or ion mobility resolving power. Fundamental considerations indicated that the “race track” effect during ion turns may incur only small losses to the ion mobility resolving power at 4 Torr pressure for the typical plume widths predicted in an optimized SLIM ‘tee’ switch design. The dynamic switching of ions into orthogonal channels was alsomore » evaluated using SIMION ion trajectory simulations, and achieved similar performance. Simulation results were in close agreement with experimental results and were used to refine SLIM designs and applied potentials for their use.« less

  17. Flat-Plate Solar-Collector Performance Evaluation with a Solar Simulator as a Basis for Collector Selection and Performance Prediction

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    The use of a solar simulator for performance determination permits collector testing under standard conditions of wind, ambient temperature, flow rate and sun. The performance results determined with the simulator have been found to be in good agreement with outdoor performance results. The measured thermal efficiency and evaluation of 23 collectors are reported which differ according to absorber material (copper, aluminum, steel), absorber coating (nonselective black paint, selective copper oxide, selective black nickel, selective black chrome), type of glazing material (glass, Tedlar, Lexan, antireflection glass), the use of honeycomb material and the use of vacuum to prevent thermal convection losses. The collectors were given performance rankings based on noon-hour solar conditions and all-day solar conditions. The determination with the simulator of an all-day collector performance was made possible by tests at different incident angles. The solar performance rankings were made based on whether the collector is to be used for pool heating, hot water, absorption air conditioning, heating, or for a solar Rankine machine.

  18. Designing and Evaluating an Interactive Multimedia Web-Based Simulation for Developing Nurses’ Competencies in Acute Nursing Care: Randomized Controlled Trial

    PubMed Central

    Wong, Lai Fun; Chan, Sally Wai-Chi; Ho, Jasmine Tze Yin; Mordiffi, Siti Zubaidah; Ang, Sophia Bee Leng; Goh, Poh Sun; Ang, Emily Neo Kim

    2015-01-01

    Background Web-based learning is becoming an increasingly important instructional tool in nursing education. Multimedia advancements offer the potential for creating authentic nursing activities for developing nursing competency in clinical practice. Objective This study aims to describe the design, development, and evaluation of an interactive multimedia Web-based simulation for developing nurses’ competencies in acute nursing care. Methods Authentic nursing activities were developed in a Web-based simulation using a variety of instructional strategies including animation video, multimedia instructional material, virtual patients, and online quizzes. A randomized controlled study was conducted on 67 registered nurses who were recruited from the general ward units of an acute care tertiary hospital. Following a baseline evaluation of all participants’ clinical performance in a simulated clinical setting, the experimental group received 3 hours of Web-based simulation and completed a survey to evaluate their perceptions of the program. All participants were re-tested for their clinical performances using a validated tool. Results The clinical performance posttest scores of the experimental group improved significantly (P<.001) from the pretest scores after the Web-based simulation. In addition, compared to the control group, the experimental group had significantly higher clinical performance posttest scores (P<.001) after controlling the pretest scores. The participants from the experimental group were satisfied with their learning experience and gave positive ratings for the quality of the Web-based simulation. Themes emerging from the comments about the most valuable aspects of the Web-based simulation include relevance to practice, instructional strategies, and fostering problem solving. Conclusions Engaging in authentic nursing activities using interactive multimedia Web-based simulation can enhance nurses’ competencies in acute care. Web-based simulations provide a promising educational tool in institutions where large groups of nurses need to be trained in acute nursing care and accessibility to repetitive training is essential for achieving long-term retention of clinical competency. PMID:25583029

  19. Designing and evaluating an interactive multimedia Web-based simulation for developing nurses' competencies in acute nursing care: randomized controlled trial.

    PubMed

    Liaw, Sok Ying; Wong, Lai Fun; Chan, Sally Wai-Chi; Ho, Jasmine Tze Yin; Mordiffi, Siti Zubaidah; Ang, Sophia Bee Leng; Goh, Poh Sun; Ang, Emily Neo Kim

    2015-01-12

    Web-based learning is becoming an increasingly important instructional tool in nursing education. Multimedia advancements offer the potential for creating authentic nursing activities for developing nursing competency in clinical practice. This study aims to describe the design, development, and evaluation of an interactive multimedia Web-based simulation for developing nurses' competencies in acute nursing care. Authentic nursing activities were developed in a Web-based simulation using a variety of instructional strategies including animation video, multimedia instructional material, virtual patients, and online quizzes. A randomized controlled study was conducted on 67 registered nurses who were recruited from the general ward units of an acute care tertiary hospital. Following a baseline evaluation of all participants' clinical performance in a simulated clinical setting, the experimental group received 3 hours of Web-based simulation and completed a survey to evaluate their perceptions of the program. All participants were re-tested for their clinical performances using a validated tool. The clinical performance posttest scores of the experimental group improved significantly (P<.001) from the pretest scores after the Web-based simulation. In addition, compared to the control group, the experimental group had significantly higher clinical performance posttest scores (P<.001) after controlling the pretest scores. The participants from the experimental group were satisfied with their learning experience and gave positive ratings for the quality of the Web-based simulation. Themes emerging from the comments about the most valuable aspects of the Web-based simulation include relevance to practice, instructional strategies, and fostering problem solving. Engaging in authentic nursing activities using interactive multimedia Web-based simulation can enhance nurses' competencies in acute care. Web-based simulations provide a promising educational tool in institutions where large groups of nurses need to be trained in acute nursing care and accessibility to repetitive training is essential for achieving long-term retention of clinical competency.

  20. Comparisons of pilot performance in simulated and actual flight. [effects of ingested barbiturates

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Gerke, R. J.; Wick, R. L., Jr.

    1975-01-01

    Five highly experienced professional pilots performed instrument landing system approaches under simulated instrument flight conditions in a Cessna 172 airplane and in a Link-Singer GAT-1 simulator while under the influence of orally administered secobarbital (0, 100, and 200 mg). Tracking performance in two axes and airspeed control were evaluated continuously during each approach. Error and RMS variability were about half as large in the simulator as in the airplane. The observed data were more strongly associated with the drug level in the simulator than in the airplane. Further, the drug-related effects were more consistent in the simulator. Improvement in performance suggestive of learning effects were seen in the simulator, but not in actual flight.

  1. Development of Ku-band rendezvous radar tracking and acquisition simulation programs

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The fidelity of the Space Shuttle Radar tracking simulation model was improved. The data from the Shuttle Orbiter Radar Test and Evaluation (SORTE) program experiments performed at the White Sands Missile Range (WSMR) were reviewed and analyzed. The selected flight rendezvous radar data was evaluated. Problems with the Inertial Line-of-Sight (ILOS) angle rate tracker were evaluated using the improved fidelity angle rate tracker simulation model.

  2. Performance Evaluation Gravity Probe B Design

    NASA Technical Reports Server (NTRS)

    Francis, Ronnie; Wells, Eugene M.

    1996-01-01

    This final report documents the work done to develop a 6 degree-of-freedom simulation of the Lockheed Martin Gravity Probe B (GPB) Spacecraft. This simulation includes the effects of vehicle flexibility and propellant slosh. The simulation was used to investigate the control performance of the spacecraft when subjected to realistic on orbit disturbances.

  3. Potential of Spark Ignition Engine, Effect of Vehicle Design Variables on Top Speed, Performance, and Fuel Economy

    DOT National Transportation Integrated Search

    1980-03-01

    The purpose of this report is to evaluate the effect of vehicle characteristics on vehicle performance and fuel economy. The studies were performed using the VEHSIM (vehicle simulation) program at the Transportation Systems Center. The computer simul...

  4. GPU-based Green’s function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models

    NASA Astrophysics Data System (ADS)

    Yang, Yiqun; Urban, Matthew W.; McGough, Robert J.

    2018-05-01

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green’s functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green’s function approach are ideally suited for high-performance GPUs.

  5. Training safer orthopedic surgeons. Construct validation of a virtual-reality simulator for hip fracture surgery.

    PubMed

    Akhtar, Kashif; Sugand, Kapil; Sperrin, Matthew; Cobb, Justin; Standfield, Nigel; Gupte, Chinmay

    2015-01-01

    Virtual-reality (VR) simulation in orthopedic training is still in its infancy, and much of the work has been focused on arthroscopy. We evaluated the construct validity of a new VR trauma simulator for performing dynamic hip screw (DHS) fixation of a trochanteric femoral fracture. 30 volunteers were divided into 3 groups according to the number of postgraduate (PG) years and the amount of clinical experience: novice (1-4 PG years; less than 10 DHS procedures); intermediate (5-12 PG years; 10-100 procedures); expert (> 12 PG years; > 100 procedures). Each participant performed a DHS procedure and objective performance metrics were recorded. These data were analyzed with each performance metric taken as the dependent variable in 3 regression models. There were statistically significant differences in performance between groups for (1) number of attempts at guide-wire insertion, (2) total fluoroscopy time, (3) tip-apex distance, (4) probability of screw cutout, and (5) overall simulator score. The intermediate group performed the procedure most quickly, with the lowest fluoroscopy time, the lowest tip-apex distance, the lowest probability of cutout, and the highest simulator score, which correlated with their frequency of exposure to running the trauma lists for hip fracture surgery. This study demonstrates the construct validity of a haptic VR trauma simulator with surgeons undertaking the procedure most frequently performing best on the simulator. VR simulation may be a means of addressing restrictions on working hours and allows trainees to practice technical tasks without putting patients at risk. The VR DHS simulator evaluated in this study may provide valid assessment of technical skill.

  6. Digital imaging and remote sensing image generator (DIRSIG) as applied to NVESD sensor performance modeling

    NASA Astrophysics Data System (ADS)

    Kolb, Kimberly E.; Choi, Hee-sue S.; Kaur, Balvinder; Olson, Jeffrey T.; Hill, Clayton F.; Hutchinson, James A.

    2016-05-01

    The US Army's Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (referred to as NVESD) is developing a virtual detection, recognition, and identification (DRI) testing methodology using simulated imagery as a means of augmenting the field testing component of sensor performance evaluation, which is expensive, resource intensive, time consuming, and limited to the available target(s) and existing atmospheric visibility and environmental conditions at the time of testing. Existing simulation capabilities such as the Digital Imaging Remote Sensing Image Generator (DIRSIG) and NVESD's Integrated Performance Model Image Generator (NVIPM-IG) can be combined with existing detection algorithms to reduce cost/time, minimize testing risk, and allow virtual/simulated testing using full spectral and thermal object signatures, as well as those collected in the field. NVESD has developed an end-to-end capability to demonstrate the feasibility of this approach. Simple detection algorithms have been used on the degraded images generated by NVIPM-IG to determine the relative performance of the algorithms on both DIRSIG-simulated and collected images. Evaluating the degree to which the algorithm performance agrees between simulated versus field collected imagery is the first step in validating the simulated imagery procedure.

  7. Objective measures of situation awareness in a simulated medical environment

    PubMed Central

    Wright, M; Taekman, J; Endsley, M

    2004-01-01

    One major limitation in the use of human patient simulators is a lack of objective, validated measures of human performance. Objective measures are necessary if simulators are to be used to evaluate the skills and training of medical practitioners and teams or to evaluate the impact of new processes or equipment design on overall system performance. Situation awareness (SA) refers to a person's perception and understanding of their dynamic environment. This awareness and comprehension is critical in making correct decisions that ultimately lead to correct actions in medical care settings. An objective measure of SA may be more sensitive and diagnostic than traditional performance measures. This paper reviews a theory of SA and discusses the methods required for developing an objective measure of SA within the context of a simulated medical environment. Analysis and interpretation of SA data for both individual and team performance in health care are also presented. PMID:15465958

  8. The MSFC UNIVAC 1108 EXEC 8 simulation model

    NASA Technical Reports Server (NTRS)

    Williams, T. G.; Richards, F. M.; Weatherbee, J. E.; Paul, L. K.

    1972-01-01

    A model is presented which simulates the MSFC Univac 1108 multiprocessor system. The hardware/operating system is described to enable a good statistical measurement of the system behavior. The performance of the 1108 is evaluated by performing twenty-four different experiments designed to locate system bottlenecks and also to test the sensitivity of system throughput with respect to perturbation of the various Exec 8 scheduling algorithms. The model is implemented in the general purpose system simulation language and the techniques described can be used to assist in the design, development, and evaluation of multiprocessor systems.

  9. Effects of alcohol on pilot performance in simulated flight

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Demosthenes, T.; White, T. R.; O'Hara, D. B.

    1991-01-01

    Ethyl alcohol's known ability to produce reliable decrements in pilot performance was used in a study designed to evaluate objective methods for assessing pilot performance. Four air carrier pilot volunteers were studied during eight simulated flights in a B727 simulator. Total errors increased linearly and significantly with increasing blood alcohol. Planning and performance errors, procedural errors and failures of vigilance each increased significantly in one or more pilots and in the group as a whole.

  10. [Lack of correlation between performances in a simulator and in reality].

    PubMed

    Konge, Lars; Bitsch, Mikael

    2010-12-13

    Simulation-based training provides obvious benefits for patients and doctors in education. Frequently, virtual reality simulators are expensive and evidence for their efficacy is poor, particularly as a result of studies with poor methodology and few test participants. In medical simulated training- and evaluation programmes it is always a question of transfer to the real clinical world. To illustrate this problem a study comparing the test performance of persons on a bowling simulator with their performance in a real bowling alley was conducted. Twenty-five test subjects played two rounds of bowling on a Nintendo Wii and 25 days later on a real bowling alley. Correlations of the scores in the first and second round (test-retest-reliability) and of the scores on the simulator and in reality (criterion validation) were studied and there was tested for any difference between female and male performance. The intraclass correlation coefficient equalled 0.76, i.e. the simulator fairly accurately measured participant performance. In contrast to this there was absolutely no correlation between participants' real bowling abilities and their scores on the simulator (Pearson's r = 0.06). There was no significant difference between female and male abilities. Simulation-based testing and training must be based on evidence. More studies are needed to include an adequate number of subjects. Bowling competence should not be based on Nintendo Wii measurements. Simulated training- and evaluation programmes should be validated before introduction, to ensure consistency with the real world.

  11. Synthetic and Enhanced Vision Systems for NextGen (SEVS) Simulation and Flight Test Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.

    2012-01-01

    The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.

  12. A pilot study examining experiential learning vs didactic education of abdominal compartment syndrome.

    PubMed

    Saraswat, Anju; Bach, John; Watson, William D; Elliott, John O; Dominguez, Edward P

    2017-08-01

    Current surgical education relies on simulated educational experiences or didactic sessions to teach low-frequency clinical events such as abdominal compartment syndrome (ACS). The purpose of this pilot study was to evaluate if simulation would improve performance and knowledge retention of ACS better than a didactic lecture. Nineteen general surgery residents were block randomized by postgraduate year level to a didactic or a simulation session. After 3 months, all residents completed a knowledge assessment before participating in an additional simulation. Two independent reviewers assessed resident performance via audio-video recordings. No baseline differences in ACS experience were noted between groups. The observational evaluation demonstrated a significant difference in performance between the didactic and simulation groups: 9.9 vs 12.5, P = .037 (effect size = 1.15). Knowledge retention was equivalent between groups. This pilot study suggests that simulation-based education may be more effective for teaching the basic concepts of ACS. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A Survey of Immersive Technology For Maintenance Evaluations

    DTIC Science & Technology

    1998-04-01

    image display system. Based on original work performed at the German National Computer Science and Mathematics Research Institute (GMD), and further...simulations, architectural walk- throughs, medical simulations, general research , entertainment applications and location based entertainment use...simulations. This study was conducted as part of a logistics research and development program Design Evaluation for Personnel, Training, and Human Factors

  14. Cockpit resource management skills enhance combat mission performance in a B-52 simulator

    NASA Technical Reports Server (NTRS)

    Povenmire, H. Kingsley; Rockway, Marty R.; Bunecke, Joseph L.; Patton, Mark W.

    1989-01-01

    A cockpit resource management (CRM) program for mission-ready B-52 aircrew is developed. The relationship between CRM performance and combat mission performance is studied. The performances of six crew members flying a simulated high workload mission in a B-52 weapon system trainer are evaluated. The data reveal that CRM performance enhances tactical maneuvers and bombing accuracy.

  15. Performance and evaluation of small construction safety training simulations.

    PubMed

    Wojcik, S M; Kidd, P S; Parshall, M B; Struttmann, T W

    2003-06-01

    Back- and fall-related injuries occur frequently in construction and are costly in terms of workers' compensation claims and lost productivity. Interventions are needed that address the susceptibility to these injuries. The purpose of this study was to develop and test a safety training intervention for small construction companies (

  16. Simulation of the XV-15 tilt rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Churchill, G. B.; Dugan, D. C.

    1982-01-01

    The effective use of simulation from issuance of the request for proposal through conduct of a flight test program for the XV-15 Tilt Rotor Research Aircraft is discussed. From program inception, simulation complemented all phases of XV-15 development. The initial simulation evaluations during the source evaluation board proceedings contributed significantly to performance and stability and control evaluations. Eight subsequent simulation periods provided major contributions in the areas of control concepts; cockpit configuration; handling qualities; pilot workload; failure effects and recovery procedures; and flight boundary problems and recovery procedures. The fidelity of the simulation also made it a valuable pilot training aid, as well as a suitable tool for military and civil mission evaluations. Simulation also provided valuable design data for refinement of automatic flight control systems. Throughout the program, fidelity was a prime issue and resulted in unique data and methods for fidelity evaluation which are presented and discussed.

  17. Missile airframe simulation testbed: MANPADS (MAST-M) for test and evaluation of aircraft survivability equipment

    NASA Astrophysics Data System (ADS)

    Clements, Jim; Robinson, Richard; Bunt, Leslie; Robinson, Joe

    2011-06-01

    A number of techniques have been utilized to evaluate the performance of Aircraft Survivability Equipment (ASE) against threat Man-Portable Air Defense Systems (MANPADS). These techniques include flying actual threat MANPADS against stationary ASE with simulated aircraft signatures, testing installed ASE systems against simulated threat signatures, and laboratory hardware-in-the-loop (HWIL) testing with simulated aircraft and simulated missile signatures. All of these tests lack the realism of evaluating installed ASE against in-flight MANPADS on a terminal homing intercept path toward the actual ASE equipped aircraft. This limitation is due primarily to the current inability to perform non-destructive MANPADS/Aircraft flight testing. The U.S. Army Aviation and Missile Research and Development and Engineering Center (AMRDEC) is working to overcome this limitation with the development of a recoverable surrogate MANPADS missile system capable of engaging aircraft equipped with ASE while guaranteeing collision avoidance with the test aircraft. Under its Missile Airframe Simulation Testbed - MANPADS (MAST-M) program, the AMRDEC is developing a surrogate missile system which will utilize actual threat MANPADS seeker/guidance sections to control the flight of a surrogate missile which will perform a collision avoidance and recovery maneuver prior to intercept to insure non-destructive test and evaluation of the ASE and reuse of the MANPADS seeker/guidance section. The remainder of this paper provides an overview of this development program and intended use.

  18. MACHETE: Environment for Space Networking Evaluation

    NASA Technical Reports Server (NTRS)

    Jennings, Esther H.; Segui, John S.; Woo, Simon

    2010-01-01

    Space Exploration missions requires the design and implementation of space networking that differs from terrestrial networks. In a space networking architecture, interplanetary communication protocols need to be designed, validated and evaluated carefully to support different mission requirements. As actual systems are expensive to build, it is essential to have a low cost method to validate and verify mission/system designs and operations. This can be accomplished through simulation. Simulation can aid design decisions where alternative solutions are being considered, support trade-studies and enable fast study of what-if scenarios. It can be used to identify risks, verify system performance against requirements, and as an initial test environment as one moves towards emulation and actual hardware implementation of the systems. We describe the development of Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) and its use cases in supporting architecture trade studies, protocol performance and its role in hybrid simulation/emulation. The MACHETE environment contains various tools and interfaces such that users may select the set of tools tailored for the specific simulation end goal. The use cases illustrate tool combinations for simulating space networking in different mission scenarios. This simulation environment is useful in supporting space networking design for planned and future missions as well as evaluating performance of existing networks where non-determinism exist in data traffic and/or link conditions.

  19. A full three dimensional Navier-Stokes numerical simulation of flow field inside a power plant Kaplan turbine using some model test turbine hill chart points

    NASA Astrophysics Data System (ADS)

    Hosseinalipour, S. M.; Raja, A.; Hajikhani, S.

    2012-06-01

    A full three dimensional Navier - Stokes numerical simulation has been performed for performance analysis of a Kaplan turbine which is installed in one of the Irans south dams. No simplifications have been enforced in the simulation. The numerical results have been evaluated using some integral parameters such as the turbine efficiency via comparing the results with existing experimental data from the prototype Hill chart. In part of this study the numerical simulations were performed in order to calculate the prototype turbine efficiencies in some specific points which comes from the scaling up of the model efficiency that are available in the model experimental Hill chart. The results are very promising which shows the good ability of the numerical techniques for resolving the flow characteristics in these kind of complex geometries. A parametric study regarding the evaluation of turbine performance in three different runner angles of the prototype is also performed and the results are cited in this paper.

  20. Experiments evaluating compliance and force feedback effect on manipulator performance

    NASA Technical Reports Server (NTRS)

    Kugath, D. A.

    1972-01-01

    The performance capability was assessed of operators performing simulated space tasks using manipulator systems which had compliance and force feedback varied. Two manipulators were used, the E-2 electromechanical man-equivalent (force, reach, etc.) master-slave system and a modified CAM 1400 hydraulic master-slave with 100 lbs force capability at reaches of 24 ft. The CAM 1400 was further modified to operate without its normal force feedback. Several experiments and simulations were performed. The first two involved the E-2 absorbing the energy of a moving mass and secondly, guiding a mass thru a maze. Thus, both work and self paced tasks were studied as servo compliance was varied. Three simulations were run with the E-2 mounted on the CAM 1400 to evaluate the concept of a dexterous manipulator as an end effector of a boom-manipulator. Finally, the CAM 1400 performed a maze test and also simulated the capture of a large mass as the servo compliance was varied and with force feedback included and removed.

  1. Piloted evaluation of an integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1992-01-01

    This paper describes a piloted evaluation of the integrated flight and propulsion control simulator at NASA Lewis Research Center. The purpose of this evaluation is to demonstrate the suitability and effectiveness of this fixed based simulator for advanced integrated propulsion and airframe control design. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit, displays, and pilot effectors. The paper describes the piloted tasks used for rating displays and control effector gains. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.

  2. Simulation in a dynamic prototyping environment: Petri nets or rules?

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Price, Shannon W.; Hale, Joseph P.

    1994-01-01

    An evaluation of a prototyped user interface is best supported by a simulation of the system. A simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen's appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system's interface. Because of the need to provide dynamic evaluation of an interface, there must be support for producing active simulations. The high-fidelity training simulators are normally delivered too late to be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simulator, so that the iterative cycle of refining the human computer interface based upon a user's interactions can proceed early in software development.

  3. Simulation in a dynamic prototyping environment: Petri nets or rules?

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Price, Shannon; Hale, Joseph P.

    1994-01-01

    An evaluation of a prototyped user interface is best supported by a simulation of the system. A simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the screen's appearance. This allows potential users to evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of operations and actions which need to be performed) of a system's interface. Because of the need to provide dynamic evaluation of an interface, there must be support for producing active simulations. The high-fidelity training simulators are delivered too late to be effectively used in prototyping the displays. Therefore, it is important to build a low fidelity simulator, so that the iterative cycle of refining the human computer interface based upon a user's interactions can proceed early in software development.

  4. Use of a Virtual Learning Platform for Distance-Based Simulation in an Acute Care Nurse Practitioner Curriculum.

    PubMed

    Carman, Margaret; Xu, Shu; Rushton, Sharron; Smallheer, Benjamin A; Williams, Denise; Amarasekara, Sathya; Oermann, Marilyn H

    Acute care nurse practitioner (ACNP) programs that use high-fidelity simulation as a teaching tool need to consider innovative strategies to provide distance-based students with learning experiences that are comparable to those in a simulation laboratory. The purpose of this article is to describe the use of virtual simulations in a distance-based ACNP program and student performance in the simulations. Virtual simulations using iSimulate were integrated into the ACNP course to promote the translation of content into a clinical context and enable students to develop their knowledge and decision-making skills. With these simulations, students worked as a team, even though they were at different sites from each other and from the faculty, to manage care of an acutely ill patient. The students were assigned to simulation groups of 4 students each. One week before the simulation, they reviewed past medical records. The virtual simulation sessions were recorded and then evaluated. The evaluation tools assessed 8 areas of performance and included key behaviors in each of these areas to be performed by students in the simulation. More than 80% of the student groups performed the key behaviors. Virtual simulations provide a learning platform that allows live interaction between students and faculty, at a distance, and application of content to clinical situations. With simulation, learners have an opportunity to practice assessment and decision-making in emergency and high-risk situations. Simulations not only are valuable for student learning but also provide a nonthreatening environment for staff to practice, receive feedback on their skills, and improve their confidence.

  5. Crisis Team Management in a Scarce Resource Setting: Angkor Hospital for Children in Siem Reap, Cambodia.

    PubMed

    Henker, Richard Alynn; Henker, Hiroko; Eng, Hor; O'Donnell, John; Jirativanont, Tachawan

    2017-01-01

    A crisis team management (CTM) simulation course was developed by volunteers from Health Volunteers Overseas for physicians and nurses at Angkor Hospital for Children (AHC) in Siem Reap, Cambodia. The framework for the course was adapted from crisis resource management (1, 2), crisis team training (3), and TeamSTEPPs© models (4). The CTM course focused on teaching physicians and nurses on the development of team performance knowledge, skills, and attitudes. Challenges to providing this course at AHC included availability of simulation equipment, cultural differences in learning, and language barriers. The purpose of this project was to evaluate the impact of a CTM simulation course at AHC on attitudes and perceptions of participants on concepts related to team performance. Each of the CTM courses consisted of three lectures, including team performance concepts, communication, and debriefing followed by rotation through four simulation scenarios. The evaluation instrument used to evaluate the AHC CTM course was developed for Cambodian staff at AHC based on TeamSTEPPs© instruments evaluating attitude and perceptions of team performance (5). CTM team performance concepts included in lectures, debriefing sessions, and the evaluation instrument were: team structure, leadership, situation monitoring, mutual support, and communication. The Wilcoxon signed-rank test was used to analyze pre- and post-test paired data from participants in the course. Of the 54 participants completing the three CTM courses at AHC, 27 were nurses, 6 were anesthetists, and 21 were physicians. Attitude and perception scores were found to significantly improve ( p  < 0.05) for team structure, leadership, situation monitoring, and communication. Team performance areas that improved the most were: discussion of team performance, communication, and exchange of information. Teaching of non-technical skills can be effective in a setting with scarce resources in a Southeastern Asian country.

  6. Developing Clinical Competency in Crisis Event Management: An Integrated Simulation Problem-Based Learning Activity

    ERIC Educational Resources Information Center

    Liaw, S. Y.; Chen, F. G.; Klainin, P.; Brammer, J.; O'Brien, A.; Samarasekera, D. D.

    2010-01-01

    This study aimed to evaluate the integration of a simulation based learning activity on nursing students' clinical crisis management performance in a problem-based learning (PBL) curriculum. It was hypothesized that the clinical performance of first year nursing students who participated in a simulated learning activity during the PBL session…

  7. Simulation-based team training improved the self-assessed ability of physicians, nurses and midwives to perform neonatal resuscitation.

    PubMed

    Malmström, B; Nohlert, E; Ewald, U; Widarsson, M

    2017-08-01

    The use of simulation-based team training in neonatal resuscitation has increased in Sweden during the last decade, but no formal evaluation of this training method has been performed. This study evaluated the effect of simulation-based team training on the self-assessed ability of personnel to perform neonatal resuscitation. We evaluated a full-day simulation-based team training course in neonatal resuscitation, by administering a questionnaire to 110 physicians, nurses and midwives before and after the training period. The questionnaire focused on four important domains: communication, leadership, confidence and technical skills. The study was carried out in Sweden from 2005 to 2007. The response rate was 84%. Improvements in the participants' self-assessed ability to perform neonatal resuscitation were seen in all four domains after training (p < 0.001). Professionally inexperienced personnel showed a significant improvement in the technical skills domain compared to experienced personnel (p = 0.001). No differences were seen between professions or time since training in any of the four domains. Personnel with less previous experience with neonatal resuscitation showed improved confidence (p = 0.007) and technical skills (p = 0.003). A full-day course on simulation-based team training with video-supported debriefing improved the participants' self-assessed ability to perform neonatal resuscitation. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  8. Efficacy of a novel educational curriculum using a simulation laboratory on resident performance of hysteroscopic sterilization.

    PubMed

    Chudnoff, Scott G; Liu, Connie S; Levie, Mark D; Bernstein, Peter; Banks, Erika H

    2010-09-01

    To assess whether a novel educational curriculum using a simulation teaching laboratory improves resident knowledge, comfort with, and surgical performance of hysteroscopic sterilization. An educational prospective, pretest/posttest study. The Montefiore Institute of Minimally Invasive Surgery Laboratory. PATIENT(S)/SUBJECT(S): Thirty-four OB/GYN residents in an academic medical center. Hysteroscopic sterilization simulation laboratory and a brief didactic lecture. Differences in scores on validated skill assessment tools: Task specific checklist, Global Rating Scale (GRS), pass fail assessment, and a multiple-choice examination to evaluate knowledge and attitude. In the entire cohort improvements were observed on all evaluation tools after the simulation laboratory, with 31% points (SD+/-11.5, 95% confidence interval [CI] 27.3-35.3) higher score on the written evaluation; 63% points (SD+/-15.7, 95% CI 57.8-68.8) higher score on the task specific checklist; and 54% points (SD+/-13.6, 95% CI 48.8-58.3) higher score on the GRS. Higher PGY status was correlated with better pretest performance, but was not statistically significant in posttest scores. Residents reported an improvement in comfort performing the procedure after the laboratory. Simulation laboratory teaching significantly improved resident knowledge, comfort level, and technical skill performance of hysteroscopic sterilization. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Using a virtual reality temporal bone simulator to assess otolaryngology trainees.

    PubMed

    Zirkle, Molly; Roberson, David W; Leuwer, Rudolf; Dubrowski, Adam

    2007-02-01

    The objective of this study is to determine the feasibility of computerized evaluation of resident performance using hand motion analysis on a virtual reality temporal bone (VR TB) simulator. We hypothesized that both computerized analysis and expert ratings would discriminate the performance of novices from experienced trainees. We also hypothesized that performance on the virtual reality temporal bone simulator (VR TB) would differentiate based on previous drilling experience. The authors conducted a randomized, blind assessment study. Nineteen volunteers from the Otolaryngology-Head and Neck Surgery training program at the University of Toronto drilled both a cadaveric TB and a simulated VR TB. Expert reviewers were asked to assess operative readiness of the trainee based on a blind video review of their performance. Computerized hand motion analysis of each participant's performance was conducted. Expert raters were able to discriminate novices from experienced trainees (P < .05) on cadaveric temporal bones, and there was a trend toward discrimination on VR TB performance. Hand motion analysis showed that experienced trainees had better movement economy than novices (P < .05) on the VR TB. Performance, as measured by hand motion analysis on the VR TB simulator, reflects trainees' previous drilling experience. This study suggests that otolaryngology trainees could accomplish initial temporal bone training on a VR TB simulator, which can provide feedback to the trainee, and may reduce the need for constant faculty supervision and evaluation.

  10. Aluminum Lithium Alloy 2195 Fusion Welding Improvements with New Filler Wire

    NASA Technical Reports Server (NTRS)

    Russell, C.

    2001-01-01

    The objective of this research was to assess the B218 weld filler wire for Super Lightweight External Tank production, which could improve current production welding and repair productivity. We took the following approaches: (1) Perform a repair weld quick look evaluation between 4043/B218 and B218/B218 weld filler wire combinations and evaluation tensile properties for planished and unplanished conditions; and (2) Perform repair weld evaluation on structural simulation panel using 4043-B218 and B218/B218 weld filler wire combinations and evaluation tensile and simulated service fracture properties for planished and unplanished conditions.

  11. Instructor and student pilots' subjective evaluation of a general aviation simulator with a terrain visual system

    NASA Technical Reports Server (NTRS)

    Kiteley, G. W.; Harris, R. L., Sr.

    1978-01-01

    Ten student pilots were given a 1 hour training session in the NASA Langley Research Center's General Aviation Simulator by a certified flight instructor and a follow-up flight evaluation was performed by the student's own flight instructor, who has also flown the simulator. The students and instructors generally felt that the simulator session had a positive effect on the students. They recommended that a simulator with a visual scene and a motion base would be useful in performing such maneuvers as: landing approaches, level flight, climbs, dives, turns, instrument work, and radio navigation, recommending that the simulator would be an efficient means of introducing the student to new maneuvers before doing them in flight. The students and instructors estimated that about 8 hours of simulator time could be profitably devoted to the private pilot training.

  12. Evaluation of a subject-specific, torque-driven computer simulation model of one-handed tennis backhand groundstrokes.

    PubMed

    Kentel, Behzat B; King, Mark A; Mitchell, Sean R

    2011-11-01

    A torque-driven, subject-specific 3-D computer simulation model of the impact phase of one-handed tennis backhand strokes was evaluated by comparing performance and simulation results. Backhand strokes of an elite subject were recorded on an artificial tennis court. Over the 50-ms period after impact, good agreement was found with an overall RMS difference of 3.3° between matching simulation and performance in terms of joint and racket angles. Consistent with previous experimental research, the evaluation process showed that grip tightness and ball impact location are important factors that affect postimpact racket and arm kinematics. Associated with these factors, the model can be used for a better understanding of the eccentric contraction of the wrist extensors during one-handed backhand ground strokes, a hypothesized mechanism of tennis elbow.

  13. [Comparison of Organ Dose Calculation Using Monte Carlo Simulation and In-phantom Dosimetry in CT Examination].

    PubMed

    Iriuchijima, Akiko; Fukushima, Yasuhiro; Ogura, Akio

    Direct measurement of each patient organ dose from computed tomography (CT) is not possible. Most methods to estimate patient organ dose is using Monte Carlo simulation with dedicated software. However, the method and the relative differences between organ dose simulation and measurement is unclear. The purpose of this study was to compare organ doses evaluated by Monte Carlo simulation with doses evaluated by in-phantom dosimetry. The simulation software Radimetrics (Bayer) was used for the calculation of organ dose. Measurement was performed with radio-photoluminescence glass dosimeter (RPLD) set at various organ positions within RANDO phantom. To evaluate difference of CT scanner, two different CT scanners were used in this study. Angular dependence of RPLD and measurement of effective energy were performed for each scanner. The comparison of simulation and measurement was evaluated by relative differences. In the results, angular dependence of RPLD at two scanners was 31.6±0.45 mGy for SOMATOM Definition Flash and 29.2±0.18 mGy for LightSpeed VCT. The organ dose was 42.2 mGy (range, 29.9-52.7 mGy) by measurements and 37.7 mGy (range, 27.9-48.1 mGy) by simulations. The relative differences of organ dose between measurement and simulation were 13%, excluding of breast's 42%. We found that organ dose by simulation was lower than by measurement. In conclusion, the results of relative differences will be useful for evaluating organ doses for individual patients by simulation software Radimetrics.

  14. Performance evaluation and placement analysis of w-beam guardrails behind curbs.

    DOT National Transportation Integrated Search

    2014-12-15

    This report summarizes the research efforts of using finite element modeling and simulations to evaluate the performance : of NCDOT W-beam guardrails behind curbs under MASH TL-2 impact conditions. A literature review is included on : performance eva...

  15. V/STOL tilt rotor aircraft study. Volume 9: Piloted simulator evaluation of the Boeing Vertol model 222 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Rosenstein, H.; Mcveigh, M. A.; Mollenkof, P. A.

    1973-01-01

    The results of a real time piloted simulation to investigate the handling qualities and performance of a tilting rotor aircraft design are presented. The aerodynamic configuration of the aircraft is described. The procedures for conducting the simulator evaluation are reported. Pilot comments of the aircraft handling qualities under various simulated flight conditions are included. The time histories of selected pilot maneuvers are shown.

  16. Development and evaluation of a decision-based simulation for assessment of team skills.

    PubMed

    Andrew, Brandon; Plachta, Stephen; Salud, Lawrence; Pugh, Carla M

    2012-08-01

    There is a need to train and evaluate a wide variety of nontechnical surgical skills. The goal of this project was to develop and evaluate a decision-based simulation to assess team skills. The decision-based exercise used our previously validated Laparoscopic Ventral Hernia simulator and a newly developed team evaluation survey. Five teams of 3 surgical residents (N = 15) were tasked with repairing a 10 × 10-cm right upper quadrant hernia. During the simulation, independent observers (N = 6) completed a 6-item survey assessing: (1) work quality; (2) communication; and (3) team effectiveness. After the simulation, team members self-rated their performance by using the same survey. Survey reliability revealed a Cronbach's alpha of r = .811. Significant differences were found when we compared team members' (T) and observers' (O) ratings for communication (T = 4.33/5.00 vs O = 3.00/5.00, P < .01) and work quality (T = 4.33/5.00 vs O = 3.33/5.00, P < .05). The team with the greatest survey ratings was the only group to successfully complete the task. The team evaluation survey had good reliability and correlated with task performance on the simulator. Our current and previous work provides strong evidence that nontechnical and team related skills can be assessed without simulating a crisis situation. Copyright © 2012 Mosby, Inc. All rights reserved.

  17. Piloted evaluation of an integrated propulsion and flight control simulator

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.

    1992-01-01

    A piloted evaluation of the integrated flight and propulsion control simulator for advanced integrated propulsion and airframe control design is described. The evaluation will cover control effector gains and deadbands, control effectiveness and control authority, and heads up display functionality. For this evaluation the flight simulator is configured for transition flight using an advanced Short Take-Off and Vertical Landing fighter aircraft model, a simplified high-bypass turbofan engine model, fighter cockpit displays, and pilot effectors. The piloted tasks used for rating displays and control effector gains are described. Pilot comments and simulation results confirm that the display symbology and control gains are very adequate for the transition flight task. Additionally, it is demonstrated that this small-scale, fixed base flight simulator facility can adequately perform a real time, piloted control evaluation.

  18. An ARM data-oriented diagnostics package to evaluate the climate model simulation

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Xie, S.

    2016-12-01

    A set of diagnostics that utilize long-term high frequency measurements from the DOE Atmospheric Radiation Measurement (ARM) program is developed for evaluating the regional simulation of clouds, radiation and precipitation in climate models. The diagnostics results are computed and visualized automatically in a python-based package that aims to serve as an easy entry point for evaluating climate simulations using the ARM data, as well as the CMIP5 multi-model simulations. Basic performance metrics are computed to measure the accuracy of mean state and variability of simulated regional climate. The evaluated physical quantities include vertical profiles of clouds, temperature, relative humidity, cloud liquid water path, total column water vapor, precipitation, sensible and latent heat fluxes, radiative fluxes, aerosol and cloud microphysical properties. Process-oriented diagnostics focusing on individual cloud and precipitation-related phenomena are developed for the evaluation and development of specific model physical parameterizations. Application of the ARM diagnostics package will be presented in the AGU session. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, IM release number is: LLNL-ABS-698645.

  19. From dV-Trainer to Real Robotic Console: The Limitations of Robotic Skill Training.

    PubMed

    Yang, Kun; Zhen, Hang; Hubert, Nicolas; Perez, Manuela; Wang, Xing Huan; Hubert, Jacques

    To investigate operators' performance quality, mental stress, and ergonomic habits through a training curriculum on robotic simulators. Forty volunteers without robotic surgery experience were recruited to practice 2 exercises on a dV-Trainer (dVT) for 14 hours. The simulator software (M-score a ) provided an automatic evaluation of the overall score for the surgeons' performance. Each participant provided a subjective difficulty score (validity to be proven) for each exercise. Their ergonomic habits were evaluated based on the workspace range and armrest load-validated criteria for evaluating the proficiency of using the armrest. They then repeated the same tasks on a da Vinci Surgical Skill Simulator for a final-level test. Their final scores were compared with their initial scores and the scores of 5 experts on the da Vinci Surgical Skill Simulator. A total of 14 hours of training on the dVT significantly improved the surgeons' performance scores to the expert level with a significantly reduced workload, but their ergonomic score was still far from the expert level. Sufficient training on the dVT improves novices' performance, reduces psychological stress, and inculcates better ergonomic habits. Among the evaluated criteria, novices had the most difficulty in achieving expert levels of ergonomic skills. The training benefits of robotic surgery simulators should be determined with quantified variables. The detection of the limitations during robotic training curricula could guide the targeted training and improve the training effect. Copyright © 2017. Published by Elsevier Inc.

  20. Topologically Guided, Automated Construction of Metal–Organic Frameworks and Their Evaluation for Energy-Related Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colón, Yamil J.; Gómez-Gualdrón, Diego A.; Snurr, Randall Q.

    Metal-organic frameworks (MOFs) are promising materials for a range of energy and environmental applications. Here we describe in detail a computational algorithm and code to generate MOFs based on edge-transitive topological nets for subsequent evaluation via molecular simulation. This algorithm has been previously used by us to construct and evaluate 13 512 MOFs of 41 different topologies for cryo-adsorbed hydrogen storage. Grand canonical Monte Carlo simulations are used here to evaluate the 13 512 structures for the storage of gaseous fuels such as hydrogen and methane and nondistillative separation of xenon/krypton mixtures at various operating conditions. MOF performance for bothmore » gaseous fuel storage and xenon/krypton separation is influenced by topology. Simulation data suggest that gaseous fuel storage performance is topology-dependent due to MOF properties such as void fraction and surface area combining differently in different topologies, whereas xenon/krypton separation performance is topology-dependent due to how topology constrains the pore size distribution.« less

  1. Preliminary assessment of faculty and student perception of a haptic virtual reality simulator for training dental manual dexterity.

    PubMed

    Gal, Gilad Ben; Weiss, Ervin I; Gafni, Naomi; Ziv, Amitai

    2011-04-01

    Virtual reality force feedback simulators provide a haptic (sense of touch) feedback through the device being held by the user. The simulator's goal is to provide a learning experience resembling reality. A newly developed haptic simulator (IDEA Dental, Las Vegas, NV, USA) was assessed in this study. Our objectives were to assess the simulator's ability to serve as a tool for dental instruction, self-practice, and student evaluation, as well as to evaluate the sensation it provides. A total of thirty-three evaluators were divided into two groups. The first group consisted of twenty-one experienced dental educators; the second consisted of twelve fifth-year dental students. Each participant performed drilling tasks using the simulator and filled out a questionnaire regarding the simulator and potential ways of using it in dental education. The results show that experienced dental faculty members as well as advanced dental students found that the simulator could provide significant potential benefits in the teaching and self-learning of manual dental skills. Development of the simulator's tactile sensation is needed to attune it to genuine sensation. Further studies relating to aspects of the simulator's structure and its predictive validity, its scoring system, and the nature of the performed tasks should be conducted.

  2. Comprehensive evaluation of garment assembly line with simulation

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Thomassey, S.; Chen, Y.; Zeng, X.

    2017-10-01

    In this paper, a comprehensive evaluation system is established to assess the garment production performance. It is based on performance indicators and supported with the corresponding results obtained by manual calculation or computer simulation. The assembly lines of a typical men’s shirt are taken as the study objects. With the comprehensive evaluation results, garments production arrangement scenarios are better analysed and then the appropriate one is supposed to be put into actual production. This will be a guidance given to companies on quick decision-making and multi-objective optimization of garment production.

  3. Teaching childbirth with high-fidelity simulation. Is it better observing the scenario during the briefing session?

    PubMed

    Cuerva, Marcos J; Piñel, Carlos S; Martin, Lourdes; Espinosa, Jose A; Corral, Octavio J; Mendoza, Nicolás

    2018-02-12

    The design of optimal courses for obstetric undergraduate teaching is a relevant question. This study evaluates two different designs of simulator-based learning activity on childbirth with regard to respect to the patient, obstetric manoeuvres, interpretation of cardiotocography tracings (CTG) and infection prevention. This randomised experimental study which differs in the content of their briefing sessions consisted of two groups of undergraduate students, who performed two simulator-based learning activities on childbirth. The first briefing session included the observations of a properly performed scenario according to Spanish clinical practice guidelines on care in normal childbirth by the teachers whereas the second group did not include the observations of a properly performed scenario, and the students observed it only after the simulation process. The group that observed a properly performed scenario after the simulation obtained worse grades during the simulation, but better grades during the debriefing and evaluation. Simulator use in childbirth may be more fruitful when the medical students observe correct performance at the completion of the scenario compared to that at the start of the scenario. Impact statement What is already known on this subject? There is a scarcity of literature about the design of optimal high-fidelity simulation training in childbirth. It is known that preparing simulator-based learning activities is a complex process. Simulator-based learning includes the following steps: briefing, simulation, debriefing and evaluation. The most important part of high-fidelity simulations is the debriefing. A good briefing and simulation are of high relevance in order to have a fruitful debriefing session. What do the results of this study add? Our study describes a full simulator-based learning activity on childbirth that can be reproduced in similar facilities. The findings of this study add that high-fidelity simulation training in childbirth is favoured by a short briefing session and an abrupt start to the scenario, rather than a long briefing session that includes direct instruction in the scenario. What are the implications of these findings for clinical practice and/or further research? The findings of this study reveal what to include in the briefing of simulator-based learning activities on childbirth. These findings have implications in medical teaching and in medical practice.

  4. Simulation modeling of route guidance concept

    DOT National Transportation Integrated Search

    1997-01-01

    The methodology of a simulation model developed at the University of New South Wales, Australia, for the evaluation of performance of Dynamic Route Guidance Systems (DRGS) is described. The microscopic simulation model adopts the event update simulat...

  5. Vestibular models for design and evaluation of flight simulator motion

    NASA Technical Reports Server (NTRS)

    Bussolari, S. R.; Sullivan, R. B.; Young, L. R.

    1986-01-01

    The use of spatial orientation models in the design and evaluation of control systems for motion-base flight simulators is investigated experimentally. The development of a high-fidelity motion drive controller using an optimal control approach based on human vestibular models is described. The formulation and implementation of the optimal washout system are discussed. The effectiveness of the motion washout system was evaluated by studying the response of six motion washout systems to the NASA/AMES Vertical Motion Simulator for a single dash-quick-stop maneuver. The effects of the motion washout system on pilot performance and simulator acceptability are examined. The data reveal that human spatial orientation models are useful for the design and evaluation of flight simulator motion fidelity.

  6. Virtual Cerebral Aneurysm Clipping with Real-Time Haptic Force Feedback in Neurosurgical Education.

    PubMed

    Gmeiner, Matthias; Dirnberger, Johannes; Fenz, Wolfgang; Gollwitzer, Maria; Wurm, Gabriele; Trenkler, Johannes; Gruber, Andreas

    2018-04-01

    Realistic, safe, and efficient modalities for simulation-based training are highly warranted to enhance the quality of surgical education, and they should be incorporated in resident training. The aim of this study was to develop a patient-specific virtual cerebral aneurysm-clipping simulator with haptic force feedback and real-time deformation of the aneurysm and vessels. A prototype simulator was developed from 2012 to 2016. Evaluation of virtual clipping by blood flow simulation was integrated in this software, and the prototype was evaluated by 18 neurosurgeons. In 4 patients with different medial cerebral artery aneurysms, virtual clipping was performed after real-life surgery, and surgical results were compared regarding clip application, surgical trajectory, and blood flow. After head positioning and craniotomy, bimanual virtual aneurysm clipping with an original forceps was performed. Blood flow simulation demonstrated residual aneurysm filling or branch stenosis. The simulator improved anatomic understanding for 89% of neurosurgeons. Simulation of head positioning and craniotomy was considered realistic by 89% and 94% of users, respectively. Most participants agreed that this simulator should be integrated into neurosurgical education (94%). Our illustrative cases demonstrated that virtual aneurysm surgery was possible using the same trajectory as in real-life cases. Both virtual clipping and blood flow simulation were realistic in broad-based but not calcified aneurysms. Virtual clipping of a calcified aneurysm could be performed using the same surgical trajectory, but not the same clip type. We have successfully developed a virtual aneurysm-clipping simulator. Next, we will prospectively evaluate this device for surgical procedure planning and education. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. The role of the real-time simulation facility, SIMFAC, in the design, development and performance verification of the Shuttle Remote Manipulator System (SRMS) with man-in-the-loop

    NASA Technical Reports Server (NTRS)

    Mccllough, J. R.; Sharpe, A.; Doetsch, K. H.

    1980-01-01

    The SIMFAC has played a vital role in the design, development, and performance verification of the shuttle remote manipulator system (SRMS) to be installed in the space shuttle orbiter. The facility provides for realistic man-in-the-loop operation of the SRMS by an operator in the operator complex, a flightlike crew station patterned after the orbiter aft flight deck with all necessary man machine interface elements, including SRMS displays and controls and simulated out-of-the-window and CCTV scenes. The characteristics of the manipulator system, including arm and joint servo dynamics and control algorithms, are simulated by a comprehensive mathematical model within the simulation subsystem of the facility. Major studies carried out using SIMFAC include: SRMS parameter sensitivity evaluations; the development, evaluation, and verification of operating procedures; and malfunction simulation and analysis of malfunction performance. Among the most important and comprehensive man-in-the-loop simulations carried out to date on SIMFAC are those which support SRMS performance verification and certification when the SRMS is part of the integrated orbiter-manipulator system.

  8. A PERFORMANCE EVALUATION OF THE 2004 RELEASE OF MODELS-3 CMAQ

    EPA Science Inventory

    This performance evaluation compares a full annual simulation (2001) of CMAQ (Version4.4) covering the contiguous United States against monitoring data from four nationwide networks. This effort, which represents one of the most spatially and temporally comprehensive performance...

  9. Finite Element Evaluation of Two Retrofit Options to Enhance the Performance of Cable Media Barriers.

    DOT National Transportation Integrated Search

    2009-06-30

    This report summarizes the finite element modeling and simulation efforts on evaluating the performance of cable median barriers including the current and several proposed retrofit designs. It also synthesizes a literature review of the performance e...

  10. Hierarchical control and performance evaluation of multi-vehicle autonomous systems

    NASA Astrophysics Data System (ADS)

    Balakirsky, Stephen; Scrapper, Chris; Messina, Elena

    2005-05-01

    This paper will describe how the Mobility Open Architecture Tools and Simulation (MOAST) framework can facilitate performance evaluations of RCS compliant multi-vehicle autonomous systems. This framework provides an environment that allows for simulated and real architectural components to function seamlessly together. By providing repeatable environmental conditions, this framework allows for the development of individual components as well as component performance metrics. MOAST is composed of high-fidelity and low-fidelity simulation systems, a detailed model of real-world terrain, actual hardware components, a central knowledge repository, and architectural glue to tie all of the components together. This paper will describe the framework"s components in detail and provide an example that illustrates how the framework can be utilized to develop and evaluate a single architectural component through the use of repeatable trials and experimentation that includes both virtual and real components functioning together

  11. Development and evaluation of automatic landing control laws for light wing loading STOL aircraft

    NASA Technical Reports Server (NTRS)

    Feinreich, B.; Degani, O.; Gevaert, G.

    1981-01-01

    Automatic flare and decrab control laws were developed for NASA's experimental Twin Otter. This light wing loading STOL aircraft was equipped with direct lift control (DLC) wing spoilers to enhance flight path control. Automatic landing control laws that made use of the spoilers were developed, evaluated in a simulation and the results compared with these obtained for configurations that did not use DLC. The spoilers produced a significant improvement in performance. A simulation that could be operated faster than real time in order to provide statistical landing data for a large number of landings over a wide spectrum of disturbances in a short time was constructed and used in the evaluation and refinement of control law configurations. A longitudinal control law that had been previously developed and evaluated in flight was also simulated and its performance compared with that of the control laws developed. Runway alignment control laws were also defined, evaluated, and refined to result in a final recommended configuration. Good landing performance, compatible with Category 3 operation into STOL runways, was obtained.

  12. Performance of the general circulation models in simulating temperature and precipitation over Iran

    NASA Astrophysics Data System (ADS)

    Abbasian, Mohammadsadegh; Moghim, Sanaz; Abrishamchi, Ahmad

    2018-03-01

    General Circulation Models (GCMs) are advanced tools for impact assessment and climate change studies. Previous studies show that the performance of the GCMs in simulating climate variables varies significantly over different regions. This study intends to evaluate the performance of the Coupled Model Intercomparison Project phase 5 (CMIP5) GCMs in simulating temperature and precipitation over Iran. Simulations from 37 GCMs and observations from the Climatic Research Unit (CRU) were obtained for the period of 1901-2005. Six measures of performance including mean bias, root mean square error (RMSE), Nash-Sutcliffe efficiency (NSE), linear correlation coefficient (r), Kolmogorov-Smirnov statistic (KS), Sen's slope estimator, and the Taylor diagram are used for the evaluation. GCMs are ranked based on each statistic at seasonal and annual time scales. Results show that most GCMs perform reasonably well in simulating the annual and seasonal temperature over Iran. The majority of the GCMs have a poor skill to simulate precipitation, particularly at seasonal scale. Based on the results, the best GCMs to represent temperature and precipitation simulations over Iran are the CMCC-CMS (Euro-Mediterranean Center on Climate Change) and the MRI-CGCM3 (Meteorological Research Institute), respectively. The results are valuable for climate and hydrometeorological studies and can help water resources planners and managers to choose the proper GCM based on their criteria.

  13. The use of a virtual reality surgical simulator for cataract surgical skill assessment with 6 months of intervening operating room experience.

    PubMed

    Sikder, Shameema; Luo, Jia; Banerjee, P Pat; Luciano, Cristian; Kania, Patrick; Song, Jonathan C; Kahtani, Eman S; Edward, Deepak P; Towerki, Abdul-Elah Al

    2015-01-01

    To evaluate a haptic-based simulator, MicroVisTouch™, as an assessment tool for capsulorhexis performance in cataract surgery. The study is a prospective, unmasked, nonrandomized dual academic institution study conducted at the Wilmer Eye Institute at Johns Hopkins Medical Center (Baltimore, MD, USA) and King Khaled Eye Specialist Hospital (Riyadh, Saudi Arabia). This prospective study evaluated capsulorhexis simulator performance in 78 ophthalmology residents in the US and Saudi Arabia in the first round of testing and 40 residents in a second round for follow-up. Four variables (circularity, accuracy, fluency, and overall) were tested by the simulator and graded on a 0-100 scale. Circularity (42%), accuracy (55%), and fluency (3%) were compiled to give an overall score. Capsulorhexis performance was retested in the original cohort 6 months after baseline assessment. Average scores in all measured metrics demonstrated statistically significant improvement (except for circularity, which trended toward improvement) after baseline assessment. A reduction in standard deviation and improvement in process capability indices over the 6-month period was also observed. An interval objective improvement in capsulorhexis skill on a haptic-enabled cataract surgery simulator was associated with intervening operating room experience. Further work investigating the role of formalized simulator training programs requiring independent simulator use must be studied to determine its usefulness as an evaluation tool.

  14. Simulation-Based Evaluation of the Performances of an Algorithm for Detecting Abnormal Disease-Related Features in Cattle Mortality Records.

    PubMed

    Perrin, Jean-Baptiste; Durand, Benoît; Gay, Emilie; Ducrot, Christian; Hendrikx, Pascal; Calavas, Didier; Hénaux, Viviane

    2015-01-01

    We performed a simulation study to evaluate the performances of an anomaly detection algorithm considered in the frame of an automated surveillance system of cattle mortality. The method consisted in a combination of temporal regression and spatial cluster detection which allows identifying, for a given week, clusters of spatial units showing an excess of deaths in comparison with their own historical fluctuations. First, we simulated 1,000 outbreaks of a disease causing extra deaths in the French cattle population (about 200,000 herds and 20 million cattle) according to a model mimicking the spreading patterns of an infectious disease and injected these disease-related extra deaths in an authentic mortality dataset, spanning from January 2005 to January 2010. Second, we applied our algorithm on each of the 1,000 semi-synthetic datasets to identify clusters of spatial units showing an excess of deaths considering their own historical fluctuations. Third, we verified if the clusters identified by the algorithm did contain simulated extra deaths in order to evaluate the ability of the algorithm to identify unusual mortality clusters caused by an outbreak. Among the 1,000 simulations, the median duration of simulated outbreaks was 8 weeks, with a median number of 5,627 simulated deaths and 441 infected herds. Within the 12-week trial period, 73% of the simulated outbreaks were detected, with a median timeliness of 1 week, and a mean of 1.4 weeks. The proportion of outbreak weeks flagged by an alarm was 61% (i.e. sensitivity) whereas one in three alarms was a true alarm (i.e. positive predictive value). The performances of the detection algorithm were evaluated for alternative combination of epidemiologic parameters. The results of our study confirmed that in certain conditions automated algorithms could help identifying abnormal cattle mortality increases possibly related to unidentified health events.

  15. Simulation-Based Evaluation of the Performances of an Algorithm for Detecting Abnormal Disease-Related Features in Cattle Mortality Records

    PubMed Central

    Perrin, Jean-Baptiste; Durand, Benoît; Gay, Emilie; Ducrot, Christian; Hendrikx, Pascal; Calavas, Didier; Hénaux, Viviane

    2015-01-01

    We performed a simulation study to evaluate the performances of an anomaly detection algorithm considered in the frame of an automated surveillance system of cattle mortality. The method consisted in a combination of temporal regression and spatial cluster detection which allows identifying, for a given week, clusters of spatial units showing an excess of deaths in comparison with their own historical fluctuations. First, we simulated 1,000 outbreaks of a disease causing extra deaths in the French cattle population (about 200,000 herds and 20 million cattle) according to a model mimicking the spreading patterns of an infectious disease and injected these disease-related extra deaths in an authentic mortality dataset, spanning from January 2005 to January 2010. Second, we applied our algorithm on each of the 1,000 semi-synthetic datasets to identify clusters of spatial units showing an excess of deaths considering their own historical fluctuations. Third, we verified if the clusters identified by the algorithm did contain simulated extra deaths in order to evaluate the ability of the algorithm to identify unusual mortality clusters caused by an outbreak. Among the 1,000 simulations, the median duration of simulated outbreaks was 8 weeks, with a median number of 5,627 simulated deaths and 441 infected herds. Within the 12-week trial period, 73% of the simulated outbreaks were detected, with a median timeliness of 1 week, and a mean of 1.4 weeks. The proportion of outbreak weeks flagged by an alarm was 61% (i.e. sensitivity) whereas one in three alarms was a true alarm (i.e. positive predictive value). The performances of the detection algorithm were evaluated for alternative combination of epidemiologic parameters. The results of our study confirmed that in certain conditions automated algorithms could help identifying abnormal cattle mortality increases possibly related to unidentified health events. PMID:26536596

  16. A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Versus Objective Assessment Tools.

    PubMed

    Dubin, Ariel K; Smith, Roger; Julian, Danielle; Tanaka, Alyssa; Mattingly, Patricia

    To answer the question of whether there is a difference between robotic virtual reality simulator performance assessment and validated human reviewers. Current surgical education relies heavily on simulation. Several assessment tools are available to the trainee, including the actual robotic simulator assessment metrics and the Global Evaluative Assessment of Robotic Skills (GEARS) metrics, both of which have been independently validated. GEARS is a rating scale through which human evaluators can score trainees' performances on 6 domains: depth perception, bimanual dexterity, efficiency, force sensitivity, autonomy, and robotic control. Each domain is scored on a 5-point Likert scale with anchors. We used 2 common robotic simulators, the dV-Trainer (dVT; Mimic Technologies Inc., Seattle, WA) and the da Vinci Skills Simulator (dVSS; Intuitive Surgical, Sunnyvale, CA), to compare the performance metrics of robotic surgical simulators with the GEARS for a basic robotic task on each simulator. A prospective single-blinded randomized study. A surgical education and training center. Surgeons and surgeons in training. Demographic information was collected including sex, age, level of training, specialty, and previous surgical and simulator experience. Subjects performed 2 trials of ring and rail 1 (RR1) on each of the 2 simulators (dVSS and dVT) after undergoing randomization and warm-up exercises. The second RR1 trial simulator performance was recorded, and the deidentified videos were sent to human reviewers using GEARS. Eight different simulator assessment metrics were identified and paired with a similar performance metric in the GEARS tool. The GEARS evaluation scores and simulator assessment scores were paired and a Spearman rho calculated for their level of correlation. Seventy-four subjects were enrolled in this randomized study with 9 subjects excluded for missing or incomplete data. There was a strong correlation between the GEARS score and the simulator metric score for time to complete versus efficiency, time to complete versus total score, economy of motion versus depth perception, and overall score versus total score with rho coefficients greater than or equal to 0.70; these were significant (p < .0001). Those with weak correlation (rho ≥0.30) were bimanual dexterity versus economy of motion, efficiency versus master workspace range, bimanual dexterity versus master workspace range, and robotic control versus instrument collisions. On basic VR tasks, several simulator metrics are well matched with GEARS scores assigned by human reviewers, but others are not. Identifying these matches/mismatches can improve the training and assessment process when using robotic surgical simulators. Copyright © 2017 American Association of Gynecologic Laparoscopists. Published by Elsevier Inc. All rights reserved.

  17. Percutaneous spinal fixation simulation with virtual reality and haptics.

    PubMed

    Luciano, Cristian J; Banerjee, P Pat; Sorenson, Jeffery M; Foley, Kevin T; Ansari, Sameer A; Rizzi, Silvio; Germanwala, Anand V; Kranzler, Leonard; Chittiboina, Prashant; Roitberg, Ben Z

    2013-01-01

    In this study, we evaluated the use of a part-task simulator with 3-dimensional and haptic feedback as a training tool for percutaneous spinal needle placement. To evaluate the learning effectiveness in terms of entry point/target point accuracy of percutaneous spinal needle placement on a high-performance augmented-reality and haptic technology workstation with the ability to control the duration of computer-simulated fluoroscopic exposure, thereby simulating an actual situation. Sixty-three fellows and residents performed needle placement on the simulator. A virtual needle was percutaneously inserted into a virtual patient's thoracic spine derived from an actual patient computed tomography data set. Ten of 126 needle placement attempts by 63 participants ended in failure for a failure rate of 7.93%. From all 126 needle insertions, the average error (15.69 vs 13.91), average fluoroscopy exposure (4.6 vs 3.92), and average individual performance score (32.39 vs 30.71) improved from the first to the second attempt. Performance accuracy yielded P = .04 from a 2-sample t test in which the rejected null hypothesis assumes no improvement in performance accuracy from the first to second attempt in the test session. The experiments showed evidence (P = .04) of performance accuracy improvement from the first to the second percutaneous needle placement attempt. This result, combined with previous learning retention and/or face validity results of using the simulator for open thoracic pedicle screw placement and ventriculostomy catheter placement, supports the efficacy of augmented reality and haptics simulation as a learning tool.

  18. Use of a Food and Drug Administration-Approved Type 1 Diabetes Mellitus Simulator to Evaluate and Optimize a Proportional-Integral-Derivative Controller

    DTIC Science & Technology

    2012-11-01

    performance . The simulations confirm that the PID algorithm can be applied to this cohort without the risk of hypoglycemia . Funding: The study was... Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command...safe operating region, type 1 diabetes mellitus simulator Corresponding Author: Jaques Reifman, Ph.D., DoD Biotechnology High- Performance Computing

  19. Importance of preclinical evaluation of wear in hip implant designs using simulator machines.

    PubMed

    Trommer, Rafael Mello; Maru, Márcia Marie

    2017-01-01

    Total hip arthroplasty (THA) is a surgical procedure that involves the replacement of the damaged joint of the hip by an artificial device. Despite the recognized clinical success of hip implants, wear of the articulating surfaces remains as one of the critical issues influencing performance. Common material combinations used in hip designs comprise metal-on-polymer (MoP), ceramic-on-polymer (CoP), metal-on-metal (MoM), and ceramic-on-ceramic (CoC). However, when the design of the hip implant is concerned besides the materials used, several parameters can influence its wear performance. In this scenario, where the safety and efficacy for the patient are the main issues, it is fundamental to evaluate and predict the wear rate of the hip implant design before its use in THA. This is one of the issues that should be taken into account in the preclinical evaluation step of the product, in which simulated laboratory tests are necessary. However, it is fundamental that the applied motions and loads can reproduce the wear mechanisms physiologically observed in the patient. To replicate the in vivo angular displacements and loadings, special machines known as joint simulators are employed. This article focuses on the main characteristics related to the wear simulation of hip implants using mechanical simulators, giving information to surgeons, researchers, regulatory bodies, etc., about the importance of preclinical wear evaluation. A critical analysis is performed on the differences in the principles of operation of simulators and their effects on the final results, and about future trends in wear simulation.

  20. Evaluation of leadership skills during the simulation education course for the initial management of blunt trauma.

    PubMed

    Schott, Eric; Brautigam, Robert T; Smola, Jacqueline; Burns, Karyl J

    2012-04-01

    Leadership skills of senior residents, trauma fellows, and a nurse practitioner were assessed during simulation training for the initial management of blunt trauma. This was a pilot, observational study, that in addition to skill development and assessment also sought to determine the need for a dedicated leadership training course for surgical residents. The study evaluated the leadership skills and adherence to Advance Trauma Life Support (ATLS) guidelines of the team leaders during simulation training. The team leaders' performances on criteria regarding prearrival planning, critical actions based on ATLS, injury identification, patient management, and communication were evaluated for each of five blunt-trauma scenarios. Although there was a statistically significant increase in leadership skills for performing ATLS critical actions, P < 0.05, there were 10 adverse events. A structured simulation program dedicated to developing skills for team leadership willbe a worthwhile endeavor at our institution.

  1. Validation of X1 motorcycle model in industrial plant layout by using WITNESSTM simulation software

    NASA Astrophysics Data System (ADS)

    Hamzas, M. F. M. A.; Bareduan, S. A.; Zakaria, M. Z.; Tan, W. J.; Zairi, S.

    2017-09-01

    This paper demonstrates a case study on simulation, modelling and analysis for X1 Motorcycles Model. In this research, a motorcycle assembly plant has been selected as a main place of research study. Simulation techniques by using Witness software were applied to evaluate the performance of the existing manufacturing system. The main objective is to validate the data and find out the significant impact on the overall performance of the system for future improvement. The process of validation starts when the layout of the assembly line was identified. All components are evaluated to validate whether the data is significance for future improvement. Machine and labor statistics are among the parameters that were evaluated for process improvement. Average total cycle time for given workstations is used as criterion for comparison of possible variants. From the simulation process, the data used are appropriate and meet the criteria for two-sided assembly line problems.

  2. A high-fidelity, six-degree-of-freedom batch simulation environment for tactical guidance research and evaluation

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.

    1993-01-01

    A batch air combat simulation environment, the tactical maneuvering simulator (TMS), is presented. The TMS is a tool for developing and evaluating tactical maneuvering logics, but it can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS can simulate air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics, and propulsive characteristics equivalent to those used in high-fidelity piloted simulations. Data bases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system, the tactical autopilot (TA), is implemented in the aircraft simulation model. The TA converts guidance commands by computerized maneuvering logics from desired angle of attack and wind-axis bank-angle inputs to the inner loop control augmentation system of the aircraft. The capabilities and operation of the TMS and the TA are described.

  3. Evaluation of Seismic Performance and Effectiveness of Multiple Slim-Type Damper System for Seismic Response Control of Building Structures

    PubMed Central

    Kim, David; Sung, Eun Hee; Park, Kwan-Soon; Park, Jaegyun

    2014-01-01

    This paper presents the evaluation of seismic performance and cost-effectiveness of a multiple slim-type damper system developed for the vibration control of earthquake excited buildings. The multiple slim-type damper (MSD) that consists of several small slim-type dampers and linkage units can control damping capacity easily by changing the number of small dampers. To evaluate the performance of the MSD, dynamic loading tests are performed with three slim-type dampers manufactured at a real scale. Numerical simulations are also carried out by nonlinear time history analysis with a ten-story earthquake excited building structure. The seismic performance and cost-effectiveness of the MSD system are investigated according to the various installation configurations of the MSD system. From the results of numerical simulation and cost-effectiveness evaluation, it is shown that combinations of the MSD systems can effectively improve the seismic performance of earthquake excited building structures. PMID:25301387

  4. Evaluation of Variable Refrigerant Flow Systems Performance on Oak Ridge National Laboratory s Flexible Research Platform: Part 3 Simulation Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Im, Piljae; Cho, Heejin; Kim, Dongsu

    2016-08-01

    This report provides second-year project simulation results for the multi-year project titled “Evaluation of Variable Refrigeration Flow (VRF) system on Oak Ridge National Laboratory (ORNL)’s Flexible Research Platform (FRP).”

  5. Model helicopter performance degradation with simulated ice shapes

    NASA Technical Reports Server (NTRS)

    Tinetti, Ana F.; Korkan, Kenneth D.

    1987-01-01

    An experimental program using a commercially available model helicopter has been conducted in the Texas A&M University Subsonic Wind Tunnel to investigate main rotor performance degradation due to generic ice. The simulated ice, including both primary and secondary formations, was scaled by chord from previously documented artificial ice accretions. Base and iced performance data were gathered as functions of fuselage incidence, blade collective pitch, main rotor rotational velocity, and freestream velocity. It was observed that the presence of simulated ice tends to decrease the lift to equivalent drag ratio, as well as thrust coefficient for the range of velocity ratios tested. Also, increases in torque coefficient due to the generic ice formations were observed. Evaluation of the data has indicated that the addition of roughness due to secondary ice formations is crucial for proper evaluation of the degradation in main rotor performance.

  6. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE PAGES

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; ...

    2016-04-01

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency ofmore » JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  7. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency ofmore » JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  8. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Steven, E-mail: hamiltonsp@ornl.gov; Berrill, Mark, E-mail: berrillma@ornl.gov; Clarno, Kevin, E-mail: clarnokt@ornl.gov

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNKmore » and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  9. Simulation of a combined-cycle engine

    NASA Technical Reports Server (NTRS)

    Vangerpen, Jon

    1991-01-01

    A FORTRAN computer program was developed to simulate the performance of combined-cycle engines. These engines combine features of both gas turbines and reciprocating engines. The computer program can simulate both design point and off-design operation. Widely varying engine configurations can be evaluated for their power, performance, and efficiency as well as the influence of altitude and air speed. Although the program was developed to simulate aircraft engines, it can be used with equal success for stationary and automative applications.

  10. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focussed on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for increased understanding of the physical processes governing ice accretion, ice shedding, and iced airfoil aerodynamics is examined.

  11. Icing simulation: A survey of computer models and experimental facilities

    NASA Technical Reports Server (NTRS)

    Potapczuk, M. G.; Reinmann, J. J.

    1991-01-01

    A survey of the current methods for simulation of the response of an aircraft or aircraft subsystem to an icing encounter is presented. The topics discussed include a computer code modeling of aircraft icing and performance degradation, an evaluation of experimental facility simulation capabilities, and ice protection system evaluation tests in simulated icing conditions. Current research focused on upgrading simulation fidelity of both experimental and computational methods is discussed. The need for the increased understanding of the physical processes governing ice accretion, ice shedding, and iced aerodynamics is examined.

  12. A comparison of global rating scale and checklist scores in the validation of an evaluation tool to assess performance in the resuscitation of critically ill patients during simulated emergencies (abbreviated as "CRM simulator study IB").

    PubMed

    Kim, John; Neilipovitz, David; Cardinal, Pierre; Chiu, Michelle

    2009-01-01

    Crisis resource management (CRM) skills are a set of nonmedical skills required to manage medical emergencies. There is currently no gold standard for evaluation of CRM performance. A prior study examined the use of a global rating scale (GRS) to evaluate CRM performance. This current study compared the use of a GRS and a checklist as formal rating instruments to evaluate CRM performance during simulated emergencies. First-year and third-year residents participated in two simulator scenarios each. Three raters then evaluated resident performance in CRM using edited video recordings using both a GRS and a checklist. The Ottawa GRS provides a seven-point anchored ordinal scale for performance in five categories of CRM, and an overall performance score. The Ottawa CRM checklist provides 12 items in the five categories of CRM, with a maximum cumulative score of 30 points. Construct validity was measured on the basis of content validity, response process, internal structure, and response to other variables. T-test analysis of Ottawa GRS scores was conducted to examine response to the variable of level of training. Intraclass correlation coefficient (ICC) scores were used to measure inter-rater reliability for both scenarios. Thirty-two first-year and 28 third-year residents participated in the study. Third-year residents produced higher mean scores for overall CRM performance than first-year residents (P < 0.05), and in all individual categories within the Ottawa GRS (P < 0.05) and the Ottawa CRM checklist (P < 0.05). This difference was noted for both scenarios and for each individual rater (P < 0.05). No statistically significant difference in resident scores was observed between scenarios for both instruments. ICC scores of 0.59 and 0.61 were obtained for Scenarios 1 and 2 with the Ottawa GRS, whereas ICC scores of 0.63 and 0.55 were obtained with the Ottawa CRM checklist. Users indicated a strong preference for the Ottawa GRS given ease of scoring, presence of an overall score, and the potential for formative evaluation. Construct validity seems to be present when using both the Ottawa GRS and CRM checklist to evaluate CRM performance during simulated emergencies. Data also indicate the presence of moderate inter-rater reliability when using both the Ottawa GRS and CRM checklist.

  13. A Comparison of Four Simulation and Instructional Methods for Endodontic Review.

    ERIC Educational Resources Information Center

    Sandoval, Victor A.; And Others

    1987-01-01

    The effects of four different endodontic self-instructional review formats (slide-tape, latent-image simulation, computer text simulation, and computer-assisted video interactive simulation) on senior clinical endodontic performance are compared. Student evaluations, as well as comparative developmental expenditures, are discussed. (Author/MLW)

  14. Developing Performance Measures for Army Aviation Collective Training

    DTIC Science & Technology

    2011-05-01

    simulation-based training, such as ATX, is determined by performance improvement of participants within the virtual-training environment (Bell & Waag ...of the collective behavior (Bell & Waag , 1998). In ATX, system-based (i.e., simulator) data can be used to extract measures such as timing of events...to CABs. 20 21 References Bell, H. H., & Waag , W. L. (1998). Evaluating the effectiveness of flight simulators for training combat

  15. Elective course in acute care using online learning and patient simulation.

    PubMed

    Seybert, Amy L; Kane-Gill, Sandra L

    2011-04-11

    To enhance students' knowledge of and critical-thinking skills in the management of acutely ill patients using online independent learning partnered with high-fidelity patient simulation sessions. Students enrolled in the Acute Care Simulation watched 10 weekly Web-based video presentations on various critical care and advanced cardiovascular pharmacotherapy topics. After completing each online module, all students participated in groups in patient-care simulation exercises in which they prepared a pharmacotherapeutic plan for the patient, recommended this plan to the patient's physician, and completed a debriefing session with the facilitator. Students completed a pretest and posttest before and after each simulation exercise, as well as midterm and final evaluations and a satisfaction survey. Pharmacy students significantly improved their scores on 9 of the 10 tests (p ≤ 0.05). Students' performance on the final evaluation improved compared with performance on the midterm evaluation. Overall, students were satisfied with the unique dual approach to learning and enjoyed the realistic patient-care environment that the simulation laboratory provided. Participation in an elective course that combined self-directed Web-based learning and hands-on patient simulation exercises increased pharmacy students' knowledge and critical-thinking skills in acute care.

  16. Evaluation of Flying Qualities and Guidance Displays for an Advanced Tilt-Wing STOL Transport Aircraft in Final Approach and Landing

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Franklin, James A.; Hardy, Gordon H.

    2002-01-01

    A piloted simulation was performed on the Vertical Motion Simulator at NASA Ames Research Center to evaluate flying qualities of a tilt-wing Short Take-Off and Landing (STOL) transport aircraft during final approach and landing. The experiment was conducted to assess the design s handling qualities, and to evaluate the use of flightpath-centered guidance for the precision approach and landing tasks required to perform STOL operations in instrument meteorological conditions, turbulence, and wind. Pilots rated the handling qualities to be satisfactory for all operations evaluated except those encountering extreme crosswinds and severe windshear; even in these difficult meteorological conditions, adequate handling qualities were maintained. The advanced flight control laws and guidance displays provided consistent performance and precision landings.

  17. Simulation of atmospheric oxidation capacity in Houston, Texas

    EPA Science Inventory

    Air quality model simulations are performed and evaluated for Houston using the Community Multiscale Air Quality (CMAQ) model. The simulations use two different emissions estimates: the EPA 2005 National Emissions Inventory (NEI) and the Texas Commission on Environmental Quality ...

  18. Capacity Loss Studies on High Capacity Li-ion Cells for the Orbiter Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Irlbeck, Bradley W.

    2004-01-01

    Contents include the following: Introduction. Physical and electrochemical characteristics. Performance evaluation. Rate performance. Internal resistance. Performance at different temperatures. Safety evaluation. Overcharge. Overdischarge. External short. Simulated internal short. Heat-to-vent. Vibration. Drop rest. Vent and burst pressure.

  19. Simulation and performance of brushless dc motor actuators

    NASA Astrophysics Data System (ADS)

    Gerba, A., Jr.

    1985-12-01

    The simulation model for a Brushless D.C. Motor and the associated commutation power conditioner transistor model are presented. The necessary conditions for maximum power output while operating at steady-state speed and sinusoidally distributed air-gap flux are developed. Comparison of simulated model with the measured performance of a typical motor are done both on time response waveforms and on average performance characteristics. These preliminary results indicate good agreement. Plans for model improvement and testing of a motor-driven positioning device for model evaluation are outlined.

  20. Boundary Avoidance Tracking for Instigating Pilot Induced Oscillations

    NASA Technical Reports Server (NTRS)

    Craun, Robert W.; Acosta, Diana M.; Beard, Steven D.; Hardy, Gordon H.; Leonard, Michael W.; Weinstein, Michael

    2013-01-01

    In order to advance research in the area of pilot induced oscillations, a reliable method to create PIOs in a simulated environment is necessary. Using a boundary avoidance tracking task, researchers performing an evaluation of control systems were able to create PIO events in 42% of cases using a nominal aircraft, and 91% of cases using an aircraft with reduced actuator rate limits. The simulator evaluation took place in the NASA Ames Vertical Motion Simulator, a high-fidelity motion-based simulation facility.

  1. Koeppen Bioclimatic Metrics for Evaluating CMIP5 Simulations of Historical Climate

    NASA Astrophysics Data System (ADS)

    Phillips, T. J.; Bonfils, C.

    2012-12-01

    The classic Koeppen bioclimatic classification scheme associates generic vegetation types (e.g. grassland, tundra, broadleaf or evergreen forests, etc.) with regional climate zones defined by the observed amplitude and phase of the annual cycles of continental temperature (T) and precipitation (P). Koeppen classification thus can provide concise, multivariate metrics for evaluating climate model performance in simulating the regional magnitudes and seasonalities of climate variables that are of critical importance for living organisms. In this study, 14 Koeppen vegetation types are derived from annual-cycle climatologies of T and P in some 3 dozen CMIP5 simulations of 1980-1999 climate, a period when observational data provides a reliable global validation standard. Metrics for evaluating the ability of the CMIP5 models to simulate the correct locations and areas of the vegetation types, as well as measures of overall model performance, also are developed. It is found that the CMIP5 models are most deficient in simulating 1) the climates of the drier zones (e.g. desert, savanna, grassland, steppe vegetation types) that are located in the Southwestern U.S. and Mexico, Eastern Europe, Southern Africa, and Central Australia, as well as 2) the climate of regions such as Central Asia and Western South America where topography plays a central role. (Detailed analysis of regional biases in the annual cycles of T and P of selected simulations exemplifying general model performance problems also are to be presented.) The more encouraging results include evidence for a general improvement in CMIP5 performance relative to that of older CMIP3 models. Within CMIP5 also, the more complex Earth Systems Models (ESMs) with prognostic biogeochemistry perform comparably to the corresponding global models that simulate only the "physical" climate. Acknowledgments This work was funded by the U.S. Department of Energy Office of Science and was performed at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Evaluation of Complex Human Performance: The Promise of Computer-Based Simulation

    ERIC Educational Resources Information Center

    Newsom, Robert S.; And Others

    1978-01-01

    For the training and placement of professional workers, multiple-choice instruments are the norm for wide-scale measurement and evaluation efforts. These instruments contain fundamental problems. Computer-based management simulations may provide solutions to these problems, appear scoreable and reliable, offer increased validity, and are better…

  3. EVALUATION OF THE AGDISP AERIAL SPRAY ALGORITHMS IN THE AGDRIFT MODEL

    EPA Science Inventory

    A systematic evaluation of the AgDISP algorithms, which simulate off-site drift and deposition of aerially applied pesticides, contained in the AgDRIFT model was performed by comparing model simulations to field-trial data collected by the Spray Drift Task Force. Field-trial data...

  4. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool; (2) a low fidelity simulator development tool; (3) a dynamic, interactive interface between the HCI and the simulator; and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  5. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool, (2) a low fidelity simulator development tool, (3) a dynamic, interactive interface between the HCI and the simulator, and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  6. Results from the VALUE perfect predictor experiment: process-based evaluation

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Soares, Pedro; Hertig, Elke; Brands, Swen; Huth, Radan; Cardoso, Rita; Kotlarski, Sven; Casado, Maria; Pongracz, Rita; Bartholy, Judit

    2016-04-01

    Until recently, the evaluation of downscaled climate model simulations has typically been limited to surface climatologies, including long term means, spatial variability and extremes. But these aspects are often, at least partly, tuned in regional climate models to match observed climate. The tuning issue is of course particularly relevant for bias corrected regional climate models. In general, a good performance of a model for these aspects in present climate does therefore not imply a good performance in simulating climate change. It is now widely accepted that, to increase our condidence in climate change simulations, it is necessary to evaluate how climate models simulate relevant underlying processes. In other words, it is important to assess whether downscaling does the right for the right reason. Therefore, VALUE has carried out a broad process-based evaluation study based on its perfect predictor experiment simulations: the downscaling methods are driven by ERA-Interim data over the period 1979-2008, reference observations are given by a network of 85 meteorological stations covering all European climates. More than 30 methods participated in the evaluation. In order to compare statistical and dynamical methods, only variables provided by both types of approaches could be considered. This limited the analysis to conditioning local surface variables on variables from driving processes that are simulated by ERA-Interim. We considered the following types of processes: at the continental scale, we evaluated the performance of downscaling methods for positive and negative North Atlantic Oscillation, Atlantic ridge and blocking situations. At synoptic scales, we considered Lamb weather types for selected European regions such as Scandinavia, the United Kingdom, the Iberian Pensinsula or the Alps. At regional scales we considered phenomena such as the Mistral, the Bora or the Iberian coastal jet. Such process-based evaluation helps to attribute biases in surface variables to underlying processes and ultimately to improve climate models.

  7. Preliminary simulation of an advanced, hingless rotor XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.

    1976-01-01

    The feasibility of the tilt-rotor concept was verified through investigation of the performance, stability and handling qualities of the XV-15 tilt rotor. The rotors were replaced by advanced-technology fiberglass/composite hingless rotors of larger diameter, combined with an advanced integrated fly-by-wire control system. A parametric simulation model of the HRXV-15 was developed, model was used to define acceptable preliminary ranges of primary and secondary control schedules as functions of the flight parameters, to evaluate performance, flying qualities and structural loads, and to have a Boeing-Vertol pilot conduct a simulated flight test evaluation of the aircraft.

  8. Medical simulation in interventional cardiology: "More research is needed".

    PubMed

    Tajti, Peter; Brilakis, Emmanouil S

    2018-05-01

    Medical simulation is being used for training fellows to perform coronary angiography. Medical simulation training was associated with 2 min less fluoroscopy time per case after adjustment. Whether medical simulation really works needs to be evaluated in additional, well-designed and executed clinical studies. © 2018 Wiley Periodicals, Inc.

  9. Effectiveness of an Online Simulation for Teacher Education

    ERIC Educational Resources Information Center

    Badiee, Farnaz; Kaufman, David

    2014-01-01

    This study evaluated the effectiveness of the "simSchool" (v.1) simulation as a tool for preparing student teachers for actual classroom teaching. Twenty-two student teachers used the simulation for a practice session and two test sessions; data included objective performance statistics generated by the simulation program, self-rated…

  10. High-fidelity hybrid simulation of allergic emergencies demonstrates improved preparedness for office emergencies in pediatric allergy clinics.

    PubMed

    Kennedy, Joshua L; Jones, Stacie M; Porter, Nicholas; White, Marjorie L; Gephardt, Grace; Hill, Travis; Cantrell, Mary; Nick, Todd G; Melguizo, Maria; Smith, Chris; Boateng, Beatrice A; Perry, Tamara T; Scurlock, Amy M; Thompson, Tonya M

    2013-01-01

    Simulation models that used high-fidelity mannequins have shown promise in medical education, particularly for cases in which the event is uncommon. Allergy physicians encounter emergencies in their offices, and these can be the source of much trepidation. To determine if case-based simulations with high-fidelity mannequins are effective in teaching and retention of emergency management team skills. Allergy clinics were invited to Arkansas Children's Hospital Pediatric Understanding and Learning through Simulation Education center for a 1-day workshop to evaluate skills concerning the management of allergic emergencies. A Clinical Emergency Preparedness Team Performance Evaluation was developed to evaluate the competence of teams in several areas: leadership and/or role clarity, closed-loop communication, team support, situational awareness, and scenario-specific skills. Four cases, which focus on common allergic emergencies, were simulated by using high-fidelity mannequins and standardized patients. Teams were evaluated by multiple reviewers by using video recording and standardized scoring. Ten to 12 months after initial training, an unannounced in situ case was performed to determine retention of the skills training. Clinics showed significant improvements for role clarity, teamwork, situational awareness, and scenario-specific skills during the 1-day workshop (all P < .003). Follow-up in situ scenarios 10-12 months later demonstrated retention of skills training at both clinics (all P ≤ .004). Clinical Emergency Preparedness Team Performance Evaluation scores demonstrated improved team management skills with simulation training in office emergencies. Significant recall of team emergency management skills was demonstrated months after the initial training. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. A computer simulation of an adaptive noise canceler with a single input

    NASA Astrophysics Data System (ADS)

    Albert, Stuart D.

    1991-06-01

    A description of an adaptive noise canceler using Widrows' LMS algorithm is presented. A computer simulation of canceler performance (adaptive convergence time and frequency transfer function) was written for use as a design tool. The simulations, assumptions, and input parameters are described in detail. The simulation is used in a design example to predict the performance of an adaptive noise canceler in the simultaneous presence of both strong and weak narrow-band signals (a cosited frequency hopping radio scenario). On the basis of the simulation results, it is concluded that the simulation is suitable for use as an adaptive noise canceler design tool; i.e., it can be used to evaluate the effect of design parameter changes on canceler performance.

  12. Annual Application and Evaluation of the Online Coupled WRF‐CMAQ System over North America under AQMEII Phase 2

    EPA Science Inventory

    We present an application of the online coupled WRF-CMAQ modeling system to two annual simulations over North America performed under Phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII). Operational evaluation shows that model performance is comparable t...

  13. A comparison of statistical methods for evaluating matching performance of a biometric identification device: a preliminary report

    NASA Astrophysics Data System (ADS)

    Schuckers, Michael E.; Hawley, Anne; Livingstone, Katie; Mramba, Nona

    2004-08-01

    Confidence intervals are an important way to assess and estimate a parameter. In the case of biometric identification devices, several approaches to confidence intervals for an error rate have been proposed. Here we evaluate six of these methods. To complete this evaluation, we simulate data from a wide variety of parameter values. This data are simulated via a correlated binary distribution. We then determine how well these methods do at what they say they do: capturing the parameter inside the confidence interval. In addition, the average widths of the various confidence intervals are recorded for each set of parameters. The complete results of this simulation are presented graphically for easy comparison. We conclude by making a recommendation regarding which method performs best.

  14. Electric-hybrid-vehicle simulation

    NASA Astrophysics Data System (ADS)

    Pasma, D. C.

    The simulation of electric hybrid vehicles is to be performed using experimental data to model propulsion system components. The performance of an existing ac propulsion system will be used as the baseline for comparative purposes. Hybrid components to be evaluated include electrically and mechanically driven flywheels, and an elastomeric regenerative braking system.

  15. WRF/CMAQ AQMEII3 Simulations of U.S. Regional-Scale Ozone: Sensitivity to Processes and Inputs

    EPA Science Inventory

    Chemical boundary conditions are a key input to regional-scale photochemical models. In this study, performed during the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3), we perform annual simulations over North America with chemical boundary con...

  16. Finite element simulation of structural performance on flexible pavements with stabilized base/treated subbase materials under accelerated loading : tech summary.

    DOT National Transportation Integrated Search

    2011-12-01

    Accelerated pavement testing (APT) has been increasingly used by state highway agencies in recent years for evaluating pavement : design and performance through applying a simulative heavy vehicular load to the pavement section under controlled fi el...

  17. Conceptual Modeling Framework for E-Area PA HELP Infiltration Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J. A.

    A conceptual modeling framework based on the proposed E-Area Low-Level Waste Facility (LLWF) closure cap design is presented for conducting Hydrologic Evaluation of Landfill Performance (HELP) model simulations of intact and subsided cap infiltration scenarios for the next E-Area Performance Assessment (PA).

  18. Effects of simulator motion and visual characteristics on rotorcraft handling qualities evaluations

    NASA Technical Reports Server (NTRS)

    Mitchell, David G.; Hart, Daniel C.

    1993-01-01

    The pilot's perceptions of aircraft handling qualities are influenced by a combination of the aircraft dynamics, the task, and the environment under which the evaluation is performed. When the evaluation is performed in a groundbased simulator, the characteristics of the simulation facility also come into play. Two studies were conducted on NASA Ames Research Center's Vertical Motion Simulator to determine the effects of simulator characteristics on perceived handling qualities. Most evaluations were conducted with a baseline set of rotorcraft dynamics, using a simple transfer-function model of an uncoupled helicopter, under different conditions of visual time delays and motion command washout filters. Differences in pilot opinion were found as the visual and motion parameters were changed, reflecting a change in the pilots' perceptions of handling qualities, rather than changes in the aircraft model itself. The results indicate a need for tailoring the motion washout dynamics to suit the task. Visual-delay data are inconclusive but suggest that it may be better to allow some time delay in the visual path to minimize the mismatch between visual and motion, rather than eliminate the visual delay entirely through lead compensation.

  19. Evaluating color deficiency simulation and daltonization methods through visual search and sample-to-match: SaMSEM and ViSDEM

    NASA Astrophysics Data System (ADS)

    Simon-Liedtke, Joschua T.; Farup, Ivar; Laeng, Bruno

    2015-01-01

    Color deficient people might be confronted with minor difficulties when navigating through daily life, for example when reading websites or media, navigating with maps, retrieving information from public transport schedules and others. Color deficiency simulation and daltonization methods have been proposed to better understand problems of color deficient individuals and to improve color displays for their use. However, it remains unclear whether these color prosthetic" methods really work and how well they improve the performance of color deficient individuals. We introduce here two methods to evaluate color deficiency simulation and daltonization methods based on behavioral experiments that are widely used in the field of psychology. Firstly, we propose a Sample-to-Match Simulation Evaluation Method (SaMSEM); secondly, we propose a Visual Search Daltonization Evaluation Method (ViSDEM). Both methods can be used to validate and allow the generalization of the simulation and daltonization methods related to color deficiency. We showed that both the response times (RT) and the accuracy of SaMSEM can be used as an indicator of the success of color deficiency simulation methods and that performance in the ViSDEM can be used as an indicator for the efficacy of color deficiency daltonization methods. In future work, we will include comparison and analysis of different color deficiency simulation and daltonization methods with the help of SaMSEM and ViSDEM.

  20. Performance assessment in a flight simulator test—Validation of a space psychology methodology

    NASA Astrophysics Data System (ADS)

    Johannes, B.; Salnitski, Vyacheslav; Soll, Henning; Rauch, Melina; Goeters, Klaus-Martin; Maschke, Peter; Stelling, Dirk; Eißfeldt, Hinnerk

    2007-02-01

    The objective assessment of operator performance in hand controlled docking of a spacecraft on a space station has 30 years of tradition and is well established. In the last years the performance assessment was successfully combined with a psycho-physiological approach for the objective assessment of the levels of physiological arousal and psychological load. These methods are based on statistical reference data. For the enhancement of the statistical power of the evaluation methods, both were actually implemented into a comparable terrestrial task: the flight simulator test of DLR in the selection procedure for ab initio pilot applicants for civil airlines. In the first evaluation study 134 male subjects were analysed. Subjects underwent a flight simulator test including three tasks, which were evaluated by instructors applying well-established and standardised rating scales. The principles of the performance algorithms of the docking training were adapted for the automated flight performance assessment. They are presented here. The increased human errors under instrument flight conditions without visual feedback required a manoeuvre recognition algorithm before calculating the deviation of the flown track from the given task elements. Each manoeuvre had to be evaluated independently of former failures. The expert rated performance showed a highly significant correlation with the automatically calculated performance for each of the three tasks: r=.883, r=.874, r=.872, respectively. An automated algorithm successfully assessed the flight performance. This new method will possibly provide a wide range of other future applications in aviation and space psychology.

  1. Evaluation of skill level between trainees and community orthopaedic surgeons using a virtual reality arthroscopic knee simulator.

    PubMed

    Cannon, W Dilworth; Nicandri, Gregg T; Reinig, Karl; Mevis, Howard; Wittstein, Jocelyn

    2014-04-02

    Several virtual reality simulators have been developed to assist orthopaedic surgeons in acquiring the skills necessary to perform arthroscopic surgery. The purpose of this study was to assess the construct validity of the ArthroSim virtual reality arthroscopy simulator by evaluating whether skills acquired through increased experience in the operating room lead to improved performance on the simulator. Using the simulator, six postgraduate year-1 orthopaedic residents were compared with six postgraduate year-5 residents and with six community-based orthopaedic surgeons when performing diagnostic arthroscopy. The time to perform the procedure was recorded. To ensure that subjects did not sacrifice the quality of the procedure to complete the task in a shorter time, the simulator was programmed to provide a completeness score that indicated whether the surgeon accurately performed all of the steps of diagnostic arthroscopy in the correct sequence. The mean time to perform the procedure by each group was 610 seconds for community-based orthopaedic surgeons, 745 seconds for postgraduate year-5 residents, and 1028 seconds for postgraduate year-1 residents. Both the postgraduate year-5 residents and the community-based orthopaedic surgeons performed the procedure in significantly less time (p = 0.006) than the postgraduate year-1 residents. There was a trend toward significance (p = 0.055) in time to complete the procedure when the postgraduate year-5 residents were compared with the community-based orthopaedic surgeons. The mean level of completeness as assigned by the simulator for each group was 85% for the community-based orthopaedic surgeons, 79% for the postgraduate year-5 residents, and 71% for the postgraduate year-1 residents. As expected, these differences were not significant, indicating that the three groups had achieved an acceptable level of consistency in their performance of the procedure. Higher levels of surgeon experience resulted in improved efficiency when performing diagnostic knee arthroscopy on the simulator. Further validation studies utilizing the simulator are currently under way and the additional simulated tasks of arthroscopic meniscectomy, meniscal repair, microfracture, and loose body removal are being developed.

  2. Association between unsafe driving performance and cognitive-perceptual dysfunction in older drivers.

    PubMed

    Park, Si-Woon; Choi, Eun Seok; Lim, Mun Hee; Kim, Eun Joo; Hwang, Sung Il; Choi, Kyung-In; Yoo, Hyun-Chul; Lee, Kuem Ju; Jung, Hi-Eun

    2011-03-01

    To find an association between cognitive-perceptual problems of older drivers and unsafe driving performance during simulated automobile driving in a virtual environment. Cross-sectional study. A driver evaluation clinic in a rehabilitation hospital. Fifty-five drivers aged 65 years or older and 48 drivers in their late twenties to early forties. All participants underwent evaluation of cognitive-perceptual function and driving performance, and the results were compared between older and younger drivers. The association between cognitive-perceptual function and driving performance was analyzed. Cognitive-perceptual function was evaluated with the Cognitive Perceptual Assessment for Driving (CPAD), a computer-based assessment tool consisting of depth perception, sustained attention, divided attention, the Stroop test, the digit span test, field dependency, and trail-making test A and B. Driving performance was evaluated with use of a virtual reality-based driving simulator. During simulated driving, car crashes were recorded, and an occupational therapist observed unsafe performances in controlling speed, braking, steering, vehicle positioning, making lane changes, and making turns. Thirty-five older drivers did not pass the CPAD test, whereas all of the younger drivers passed the test. When using the driving simulator, a significantly greater number of older drivers experienced car crashes and demonstrated unsafe performance in controlling speed, steering, and making lane changes. CPAD results were associated with car crashes, steering, vehicle positioning, and making lane changes. Older drivers who did not pass the CPAD test are 4 times more likely to experience a car crash, 3.5 times more likely to make errors in steering, 2.8 times more likely to make errors in vehicle positioning, and 6.5 times more likely to make errors in lane changes than are drivers who passed the CPAD test. Unsafe driving performance and car crashes during simulated driving were more prevalent in older drivers than in younger drivers. Unsafe performance in steering, vehicle positioning, making lane changes, and car crashes were associated with cognitive-perceptual dysfunction. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  3. Evaluating the effect of online data compression on the disk cache of a mass storage system

    NASA Technical Reports Server (NTRS)

    Pentakalos, Odysseas I.; Yesha, Yelena

    1994-01-01

    A trace driven simulation of the disk cache of a mass storage system was used to evaluate the effect of an online compression algorithm on various performance measures. Traces from the system at NASA's Center for Computational Sciences were used to run the simulation and disk cache hit ratios, number of files and bytes migrating to tertiary storage were measured. The measurements were performed for both an LRU and a size based migration algorithm. In addition to seeing the effect of online data compression on the disk cache performance measure, the simulation provided insight into the characteristics of the interactive references, suggesting that hint based prefetching algorithms are the only alternative for any future improvements to the disk cache hit ratio.

  4. Solid rocket booster performance evaluation model. Volume 3: Sample case. [propellant combustion simulation/internal ballistics

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The solid rocket booster performance evaluation model (SRB-11) is used to predict internal ballistics in a sample motor. This motor contains a five segmented grain. The first segment has a 14 pointed star configuration with a web which wraps partially around the forward dome. The other segments are circular in cross-section and are tapered along the interior burning surface. Two of the segments are inhibited on the forward face. The nozzle is not assumed to be submerged. The performance prediction is broken into two simulation parts: the delivered end item specific impulse and the propellant properties which are required as inputs for the internal ballistics module are determined; and the internal ballistics for the entire burn duration of the motor are simulated.

  5. Piloted Evaluation of an Integrated Methodology for Propulsion and Airframe Control Design

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Simon, Donald L.; Garg, Sanjay; Mattern, Duane L.; Ranaudo, Richard J.; Odonoghue, Dennis P.

    1994-01-01

    An integrated methodology for propulsion and airframe control has been developed and evaluated for a Short Take-Off Vertical Landing (STOVL) aircraft using a fixed base flight simulator at NASA Lewis Research Center. For this evaluation the flight simulator is configured for transition flight using a STOVL aircraft model, a full nonlinear turbofan engine model, simulated cockpit and displays, and pilot effectors. The paper provides a brief description of the simulation models, the flight simulation environment, the displays and symbology, the integrated control design, and the piloted tasks used for control design evaluation. In the simulation, the pilots successfully completed typical transition phase tasks such as combined constant deceleration with flight path tracking, and constant acceleration wave-off maneuvers. The pilot comments of the integrated system performance and the display symbology are discussed and analyzed to identify potential areas of improvement.

  6. DSN Array Simulator

    NASA Technical Reports Server (NTRS)

    Tikidjian, Raffi; Mackey, Ryan

    2008-01-01

    The DSN Array Simulator (wherein 'DSN' signifies NASA's Deep Space Network) is an updated version of software previously denoted the DSN Receive Array Technology Assessment Simulation. This software (see figure) is used for computational modeling of a proposed DSN facility comprising user-defined arrays of antennas and transmitting and receiving equipment for microwave communication with spacecraft on interplanetary missions. The simulation includes variations in spacecraft tracked and communication demand changes for up to several decades of future operation. Such modeling is performed to estimate facility performance, evaluate requirements that govern facility design, and evaluate proposed improvements in hardware and/or software. The updated version of this software affords enhanced capability for characterizing facility performance against user-defined mission sets. The software includes a Monte Carlo simulation component that enables rapid generation of key mission-set metrics (e.g., numbers of links, data rates, and date volumes), and statistical distributions thereof as functions of time. The updated version also offers expanded capability for mixed-asset network modeling--for example, for running scenarios that involve user-definable mixtures of antennas having different diameters (in contradistinction to a fixed number of antennas having the same fixed diameter). The improved version also affords greater simulation fidelity, sufficient for validation by comparison with actual DSN operations and analytically predictable performance metrics.

  7. EMU Suit Performance Simulation

    NASA Technical Reports Server (NTRS)

    Cowley, Matthew S.; Benson, Elizabeth; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    Introduction: Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for research and development are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques that focus on a human-centric design paradigm. These new techniques make use of virtual prototype simulations and fully adjustable physical prototypes of suit hardware. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process. Objectives: The primary objective was to test modern simulation techniques for evaluating the human performance component of two EMU suit concepts, pivoted and planar style hard upper torso (HUT). Methods: This project simulated variations in EVA suit shoulder joint design and subject anthropometry and then measured the differences in shoulder mobility caused by the modifications. These estimations were compared to human-in-the-loop test data gathered during past suited testing using four subjects (two large males, two small females). Results: Results demonstrated that EVA suit modeling and simulation are feasible design tools for evaluating and optimizing suit design based on simulated performance. The suit simulation model was found to be advantageous in its ability to visually represent complex motions and volumetric reach zones in three dimensions, giving designers a faster and deeper comprehension of suit component performance vs. human performance. Suit models were able to discern differing movement capabilities between EMU HUT configurations, generic suit fit concerns, and specific suit fit concerns for crewmembers based on individual anthropometry

  8. Pre-simulation orientation for medical trainees: An approach to decrease anxiety and improve confidence and performance.

    PubMed

    Bommer, Cassidy; Sullivan, Sarah; Campbell, Krystle; Ahola, Zachary; Agarwal, Suresh; O'Rourke, Ann; Jung, Hee Soo; Gibson, Angela; Leverson, Glen; Liepert, Amy E

    2018-02-01

    We assessed the effect of basic orientation to the simulation environment on anxiety, confidence, and clinical decision making. Twenty-four graduating medical students participated in a two-week surgery preparatory curriculum, including three simulations. Baseline anxiety was assessed pre-course. Scenarios were completed on day 2 and day 9. Prior to the first simulation, participants were randomly divided into two groups. Only one group received a pre-simulation orientation. Before the second simulation, all students received the same orientation. Learner anxiety was reported immediately preceding and following each simulation. Confidence was assessed post-simulation. Performance was evaluated by surgical faculty. The oriented group experienced decreased anxiety following the first simulation (p = 0.003); the control group did not. Compared to the control group, the oriented group reported less anxiety and greater confidence and received higher performance scores following all three simulations (all p < 0.05). Pre-simulation orientation reduces anxiety while increasing confidence and improving performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Evaluation of a cardiopulmonary resuscitation curriculum in a low resource environment.

    PubMed

    Chang, Mary P; Lyon, Camila B; Janiszewski, David; Aksamit, Deborah; Kateh, Francis; Sampson, John

    2015-11-07

    To evaluate whether a 2-day International Liaison Committee on Resuscitation (ILCOR) Universal Algorithm-based curriculum taught in a tertiary care hospital in Liberia increases local health care provider knowledge and skill comfort level. A combined basic and advanced cardiopulmonary resuscitation (CPR) curriculum was developed for low-resource settings that included lectures and low-fidelity manikin-based simulations. In March 2014, the curriculum was taught to healthcare providers in a tertiary care hospital in Liberia. In a quality assurance review, participants were evaluated for knowledge and comfort levels with resuscitation before and after the workshop. They were also videotaped during simulation sessions and evaluated on standardized performance metrics. Fifty-two hospital staff completed both pre-and post-curriculum surveys. The median score was 45% pre-curriculum and 82% post-curriculum (p<0.00001). The median provider comfort level score was 4 of 5 pre-curriculum and 5 of 5 post-curriculum (p<0.00001). During simulations, 93.2% of participants performed the pulse check within 10 seconds, and 97.7% performed defibrillation within 180 seconds. Clinician knowledge of and comfort level with CPR increased significantly after participating in our curriculum. A CPR curriculum based on lectures and low-fidelity manikin simulations may be an effective way to teach resuscitation in this low-resource setting.

  10. Evaluating the Performance of the Goddard Multi-Scale Modeling Framework against GPM, TRMM and CloudSat/CALIPSO Products

    NASA Astrophysics Data System (ADS)

    Chern, J. D.; Tao, W. K.; Lang, S. E.; Matsui, T.; Mohr, K. I.

    2014-12-01

    Four six-month (March-August 2014) experiments with the Goddard Multi-scale Modeling Framework (MMF) were performed to study the impacts of different Goddard one-moment bulk microphysical schemes and large-scale forcings on the performance of the MMF. Recently a new Goddard one-moment bulk microphysics with four-ice classes (cloud ice, snow, graupel, and frozen drops/hail) has been developed based on cloud-resolving model simulations with large-scale forcings from field campaign observations. The new scheme has been successfully implemented to the MMF and two MMF experiments were carried out with this new scheme and the old three-ice classes (cloud ice, snow graupel) scheme. The MMF has global coverage and can rigorously evaluate microphysics performance for different cloud regimes. The results show MMF with the new scheme outperformed the old one. The MMF simulations are also strongly affected by the interaction between large-scale and cloud-scale processes. Two MMF sensitivity experiments with and without nudging large-scale forcings to those of ERA-Interim reanalysis were carried out to study the impacts of large-scale forcings. The model simulated mean and variability of surface precipitation, cloud types, cloud properties such as cloud amount, hydrometeors vertical profiles, and cloud water contents, etc. in different geographic locations and climate regimes are evaluated against GPM, TRMM, CloudSat/CALIPSO satellite observations. The Goddard MMF has also been coupled with the Goddard Satellite Data Simulation Unit (G-SDSU), a system with multi-satellite, multi-sensor, and multi-spectrum satellite simulators. The statistics of MMF simulated radiances and backscattering can be directly compared with satellite observations to assess the strengths and/or deficiencies of MMF simulations and provide guidance on how to improve the MMF and microphysics.

  11. Simulated Driving Assessment (SDA) for Teen Drivers: Results from a Validation Study

    PubMed Central

    McDonald, Catherine C.; Kandadai, Venk; Loeb, Helen; Seacrist, Thomas S.; Lee, Yi-Ching; Winston, Zachary; Winston, Flaura K.

    2015-01-01

    Background Driver error and inadequate skill are common critical reasons for novice teen driver crashes, yet few validated, standardized assessments of teen driving skills exist. The purpose of this study was to evaluate the construct and criterion validity of a newly developed Simulated Driving Assessment (SDA) for novice teen drivers. Methods The SDA's 35-minute simulated drive incorporates 22 variations of the most common teen driver crash configurations. Driving performance was compared for 21 inexperienced teens (age 16–17 years, provisional license ≤90 days) and 17 experienced adults (age 25–50 years, license ≥5 years, drove ≥100 miles per week, no collisions or moving violations ≤3 years). SDA driving performance (Error Score) was based on driving safety measures derived from simulator and eye-tracking data. Negative driving outcomes included simulated collisions or run-off-the-road incidents. A professional driving evaluator/instructor reviewed videos of SDA performance (DEI Score). Results The SDA demonstrated construct validity: 1.) Teens had a higher Error Score than adults (30 vs. 13, p=0.02); 2.) For each additional error committed, the relative risk of a participant's propensity for a simulated negative driving outcome increased by 8% (95% CI: 1.05–1.10, p<0.01). The SDA demonstrated criterion validity: Error Score was correlated with DEI Score (r=−0.66, p<0.001). Conclusions This study supports the concept of validated simulated driving tests like the SDA to assess novice driver skill in complex and hazardous driving scenarios. The SDA, as a standard protocol to evaluate teen driver performance, has the potential to facilitate screening and assessment of teen driving readiness and could be used to guide targeted skill training. PMID:25740939

  12. Assessment potential of a new suture simulator in laparoscopic surgical skills training.

    PubMed

    Takeoka, Tomohira; Takiguchi, Shuji; Uemura, Munenori; Miyazaki, Yasuhiro; Takahashi, Tsuyoshi; Kurokawa, Yukinori; Makino, Tomoki; Yamasaki, Makoto; Mori, Masaki; Yuichiro Doki, And

    2017-12-01

    The skills necessary for performing effective laparoscopic suturing are difficult to acquire; as a result, simulators for learning these skills are rapidly becoming integrated into surgical training. The aim of the study was to verify whether a new hybrid simulator has the potential to measure skill improvement in young, less experienced gastroenterological surgeons. The study included 12 surgeons (median age, 29 (27-38)] years; 11 men (91.7%), one woman (8.3%)) who participated in a two-day laparoscopic training seminar. We used the new simulator before and after the program to evaluate individual performance. Skills were evaluated using five criteria: volume of air pressure leakage, number of full-thickness sutures, suture tension, wound area, and performance time. Air pressure leakage was significantly higher after than before the training (p = .027). The number of full-thickness sutures was significantly higher post-training (p < .01). Suture tension was significantly less post-training (p = .011). Wound opening areas were significantly smaller post-training (p = .018). Performance time was significantly shorter post-training (p = .032). Our study demonstrated the assessment quality of this new laparoscopic suture simulator.

  13. Phosphorus component in AnnAGNPS

    USGS Publications Warehouse

    Yuan, Y.; Bingner, R.L.; Theurer, F.D.; Rebich, R.A.; Moore, P.A.

    2005-01-01

    The USDA Annualized Agricultural Non-Point Source Pollution model (AnnAGNPS) has been developed to aid in evaluation of watershed response to agricultural management practices. Previous studies have demonstrated the capability of the model to simulate runoff and sediment, but not phosphorus (P). The main purpose of this article is to evaluate the performance of AnnAGNPS on P simulation using comparisons with measurements from the Deep Hollow watershed of the Mississippi Delta Management Systems Evaluation Area (MDMSEA) project. A sensitivity analysis was performed to identify input parameters whose impact is the greatest on P yields. Sensitivity analysis results indicate that the most sensitive variables of those selected are initial soil P contents, P application rate, and plant P uptake. AnnAGNPS simulations of dissolved P yield do not agree well with observed dissolved P yield (Nash-Sutcliffe coefficient of efficiency of 0.34, R2 of 0.51, and slope of 0.24); however, AnnAGNPS simulations of total P yield agree well with observed total P yield (Nash-Sutcliffe coefficient of efficiency of 0.85, R2 of 0.88, and slope of 0.83). The difference in dissolved P yield may be attributed to limitations in model simulation of P processes. Uncertainties in input parameter selections also affect the model's performance.

  14. Shoulder arthroscopy simulator training improves shoulder arthroscopy performance in a cadaveric model.

    PubMed

    Henn, R Frank; Shah, Neel; Warner, Jon J P; Gomoll, Andreas H

    2013-06-01

    The purpose of this study was to quantify the benefits of shoulder arthroscopy simulator training with a cadaveric model of shoulder arthroscopy. Seventeen first-year medical students with no prior experience in shoulder arthroscopy were enrolled and completed this study. Each subject completed a baseline proctored arthroscopy on a cadaveric shoulder, which included controlling the camera and completing a standard series of tasks using the probe. The subjects were randomized, and 9 of the subjects received training on a virtual reality simulator for shoulder arthroscopy. All subjects then repeated the same cadaveric arthroscopy. The arthroscopic videos were analyzed in a blinded fashion for time to task completion and subjective assessment of technical performance. The 2 groups were compared by use of Student t tests, and change over time within groups was analyzed with paired t tests. There were no observed differences between the 2 groups on the baseline evaluation. The simulator group improved significantly from baseline with respect to time to completion and subjective performance (P < .05). Time to completion was significantly faster in the simulator group compared with controls at the final evaluation (P < .05). No difference was observed between the groups on the subjective scores at the final evaluation (P = .98). Shoulder arthroscopy simulator training resulted in significant benefits in clinical shoulder arthroscopy time to task completion in this cadaveric model. This study provides important additional evidence of the benefit of simulators in orthopaedic surgical training. There may be a role for simulator training in shoulder arthroscopy education. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  15. Shoulder Arthroscopy Simulator Training Improves Shoulder Arthroscopy Performance in a Cadaver Model

    PubMed Central

    Henn, R. Frank; Shah, Neel; Warner, Jon J.P.; Gomoll, Andreas H.

    2013-01-01

    Purpose The purpose of this study was to quantify the benefits of shoulder arthroscopy simulator training with a cadaver model of shoulder arthroscopy. Methods Seventeen first year medical students with no prior experience in shoulder arthroscopy were enrolled and completed this study. Each subject completed a baseline proctored arthroscopy on a cadaveric shoulder, which included controlling the camera and completing a standard series of tasks using the probe. The subjects were randomized, and nine of the subjects received training on a virtual reality simulator for shoulder arthroscopy. All subjects then repeated the same cadaveric arthroscopy. The arthroscopic videos were analyzed in a blinded fashion for time to task completion and subjective assessment of technical performance. The two groups were compared with students t-tests, and change over time within groups was analyzed with paired t-tests. Results There were no observed differences between the two groups on the baseline evaluation. The simulator group improved significantly from baseline with respect to time to completion and subjective performance (p<0.05). Time to completion was significantly faster in the simulator group compared to controls at final evaluation (p<0.05). No difference was observed between the groups on the subjective scores at final evaluation (p=0.98). Conclusions Shoulder arthroscopy simulator training resulted in significant benefits in clinical shoulder arthroscopy time to task completion in this cadaver model. This study provides important additional evidence of the benefit of simulators in orthopaedic surgical training. Clinical Relevance There may be a role for simulator training in shoulder arthroscopy education. PMID:23591380

  16. Evaluation of ceramics for stator application: Gas turbine engine report

    NASA Technical Reports Server (NTRS)

    Trela, W.; Havstad, P. H.

    1978-01-01

    Current ceramic materials, component fabrication processes, and reliability prediction capability for ceramic stators in an automotive gas turbine engine environment are assessed. Simulated engine duty cycle testing of stators conducted at temperatures up to 1093 C is discussed. Materials evaluated are SiC and Si3N4 fabricated from two near-net-shape processes: slip casting and injection molding. Stators for durability cycle evaluation and test specimens for material property characterization, and reliability prediction model prepared to predict stator performance in the simulated engine environment are considered. The status and description of the work performed for the reliability prediction modeling, stator fabrication, material property characterization, and ceramic stator evaluation efforts are reported.

  17. 3D Printed Surgical Instruments Evaluated by a Simulated Crew of a Mars Mission.

    PubMed

    Wong, Julielynn Y; Pfahnl, Andreas C

    2016-09-01

    The first space-based fused deposition modeling (FDM) 3D printer became operational in 2014. This study evaluated whether Mars simulation crewmembers of the Hawai'i Space Exploration Analog and Simulation (HI-SEAS) II mission with no prior surgical experience could utilize acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments FDM 3D printed on Earth to complete simulated surgical tasks. This study sought to examine the feasibility of using 3D printed surgical tools when the primary crew medical officer is incapacitated and the back-up crew medical officer must conduct a surgical procedure during a simulated extended space mission. During a 4 mo duration ground-based analog mission, five simulation crewmembers with no prior surgical experience completed 16 timed sets of simulated prepping, draping, incising, and suturing tasks to evaluate the relative speed of using four ABS thermoplastic instruments printed on Earth compared to conventional instruments. All four simulated surgical tasks were successfully performed using 3D printed instruments by Mars simulation crewmembers with no prior surgical experience. There was no substantial difference in time to completion of simulated tasks with control vs. 3D printed sponge stick, towel clamp, scalpel handle, and toothed forceps. These limited findings support further investigation into the creation of an onboard digital catalog of validated 3D printable surgical instrument design files to support autonomous, crew-administered healthcare on Mars missions. Future work could include addressing sterility, biocompatibility, and having astronaut crew medical officers test a wider range of surgical instruments printed in microgravity during actual surgical procedures. Wong JY, Pfahnl AC. 3D printed surgical instruments evaluated by a simulated crew of a Mars mission. Aerosp Med Hum Perform. 2016; 87(9):806-810.

  18. Effectiveness evaluation of simulative workshops for newly licensed drivers.

    PubMed

    Rosenbloom, Tova; Eldror, Ehud

    2014-02-01

    The current study set to examine the effects of simulator use in driving instruction on newly licensed drivers, comparing the road safety knowledge and reported intended behavior, as well as the actual driving performance of new drivers. Participants consisted of 280 newly licensed driver, of which 140 whose drivers license training included additional simulator-based lessons, and 140 drivers whose training precluded simulator-based lessons. All drivers answered questionnaires pertaining to their intended safe driving behaviors (according to Ajzen's (2000) theory of planned behavior), and to their traffic safety knowledge. Of the initial sample, 40 drivers received actual driving performance evaluation by an expert driving instructor, as well as by in-vehicle data recorders (IVDRs). We assumed that safer drivers report safer driving intentions, demonstrate greater traffic safety knowledge, evaluated as safer drivers by the driving instructor, and display lower and stable driving parameters on the IVDRs. We hypothesized that theoretical driving studies combined with practical training on simulators will elevate the safety level of novices driving. Hierarchical regression analyses on driving intentions indicated that drivers who did not receive simulator-based lessons demonstrated safer driving intentions compared to drivers who received simulator-based lessons. This pattern possibly indicating the drivers who received simulator-based lessons felt more confident in their driving abilities compared to drivers who did not receive simulated training. No significant difference was found in traffic safety knowledge, or in the evaluation of the expert driving instructor. IDVR data comparisons indicated drivers who received simulator-based lessons braked more often and were less prone to headway events, suggesting a more responsive driving style. These findings do not point to any significant advantage or disadvantage of the current simulator-based driving training over other driving training methods. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Methodology development for evaluation of selective-fidelity rotorcraft simulation

    NASA Technical Reports Server (NTRS)

    Lewis, William D.; Schrage, D. P.; Prasad, J. V. R.; Wolfe, Daniel

    1992-01-01

    This paper addressed the initial step toward the goal of establishing performance and handling qualities acceptance criteria for realtime rotorcraft simulators through a planned research effort to quantify the system capabilities of 'selective fidelity' simulators. Within this framework the simulator is then classified based on the required task. The simulator is evaluated by separating the various subsystems (visual, motion, etc.) and applying corresponding fidelity constants based on the specific task. This methodology not only provides an assessment technique, but also provides a technique to determine the required levels of subsystem fidelity for a specific task.

  20. Evaluation of CSM-CROPGRO-Cotton for simulating effects of management and climate change on cotton growth and evapotranspiration in an arid environment

    USDA-ARS?s Scientific Manuscript database

    Originally developed for simulating soybean growth and development, the CROPGRO model was recently re-parameterized for cotton. However, further efforts are necessary to evaluate the model's performance against field measurements for new environments and management options. The objective of this stu...

  1. Simulating forage crop production in a northern climate with the Integrated Farm System Model

    USDA-ARS?s Scientific Manuscript database

    Whole-farm simulation models are useful tools for evaluating the effect of management practices and climate variability on the agro-environmental and economic performance of farms. A few process-based farm-scale models have been developed, but none have been evaluated in a northern region with a sho...

  2. Dynamic Evaluation of Two Decades of WRF-CMAQ Ozone Simulations over the Contiguous United States (2017 MAC-MAQ Conference Presentation)

    EPA Science Inventory

    Dynamic evaluation of two decades of ozone simulations performed with the fully coupled Weather Research and Forecasting (WRF)–Community Multi-scale Air Quality (CMAQ) model over the contiguous United States is conducted to assess how well the changes in observed ozone air ...

  3. Evaluating the Impact of Classroom Education on the Management of Septic Shock Using Human Patient Simulation.

    PubMed

    Lighthall, Geoffrey K; Bahmani, Dona; Gaba, David

    2016-02-01

    Classroom lectures are the mainstay of imparting knowledge in a structured manner and have the additional goals of stimulating critical thinking, lifelong learning, and improvements in patient care. The impact of lectures on patient care is difficult to examine in critical care because of the heterogeneity in patient conditions and personnel as well as confounders such as time pressure, interruptions, fatigue, and nonstandardized observation methods. The critical care environment was recreated in a simulation laboratory using a high-fidelity mannequin simulator, where a mannequin simulator with a standardized script for septic shock was presented to trainees. The reproducibility of this patient and associated conditions allowed the evaluation of "clinical performance" in the management of septic shock. In a previous study, we developed and validated tools for the quantitative analysis of house staff managing septic shock simulations. In the present analysis, we examined whether measures of clinical performance were improved in those cases where a lecture on the management of shock preceded a simulated exercise on the management of septic shock. The administration of the septic shock simulations allowed for performance measurements to be calculated for both medical interns and for subsequent management by a larger resident-led team. The analysis revealed that receiving a lecture on shock before managing a simulated patient with septic shock did not produce scores higher than for those who did not receive the previous lecture. This result was similar for both interns managing the patient and for subsequent management by a resident-led team. We failed to find an immediate impact on clinical performance in simulations of septic shock after a lecture on the management of this syndrome. Lectures are likely not a reliable sole method for improving clinical performance in the management of complex disease processes.

  4. Application of unsteady flow rate evaluations to identify the dynamic transfer function of a cavitatingVenturi

    NASA Astrophysics Data System (ADS)

    Marie-Magdeleine, A.; Fortes-Patella, R.; Lemoine, N.; Marchand, N.

    2012-11-01

    This study concerns the simulation of the implementation of the Kinetic Differential Pressure (KDP) method used for the unsteady mass flow rate evaluation in order to identify the dynamic transfer matrix of a cavitatingVenturi. Firstly, the equations of the IZ code used for this simulation are introduced. Next, the methodology for evaluating unsteady pressures and mass flow rates at the inlet and the outlet of the cavitatingVenturi and for identifying the dynamic transfer matrix is presented. Later, the robustness of the method towards measurement uncertainties implemented as a Gaussian white noise is studied. The results of the numerical simulations let us estimate the system linearity domain and to perform the Empirical Transfer Function Evaluation on the inlet frequency per frequency signal and on the chirp signal tests. Then the pressure data obtained with the KDP method is taken and the identification procedure by ETFE and by the user-made Auto-Recursive Moving-Average eXogenous algorithms is performed and the obtained transfer matrix coefficients are compared with those obtained from the simulated input and output data.

  5. Randomized controlled trial of multidisciplinary team stress and performance in immersive simulation for management of infant in shock: study protocol.

    PubMed

    Ghazali, Daniel Aiham; Ragot, Stéphanie; Breque, Cyril; Guechi, Youcef; Boureau-Voultoury, Amélie; Petitpas, Franck; Oriot, Denis

    2016-03-25

    Human error and system failures continue to play a substantial role in adverse outcomes in healthcare. Simulation improves management of patients in critical condition, especially if it is undertaken by a multidisciplinary team. It covers technical skills (technical and therapeutic procedures) and non-technical skills, known as Crisis Resource Management. The relationship between stress and performance is theoretically described by the Yerkes-Dodson law as an inverted U-shaped curve. Performance is very low for a low level of stress and increases with an increased level of stress, up to a point, after which performance decreases and becomes severely impaired. The objectives of this randomized trial are to study the effect of stress on performance and the effect of repeated simulation sessions on performance and stress. This study is a single-center, investigator-initiated randomized controlled trial including 48 participants distributed in 12 multidisciplinary teams. Each team is made up of 4 persons: an emergency physician, a resident, a nurse, and an ambulance driver who usually constitute a French Emergency Medical Service team. Six multidisciplinary teams are planning to undergo 9 simulation sessions over 1 year (experimental group), and 6 multidisciplinary teams are planning to undergo 3 simulation sessions over 1 year (control group). Evidence of the existence of stress will be assessed according to 3 criteria: biological, electrophysiological, and psychological stress. The impact of stress on overall team performance, technical procedure and teamwork will be evaluated. Participant self-assessment of the perceived impact of simulations on clinical practice will be collected. Detection of post-traumatic stress disorder will be performed by self-assessment questionnaire on the 7(th) day and after 1 month. We will concomitantly evaluate technical and non-technical performance, and the impact of stress on both. This is the first randomized trial studying repetition of simulation sessions and its impact on both clinical performance and stress, which is explored by objective and subjective assessments. We expect that stress decreases team performance and that repeated simulation will increase it. We expect no variation of stress parameters regardless of the level of performance. ClinicalTrials.gov registration number NCT02424890.

  6. Guidance law simulation studies for complex approaches using the Microwave Landing System (MLS)

    NASA Technical Reports Server (NTRS)

    Feather, J. B.

    1986-01-01

    This report documents results for MLS guidance algorithm development conducted by DAC for NASA under the Advance Transport Operating Systems (ATOPS) Technology Studies program (NAS1-18028). The study consisted of evaluating guidance laws for vertical and lateral path control, as well as speed control, by simulating an MLS approach for the Washington National Airport. This work is an extension and generalization of a previous ATOPS contract (NAS1-16202) completed by DAC in 1985. The Washington river approach was simulated by six waypoints and one glideslope change and consisted of an eleven nautical mile approach path. Tracking performance was generated for 10 cases representing several different conditions, which included MLS noise, steady wind, turbulence, and windshear. Results of this simulation phase are suitable for use in future fixed-base simulator evaluations employing actual hardware (autopilot and a performance management system), as well as crew procedures and information requirements for MLS.

  7. A satellite simulator for TRMM PR applied to climate model simulations

    NASA Astrophysics Data System (ADS)

    Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.

    2017-12-01

    Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.

  8. Evaluation of CORDEX-Arctic daily precipitation and temperature-based climate indices over Canadian Arctic land areas

    NASA Astrophysics Data System (ADS)

    Diaconescu, Emilia Paula; Mailhot, Alain; Brown, Ross; Chaumont, Diane

    2018-03-01

    This study focuses on the evaluation of daily precipitation and temperature climate indices and extremes simulated by an ensemble of 12 Regional Climate Model (RCM) simulations from the ARCTIC-CORDEX experiment with surface observations in the Canadian Arctic from the Adjusted Historical Canadian Climate Dataset. Five global reanalyses products (ERA-Interim, JRA55, MERRA, CFSR and GMFD) are also included in the evaluation to assess their potential for RCM evaluation in data sparse regions. The study evaluated the means and annual anomaly distributions of indices over the 1980-2004 dataset overlap period. The results showed that RCM and reanalysis performance varied with the climate variables being evaluated. Most RCMs and reanalyses were able to simulate well climate indices related to mean air temperature and hot extremes over most of the Canadian Arctic, with the exception of the Yukon region where models displayed the largest biases related to topographic effects. Overall performance was generally poor for indices related to cold extremes. Likewise, only a few RCM simulations and reanalyses were able to provide realistic simulations of precipitation extreme indicators. The multi-reanalysis ensemble provided superior results to individual datasets for climate indicators related to mean air temperature and hot extremes, but not for other indicators. These results support the use of reanalyses as reference datasets for the evaluation of RCM mean air temperature and hot extremes over northern Canada, but not for cold extremes and precipitation indices.

  9. Performance of the SEAPROG prognosis variant of the forest vegetation simulator.

    Treesearch

    Michael H. McClellan; Frances E. Biles

    2003-01-01

    This paper reports the first phase of a recent effort to evaluate the performance and use of the FVS-SEAPROG vegetation growth model. In this paper, we present our evaluation of SEAPROG’s performance in modeling the growth of even-aged stands regenerated by clearcutting, windthrow, or fire. We evaluated the model by comparing model predictions to observed values from...

  10. Optimization Model for Web Based Multimodal Interactive Simulations.

    PubMed

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-07-15

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update . In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach.

  11. Optimization Model for Web Based Multimodal Interactive Simulations

    PubMed Central

    Halic, Tansel; Ahn, Woojin; De, Suvranu

    2015-01-01

    This paper presents a technique for optimizing the performance of web based multimodal interactive simulations. For such applications where visual quality and the performance of simulations directly influence user experience, overloading of hardware resources may result in unsatisfactory reduction in the quality of the simulation and user satisfaction. However, optimization of simulation performance on individual hardware platforms is not practical. Hence, we present a mixed integer programming model to optimize the performance of graphical rendering and simulation performance while satisfying application specific constraints. Our approach includes three distinct phases: identification, optimization and update. In the identification phase, the computing and rendering capabilities of the client device are evaluated using an exploratory proxy code. This data is utilized in conjunction with user specified design requirements in the optimization phase to ensure best possible computational resource allocation. The optimum solution is used for rendering (e.g. texture size, canvas resolution) and simulation parameters (e.g. simulation domain) in the update phase. Test results are presented on multiple hardware platforms with diverse computing and graphics capabilities to demonstrate the effectiveness of our approach. PMID:26085713

  12. Simulation of plastic surgery and microvascular procedures using perfused fresh human cadavers.

    PubMed

    Carey, Joseph N; Rommer, Elizabeth; Sheckter, Clifford; Minneti, Michael; Talving, Peep; Wong, Alex K; Garner, Warren; Urata, Mark M

    2014-02-01

    Surgical simulation models are often limited by their lack of fidelity, which hinders their essential purpose, making a better surgeon. Fresh cadaveric tissue is a superior model of simulation owing to its approximation of live tissue. One major unresolved difference between dead and live tissue is perfusion. Here, we propose a means of enhancing the fidelity of cadaveric simulation through the development of a perfused cadaveric model whereby simulation is further able to approach life-like surgery and teach one of the more technically demanding skills of plastic surgery: microsurgery. Fresh tissue human cadavers were procured according to university protocol. Perfusion was performed via cannulation of large vessels, and arterial and venous pressure was maintained by centrifugal circulation. Skin perfusion was evaluated with incisions in the perfused regions and was evaluated using indocyanine green angiography. Surgical simulations were selected to broadly evaluate applicability to plastic surgical education. Surgical simulation of 38 procedures ranging in complexity from skin excisions to microsurgical cases was performed with high priority given to the accurate simulation of clinical procedures. Flap dissections included perforator flaps, muscle flaps, and fasciocutaneous flaps. Effective perfusion was noted with ICG angiography and notable bleeding vessels. Microsurgical flap transfer was successfully performed. We report the establishment of a high fidelity surgical simulation using a perfused fresh tissue model in a realistic environment akin to the operating room. We anticipate utilization of this model prior to entering the operating room will enhance surgical ability and offer a valuable resource in plastic surgical education. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Learning outcomes evaluation of a simulation-based introductory course to anaesthesia.

    PubMed

    Rábago, J L; López-Doueil, M; Sancho, R; Hernández-Pinto, P; Neira, N; Capa, E; Larraz, E; Redondo-Figuero, C G; Maestre, J M

    2017-10-01

    An increased number of errors and reduced patient safety have been reported during the incorporation of residents, as this period involves learning new skills. The objectives were to evaluate the learning outcomes of an immersive simulation boot-camp for incoming residents before starting the clinical rotations. Airway assessment, airway control with direct laryngoscopy, and epidural catheterization competencies were evaluated. Twelve first-year anaesthesiology residents participated. A prospective study to evaluate transfer of endotracheal intubation skills learned at the simulation centre to clinical practice (primary outcome) was conducted. A checklist of 28 skills and behaviours was used to assess the first supervised intubation performed during anaesthesia induction in ASA I/II patients. Secondary outcome was self-efficacy to perform epidural catheterization. A satisfaction survey was also performed. Seventy-five percent of residents completed more than 21 out of 28 skills and behaviours to assess and control the airway during their first intubation in patients. Twelve items were performed by all residents and 5 by half of them. More than 83% of participants reported a high level of self-efficacy in placing an epidural catheter. All participants would recommend the course to their colleagues. A focused intensive simulation-based boot-camp addressing key competencies required to begin anaesthesia residency was well received, and led to transfer of airway management skills learned to clinical settings when performing for first time on patients, and to increased self-reported efficacy in performing epidural catheterization. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Evaluation of DNA Force Fields in Implicit Solvation

    PubMed Central

    Gaillard, Thomas; Case, David A.

    2011-01-01

    DNA structural deformations and dynamics are crucial to its interactions in the cell. Theoretical simulations are essential tools to explore the structure, dynamics, and thermodynamics of biomolecules in a systematic way. Molecular mechanics force fields for DNA have benefited from constant improvements during the last decades. Several studies have evaluated and compared available force fields when the solvent is modeled by explicit molecules. On the other hand, few systematic studies have assessed the quality of duplex DNA models when implicit solvation is employed. The interest of an implicit modeling of the solvent consists in the important gain in the simulation performance and conformational sampling speed. In this study, respective influences of the force field and the implicit solvation model choice on DNA simulation quality are evaluated. To this end, extensive implicit solvent duplex DNA simulations are performed, attempting to reach both conformational and sequence diversity convergence. Structural parameters are extracted from simulations and statistically compared to available experimental and explicit solvation simulation data. Our results quantitatively expose the respective strengths and weaknesses of the different DNA force fields and implicit solvation models studied. This work can lead to the suggestion of improvements to current DNA theoretical models. PMID:22043178

  15. Using simulated fluorescence cell micrographs for the evaluation of cell image segmentation algorithms.

    PubMed

    Wiesmann, Veit; Bergler, Matthias; Palmisano, Ralf; Prinzen, Martin; Franz, Daniela; Wittenberg, Thomas

    2017-03-18

    Manual assessment and evaluation of fluorescent micrograph cell experiments is time-consuming and tedious. Automated segmentation pipelines can ensure efficient and reproducible evaluation and analysis with constant high quality for all images of an experiment. Such cell segmentation approaches are usually validated and rated in comparison to manually annotated micrographs. Nevertheless, manual annotations are prone to errors and display inter- and intra-observer variability which influence the validation results of automated cell segmentation pipelines. We present a new approach to simulate fluorescent cell micrographs that provides an objective ground truth for the validation of cell segmentation methods. The cell simulation was evaluated twofold: (1) An expert observer study shows that the proposed approach generates realistic fluorescent cell micrograph simulations. (2) An automated segmentation pipeline on the simulated fluorescent cell micrographs reproduces segmentation performances of that pipeline on real fluorescent cell micrographs. The proposed simulation approach produces realistic fluorescent cell micrographs with corresponding ground truth. The simulated data is suited to evaluate image segmentation pipelines more efficiently and reproducibly than it is possible on manually annotated real micrographs.

  16. Evaluation of rainfall simulations over West Africa in dynamically downscaled CMIP5 global circulation models

    NASA Astrophysics Data System (ADS)

    Akinsanola, A. A.; Ajayi, V. O.; Adejare, A. T.; Adeyeri, O. E.; Gbode, I. E.; Ogunjobi, K. O.; Nikulin, G.; Abolude, A. T.

    2018-04-01

    This study presents evaluation of the ability of Rossby Centre Regional Climate Model (RCA4) driven by nine global circulation models (GCMs), to skilfully reproduce the key features of rainfall climatology over West Africa for the period of 1980-2005. The seasonal climatology and annual cycle of the RCA4 simulations were assessed over three homogenous subregions of West Africa (Guinea coast, Savannah, and Sahel) and evaluated using observed precipitation data from the Global Precipitation Climatology Project (GPCP). Furthermore, the model output was evaluated using a wide range of statistical measures. The interseasonal and interannual variability of the RCA4 were further assessed over the subregions and the whole of the West Africa domain. Results indicate that the RCA4 captures the spatial and interseasonal rainfall pattern adequately but exhibits a weak performance over the Guinea coast. Findings from the interannual rainfall variability indicate that the model performance is better over the larger West Africa domain than the subregions. The largest difference across the RCA4 simulated annual rainfall was found in the Sahel. Result from the Mann-Kendall test showed no significant trend for the 1980-2005 period in annual rainfall either in GPCP observation data or in the model simulations over West Africa. In many aspects, the RCA4 simulation driven by the HadGEM2-ES perform best over the region. The use of the multimodel ensemble mean has resulted to the improved representation of rainfall characteristics over the study domain.

  17. Evaluating synoptic systems in the CMIP5 climate models over the Australian region

    NASA Astrophysics Data System (ADS)

    Gibson, Peter B.; Uotila, Petteri; Perkins-Kirkpatrick, Sarah E.; Alexander, Lisa V.; Pitman, Andrew J.

    2016-10-01

    Climate models are our principal tool for generating the projections used to inform climate change policy. Our confidence in projections depends, in part, on how realistically they simulate present day climate and associated variability over a range of time scales. Traditionally, climate models are less commonly assessed at time scales relevant to daily weather systems. Here we explore the utility of a self-organizing maps (SOMs) procedure for evaluating the frequency, persistence and transitions of daily synoptic systems in the Australian region simulated by state-of-the-art global climate models. In terms of skill in simulating the climatological frequency of synoptic systems, large spread was observed between models. A positive association between all metrics was found, implying that relative skill in simulating the persistence and transitions of systems is related to skill in simulating the climatological frequency. Considering all models and metrics collectively, model performance was found to be related to model horizontal resolution but unrelated to vertical resolution or representation of the stratosphere. In terms of the SOM procedure, the timespan over which evaluation was performed had some influence on model performance skill measures, as did the number of circulation types examined. These findings have implications for selecting models most useful for future projections over the Australian region, particularly for projections related to synoptic scale processes and phenomena. More broadly, this study has demonstrated the utility of the SOMs procedure in providing a process-based evaluation of climate models.

  18. Compensation for time delay in flight simulator visual-display systems

    NASA Technical Reports Server (NTRS)

    Crane, D. F.

    1983-01-01

    A piloted aircraft can be viewed as a closed-loop, man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability, and these changes bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. Delay compensation, designed to restore pilot-aircraft system stability, was evaluated in several studies which are reported here. The studies range from single-axis, tracking-task experiments (with sufficient subjects and trials to establish statistical significance of the results) to a brief evaluation of compensation of a computer-generated-imagery (CGI) visual display system in a full six-degree-of-freedom simulation. The compensation was effective - improvements in pilot performance and workload or aircraft handling-qualities rating (HQR) were observed. Results from recent aircraft handling-qualities research literature which support the compensation design approach are also reviewed.

  19. Driving Simulator Performance of Veterans from the Iraq and Afghanistan Wars

    DTIC Science & Technology

    2013-01-01

    abilities among this cohort who self-report poorer driving safety postdeployment. OIF/OEF Veterans (n = 25) and age- and education-matched civilian...more poorly on an objective evaluation of driving safety and that the presence of PTSD could be associated with worse performance on this standardized driving simulator assessment.

  20. Design and evaluation of an augmented reality simulator using leap motion.

    PubMed

    Wright, Trinette; de Ribaupierre, Sandrine; Eagleson, Roy

    2017-10-01

    Advances in virtual and augmented reality (AR) are having an impact on the medical field in areas such as surgical simulation. Improvements to surgical simulation will provide students and residents with additional training and evaluation methods. This is particularly important for procedures such as the endoscopic third ventriculostomy (ETV), which residents perform regularly. Simulators such as NeuroTouch, have been designed to aid in training associated with this procedure. The authors have designed an affordable and easily accessible ETV simulator, and compare it with the existing NeuroTouch for its usability and training effectiveness. This simulator was developed using Unity, Vuforia and the leap motion (LM) for an AR environment. The participants, 16 novices and two expert neurosurgeons, were asked to complete 40 targeting tasks. Participants used the NeuroTouch tool or a virtual hand controlled by the LM to select the position and orientation for these tasks. The length of time to complete each task was recorded and the trajectory log files were used to calculate performance. The resulting data from the novices' and experts' speed and accuracy are compared, and they discuss the objective performance of training in terms of the speed and accuracy of targeting accuracy for each system.

  1. Design and evaluation of an augmented reality simulator using leap motion

    PubMed Central

    de Ribaupierre, Sandrine; Eagleson, Roy

    2017-01-01

    Advances in virtual and augmented reality (AR) are having an impact on the medical field in areas such as surgical simulation. Improvements to surgical simulation will provide students and residents with additional training and evaluation methods. This is particularly important for procedures such as the endoscopic third ventriculostomy (ETV), which residents perform regularly. Simulators such as NeuroTouch, have been designed to aid in training associated with this procedure. The authors have designed an affordable and easily accessible ETV simulator, and compare it with the existing NeuroTouch for its usability and training effectiveness. This simulator was developed using Unity, Vuforia and the leap motion (LM) for an AR environment. The participants, 16 novices and two expert neurosurgeons, were asked to complete 40 targeting tasks. Participants used the NeuroTouch tool or a virtual hand controlled by the LM to select the position and orientation for these tasks. The length of time to complete each task was recorded and the trajectory log files were used to calculate performance. The resulting data from the novices' and experts' speed and accuracy are compared, and they discuss the objective performance of training in terms of the speed and accuracy of targeting accuracy for each system. PMID:29184667

  2. Training gastroenterology fellows to perform gastric polypectomy using a novel ex vivo model

    PubMed Central

    Chen, Ming-Jen; Lin, Ching-Chung; Liu, Chia-Yuan; Chen, Chih-Jen; Chang, Chen-Wang; Chang, Ching-Wei; Lee, Chien-Wei; Shih, Shou-Chuan; Wang, Horng-Yuan

    2011-01-01

    AIM: To evaluate the effect of hands-on training of gastroenterology fellows in gastric polypectomy using an ex vivo simulator. METHODS: Eight gastroenterology fellows at Mackay Memorial Hospital, Taipei were evaluated in gastric polypectomy techniques using a pig stomach with artificial polyps created by a rubber band ligation device. The performance of four second year (year-2) fellows who had undergone one year of clinical training was compared with that of four first year (year-1) fellows both before and after a 4-h workshop using the ex vivo simulator. The workshop allowed for hands-on training in the removal of multiple artificial polyps and the placement of hemoclips at the excision site. Evaluation included observation of technical skills, procedure time, and the fellows’ confidence scale. RESULTS: One week after the workshop, the year-1 fellows were re-evaluated and had significantly improved mean performance scores (from 17.9 ± 1.8 to 22.5 ± 0.7), confidence scale (from 4.5 ± 1.0 to 7.8 ± 0.5) and procedure time (from 615.0 ± 57.4 s to 357.5 ± 85.0 s) compared with their baseline performance. After 4 h of training using the ex vivo simulator, the skills of the year-1 fellows were statistically similar to those of the year-2 fellows. CONCLUSION: Use of this ex vivo simulator significantly improved the endoscopic gastric polypectomy skills of gastroenterology fellows who had not had previous clinical training in gastric polypectomy. PMID:22147969

  3. Evaluation of Rankine cycle air conditioning system hardware by computer simulation

    NASA Technical Reports Server (NTRS)

    Healey, H. M.; Clark, D.

    1978-01-01

    A computer program for simulating the performance of a variety of solar powered Rankine cycle air conditioning system components (RCACS) has been developed. The computer program models actual equipment by developing performance maps from manufacturers data and is capable of simulating off-design operation of the RCACS components. The program designed to be a subroutine of the Marshall Space Flight Center (MSFC) Solar Energy System Analysis Computer Program 'SOLRAD', is a complete package suitable for use by an occasional computer user in developing performance maps of heating, ventilation and air conditioning components.

  4. Simulation training and resident performance of singleton vaginal breech delivery.

    PubMed

    Deering, Shad; Brown, Jill; Hodor, Jonathon; Satin, Andrew J

    2006-01-01

    To determine whether simulation training improves resident competency in the management of a simulated vaginal breech delivery. Without advance notice or training, residents from 2 obstetrics and gynecology residency programs participated in a standardized simulation scenario of management of an imminent term vaginal breech delivery. The scenario used an obstetric birth simulator and human actors, with the encounters digitally recorded. Residents then received a training session with the simulator on the proper techniques for vaginal breech delivery. Two weeks later they were retested using a similar simulation scenario. A physician, blinded to training status, graded the residents' performance using a standardized evaluation sheet. Statistical analysis included the Wilcoxon signed rank test, McNemar chi2, regression analysis, and paired t test as appropriate with a P value of less than .05 considered significant. Twenty residents from 2 institutions completed all parts of the study protocol. Trained residents had significantly higher scores in 8 of 12 critical delivery components (P < .05). Overall performance of the delivery and safety in performing the delivery also improved significantly (P = .001 for both). Simulation training improved resident performance in the management of a simulated vaginal breech delivery. Performance of a term breech vaginal delivery is well suited for simulation training, because it is uncommon and inevitable, and improper technique may result in significant injury. II-2.

  5. Turbulent Flow Effects on the Biological Performance of Hydro-Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ

    2014-08-25

    The hydro-turbine industry uses Computational Fluid Dynamics (CFD) tools to predict the flow conditions as part of the design process for new and rehabilitated turbine units. Typically the hydraulic design process uses steady-state simulations based on Reynolds-Averaged Navier-Stokes (RANS) formulations for turbulence modeling because these methods are computationally efficient and work well to predict averaged hydraulic performance, e.g. power output, efficiency, etc. However, in view of the increasing emphasis on environmental concerns, such as fish passage, the consideration of the biological performance of hydro-turbines is also required in addition to hydraulic performance. This leads to the need to assess whethermore » more realistic simulations of the turbine hydraulic environment -those that resolve unsteady turbulent eddies not captured in steady-state RANS computations- are needed to better predict the occurrence and extent of extreme flow conditions that could be important in the evaluation of fish injury and mortality risks. In the present work, we conduct unsteady, eddy-resolving CFD simulations on a Kaplan hydro-turbine at a normal operational discharge. The goal is to quantify the impact of turbulence conditions on both the hydraulic and biological performance of the unit. In order to achieve a high resolution of the incoming turbulent flow, Detached Eddy Simulation (DES) turbulence model is used. These transient simulations are compared to RANS simulations to evaluate whether extreme hydraulic conditions are better captured with advanced eddy-resolving turbulence modeling techniques. The transient simulations of key quantities such as pressure and hydraulic shear flow that arise near the various components (e.g. wicket gates, stay vanes, runner blades) are then further analyzed to evaluate their impact on the statistics for the lowest absolute pressure (nadir pressures) and for the frequency of collisions that are known to cause mortal injury in fish passing through hydro-turbines.« less

  6. Methodology to evaluate the performance of simulation models for alternative compiler and operating system configurations

    USDA-ARS?s Scientific Manuscript database

    Simulation modelers increasingly require greater flexibility for model implementation on diverse operating systems, and they demand high computational speed for efficient iterative simulations. Additionally, model users may differ in preference for proprietary versus open-source software environment...

  7. Development of a Human Motor Model for the Evaluation of an Integrated Alerting and Notification Flight Deck System

    NASA Technical Reports Server (NTRS)

    Daiker, Ron; Schnell, Thomas

    2010-01-01

    A human motor model was developed on the basis of performance data that was collected in a flight simulator. The motor model is under consideration as one component of a virtual pilot model for the evaluation of NextGen crew alerting and notification systems in flight decks. This model may be used in a digital Monte Carlo simulation to compare flight deck layout design alternatives. The virtual pilot model is being developed as part of a NASA project to evaluate multiple crews alerting and notification flight deck configurations. Model parameters were derived from empirical distributions of pilot data collected in a flight simulator experiment. The goal of this model is to simulate pilot motor performance in the approach-to-landing task. The unique challenges associated with modeling the complex dynamics of humans interacting with the cockpit environment are discussed, along with the current state and future direction of the model.

  8. Assessment of WRF Simulated Precipitation by Meteorological Regimes

    NASA Astrophysics Data System (ADS)

    Hagenhoff, Brooke Anne

    This study evaluated warm-season precipitation events in a multi-year (2007-2014) database of Weather Research and Forecasting (WRF) simulations over the Northern Plains and Southern Great Plains. These WRF simulations were run daily in support of the National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) by the National Severe Storms Laboratory (NSSL) for operational forecasts. Evaluating model skill by synoptic pattern allows for an understanding of how model performance varies with particular atmospheric states and will aid forecasters with pattern recognition. To conduct this analysis, a competitive neural network known as the Self-Organizing Map (SOM) was used. SOMs allow the user to represent atmospheric patterns in an array of nodes that represent a continuum of synoptic categorizations. North American Regional Reanalysis (NARR) data during the warm season (April-September) was used to perform the synoptic typing over the study domains. Simulated precipitation was evaluated against observations provided by the National Centers for Environmental Prediction (NCEP) Stage IV precipitation analysis.

  9. Performance of uncertainty quantification methodologies and linear solvers in cardiovascular simulations

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; Schiavazzi, Daniele; Marsden, Alison

    2017-11-01

    Cardiovascular simulations are increasingly used in clinical decision making, surgical planning, and disease diagnostics. Patient-specific modeling and simulation typically proceeds through a pipeline from anatomic model construction using medical image data to blood flow simulation and analysis. To provide confidence intervals on simulation predictions, we use an uncertainty quantification (UQ) framework to analyze the effects of numerous uncertainties that stem from clinical data acquisition, modeling, material properties, and boundary condition selection. However, UQ poses a computational challenge requiring multiple evaluations of the Navier-Stokes equations in complex 3-D models. To achieve efficiency in UQ problems with many function evaluations, we implement and compare a range of iterative linear solver and preconditioning techniques in our flow solver. We then discuss applications to patient-specific cardiovascular simulation and how the problem/boundary condition formulation in the solver affects the selection of the most efficient linear solver. Finally, we discuss performance improvements in the context of uncertainty propagation. Support from National Institute of Health (R01 EB018302) is greatly appreciated.

  10. DSC: software tool for simulation-based design of control strategies applied to wastewater treatment plants.

    PubMed

    Ruano, M V; Ribes, J; Seco, A; Ferrer, J

    2011-01-01

    This paper presents a computer tool called DSC (Simulation based Controllers Design) that enables an easy design of control systems and strategies applied to wastewater treatment plants. Although the control systems are developed and evaluated by simulation, this tool aims to facilitate the direct implementation of the designed control system to the PC of the full-scale WWTP (wastewater treatment plants). The designed control system can be programmed in a dedicated control application and can be connected to either the simulation software or the SCADA of the plant. To this end, the developed DSC incorporates an OPC server (OLE for process control) which facilitates an open-standard communication protocol for different industrial process applications. The potential capabilities of the DSC tool are illustrated through the example of a full-scale application. An aeration control system applied to a nutrient removing WWTP was designed, tuned and evaluated with the DSC tool before its implementation in the full scale plant. The control parameters obtained by simulation were suitable for the full scale plant with only few modifications to improve the control performance. With the DSC tool, the control systems performance can be easily evaluated by simulation. Once developed and tuned by simulation, the control systems can be directly applied to the full-scale WWTP.

  11. Digital autopilots: Design considerations and simulator evaluations

    NASA Technical Reports Server (NTRS)

    Osder, S.; Neuman, F.; Foster, J.

    1971-01-01

    The development of a digital autopilot program for a transport aircraft and the evaluation of that system's performance on a transport aircraft simulator is discussed. The digital autopilot includes three axis attitude stabilization, automatic throttle control and flight path guidance functions with emphasis on the mode progression from descent into the terminal area through automatic landing. The study effort involved a sequence of tasks starting with the definition of detailed system block diagrams of control laws followed by a flow charting and programming phase and concluding with performance verification using the transport aircraft simulation. The autopilot control laws were programmed in FORTRAN 4 in order to isolate the design process from requirements peculiar to an individual computer.

  12. FPGA Based Reconfigurable ATM Switch Test Bed

    NASA Technical Reports Server (NTRS)

    Chu, Pong P.; Jones, Robert E.

    1998-01-01

    Various issues associated with "FPGA Based Reconfigurable ATM Switch Test Bed" are presented in viewgraph form. Specific topics include: 1) Network performance evaluation; 2) traditional approaches; 3) software simulation; 4) hardware emulation; 5) test bed highlights; 6) design environment; 7) test bed architecture; 8) abstract sheared-memory switch; 9) detailed switch diagram; 10) traffic generator; 11) data collection circuit and user interface; 12) initial results; and 13) the following conclusions: Advances in FPGA make hardware emulation feasible for performance evaluation, hardware emulation can provide several orders of magnitude speed-up over software simulation; due to the complexity of hardware synthesis process, development in emulation is much more difficult than simulation and requires knowledge in both networks and digital design.

  13. A Method for Functional Task Alignment Analysis of an Arthrocentesis Simulator.

    PubMed

    Adams, Reid A; Gilbert, Gregory E; Buckley, Lisa A; Nino Fong, Rodolfo; Fuentealba, I Carmen; Little, Erika L

    2018-05-16

    During simulation-based education, simulators are subjected to procedures composed of a variety of tasks and processes. Simulators should functionally represent a patient in response to the physical action of these tasks. The aim of this work was to describe a method for determining whether a simulator does or does not have sufficient functional task alignment (FTA) to be used in a simulation. Potential performance checklist items were gathered from published arthrocentesis guidelines and aggregated into a performance checklist using Lawshe's method. An expert panel used this performance checklist and an FTA analysis questionnaire to evaluate a simulator's ability to respond to the physical actions required by the performance checklist. Thirteen items, from a pool of 39, were included on the performance checklist. Experts had mixed reviews of the simulator's FTA and its suitability for use in simulation. Unexpectedly, some positive FTA was found for several tasks where the simulator lacked functionality. By developing a detailed list of specific tasks required to complete a clinical procedure, and surveying experts on the simulator's response to those actions, educators can gain insight into the simulator's clinical accuracy and suitability. Unexpected of positive FTA ratings of function deficits suggest that further revision of the survey method is required.

  14. A Multi-Model Assessment for the 2006 and 2010 Simulations under the Air Quality Model Evaluation International Initiative (AQMEII) Phase 2 over North America: Part II. Evaluation of Column Variable Predictions Using Satellite Data

    EPA Science Inventory

    Within the context of the Air Quality Model Evaluation International Initiative phase 2 (AQMEII2) project, this part II paper performs a multi-model assessment of major column abundances of gases, radiation, aerosol, and cloud variables for 2006 and 2010 simulations with three on...

  15. RFA Guardian: Comprehensive Simulation of Radiofrequency Ablation Treatment of Liver Tumors.

    PubMed

    Voglreiter, Philip; Mariappan, Panchatcharam; Pollari, Mika; Flanagan, Ronan; Blanco Sequeiros, Roberto; Portugaller, Rupert Horst; Fütterer, Jurgen; Schmalstieg, Dieter; Kolesnik, Marina; Moche, Michael

    2018-01-15

    The RFA Guardian is a comprehensive application for high-performance patient-specific simulation of radiofrequency ablation of liver tumors. We address a wide range of usage scenarios. These include pre-interventional planning, sampling of the parameter space for uncertainty estimation, treatment evaluation and, in the worst case, failure analysis. The RFA Guardian is the first of its kind that exhibits sufficient performance for simulating treatment outcomes during the intervention. We achieve this by combining a large number of high-performance image processing, biomechanical simulation and visualization techniques into a generalized technical workflow. Further, we wrap the feature set into a single, integrated application, which exploits all available resources of standard consumer hardware, including massively parallel computing on graphics processing units. This allows us to predict or reproduce treatment outcomes on a single personal computer with high computational performance and high accuracy. The resulting low demand for infrastructure enables easy and cost-efficient integration into the clinical routine. We present a number of evaluation cases from the clinical practice where users performed the whole technical workflow from patient-specific modeling to final validation and highlight the opportunities arising from our fast, accurate prediction techniques.

  16. The Regional Climate Model Evaluation System: A Systematic Evaluation Of CORDEX Simulations Using Obs4MIPs

    NASA Astrophysics Data System (ADS)

    Goodman, A.; Lee, H.; Waliser, D. E.; Guttowski, W.

    2017-12-01

    Observation-based evaluations of global climate models (GCMs) have been a key element for identifying systematic model biases that can be targeted for model improvements and for establishing uncertainty associated with projections of global climate change. However, GCMs are limited in their ability to represent physical phenomena which occur on smaller, regional scales, including many types of extreme weather events. In order to help facilitate projections in changes of such phenomena, simulations from regional climate models (RCMs) for 14 different domains around the world are being provided by the Coordinated Regional Climate Downscaling Experiment (CORDEX; www.cordex.org). However, although CORDEX specifies standard simulation and archiving protocols, these simulations are conducted independently by individual research and modeling groups representing each of these domains often with different output requirements and data archiving and exchange capabilities. Thus, with respect to similar efforts using GCMs (e.g., the Coupled Model Intercomparison Project, CMIP), it is more difficult to achieve a standardized, systematic evaluation of the RCMs for each domain and across all the CORDEX domains. Using the Regional Climate Model Evaluation System (RCMES; rcmes.jpl.nasa.gov) developed at JPL, we are developing easy to use templates for performing systematic evaluations of CORDEX simulations. Results from the application of a number of evaluation metrics (e.g., biases, centered RMS, and pattern correlations) will be shown for a variety of physical quantities and CORDEX domains. These evaluations are performed using products from obs4MIPs, an activity initiated by DOE and NASA, and now shepherded by the World Climate Research Program's Data Advisory Council.

  17. Clinical Efficacy of Simulated Vitreoretinal Surgery to Prepare Surgeons for the Upcoming Intervention in the Operating Room

    PubMed Central

    Deuchler, Svenja; Wagner, Clemens; Singh, Pankaj; Müller, Michael; Al-Dwairi, Rami; Benjilali, Rachid; Schill, Markus; Ackermann, Hanns; Bon, Dimitra; Kohnen, Thomas; Schoene, Benjamin; Koss, Michael; Koch, Frank

    2016-01-01

    Purpose To evaluate the efficacy of the virtual reality training simulator Eyesi to prepare surgeons for performing pars plana vitrectomies and its potential to predict the surgeons’ performance. Methods In a preparation phase, four participating vitreoretinal surgeons performed repeated simulator training with predefined tasks. If a surgeon was assigned to perform a vitrectomy for the management of complex retinal detachment after a surgical break of at least 60 hours it was randomly decided whether a warmup training on the simulator was required (n = 9) or not (n = 12). Performance at the simulator was measured using the built-in scoring metrics. The surgical performance was determined by two blinded observers who analyzed the video-recorded interventions. One of them repeated the analysis to check for intra-observer consistency. The surgical performance of the interventions with and without simulator training was compared. In addition, for the surgeries with simulator training, the simulator performance was compared to the performance in the operating room. Results Comparing each surgeon’s performance with and without warmup trainingshowed a significant effect of warmup training onto the final outcome in the operating room. For the surgeries that were preceeded by the warmup procedure, the performance at the simulator was compared with the operating room performance. We found that there is a significant relation. The governing factor of low scores in the simulator were iatrogenic retinal holes, bleedings and lens damage. Surgeons who caused minor damage in the simulation also performed well in the operating room. Conclusions Despite the large variation of conditions, the effect of a warmup training as well as a relation between the performance at the simulator and in the operating room was found with statistical significance. Simulator training is able to serve as a warmup to increase the average performance. PMID:26964040

  18. Ultraviolet corona detection sensor study

    NASA Technical Reports Server (NTRS)

    Schmitt, R. J.; MATHERN

    1976-01-01

    The feasibility of detecting electrical corona discharge phenomena in a space simulation chamber via emission of ultraviolet light was evaluated. A corona simulator, with a hemispherically capped point to plane electrode geometry, was used to generate corona glows over a wide range of pressure, voltage, current, electrode gap length and electrode point radius. Several ultraviolet detectors, including a copper cathode gas discharge tube and a UV enhanced silicon photodiode detector, were evaluated in the course of the spectral intensity measurements. The performance of both silicon target vidicons and silicon intensified target vidicons was evaluated analytically using the data generated by the spectroradiometer scans and the performance data supplied by the manufacturers.

  19. Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data.

    PubMed

    Owen, Julia P; Wipf, David P; Attias, Hagai T; Sekihara, Kensuke; Nagarajan, Srikantan S

    2012-03-01

    In this paper, we present an extensive performance evaluation of a novel source localization algorithm, Champagne. It is derived in an empirical Bayesian framework that yields sparse solutions to the inverse problem. It is robust to correlated sources and learns the statistics of non-stimulus-evoked activity to suppress the effect of noise and interfering brain activity. We tested Champagne on both simulated and real M/EEG data. The source locations used for the simulated data were chosen to test the performance on challenging source configurations. In simulations, we found that Champagne outperforms the benchmark algorithms in terms of both the accuracy of the source localizations and the correct estimation of source time courses. We also demonstrate that Champagne is more robust to correlated brain activity present in real MEG data and is able to resolve many distinct and functionally relevant brain areas with real MEG and EEG data. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Evaluating the Effect of Virtual Reality Temporal Bone Simulation on Mastoidectomy Performance: A Meta-analysis.

    PubMed

    Lui, Justin T; Hoy, Monica Y

    2017-06-01

    Background The increasing prevalence of virtual reality simulation in temporal bone surgery warrants an investigation to assess training effectiveness. Objectives To determine if temporal bone simulator use improves mastoidectomy performance. Data Sources Ovid Medline, Embase, and PubMed databases were systematically searched per the PRISMA guidelines. Review Methods Inclusion criteria were peer-reviewed publications that utilized quantitative data of mastoidectomy performance following the use of a temporal bone simulator. The search was restricted to human studies published in English. Studies were excluded if they were in non-peer-reviewed format, were descriptive in nature, or failed to provide surgical performance outcomes. Meta-analysis calculations were then performed. Results A meta-analysis based on the random-effects model revealed an improvement in overall mastoidectomy performance following training on the temporal bone simulator. A standardized mean difference of 0.87 (95% CI, 0.38-1.35) was generated in the setting of a heterogeneous study population ( I 2 = 64.3%, P < .006). Conclusion In the context of a diverse population of virtual reality simulation temporal bone surgery studies, meta-analysis calculations demonstrate an improvement in trainee mastoidectomy performance with virtual simulation training.

  1. An evaluation of the performance of a WRF multi-physics ensemble for heatwave events over the city of Melbourne in southeast Australia

    NASA Astrophysics Data System (ADS)

    Imran, H. M.; Kala, J.; Ng, A. W. M.; Muthukumaran, S.

    2018-04-01

    Appropriate choice of physics options among many physics parameterizations is important when using the Weather Research and Forecasting (WRF) model. The responses of different physics parameterizations of the WRF model may vary due to geographical locations, the application of interest, and the temporal and spatial scales being investigated. Several studies have evaluated the performance of the WRF model in simulating the mean climate and extreme rainfall events for various regions in Australia. However, no study has explicitly evaluated the sensitivity of the WRF model in simulating heatwaves. Therefore, this study evaluates the performance of a WRF multi-physics ensemble that comprises 27 model configurations for a series of heatwave events in Melbourne, Australia. Unlike most previous studies, we not only evaluate temperature, but also wind speed and relative humidity, which are key factors influencing heatwave dynamics. No specific ensemble member for all events explicitly showed the best performance, for all the variables, considering all evaluation metrics. This study also found that the choice of planetary boundary layer (PBL) scheme had largest influence, the radiation scheme had moderate influence, and the microphysics scheme had the least influence on temperature simulations. The PBL and microphysics schemes were found to be more sensitive than the radiation scheme for wind speed and relative humidity. Additionally, the study tested the role of Urban Canopy Model (UCM) and three Land Surface Models (LSMs). Although the UCM did not play significant role, the Noah-LSM showed better performance than the CLM4 and NOAH-MP LSMs in simulating the heatwave events. The study finally identifies an optimal configuration of WRF that will be a useful modelling tool for further investigations of heatwaves in Melbourne. Although our results are invariably region-specific, our results will be useful to WRF users investigating heatwave dynamics elsewhere.

  2. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  3. A seat cushion to provide realistic acceleration cues for aircraft simulators

    NASA Technical Reports Server (NTRS)

    Ashworth, B. R.

    1976-01-01

    A seat cushion to provide acceleration cues for aircraft simulator pilots was built, performance tested, and evaluated. The four cell seat, using a thin air cushion with highly responsive pressure control, attempts to reproduce the same events which occur in an aircraft seat under acceleration loading. The pressure controller provides seat cushion responses which are considered adequate for current high performance aircraft simulations. The initial tests of the seat cushions have resulted in excellent pilot opinion of the cushion's ability to provide realistic and useful cues to the simulator pilot.

  4. Design of a video system providing optimal visual information for controlling payload and experiment operations with television

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A program was conducted which included the design of a set of simplified simulation tasks, design of apparatus and breadboard TV equipment for task performance, and the implementation of a number of simulation tests. Performance measurements were made under controlled conditions and the results analyzed to permit evaluation of the relative merits (effectivity) of various TV systems. Burden factors were subsequently generated for each TV system to permit tradeoff evaluation of system characteristics against performance. For the general remote operation mission, the 2-view system is recommended. This system is characterized and the corresponding equipment specifications were generated.

  5. Evaluation of decadal predictions using a satellite simulator for the Special Sensor Microwave Imager (SSM/I)

    NASA Astrophysics Data System (ADS)

    Spangehl, Thomas; Schröder, Marc; Bodas-Salcedo, Alejandro; Glowienka-Hense, Rita; Hense, Andreas; Hollmann, Rainer; Dietzsch, Felix

    2017-04-01

    Decadal climate predictions are commonly evaluated focusing on geophysical parameters such as temperature, precipitation or wind speed using observational datasets and reanalysis. Alternatively, satellite based radiance measurements combined with satellite simulator techniques to deduce virtual satellite observations from the numerical model simulations can be used. The latter approach enables an evaluation in the instrument's parameter space and has the potential to reduce uncertainties on the reference side. Here we present evaluation methods focusing on forward operator techniques for the Special Sensor Microwave Imager (SSM/I). The simulator is developed as an integrated part of the CFMIP Observation Simulator Package (COSP). On the observational side the SSM/I and SSMIS Fundamental Climate Data Record (FCDR) released by CM SAF (http://dx.doi.org/10.5676/EUM_SAF_CM/FCDR_MWI/V002) is used, which provides brightness temperatures for different channels and covers the period from 1987 to 2013. The simulator is applied to hindcast simulations performed within the MiKlip project (http://fona-miklip.de) which is funded by the BMBF (Federal Ministry of Education and Research in Germany). Probabilistic evaluation results are shown based on a subset of the hindcast simulations covering the observational period.

  6. An Instrumented Glove to Assess Manual Dexterity in Simulation-Based Neurosurgical Education

    PubMed Central

    Lemos, Juan Diego; Hernandez, Alher Mauricio; Soto-Romero, Georges

    2017-01-01

    The traditional neurosurgical apprenticeship scheme includes the assessment of trainee’s manual skills carried out by experienced surgeons. However, the introduction of surgical simulation technology presents a new paradigm where residents can refine surgical techniques on a simulator before putting them into practice in real patients. Unfortunately, in this new scheme, an experienced surgeon will not always be available to evaluate trainee’s performance. For this reason, it is necessary to develop automatic mechanisms to estimate metrics for assessing manual dexterity in a quantitative way. Authors have proposed some hardware-software approaches to evaluate manual dexterity on surgical simulators. This paper presents IGlove, a wearable device that uses inertial sensors embedded on an elastic glove to capture hand movements. Metrics to assess manual dexterity are estimated from sensors signals using data processing and information analysis algorithms. It has been designed to be used with a neurosurgical simulator called Daubara NS Trainer, but can be easily adapted to another benchtop- and manikin-based medical simulators. The system was tested with a sample of 14 volunteers who performed a test that was designed to simultaneously evaluate their fine motor skills and the IGlove’s functionalities. Metrics obtained by each of the participants are presented as results in this work; it is also shown how these metrics are used to automatically evaluate the level of manual dexterity of each volunteer. PMID:28468268

  7. Information Theoretic Evaluation of a Noiseband-Based Cochlear Implant Simulator

    PubMed Central

    Aguiar, Daniel E.; Taylor, N. Ellen; Li, Jing; Gazanfari, Daniel K.; Talavage, Thomas M.; Laflen, J. Brandon; Neuberger, Heidi; Svirsky, Mario A.

    2015-01-01

    Noise-band vocoders are often used to simulate the signal processing algorithms used in cochlear implants (CIs), producing acoustic stimuli that may be presented to normal hearing (NH) subjects. Such evaluations may obviate the heterogeneity of CI user populations, achieving greater experimental control than when testing on CI subjects. However, it remains an open question whether advancements in algorithms developed on NH subjects using a simulator will necessarily improve performance in CI users. This study assessed the similarity in vowel identification of CI subjects and NH subjects using an 8-channel noise-band vocoder simulator configured to match input and output frequencies or to mimic output after a basalward shift of input frequencies. Under each stimulus condition, NH subjects performed the task both with and without feedback/training. Similarity of NH subjects to CI users was evaluated using correct identification rates and information theoretic approaches. Feedback/training produced higher rates of correct identification, as expected, but also resulted in error patterns that were closer to those of the CI users. Further evaluation remains necessary to determine how patterns of confusion at the token level are affected by the various parameters in CI simulators, providing insight into how a true CI simulation may be developed to facilitate more rapid prototyping and testing of novel CI signal processing and electrical stimulation strategies. PMID:26409068

  8. Appliance of Independent Component Analysis to System Intrusion Analysis

    NASA Astrophysics Data System (ADS)

    Ishii, Yoshikazu; Takagi, Tarou; Nakai, Kouji

    In order to analyze the output of the intrusion detection system and the firewall, we evaluated the applicability of ICA(independent component analysis). We developed a simulator for evaluation of intrusion analysis method. The simulator consists of the network model of an information system, the service model and the vulnerability model of each server, and the action model performed on client and intruder. We applied the ICA for analyzing the audit trail of simulated information system. We report the evaluation result of the ICA on intrusion analysis. In the simulated case, ICA separated two attacks correctly, and related an attack and the abnormalities of the normal application produced under the influence of the attach.

  9. 10 CFR 431.17 - Determination of efficiency.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... characteristics of that basic model, and (ii) Based on engineering or statistical analysis, computer simulation or... simulation or modeling, and other analytic evaluation of performance data on which the AEDM is based... applied. (iii) If requested by the Department, the manufacturer shall conduct simulations to predict the...

  10. 10 CFR 431.17 - Determination of efficiency.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... characteristics of that basic model, and (ii) Based on engineering or statistical analysis, computer simulation or... simulation or modeling, and other analytic evaluation of performance data on which the AEDM is based... applied. (iii) If requested by the Department, the manufacturer shall conduct simulations to predict the...

  11. The Impact of Goal Setting on Team Simulation Experience.

    ERIC Educational Resources Information Center

    Fandt, Patricia M.; And Others

    1990-01-01

    Describes a study that examined the effects of goal setting on undergraduate students competing in a computerized business simulation. Group cohesiveness is discussed, treatments for the experimental and control groups are described, perceived team success is measured, and team simulation performance is evaluated. (30 references) (LRW)

  12. Vehicle impact simulation for curb and barrier design : volume 1, impact simulation procedures.

    DOT National Transportation Integrated Search

    1998-10-01

    The objectives of this study were to perform computer simulations of vehicle-curb and vehicle-berm impacts, to characterize : the behavior of a wide range of vehicle types after such impacts, and to produce design and evaluation trajectory data for u...

  13. Cognitive load, emotion, and performance in high-fidelity simulation among beginning nursing students: a pilot study.

    PubMed

    Schlairet, Maura C; Schlairet, Timothy James; Sauls, Denise H; Bellflowers, Lois

    2015-03-01

    Establishing the impact of the high-fidelity simulation environment on student performance, as well as identifying factors that could predict learning, would refine simulation outcome expectations among educators. The purpose of this quasi-experimental pilot study was to explore the impact of simulation on emotion and cognitive load among beginning nursing students. Forty baccalaureate nursing students participated in teaching simulations, rated their emotional state and cognitive load, and completed evaluation simulations. Two principal components of emotion were identified representing the pleasant activation and pleasant deactivation components of affect. Mean rating of cognitive load following simulation was high. Linear regression identiffed slight but statistically nonsignificant positive associations between principal components of emotion and cognitive load. Logistic regression identified a negative but statistically nonsignificant effect of cognitive load on assessment performance. Among lower ability students, a more pronounced effect of cognitive load on assessment performance was observed; this also was statistically non-significant. Copyright 2015, SLACK Incorporated.

  14. Emergency in the clinic: a simulation curriculum to improve outpatient safety.

    PubMed

    Espey, Eve; Baty, Gillian; Rask, John; Chungtuyco, Michelle; Pereda, Brenda; Leeman, Lawrence

    2017-12-01

    Emergency response skills are essential when events such as seizure, anaphylaxis, or hemorrhage occur in the outpatient setting. As services and procedures increasingly move outside the hospital, training to manage complications may improve outcomes. The objective of this study was to evaluate a simulation-based curriculum in outpatient emergency management skills with the outcome measures of graded objective performance and learner self-efficacy. This pre- and postcurriculum study enrolled residents and fellows in Obstetrics and Gynecology and Family Medicine in a simulation-based, outpatient emergency management curriculum. Learners completed self-efficacy questionnaires and were videotaped managing 3 medical emergency scenarios (seizure, over-sedation/cardiopulmonary arrest, and hemorrhage) in the simulation laboratory both before and after completion of the curriculum. Evaluators who were blinded to training level scored the simulation performance videotapes using a graded rubric with critical action checklists. Scenario scores were assigned in 5 domains and globally. Paired t-tests were used to determine differences pre- and postcurriculum. Thirty residents completed the curriculum and pre- and postcurriculum testing. Subjects' objective performance scores improved in all 5 domains (P<.05) in all scenarios. When scores were stratified by level of training, all participants demonstrated global improvement. When scores were stratified by previous outpatient simulation experience, subjects with previous experience improved in all but management of excess sedation. Pre- and postcurriculum self-efficacy evaluations demonstrated improvement in all 7 measured areas: confidence, use of appropriate resources, communication skills, complex airway management, bag mask ventilation, resuscitation, and hemorrhage management. Self-efficacy assessment showed improvement in confidence managing outpatient emergencies (P=.001) and ability to communicate well in emergency situations (P<.001). A simulation-based curriculum improved both self-efficacy and objectively rated performance scores in management of outpatient medical emergencies. Simulation-based curricula should be incorporated into residency education. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Performance evaluation of NCDOT w-beam guardrails under MASH TL-2 conditions.

    DOT National Transportation Integrated Search

    2013-11-01

    This report summarizes the research efforts of using finite element modeling and simulations to evaluate the performance : of W-beam guardrails for different heights under MASH Test Level 2 (TL-2) and Test Level 3 (TL-3) impact conditions. A : litera...

  16. Process simulations for manufacturing of thick composites

    NASA Astrophysics Data System (ADS)

    Kempner, Evan A.

    The availability of manufacturing simulations for composites can significantly reduce the costs associated with process development. Simulations provide a tool for evaluating the effect of processing conditions on the quality of parts produced without requiring numerous experiments. This is especially significant in parts that have troublesome features such as large thickness. The development of simulations for thick walled composites has been approached by examining the mechanics of resin flow and fiber deformation during processing, applying these evaluations to develop simulations, and evaluating the simulation with experimental results. A unified analysis is developed to describe the three-dimensional resin flow and fiber preform deformation during processing regardless of the manufacturing process used. It is shown how the generic governing evaluations in the unified analysis can be applied to autoclave molding, compression molding, pultrusion, filament winding, and resin transfer molding. A comparison is provided with earlier models derived individually for these processes. The evaluations described for autoclave curing were used to produce a one-dimensional cure simulation for autoclave curing of thick composites. The simulation consists of an analysis for heat transfer and resin flow in the composite as well as bleeder plies used to absorb resin removed from the part. Experiments were performed in a hot press to approximate curing in an autoclave. Graphite/epoxy laminates of 3 cm and 5 cm thickness were cured while monitoring temperatures at several points inside the laminate and thickness. The simulation predicted temperatures fairly closely, but difficulties were encountered in correlation of thickness results. This simulation was also used to study the effects of prepreg aging on processing of thick composites. An investigation was also performed on filament winding with prepreg tow. Cylinders were wound of approximately 12 mm thickness with pressure gages at the mandrel-composite interface. Cylinders were hoop wound with tensions ranging from 13-34 N. An analytical model was developed to calculate change in stress due to relaxation during winding. Although compressive circumferential stresses occurred throughout each of the cylinders, the magnitude was fairly low.

  17. A simulation study of the effects of alcohol on driving performance in a Chinese population.

    PubMed

    Li, Y C; Sze, N N; Wong, S C; Yan, Wei; Tsui, K L; So, F L

    2016-10-01

    Driving under the influence of alcohol (DUIA) is a significant factor contributing to road traffic crashes, injuries, and fatalities. Although the effects of alcohol on driving performance are widely acknowledged, studies of the effects of alcohol impairment on driving performance and particularly on the control system of Chinese adults are rare. This study attempts to evaluate the effects of alcohol on the driving performance of Chinese adults using a driving simulator. A double-blind experimental study was conducted to evaluate the effects of alcohol impairment on the driving performance of 52 Chinese participants using a driving simulator. A series of simulated driving tests covering two driving modules, including emergency braking (EB) and following braking (FB), at 50km/h and 80km/h were performed. Linear mixed models were established to evaluate driving performance in terms of braking reaction time (BRT), the standard deviation of lateral position (SD-LANE), and the standard deviation of speed (SD-SPEED). Driving performance in terms of BRT and SD-LANE was highly correlated with the level of alcohol consumption, with a one-unit increase in breath alcohol concentration (BrAC) degrading BRT and SD-LANE by 0.3% and 0.2%, respectively. Frequent drinkers generally reacted faster in their BRT than less-frequent drinkers and non-drinkers by 10.2% and 30.6%, respectively. Moreover, alcohol impairment had varying effects on certain aspects of the human control system, and automatic action was less likely to be affected than voluntary action from a psychological viewpoint. The findings should be useful for planning and developing effective measures to combat drink driving in Chinese communities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Perception of premenstrual syndrome and attitude of evaluations of work performance among incoming university female students.

    PubMed

    Cheng, Shu Hui; Sun, Zih-Jie; Lee, I Hui; Shih, Chi-Chen; Chen, Kao Chin; Lin, Shih-Hsien; Lu, Feng-Hwa; Yang, Yi-Ching; Yang, Yen Kuang

    2015-01-01

    Premenstrual syndrome (PMS) is a common condition, and for 5% of women, the influence is so severe as to interfere with their mental health, interpersonal relationships, or studies. Severe PMS may result in decreased occupational productivity. The aim of this study was to investigate the influence of perception of PMS on evaluation of work performance. A total of 1971 incoming female university students were recruited in September 2009. A simulated clinical scenario was used, with a test battery including measurement of psychological symptoms and the Chinese Premenstrual Symptom Questionnaire. When evaluating employee performance in the simulated scenario, 1565 (79.4%) students neglected the impact of PMS, while 136 (6.9%) students considered it. Multivariate logistic regression showed that perception of daily function impairment due to PMS and frequency of measuring body weight were significantly associated with consideration of the influence of PMS on evaluation of work performance. It is important to increase the awareness of functional impairments related to severe PMS.

  19. Statistical Evaluation of CRM-Simulated Cloud and Precipitation Structures Using Multi- sensor TRMM Measurements and Retrievals

    NASA Astrophysics Data System (ADS)

    Posselt, D.; L'Ecuyer, T.; Matsui, T.

    2009-05-01

    Cloud resolving models are typically used to examine the characteristics of clouds and precipitation and their relationship to radiation and the large-scale circulation. As such, they are not required to reproduce the exact location of each observed convective system, much less each individual cloud. Some of the most relevant information about clouds and precipitation is provided by instruments located on polar-orbiting satellite platforms, but these observations are intermittent "snapshots" in time, making assessment of model performance challenging. In contrast to direct comparison, model results can be evaluated statistically. This avoids the requirement for the model to reproduce the observed systems, while returning valuable information on the performance of the model in a climate-relevant sense. The focus of this talk is a model evaluation study, in which updates to the microphysics scheme used in a three-dimensional version of the Goddard Cumulus Ensemble (GCE) model are evaluated using statistics of observed clouds, precipitation, and radiation. We present the results of multiday (non-equilibrium) simulations of organized deep convection using single- and double-moment versions of a the model's cloud microphysical scheme. Statistics of TRMM multi-sensor derived clouds, precipitation, and radiative fluxes are used to evaluate the GCE results, as are simulated TRMM measurements obtained using a sophisticated instrument simulator suite. We present advantages and disadvantages of performing model comparisons in retrieval and measurement space and conclude by motivating the use of data assimilation techniques for analyzing and improving model parameterizations.

  20. Validating Visual Cues In Flight Simulator Visual Displays

    NASA Astrophysics Data System (ADS)

    Aronson, Moses

    1987-09-01

    Currently evaluation of visual simulators are performed by either pilot opinion questionnaires or comparison of aircraft terminal performance. The approach here is to compare pilot performance in the flight simulator with a visual display to his performance doing the same visual task in the aircraft as an indication that the visual cues are identical. The A-7 Night Carrier Landing task was selected. Performance measures which had high pilot performance prediction were used to compare two samples of existing pilot performance data to prove that the visual cues evoked the same performance. The performance of four pilots making 491 night landing approaches in an A-7 prototype part task trainer were compared with the performance of 3 pilots performing 27 A-7E carrier landing qualification approaches on the CV-60 aircraft carrier. The results show that the pilots' performances were similar, therefore concluding that the visual cues provided in the simulator were identical to those provided in the real world situation. Differences between the flight simulator's flight characteristics and the aircraft have less of an effect than the pilots individual performances. The measurement parameters used in the comparison can be used for validating the visual display for adequacy for training.

  1. Development and psychometric evaluation of the "Neurosurgical Evaluation of Attitudes towards simulation Training" (NEAT) tool for use in neurosurgical education and training.

    PubMed

    Kirkman, Matthew A; Muirhead, William; Nandi, Dipankar; Sevdalis, Nick

    2014-01-01

    Neurosurgical simulation training is becoming increasingly popular. Attitudes toward simulation among residents can contribute to the effectiveness of simulation training, but such attitudes remain poorly explored in neurosurgery with no psychometrically proven measure in the literature. The aim of the present study was to evaluate prospectively a newly developed tool for this purpose: the Neurosurgical Evaluation of Attitudes towards simulation Training (NEAT). The NEAT tool was prospectively developed in 2 stages and psychometrically evaluated (validity and reliability) in 2 administrations with the same participants. The tool comprises a questionnaire with 9 Likert scale items and 2 free-text sections assessing attitudes toward simulation in neurosurgery. The evaluation was completed with 31 neurosurgery residents in London, United Kingdom, who were generally favorable toward neurosurgical simulation. The internal consistency of the questionnaire was high, as demonstrated by the overall Cronbach α values (α=0.899 and α=0.955). All but 2 questionnaire items had "substantial" or "almost perfect" test-retest reliability following repeated survey administrations (median Pearson r correlation=0.688; range, 0.248-0.841). NEAT items were well correlated with each other on both occasions, showing good validity of content within the NEAT tool. There was no significant relationship between either gender or length of neurosurgical experience and item ratings. NEAT is the first psychometrically evaluated tool for evaluating attitudes toward simulation in neurosurgery. Further implementation of NEAT is required in wider neurosurgical populations to establish whether specific population groups differ. Use of NEAT in studies of neurosurgical simulation could offer an additional outcome measure to performance metrics, permitting evaluation of the impact of neurosurgical simulation on attitudes toward simulation both between participants and within the same participants over time. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The Practical Concept of an Evaluator and Its Use in the Design of Training Systems.

    ERIC Educational Resources Information Center

    Gibbons, Andrew S.; Rogers, Dwayne H.

    1991-01-01

    The evaluator is an instructional system product that provides practice, testing capability, and feedback in a way not yet seen in computer-assisted instruction. Training methods using an evaluator contain scenario-based simulation exercises, followed by a critique of performance. A focus on competency-based education and performance makes the…

  3. Evaluating CMIP5 Simulations of Historical Continental Climate with Koeppen Bioclimatic Metrics

    NASA Astrophysics Data System (ADS)

    Phillips, T. J.; Bonfils, C.

    2013-12-01

    The classic Koeppen bioclimatic classification scheme associates generic vegetation types (e.g. grassland, tundra, broadleaf or evergreen forests, etc.) with regional climate zones defined by their annual cycles of continental temperature (T) and precipitation (P), considered together. The locations or areas of Koeppen vegetation types derived from observational data thus can provide concise metrical standards for simultaneously evaluating climate simulations of T and P in naturally defined regions. The CMIP5 models' collective ability to correctly represent two variables that are critically important for living organisms at regional scales is therefore central to this evaluation. For this study, 14 Koeppen vegetation types are derived from annual-cycle climatologies of T and P in some 3 dozen CMIP5 simulations of the 1980-1999 period. Metrics for evaluating the ability of the CMIP5 models to simulate the correct locations and areas of each vegetation type, as well as measures of overall model performance, also are developed. It is found that the CMIP5 models are generally most deficient in simulating: 1) climates of drier Koeppen zones (e.g. desert, savanna, grassland, steppe vegetation types) located in the southwestern U.S. and Mexico, eastern Europe, southern Africa, and central Australia; 2) climates of regions such as central Asia and western South America where topography plays a key role. Details of regional T or P biases in selected simulations that exemplify general model performance problems also will be presented. Acknowledgments: This work was funded by the U.S. Department of Energy Office of Science and was performed at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Map of Koeppen vegetation types derived from observed T and P.

  4. Development and Assessment of a Novel Training Package for Basic Maneuvering Tasks on a Flight Simulator Using Self Instruction Methods and Above Real Time Training (ARTT)

    NASA Technical Reports Server (NTRS)

    Ali, Syed Firasat; Khan, M. Javed; Rossi, Marcia J.; Heath, Bruce e.; Crane, Peter; Ward, Marcus; Crier, Tomyka; Knighten, Tremaine; Culpepper, Christi

    2007-01-01

    One result of the relatively recent advances in computing technology has been the decreasing cost of computers and increasing computational power. This has allowed high fidelity airplane simulations to be run on personal computers (PC). Thus, simulators are now used routinely by pilots to substitute real flight hours for simulated flight hours for training for an aircraft type rating thereby reducing the cost of flight training. However, FAA regulations require that such substitution training must be supervised by Certified Flight Instructors (CFI). If the CFI presence could be reduced or eliminated for certain tasks this would mean a further cost savings to the pilot. This would require that the flight simulator have a certain level of 'intelligence' in order to provide feedback on pilot performance similar to that of a CFI. The 'intelligent' flight simulator would have at least the capability to use data gathered from the flight to create a measure for the performance of the student pilot. Also, to fully utilize the advances in computational power, the simulator would be capable of interacting with the student pilot using the best possible training interventions. This thesis reports on the two studies conducted at Tuskegee University investigating the effects of interventions on the learning of two flight maneuvers on a flight simulator and the robustness and accuracy of calculated performance indices as compared to CFI evaluations of performance. The intent of these studies is to take a step in the direction of creating an 'intelligent' flight simulator. The first study deals with the comparisons of novice pilot performance trained at different levels of above real-time to execute a level S-turn. The second study examined the effect of out-of-the-window (OTW) visual cues in the form of hoops on the performance of novice pilots learning to fly a landing approach on the flight simulator. The reliability/robustness of the computed performance metrics was assessed by comparing them with the evaluations of the landing approach maneuver by a number of CFIs.

  5. 5-inch-size liquid crystal flat panel display evaluation test by flight simulator

    NASA Astrophysics Data System (ADS)

    Kawahara, Hiroyasu; Watanabe, Akira; Wakairo, Kaoru; Udagawa, Tomoyuki; Kurihara, Yoichiro

    An evaluation test is conducted on the function, performance, and display format of a 5x5 inch flat panel display (FPD) in a flight simulator. The FPD utilizes a color liquid crystal panel that is compact and lightweight and has excellent visibility. The simulator evaluation test is carried out in sequence with the conventional takeoff and landing to altitude, and then conversion to STOL procedures for flight path and subsequent approach and landing. It is shown that the liquid crystal display could be employed as a satisfactory indicator for aircraft instrumentation.

  6. Battery Storage Evaluation Tool, version 1.x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-02

    The battery storage evaluation tool developed at Pacific Northwest National Laboratory is used to run a one-year simulation to evaluate the benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a lookahead optimization is first formulated and solved to determine the battery base operating point. The minute-by-minute simulation is then performed to simulate the actual battery operation.

  7. Hand controller commonality evaluation process

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Bierschwale, John M.; Wilmington, Robert P.; Adam, Susan C.; Diaz, Manuel F.; Jensen, Dean G.

    1990-01-01

    A hand controller evaluation process has been developed to determine the appropriate hand controller configurations for supporting remotely controlled devices. These devices include remote manipulator systems (RMS), dexterous robots, and remotely-piloted free flyers. Standard interfaces were developed to evaluate six different hand controllers in three test facilities including dynamic computer simulations, kinematic computer simulations, and physical simulations. The hand controllers under consideration were six degree-of-freedom (DOF) position and rate minimaster and joystick controllers, and three-DOF rate controllers. Task performance data, subjective comments, and anthropometric data obtained during tests were used for controller configuration recommendations to the SSF Program.

  8. Adaptive strategies of remote systems operators exposed to perturbed camera-viewing conditions

    NASA Technical Reports Server (NTRS)

    Stuart, Mark A.; Manahan, Meera K.; Bierschwale, John M.; Sampaio, Carlos E.; Legendre, A. J.

    1991-01-01

    This report describes a preliminary investigation of the use of perturbed visual feedback during the performance of simulated space-based remote manipulation tasks. The primary objective of this NASA evaluation was to determine to what extent operators exhibit adaptive strategies which allow them to perform these specific types of remote manipulation tasks more efficiently while exposed to perturbed visual feedback. A secondary objective of this evaluation was to establish a set of preliminary guidelines for enhancing remote manipulation performance and reducing the adverse effects. These objectives were accomplished by studying the remote manipulator performance of test subjects exposed to various perturbed camera-viewing conditions while performing a simulated space-based remote manipulation task. Statistical analysis of performance and subjective data revealed that remote manipulation performance was adversely affected by the use of perturbed visual feedback and performance tended to improve with successive trials in most perturbed viewing conditions.

  9. Automatic Assessment of Complex Task Performance in Games and Simulations. CRESST Report 775

    ERIC Educational Resources Information Center

    Iseli, Markus R.; Koenig, Alan D.; Lee, John J.; Wainess, Richard

    2010-01-01

    Assessment of complex task performance is crucial to evaluating personnel in critical job functions such as Navy damage control operations aboard ships. Games and simulations can be instrumental in this process, as they can present a broad range of complex scenarios without involving harm to people or property. However, "automatic"…

  10. Evaluation of the Community Multiscale Air Quality (CMAQ) Model Version 5.1

    EPA Science Inventory

    The AMAD will performed two CMAQ model simulations, one with the current publically available version of the CMAQ model (v5.0.2) and the other with the new version of the CMAQ model (v5.1). The results of each model simulation are compared to observations and the performance of t...

  11. Influence of the Size of Cohorts in Adaptive Design for Nonlinear Mixed Effects Models: An Evaluation by Simulation for a Pharmacokinetic and Pharmacodynamic Model for a Biomarker in Oncology

    PubMed Central

    Lestini, Giulia; Dumont, Cyrielle; Mentré, France

    2015-01-01

    Purpose In this study we aimed to evaluate adaptive designs (ADs) by clinical trial simulation for a pharmacokinetic-pharmacodynamic model in oncology and to compare them with one-stage designs, i.e. when no adaptation is performed, using wrong prior parameters. Methods We evaluated two one-stage designs, ξ0 and ξ*, optimised for prior and true population parameters, Ψ0 and Ψ*, and several ADs (two-, three- and five-stage). All designs had 50 patients. For ADs, the first cohort design was ξ0. The next cohort design was optimised using prior information updated from the previous cohort. Optimal design was based on the determinant of the Fisher information matrix using PFIM. Design evaluation was performed by clinical trial simulations using data simulated from Ψ*. Results Estimation results of two-stage ADs and ξ* were close and much better than those obtained with ξ0. The balanced two-stage AD performed better than two-stage ADs with different cohort sizes. Three-and five-stage ADs were better than two-stage with small first cohort, but not better than the balanced two-stage design. Conclusions Two-stage ADs are useful when prior parameters are unreliable. In case of small first cohort, more adaptations are needed but these designs are complex to implement. PMID:26123680

  12. Influence of the Size of Cohorts in Adaptive Design for Nonlinear Mixed Effects Models: An Evaluation by Simulation for a Pharmacokinetic and Pharmacodynamic Model for a Biomarker in Oncology.

    PubMed

    Lestini, Giulia; Dumont, Cyrielle; Mentré, France

    2015-10-01

    In this study we aimed to evaluate adaptive designs (ADs) by clinical trial simulation for a pharmacokinetic-pharmacodynamic model in oncology and to compare them with one-stage designs, i.e., when no adaptation is performed, using wrong prior parameters. We evaluated two one-stage designs, ξ0 and ξ*, optimised for prior and true population parameters, Ψ0 and Ψ*, and several ADs (two-, three- and five-stage). All designs had 50 patients. For ADs, the first cohort design was ξ0. The next cohort design was optimised using prior information updated from the previous cohort. Optimal design was based on the determinant of the Fisher information matrix using PFIM. Design evaluation was performed by clinical trial simulations using data simulated from Ψ*. Estimation results of two-stage ADs and ξ * were close and much better than those obtained with ξ 0. The balanced two-stage AD performed better than two-stage ADs with different cohort sizes. Three- and five-stage ADs were better than two-stage with small first cohort, but not better than the balanced two-stage design. Two-stage ADs are useful when prior parameters are unreliable. In case of small first cohort, more adaptations are needed but these designs are complex to implement.

  13. Assessment of a human computer interface prototyping environment

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.

    1993-01-01

    A Human Computer Interface (HCI) prototyping environment with embedded evaluation capability has been successfully assessed which will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. The HCI prototyping environment is designed to include four components: (1) a HCI format development tool, (2) a test and evaluation simulator development tool, (3) a dynamic, interactive interface between the HCI prototype and simulator, and (4) an embedded evaluation capability to evaluate the adequacy of an HCI based on a user's performance.

  14. Simulation-based driver and vehicle crew training: applications, efficacy and future directions.

    PubMed

    Goode, Natassia; Salmon, Paul M; Lenné, Michael G

    2013-05-01

    Simulation is widely used as a training tool in many domains, and more recently the use of vehicle simulation as a tool for driver and vehicle crew training has become popular (de Winter et al., 2009; Pradhan et al., 2009). This paper presents an overview of how vehicle simulations are currently used to train driving-related procedural and higher-order cognitive skills, and team-based procedural and non-technical teamwork skills for vehicle crews, and evaluates whether there is evidence these training programs are effective. Efficacy was evaluated in terms of whether training achieves learning objectives and whether the attainment of those objectives enhances real world performance on target tasks. It was concluded that while some higher-order cognitive skills training programs have been shown to be effective, in general the adoption of simulation technology has far outstripped the pace of empirical research in this area. The paper concludes with a discussion of the issues that require consideration when developing and evaluating vehicle simulations for training purposes - based not only on what is known from the vehicle domain, but what can be inferred from other domains in which simulation is an established training approach, such as aviation (e.g. Jentsch et al., 2011) and medicine (e.g. McGaghie et al., 2010). STATEMENT OF RELEVANCE: Simulation has become a popular tool for driver and vehicle crew training in civilian and military settings. This review considers whether there is evidence that this training method leads to learning and the transfer of skills to real world performance. Evidence from other domains, such as aviation and medicine, is drawn upon to inform the design and evaluation of future vehicle simulation training systems. Copyright © 2012 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. Does teaching non-technical skills to medical students improve those skills and simulated patient outcome?

    PubMed

    Hagemann, Vera; Herbstreit, Frank; Kehren, Clemens; Chittamadathil, Jilson; Wolfertz, Sandra; Dirkmann, Daniel; Kluge, Annette; Peters, Jürgen

    2017-03-29

    The purpose of this study is to evaluate the effects of a tailor-made, non-technical skills seminar on medical student's behaviour, attitudes, and performance during simulated patient treatment. Seventy-seven students were randomized to either a non-technical skills seminar (NTS group, n=43) or a medical seminar (control group, n=34). The human patient simulation was used as an evaluation tool. Before the seminars, all students performed the same simulated emergency scenario to provide baseline measurements. After the seminars, all students were exposed to a second scenario, and behavioural markers for evaluating their non-technical skills were rated. Furthermore, teamwork-relevant attitudes were measured before and after the scenarios, and perceived stress was measured following each simulation. All simulations were also evaluated for various medical endpoints. Non-technical skills concerning situation awareness (p<.01, r=0.5) and teamwork (p<.01, r=0.45) improved from simulation I to II in the NTS group. Decision making improved in both groups (NTS: p<.01, r=0.39; control: p<.01, r=0.46). The attitude 'handling errors' improved significantly in the NTS group (p<.05, r=0.34). Perceived stress decreased from simulation I to II in both groups. Medical endpoints and patients´ outcome did not differ significantly between the groups in simulation II. This study highlights the effectiveness of a single brief seminar on non-technical skills to improve student's non-technical skills. In a next step, to improve student's handling of emergencies and patient outcomes, non-technical skills seminars should be accompanied by exercises and more broadly embedded in the medical school curriculum.

  16. Emergency medicine resident crisis resource management ability: a simulation-based longitudinal study

    PubMed Central

    Clarke, Samuel; Horeczko, Timothy; Carlisle, Matthew; Barton, Joseph D.; Ng, Vivienne; Al-Somali, Sameerah; Bair, Aaron E.

    2014-01-01

    Background Simulation has been identified as a means of assessing resident physicians’ mastery of technical skills, but there is a lack of evidence for its utility in longitudinal assessments of residents’ non-technical clinical abilities. We evaluated the growth of crisis resource management (CRM) skills in the simulation setting using a validated tool, the Ottawa Crisis Resource Management Global Rating Scale (Ottawa GRS). We hypothesized that the Ottawa GRS would reflect progressive growth of CRM ability throughout residency. Methods Forty-five emergency medicine residents were tracked with annual simulation assessments between 2006 and 2011. We used mixed-methods repeated-measures regression analyses to evaluate elements of the Ottawa GRS by level of training to predict performance growth throughout a 3-year residency. Results Ottawa GRS scores increased over time, and the domains of leadership, problem solving, and resource utilization, in particular, were predictive of overall performance. There was a significant gain in all Ottawa GRS components between postgraduate years 1 and 2, but no significant difference in GRS performance between years 2 and 3. Conclusions In summary, CRM skills are progressive abilities, and simulation is a useful modality for tracking their development. Modification of this tool may be needed to assess advanced learners’ gains in performance. PMID:25499769

  17. A review of training research and virtual reality simulators for the da Vinci surgical system.

    PubMed

    Liu, May; Curet, Myriam

    2015-01-01

    PHENOMENON: Virtual reality simulators are the subject of several recent studies of skills training for robot-assisted surgery. Yet no consensus exists regarding what a core skill set comprises or how to measure skill performance. Defining a core skill set and relevant metrics would help surgical educators evaluate different simulators. This review draws from published research to propose a core technical skill set for using the da Vinci surgeon console. Publications on three commercial simulators were used to evaluate the simulators' content addressing these skills and associated metrics. An analysis of published research suggests that a core technical skill set for operating the surgeon console includes bimanual wristed manipulation, camera control, master clutching to manage hand position, use of third instrument arm, activating energy sources, appropriate depth perception, and awareness of forces applied by instruments. Validity studies of three commercial virtual reality simulators for robot-assisted surgery suggest that all three have comparable content and metrics. However, none have comprehensive content and metrics for all core skills. INSIGHTS: Virtual reality simulation remains a promising tool to support skill training for robot-assisted surgery, yet existing commercial simulator content is inadequate for performing and assessing a comprehensive basic skill set. The results of this evaluation help identify opportunities and challenges that exist for future developments in virtual reality simulation for robot-assisted surgery. Specifically, the inclusion of educational experts in the development cycle alongside clinical and technological experts is recommended.

  18. Comparison of fabric skins for the simulation of sweating on thermal manikins

    NASA Astrophysics Data System (ADS)

    Koelblen, Barbara; Psikuta, Agnes; Bogdan, Anna; Annaheim, Simon; Rossi, René M.

    2017-09-01

    Sweating is an important thermoregulatory process helping to dissipate heat and, thus, to prevent overheating of the human body. Simulations of human thermo-physiological responses in hot conditions or during exercising are helpful for assessing heat stress; however, realistic sweating simulation and evaporative cooling is needed. To this end, thermal manikins dressed with a tight fabric skin can be used, and the properties of this skin should help human-like sweat evaporation simulation. Four fabrics, i.e., cotton with elastane, polyester, polyamide with elastane, and a skin provided by a manikin manufacturer (Thermetrics) were compared in this study. The moisture management properties of the fabrics have been investigated in basic tests with regard to all phases of sweating relevant for simulating human thermo-physiological responses, namely, onset of sweating, fully developed sweating, and drying. The suitability of the fabrics for standard tests, such as clothing evaporative resistance measurements, was evaluated based on tests corresponding to the middle phase of sweating. Simulations with a head manikin coupled to a thermo-physiological model were performed to evaluate the overall performance of the skins. The results of the study showed that three out of four evaluated fabrics have adequate moisture management properties with regard to the simulation of sweating, which was confirmed in the coupled simulation with the head manikin. The presented tests are helpful for comparing the efficiency of different fabrics to simulate sweat-induced evaporative cooling on thermal manikins.

  19. Operative air temperature data for different measures applied on a building envelope in warm climate.

    PubMed

    Baglivo, Cristina; Congedo, Paolo Maria

    2018-04-01

    Several technical combinations have been evaluated in order to design high energy performance buildings for the warm climate. The analysis has been developed in several steps, avoiding the use of HVAC systems. The methodological approach of this study is based on a sequential search technique and it is shown on the paper entitled "Envelope Design Optimization by Thermal Modeling of a Building in a Warm Climate" [1]. The Operative Air Temperature trends (TOP), for each combination, have been plotted through a dynamic simulation performed using the software TRNSYS 17 (a transient system simulation program, University of Wisconsin, Solar Energy Laboratory, USA, 2010). Starting from the simplest building configuration consisting of 9 rooms (equal-sized modules of 5 × 5 m 2 ), the different building components are sequentially evaluated until the envelope design is optimized. The aim of this study is to perform a step-by-step simulation, simplifying as much as possible the model without making additional variables that can modify their performances. Walls, slab-on-ground floor, roof, shading and windows are among the simulated building components. The results are shown for each combination and evaluated for Brindisi, a city in southern Italy having 1083 degrees day, belonging to the national climatic zone C. The data show the trends of the TOP for each measure applied in the case study for a total of 17 combinations divided into eight steps.

  20. Evaluating large-scale propensity score performance through real-world and synthetic data experiments.

    PubMed

    Tian, Yuxi; Schuemie, Martijn J; Suchard, Marc A

    2018-06-22

    Propensity score adjustment is a popular approach for confounding control in observational studies. Reliable frameworks are needed to determine relative propensity score performance in large-scale studies, and to establish optimal propensity score model selection methods. We detail a propensity score evaluation framework that includes synthetic and real-world data experiments. Our synthetic experimental design extends the 'plasmode' framework and simulates survival data under known effect sizes, and our real-world experiments use a set of negative control outcomes with presumed null effect sizes. In reproductions of two published cohort studies, we compare two propensity score estimation methods that contrast in their model selection approach: L1-regularized regression that conducts a penalized likelihood regression, and the 'high-dimensional propensity score' (hdPS) that employs a univariate covariate screen. We evaluate methods on a range of outcome-dependent and outcome-independent metrics. L1-regularization propensity score methods achieve superior model fit, covariate balance and negative control bias reduction compared with the hdPS. Simulation results are mixed and fluctuate with simulation parameters, revealing a limitation of simulation under the proportional hazards framework. Including regularization with the hdPS reduces commonly reported non-convergence issues but has little effect on propensity score performance. L1-regularization incorporates all covariates simultaneously into the propensity score model and offers propensity score performance superior to the hdPS marginal screen.

  1. Automated Guideway Ground Transportation Network Simulation

    DOT National Transportation Integrated Search

    1975-08-01

    The report discusses some automated guideway management problems relating to ground transportation systems and provides an outline of the types of models and algorithms that could be used to develop simulation tools for evaluating system performance....

  2. Preparing teachers for the performance and evaluation of gaming-simulation in experiential learning climates.

    PubMed

    Barber, P; Norman, I

    1989-02-01

    Gaming-simulation exercises have become an established teaching strategy for nursing education. This paper suggests that nurse educators must now attempt to evaluate their effect on learning. Problems of evaluation are discussed and alternative approaches critically considered. The dominant 'classical' approach is rejected in favour of 'illuminative' evaluation and the approach of 'new paradigm research'. Nurse teachers are encouraged to apply the principles of therapeutic community practice and 'gestalt awareness' to the learning environment to enhance gains from experiential approaches. Finally the need to prepare teachers is examined. It is suggested that personal and interpersonal sensitivity, plus the ability to meaningfully facilitate groupwork are necessary prerequisites for effective gaming-simulation and its qualitative evaluation.

  3. Position, Orientation and Velocity Detection of Unmanned Underwater Vehicles (UUVs) Using an Optical Detector Array

    PubMed Central

    Pe’eri, Shachak; Thein, May-Win; Rzhanov, Yuri; Celikkol, Barbaros; Swift, M. Robinson

    2017-01-01

    This paper presents a proof-of-concept optical detector array sensor system to be used in Unmanned Underwater Vehicle (UUV) navigation. The performance of the developed optical detector array was evaluated for its capability to estimate the position, orientation and forward velocity of UUVs with respect to a light source fixed in underwater. The evaluations were conducted through Monte Carlo simulations and empirical tests under a variety of motion configurations. Monte Carlo simulations also evaluated the system total propagated uncertainty (TPU) by taking into account variations in the water column turbidity, temperature and hardware noise that may degrade the system performance. Empirical tests were conducted to estimate UUV position and velocity during its navigation to a light beacon. Monte Carlo simulation and empirical results support the use of the detector array system for optics based position feedback for UUV positioning applications. PMID:28758936

  4. Comparison of Different Methods of Grading a Level Turn Task on a Flight Simulator

    NASA Technical Reports Server (NTRS)

    Heath, Bruce E.; Crier, tomyka

    2003-01-01

    With the advancements in the computing power of personal computers, pc-based flight simulators and trainers have opened new avenues in the training of airplane pilots. It may be desirable to have the flight simulator make a quantitative evaluation of the progress of a pilot's training thereby reducing the physical requirement of the flight instructor who must, in turn, watch every flight. In an experiment, University students conducted six different flights, each consisting of two level turns. The flights were three minutes in duration. By evaluating videotapes, two certified flight instructors provided separate letter grades for each turn. These level turns were also evaluated using two other computer based grading methods. One method determined automated grades based on prescribed tolerances in bank angle, airspeed and altitude. The other method used was deviations in altitude and bank angle for performance index and performance grades.

  5. Evaluating Discovery Services Architectures in the Context of the Internet of Things

    NASA Astrophysics Data System (ADS)

    Polytarchos, Elias; Eliakis, Stelios; Bochtis, Dimitris; Pramatari, Katerina

    As the "Internet of Things" is expected to grow rapidly in the following years, the need to develop and deploy efficient and scalable Discovery Services in this context is very important for its success. Thus, the ability to evaluate and compare the performance of different Discovery Services architectures is vital if we want to allege that a given design is better at meeting requirements of a specific application. The purpose of this chapter is to provide a paradigm for the evaluation of different Discovery Services for the Internet of Things in terms of efficiency, scalability and performance through the use of simulations. The methodology presented uses the application of Discovery Services to a supply chain with the Service Lookup Service Discovery Service using OMNeT++, an open source network simulation suite. Then, we delve into the simulation design and the details of our findings.

  6. Assessment of simulation fidelity using measurements of piloting technique in flight. II

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Clement, W. F.; Hoh, R. H.; Cleveland, W. B.

    1985-01-01

    Two components of the Vertical Motion Simulator (presently being used to assess the fidelity of UH-60A simulation) are evaluated: (1) the dash/quickstop Nap-of-the-earth (NOE) piloting task, and (2) the bop-up task. Data from these two flight test experiments are presented which provide information on the effect of reduced visual field of view, variation in scene content and texture, and the affect of pure time delay in the closed-loop pilot response. In comparison with task performance results obtained in flight tests, the results from the simulation indicate that the pilot's NOE task performance in the simulator is significantly degraded.

  7. Battery testing at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis & Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY-92 on both single cells and multi-cell modules that encompass six battery technologies (Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  8. Simulating and stimulating performance: introducing distributed simulation to enhance musical learning and performance.

    PubMed

    Williamon, Aaron; Aufegger, Lisa; Eiholzer, Hubert

    2014-01-01

    Musicians typically rehearse far away from their audiences and in practice rooms that differ significantly from the concert venues in which they aspire to perform. Due to the high costs and inaccessibility of such venues, much current international music training lacks repeated exposure to realistic performance situations, with students learning all too late (or not at all) how to manage performance stress and the demands of their audiences. Virtual environments have been shown to be an effective training tool in the fields of medicine and sport, offering practitioners access to real-life performance scenarios but with lower risk of negative evaluation and outcomes. The aim of this research was to design and test the efficacy of simulated performance environments in which conditions of "real" performance could be recreated. Advanced violin students (n = 11) were recruited to perform in two simulations: a solo recital with a small virtual audience and an audition situation with three "expert" virtual judges. Each simulation contained back-stage and on-stage areas, life-sized interactive virtual observers, and pre- and post-performance protocols designed to match those found at leading international performance venues. Participants completed a questionnaire on their experiences of using the simulations. Results show that both simulated environments offered realistic experience of performance contexts and were rated particularly useful for developing performance skills. For a subset of 7 violinists, state anxiety and electrocardiographic data were collected during the simulated audition and an actual audition with real judges. Results display comparable levels of reported state anxiety and patterns of heart rate variability in both situations, suggesting that responses to the simulated audition closely approximate those of a real audition. The findings are discussed in relation to their implications, both generalizable and individual-specific, for performance training.

  9. Simulating and stimulating performance: introducing distributed simulation to enhance musical learning and performance

    PubMed Central

    Williamon, Aaron; Aufegger, Lisa; Eiholzer, Hubert

    2014-01-01

    Musicians typically rehearse far away from their audiences and in practice rooms that differ significantly from the concert venues in which they aspire to perform. Due to the high costs and inaccessibility of such venues, much current international music training lacks repeated exposure to realistic performance situations, with students learning all too late (or not at all) how to manage performance stress and the demands of their audiences. Virtual environments have been shown to be an effective training tool in the fields of medicine and sport, offering practitioners access to real-life performance scenarios but with lower risk of negative evaluation and outcomes. The aim of this research was to design and test the efficacy of simulated performance environments in which conditions of “real” performance could be recreated. Advanced violin students (n = 11) were recruited to perform in two simulations: a solo recital with a small virtual audience and an audition situation with three “expert” virtual judges. Each simulation contained back-stage and on-stage areas, life-sized interactive virtual observers, and pre- and post-performance protocols designed to match those found at leading international performance venues. Participants completed a questionnaire on their experiences of using the simulations. Results show that both simulated environments offered realistic experience of performance contexts and were rated particularly useful for developing performance skills. For a subset of 7 violinists, state anxiety and electrocardiographic data were collected during the simulated audition and an actual audition with real judges. Results display comparable levels of reported state anxiety and patterns of heart rate variability in both situations, suggesting that responses to the simulated audition closely approximate those of a real audition. The findings are discussed in relation to their implications, both generalizable and individual-specific, for performance training. PMID:24550856

  10. Evaluation of simulation-based training on the ability of birth attendants to correctly perform bimanual compression as obstetric first aid.

    PubMed

    Andreatta, Pamela; Gans-Larty, Florence; Debpuur, Domitilla; Ofosu, Anthony; Perosky, Joseph

    2011-10-01

    Maternal mortality from postpartum hemorrhage remains high globally, in large part because women give birth in rural communities where unskilled (traditional birth attendants) provide care for delivering mothers. Traditional attendants are neither trained nor equipped to recognize or manage postpartum hemorrhage as a life-threatening emergent condition. Recommended treatment includes using uterotonic agents and physical manipulation to aid uterine contraction. In resource-limited areas where Obstetric first aid may be the only care option, physical methods such as bimanual uterine compression are easily taught, highly practical and if performed correctly, highly effective. A simulator with objective performance feedback was designed to teach skilled and unskilled birth attendants to perform the technique. To evaluate the impact of simulation-based training on the ability of birth attendants to correctly perform bimanual compression in response to postpartum hemorrhage from uterine atony. Simulation-based training was conducted for skilled (N=111) and unskilled birth attendants (N=14) at two regional (Kumasi, Tamale) and two district (Savelugu, Sene) medical centers in Ghana. Training was evaluated using Kirkpatrick's 4-level model. All participants significantly increased their bimanual uterine compression skills after training (p=0.000). There were no significant differences between 2-week delayed post-test performances indicating retention (p=0.52). Applied behavioral and clinical outcomes were reported for 9 months from a subset of birth attendants in Sene District: 425 births, 13 postpartum hemorrhages were reported without concomitant maternal mortality. The results of this study suggest that simulation-based training for skilled and unskilled birth attendants to perform bi-manual uterine compression as postpartum hemorrhage Obstetric first aid leads to improved applied procedural skills. Results from a smaller subset of the sample suggest that these skills could potentially lead to improved clinical outcomes and additional study is merited. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. System Analysis for the Huntsville Operation Support Center, Distributed Computer System

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Massey, D.

    1985-01-01

    HOSC as a distributed computing system, is responsible for data acquisition and analysis during Space Shuttle operations. HOSC also provides computing services for Marshall Space Flight Center's nonmission activities. As mission and nonmission activities change, so do the support functions of HOSC change, demonstrating the need for some method of simulating activity at HOSC in various configurations. The simulation developed in this work primarily models the HYPERchannel network. The model simulates the activity of a steady state network, reporting statistics such as, transmitted bits, collision statistics, frame sequences transmitted, and average message delay. These statistics are used to evaluate such performance indicators as throughout, utilization, and delay. Thus the overall performance of the network is evaluated, as well as predicting possible overload conditions.

  12. Evaluating Simulation Methodologies to Determine Best Strategies to Maximize Student Learning.

    PubMed

    Scherer, Yvonne K; Foltz-Ramos, Kelly; Fabry, Donna; Chao, Ying-Yu

    2016-01-01

    Limited evidence exists as to the most effective ways to provide simulation experiences to maximize student learning. This quasi-experimental study investigated 2 different strategies repeated versus 1 exposure and participation versus observation on student outcomes following exposure to a high-fidelity acute asthma exacerbation of asthma scenario. Immediate repeated exposure resulted in significantly higher scores on knowledge, student satisfaction and self-confidence, and clinical performance measures than a single exposure. Significant intergroup differences were found on participants' satisfaction and self-confidence as compared with observers. Implications for nurse educators include expanding the observer role when designing repeated exposure to simulations and integrating technical, cognitive, and behavioral outcomes as a way for faculty to evaluate students' clinical performance. Published by Elsevier Inc.

  13. The performance evaluation model of mining project founded on the weight optimization entropy value method

    NASA Astrophysics Data System (ADS)

    Mao, Chao; Chen, Shou

    2017-01-01

    According to the traditional entropy value method still have low evaluation accuracy when evaluating the performance of mining projects, a performance evaluation model of mineral project founded on improved entropy is proposed. First establish a new weight assignment model founded on compatible matrix analysis of analytic hierarchy process (AHP) and entropy value method, when the compatibility matrix analysis to achieve consistency requirements, if it has differences between subjective weights and objective weights, moderately adjust both proportions, then on this basis, the fuzzy evaluation matrix for performance evaluation. The simulation experiments show that, compared with traditional entropy and compatible matrix analysis method, the proposed performance evaluation model of mining project based on improved entropy value method has higher accuracy assessment.

  14. Global Gridded Crop Model Evaluation: Benchmarking, Skills, Deficiencies and Implications.

    NASA Technical Reports Server (NTRS)

    Muller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Glotter, Michael; Hoek, Steven; hide

    2017-01-01

    Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.

  15. Comparing Real-time Versus Delayed Video Assessments for Evaluating ACGME Sub-competency Milestones in Simulated Patient Care Environments

    PubMed Central

    Stiegler, Marjorie; Hobbs, Gene; Martinelli, Susan M; Zvara, David; Arora, Harendra; Chen, Fei

    2018-01-01

    Background Simulation is an effective method for creating objective summative assessments of resident trainees. Real-time assessment (RTA) in simulated patient care environments is logistically challenging, especially when evaluating a large group of residents in multiple simulation scenarios. To date, there is very little data comparing RTA with delayed (hours, days, or weeks later) video-based assessment (DA) for simulation-based assessments of Accreditation Council for Graduate Medical Education (ACGME) sub-competency milestones. We hypothesized that sub-competency milestone evaluation scores obtained from DA, via audio-video recordings, are equivalent to the scores obtained from RTA. Methods Forty-one anesthesiology residents were evaluated in three separate simulated scenarios, representing different ACGME sub-competency milestones. All scenarios had one faculty member perform RTA and two additional faculty members perform DA. Subsequently, the scores generated by RTA were compared with the average scores generated by DA. Variance component analysis was conducted to assess the amount of variation in scores attributable to residents and raters. Results Paired t-tests showed no significant difference in scores between RTA and averaged DA for all cases. Cases 1, 2, and 3 showed an intraclass correlation coefficient (ICC) of 0.67, 0.85, and 0.50 for agreement between RTA scores and averaged DA scores, respectively. Analysis of variance of the scores assigned by the three raters showed a small proportion of variance attributable to raters (4% to 15%). Conclusions The results demonstrate that video-based delayed assessment is as reliable as real-time assessment, as both assessment methods yielded comparable scores. Based on a department’s needs or logistical constraints, our findings support the use of either real-time or delayed video evaluation for assessing milestones in a simulated patient care environment. PMID:29736352

  16. A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation

    NASA Astrophysics Data System (ADS)

    Wang, Mingfeng; Ceccarelli, Marco; Carbone, Giuseppe

    2016-06-01

    A feasibility study on the mechanical design and walking operation of a Cassino biped locomotor is presented in this paper. The biped locomotor consists of two identical 3 degrees-of-freedom tripod leg mechanisms with a parallel manipulator architecture. Planning of the biped walking gait is performed by coordinating the motions of the two leg mechanisms and waist. A threedimensional model is elaborated in SolidWorks® environment in order to characterize a feasible mechanical design. Dynamic simulation is carried out in MSC.ADAMS® environment with the aims of characterizing and evaluating the dynamic walking performance of the proposed design. Simulation results show that the proposed biped locomotor with proper input motions of linear actuators performs practical and feasible walking on flat surfaces with limited actuation and reaction forces between its feet and the ground. A preliminary prototype of the biped locomotor is built for the purpose of evaluating the operation performance of the biped walking gait of the proposed locomotor.

  17. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, A.; Hansman, R. John

    1994-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator was successfully used to evaluate graphical microbursts alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  18. Simulation Pedagogy With Nurse Practitioner Students: Impact of Receiving Immediate Individualized Faculty Feedback.

    PubMed

    Grossman, Sheila; Conelius, Jaclyn

    2015-01-01

    Family nurse practitioner (FNP) students must achieve basic competency in managing patients' primary care needs across the lifespan. Students in the FNP program have simulations integrated throughout their clinical theory courses to increase practice time with various patient cases. Students who received individualized faculty feedback immediately after self-evaluation of simulation performance showed statistically significantly increased knowledge (as evidenced by higher grades in course examinations and preceptor evaluations) than a control group of students who received feedback in a group class via a rubric grading guide 2-4 weeks after all students completed their individual simulations.

  19. Competitive evaluation of failure detection algorithms for strapdown redundant inertial instruments

    NASA Technical Reports Server (NTRS)

    Wilcox, J. C.

    1973-01-01

    Algorithms for failure detection, isolation, and correction of redundant inertial instruments in the strapdown dodecahedron configuration are competitively evaluated in a digital computer simulation that subjects them to identical environments. Their performance is compared in terms of orientation and inertial velocity errors and in terms of missed and false alarms. The algorithms appear in the simulation program in modular form, so that they may be readily extracted for use elsewhere. The simulation program and its inputs and outputs are described. The algorithms, along with an eight algorithm that was not simulated, also compared analytically to show the relationships among them.

  20. Post Pareto optimization-A case

    NASA Astrophysics Data System (ADS)

    Popov, Stoyan; Baeva, Silvia; Marinova, Daniela

    2017-12-01

    Simulation performance may be evaluated according to multiple quality measures that are in competition and their simultaneous consideration poses a conflict. In the current study we propose a practical framework for investigating such simulation performance criteria, exploring the inherent conflicts amongst them and identifying the best available tradeoffs, based upon multi-objective Pareto optimization. This approach necessitates the rigorous derivation of performance criteria to serve as objective functions and undergo vector optimization. We demonstrate the effectiveness of our proposed approach by applying it with multiple stochastic quality measures. We formulate performance criteria of this use-case, pose an optimization problem, and solve it by means of a simulation-based Pareto approach. Upon attainment of the underlying Pareto Frontier, we analyze it and prescribe preference-dependent configurations for the optimal simulation training.

  1. Flight Simulator Visual-Display Delay Compensation

    NASA Technical Reports Server (NTRS)

    Crane, D. Francis

    1981-01-01

    A piloted aircraft can be viewed as a closed-loop man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability. The changes in pilot dynamic response and performance bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. The study reported here evaluated an approach to visual-display delay compensation. The objective of the compensation was to minimize delay-induced change in pilot performance and workload, The compensation was effective. Because the compensation design approach is based on well-established control-system design principles, prospects are favorable for successful application of the approach in other simulations.

  2. Simulator evaluation of the effects of reduced spoiler and thrust authority on a decoupled longitudinal control system during landings in wind shear

    NASA Technical Reports Server (NTRS)

    Miller, G. K., Jr.

    1981-01-01

    The effect of reduced control authority, both in symmetric spoiler travel and thrust level, on the effectiveness of a decoupled longitudinal control system was examined during the approach and landing of the NASA terminal configured vehicle (TCV) aft flight deck simulator in the presence of wind shear. The evaluation was conducted in a fixed-base simulator that represented the TCV aft cockpit. There were no statistically significant effects of reduced spoiler and thrust authority on pilot performance during approach and landing. Increased wind severity degraded approach and landing performance by an amount that was often significant. However, every attempted landing was completed safely regardless of the wind severity. There were statistically significant differences in performance between subjects, but the differences were generally restricted to the control wheel and control-column activity during the approach.

  3. Development and Application of a Computer Simulation Program to Enhance the Clinical Problem-Solving Skills of Students.

    ERIC Educational Resources Information Center

    Boh, Larry E.; And Others

    1987-01-01

    A project to (1) develop and apply a microcomputer simulation program to enhance clinical medication problem solving in preclerkship and clerkship students and (2) perform an initial formative evaluation of the simulation is described. A systematic instructional design approach was used in applying the simulation to the disease state of rheumatoid…

  4. Evaluation of a Head-Worn Display System as an Equivalent Head-Up Display for Low Visibility Commercial Operations

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis (Trey) J., III; Shelton, Kevin J.; Prinzel, Lawrence J.; Nicholas, Stephanie N.; Williams, Steven P.; Ellis, Kyle E.; Jones, Denise R.; Bailey, Randall E.; Harrison, Stephanie J.; Barnes, James R.

    2017-01-01

    Research, development, test, and evaluation of fight deck interface technologies is being conducted by the National Aeronautics and Space Administration (NASA) to proactively identify, develop, and mature tools, methods, and technologies for improving overall aircraft safety of new and legacy vehicles operating in the Next Generation Air Transportation System (NextGen). One specific area of research was the use of small Head-Worn Displays (HWDs) to serve as a possible equivalent to a Head-Up Display (HUD). A simulation experiment and a fight test were conducted to evaluate if the HWD can provide an equivalent level of performance to a HUD. For the simulation experiment, airline crews conducted simulated approach and landing, taxi, and departure operations during low visibility operations. In a follow-on fight test, highly experienced test pilots evaluated the same HWD during approach and surface operations. The results for both the simulation and fight tests showed that there were no statistical differences in the crews' performance in terms of approach, touchdown and takeoff; but, there are still technical hurdles to be overcome for complete display equivalence including, most notably, the end-to-end latency of the HWD system.

  5. Initial Piloted Simulation Evaluation of the Reference-H High-Speed Civil Transport Design During Takeoff and Recovery From Limit Flight Conditions

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.

    1999-01-01

    An initial assessment of a proposed High-Speed Civil Transport (HSCT) was conducted in the fall of 1995 at the NASA Langley Research Center. This configuration, known as the Industry Reference-H (Ref.-H), was designed by the Boeing Aircraft Company as part of their work in the High Speed Research program. It included a conventional tail, a cranked-arrow wing, four mixed-flow turbofan engines, and capacity for transporting approximately 300 passengers. The purpose of this assessment was to evaluate and quantify operational aspects of the Reference-H configuration from a pilot's perspective with the additional goal of identifying design strengths as well as any potential configuration deficiencies. This study was aimed at evaluating the Ref.-H configuration at many points of the aircraft's envelope to determine the suitability of the vehicle to accomplish typical mission profiles as well as emergency or envelope-limit conditions. Pilot-provided Cooper-Harper ratings and comments constituted the primary vehicle evaluation metric. The analysis included simulated real-time piloted evaluations, performed in a 6 degree of freedom motion base NASA Langley Visual-Motion Simulator, combined with extensive bath analysis. The assessment was performed using the third major release of the simulation data base (known as Ref.-H cycle 2B).

  6. Koppen bioclimatic evaluation of CMIP historical climate simulations

    DOE PAGES

    Phillips, Thomas J.; Bonfils, Celine J. W.

    2015-06-05

    Köppen bioclimatic classification relates generic vegetation types to characteristics of the interactive annual-cycles of continental temperature (T) and precipitation (P). In addition to predicting possible bioclimatic consequences of past or prospective climate change, a Köppen scheme can be used to pinpoint biases in model simulations of historical T and P. In this study a Köppen evaluation of Coupled Model Intercomparison Project (CMIP) simulations of historical climate is conducted for the period 1980–1999. Evaluation of an example CMIP5 model illustrates how errors in simulating Köppen vegetation types (relative to those derived from observational reference data) can be deconstructed and related tomore » model-specific temperature and precipitation biases. Measures of CMIP model skill in simulating the reference Köppen vegetation types are also developed, allowing the bioclimatic performance of a CMIP5 simulation of T and P to be compared quantitatively with its CMIP3 antecedent. Although certain bioclimatic discrepancies persist across model generations, the CMIP5 models collectively display an improved rendering of historical T and P relative to their CMIP3 counterparts. Additionally, the Köppen-based performance metrics are found to be quite insensitive to alternative choices of observational reference data or to differences in model horizontal resolution.« less

  7. Influence of outliers on accuracy estimation in genomic prediction in plant breeding.

    PubMed

    Estaghvirou, Sidi Boubacar Ould; Ogutu, Joseph O; Piepho, Hans-Peter

    2014-10-01

    Outliers often pose problems in analyses of data in plant breeding, but their influence on the performance of methods for estimating predictive accuracy in genomic prediction studies has not yet been evaluated. Here, we evaluate the influence of outliers on the performance of methods for accuracy estimation in genomic prediction studies using simulation. We simulated 1000 datasets for each of 10 scenarios to evaluate the influence of outliers on the performance of seven methods for estimating accuracy. These scenarios are defined by the number of genotypes, marker effect variance, and magnitude of outliers. To mimic outliers, we added to one observation in each simulated dataset, in turn, 5-, 8-, and 10-times the error SD used to simulate small and large phenotypic datasets. The effect of outliers on accuracy estimation was evaluated by comparing deviations in the estimated and true accuracies for datasets with and without outliers. Outliers adversely influenced accuracy estimation, more so at small values of genetic variance or number of genotypes. A method for estimating heritability and predictive accuracy in plant breeding and another used to estimate accuracy in animal breeding were the most accurate and resistant to outliers across all scenarios and are therefore preferable for accuracy estimation in genomic prediction studies. The performances of the other five methods that use cross-validation were less consistent and varied widely across scenarios. The computing time for the methods increased as the size of outliers and sample size increased and the genetic variance decreased. Copyright © 2014 Ould Estaghvirou et al.

  8. Comparison of AERMOD and CALPUFF models for simulating SO2 concentrations in a gas refinery.

    PubMed

    Atabi, Farideh; Jafarigol, Farzaneh; Moattar, Faramarz; Nouri, Jafar

    2016-09-01

    In this study, concentration of SO2 from a gas refinery located in complex terrain was calculated by the steady-state, AERMOD model, and nonsteady-state CALPUFF model. First, in four seasons, SO2 concentrations emitted from 16 refinery stacks, in nine receptors, were obtained by field measurements, and then the performance of both models was evaluated. Then, the simulated results for SO2 ambient concentrations made by each model were compared with the results of the observed concentrations, and model results were compared among themselves. The evaluation of the two models to simulate SO2 concentrations was based on the statistical analysis and Q-Q plots. Review of statistical parameters and Q-Q plots has shown that, according to the evaluation of estimations made, performance of both models to simulate the concentration of SO2 in the region can be considered acceptable. The results showed the AERMOD composite ratio between simulated values made by models and the observed values in various receptors for all four average times is 0.72, whereas CALPUFF's ratio is 0.89. However, in the complex conditions of topography, CALPUFF offers better agreement with the observed concentrations.

  9. Virtual reality case-specific rehearsal in temporal bone surgery: a preliminary evaluation.

    PubMed

    Arora, Asit; Swords, Chloe; Khemani, Sam; Awad, Zaid; Darzi, Ara; Singh, Arvind; Tolley, Neil

    2014-01-01

    1. To investigate the feasibility of performing case-specific surgical rehearsal using a virtual reality temporal bone simulator. 2. To identify potential clinical applications in temporal bone surgery. Prospective assessment study. St Mary's Hospital, Imperial College NHS Trust, London UK. Sixteen participants consisting of a trainer and trainee group. Twenty-four cadaver temporal bones were CT-scanned and uploaded onto the Voxelman simulator. Sixteen participants performed a 90-min temporal bone dissection on the generic simulation model followed by 3 dissection tasks on the case simulation and cadaver models. Case rehearsal was assessed for feasibility. Clinical applications and usefulness were evaluated using a 5-point Likert-type scale. The upload process required a semi-automated system. Average time for upload was 20 min. Suboptimal reconstruction occurred in 21% of cases arising when the mastoid process and ossicular chain were not captured (n = 2) or when artefact was generated (n = 3). Case rehearsal rated highly (Likert score >4) for confidence (75%), facilitating planning (75%) and training (94%). Potential clinical applications for case rehearsal include ossicular chain surgery, cochlear implantation and congenital anomalies. Case rehearsal of cholesteatoma surgery is not possible on the current platform due to suboptimal soft tissue representation. The process of uploading CT data onto a virtual reality temporal bone simulator to perform surgical rehearsal is feasible using a semi-automated system. Further clinical evaluation is warranted to assess the benefit of performing patient-specific surgical rehearsal in selected procedures. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Metrics for evaluating performance and uncertainty of Bayesian network models

    Treesearch

    Bruce G. Marcot

    2012-01-01

    This paper presents a selected set of existing and new metrics for gauging Bayesian network model performance and uncertainty. Selected existing and new metrics are discussed for conducting model sensitivity analysis (variance reduction, entropy reduction, case file simulation); evaluating scenarios (influence analysis); depicting model complexity (numbers of model...

  11. VERIFICATION OF THE HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE (HELP) MODEL USING FIELD DATA

    EPA Science Inventory

    The report describes a study conducted to verify the Hydrologic Evaluation of Landfill Performance (HELP) computer model using existing field data from a total of 20 landfill cells at 7 sites in the United States. Simulations using the HELP model were run to compare the predicted...

  12. Real-time software-based end-to-end wireless visual communications simulation platform

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Chung; Chang, Li-Fung; Wong, Andria H.; Sun, Ming-Ting; Hsing, T. Russell

    1995-04-01

    Wireless channel impairments pose many challenges to real-time visual communications. In this paper, we describe a real-time software based wireless visual communications simulation platform which can be used for performance evaluation in real-time. This simulation platform consists of two personal computers serving as hosts. Major components of each PC host include a real-time programmable video code, a wireless channel simulator, and a network interface for data transport between the two hosts. The three major components are interfaced in real-time to show the interaction of various wireless channels and video coding algorithms. The programmable features in the above components allow users to do performance evaluation of user-controlled wireless channel effects without physically carrying out these experiments which are limited in scope, time-consuming, and costly. Using this simulation platform as a testbed, we have experimented with several wireless channel effects including Rayleigh fading, antenna diversity, channel filtering, symbol timing, modulation, and packet loss.

  13. Evaluation of Surface Modification as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Waters, Deborah L.; Misconin, Robert M.; Banks, Bruce A.; Crowder, Mark

    2011-01-01

    Three surface treatments were evaluated for their ability to lower the adhesion between lunar simulant dust and AZ93, AlFEP, and AgFEP thermal control surfaces under simulated lunar conditions. Samples were dusted in situ and exposed to a standardized puff of nitrogen gas. Thermal performance before dusting, after dusting, and after part of the dust was removed by the puff of gas, were compared to perform the assessment. None of the surface treatments was found to significantly affect the adhesion of lunar simulants to AZ93 thermal control paint. Oxygen ion beam texturing also did not lower the adhesion of lunar simulant dust to AlFEP or AgFEP. But a workfunction matching coating and a proprietary Ball Aerospace surface treatment were both found to significantly lower the adhesion of lunar simulants to AlFEP and AgFEP. Based on these results, it is recommended that all these two techniques be further explored as dust mitigation coatings for AlFEP and AgFEP thermal control surfaces.

  14. Single-pass memory system evaluation for multiprogramming workloads

    NASA Technical Reports Server (NTRS)

    Conte, Thomas M.; Hwu, Wen-Mei W.

    1990-01-01

    Modern memory systems are composed of levels of cache memories, a virtual memory system, and a backing store. Varying more than a few design parameters and measuring the performance of such systems has traditionally be constrained by the high cost of simulation. Models of cache performance recently introduced reduce the cost simulation but at the expense of accuracy of performance prediction. Stack-based methods predict performance accurately using one pass over the trace for all cache sizes, but these techniques have been limited to fully-associative organizations. This paper presents a stack-based method of evaluating the performance of cache memories using a recurrence/conflict model for the miss ratio. Unlike previous work, the performance of realistic cache designs, such as direct-mapped caches, are predicted by the method. The method also includes a new approach to the problem of the effects of multiprogramming. This new technique separates the characteristics of the individual program from that of the workload. The recurrence/conflict method is shown to be practical, general, and powerful by comparing its performance to that of a popular traditional cache simulator. The authors expect that the availability of such a tool will have a large impact on future architectural studies of memory systems.

  15. Damage progression in Composite Structures

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    1996-01-01

    A computational simulation tool is used to evaluate the various stages of damage progression in composite materials during Iosipescu sheat testing. Unidirectional composite specimens with either the major or minor material axis in the load direction are considered. Damage progression characteristics are described for each specimen using two types of boundary conditions. A procedure is outlined regarding the use of computational simulation in composites testing. Iosipescu shear testing using the V-notched beam specimen is a convenient method to measure both shear strength and shear stiffness simultaneously. The evaluation of composite test response can be made more productive and informative via computational simulation of progressive damage and fracture. Computational simulation performs a complete evaluation of laminated composite fracture via assessment of ply and subply level damage/fracture processes.

  16. Results of advanced battery technology evaluations for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Gillie, K. R.; Kulaga, J. E.; Smaga, J. A.; Tummillo, A. F.; Webster, C. E.

    1992-10-01

    Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis and Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during 1991-1992 on both single cells and multi-cell modules that encompass eight battery technologies (Na/S, Li/MS (M=metal), Ni/MH, Ni/Cd, Ni/Zn, Ni/Fe, Zn/Br, and Pb-acid). These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The results help identify the most-promising R&D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R&D programs, a comparison of battery technologies, and basic data for modeling.

  17. The use of high-fidelity human patient simulation as an evaluative tool in the development of clinical research protocols and procedures.

    PubMed

    Wright, Melanie C; Taekman, Jeffrey M; Barber, Linda; Hobbs, Gene; Newman, Mark F; Stafford-Smith, Mark

    2005-12-01

    Errors in clinical research can be costly, in terms of patient safety, data integrity, and data collection. Data inaccuracy in early subjects of a clinical study may be associated with problems in the design of the protocol, procedures, and data collection tools. High-fidelity patient simulation centers provide an ideal environment to apply human-centered design to clinical trial development. A draft of a complex clinical protocol was designed, evaluated and modified using a high-fidelity human patient simulator in the Duke University Human Simulation and Patient Safety Center. The process included walk-throughs, detailed modifications of the protocol and development of procedural aids. Training of monitors and coordinators provided an opportunity for observation of performance that was used to identify further improvements to the protocol. Evaluative steps were used to design the research protocol and procedures. Iterative modifications were made to the protocol and data collection tools. The success in use of human simulation in the preparation of a complex clinical drug trial suggests the benefits of human patient simulation extend beyond training and medical equipment evaluation. Human patient simulation can provide a context for informal expert evaluation of clinical protocol design and for formal "rehearsal" to evaluate the efficacy of procedures and support tools.

  18. Experimental and analytical studies of advanced air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Lee, E. G. S.; Boghani, A. B.; Captain, K. M.; Rutishauser, H. J.; Farley, H. L.; Fish, R. B.; Jeffcoat, R. L.

    1981-01-01

    Several concepts are developed for air cushion landing systems (ACLS) which have the potential for improving performance characteristics (roll stiffness, heave damping, and trunk flutter), and reducing fabrication cost and complexity. After an initial screening, the following five concepts were evaluated in detail: damped trunk, filled trunk, compartmented trunk, segmented trunk, and roll feedback control. The evaluation was based on tests performed on scale models. An ACLS dynamic simulation developed earlier is updated so that it can be used to predict the performance of full-scale ACLS incorporating these refinements. The simulation was validated through scale-model tests. A full-scale ACLS based on the segmented trunk concept was fabricated and installed on the NASA ACLS test vehicle, where it is used to support advanced system development. A geometrically-scaled model (one third full scale) of the NASA test vehicle was fabricated and tested. This model, evaluated by means of a series of static and dynamic tests, is used to investigate scaling relationships between reduced and full-scale models. The analytical model developed earlier is applied to simulate both the one third scale and the full scale response.

  19. Metrics for Operator Situation Awareness, Workload, and Performance in Automated Separation Assurance Systems

    NASA Technical Reports Server (NTRS)

    Strybel, Thomas Z.; Vu, Kim-Phuong L.; Battiste, Vernol; Dao, Arik-Quang; Dwyer, John P.; Landry, Steven; Johnson, Walter; Ho, Nhut

    2011-01-01

    A research consortium of scientists and engineers from California State University Long Beach (CSULB), San Jose State University Foundation (SJSUF), California State University Northridge (CSUN), Purdue University, and The Boeing Company was assembled to evaluate the impact of changes in roles and responsibilities and new automated technologies, being introduced in the Next Generation Air Transportation System (NextGen), on operator situation awareness (SA) and workload. To meet these goals, consortium members performed systems analyses of NextGen concepts and airspace scenarios, and concurrently evaluated SA, workload, and performance measures to assess their appropriateness for evaluations of NextGen concepts and tools. The following activities and accomplishments were supported by the NRA: a distributed simulation, metric development, systems analysis, part-task simulations, and large-scale simulations. As a result of this NRA, we have gained a greater understanding of situation awareness and its measurement, and have shared our knowledge with the scientific community. This network provides a mechanism for consortium members, colleagues, and students to pursue research on other topics in air traffic management and aviation, thus enabling them to make greater contributions to the field

  20. Performance characteristics of a conformal ultra-wideband multilayer applicator (CUMLA) for hyperthermia in veterinary patients: a pilot evaluation of its use in the adjuvant treatment of non-resectable tumours.

    PubMed

    Smrkovski, O A; Koo, Y; Kazemi, R; Lembcke, L M; Fathy, A; Liu, Q; Phillips, J C

    2013-03-01

    Performance and clinical characteristics of a novel hyperthermia antenna operating at 434 MHz were evaluated for the adjuvant treatment of locally advanced superficial tumours in cats, dogs and horses. Electromagnetic simulations were performed to determine electric field characteristics and compared to simulations for a flat microwave antenna with similar dimensions. Simulation results show a reduced skin surface and backfield irradiation and improved directional irradiation (at broadside) compared to a flat antenna. Radiated power and penetration is notably increased with a penetration depth of 4.59 cm compared to 2.74 cm for the flat antenna. Clinical use of the antenna was then evaluated in six animals with locoregionally advanced solid tumours receiving adjuvant chemotherapy. During clinical applications, therapeutic temperatures were achieved at depths ≥4 cm. Objective responses were seen in all patients; tissue toxicity in one case limited further therapy. This antenna provides compact, efficient, focused and deep-penetrating clinical hyperthermia for the treatment of solid tumours in veterinary patients. © 2011 Blackwell Publishing Ltd.

  1. Hazard-Free Pyrotechnic Simulator

    NASA Technical Reports Server (NTRS)

    Mcalister, William B., Jr.

    1988-01-01

    Simulator evaluates performance of firing circuits for electroexplosive devices (EED's) safely and inexpensively. Tests circuits realistically when pyrotechnic squibs not connected and eliminates risks of explosions. Used to test such devices as batteries where test conditions might otherwise degrade them.

  2. Simulator evaluation of manually flown curved instrument approaches. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Sager, D.

    1973-01-01

    Pilot performance in flying horizontally curved instrument approaches was analyzed by having nine test subjects fly curved approaches in a fixed-base simulator. Approaches were flown without an autopilot and without a flight director. Evaluations were based on deviation measurements made at a number of points along the curved approach path and on subject questionnaires. Results indicate that pilots can fly curved approaches, though less accurately than straight-in approaches; that a moderate wind does not effect curve flying performance; and that there is no performance difference between 60 deg. and 90 deg. turns. A tradeoff of curve path parameters and a paper analysis of wind compensation were also made.

  3. Design analysis and computer-aided performance evaluation of shuttle orbiter electrical power system. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Studies were conducted to develop appropriate space shuttle electrical power distribution and control (EPDC) subsystem simulation models and to apply the computer simulations to systems analysis of the EPDC. A previously developed software program (SYSTID) was adapted for this purpose. The following objectives were attained: (1) significant enhancement of the SYSTID time domain simulation software, (2) generation of functionally useful shuttle EPDC element models, and (3) illustrative simulation results in the analysis of EPDC performance, under the conditions of fault, current pulse injection due to lightning, and circuit protection sizing and reaction times.

  4. Performance Summary of the 2006 Community Multiscale Air Quality (CMAQ) Simulation for the AQMEII Project: North American Application

    EPA Science Inventory

    The CMAQ modeling system has been used to simulate the CONUS using 12-km by 12-km horizontal grid spacing for the entire year of 2006 as part of the Air Quality Model Evaluation International initiative (AQMEII). The operational model performance for O3 and PM2.5<...

  5. A Simulation Study Comparison of Bayesian Estimation with Conventional Methods for Estimating Unknown Change Points

    ERIC Educational Resources Information Center

    Wang, Lijuan; McArdle, John J.

    2008-01-01

    The main purpose of this research is to evaluate the performance of a Bayesian approach for estimating unknown change points using Monte Carlo simulations. The univariate and bivariate unknown change point mixed models were presented and the basic idea of the Bayesian approach for estimating the models was discussed. The performance of Bayesian…

  6. An Experimental Design of a Foundational Framework for the Application of Affective Computing to Soaring Flight Simulation and Training

    ERIC Educational Resources Information Center

    Moon, Shannon

    2017-01-01

    In the absence of tools for intelligent tutoring systems for soaring flight simulation training, this study evaluated a framework foundation to measure pilot performance, affect, and physiological response to training in real-time. Volunteers were asked to perform a series of flight tasks selected from Federal Aviation Administration Practical…

  7. Using Modeling and Simulation to Complement Testing for Increased Understanding of Weapon Subassembly Response.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Michael K.; Davidson, Megan

    As part of Sandia’s nuclear deterrence mission, the B61-12 Life Extension Program (LEP) aims to modernize the aging weapon system. Modernization requires requalification and Sandia is using high performance computing to perform advanced computational simulations to better understand, evaluate, and verify weapon system performance in conjunction with limited physical testing. The Nose Bomb Subassembly (NBSA) of the B61-12 is responsible for producing a fuzing signal upon ground impact. The fuzing signal is dependent upon electromechanical impact sensors producing valid electrical fuzing signals at impact. Computer generated models were used to assess the timing between the impact sensor’s response to themore » deceleration of impact and damage to major components and system subassemblies. The modeling and simulation team worked alongside the physical test team to design a large-scale reverse ballistic test to not only assess system performance, but to also validate their computational models. The reverse ballistic test conducted at Sandia’s sled test facility sent a rocket sled with a representative target into a stationary B61-12 (NBSA) to characterize the nose crush and functional response of NBSA components. Data obtained from data recorders and high-speed photometrics were integrated with previously generated computer models in order to refine and validate the model’s ability to reliably simulate real-world effects. Large-scale tests are impractical to conduct for every single impact scenario. By creating reliable computer models, we can perform simulations that identify trends and produce estimates of outcomes over the entire range of required impact conditions. Sandia’s HPCs enable geometric resolution that was unachievable before, allowing for more fidelity and detail, and creating simulations that can provide insight to support evaluation of requirements and performance margins. As computing resources continue to improve, researchers at Sandia are hoping to improve these simulations so they provide increasingly credible analysis of the system response and performance over the full range of conditions.« less

  8. Simulated Driving Assessment (SDA) for teen drivers: results from a validation study.

    PubMed

    McDonald, Catherine C; Kandadai, Venk; Loeb, Helen; Seacrist, Thomas S; Lee, Yi-Ching; Winston, Zachary; Winston, Flaura K

    2015-06-01

    Driver error and inadequate skill are common critical reasons for novice teen driver crashes, yet few validated, standardised assessments of teen driving skills exist. The purpose of this study is to evaluate the construct and criterion validity of a newly developed Simulated Driving Assessment (SDA) for novice teen drivers. The SDA's 35 min simulated drive incorporates 22 variations of the most common teen driver crash configurations. Driving performance was compared for 21 inexperienced teens (age 16-17 years, provisional license ≤90 days) and 17 experienced adults (age 25-50 years, license ≥5 years, drove ≥100 miles per week, no collisions or moving violations ≤3 years). SDA driving performance (Error Score) was based on driving safety measures derived from simulator and eye-tracking data. Negative driving outcomes included simulated collisions or run-off-the-road incidents. A professional driving evaluator/instructor (DEI Score) reviewed videos of SDA performance. The SDA demonstrated construct validity: (1) teens had a higher Error Score than adults (30 vs. 13, p=0.02); (2) For each additional error committed, the RR of a participant's propensity for a simulated negative driving outcome increased by 8% (95% CI 1.05 to 1.10, p<0.01). The SDA-demonstrated criterion validity: Error Score was correlated with DEI Score (r=-0.66, p<0.001). This study supports the concept of validated simulated driving tests like the SDA to assess novice driver skill in complex and hazardous driving scenarios. The SDA, as a standard protocol to evaluate teen driver performance, has the potential to facilitate screening and assessment of teen driving readiness and could be used to guide targeted skill training. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Simulation-Based Learning: The Learning-Forgetting-Relearning Process and Impact of Learning History

    ERIC Educational Resources Information Center

    Davidovitch, Lior; Parush, Avi; Shtub, Avy

    2008-01-01

    The results of empirical experiments evaluating the effectiveness and efficiency of the learning-forgetting-relearning process in a dynamic project management simulation environment are reported. Sixty-six graduate engineering students performed repetitive simulation-runs with a break period of several weeks between the runs. The students used a…

  10. Quantitative Evaluation of Performance in Interventional Neuroradiology: An Integrated Curriculum Featuring Theoretical and Practical Challenges.

    PubMed

    Ernst, Marielle; Kriston, Levente; Romero, Javier M; Frölich, Andreas M; Jansen, Olav; Fiehler, Jens; Buhk, Jan-Hendrik

    2016-01-01

    We sought to develop a standardized curriculum capable of assessing key competencies in Interventional Neuroradiology by the use of models and simulators in an objective, quantitative, and efficient way. In this evaluation we analyzed the associations between the practical experience, theoretical knowledge, and the skills lab performance of interventionalists. We evaluated the endovascular skills of 26 participants of the Advanced Course in Endovascular Interventional Neuroradiology of the European Society of Neuroradiology with a set of three tasks (aneurysm coiling and thrombectomy in a virtual simulator and placement of an intra-aneurysmal flow disruptor in a flow model). Practical experience was assessed by a survey. Participants completed a written and oral examination to evaluate theoretical knowledge. Bivariate and multivariate analyses were performed. In multivariate analysis knowledge of materials and techniques in Interventional Neuroradiology was moderately associated with skills in aneurysm coiling and thrombectomy. Experience in mechanical thrombectomy was moderately associated with thrombectomy skills, while age was negatively associated with thrombectomy skills. We found no significant association between age, sex, or work experience and skills in aneurysm coiling. Our study gives an example of how an integrated curriculum for reasonable and cost-effective assessment of key competences of an interventional neuroradiologist could look. In addition to traditional assessment of theoretical knowledge practical skills are measured by the use of endovascular simulators yielding objective, quantitative, and constructive data for the evaluation of the current performance status of participants as well as the evolution of their technical competency over time.

  11. Evaluation of NASA's end-to-end data systems using DSDS+

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Davenport, William; Message, Philip

    1994-01-01

    The Data Systems Dynamic Simulator (DSDS+) is a software tool being developed by the authors to evaluate candidate architectures for NASA's end-to-end data systems. Via modeling and simulation, we are able to quickly predict the performance characteristics of each architecture, to evaluate 'what-if' scenarios, and to perform sensitivity analyses. As such, we are using modeling and simulation to help NASA select the optimal system configuration, and to quantify the performance characteristics of this system prior to its delivery. This paper is divided into the following six sections: (1) The role of modeling and simulation in the systems engineering process. In this section, we briefly describe the different types of results obtained by modeling each phase of the systems engineering life cycle, from concept definition through operations and maintenance; (2) Recent applications of DSDS+. In this section, we describe ongoing applications of DSDS+ in support of the Earth Observing System (EOS), and we present some of the simulation results generated of candidate system designs. So far, we have modeled individual EOS subsystems (e.g. the Solid State Recorders used onboard the spacecraft), and we have also developed an integrated model of the EOS end-to-end data processing and data communications systems (from the payloads onboard to the principle investigator facilities on the ground); (3) Overview of DSDS+. In this section we define what a discrete-event model is, and how it works. The discussion is presented relative to the DSDS+ simulation tool that we have developed, including it's run-time optimization algorithms that enables DSDS+ to execute substantially faster than comparable discrete-event simulation tools; (4) Summary. In this section, we summarize our findings and 'lessons learned' during the development and application of DSDS+ to model NASA's data systems; (5) Further Information; and (6) Acknowledgements.

  12. Evaluating transient performance of servo mechanisms by analysing stator current of PMSM

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Tan, Luyao; Xu, Guanghua

    2018-02-01

    Smooth running and rapid response are the desired performance goals for the transient motions of servo mechanisms. Because of the uncertain and unobservable transient behaviour of servo mechanisms, it is difficult to evaluate their transient performance. Under the effects of electromechanical coupling, the stator current signals of a permanent-magnet synchronous motor (PMSM) potentially contain the performance information regarding servo mechanisms in use. In this paper, a novel method based on analysing the stator current of the PMSM is proposed for quantifying the transient performance. First, a vector control model is constructed to simulate the stator current behaviour in the transient processes of consecutive speed changes, consecutive load changes, and intermittent start-stops. It is discovered that the amplitude and frequency of the stator current are modulated by the transient load torque and motor speed, respectively. The stator currents under different performance conditions are also simulated and compared. Then, the stator current is processed using a local means decomposition (LMD) algorithm to extract the instantaneous amplitude and instantaneous frequency. The sample entropy of the instantaneous amplitude, which reflects the complexity of the load torque variation, is calculated as a performance indicator of smooth running. The peak-to-peak value of the instantaneous frequency, which defines the range of the motor speed variation, is set as a performance indicator of rapid response. The proposed method is applied to both simulated data in an intermittent start-stops process and experimental data measured for a batch of servo turrets for turning lathes. The results show that the performance evaluations agree with the actual performance.

  13. Simulation and flight test evaluation of head-up-display guidance for harrier approach transitions

    NASA Technical Reports Server (NTRS)

    Dorr, D. W.; Moralez, E., III; Merrick, V. K.

    1994-01-01

    Position and speed guidance displays for STOVL aircraft curved, decelerating approaches to hover and vertical landing have been evaluated for their effectiveness in reducing pilot workload and improving performance. The NASA V/STOL Systems Research Aircraft, a modified YAV-8B Harrier prototype, was used to evaluate the displays in flight, whereas the NASA Ames Vertical Motion Simulator was used to extend the flight test results to instrument meteorological conditions (IMC) and to examine performance in various conditions of wind and turbulence. The simulation data showed close correlation with the flight test data, and both demonstrated the feasibility of the displays. With the exception of the hover task in zero visibility, which was level-3, averaged Copper-Harper handling qualities ratings given during simulation were level-2 for both the approach task and the hover task in all conditions. During flight tests in calm and clear conditions, the displays also gave rise to level-2 handling qualities ratings. Pilot opinion showed that the guidance displays would be useful in visual flight, especially at night, as well as in IMC.

  14. Towards Systematic Benchmarking of Climate Model Performance

    NASA Astrophysics Data System (ADS)

    Gleckler, P. J.

    2014-12-01

    The process by which climate models are evaluated has evolved substantially over the past decade, with the Coupled Model Intercomparison Project (CMIP) serving as a centralizing activity for coordinating model experimentation and enabling research. Scientists with a broad spectrum of expertise have contributed to the CMIP model evaluation process, resulting in many hundreds of publications that have served as a key resource for the IPCC process. For several reasons, efforts are now underway to further systematize some aspects of the model evaluation process. First, some model evaluation can now be considered routine and should not require "re-inventing the wheel" or a journal publication simply to update results with newer models. Second, the benefit of CMIP research to model development has not been optimal because the publication of results generally takes several years and is usually not reproducible for benchmarking newer model versions. And third, there are now hundreds of model versions and many thousands of simulations, but there is no community-based mechanism for routinely monitoring model performance changes. An important change in the design of CMIP6 can help address these limitations. CMIP6 will include a small set standardized experiments as an ongoing exercise (CMIP "DECK": ongoing Diagnostic, Evaluation and Characterization of Klima), so that modeling groups can submit them at any time and not be overly constrained by deadlines. In this presentation, efforts to establish routine benchmarking of existing and future CMIP simulations will be described. To date, some benchmarking tools have been made available to all CMIP modeling groups to enable them to readily compare with CMIP5 simulations during the model development process. A natural extension of this effort is to make results from all CMIP simulations widely available, including the results from newer models as soon as the simulations become available for research. Making the results from routine performance tests readily accessible will help advance a more transparent model evaluation process.

  15. Cost analysis of objective resident cataract surgery assessments.

    PubMed

    Nandigam, Kiran; Soh, Jonathan; Gensheimer, William G; Ghazi, Ahmed; Khalifa, Yousuf M

    2015-05-01

    To compare 8 ophthalmology resident surgical training tools to determine which is most cost effective. University of Rochester Medical Center, Rochester, New York, USA. Retrospective evaluation of technology. A cost-analysis model was created to compile all relevant costs in running each tool in a medium-sized ophthalmology program. Quantitative cost estimates were obtained based on cost of tools, cost of time in evaluations, and supply and maintenance costs. For wet laboratory simulation, Eyesi was the least expensive cataract surgery simulation method; however, it is only capable of evaluating simulated cataract surgery rehearsal and requires supplementation with other evaluative methods for operating room performance and for noncataract wet lab training and evaluation. The most expensive training tool was the Eye Surgical Skills Assessment Test (ESSAT). The 2 most affordable methods for resident evaluation in operating room performance were the Objective Assessment of Skills in Intraocular Surgery (OASIS) and Global Rating Assessment of Skills in Intraocular Surgery (GRASIS). Cost-based analysis of ophthalmology resident surgical training tools are needed so residency programs can implement tools that are valid, reliable, objective, and cost effective. There is no perfect training system at this time. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. An experimental study on CHVE's performance evaluation.

    PubMed

    Paiva, Paulo V F; Machado, Liliane S; Oliveira, Jauvane C

    2012-01-01

    Virtual reality-based training simulators, with collaborative capabilities, are known to improve the way users interact with one another while learning or improving skills on a given medical procedure. Performance evaluation of Collaborative Haptic Virtual Environments (CHVE) allows us to understand how such systems can work in the Internet, as well as the requirements for multisensorial and real-time data. This work discloses new performance evaluation results for the collaborative module of the CyberMed VR framework.

  17. Simulation-based ongoing professional practice evaluation in psychiatry: a novel tool for performance assessment.

    PubMed

    Gorrindo, Tristan; Goldfarb, Elizabeth; Birnbaum, Robert J; Chevalier, Lydia; Meller, Benjamin; Alpert, Jonathan; Herman, John; Weiss, Anthony

    2013-07-01

    Ongoing professional practice evaluation (OPPE) activities consist of a quantitative, competency-based evaluation of clinical performance. Hospitals must design assessments that measure clinical competencies, are scalable, and minimize impact on the clinician's daily routines. A psychiatry department at a large academic medical center designed and implemented an interactive Web-based psychiatric simulation focusing on violence risk assessment as a tool for a departmentwide OPPE. Of 412 invited clinicians in a large psychiatry department, 410 completed an online simulation in April-May 2012. Participants received scheduled e-mail reminders with instructions describing how to access the simulation. Using the Computer Simulation Assessment Tool, participants viewed an introductory video and were then asked to conduct a risk assessment, acting as a clinician in the encounter by selecting actions from a series of drop-down menus. Each action was paired with a corresponding video segment of a clinical encounter with a standardized patient. Participants were scored on the basis of their actions within the simulation (Measure 1) and by their responses to the open-ended questions in which they were asked to integrate the information from the simulation in a summative manner (Measure 2). Of the 410 clinicians, 381 (92.9%) passed Measure 1,359 (87.6%) passed Measure 2, and 5 (1.2%) failed both measures. Seventy-five (18.3%) participants were referred for focused professional practice evaluation (FPPE) after failing either Measure 1, Measure 2, or both. Overall, Web-based simulation and e-mail engagement tools were a scalable and efficient way to assess a large number of clinicians in OPPE and to identify those who required FPPE.

  18. Regime-based evaluation of cloudiness in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin

    2017-01-01

    The concept of cloud regimes (CRs) is used to develop a framework for evaluating the cloudiness of 12 fifth Coupled Model Intercomparison Project (CMIP5) models. Reference CRs come from existing global International Satellite Cloud Climatology Project (ISCCP) weather states. The evaluation is made possible by the implementation in several CMIP5 models of the ISCCP simulator generating in each grid cell daily joint histograms of cloud optical thickness and cloud top pressure. Model performance is assessed with several metrics such as CR global cloud fraction (CF), CR relative frequency of occurrence (RFO), their product [long-term average total cloud amount (TCA)], cross-correlations of CR RFO maps, and a metric of resemblance between model and ISCCP CRs. In terms of CR global RFO, arguably the most fundamental metric, the models perform unsatisfactorily overall, except for CRs representing thick storm clouds. Because model CR CF is internally constrained by our method, RFO discrepancies yield also substantial TCA errors. Our results support previous findings that CMIP5 models underestimate cloudiness. The multi-model mean performs well in matching observed RFO maps for many CRs, but is still not the best for this or other metrics. When overall performance across all CRs is assessed, some models, despite shortcomings, apparently outperform Moderate Resolution Imaging Spectroradiometer cloud observations evaluated against ISCCP like another model output. Lastly, contrasting cloud simulation performance against each model's equilibrium climate sensitivity in order to gain insight on whether good cloud simulation pairs with particular values of this parameter, yields no clear conclusions.

  19. Mild Normobaric Hypoxia Exposure for Human-Autonomy System Testing

    NASA Technical Reports Server (NTRS)

    Stephens, Chad L.; Kennedy, Kellie D.; Crook, Brenda L.; Williams, Ralph A.; Schutte, Paul

    2017-01-01

    An experiment investigated the impact of normobaric hypoxia induction on aircraft pilot performance to specifically evaluate the use of hypoxia as a method to induce mild cognitive impairment to explore human-autonomous systems integration opportunities. Results of this exploratory study show that the effect of 15,000 feet simulated altitude did not induce cognitive deficits as indicated by performance on written, computer-based, or simulated flight tasks. However, the subjective data demonstrated increased effort by the human test subject pilots to maintain equivalent performance in a flight simulation task. This study represents current research intended to add to the current knowledge of performance decrement and pilot workload assessment to improve automation support and increase aviation safety.

  20. A theoretical comparison of evolutionary algorithms and simulated annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.E.

    1995-08-28

    This paper theoretically compares the performance of simulated annealing and evolutionary algorithms. Our main result is that under mild conditions a wide variety of evolutionary algorithms can be shown to have greater performance than simulated annealing after a sufficiently large number of function evaluations. This class of EAs includes variants of evolutionary strategie and evolutionary programming, the canonical genetic algorithm, as well as a variety of genetic algorithms that have been applied to combinatorial optimization problems. The proof of this result is based on a performance analysis of a very general class of stochastic optimization algorithms, which has implications formore » the performance of a variety of other optimization algorithm.« less

  1. Microsurgical Performance After Sleep Interruption: A NeuroTouch Simulator Study.

    PubMed

    Micko, Alexander; Knopp, Karoline; Knosp, Engelbert; Wolfsberger, Stefan

    2017-10-01

    In times of the ubiquitous debate about doctors' working hour restrictions, it is still questionable if the physician's performance is impaired by high work load and long shifts. In this study, we evaluated the impact of sleep interruption on neurosurgical performance. Ten medical students and 10 neurosurgical residents were tested on the virtual-reality simulator NeuroTouch by performing an identical microsurgical task, well rested (baseline test), and after sleep interruption at night (stress test). Deviation of total score, timing, and excessive force on tissue were evaluated. In addition, vital parameters and self-assessment were analyzed. After sleep interruption, total performance score increased significantly (45.1 vs. 48.7, baseline vs. stress test, P = 0.048) while timing remained stable (10.1 vs. 10.4 minutes for baseline vs. stress test, P > 0.05) for both students and residents. Excessive force decreased in both groups during the stress test for the nondominant hand (P = 0.05). For the dominant hand, an increase of excessive force was encountered in the group of residents (P = 0.05). In contrast to their results, participants of both groups assessed their performance worse during the stress test. In our study, we found an increase of neurosurgical simulator performance in neurosurgical residents and medical students under simulated night shift conditions. Further, microsurgical dexterity remained unchanged. Based on our results and the data in the available literature, we cannot confirm that working hour restrictions will have a positive effect on neurosurgical performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effect of caffeine on simulator flight performance in sleep-deprived military pilot students.

    PubMed

    Lohi, Jouni J; Huttunen, Kerttu H; Lahtinen, Taija M M; Kilpeläinen, Airi A; Muhli, Arto A; Leino, Tuomo K

    2007-09-01

    Caffeine has been suggested to act as a countermeasure against fatigue in military operations. In this randomized, double-blind, placebo-controlled study, the effect of caffeine on simulator flight performance was examined in 13 military pilots during 37 hours of sleep deprivation. Each subject performed a flight mission in simulator four times. The subjects received either a placebo (six subjects) or 200 mg of caffeine (seven subjects) 1 hour before the simulated flights. A moderate 200 mg intake of caffeine was associated with higher axillary temperatures, but it did not affect subjectively assessed sleepiness. Flight performance was similar in both groups during the four rounds flown under sleep deprivation. However, subjective evaluation of overall flight performance in the caffeine group tended to be too optimistic, indicating a potential flight safety problem. Based on our results, we do not recommend using caffeine pills in military flight operations.

  3. Human Sensibility Ergonomics Approach to Vehicle Simulator Based on Dynamics

    NASA Astrophysics Data System (ADS)

    Son, Kwon; Choi, Kyung-Hyun; Yoon, Ji-Sup

    Simulators have been used to evaluate drivers' reactions to various transportation products. Most research, however, has concentrated on their technical performance. This paper considers driver's motion perception on a vehicle simulator through the analysis of human sensibility ergonomics. A sensibility ergonomic method is proposed in order to improve the reliability of vehicle simulators. A simulator in a passenger vehicle consists of three main modules such as vehicle dynamics, virtual environment, and motion representation modules. To evaluate drivers' feedback, human perceptions are categorized into a set verbal expressions collected and investigated to find the most appropriate ones for translation and angular accelerations of the simulator. The cut-off frequency of the washout filter in the representation module is selected as one sensibility factor. Sensibility experiments were carried out to find a correlation between the expressions and the cut-off frequency of the filter. This study suggests a methodology to obtain an ergonomic database that can be applied to the sensibility evaluation of dynamic simulators.

  4. Evaluation of decadal hindcasts using satellite simulators

    NASA Astrophysics Data System (ADS)

    Spangehl, Thomas; Mazurkiewicz, Alex; Schröder, Marc

    2013-04-01

    The evaluation of dynamical ensemble forecast systems requires a solid validation of basic processes such as the global atmospheric water and energy cycle. The value of any validation approach strongly depends on the quality of the observational data records used. Current approaches utilize in situ measurements, remote sensing data and reanalyses. Related data records are subject to a number of uncertainties and limitations such as representativeness, spatial and temporal resolution and homogeneity. However, recently several climate data records with known and sufficient quality became available. In particular, the satellite data records offer the opportunity to obtain reference information on global scales including the oceans. Here we consider the simulation of satellite radiances from the climate model output enabling an evaluation in the instrument's parameter space to avoid uncertainties stemming from the application of retrieval schemes in order to minimise uncertainties on the reference side. Utilizing the CFMIP Observation Simulator Package (COSP) we develop satellite simulators for the Tropical Rainfall Measuring Mission precipitation radar (TRMM PR) and the Infrared Atmospheric Sounding Interferometer (IASI). The simulators are applied within the MiKlip project funded by BMBF (German Federal Ministry of Education and Research) to evaluate decadal climate predictions performed with the MPI-ESM developed at the Max Planck Institute for Meteorology. While TRMM PR enables the evaluation of the vertical structure of precipitation over tropical and sub-tropical areas, IASI is used to support the global evaluation of clouds and radiation. In a first step the reliability of the developed simulators needs to be explored. The simulation of radiances in the instrument space requires the generation of sub-grid scale variability from the climate model output. Furthermore, assumptions are made to simulate radiances such as, for example, the distribution of different hydrometeor types. Therefore, testing is performed to determine the extent to which the quality of the simulator results depends on the applied methods used to generate sub-grid variability (e.g. sub-grid resolution). Moreover, the sensitivity of results to the choice of different distributions of hydrometeors is explored. The model evaluation is carried out in a statistical manner using histograms of radar reflectivities (TRMM PR) and brightness temperatures (IASI). Finally, methods to deduce data suitable for probabilistic evaluation of decadal hindcasts such as simple indices are discussed.

  5. Benchmark simulation model no 2: general protocol and exploratory case studies.

    PubMed

    Jeppsson, U; Pons, M-N; Nopens, I; Alex, J; Copp, J B; Gernaey, K V; Rosen, C; Steyer, J-P; Vanrolleghem, P A

    2007-01-01

    Over a decade ago, the concept of objectively evaluating the performance of control strategies by simulating them using a standard model implementation was introduced for activated sludge wastewater treatment plants. The resulting Benchmark Simulation Model No 1 (BSM1) has been the basis for a significant new development that is reported on here: Rather than only evaluating control strategies at the level of the activated sludge unit (bioreactors and secondary clarifier) the new BSM2 now allows the evaluation of control strategies at the level of the whole plant, including primary clarifier and sludge treatment with anaerobic sludge digestion. In this contribution, the decisions that have been made over the past three years regarding the models used within the BSM2 are presented and argued, with particular emphasis on the ADM1 description of the digester, the interfaces between activated sludge and digester models, the included temperature dependencies and the reject water storage. BSM2-implementations are now available in a wide range of simulation platforms and a ring test has verified their proper implementation, consistent with the BSM2 definition. This guarantees that users can focus on the control strategy evaluation rather than on modelling issues. Finally, for illustration, twelve simple operational strategies have been implemented in BSM2 and their performance evaluated. Results show that it is an interesting control engineering challenge to further improve the performance of the BSM2 plant (which is the whole idea behind benchmarking) and that integrated control (i.e. acting at different places in the whole plant) is certainly worthwhile to achieve overall improvement.

  6. Performance bounds on parallel self-initiating discrete-event

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1990-01-01

    The use is considered of massively parallel architectures to execute discrete-event simulations of what is termed self-initiating models. A logical process in a self-initiating model schedules its own state re-evaluation times, independently of any other logical process, and sends its new state to other logical processes following the re-evaluation. The interest is in the effects of that communication on synchronization. The performance is considered of various synchronization protocols by deriving upper and lower bounds on optimal performance, upper bounds on Time Warp's performance, and lower bounds on the performance of a new conservative protocol. The analysis of Time Warp includes the overhead costs of state-saving and rollback. The analysis points out sufficient conditions for the conservative protocol to outperform Time Warp. The analysis also quantifies the sensitivity of performance to message fan-out, lookahead ability, and the probability distributions underlying the simulation.

  7. The effects of multiple aerospace environmental stressors on human performance

    NASA Technical Reports Server (NTRS)

    Popper, S. E.; Repperger, D. W.; Mccloskey, K.; Tripp, L. D.

    1992-01-01

    An extended Fitt's law paradigm reaction time (RT) task was used to evaluate the effects of acceleration on human performance in the Dynamic Environment Simulator (DES) at Armstrong Laboratory, Wright-Patterson AFB, Ohio. This effort was combined with an evaluation of the standard CSU-13 P anti-gravity suit versus three configurations of a 'retrograde inflation anti-G suit'. Results indicated that RT and error rates increased 17 percent and 14 percent respectively from baseline to the end of the simulated aerial combat maneuver and that the most common error was pressing too few buttons.

  8. A flight-test and simulation evaluation of the longitudinal final approach and landing performance of an automatic system for a light wing loading STOL aircraft equipped with wing spoilers

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Hardy, G. H.; Hindson, W. S.

    1984-01-01

    As part of a comprehensive flight-test investigation of short takeoff and landing (STOL) operating systems for the terminal systems for the terminal area, an automatic landing system has been developed and evaluated for a light wing-loading turboprop-powered aircraft. An advanced digital avionics system performed display, navigation, guidance, and control functions for the test aircraft. Control signals were generated in order to command powered actuators for all conventional controls and for a set of symmetrically driven wing spoilers. This report describes effects of the spoiler control on longitudinal autoland (automatic landing) performance. Flight-test results, with and without spoiler control, are presented and compared with available (basically, conventional takeoff and landing) performance criteria. These comparisons are augmented by results from a comprehensive simulation of the controlled aircraft that included representations of the microwave landing system navigation errors that were encountered in flight as well as expected variations in atmospheric turbulence and wind shear. Flight-test results show that the addition of spoiler control improves the touchdown performance of the automatic landing system. Spoilers improve longitudinal touchdown and landing pitch-attitude performance, particularly in tailwind conditions. Furthermore, simulation results indicate that performance would probably be satisfactory for a wider range of atmospheric disturbances than those encountered in flight. Flight results also indicate that the addition of spoiler control during the final approach does not result in any measurable change in glidepath track performance, and results in a very small deterioration in airspeed tracking. This difference contrasts with simulations results, which indicate some improvement in glidepath tracking and no appreciable change in airspeed tracking. The modeling problem in the simulation that contributed to this discrepancy with flight was not resolved.

  9. 3D Simulations of NIF Wetted Foam Experiments to Understand the Transition from 2D to 3D Implosion Behavior

    NASA Astrophysics Data System (ADS)

    Haines, Brian; Olson, Richard; Yi, Austin; Zylstra, Alex; Peterson, Robert; Bradley, Paul; Shah, Rahul; Wilson, Doug; Kline, John; Leeper, Ramon; Batha, Steve

    2017-10-01

    The high convergence ratio (CR) of layered Inertial Confinement Fusion capsule implosions contribute to high performance in 1D simulations yet make them more susceptible to hydrodynamic instabilities, contributing to the development of 3D flows. The wetted foam platform is an approach to hot spot ignition to achieve low-to-moderate convergence ratios in layered implosions on the NIF unobtainable using an ice layer. Detailed high-resolution modeling of these experiments in 2D and 3D, including all known asymmetries, demonstrates that 2D hydrodynamics explain capsule performance at CR 12 but become less suitable as the CR increases. Mechanisms for this behavior and detailed comparisons of simulations to experiments on NIF will be presented. To evaluate the tradeoff between increased instability and improved 1D performance, we present a full-scale wetted foam capsule design with 17

  10. Flight Test Results from the NF-15B Intelligent Flight Control System (IFCS) Project with Adaptation to a Simulated Stabilator Failure

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Williams-Hayes, Peggy S.

    2007-01-01

    Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.

  11. Flight Test Results from the NF-15B Intelligent Flight Control System (IFCS) Project with Adaptation to a Simulated Stabilator Failure

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Williams-Hayes, Peggy S.

    2010-01-01

    Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.

  12. Evaluation of solar thermal power plants using economic and performance simulations

    NASA Technical Reports Server (NTRS)

    El-Gabawali, N.

    1980-01-01

    An energy cost analysis is presented for central receiver power plants with thermal storage and point focusing power plants with electrical storage. The present approach is based on optimizing the size of the plant to give the minimum energy cost (in mills/kWe hr) of an annual plant energy production. The optimization is done by considering the trade-off between the collector field size and the storage capacity for a given engine size. The energy cost is determined by the plant cost and performance. The performance is estimated by simulating the behavior of the plant under typical weather conditions. Plant capital and operational costs are estimated based on the size and performance of different components. This methodology is translated into computer programs for automatic and consistent evaluation.

  13. Indoor test for thermal performance evaluation of Libbey-Owens-Ford solar collector. [using a solar simulator

    NASA Technical Reports Server (NTRS)

    Shih, K.

    1977-01-01

    The thermal performance of a flat plate solar collector that uses liquid as the heat transfer medium was investigated under simulated conditions. The test conditions and thermal performance data obtained during the tests are presented in tabular form, as well as in graphs. Data obtained from a time constant test and incident angle modifier test, conducted to determine transient effect and the incident angle effect on the collector, are included.

  14. Validation of Tendril TrueHome Using Software-to-Software Comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire, Jeffrey B; Horowitz, Scott G; Moore, Nathan

    This study performed comparative evaluation of EnergyPlus version 8.6 and Tendril TrueHome, two physics-based home energy simulation models, to identify differences in energy consumption predictions between the two programs and resolve discrepancies between them. EnergyPlus is considered a benchmark, best-in-class software tool for building energy simulation. This exercise sought to improve both software tools through additional evaluation/scrutiny.

  15. Simulation-Based Communication Skills Training for Experienced Clinicians to Improve Family Conversations About Organ and Tissue Donation.

    PubMed

    Potter, Julie Elizabeth; Gatward, Jonathan J; Kelly, Michelle A; McKay, Leigh; McCann, Ellie; Elliott, Rosalind M; Perry, Lin

    2017-12-01

    The approach, communication skills, and confidence of clinicians responsible for raising deceased organ donation may influence families' donation decisions. The aim of this study was to increase the preparedness and confidence of intensive care clinicians allocated to work in a "designated requester" role. We conducted a posttest evaluation of an innovative simulation-based training program. Simulation-based training enabled clinicians to rehearse the "balanced approach" to family donation conversations (FDCs) in the designated requester role. Professional actors played family members in simulated clinical settings using authentic scenarios, with video-assisted reflective debriefing. Participants completed an evaluation after the workshop. Simple descriptive statistical analysis and content analysis were performed. Between January 2013 and July 2015, 25 workshops were undertaken with 86 participants; 82 (95.3%) returned evaluations. Respondents were registered practicing clinicians; over half (44/82; 53.7%) were intensivists. Most attended a single workshop. Evaluations were overwhelmingly positive with the majority rating workshops as outstanding (64/80; 80%). Scenario fidelity, competence of the actors, opportunity to practice and receive feedback on performance, and feedback from actors, both in and out of character, were particularly valued. Most (76/78; 97.4%) reported feeling more confident about their designated requester role. Simulation-based communication training for the designated requester role in FDCs increased the knowledge and confidence of clinicians to raise the topic of donation.

  16. The role of simulation in continuing medical education for acute care physicians: a systematic review.

    PubMed

    Khanduja, P Kristina; Bould, M Dylan; Naik, Viren N; Hladkowicz, Emily; Boet, Sylvain

    2015-01-01

    We systematically reviewed the effectiveness of simulation-based education, targeting independently practicing qualified physicians in acute care specialties. We also describe how simulation is used for performance assessment in this population. Data source included: DataMEDLINE, Embase, Cochrane Database of Systematic Reviews, Cochrane CENTRAL Database of Controlled Trials, and National Health Service Economic Evaluation Database. The last date of search was January 31, 2013. All original research describing simulation-based education for independently practicing physicians in anesthesiology, critical care, and emergency medicine was reviewed. Data analysis was performed in duplicate with further review by a third author in cases of disagreement until consensus was reached. Data extraction was focused on effectiveness according to Kirkpatrick's model. For simulation-based performance assessment, tool characteristics and sources of validity evidence were also collated. Of 39 studies identified, 30 studies focused on the effectiveness of simulation-based education and nine studies evaluated the validity of simulation-based assessment. Thirteen studies (30%) targeted the lower levels of Kirkpatrick's hierarchy with reliance on self-reporting. Simulation was unanimously described as a positive learning experience with perceived impact on clinical practice. Of the 17 remaining studies, 10 used a single group or "no intervention comparison group" design. The majority (n = 17; 44%) were able to demonstrate both immediate and sustained improvements in educational outcomes. Nine studies reported the psychometric properties of simulation-based performance assessment as their sole objective. These predominantly recruited independent practitioners as a convenience sample to establish whether the tool could discriminate between experienced and inexperienced operators and concentrated on a single aspect of validity evidence. Simulation is perceived as a positive learning experience with limited evidence to support improved learning. Future research should focus on the optimal modality and frequency of exposure, quality of assessment tools and on the impact of simulation-based education beyond the individuals toward improved patient care.

  17. Mobile in Situ Simulation as a Tool for Evaluation and Improvement of Trauma Treatment in the Emergency Department.

    PubMed

    Amiel, Imri; Simon, Daniel; Merin, Ofer; Ziv, Amitai

    2016-01-01

    Medical simulation is an increasingly recognized tool for teaching, coaching, training, and examining practitioners in the medical field. For many years, simulation has been used to improve trauma care and teamwork. Despite technological advances in trauma simulators, including better means of mobilization and control, most reported simulation-based trauma training has been conducted inside simulation centers, and the practice of mobile simulation in hospitals' trauma rooms has not been investigated fully. The emergency department personnel from a second-level trauma center in Israel were evaluated. Divided into randomly formed trauma teams, they were reviewed twice using in situ mobile simulation training at the hospital's trauma bay. In all, 4 simulations were held before and 4 simulations were held after a structured learning intervention. The intervention included a 1-day simulation-based training conducted at the Israel Center for Medical Simulation (MSR), which included video-based debriefing facilitated by the hospital's 4 trauma team leaders who completed a 2-day simulation-based instructors' course before the start of the study. The instructors were also trained on performance rating and thus were responsible for the assessment of their respective teams in real time as well as through reviewing of the recorded videos; thus enabling a comparison of the performances in the mobile simulation exercise before and after the educational intervention. The internal reliability of the experts' evaluation calculated in the Cronbach α model was found to be 0.786. Statistically significant improvement was observed in 4 of 10 parameters, among which were teamwork (29.64%) and communication (24.48%) (p = 0.00005). The mobile in situ simulation-based training demonstrated efficacy both as an assessment tool for trauma teams' function and an educational intervention when coupled with in vitro simulation-based training, resulting in a significant improvement of the teams' function in various aspects of treatment. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  18. Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations

    PubMed Central

    Hallock, Michael J.; Stone, John E.; Roberts, Elijah; Fry, Corey; Luthey-Schulten, Zaida

    2014-01-01

    Simulation of in vivo cellular processes with the reaction-diffusion master equation (RDME) is a computationally expensive task. Our previous software enabled simulation of inhomogeneous biochemical systems for small bacteria over long time scales using the MPD-RDME method on a single GPU. Simulations of larger eukaryotic systems exceed the on-board memory capacity of individual GPUs, and long time simulations of modest-sized cells such as yeast are impractical on a single GPU. We present a new multi-GPU parallel implementation of the MPD-RDME method based on a spatial decomposition approach that supports dynamic load balancing for workstations containing GPUs of varying performance and memory capacity. We take advantage of high-performance features of CUDA for peer-to-peer GPU memory transfers and evaluate the performance of our algorithms on state-of-the-art GPU devices. We present parallel e ciency and performance results for simulations using multiple GPUs as system size, particle counts, and number of reactions grow. We also demonstrate multi-GPU performance in simulations of the Min protein system in E. coli. Moreover, our multi-GPU decomposition and load balancing approach can be generalized to other lattice-based problems. PMID:24882911

  19. Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations.

    PubMed

    Hallock, Michael J; Stone, John E; Roberts, Elijah; Fry, Corey; Luthey-Schulten, Zaida

    2014-05-01

    Simulation of in vivo cellular processes with the reaction-diffusion master equation (RDME) is a computationally expensive task. Our previous software enabled simulation of inhomogeneous biochemical systems for small bacteria over long time scales using the MPD-RDME method on a single GPU. Simulations of larger eukaryotic systems exceed the on-board memory capacity of individual GPUs, and long time simulations of modest-sized cells such as yeast are impractical on a single GPU. We present a new multi-GPU parallel implementation of the MPD-RDME method based on a spatial decomposition approach that supports dynamic load balancing for workstations containing GPUs of varying performance and memory capacity. We take advantage of high-performance features of CUDA for peer-to-peer GPU memory transfers and evaluate the performance of our algorithms on state-of-the-art GPU devices. We present parallel e ciency and performance results for simulations using multiple GPUs as system size, particle counts, and number of reactions grow. We also demonstrate multi-GPU performance in simulations of the Min protein system in E. coli . Moreover, our multi-GPU decomposition and load balancing approach can be generalized to other lattice-based problems.

  20. Computer Simulation and Field Experiment for Downlink Multiuser MIMO in Mobile WiMAX System.

    PubMed

    Yamaguchi, Kazuhiro; Nagahashi, Takaharu; Akiyama, Takuya; Matsue, Hideaki; Uekado, Kunio; Namera, Takakazu; Fukui, Hiroshi; Nanamatsu, Satoshi

    2015-01-01

    The transmission performance for a downlink mobile WiMAX system with multiuser multiple-input multiple-output (MU-MIMO) systems in a computer simulation and field experiment is described. In computer simulation, a MU-MIMO transmission system can be realized by using the block diagonalization (BD) algorithm, and each user can receive signals without any signal interference from other users. The bit error rate (BER) performance and channel capacity in accordance with modulation schemes and the number of streams were simulated in a spatially correlated multipath fading environment. Furthermore, we propose a method for evaluating the transmission performance for this downlink mobile WiMAX system in this environment by using the computer simulation. In the field experiment, the received power and downlink throughput in the UDP layer were measured on an experimental mobile WiMAX system developed in Azumino City in Japan. In comparison with the simulated and experimented results, the measured maximum throughput performance in the downlink had almost the same performance as the simulated throughput. It was confirmed that the experimental mobile WiMAX system for MU-MIMO transmission successfully increased the total channel capacity of the system.

  1. Computer Simulation and Field Experiment for Downlink Multiuser MIMO in Mobile WiMAX System

    PubMed Central

    Yamaguchi, Kazuhiro; Nagahashi, Takaharu; Akiyama, Takuya; Matsue, Hideaki; Uekado, Kunio; Namera, Takakazu; Fukui, Hiroshi; Nanamatsu, Satoshi

    2015-01-01

    The transmission performance for a downlink mobile WiMAX system with multiuser multiple-input multiple-output (MU-MIMO) systems in a computer simulation and field experiment is described. In computer simulation, a MU-MIMO transmission system can be realized by using the block diagonalization (BD) algorithm, and each user can receive signals without any signal interference from other users. The bit error rate (BER) performance and channel capacity in accordance with modulation schemes and the number of streams were simulated in a spatially correlated multipath fading environment. Furthermore, we propose a method for evaluating the transmission performance for this downlink mobile WiMAX system in this environment by using the computer simulation. In the field experiment, the received power and downlink throughput in the UDP layer were measured on an experimental mobile WiMAX system developed in Azumino City in Japan. In comparison with the simulated and experimented results, the measured maximum throughput performance in the downlink had almost the same performance as the simulated throughput. It was confirmed that the experimental mobile WiMAX system for MU-MIMO transmission successfully increased the total channel capacity of the system. PMID:26421311

  2. Numerical Analysis of a Flexible Dual Loop Coil and its Experimental Validation for pre-Clinical Magnetic Resonance Imaging of Rodents at 7 T

    NASA Astrophysics Data System (ADS)

    Solis-Najera, S.; Vazquez, F.; Hernandez, R.; Marrufo, O.; Rodriguez, A. O.

    2016-12-01

    A surface radio frequency coil was developed for small animal image acquisition in a pre-clinical magnetic resonance imaging system at 7 T. A flexible coil composed of two circular loops was developed to closely cover the object to be imaged. Electromagnetic numerical simulations were performed to evaluate its performance before the coil construction. An analytical expression of the mutual inductance for the two circular loops as a function of the separation between them was derived and used to validate the simulations. The RF coil is composed of two circular loops with a 5 cm external diameter and was tuned to 300 MHz and 50 Ohms matched. The angle between the loops was varied and the Q factor was obtained from the S11 simulations for each angle. B1 homogeneity was also evaluated using the electromagnetic simulations. The coil prototype was designed and built considering the numerical simulation results. To show the feasibility of the coil and its performance, saline-solution phantom images were acquired. A correlation of the simulations and imaging experimental results was conducted showing a concordance of 0.88 for the B1 field. The best coil performance was obtained at the 90° aperture angle. A more realistic phantom was also built using a formaldehyde-fixed rat phantom for ex vivo imaging experiments. All images showed a good image quality revealing clearly defined anatomical details of an ex vivo rat.

  3. Performance-based comparison of neonatal intubation training outcomes: simulator and live animal.

    PubMed

    Andreatta, Pamela B; Klotz, Jessica J; Dooley-Hash, Suzanne L; Hauptman, Joe G; Biddinger, Bea; House, Joseph B

    2015-02-01

    The purpose of this article was to establish psychometric validity evidence for competency assessment instruments and to evaluate the impact of 2 forms of training on the abilities of clinicians to perform neonatal intubation. To inform the development of assessment instruments, we conducted comprehensive task analyses including each performance domain associated with neonatal intubation. Expert review confirmed content validity. Construct validity was established using the instruments to differentiate between the intubation performance abilities of practitioners (N = 294) with variable experience (novice through expert). Training outcomes were evaluated using a quasi-experimental design to evaluate performance differences between 294 subjects randomly assigned to 1 of 2 training groups. The training intervention followed American Heart Association Pediatric Advanced Life Support and Neonatal Resuscitation Program protocols with hands-on practice using either (1) live feline or (2) simulated feline models. Performance assessment data were captured before and directly following the training. All data were analyzed using analysis of variance with repeated measures and statistical significance set at P < .05. Content validity, reliability, and consistency evidence were established for each assessment instrument. Construct validity for each assessment instrument was supported by significantly higher scores for subjects with greater levels of experience, as compared with those with less experience (P = .000). Overall, subjects performed significantly better in each assessment domain, following the training intervention (P = .000). After controlling for experience level, there were no significant differences among the cognitive, performance, and self-efficacy outcomes between clinicians trained with live animal model or simulator model. Analysis of retention scores showed that simulator trained subjects had significantly higher performance scores after 18 weeks (P = .01) and 52 weeks (P = .001) and cognitive scores after 52 weeks (P = .001). The results of this study demonstrate the feasibility of using valid, reliable assessment instruments to assess clinician competency and self-efficacy in the performance of neonatal intubation. We demonstrated the relative equivalency of live animal and simulation-based models as tools to support acquisition of neonatal intubation skills. Retention of performance abilities was greater for subjects trained using the simulator, likely because it afforded greater opportunity for repeated practice. Outcomes in each assessment area were influenced by the previous intubation experience of participants. This suggests that neonatal intubation training programs could be tailored to the level of provider experience to make efficient use of time and educational resources. Future research focusing on the uses of assessment in the applied clinical environment, as well as identification of optimal training cycles for performance retention, is merited.

  4. An Evaluation of Training Interventions and Computed Scoring Techniques for Grading a Level Turn Task and a Straight In Landing Approach on a PC-Based Flight Simulator

    NASA Technical Reports Server (NTRS)

    Heath, Bruce E.

    2007-01-01

    One result of the relatively recent advances in computing technology has been the decreasing cost of computers and increasing computational power. This has allowed high fidelity airplane simulations to be run on personal computers (PC). Thus, simulators are now used routinely by pilots to substitute real flight hours for simulated flight hours for training for an aircraft type rating thereby reducing the cost of flight training. However, FAA regulations require that such substitution training must be supervised by Certified Flight Instructors (CFI). If the CFI presence could be reduced or eliminated for certain tasks this would mean a further cost savings to the pilot. This would require that the flight simulator have a certain level of 'intelligence' in order to provide feedback on pilot perfolmance similar to that of a CFI. The 'intelligent' flight sinlulator would have at least the capability to use data gathered from the flight to create a measure for the performance of the student pilot. Also, to fully utilize the advances in computational power, the sinlulator would be capable of interacting with the student pilot using the best possible training interventions. This thesis reposts on the two studies conducted at Tuskegee University investigating the effects of interventions on the learning of two flight maneuvers on a flight sinlulator and the robustness and accuracy of calculated perfornlance indices as compared to CFI evaluations of performance. The intent of these studies is to take a step in the direction of creating an 'intelligent' flight simulator. The first study deals with the comparisons of novice pilot performance trained at different levels of above real-time to execute a level S-turn. The second study examined the effect of out-of-the-window (OTW) visual cues in the form of hoops on the performance of novice pilots learning to fly a landing approach on the flight simulator. The reliability/robustness of the computed performance metrics was assessed by comparing them with the evaluations of the landing approach maneuver by a number of CFIs.

  5. Assessment of simulation fidelity using measurements of piloting technique in flight

    NASA Technical Reports Server (NTRS)

    Ferguson, S. W.; Clement, W. F.; Cleveland, W. B.; Key, D. L.

    1984-01-01

    The U.S. Army and NASA have undertaken the systematic validation of a ground-based piloted simulator for the UH-60A helicopter. The results of previous handling quality and task performance flight tests for this helicopter have been used as a data base for evaluating the fidelity of the present simulation, which is being conducted at the NASA Ames Research Center's Vertical Motion Simulator. Such nap-of-the-earth piloting tasks as pop-up, hover turn, dash/quick stop, sidestep, dolphin, and slalom, have been investigated. It is noted that pilot simulator performance is significantly and quantifiable degraded by comparison with flight test results for the same tasks.

  6. A novel approach for extracting viscoelastic parameters of living cells through combination of inverse finite element simulation and Atomic Force Microscopy.

    PubMed

    Wei, Fanan; Yang, Haitao; Liu, Lianqing; Li, Guangyong

    2017-03-01

    Dynamic mechanical behaviour of living cells has been described by viscoelasticity. However, quantitation of the viscoelastic parameters for living cells is far from sophisticated. In this paper, combining inverse finite element (FE) simulation with Atomic Force Microscope characterization, we attempt to develop a new method to evaluate and acquire trustworthy viscoelastic index of living cells. First, influence of the experiment parameters on stress relaxation process is assessed using FE simulation. As suggested by the simulations, cell height has negligible impact on shape of the force-time curve, i.e. the characteristic relaxation time; and the effect originates from substrate can be totally eliminated when stiff substrate (Young's modulus larger than 3 GPa) is used. Then, so as to develop an effective optimization strategy for the inverse FE simulation, the parameters sensitivity evaluation is performed for Young's modulus, Poisson's ratio, and characteristic relaxation time. With the experiment data obtained through typical stress relaxation measurement, viscoelastic parameters are extracted through the inverse FE simulation by comparing the simulation results and experimental measurements. Finally, reliability of the acquired mechanical parameters is verified with different load experiments performed on the same cell.

  7. A High-Fidelity Batch Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.

  8. Performance Evaluation of Intelligent Systems at the National Institute of Standards and Technology (NIST)

    DTIC Science & Technology

    2011-03-01

    past few years, including performance evaluation of emergency response robots , sensor systems on unmanned ground vehicles, speech-to-speech translation...emergency response robots ; intelligent systems; mixed palletizing, testing, simulation; robotic vehicle perception systems; search and rescue robots ...ranging from autonomous vehicles to urban search and rescue robots to speech translation and manufacturing systems. The evaluations have occurred in

  9. Simulation-Based Analysis of Reentry Dynamics for the Sharp Atmospheric Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Tillier, Clemens Emmanuel

    1998-01-01

    This thesis describes the analysis of the reentry dynamics of a high-performance lifting atmospheric entry vehicle through numerical simulation tools. The vehicle, named SHARP, is currently being developed by the Thermal Protection Materials and Systems branch of NASA Ames Research Center, Moffett Field, California. The goal of this project is to provide insight into trajectory tradeoffs and vehicle dynamics using simulation tools that are powerful, flexible, user-friendly and inexpensive. Implemented Using MATLAB and SIMULINK, these tools are developed with an eye towards further use in the conceptual design of the SHARP vehicle's trajectory and flight control systems. A trajectory simulator is used to quantify the entry capabilities of the vehicle subject to various operational constraints. Using an aerodynamic database computed by NASA and a model of the earth, the simulator generates the vehicle trajectory in three-dimensional space based on aerodynamic angle inputs. Requirements for entry along the SHARP aerothermal performance constraint are evaluated for different control strategies. Effect of vehicle mass on entry parameters is investigated, and the cross range capability of the vehicle is evaluated. Trajectory results are presented and interpreted. A six degree of freedom simulator builds on the trajectory simulator and provides attitude simulation for future entry controls development. A Newtonian aerodynamic model including control surfaces and a mass model are developed. A visualization tool for interpreting simulation results is described. Control surfaces are roughly sized. A simple controller is developed to fly the vehicle along its aerothermal performance constraint using aerodynamic flaps for control. This end-to-end demonstration proves the suitability of the 6-DOF simulator for future flight control system development. Finally, issues surrounding real-time simulation with hardware in the loop are discussed.

  10. Effects of incentives on psychosocial performances in simulated space-dwelling groups

    NASA Astrophysics Data System (ADS)

    Hienz, Robert D.; Brady, Joseph V.; Hursh, Steven R.; Gasior, Eric D.; Spence, Kevin R.; Emurian, Henry H.

    Prior research with individually isolated 3-person crews in a distributed, interactive, planetary exploration simulation examined the effects of communication constraints and crew configuration changes on crew performance and psychosocial self-report measures. The present report extends these findings to a model of performance maintenance that operationalizes conditions under which disruptive affective responses by crew participants might be anticipated to emerge. Experiments evaluated the effects of changes in incentive conditions on crew performance and self-report measures in simulated space-dwelling groups. Crews participated in a simulated planetary exploration mission that required identification, collection, and analysis of geologic samples. Results showed that crew performance effectiveness was unaffected by either positive or negative incentive conditions, while self-report measures were differentially affected—negative incentive conditions produced pronounced increases in negative self-report ratings and decreases in positive self-report ratings, while positive incentive conditions produced increased positive self-report ratings only. Thus, incentive conditions associated with simulated spaceflight missions can significantly affect psychosocial adaptation without compromising task performance effectiveness in trained and experienced crews.

  11. Computer aided design of Langasite resonant cantilevers: analytical models and simulations

    NASA Astrophysics Data System (ADS)

    Tellier, C. R.; Leblois, T. G.; Durand, S.

    2010-05-01

    Analytical models for the piezoelectric excitation and for the wet micromachining of resonant cantilevers are proposed. Firstly, computations of metrological performances of micro-resonators allow us to select special cuts and special alignment of the cantilevers. Secondly the self-elaborated simulator TENSOSIM based on the kinematic and tensorial model furnishes etching shapes of cantilevers. As the result the number of selected cuts is reduced. Finally the simulator COMSOL® is used to evaluate the influence of final etching shape on metrological performances and especially on the resonance frequency. Changes in frequency are evaluated and deviating behaviours of structures with less favourable built-ins are tested showing that the X cut is the best cut for LGS resonant cantilevers vibrating in flexural modes (type 1 and type 2) or in torsion mode.

  12. A generic model of real-world non-ideal behaviour of FES-induced muscle contractions: simulation tool

    NASA Astrophysics Data System (ADS)

    Lynch, Cheryl L.; Graham, Geoff M.; Popovic, Milos R.

    2011-08-01

    Functional electrical stimulation (FES) applications are frequently evaluated in simulation prior to testing in human subjects. Such simulations are usually based on the typical muscle responses to electrical stimulation, which may result in an overly optimistic assessment of likely real-world performance. We propose a novel method for simulating FES applications that includes non-ideal muscle behaviour during electrical stimulation resulting from muscle fatigue, spasms and tremors. A 'non-idealities' block that can be incorporated into existing FES simulations and provides a realistic estimate of real-world performance is described. An implementation example is included, showing how the non-idealities block can be incorporated into a simulation of electrically stimulated knee extension against gravity for both a proportional-integral-derivative controller and a sliding mode controller. The results presented in this paper illustrate that the real-world performance of a FES system may be vastly different from the performance obtained in simulation using nominal muscle models. We believe that our non-idealities block should be included in future simulations that involve muscle response to FES, as this tool will provide neural engineers with a realistic simulation of the real-world performance of FES systems. This simulation strategy will help engineers and organizations save time and money by preventing premature human testing. The non-idealities block will become available free of charge at www.toronto-fes.ca in late 2011.

  13. Detecting coached neuropsychological dysfunction: a simulation experiment regarding mild traumatic brain injury.

    PubMed

    Lau, Lily; Basso, Michael R; Estevis, Eduardo; Miller, Ashley; Whiteside, Douglas M; Combs, Dennis; Arentsen, Timothy J

    2017-11-01

    Performance validity tests (PVTs) and symptom validity tests (SVTs) are often administered during neuropsychological evaluations. Examinees may be coached to avoid detection by measures of response validity. Relatively little research has evaluated whether graduated levels of coaching has differential effects upon PVT and SVT performance. Accordingly, the present experiment evaluated the effect of graduated levels of coaching upon the classification accuracy of commonly used PVTs and SVTs and the currently accepted criterion of failing two or more PVTs or SVTs. Participants simulated symptoms associated with mild traumatic brain injury (TBI). One group was provided superficial information concerning cognitive, emotional, and physical symptoms. Another group was provided detailed information about such symptoms. A third group was provided detailed information about symptoms and guidance how to evade detection by PVTs. These groups were compared to an honest-responding group. Extending prior experiments, stand-alone and embedded PVT measures were administered in addition to SVTs. The three simulator groups were readily identified by PVTs and SVTs, but a meaningful minority of those provided test-taking strategies eluded detection. The Word Memory Test emerged as the most sensitive indicator of simulated mild TBI symptoms. PVTs achieved more sensitive detection of simulated head injury status than SVTs. Individuals coached to modify test-taking performance were marginally more successful in eluding detection by PVTs and SVTs than those coached with respect to TBI symptoms only. When the criterion of failing two or more PVTs or SVTs was applied, only 5% eluded detection.

  14. Online model evaluation of large-eddy simulations covering Germany with a horizontal resolution of 156 m

    NASA Astrophysics Data System (ADS)

    Hansen, Akio; Ament, Felix; Lammert, Andrea

    2017-04-01

    Large-eddy simulations have been performed since several decades, but due to computational limits most studies were restricted to small domains or idealised initial-/boundary conditions. Within the High definition clouds and precipitation for advancing climate prediction (HD(CP)2) project realistic weather forecasting like LES simulations were performed with the newly developed ICON LES model for several days. The domain covers central Europe with a horizontal resolution down to 156 m. The setup consists of more than 3 billion grid cells, by what one 3D dump requires roughly 500 GB. A newly developed online evaluation toolbox was created to check instantaneously for realistic model simulations. The toolbox automatically combines model results with observations and generates several quicklooks for various variables. So far temperature-/humidity profiles, cloud cover, integrated water vapour, precipitation and many more are included. All kind of observations like aircraft observations, soundings or precipitation radar networks are used. For each dataset, a specific module is created, which allows for an easy handling and enhancement of the toolbox. Most of the observations are automatically downloaded from the Standardized Atmospheric Measurement Database (SAMD). The evaluation tool should support scientists at monitoring computational costly model simulations as well as to give a first overview about model's performance. The structure of the toolbox as well as the SAMD database are presented. Furthermore, the toolbox was applied on an ICON LES sensitivity study, where example results are shown.

  15. Threat radar system simulations

    NASA Astrophysics Data System (ADS)

    Miller, L.

    The capabilities, requirements, and goals of radar emitter simulators are discussed. Simulators are used to evaluate competing receiver designs, to quantify the performance envelope of a radar system, and to model the characteristics of a transmitted signal waveform. A database of candidate threat systems is developed and, in concert with intelligence data on a given weapons system, permits upgrading simulators to new projected threat capabilities. Four currently available simulation techniques are summarized, noting the usefulness of developing modular software for fast controlled-cost upgrades of simulation capabilities.

  16. Remote control circuit breaker evaluation testing. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Bemko, L. M.

    1974-01-01

    Engineering evaluation tests were performed on several models/types of remote control circuit breakers marketed in an attempt to gain some insight into their potential suitability for use on the space shuttle vehicle. Tests included the measurement of several electrical and operational performance parameters under laboratory ambient, space simulation, acceleration and vibration environmental conditions.

  17. Evaluation of g seat augmentation of fixed-base/moving base simulation for transport landings under two visually imposed runway width conditions

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Steinmetz, G. G.

    1983-01-01

    Vertical-motion cues supplied by a g-seat to augment platform motion cues in the other five degrees of freedom were evaluated in terms of their effect on objective performance measures obtained during simulated transport landings under visual conditions. In addition to evaluating the effects of the vertical cueing, runway width and magnification effects were investigated. The g-seat was evaluated during fixed base and moving-base operations. Although performance with the g-seat only improved slightly over that with fixed-base operation, combined g-seat platform operation showed no improvement over improvement over platform-only operation. When one runway width at one magnification factor was compared with another width at a different factor, the visual results indicated that the runway width probably had no effect on pilot-vehicle performance. The new performance differences that were detected may be more readily attributed to the extant (existing throughout) increase in vertical velocity induced by the magnification factor used to change the runway width, rather than to the width itself.

  18. Can Youth with Autism Spectrum Disorder Use Virtual Reality Driving Simulation Training to Evaluate and Improve Driving Performance? An Exploratory Study

    ERIC Educational Resources Information Center

    Cox, Daniel J.; Brown, Timothy; Ross, Veerle; Moncrief, Matthew; Schmitt, Rose; Gaffney, Gary; Reeve, Ron

    2017-01-01

    Investigate how novice drivers with autism spectrum disorder (ASD) differ from experienced drivers and whether virtual reality driving simulation training (VRDST) improves ASD driving performance. 51 novice ASD drivers (mean age 17.96 years, 78% male) were randomized to routine training (RT) or one of three types of VRDST (8-12 sessions). All…

  19. An Annotated Bibliography of Objective Pilot Performance Measures

    DTIC Science & Technology

    1982-01-01

    realism . (Author) 224 NAVTRAEQUIPCEN IH-330 t 667. PROPHET, Wallace W., and Caro, Paul W., Simulation and Aircrew Training and Performance, Human... cinematic simulation and air training appears to be the most promising cost-effective method of developing NOE visual perception skills. Of other...flight and control dynamics. Informal trials were run with research staff and carrier-qualified pilots to evaluate realism of the displays; amount of

  20. Comparison of Two Detection Combination Algorithms for Phased Array Radars

    DTIC Science & Technology

    2015-07-01

    data were generated by a simulator of multi-function radar ( MFR ) and the combination algorithms are evaluated with the recorded simulation data. With...electronically scanned phased array Multi-Function Radar ( MFR ), is a type of radar whose transmitter and receiver functions are composed of numerous...small transmit/receive modules. An MFR can perform many functions previously performed by individual, dedicated radars for search, tracking and

  1. A report documenting the completion of the Los Alamos National Laboratory portion of the ASC level II milestone ""Visualization on the supercomputing platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahrens, James P; Patchett, John M; Lo, Li - Ta

    2011-01-24

    This report provides documentation for the completion of the Los Alamos portion of the ASC Level II 'Visualization on the Supercomputing Platform' milestone. This ASC Level II milestone is a joint milestone between Sandia National Laboratory and Los Alamos National Laboratory. The milestone text is shown in Figure 1 with the Los Alamos portions highlighted in boldfaced text. Visualization and analysis of petascale data is limited by several factors which must be addressed as ACES delivers the Cielo platform. Two primary difficulties are: (1) Performance of interactive rendering, which is the most computationally intensive portion of the visualization process. Formore » terascale platforms, commodity clusters with graphics processors (GPUs) have been used for interactive rendering. For petascale platforms, visualization and rendering may be able to run efficiently on the supercomputer platform itself. (2) I/O bandwidth, which limits how much information can be written to disk. If we simply analyze the sparse information that is saved to disk we miss the opportunity to analyze the rich information produced every timestep by the simulation. For the first issue, we are pursuing in-situ analysis, in which simulations are coupled directly with analysis libraries at runtime. This milestone will evaluate the visualization and rendering performance of current and next generation supercomputers in contrast to GPU-based visualization clusters, and evaluate the perfromance of common analysis libraries coupled with the simulation that analyze and write data to disk during a running simulation. This milestone will explore, evaluate and advance the maturity level of these technologies and their applicability to problems of interest to the ASC program. In conclusion, we improved CPU-based rendering performance by a a factor of 2-10 times on our tests. In addition, we evaluated CPU and CPU-based rendering performance. We encourage production visualization experts to consider using CPU-based rendering solutions when it is appropriate. For example, on remote supercomputers CPU-based rendering can offer a means of viewing data without having to offload the data or geometry onto a CPU-based visualization system. In terms of comparative performance of the CPU and CPU we believe that further optimizations of the performance of both CPU or CPU-based rendering are possible. The simulation community is currently confronting this reality as they work to port their simulations to different hardware architectures. What is interesting about CPU rendering of massive datasets is that for part two decades CPU performance has significantly outperformed CPU-based systems. Based on our advancements, evaluations and explorations we believe that CPU-based rendering has returned as one viable option for the visualization of massive datasets.« less

  2. Family Medicine Residents' Performance with Detected Versus Undetected Simulated Patients Posing as Problem Drinkers.

    PubMed

    Kahan, Meldon; Liu, Eleanor; Borsoi, Diane; Wilson, Lynn; Brewster, Joan M; Sobell, Mark B; Sobell, Linda C

    2004-12-01

    Simulated patients are commonly used to evaluate medical trainees. Unannounced simulated patients provide an accurate measure of physician performance. To determine the effects of detection of SPs on physician performance, and identify factors leading to detection. Fixty-six family medicine residents were each visited by two unannounced simulated patients presenting with alcohol-induced hypertension or insomnia. Residents were then surveyed on their detection of SPs. SPs were detected on 45 out of 104 visits. Inner city clinics had higher detection rates than middle class clinics. Residents' checklist and global rating scores were substantially higher on detected than undetected visits, for both between-subject and within-subject comparisons. The most common reasons for detection concerned SP demographics and behaviour; the SP "did not act like a drinker" and was of a different social class than the typical clinic patient. Multi-clinic studies involving residents experienced with SPs should ensure that the SP role and behavior conform to physician expectations and the demographics of the clinic. SP station testing does not accurately reflect physicians' actual clinical behavior and should not be relied on as the primary method of evaluation. The study also suggests that physicians' poor performance in identifying and managing alcohol problems is not entirely due to lack of skill, as they demonstrated greater clinical skills when they became aware that they were being evaluated. Physicians' clinical priorities, sense of responsibility and other attitudinal determinants of their behavior should be addressed when training physicians on the management of alcohol problems.

  3. Assessment of basic laparoscopic skills on virtual reality simulator or box trainer.

    PubMed

    Brinkman, Willem M; Tjiam, Irene M; Buzink, Sonja N

    2013-10-01

    We investigated whether the peg transfer task is interchangeable between a VR simulator and a box trainer. Our research questions: (1) Are scores of the box trainer interchangeable with the virtual equivalent of the exercise; (2) does training on the box affect performance on the VR simulator and vice versa; and (3) which system is preferred? Experienced laparoscopists and medical interns were randomly assigned to one of two groups (V or B). They performed eight repetitions of the peg transfer task (4 on each simulator system) following a crossover study design. Group B started on the box trainer and group V started on the VR simulator. Opinion of participants was evaluated by a questionnaire. A significant correlation was found between time to complete the task on the box and the VR simulator. The comparison of the performances per system showed that group B (N = 14) performed the peg transfer task on the VR simulator in significantly less time than group V (N = 14; p = 0.014). Overall, the box was preferred over the VR simulator. Although performances on the box trainer and VR simulator were correlated, they were not interchangeable. The results also imply that assessment on the VR simulator after pretraining on the box is acceptable, whereas VR simulator training alone might not suffice to pass an assessment on a box trainer. More research is needed to validate the use of the VR simulator as a FLS and PLUS assessment instrument.

  4. Nursing simulation: a community experience.

    PubMed

    Gunowa, Neesha Oozageer; Elliott, Karen; McBride, Michelle

    2018-04-02

    The education sector faces major challenges in providing learning experiences so that newly qualified nurses feel adequately prepared to work in a community setting. With this in mind, higher education institutions need to develop more innovative ways to deliver the community-nurse experience to student nurses. This paper presents and explores how simulation provides an opportunity for educators to support and evaluate student performance in an environment that models a complete patient encounter in the community. Following the simulation, evaluative data were collated and the answers analysed to identify key recommendations.

  5. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, Amy; Hansman, R. J.

    1992-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  6. Teaching emergency medical services management skills using a computer simulation exercise.

    PubMed

    Hubble, Michael W; Richards, Michael E; Wilfong, Denise

    2011-02-01

    Simulation exercises have long been used to teach management skills in business schools. However, this pedagogical approach has not been reported in emergency medical services (EMS) management education. We sought to develop, deploy, and evaluate a computerized simulation exercise for teaching EMS management skills. Using historical data, a computer simulation model of a regional EMS system was developed. After validation, the simulation was used in an EMS management course. Using historical operational and financial data of the EMS system under study, students designed an EMS system and prepared a budget based on their design. The design of each group was entered into the model that simulated the performance of the EMS system. Students were evaluated on operational and financial performance of their system design and budget accuracy and then surveyed about their experiences with the exercise. The model accurately simulated the performance of the real-world EMS system on which it was based. The exercise helped students identify operational inefficiencies in their system designs and highlighted budget inaccuracies. Most students rated the exercise as moderately or very realistic in ambulance deployment scheduling, budgeting, personnel cost calculations, demand forecasting, system design, and revenue projections. All students indicated the exercise was helpful in gaining a top management perspective, and 89% stated the exercise was helpful in bridging the gap between theory and reality. Preliminary experience with a computer simulator to teach EMS management skills was well received by students in a baccalaureate paramedic program and seems to be a valuable teaching tool. Copyright © 2011 Society for Simulation in Healthcare

  7. Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays

    NASA Astrophysics Data System (ADS)

    Thanh, Vo Hong; Priami, Corrado; Zunino, Roberto

    2014-10-01

    We propose a new exact stochastic rejection-based simulation algorithm for biochemical reactions and extend it to systems with delays. Our algorithm accelerates the simulation by pre-computing reaction propensity bounds to select the next reaction to perform. Exploiting such bounds, we are able to avoid recomputing propensities every time a (delayed) reaction is initiated or finished, as is typically necessary in standard approaches. Propensity updates in our approach are still performed, but only infrequently and limited for a small number of reactions, saving computation time and without sacrificing exactness. We evaluate the performance improvement of our algorithm by experimenting with concrete biological models.

  8. Visual enhancements in pick-and-place tasks: Human operators controlling a simulated cylindrical manipulator

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Tendick, Frank; Stark, Lawrence

    1989-01-01

    A teleoperation simulator was constructed with vector display system, joysticks, and a simulated cylindrical manipulator, in order to quantitatively evaluate various display conditions. The first of two experiments conducted investigated the effects of perspective parameter variations on human operators' pick-and-place performance, using a monoscopic perspective display. The second experiment involved visual enhancements of the monoscopic perspective display, by adding a grid and reference lines, by comparison with visual enhancements of a stereoscopic display; results indicate that stereoscopy generally permits superior pick-and-place performance, but that monoscopy nevertheless allows equivalent performance when defined with appropriate perspective parameter values and adequate visual enhancements.

  9. Modeling Pilot Behavior for Assessing Integrated Alert and Notification Systems on Flight Decks

    NASA Technical Reports Server (NTRS)

    Cover, Mathew; Schnell, Thomas

    2010-01-01

    Numerous new flight deck configurations for caution, warning, and alerts can be conceived; yet testing them with human-in-the-Ioop experiments to evaluate each one would not be practical. New sensors, instruments, and displays are being put into cockpits every day and this is particularly true as we enter the dawn of the Next Generation Air Transportation System (NextGen). By modeling pilot behavior in a computer simulation, an unlimited number of unique caution, warning, and alert configurations can be evaluated 24/7 by a computer. These computer simulations can then identify the most promising candidate formats to further evaluate in higher fidelity, but more costly, Human-in-the-Ioop (HITL) simulations. Evaluations using batch simulations with human performance models saves time, money, and enables a broader consideration of possible caution, warning, and alerting configurations for future flight decks.

  10. Apollo 15 mission report, supplement 4: Descent propulsion system final flight evaluation

    NASA Technical Reports Server (NTRS)

    Avvenire, A. T.; Wood, S. C.

    1972-01-01

    The results of a postflight analysis of the LM-10 Descent Propulsion System (DPS) during the Apollo 15 Mission are reported. The analysis determined the steady state performance of the DPS during the descent phase of the manned lunar landing. Flight measurement discrepancies are discussed. Simulated throttle performance results are cited along with overall performance results. Evaluations of the propellant quantity gaging system, propellant loading, pressurization system, and engine are reported. Graphic illustrations of the evaluations are included.

  11. Distributed Simulation as a modelling tool for the development of a simulation-based training programme for cardiovascular specialties.

    PubMed

    Kelay, Tanika; Chan, Kah Leong; Ako, Emmanuel; Yasin, Mohammad; Costopoulos, Charis; Gold, Matthew; Kneebone, Roger K; Malik, Iqbal S; Bello, Fernando

    2017-01-01

    Distributed Simulation is the concept of portable, high-fidelity immersive simulation. Here, it is used for the development of a simulation-based training programme for cardiovascular specialities. We present an evidence base for how accessible, portable and self-contained simulated environments can be effectively utilised for the modelling, development and testing of a complex training framework and assessment methodology. Iterative user feedback through mixed-methods evaluation techniques resulted in the implementation of the training programme. Four phases were involved in the development of our immersive simulation-based training programme: ( 1) initial conceptual stage for mapping structural criteria and parameters of the simulation training framework and scenario development ( n  = 16), (2) training facility design using Distributed Simulation , (3) test cases with clinicians ( n  = 8) and collaborative design, where evaluation and user feedback involved a mixed-methods approach featuring (a) quantitative surveys to evaluate the realism and perceived educational relevance of the simulation format and framework for training and (b) qualitative semi-structured interviews to capture detailed feedback including changes and scope for development. Refinements were made iteratively to the simulation framework based on user feedback, resulting in (4) transition towards implementation of the simulation training framework, involving consistent quantitative evaluation techniques for clinicians ( n  = 62). For comparative purposes, clinicians' initial quantitative mean evaluation scores for realism of the simulation training framework, realism of the training facility and relevance for training ( n  = 8) are presented longitudinally, alongside feedback throughout the development stages from concept to delivery, including the implementation stage ( n  = 62). Initially, mean evaluation scores fluctuated from low to average, rising incrementally. This corresponded with the qualitative component, which augmented the quantitative findings; trainees' user feedback was used to perform iterative refinements to the simulation design and components (collaborative design), resulting in higher mean evaluation scores leading up to the implementation phase. Through application of innovative Distributed Simulation techniques, collaborative design, and consistent evaluation techniques from conceptual, development, and implementation stages, fully immersive simulation techniques for cardiovascular specialities are achievable and have the potential to be implemented more broadly.

  12. Sleep restriction during simulated wildfire suppression: effect on physical task performance.

    PubMed

    Vincent, Grace; Ferguson, Sally A; Tran, Jacqueline; Larsen, Brianna; Wolkow, Alexander; Aisbett, Brad

    2015-01-01

    To examine the effects of sleep restriction on firefighters' physical task performance during simulated wildfire suppression. Thirty-five firefighters were matched and randomly allocated to either a control condition (8-hour sleep opportunity, n = 18) or a sleep restricted condition (4-hour sleep opportunity, n = 17). Performance on physical work tasks was evaluated across three days. In addition, heart rate, core temperature, and worker activity were measured continuously. Rate of perceived and exertion and effort sensation were evaluated during the physical work periods. There were no differences between the sleep-restricted and control groups in firefighters' task performance, heart rate, core temperature, or perceptual responses during self-paced simulated firefighting work tasks. However, the sleep-restricted group were less active during periods of non-physical work compared to the control group. Under self-paced work conditions, 4 h of sleep restriction did not adversely affect firefighters' performance on physical work tasks. However, the sleep-restricted group were less physically active throughout the simulation. This may indicate that sleep-restricted participants adapted their behaviour to conserve effort during rest periods, to subsequently ensure they were able to maintain performance during the firefighter work tasks. This work contributes new knowledge to inform fire agencies of firefighters' operational capabilities when their sleep is restricted during multi-day wildfire events. The work also highlights the need for further research to explore how sleep restriction affects physical performance during tasks of varying duration, intensity, and complexity.

  13. Sleep Restriction during Simulated Wildfire Suppression: Effect on Physical Task Performance

    PubMed Central

    Vincent, Grace; Ferguson, Sally A.; Tran, Jacqueline; Larsen, Brianna; Wolkow, Alexander; Aisbett, Brad

    2015-01-01

    Objectives To examine the effects of sleep restriction on firefighters’ physical task performance during simulated wildfire suppression. Methods Thirty-five firefighters were matched and randomly allocated to either a control condition (8-hour sleep opportunity, n = 18) or a sleep restricted condition (4-hour sleep opportunity, n = 17). Performance on physical work tasks was evaluated across three days. In addition, heart rate, core temperature, and worker activity were measured continuously. Rate of perceived and exertion and effort sensation were evaluated during the physical work periods. Results There were no differences between the sleep-restricted and control groups in firefighters’ task performance, heart rate, core temperature, or perceptual responses during self-paced simulated firefighting work tasks. However, the sleep-restricted group were less active during periods of non-physical work compared to the control group. Conclusions Under self-paced work conditions, 4 h of sleep restriction did not adversely affect firefighters’ performance on physical work tasks. However, the sleep-restricted group were less physically active throughout the simulation. This may indicate that sleep-restricted participants adapted their behaviour to conserve effort during rest periods, to subsequently ensure they were able to maintain performance during the firefighter work tasks. This work contributes new knowledge to inform fire agencies of firefighters’ operational capabilities when their sleep is restricted during multi-day wildfire events. The work also highlights the need for further research to explore how sleep restriction affects physical performance during tasks of varying duration, intensity, and complexity. PMID:25615988

  14. Face, Content, and Construct Validations of Endoscopic Needle Injection Simulator for Transurethral Bulking Agent in Treatment of Stress Urinary Incontinence.

    PubMed

    Farhan, Bilal; Soltani, Tandis; Do, Rebecca; Perez, Claudia; Choi, Hanul; Ghoniem, Gamal

    2018-05-02

    Endoscopic injection of urethral bulking agents is an office procedure that is used to treat stress urinary incontinence secondary to internal sphincteric deficiency. Validation studies important part of simulator evaluation and is considered important step to establish the effectiveness of simulation-based training. The endoscopic needle injection (ENI) simulator has not been formally validated, although it has been used widely at University of California, Irvine. We aimed to assess the face, content, and construct validity of the UC, Irvine ENI simulator. Dissected female porcine bladders were mounted in a modified Hysteroscopy Diagnostic Trainer. Using routine endoscopic equipment for this procedure with video monitoring, 6 urologists (experts group) and 6 urology trainee (novice group) completed urethral bulking agents injections on a total of 12 bladders using ENI simulator. Face and content validities were assessed by using structured quantitative survey which rating the realism. Construct validity was assessed by comparing the performance, time of the procedure, and the occlusive (anatomical and functional) evaluations between the experts and novices. Trainees also completed a postprocedure feedback survey. Effective injections were evaluated by measuring the retrograde urethral opening pressure, visual cystoscopic coaptation, and postprocedure gross anatomic examination. All 12 participants felt the simulator was a good training tool and should be used as essential part of urology training (face validity). ENI simulator showed good face and content validity with average score varies between the experts and the novices was 3.9/5 and 3.8/5, respectively. Content validity evaluation showed that most aspects of the simulator were adequately realistic (mean Likert scores 3.9-3.8/5). However, the bladder does not bleed, and sometimes thin. Experts significantly outperformed novices (p < 001) across all measure of performance therefore establishing construct validity. The ENI simulator shows face, content and construct validities, although few aspects of simulator were not very realistic (e.g., bleeding).This study provides a base for the future formal validation for this simulator and for continuing use of this simulator in endourology training. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  15. Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.

    PubMed

    Yourganov, Grigori; Schmah, Tanya; Churchill, Nathan W; Berman, Marc G; Grady, Cheryl L; Strother, Stephen C

    2014-08-01

    The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Multisite Evaluation of APEX for Water Quality: II. Regional Parameterization.

    PubMed

    Nelson, Nathan O; Baffaut, Claire; Lory, John A; Anomaa Senaviratne, G M M M; Bhandari, Ammar B; Udawatta, Ranjith P; Sweeney, Daniel W; Helmers, Matt J; Van Liew, Mike W; Mallarino, Antonio P; Wortmann, Charles S

    2017-11-01

    Phosphorus (P) Index assessment requires independent estimates of long-term average annual P loss from fields, representing multiple climatic scenarios, management practices, and landscape positions. Because currently available measured data are insufficient to evaluate P Index performance, calibrated and validated process-based models have been proposed as tools to generate the required data. The objectives of this research were to develop a regional parameterization for the Agricultural Policy Environmental eXtender (APEX) model to estimate edge-of-field runoff, sediment, and P losses in restricted-layer soils of Missouri and Kansas and to assess the performance of this parameterization using monitoring data from multiple sites in this region. Five site-specific calibrated models (SSCM) from within the region were used to develop a regionally calibrated model (RCM), which was further calibrated and validated with measured data. Performance of the RCM was similar to that of the SSCMs for runoff simulation and had Nash-Sutcliffe efficiency (NSE) > 0.72 and absolute percent bias (|PBIAS|) < 18% for both calibration and validation. The RCM could not simulate sediment loss (NSE < 0, |PBIAS| > 90%) and was particularly ineffective at simulating sediment loss from locations with small sediment loads. The RCM had acceptable performance for simulation of total P loss (NSE > 0.74, |PBIAS| < 30%) but underperformed the SSCMs. Total P-loss estimates should be used with caution due to poor simulation of sediment loss. Although we did not attain our goal of a robust regional parameterization of APEX for estimating sediment and total P losses, runoff estimates with the RCM were acceptable for P Index evaluation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. A piloted-simulation evaluation of two electronic display formats for approach and landing

    NASA Technical Reports Server (NTRS)

    Steinmetz, G. G.; Morello, S. A.; Knox, C. E.; Person, L. H., Jr.

    1976-01-01

    The results of a piloted-simulation evaluation of the benefits of adding runway symbology and track information to a baseline electronic-attitude-director-indicator (EADI) format for the approach-to-landing task were presented. The evaluation was conducted for the baseline format and for the baseline format with the added symbology during 3 deg straight-in approaches with calm, cross-wind, and turbulence conditions. Flight-path performance data and pilot subjective comments were examined with regard to the pilot's tracking performance and mental workload for both display formats. The results show that the addition of a perspective runway image and relative track information to a basic situation-information EADI format improve the tracking performance both laterally and vertically during an approach-to-landing task and that the mental workload required to assess the approach situation was thus reduced as a result of integration of information.

  18. Evaluation of Containment Boxes as a Fire Mitigation Method in Elevated Oxygen Conditions

    NASA Technical Reports Server (NTRS)

    Juarez, Alfredo; Harper, Susana; Perez, Horacio

    2016-01-01

    NASA performed testing to evaluate the efficacy of fire containment boxes without forced ventilation. Configurational flammability testing was performed on a simulation avionics box replicating critical design features and filled with materials possessing representative flammability characteristics. This paper discusses the box's ability, under simulated end-use conditions, to inhibit the propagation of combustion to surrounding materials. Analysis was also performed to evaluate the potential for the fire containment box to serve as an overheat/ignition source to temperature sensitive equipment (such as items with lithium-ion batteries). Unrealistically severe combustion scenarios were used as a means to better understand the fire containment mechanism. These scenarios were achieved by utilizing materials/fuels not typically used in space vehicles due to flammability concerns. Oxygen depletion, during combustion within the fire containment boxes, drove self-extinguishment and proved an effective method of fire containment

  19. Performance Evaluation and Analysis for Gravity Matching Aided Navigation.

    PubMed

    Wu, Lin; Wang, Hubiao; Chai, Hua; Zhang, Lu; Hsu, Houtse; Wang, Yong

    2017-04-05

    Simulation tests were accomplished in this paper to evaluate the performance of gravity matching aided navigation (GMAN). Four essential factors were focused in this study to quantitatively evaluate the performance: gravity database (DB) resolution, fitting degree of gravity measurements, number of samples in matching, and gravity changes in the matching area. Marine gravity anomaly DB derived from satellite altimetry was employed. Actual dynamic gravimetry accuracy and operating conditions were referenced to design the simulation parameters. The results verified that the improvement of DB resolution, gravimetry accuracy, number of measurement samples, or gravity changes in the matching area generally led to higher positioning accuracies, while the effects of them were different and interrelated. Moreover, three typical positioning accuracy targets of GMAN were proposed, and the conditions to achieve these targets were concluded based on the analysis of several different system requirements. Finally, various approaches were provided to improve the positioning accuracy of GMAN.

  20. Performance Evaluation and Analysis for Gravity Matching Aided Navigation

    PubMed Central

    Wu, Lin; Wang, Hubiao; Chai, Hua; Zhang, Lu; Hsu, Houtse; Wang, Yong

    2017-01-01

    Simulation tests were accomplished in this paper to evaluate the performance of gravity matching aided navigation (GMAN). Four essential factors were focused in this study to quantitatively evaluate the performance: gravity database (DB) resolution, fitting degree of gravity measurements, number of samples in matching, and gravity changes in the matching area. Marine gravity anomaly DB derived from satellite altimetry was employed. Actual dynamic gravimetry accuracy and operating conditions were referenced to design the simulation parameters. The results verified that the improvement of DB resolution, gravimetry accuracy, number of measurement samples, or gravity changes in the matching area generally led to higher positioning accuracies, while the effects of them were different and interrelated. Moreover, three typical positioning accuracy targets of GMAN were proposed, and the conditions to achieve these targets were concluded based on the analysis of several different system requirements. Finally, various approaches were provided to improve the positioning accuracy of GMAN. PMID:28379178

  1. Development Of A Parallel Performance Model For The THOR Neutral Particle Transport Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yessayan, Raffi; Azmy, Yousry; Schunert, Sebastian

    The THOR neutral particle transport code enables simulation of complex geometries for various problems from reactor simulations to nuclear non-proliferation. It is undergoing a thorough V&V requiring computational efficiency. This has motivated various improvements including angular parallelization, outer iteration acceleration, and development of peripheral tools. For guiding future improvements to the code’s efficiency, better characterization of its parallel performance is useful. A parallel performance model (PPM) can be used to evaluate the benefits of modifications and to identify performance bottlenecks. Using INL’s Falcon HPC, the PPM development incorporates an evaluation of network communication behavior over heterogeneous links and a functionalmore » characterization of the per-cell/angle/group runtime of each major code component. After evaluating several possible sources of variability, this resulted in a communication model and a parallel portion model. The former’s accuracy is bounded by the variability of communication on Falcon while the latter has an error on the order of 1%.« less

  2. Instrumental resolution of the chopper spectrometer 4SEASONS evaluated by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Kajimoto, Ryoichi; Sato, Kentaro; Inamura, Yasuhiro; Fujita, Masaki

    2018-05-01

    We performed simulations of the resolution function of the 4SEASONS spectrometer at J-PARC by using the Monte Carlo simulation package McStas. The simulations showed reasonably good agreement with analytical calculations of energy and momentum resolutions by using a simplified description. We implemented new functionalities in Utsusemi, the standard data analysis tool used in 4SEASONS, to enable visualization of the simulated resolution function and predict its shape for specific experimental configurations.

  3. Finite element analyses of continuous filament ties for masonry applications : final report for the Arquin Corporation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinones, Armando, Sr.; Bibeau, Tiffany A.; Ho, Clifford Kuofei

    2008-08-01

    Finite-element analyses were performed to simulate the response of a hypothetical vertical masonry wall subject to different lateral loads with and without continuous horizontal filament ties laid between rows of concrete blocks. A static loading analysis and cost comparison were also performed to evaluate optimal materials and designs for the spacers affixed to the filaments. Results showed that polypropylene, ABS, and polyethylene (high density) were suitable materials for the spacers based on performance and cost, and the short T-spacer design was optimal based on its performance and functionality. Simulations of vertical walls subject to static loads representing 100 mph windsmore » (0.2 psi) and a seismic event (0.66 psi) showed that the simulated walls performed similarly and adequately when subject to these loads with and without the ties. Additional simulations and tests are required to assess the performance of actual walls with and without the ties under greater loads and more realistic conditions (e.g., cracks, non-linear response).« less

  4. Validation of computer simulation training for esophagogastroduodenoscopy: Pilot study.

    PubMed

    Sedlack, Robert E

    2007-08-01

    Little is known regarding the value of esophagogastroduodenoscopy (EGD) simulators in education. The purpose of the present paper was to validate the use of computer simulation in novice EGD training. In phase 1, expert endoscopists evaluated various aspects of simulation fidelity as compared to live endoscopy. Additionally, computer-recorded performance metrics were assessed by comparing the recorded scores from users of three different experience levels. In phase 2, the transfer of simulation-acquired skills to the clinical setting was assessed in a two-group, randomized pilot study. The setting was a large gastroenterology (GI) Fellowship training program; in phase 1, 21 subjects (seven expert, intermediate and novice endoscopist), made up the three experience groups. In phase 2, eight novice GI fellows were involved in the two-group, randomized portion of the study examining the transfer of simulation skills to the clinical setting. During the initial validation phase, each of the 21 subjects completed two standardized EDG scenarios on a computer simulator and their performance scores were recorded for seven parameters. Following this, staff participants completed a questionnaire evaluating various aspects of the simulator's fidelity. Finally, four novice GI fellows were randomly assigned to receive 6 h of simulator-augmented training (SAT group) in EGD prior to beginning 1 month of patient-based EGD training. The remaining fellows experienced 1 month of patient-based training alone (PBT group). Results of the seven measured performance parameters were compared between three groups of varying experience using a Wilcoxon ranked sum test. The staffs' simulator fidelity survey used a 7-point Likert scale (1, very unrealistic; 4, neutral; 7, very realistic) for each of the parameters examined. During the second phase of this study, supervising staff rated both SAT and PBT fellows' patient-based performance daily. Scoring in each skill was completed using a 7-point Likert scale (1, strongly disagree; 4, neutral; 7, strongly agree). Median scores were compared between groups using the Wilcoxon ranked sum test. Staff evaluations of fidelity found that only two of the parameters examined (anatomy and scope maneuverability) had a significant degree of realism. The remaining areas were felt to be limited in their fidelity. Of the computer-recorded performance scores, only the novice group could be reliably identified from the other two experience groups. In the clinical application phase, the median Patient Discomfort ratings were superior in the PBT group (6; interquartile range [IQR], 5-6) as compared to the SAT group (5; IQR, 4-6; P = 0.015). PBT fellows' ratings were also superior in Sedation, Patient Discomfort, Independence and Competence during various phases of the evaluation. At no point were SAT fellows rated higher than the PBT group in any of the parameters examined. This EGD simulator has limitations to the degree of fidelity and can differentiate only novice endoscopists from other levels of experience. Finally, skills learned during EGD simulation training do not appear to translate well into patient-based endoscopy skills. These findings suggest against a key element of validity for the use of this computer simulator in novice EGD training.

  5. Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Britt, Charles L.

    1996-01-01

    This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.

  6. Modeling Spoken Word Recognition Performance by Pediatric Cochlear Implant Users using Feature Identification

    PubMed Central

    Frisch, Stefan A.; Pisoni, David B.

    2012-01-01

    Objective Computational simulations were carried out to evaluate the appropriateness of several psycholinguistic theories of spoken word recognition for children who use cochlear implants. These models also investigate the interrelations of commonly used measures of closed-set and open-set tests of speech perception. Design A software simulation of phoneme recognition performance was developed that uses feature identification scores as input. Two simulations of lexical access were developed. In one, early phoneme decisions are used in a lexical search to find the best matching candidate. In the second, phoneme decisions are made only when lexical access occurs. Simulated phoneme and word identification performance was then applied to behavioral data from the Phonetically Balanced Kindergarten test and Lexical Neighborhood Test of open-set word recognition. Simulations of performance were evaluated for children with prelingual sensorineural hearing loss who use cochlear implants with the MPEAK or SPEAK coding strategies. Results Open-set word recognition performance can be successfully predicted using feature identification scores. In addition, we observed no qualitative differences in performance between children using MPEAK and SPEAK, suggesting that both groups of children process spoken words similarly despite differences in input. Word recognition ability was best predicted in the model in which phoneme decisions were delayed until lexical access. Conclusions Closed-set feature identification and open-set word recognition focus on different, but related, levels of language processing. Additional insight for clinical intervention may be achieved by collecting both types of data. The most successful model of performance is consistent with current psycholinguistic theories of spoken word recognition. Thus it appears that the cognitive process of spoken word recognition is fundamentally the same for pediatric cochlear implant users and children and adults with normal hearing. PMID:11132784

  7. The Fundamentals of Laparoscopic Surgery and LapVR evaluation metrics may not correlate with operative performance in a novice cohort

    PubMed Central

    Steigerwald, Sarah N.; Park, Jason; Hardy, Krista M.; Gillman, Lawrence; Vergis, Ashley S.

    2015-01-01

    Background Considerable resources have been invested in both low- and high-fidelity simulators in surgical training. The purpose of this study was to investigate if the Fundamentals of Laparoscopic Surgery (FLS, low-fidelity box trainer) and LapVR (high-fidelity virtual reality) training systems correlate with operative performance on the Global Operative Assessment of Laparoscopic Skills (GOALS) global rating scale using a porcine cholecystectomy model in a novice surgical group with minimal laparoscopic experience. Methods Fourteen postgraduate year 1 surgical residents with minimal laparoscopic experience performed tasks from the FLS program and the LapVR simulator as well as a live porcine laparoscopic cholecystectomy. Performance was evaluated using standardized FLS metrics, automatic computer evaluations, and a validated global rating scale. Results Overall, FLS score did not show an association with GOALS global rating scale score on the porcine cholecystectomy. None of the five LapVR task scores were significantly associated with GOALS score on the porcine cholecystectomy. Conclusions Neither the low-fidelity box trainer or the high-fidelity virtual simulator demonstrated significant correlation with GOALS operative scores. These findings offer caution against the use of these modalities for brief assessments of novice surgical trainees, especially for predictive or selection purposes. PMID:26641071

  8. Numerical Simulation of the Aircraft Wake Vortex Flowfield

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Perry, R. Brad

    2013-01-01

    The near wake vortex flowfield from a NACA0012 half-wing was simulated using a fully unstructured Navier-Stokes flow solver in three dimensions at a chord Reynolds number of 4.6 million and a Mach number of approximately 0.15. Several simulations were performed to examine the effect of boundary conditions, mesh resolution and turbulence scheme on the formation of wingtip vortex and its downstream propagation. The standard Spalart-Allmaras turbulence model was compared with the Dacles-Mariani and Spalart-Shur corrections for rotation and curvature effects. The simulation results were evaluated using the data from experiment performed at NASA Ames' 32in x 48in low speed wind tunnel.

  9. A Flexible System for Simulating Aeronautical Telecommunication Network

    NASA Technical Reports Server (NTRS)

    Maly, Kurt; Overstreet, C. M.; Andey, R.

    1998-01-01

    At Old Dominion University, we have built Aeronautical Telecommunication Network (ATN) Simulator with NASA being the fund provider. It provides a means to evaluate the impact of modified router scheduling algorithms on the network efficiency, to perform capacity studies on various network topologies and to monitor and study various aspects of ATN through graphical user interface (GUI). In this paper we describe briefly about the proposed ATN model and our abstraction of this model. Later we describe our simulator architecture highlighting some of the design specifications, scheduling algorithms and user interface. At the end, we have provided the results of performance studies on this simulator.

  10. GATE Monte Carlo simulation of GE Discovery 600 and a uniformity phantom

    NASA Astrophysics Data System (ADS)

    Sheen, Heesoon; Im, Ki Chun; Choi, Yong; Shin, Hanback; Han, Youngyih; Chung, Kwangzoo; Cho, Junsang; Ahn, Sang Hee

    2014-12-01

    GATE (Geant4 Application Tomography Emission) Monte Carlo simulations have been successful in the application of emission tomography for precise modeling of various physical processes. Most previous studies on Monte Carlo simulations have only involved performance assessments using virtual phantoms. Although that allows the performance of simulated positron emission tomography (PET) to be evaluated, it does not reflect the reality of practical conditions. This restriction causes substantial drawbacks in GATE simulations of real situations. To overcome the described limitation and to provide a method to enable simulation research relevant to clinically important issues, we conducted a GATE simulation using real data from a scanner rather than a virtual phantom and evaluated the scanner is performance. For that purpose, the system and the geometry of a commercial GE PET/ CT (computed tomography) scanner, BGO-based Discovery 600 (D600), was developed for the first time. The performance of the modeled PET system was evaluated by using the National Electrical Manufacturers Association NEMA NU 2-2007 protocols and results were compared with those of the reference data. The sensitivity, scatter fraction, noise-equivalent count rate (NECR), and resolution were estimated by using the protocol of the NEMA NU2-2007. Sensitivities were 9.01 cps/kBq at 0 cm and 9.43 cps/kBq at 10 cm. Scatter fractions were 39.5%. The NECR peak was 89.7 kcps @ 14.7 kBq/cc. Resolutions were 4.8 mm in the transaxial plane and 5.9 mm in the axial plane at 1 cm, and 6.2 mm in the transaxial plane and 6.4 mm in the axial plane at 10 cm. The resolutions exceeded the limited value provided by the manufacturer. The uniformity phantom was simulated using the CT and the PET data. The output data in a ROOT format were converted and then reconstructed by using the C program and STIR (Software for Tomographic Image Reconstruction). The reconstructed images of the simulated uniformity phantom data had comparable quality even though improvement in the quality is still required. In conclusion, we have demonstrated a successful simulation of a PET system by using scanned data. In future studies, the parameters that alter the imaging conditions, such as patient movement and physiological change, need to be studied.

  11. A Multi-Model Assessment for the 2006 and 2010 Simulations under the AirQuality Model Evaluation International Initiative (AQMEII) Phase 2 over North America: Part I. Indicators of the Sensitivity of O3 and PM2.5 Formation Regimes

    EPA Science Inventory

    Under the Air Quality Model Evaluation International Initiative, Phase 2 (AQMEII-2), three online coupled air quality model simulations, with six different configurations, are analyzed for their performance, inter-model agreement, and responses to emission and meteorological chan...

  12. An experimental method for the assessment of color simulation tools.

    PubMed

    Lillo, Julio; Alvaro, Leticia; Moreira, Humberto

    2014-07-22

    The Simulcheck method for evaluating the accuracy of color simulation tools in relation to dichromats is described and used to test three color simulation tools: Variantor, Coblis, and Vischeck. A total of 10 dichromats (five protanopes, five deuteranopes) and 10 normal trichromats participated in the current study. Simulcheck includes two psychophysical tasks: the Pseudoachromatic Stimuli Identification task and the Minimum Achromatic Contrast task. The Pseudoachromatic Stimuli Identification task allows determination of the two chromatic angles (h(uv) values) that generate a minimum response in the yellow–blue opponent mechanism and, consequently, pseudoachromatic stimuli (greens or reds). The Minimum Achromatic Contrast task requires the selection of the gray background that produces minimum contrast (near zero change in the achromatic mechanism) for each pseudoachromatic stimulus selected in the previous task (L(R) values). Results showed important differences in the colorimetric transformations performed by the three evaluated simulation tools and their accuracy levels. Vischeck simulation accurately implemented the algorithm of Brettel, Viénot, and Mollon (1997). Only Vischeck appeared accurate (similarity in huv and L(R) values between real and simulated dichromats) and, consequently, could render reliable color selections. It is concluded that Simulcheck is a consistent method because it provided an equivalent pattern of results for huv and L(R) values irrespective of the stimulus set used to evaluate a simulation tool. Simulcheck was also considered valid because real dichromats provided expected huv and LR values when performing the two psychophysical tasks included in this method. © 2014 ARVO.

  13. Assessment and Application of the ROSE Code for Reactor Outage Thermal-Hydraulic and Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Thomas K.S.; Ko, F.-K.; Dai, L.-C

    The currently available tools, such as RELAP5, RETRAN, and others, cannot easily and correctly perform the task of analyzing the system behavior during plant outages. Therefore, a medium-sized program aiming at reactor outage simulation and evaluation, such as midloop operation (MLO) with loss of residual heat removal (RHR), has been developed. Important thermal-hydraulic processes involved during MLO with loss of RHR can be properly simulated by the newly developed reactor outage simulation and evaluation (ROSE) code. The two-region approach with a modified two-fluid model has been adopted to be the theoretical basis of the ROSE code.To verify the analytical modelmore » in the first step, posttest calculations against the integral midloop experiments with loss of RHR have been performed. The excellent simulation capacity of the ROSE code against the Institute of Nuclear Energy Research Integral System Test Facility test data is demonstrated. To further mature the ROSE code in simulating a full-sized pressurized water reactor, assessment against the WGOTHIC code and the Maanshan momentary-loss-of-RHR event has been undertaken. The successfully assessed ROSE code is then applied to evaluate the abnormal operation procedure (AOP) with loss of RHR during MLO (AOP 537.4) for the Maanshan plant. The ROSE code also has been successfully transplanted into the Maanshan training simulator to support operator training. How the simulator was upgraded by the ROSE code for MLO will be presented in the future.« less

  14. in silico Surveillance: evaluating outbreak detection with simulation models

    PubMed Central

    2013-01-01

    Background Detecting outbreaks is a crucial task for public health officials, yet gaps remain in the systematic evaluation of outbreak detection protocols. The authors’ objectives were to design, implement, and test a flexible methodology for generating detailed synthetic surveillance data that provides realistic geographical and temporal clustering of cases and use to evaluate outbreak detection protocols. Methods A detailed representation of the Boston area was constructed, based on data about individuals, locations, and activity patterns. Influenza-like illness (ILI) transmission was simulated, producing 100 years of in silico ILI data. Six different surveillance systems were designed and developed using gathered cases from the simulated disease data. Performance was measured by inserting test outbreaks into the surveillance streams and analyzing the likelihood and timeliness of detection. Results Detection of outbreaks varied from 21% to 95%. Increased coverage did not linearly improve detection probability for all surveillance systems. Relaxing the decision threshold for signaling outbreaks greatly increased false-positives, improved outbreak detection slightly, and led to earlier outbreak detection. Conclusions Geographical distribution can be more important than coverage level. Detailed simulations of infectious disease transmission can be configured to represent nearly any conceivable scenario. They are a powerful tool for evaluating the performance of surveillance systems and methods used for outbreak detection. PMID:23343523

  15. Interfacing Space Communications and Navigation Network Simulation with Distributed System Integration Laboratories (DSIL)

    NASA Technical Reports Server (NTRS)

    Jennings, Esther H.; Nguyen, Sam P.; Wang, Shin-Ywan; Woo, Simon S.

    2008-01-01

    NASA's planned Lunar missions will involve multiple NASA centers where each participating center has a specific role and specialization. In this vision, the Constellation program (CxP)'s Distributed System Integration Laboratories (DSIL) architecture consist of multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control centers interacting with each other over a broadband network to perform test and verification for mission scenarios. To support the end-to-end simulation and emulation effort of NASA' exploration initiatives, different NASA centers are interconnected to participate in distributed simulations. Currently, DSIL has interconnections among the following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Through interconnections and interactions among different NASA centers, critical resources and data can be shared, while independent simulations can be performed simultaneously at different NASA locations, to effectively utilize the simulation and emulation capabilities at each center. Furthermore, the development of DSIL can maximally leverage the existing project simulation and testing plans. In this work, we describe the specific role and development activities at JPL for Space Communications and Navigation Network (SCaN) simulator using the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to simulate communications effects among mission assets. Using MACHETE, different space network configurations among spacecrafts and ground systems of various parameter sets can be simulated. Data that is necessary for tracking, navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are disseminated to different NASA centers and updated periodically using the High Level Architecture (HLA). In addition, the performance of DSIL under different traffic loads with different mix of data and priorities are evaluated.

  16. Performance Evaluation of Data Modems for the Aeronautical Satellite Channel.

    DOT National Transportation Integrated Search

    1975-09-01

    Several modems and satellite subsystems were tested with the aid of an aeronautical channel simulation facility. The modems tested included a high performance DPSK modem, a high performance CPSK modem, two hybird voice/data modems, and a lower perfor...

  17. Training for percutaneous renal access on a virtual reality simulator.

    PubMed

    Zhang, Yi; Yu, Cheng-fan; Liu, Jin-shun; Wang, Gang; Zhu, He; Na, Yan-qun

    2013-01-01

    The need to develop new methods of surgical training combined with advances in computing has led to the development of virtual reality surgical simulators. The PERC Mentor(TM) is designed to train the user in percutaneous renal collecting system access puncture. This study aimed to validate the use of this kind of simulator, in percutaneous renal access training. Twenty-one urologists were enrolled as trainees to learn a fluoroscopy-guided percutaneous renal accessing technique. An assigned percutaneous renal access procedure was immediately performed on the PERC Mentor(TM) after watching instruction video and an analog operation. Objective parameters were recorded by the simulator and subjective global rating scale (GRS) score were determined. Simulation training followed and consisted of 2 hours daily training sessions for 2 consecutive days. Twenty-four hours after the training session, trainees were evaluated performing the same procedure. The post-training evaluation was compared to the evaluation of the initial attempt. During the initial attempt, none of the trainees could complete the appointed procedure due to the lack of experience in fluoroscopy-guided percutaneous renal access. After the short-term training, all trainees were able to independently complete the procedure. Of the 21 trainees, 10 had primitive experience in ultrasound-guided percutaneous nephrolithotomy. Trainees were thus categorized into the group of primitive experience and inexperience. The total operating time and amount of contrast material used were significantly lower in the group of primitive experience versus the inexperience group (P = 0.03 and 0.02, respectively). The training on the virtual reality simulator, PERC Mentor(TM), can help trainees with no previous experience of fluoroscopy-guided percutaneous renal access to complete the virtual manipulation of the procedure independently. This virtual reality simulator may become an important training and evaluation tool in teaching fluoroscopy-guided percutaneous renal access.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R. Jeffrey; Westsik, Joseph H.; Williams, Benjamin D.

    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) inmore » an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.« less

  19. Evaluation of TEAM dynamics before and after remote simulation training utilizing CERTAIN platform.

    PubMed

    Pennington, Kelly M; Dong, Yue; Coville, Hongchuan H; Wang, Bo; Gajic, Ognjen; Kelm, Diana J

    2018-12-01

    The current study examines the feasibility and potential effects of long distance, remote simulation training on team dynamics. The study design was a prospective study evaluating team dynamics before and after remote simulation. Study subjects consisted of interdisciplinary teams (attending physicians, physicians in training, advanced care practitioners, and/or nurses). The study was conducted at nine training sites in eight countries. Study subjects completed 2-3 simulation scenarios of acute crises before and after training with the Checklist for Early Recognition and Treatment of Acute Illness (CERTAIN). Pre- and post-CERTAIN training simulations were evaluated by two independent reviewers utilizing the Team Emergency Assessment Measure (TEAM), which is a 11-item questionnaire that has been validated for assessing teamwork in the intensive care unit. Any discrepancies of greater than 1 point between the two reviewers on any question on the TEAM assessment were sent to a third reviewer to judge. The score that was deemed discordant by the third judge was eliminated. Pre- and post-CERTAIN training TEAM scores were averaged and compared. Of the nine teams evaluated, six teams demonstrated an overall improvement in global team performance following CERTAIN virtual training. For each of the 11 TEAM assessments, a trend toward improvement following CERTAIN training was noted; however, no assessment had universal improvement. 'Team composure and control' had the least absolute score improvement following CERTAIN training. The greatest improvement in the TEAM assessment scores was in the 'team's ability to complete tasks in a timely manner' and in the 'team leader's communication to the team'. The assessment of team dynamics using long distance, virtual simulation training appears to be feasible and may result in improved team performance during simulated patient crises; however, language and video quality were the two largest barriers noted during the review process.

  20. First results of the wind evaluation breadboard for ELT primary mirror design

    NASA Astrophysics Data System (ADS)

    Reyes García-Talavera, Marcos; Viera, Teodora; Núñez, Miguel

    2010-07-01

    The Wind Evaluation Breadboard (WEB) is a primary mirror and telescope simulator formed by seven aluminium segments, including position sensors, electromechanical support systems and support structures. WEB has been developed to evaluate technologies for primary mirror wavefront control and to evaluate the performance of the control of wind buffeting disturbance on ELT segmented mirrors. For this purpose WEB electro-mechanical set-up simulates the real operational constrains applied to large segmented mirrors. This paper describes the WEB assembly, integration and verification, the instrument characterisation and close loop control design, including the dynamical characterization of the instrument and the control architecture. The performance of the new technologies developed for position sensing, acting and controlling is evaluated. The integration of the instrument in the observatory and the results of the first experiments are summarised, with different wind conditions, elevation and azimuth angles of incidence. Conclusions are extracted with respect the wind rejection performance and the control strategy for an ELT. WEB has been designed and developed by IAC, ESO, ALTRAN and JUPASA, with the integration of subsystems of FOGALE and TNO.

  1. A surgical simulator for peeling the inner limiting membrane during wet conditions.

    PubMed

    Omata, Seiji; Someya, Yusei; Adachi, Shyn'ya; Masuda, Taisuke; Hayakawa, Takeshi; Harada, Kanako; Mitsuishi, Mamoru; Totsuka, Kiyohito; Araki, Fumiyuki; Takao, Muneyuki; Aihara, Makoto; Arai, Fumihito

    2018-01-01

    The present study was performed to establish a novel ocular surgery simulator for training in peeling of the inner limited membrane (ILM). This simulator included a next-generation artificial ILM with mechanical properties similar to the natural ILM that could be peeled underwater in the same manner as in actual surgery. An artificial eye consisting of a fundus and eyeball parts was fabricated. The artificial eye was installed in the eye surgery simulator. The fundus part was mounted in the eyeball, which consisted of an artificial sclera, retina, and ILM. To measure the thickness of the fabricated ILM on the artificial retina, we calculated the distance of the step height as the thickness of the artificial ILM. Two experienced ophthalmologists then assessed the fabricated ILM by sensory evaluation. The minimum thickness of the artificial ILM was 1.9 ± 0.3 μm (n = 3). We were able to perform the peeling task with the ILM in water. Based on the sensory evaluation, an ILM with a minimum thickness and 1000 degrees of polymerization was suitable for training. We installed the eye model on an ocular surgery simulator, which allowed for the performance of a sequence of operations similar to ILM peeling. In conclusion, we developed a novel ocular surgery simulator for ILM peeling. The artificial ILM was peeled underwater in the same manner as in an actual operation.

  2. Challenge toward the prediction of typhoon behaviour and down pour

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Onishi, R.; Baba, Y.; Kida, S.; Matsuda, K.; Goto, K.; Fuchigami, H.

    2013-08-01

    Mechanisms of interactions among different scale phenomena play important roles for forecasting of weather and climate. Multi-scale Simulator for the Geoenvironment (MSSG), which deals with multi-scale multi-physics phenomena, is a coupled non-hydrostatic atmosphere-ocean model designed to be run efficiently on the Earth Simulator. We present simulation results with the world-highest 1.9km horizontal resolution for the entire globe and regional heavy rain with 1km horizontal resolution and 5m horizontal/vertical resolution for urban area simulation. To gain high performance by exploiting the system capabilities, we propose novel performance evaluation metrics introduced in previous studies that incorporate the effects of the data caching mechanism between CPU and memory. With a useful code optimization guideline based on such metrics, we demonstrate that MSSG can achieve an excellent peak performance ratio of 32.2% on the Earth Simulator with the single-core performance found to be a key to a reduced time-to-solution.

  3. Comparative evaluation of test methods to simulate acoustic response of shroud-enclosed spacecraft structures

    NASA Technical Reports Server (NTRS)

    On, F. J.

    1975-01-01

    Test methods were evaluated to ascertain whether a spacecraft, properly tested within its shroud, could be vibroacoustic tested without the shroud, with adjustments made in the acoustic input spectra to simulate the acoustic response of the missing shroud. The evaluation was based on vibroacoustic test results obtained from a baseline model composed (1) of a spacecraft with adapter, lower support structure, and shroud; (2) of the spacecraft, adapter, and lower structure, but without the shroud; and (3) of the spacecraft and adapter only. Emphasis was placed on the magnitude of the acoustic input changes required to substitute for the shroud and the difficulty of making such input changes, and the degree of missimulation which can result from the performance of a particular, less-than optimum test. Conclusions are drawn on the advantages and disadvantages derived from the use of input spectra adjustment methods and lower support structure simulations. Test guidelines were also developed for planning and performing a launch acoustic-environmental test.

  4. Simulation evaluation of a low-altitude helicopter flight guidance system adapted for a helmet-mounted display

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Zelenka, Richard E.; Hardy, Gordon H.; Dearing, Munro G.

    1992-01-01

    A computer aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generation algorithm based upon dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission way points that seeks valleys to minimize threat exposure. The pilot evaluation was conducted at NASA ARC moving base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, the Air Force, and the helicopter industry. The pilots manually tracked the trajectory generated by the algorithm utilizing the HMD symbology. The pilots were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.

  5. Energy retrofit of an office building by substitution of the generation system: performance evaluation via dynamic simulation versus current technical standards

    NASA Astrophysics Data System (ADS)

    Testi, D.; Schito, E.; Menchetti, E.; Grassi, W.

    2014-11-01

    Constructions built in Italy before 1945 (about 30% of the total built stock) feature low energy efficiency. Retrofit actions in this field can lead to valuable energetic and economic savings. In this work, we ran a dynamic simulation of a historical building of the University of Pisa during the heating season. We firstly evaluated the energy requirements of the building and the performance of the existing natural gas boiler, validated with past billings of natural gas. We also verified the energetic savings obtainable by the substitution of the boiler with an air-to-water electrically-driven modulating heat pump, simulated through a cycle-based model, evaluating the main economic metrics. The cycle-based model of the heat pump, validated with manufacturers' data available only at specified temperature and load conditions, can provide more accurate results than the simplified models adopted by current technical standards, thus increasing the effectiveness of energy audits.

  6. A flight-test and simulation evaluation of the longitudinal final approach and landing performance of an automatic system for a light wing loading STOL aircraft

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Hardy, G. H.; Hindson, W. S.

    1983-01-01

    As part of a comprehensive flight-test program of STOL operating systems for the terminal area, an automatic landing system was developed and evaluated for a light wing loading turboprop aircraft. The aircraft utilized an onboard advanced digital avionics system. Flight tests were conducted at a facility that included a STOL runway site with a microwave landing system. Longitudinal flight-test results were presented and compared with available (basically CTOL) criteria. These comparisons were augmented by results from a comprehensive simulation of the controlled aircraft which included representations of navigation errors that were encountered in flight and atmospheric disturbances. Acceptable performance on final approach and at touchdown was achieved by the autoland (automatic landing) system for the moderate winds and turbulence conditions encountered in flight. However, some touchdown performance goals were marginally achieved, and simulation results suggested that difficulties could be encountered in the presence of more extreme atmospheric conditions. Suggestions were made for improving performance under those more extreme conditions.

  7. Simulation of Powder Layer Deposition in Additive Manufacturing Processes Using the Discrete Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbold, E. B.; Walton, O.; Homel, M. A.

    2015-10-26

    This document serves as a final report to a small effort where several improvements were added to a LLNL code GEODYN-­L to develop Discrete Element Method (DEM) algorithms coupled to Lagrangian Finite Element (FE) solvers to investigate powder-­bed formation problems for additive manufacturing. The results from these simulations will be assessed for inclusion as the initial conditions for Direct Metal Laser Sintering (DMLS) simulations performed with ALE3D. The algorithms were written and performed on parallel computing platforms at LLNL. The total funding level was 3-­4 weeks of an FTE split amongst two staff scientists and one post-­doc. The DEM simulationsmore » emulated, as much as was feasible, the physical process of depositing a new layer of powder over a bed of existing powder. The DEM simulations utilized truncated size distributions spanning realistic size ranges with a size distribution profile consistent with realistic sample set. A minimum simulation sample size on the order of 40-­particles square by 10-­particles deep was utilized in these scoping studies in order to evaluate the potential effects of size segregation variation with distance displaced in front of a screed blade. A reasonable method for evaluating the problem was developed and validated. Several simulations were performed to show the viability of the approach. Future investigations will focus on running various simulations investigating powder particle sizing and screen geometries.« less

  8. Psychophysiological Assessment in Pilots Performing Challenging Simulated and Real Flight Maneuvers.

    PubMed

    Johannes, Bernd; Rothe, Stefanie; Gens, André; Westphal, Soeren; Birkenfeld, Katja; Mulder, Edwin; Rittweger, Jörn; Ledderhos, Carla

    2017-09-01

    The objective assessment of psychophysiological arousal during challenging flight maneuvers is of great interest to aerospace medicine, but remains a challenging task. In the study presented here, a vector-methodological approach was used which integrates different psychophysiological variables, yielding an integral arousal index called the Psychophysiological Arousal Value (PAV). The arousal levels of 15 male pilots were assessed during predetermined, well-defined flight maneuvers performed under simulated and real flight conditions. The physiological data, as expected, revealed inter- and intra-individual differences for the various measurement conditions. As indicated by the PAV, air-to-air refueling (AAR) turned out to be the most challenging task. In general, arousal levels were comparable between simulator and real flight conditions. However, a distinct difference was observed when the pilots were divided by instructors into two groups based on their proficiency in AAR with AWACS (AAR-Novices vs. AAR-Professionals). AAR-Novices had on average more than 2000 flight hours on other aircrafts. They showed higher arousal reactions to AAR in real flight (contact: PAV score 8.4 ± 0.37) than under simulator conditions (7.1 ± 0.30), whereas AAR-Professionals did not (8.5 ± 0.46 vs. 8.8 ± 0.80). The psychophysiological arousal value assessment was tested in field measurements, yielding quantifiable arousal differences between proficiency groups of pilots during simulated and real flight conditions. The method used in this study allows an evaluation of the psychophysiological cost during a certain flying performance and thus is possibly a valuable tool for objectively evaluating the actual skill status of pilots.Johannes B, Rothe S, Gens A, Westphal S, Birkenfeld K, Mulder E, Rittweger J, Ledderhos C. Psychophysiological assessment in pilots performing challenging simulated and real flight maneuvers. Aerosp Med Hum Perform. 2017; 88(9):834-840.

  9. An embedded checklist in the Anesthesia Information Management System improves pre-anaesthetic induction setup: a randomised controlled trial in a simulation setting.

    PubMed

    Wetmore, Douglas; Goldberg, Andrew; Gandhi, Nishant; Spivack, John; McCormick, Patrick; DeMaria, Samuel

    2016-10-01

    Anaesthesiologists work in a high stress, high consequence environment in which missed steps in preparation may lead to medical errors and potential patient harm. The pre-anaesthetic induction period has been identified as a time in which medical errors can occur. The Anesthesia Patient Safety Foundation has developed a Pre-Anesthetic Induction Patient Safety (PIPS) checklist. We conducted this study to test the effectiveness of this checklist, when embedded in our institutional Anesthesia Information Management System (AIMS), on resident performance in a simulated environment. Using a randomised, controlled, observer-blinded design, we compared performance of anaesthesiology residents in a simulated operating room under production pressure using a checklist in completing a thorough pre-anaesthetic induction evaluation and setup with that of residents with no checklist. The checklist was embedded in the simulated operating room's electronic medical record. Data for 38 anaesthesiology residents shows a statistically significant difference in performance in pre-anaesthetic setup and evaluation as scored by blinded raters (maximum score 22 points), with the checklist group performing better by 7.8 points (p<0.01). The effects of gender and year of residency on total score were not significant. Simulation duration (time to anaesthetic agent administration) was increased significantly by the use of the checklist. Required use of a pre-induction checklist improves anaesthesiology resident performance in a simulated environment. The PIPS checklist as an integrated part of a departmental AIMS warrant further investigation as a quality measure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Initial Data Analysis Results for ATD-2 ISAS HITL Simulation

    NASA Technical Reports Server (NTRS)

    Lee, Hanbong

    2017-01-01

    To evaluate the operational procedures and information requirements for the core functional capabilities of the ATD-2 project, such as tactical surface metering tool, APREQ-CFR procedure, and data element exchanges between ramp and tower, human-in-the-loop (HITL) simulations were performed in March, 2017. This presentation shows the initial data analysis results from the HITL simulations. With respect to the different runway configurations and metering values in tactical surface scheduler, various airport performance metrics were analyzed and compared. These metrics include gate holding time, taxi-out in time, runway throughput, queue size and wait time in queue, and TMI flight compliance. In addition to the metering value, other factors affecting the airport performance in the HITL simulation, including run duration, runway changes, and TMI constraints, are also discussed.

  11. Computer simulation of a single pilot flying a modern high-performance helicopter

    NASA Technical Reports Server (NTRS)

    Zipf, Mark E.; Vogt, William G.; Mickle, Marlin H.; Hoelzeman, Ronald G.; Kai, Fei; Mihaloew, James R.

    1988-01-01

    Presented is a computer simulation of a human response pilot model able to execute operational flight maneuvers and vehicle stabilization of a modern high-performance helicopter. Low-order, single-variable, human response mechanisms, integrated to form a multivariable pilot structure, provide a comprehensive operational control over the vehicle. Evaluations of the integrated pilot were performed by direct insertion into a nonlinear, total-force simulation environment provided by NASA Lewis. Comparisons between the integrated pilot structure and single-variable pilot mechanisms are presented. Static and dynamically alterable configurations of the pilot structure are introduced to simulate pilot activities during vehicle maneuvers. These configurations, in conjunction with higher level, decision-making processes, are considered for use where guidance and navigational procedures, operational mode transfers, and resource sharing are required.

  12. Design, Implementation, and Evaluation of a Simulation-Based Clinical Correlation Curriculum as an Adjunctive Pedagogy in an Anatomy Course.

    PubMed

    Coombs, Carmen M; Shields, Ryan Y; Hunt, Elizabeth A; Lum, Ying Wei; Sosnay, Patrick R; Perretta, Julianne S; Lieberman, Rhett H; Shilkofski, Nicole A

    2017-04-01

    Because reported use of simulation in preclinical basic science courses is limited, the authors describe the design, implementation, and preliminary evaluation of a simulation-based clinical correlation curriculum in an anatomy course for first-year medical students at Perdana University Graduate School of Medicine (in collaboration with Johns Hopkins University School of Medicine). The simulation curriculum, with five weekly modules, was a component of a noncadaveric human anatomy course for three classes (n = 81 students) from September 2011 to November 2013. The modules were designed around major anatomical regions (thorax; abdomen and pelvis; lower extremities and back; upper extremities; and head and neck) and used various types of simulation (standardized patients, high-fidelity simulators, and task trainers). Several methods were used to evaluate the curriculum's efficacy, including comparing pre- versus posttest scores and comparing posttest scores against the score on 15 clinical correlation final exam questions. A total of 81 students (response rate: 100%) completed all pre- and posttests and consented to participate. Posttest scores suggest significant knowledge acquisition and better consistency of performance after participation in the curriculum. The comparison of performance on the posttests and final exam suggests that using simulation as an adjunctive pedagogy can lead to excellent short-term knowledge retention. Simulation-based medical education may prove useful in preclinical basic science curricula. Next steps should be to validate the use of this approach, demonstrate cost-efficacy or the "return on investment" for educational and institutional leadership, and examine longer-term knowledge retention.

  13. Quantitative Evaluation of Performance in Interventional Neuroradiology: An Integrated Curriculum Featuring Theoretical and Practical Challenges

    PubMed Central

    Ernst, Marielle; Kriston, Levente; Romero, Javier M.; Frölich, Andreas M.; Jansen, Olav; Fiehler, Jens; Buhk, Jan-Hendrik

    2016-01-01

    Purpose We sought to develop a standardized curriculum capable of assessing key competencies in Interventional Neuroradiology by the use of models and simulators in an objective, quantitative, and efficient way. In this evaluation we analyzed the associations between the practical experience, theoretical knowledge, and the skills lab performance of interventionalists. Materials and Methods We evaluated the endovascular skills of 26 participants of the Advanced Course in Endovascular Interventional Neuroradiology of the European Society of Neuroradiology with a set of three tasks (aneurysm coiling and thrombectomy in a virtual simulator and placement of an intra-aneurysmal flow disruptor in a flow model). Practical experience was assessed by a survey. Participants completed a written and oral examination to evaluate theoretical knowledge. Bivariate and multivariate analyses were performed. Results In multivariate analysis knowledge of materials and techniques in Interventional Neuroradiology was moderately associated with skills in aneurysm coiling and thrombectomy. Experience in mechanical thrombectomy was moderately associated with thrombectomy skills, while age was negatively associated with thrombectomy skills. We found no significant association between age, sex, or work experience and skills in aneurysm coiling. Conclusion Our study gives an example of how an integrated curriculum for reasonable and cost-effective assessment of key competences of an interventional neuroradiologist could look. In addition to traditional assessment of theoretical knowledge practical skills are measured by the use of endovascular simulators yielding objective, quantitative, and constructive data for the evaluation of the current performance status of participants as well as the evolution of their technical competency over time. PMID:26848840

  14. Strategy and gaps for modeling, simulation, and control of hybrid systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabiti, Cristian; Garcia, Humberto E.; Hovsapian, Rob

    2015-04-01

    The purpose of this report is to establish a strategy for modeling and simulation of candidate hybrid energy systems. Modeling and simulation is necessary to design, evaluate, and optimize the system technical and economic performance. Accordingly, this report first establishes the simulation requirements to analysis candidate hybrid systems. Simulation fidelity levels are established based on the temporal scale, real and synthetic data availability or needs, solution accuracy, and output parameters needed to evaluate case-specific figures of merit. Accordingly, the associated computational and co-simulation resources needed are established; including physical models when needed, code assembly and integrated solutions platforms, mathematical solvers,more » and data processing. This report first attempts to describe the figures of merit, systems requirements, and constraints that are necessary and sufficient to characterize the grid and hybrid systems behavior and market interactions. Loss of Load Probability (LOLP) and effective cost of Effective Cost of Energy (ECE), as opposed to the standard Levelized Cost of Electricty (LCOE), are introduced as technical and economical indices for integrated energy system evaluations. Financial assessment methods are subsequently introduced for evaluation of non-traditional, hybrid energy systems. Algorithms for coupled and iterative evaluation of the technical and economic performance are subsequently discussed. This report further defines modeling objectives, computational tools, solution approaches, and real-time data collection and processing (in some cases using real test units) that will be required to model, co-simulate, and optimize; (a) an energy system components (e.g., power generation unit, chemical process, electricity management unit), (b) system domains (e.g., thermal, electrical or chemical energy generation, conversion, and transport), and (c) systems control modules. Co-simulation of complex, tightly coupled, dynamic energy systems requires multiple simulation tools, potentially developed in several programming languages and resolved on separate time scales. Whereas further investigation and development of hybrid concepts will provide a more complete understanding of the joint computational and physical modeling needs, this report highlights areas in which co-simulation capabilities are warranted. The current development status, quality assurance, availability and maintainability of simulation tools that are currently available for hybrid systems modeling is presented. Existing gaps in the modeling and simulation toolsets and development needs are subsequently discussed. This effort will feed into a broader Roadmap activity for designing, developing, and demonstrating hybrid energy systems.« less

  15. Virtual reality-based simulators for spine surgery: a systematic review.

    PubMed

    Pfandler, Michael; Lazarovici, Marc; Stefan, Philipp; Wucherer, Patrick; Weigl, Matthias

    2017-09-01

    Virtual reality (VR)-based simulators offer numerous benefits and are very useful in assessing and training surgical skills. Virtual reality-based simulators are standard in some surgical subspecialties, but their actual use in spinal surgery remains unclear. Currently, only technical reviews of VR-based simulators are available for spinal surgery. Thus, we performed a systematic review that examined the existing research on VR-based simulators in spinal procedures. We also assessed the quality of current studies evaluating VR-based training in spinal surgery. Moreover, we wanted to provide a guide for future studies evaluating VR-based simulators in this field. This is a systematic review of the current scientific literature regarding VR-based simulation in spinal surgery. Five data sources were systematically searched to identify relevant peer-reviewed articles regarding virtual, mixed, or augmented reality-based simulators in spinal surgery. A qualitative data synthesis was performed with particular attention to evaluation approaches and outcomes. Additionally, all included studies were appraised for their quality using the Medical Education Research Study Quality Instrument (MERSQI) tool. The initial review identified 476 abstracts and 63 full texts were then assessed by two reviewers. Finally, 19 studies that examined simulators for the following procedures were selected: pedicle screw placement, vertebroplasty, posterior cervical laminectomy and foraminotomy, lumbar puncture, facet joint injection, and spinal needle insertion and placement. These studies had a low-to-medium methodological quality with a MERSQI mean score of 11.47 out of 18 (standard deviation=1.81). This review described the current state and applications of VR-based simulator training and assessment approaches in spinal procedures. Limitations, strengths, and future advancements of VR-based simulators for training and assessment in spinal surgery were explored. Higher-quality studies with patient-related outcome measures are needed. To establish further adaptation of VR-based simulators in spinal surgery, future evaluations need to improve the study quality, apply long-term study designs, and examine non-technical skills, as well as multidisciplinary team training. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Aerodynamic simulation strategies assessment for a fenestron in hover flight

    NASA Astrophysics Data System (ADS)

    Marino, M.; Gourdain, N.; Legras, G.; Alfano, D.

    2017-06-01

    The Fenestron® has a crucial antitorque function and its sizing is a key point of the Helicopter design, especially regarding thrust and power predictions. This paper reports the investigations done on a full scale Dauphin Fenestron®. The objectives are, first, to evaluate the in§uence of some numerical parameters on the performance of the Fenestron®; and then, the flow is analyzed for a high incidence pitch, for which the rotor blade can experience massive boundary layer separations. Simulations are carried out on a single blade passage model. Several parameters are benched such as grid quality, numerical schemes, and turbulence modeling. A comparison with test bench measurements is carried out to evaluate the capability of the numerical simulations to predict both global performance (thrust and power) and local flows (static pressure at the shroud and radial profiles inside the vein). The analysis demonstrates the capability of numerical simulations to accurately estimate the global performance of the Fenestron®, including at high pitch angles. However, some discrepancies remain on the local flow, especially in the vicinity of the rotor shroud. A more detailed analysis of the local flow is performed at a blade pitch angle of 35°, with a particular interest for the blade tip region.

  17. Principles of scarce medical resource allocation in natural disaster relief: a simulation approach.

    PubMed

    Cao, Hui; Huang, Simin

    2012-01-01

    A variety of triage principles have been proposed. The authors sought to evaluate their effects on how many lives can be saved in a hypothetical disaster. To determine an optimal scarce resource-rationing principle in the emergency response domain, considering the trade-off between lifesaving efficiency and ethical issues. A discrete event simulation model is developed to examine the efficiency of four resource-rationing principles: first come-first served, random, most serious first, and least serious first. Seven combinations of available resources are examined in the simulations to evaluate the performance of the principles under different levels of resource scarcity. The simulation results indicate that the performance of the medical resource allocation principles is related to the level of the resource scarcity. When the level of the scarcity is high, the performances of the four principles differ significantly. The least serious first principle performs best, followed by the random principle; the most serious first principle acts worst. However, when the scarcity is relieved, there are no significant differences among the random, first come-first served, and least serious first principles, yet the most serious first principle still performs worst. Although the least serious first principle exhibits the highest efficiency, it is not ethically flawless. Considering the trade off between the lifesaving efficiency and the ethical issues, random selection is a relatively fair and efficient principle for allocating scarce medical resources in natural disaster responses.

  18. Do technical skills correlate with non-technical skills in crisis resource management: a simulation study.

    PubMed

    Riem, N; Boet, S; Bould, M D; Tavares, W; Naik, V N

    2012-11-01

    Both technical skills (TS) and non-technical skills (NTS) are key to ensuring patient safety in acute care practice and effective crisis management. These skills are often taught and assessed separately. We hypothesized that TS and NTS are not independent of each other, and we aimed to evaluate the relationship between TS and NTS during a simulated intraoperative crisis scenario. This study was a retrospective analysis of performances from a previously published work. After institutional ethics approval, 50 anaesthesiology residents managed a simulated crisis scenario of an intraoperative cardiac arrest secondary to a malignant arrhythmia. We used a modified Delphi approach to design a TS checklist, specific for the management of a malignant arrhythmia requiring defibrillation. All scenarios were recorded. Each performance was analysed by four independent experts. For each performance, two experts independently rated the technical performance using the TS checklist, and two other experts independently rated NTS using the Anaesthetists' Non-Technical Skills score. TS and NTS were significantly correlated to each other (r=0.45, P<0.05). During a simulated 5 min resuscitation requiring crisis resource management, our results indicate that TS and NTS are related to one another. This research provides the basis for future studies evaluating the nature of this relationship, the influence of NTS training on the performance of TS, and to determine whether NTS are generic and transferrable between crises that require different TS.

  19. Improving Perinatology Residents' Skills in Breaking Bad News: A Randomized Intervention Study.

    PubMed

    Setubal, Maria Silvia Vellutini; Antonio, Maria Ângela Reis Goes Monteiro; Amaral, Eliana Martorano; Boulet, John

    2018-03-01

     Breaking bad news (BBN) is particularly difficult in perinatology. Previous research has shown that BBN skills can be learned and improved when taught and practiced. This project evaluated whether a structured training session would enhance perinatology residents' skills in BBN.  This was a randomized controlled intervention study with year 1 to 4 Perinatology residents from a medical school in Brazil, during the 2014/15 school year. A total of 61 out of 100 (61%) eligible residents volunteered to a structured training program involving communicating a perinatal loss to a simulated patient (SP) portraying the mother followed by the SP's immediate feedback, both video recorded. Later, residents were randomly assigned to BBN training based on a setting, perception, invitation, knowledge, emotion and summary (SPIKES) strategy with video reviews (intervention) or no training (control group). All residents returned for a second simulation with the same SP blinded to the intervention and portraying a similar case. Residents' performances were then evaluated by the SP with a checklist. The statistical analysis included a repeated measures analysis of covariance (RM-ANCOVA). Complementarily, the residents provided their perceptions about the simulation with feedback activities.  Fifty-eight residents completed the program. The simulations lasted on average 12 minutes, feedback 5 minutes and SPIKES training between 1h and 2h30m. There was no significant difference in the residents' performances according to the SPs' evaluations ( p  = 0.55). The participants rated the simulation with feedback exercises highly. These educational activities might have offset SPIKES training impact.  The SPIKES training did not significantly impact the residents' performance. The residents endorsed the simulation with feedback as a useful training modality. Further research is needed to determine which modality is more effective. Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil.

  20. Noncredible cognitive performance at clinical evaluation of adult ADHD: An embedded validity indicator in a visuospatial working memory test.

    PubMed

    Fuermaier, Anselm B M; Tucha, Oliver; Koerts, Janneke; Lange, Klaus W; Weisbrod, Matthias; Aschenbrenner, Steffen; Tucha, Lara

    2017-12-01

    The assessment of performance validity is an essential part of the neuropsychological evaluation of adults with attention-deficit/hyperactivity disorder (ADHD). Most available tools, however, are inaccurate regarding the identification of noncredible performance. This study describes the development of a visuospatial working memory test, including a validity indicator for noncredible cognitive performance of adults with ADHD. Visuospatial working memory of adults with ADHD (n = 48) was first compared to the test performance of healthy individuals (n = 48). Furthermore, a simulation design was performed including 252 individuals who were randomly assigned to either a control group (n = 48) or to 1 of 3 simulation groups who were requested to feign ADHD (n = 204). Additional samples of 27 adults with ADHD and 69 instructed simulators were included to cross-validate findings from the first samples. Adults with ADHD showed impaired visuospatial working memory performance of medium size as compared to healthy individuals. Simulation groups committed significantly more errors and had shorter response times as compared to patients with ADHD. Moreover, binary logistic regression analysis was carried out to derive a validity index that optimally differentiates between true and feigned ADHD. ROC analysis demonstrated high classification rates of the validity index, as shown in excellent specificity (95.8%) and adequate sensitivity (60.3%). The visuospatial working memory test as presented in this study therefore appears sensitive in indicating cognitive impairment of adults with ADHD. Furthermore, the embedded validity index revealed promising results concerning the detection of noncredible cognitive performance of adults with ADHD. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Regime-Based Evaluation of Cloudiness in CMIP5 Models

    NASA Technical Reports Server (NTRS)

    Jin, Daeho; Oraiopoulos, Lazaros; Lee, Dong Min

    2016-01-01

    The concept of Cloud Regimes (CRs) is used to develop a framework for evaluating the cloudiness of 12 fifth Coupled Model Intercomparison Project (CMIP5) models. Reference CRs come from existing global International Satellite Cloud Climatology Project (ISCCP) weather states. The evaluation is made possible by the implementation in several CMIP5 models of the ISCCP simulator generating for each gridcell daily joint histograms of cloud optical thickness and cloud top pressure. Model performance is assessed with several metrics such as CR global cloud fraction (CF), CR relative frequency of occurrence (RFO), their product (long-term average total cloud amount [TCA]), cross-correlations of CR RFO maps, and a metric of resemblance between model and ISCCP CRs. In terms of CR global RFO, arguably the most fundamental metric, the models perform unsatisfactorily overall, except for CRs representing thick storm clouds. Because model CR CF is internally constrained by our method, RFO discrepancies yield also substantial TCA errors. Our findings support previous studies showing that CMIP5 models underestimate cloudiness. The multi-model mean performs well in matching observed RFO maps for many CRs, but is not the best for this or other metrics. When overall performance across all CRs is assessed, some models, despite their shortcomings, apparently outperform Moderate Resolution Imaging Spectroradiometer (MODIS) cloud observations evaluated against ISCCP as if they were another model output. Lastly, cloud simulation performance is contrasted with each model's equilibrium climate sensitivity (ECS) in order to gain insight on whether good cloud simulation pairs with particular values of this parameter.

  2. Computer-Assisted Performance Evaluation for Navy Anti-Air Warfare Training: Concepts, Methods, and Constraints.

    ERIC Educational Resources Information Center

    Chesler, David J.

    An improved general methodological approach for the development of computer-assisted evaluation of trainee performance in the computer-based simulation environment is formulated in this report. The report focuses on the Tactical Advanced Combat Direction and Electronic Warfare system (TACDEW) at the Fleet Anti-Air Warfare Training Center at San…

  3. Simulation and testing of pyramid and barrel vault skylights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGowan, A.G.; Desjarlais, A.O.; Wright, J.L.

    1998-10-01

    The thermal performance of fenestration in commercial buildings can have a significant effect on building loads--yet there is little information on the performance of these products. With this in mind, ASHRAE TC 4.5, Fenestration, commissioned a research project involving test and simulation of commercial fenestration systems. The objectives of ASHRAE Research Project 877 were: to evaluate the thermal performance (U-factors) of commonly used commercial glazed roof and wall assemblies; to obtain a better fundamental understanding of the heat transfer processes that occur in these specialty fenestration products; to develop correlations for natural-convection heat transfer in complex glazing cavities; to developmore » a methodology for evaluating complex fenestration products, suitable for inclusion in ASHRAE Standard 142P (ASHRAE 1996); and to generate U-factors for common commercial fenestration products, suitable for inclusion in the ASHRAE Handbook--Fundamentals. This paper describes testing and simulation of pyramid and barrel vault skylight specimens and provides guidelines for modeling these systems based on the validated results.« less

  4. Study on photochemical analysis system (VLES) for EUV lithography

    NASA Astrophysics Data System (ADS)

    Sekiguchi, A.; Kono, Y.; Kadoi, M.; Minami, Y.; Kozawa, T.; Tagawa, S.; Gustafson, D.; Blackborow, P.

    2007-03-01

    A system for photo-chemical analysis of EUV lithography processes has been developed. This system has consists of 3 units: (1) an exposure that uses the Z-Pinch (Energetiq Tech.) EUV Light source (DPP) to carry out a flood exposure, (2) a measurement system RDA (Litho Tech Japan) for the development rate of photo-resists, and (3) a simulation unit that utilizes PROLITH (KLA-Tencor) to calculate the resist profiles and process latitude using the measured development rate data. With this system, preliminary evaluation of the performance of EUV lithography can be performed without any lithography tool (Stepper and Scanner system) that is capable of imaging and alignment. Profiles for 32 nm line and space pattern are simulated for the EUV resist (Posi-2 resist by TOK) by using VLES that hat has sensitivity at the 13.5nm wavelength. The simulation successfully predicts the resist behavior. Thus it is confirmed that the system enables efficient evaluation of the performance of EUV lithography processes.

  5. Improving the Performance of Temperature Index Snowmelt Model of SWAT by Using MODIS Land Surface Temperature Data

    PubMed Central

    Yang, Yan; Onishi, Takeo; Hiramatsu, Ken

    2014-01-01

    Simulation results of the widely used temperature index snowmelt model are greatly influenced by input air temperature data. Spatially sparse air temperature data remain the main factor inducing uncertainties and errors in that model, which limits its applications. Thus, to solve this problem, we created new air temperature data using linear regression relationships that can be formulated based on MODIS land surface temperature data. The Soil Water Assessment Tool model, which includes an improved temperature index snowmelt module, was chosen to test the newly created data. By evaluating simulation performance for daily snowmelt in three test basins of the Amur River, performance of the newly created data was assessed. The coefficient of determination (R 2) and Nash-Sutcliffe efficiency (NSE) were used for evaluation. The results indicate that MODIS land surface temperature data can be used as a new source for air temperature data creation. This will improve snow simulation using the temperature index model in an area with sparse air temperature observations. PMID:25165746

  6. Evaluation of a numerical model's ability to predict bed load transport observed in braided river experiments

    NASA Astrophysics Data System (ADS)

    Javernick, Luke; Redolfi, Marco; Bertoldi, Walter

    2018-05-01

    New data collection techniques offer numerical modelers the ability to gather and utilize high quality data sets with high spatial and temporal resolution. Such data sets are currently needed for calibration, verification, and to fuel future model development, particularly morphological simulations. This study explores the use of high quality spatial and temporal data sets of observed bed load transport in braided river flume experiments to evaluate the ability of a two-dimensional model, Delft3D, to predict bed load transport. This study uses a fixed bed model configuration and examines the model's shear stress calculations, which are the foundation to predict the sediment fluxes necessary for morphological simulations. The evaluation is conducted for three flow rates, and model setup used highly accurate Structure-from-Motion (SfM) topography and discharge boundary conditions. The model was hydraulically calibrated using bed roughness, and performance was evaluated based on depth and inundation agreement. Model bed load performance was evaluated in terms of critical shear stress exceedance area compared to maps of observed bed mobility in a flume. Following the standard hydraulic calibration, bed load performance was tested for sensitivity to horizontal eddy viscosity parameterization and bed morphology updating. Simulations produced depth errors equal to the SfM inherent errors, inundation agreement of 77-85%, and critical shear stress exceedance in agreement with 49-68% of the observed active area. This study provides insight into the ability of physically based, two-dimensional simulations to accurately predict bed load as well as the effects of horizontal eddy viscosity and bed updating. Further, this study highlights how using high spatial and temporal data to capture the physical processes at work during flume experiments can help to improve morphological modeling.

  7. Evaluation of the flame propagation within an SI engine using flame imaging and LES

    NASA Astrophysics Data System (ADS)

    He, Chao; Kuenne, Guido; Yildar, Esra; van Oijen, Jeroen; di Mare, Francesca; Sadiki, Amsini; Ding, Carl-Philipp; Baum, Elias; Peterson, Brian; Böhm, Benjamin; Janicka, Johannes

    2017-11-01

    This work shows experiments and simulations of the fired operation of a spark ignition engine with port-fuelled injection. The test rig considered is an optically accessible single cylinder engine specifically designed at TU Darmstadt for the detailed investigation of in-cylinder processes and model validation. The engine was operated under lean conditions using iso-octane as a substitute for gasoline. Experiments have been conducted to provide a sound database of the combustion process. A planar flame imaging technique has been applied within the swirl- and tumble-planes to provide statistical information on the combustion process to complement a pressure-based comparison between simulation and experiments. This data is then analysed and used to assess the large eddy simulation performed within this work. For the simulation, the engine code KIVA has been extended by the dynamically thickened flame model combined with chemistry reduction by means of pressure dependent tabulation. Sixty cycles have been simulated to perform a statistical evaluation. Based on a detailed comparison with the experimental data, a systematic study has been conducted to obtain insight into the most crucial modelling uncertainties.

  8. Research on simulation technology of full-path infrared tail flame tracking of photoelectric theodolite in complicated environment

    NASA Astrophysics Data System (ADS)

    Wu, Hai-ying; Zhang, San-xi; Liu, Biao; Yue, Peng; Weng, Ying-hui

    2018-02-01

    The photoelectric theodolite is an important scheme to realize the tracking, detection, quantitative measurement and performance evaluation of weapon systems in ordnance test range. With the improvement of stability requirements for target tracking in complex environment, infrared scene simulation with high sense of reality and complex interference has become an indispensable technical way to evaluate the track performance of photoelectric theodolite. And the tail flame is the most important infrared radiation source of the weapon system. The dynamic tail flame with high reality is a key element for the photoelectric theodolite infrared scene simulation and imaging tracking test. In this paper, an infrared simulation method for the full-path tracking of tail flame by photoelectric theodolite is proposed aiming at the faint boundary, irregular, multi-regulated points. In this work, real tail images are employed. Simultaneously, infrared texture conversion technology is used to generate DDS texture for a particle system map. Thus, dynamic real-time tail flame simulation results with high fidelity from the theodolite perspective can be gained in the tracking process.

  9. G-189A analytical simulation of the integrated waste management-water system using radioisotopes for thermal energy

    NASA Technical Reports Server (NTRS)

    Coggi, J. V.; Loscutoff, A. V.; Barker, R. S.

    1973-01-01

    An analytical simulation of the RITE-Integrated Waste Management and Water Recovery System using radioisotopes for thermal energy was prepared for the NASA-Manned Space Flight Center (MSFC). The RITE system is the most advanced concept water-waste management system currently under development and has undergone extended duration testing. It has the capability of disposing of nearly all spacecraft wastes including feces and trash and of recovering water from usual waste water sources: urine, condensate, wash water, etc. All of the process heat normally used in the system is produced from low penalty radioisotope heat sources. The analytical simulation was developed with the G189A computer program. The objective of the simulation was to obtain an analytical simulation which can be used to (1) evaluate the current RITE system steady state and transient performance during normal operating conditions, and also during off normal operating conditions including failure modes; and (2) evaluate the effects of variations in component design parameters and vehicle interface parameters on system performance.

  10. Nonlinear estimation theory applied to orbit determination

    NASA Technical Reports Server (NTRS)

    Choe, C. Y.

    1972-01-01

    The development of an approximate nonlinear filter using the Martingale theory and appropriate smoothing properties is considered. Both the first order and the second order moments were estimated. The filter developed can be classified as a modified Gaussian second order filter. Its performance was evaluated in a simulated study of the problem of estimating the state of an interplanetary space vehicle during both a simulated Jupiter flyby and a simulated Jupiter orbiter mission. In addition to the modified Gaussian second order filter, the modified truncated second order filter was also evaluated in the simulated study. Results obtained with each of these filters were compared with numerical results obtained with the extended Kalman filter and the performance of each filter is determined by comparison with the actual estimation errors. The simulations were designed to determine the effects of the second order terms in the dynamic state relations, the observation state relations, and the Kalman gain compensation term. It is shown that the Kalman gain-compensated filter which includes only the Kalman gain compensation term is superior to all of the other filters.

  11. Gamma-Ray Simulated Spectrum Deconvolution of a LaBr₃ 1-in. x 1-in. Scintillator for Nondestructive ATR Fuel Burnup On-Site Predictions

    DOE PAGES

    Navarro, Jorge; Ring, Terry A.; Nigg, David W.

    2015-03-01

    A deconvolution method for a LaBr₃ 1"x1" detector for nondestructive Advanced Test Reactor (ATR) fuel burnup applications was developed. The method consisted of obtaining the detector response function, applying a deconvolution algorithm to 1”x1” LaBr₃ simulated, data along with evaluating the effects that deconvolution have on nondestructively determining ATR fuel burnup. The simulated response function of the detector was obtained using MCNPX as well with experimental data. The Maximum-Likelihood Expectation Maximization (MLEM) deconvolution algorithm was selected to enhance one-isotope source-simulated and fuel- simulated spectra. The final evaluation of the study consisted of measuring the performance of the fuel burnup calibrationmore » curve for the convoluted and deconvoluted cases. The methodology was developed in order to help design a reliable, high resolution, rugged and robust detection system for the ATR fuel canal capable of collecting high performance data for model validation, along with a system that can calculate burnup and using experimental scintillator detector data.« less

  12. Computer-Simulated Arthroscopic Knee Surgery: Effects of Distraction on Resident Performance.

    PubMed

    Cowan, James B; Seeley, Mark A; Irwin, Todd A; Caird, Michelle S

    2016-01-01

    Orthopedic surgeons cite "full focus" and "distraction control" as important factors for achieving excellent outcomes. Surgical simulation is a safe and cost-effective way for residents to practice surgical skills, and it is a suitable tool to study the effects of distraction on resident surgical performance. This study investigated the effects of distraction on arthroscopic knee simulator performance among residents at various levels of experience. The authors hypothesized that environmental distractions would negatively affect performance. Twenty-five orthopedic surgery residents performed a diagnostic knee arthroscopy computer simulation according to a checklist of structures to identify and tasks to complete. Participants were evaluated on arthroscopy time, number of chondral injuries, instances of looking down at their hands, and completion of checklist items. Residents repeated this task at least 2 weeks later while simultaneously answering distracting questions. During distracted simulation, the residents had significantly fewer completed checklist items (P<.02) compared with the initial simulation. Senior residents completed the initial simulation in less time (P<.001), with fewer chondral injuries (P<.005) and fewer instances of looking down at their hands (P<.012), compared with junior residents. Senior residents also completed 97% of the diagnostic checklist, whereas junior residents completed 89% (P<.019). During distracted simulation, senior residents continued to complete tasks more quickly (P<.006) and with fewer instances of looking down at their hands (P<.042). Residents at all levels appear to be susceptible to the detrimental effects of distraction when performing arthroscopic simulation. Addressing even straightforward questions intraoperatively may affect surgeon performance. Copyright 2016, SLACK Incorporated.

  13. Solar energy system economic evaluation: Fern Tunkhannock, Tunkhannock, Pennsylvania

    NASA Astrophysics Data System (ADS)

    1980-09-01

    The economic performance of an Operational Test Site (OTS) is described. The long term economic performance of the system at its installation site and extrapolation to four additional selected locations to demonstrate the viability of the design over a broad range of environmental and economic conditions is reported. Topics discussed are: system description, study approach, economic analysis and system optimization, and technical and economical results of analysis. Data for the economic analysis are generated through evaluation of the OTS. The simulation is based on the technical results of the seasonal report simulation. In addition localized and standard economic parameters are used for economic analysis.

  14. Solar energy system economic evaluation: Fern Tunkhannock, Tunkhannock, Pennsylvania

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The economic performance of an Operational Test Site (OTS) is described. The long term economic performance of the system at its installation site and extrapolation to four additional selected locations to demonstrate the viability of the design over a broad range of environmental and economic conditions is reported. Topics discussed are: system description, study approach, economic analysis and system optimization, and technical and economical results of analysis. Data for the economic analysis are generated through evaluation of the OTS. The simulation is based on the technical results of the seasonal report simulation. In addition localized and standard economic parameters are used for economic analysis.

  15. Experimental evaluation of joint designs for a space-shuttle orbiter ablative leading edge

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1975-01-01

    The thermal performance of two types of ablative leading-edge joints for a space-shuttle orbiter were tested and evaluated. Chordwise joints between ablative leading-edge segments, and spanwise joints between ablative leading-edge segments and reusable surface insulation tiles were exposed to simulated shuttle heating environments. The data show that the thermal performance of models with chordwise joints to be as good as jointless models in simulated ascent-heating and orbital cold-soak environments. The suggestion is made for additional work on the joint seals, and, in particular, on the effects of heat-induced seal-material surface irregularities on the local flow.

  16. Cast Stone Formulation for Nuclear Waste Immobilization at Higher Sodium Concentrations

    DOE PAGES

    Fox, Kevin; Cozzi, Alex; Roberts, Kimberly; ...

    2014-11-01

    Low activity radioactive waste at U.S. Department of Energy sites can be immobilized for permanent disposal using cementitious waste forms. This study evaluated waste forms produced with simulated wastes at concentrations up to twice that of currently operating processes. The simulated materials were evaluated for their fresh properties, which determine processability, and cured properties, which determine waste form performance. The results show potential for greatly reducing the volume of material. Fresh properties were sufficient to allow for processing via current practices. Cured properties such as compressive strength meet disposal requirements. Leachability indices provide an indication of expected long-term performance.

  17. Performance evaluation of a dental handpiece in simulation of clinical finishing using a novel 2DOF in vitro apparatus.

    PubMed

    Yin, L; Song, X F; Qu, S F; Huang, T; Mei, J P; Yang, Z Y; Li, J

    2006-11-01

    This paper reports on the performance evaluation of a dental handpiece in simulation of clinical finishing using a novel two-degrees-of-freedom (2DOF) in vitro apparatus. The instrumented apparatus consisted of a two-dimensional computer-controlled coordinate worktable carrying a dental handpiece, a piezoelectric force dynamometer, and a high-speed data acquisition and signal conditioning system for simulating the clinical operations and monitoring the dental finishing processes. The performance of the dental handpiece was experimentally evaluated with respect to rotational speed, torque, and specific finishing energy under the applied clinical finishing conditions. The results show that the rotational speeds of the dental handpiece decreased by increasing either the depth of cut or the feed rate at a constant clinically applied air pressure and water flowrate. They also decreased when increasing both the tangential and normal finishing forces. The specific finishing energy decreased with an increase in either depth of cut or feed rate, while the finishing torque increased as either the depth of cut or the feed rate was increased. Implications of these results were to provide guidance for proper applications of dental handpieces in clinical practice.

  18. Computational investigation of fluid flow and heat transfer of an economizer by porous medium approach

    NASA Astrophysics Data System (ADS)

    Babu, C. Rajesh; Kumar, P.; Rajamohan, G.

    2017-07-01

    Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.

  19. Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process.

    PubMed

    Volcke, E I P; Gernaey, K V; Vrecko, D; Jeppsson, U; van Loosdrecht, M C M; Vanrolleghem, P A

    2006-01-01

    In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where reject water is recycled to the primary clarifier, i.e. the BSM2 plant, shows that the ammonium load of the influent to the primary clarifier is 28% higher in the case of reject water recycling. This results in violation of the effluent total nitrogen limit. In order to relieve the main wastewater treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios is performed using an Operating Cost Index (OCI).

  20. Evaluation of total energy-rate feedback for glidescope tracking in wind shear

    NASA Technical Reports Server (NTRS)

    Belcastro, C. M.; Ostroff, A. J.

    1986-01-01

    Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during take-off and landing. A total energy-rate sensor, which is potentially applicable to this problem, has been developed for measuring specific total energy-rate of an airplane with respect to the air mass. This paper presents control system designs, with and without energy-rate feedback, for the approach to landing of a transport airplane through severe wind shear and gusts to evaluate application of this sensor. A system model is developed which incorporates wind shear dynamics equations with the airplance equations of motion, thus allowing the control systems to be analyzed under various wind shears. The control systems are designed using optimal output feedback and are analyzed using frequency domain control theory techniques. Control system performance is evaluated using a complete nonlinear simulation of the airplane and a severe wind shear and gust data package. The analysis and simulation results indicate very similar stability and performance characteristics for the two designs. An implementation technique for distributing the velocity gains between airspeed and ground speed in the simulation is also presented, and this technique is shown to improve the performance characteristics of both designs.

  1. Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Hines, Glenn D.; Paschall, Stephen, II; Cohanim, Babak E.; Fill, Thomas; Johnson, Michael C.; Bishop, Robert H.; DeMars, Kyle J.; hide

    2008-01-01

    Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.

  2. Does a surgical simulator improve resident operative performance of laparoscopic tubal ligation?

    PubMed

    Banks, Erika H; Chudnoff, Scott; Karmin, Ira; Wang, Cuiling; Pardanani, Setul

    2007-11-01

    The purpose of this study was to assess whether a surgical skills simulator laboratory improves resident knowledge and operative performance of laparoscopic tubal ligation. Twenty postgraduate year 1 residents were assigned randomly to either a surgical simulator laboratory on laparoscopic tubal ligation together with apprenticeship teaching in the operating room or to apprenticeship teaching alone. Tests that were given before and after the training assessed basic knowledge. Attending physicians who were blinded to resident randomization status evaluated postgraduate year 1 performance on a laparoscopic tubal ligation in the operating room with 3 validated tools: a task-specific checklist, global rating scale, and pass/fail grade. Postgraduate year 1 residents who were assigned randomly to the surgical simulator laboratory performed significantly better than control subjects on all 3 surgical assessment tools (the checklist, the global score, and the pass/fail analysis) and scored significantly better on the knowledge posttest (all P < .0005). Compared with apprenticeship teaching alone, a surgical simulator laboratory on laparoscopic tubal ligation improved resident knowledge and performance in the operating room.

  3. Evaluating the influence of goal setting on intravenous catheterization skill acquisition and transfer in a hybrid simulation training context.

    PubMed

    Brydges, Ryan; Mallette, Claire; Pollex, Heather; Carnahan, Heather; Dubrowski, Adam

    2012-08-01

    Educators often simplify complex tasks by setting learning objectives that focus trainees on isolated skills rather than the holistic task. We designed 2 sets of learning objectives for intravenous catheterization using goal setting theory. We hypothesized that setting holistic goals related to technical, cognitive, and communication skills would result in superior holistic performance, whereas setting isolated goals related to technical skills would result in superior technical performance. We randomly assigned practicing health care professionals to set holistic (n = 14) or isolated (n = 15) goals. All watched an instructional video and studied a list of 9 goals specific to their group. Participants practiced independently in a hybrid simulation (standardized patient combined with an arm simulator). The first and the last practice trials were videotaped for analysis. One-week later, participants completed a transfer test in another hybrid simulation scenario. Blinded experts evaluated performance on all 3 trials using the Direct Observation of Procedural Skills tool. The holistic group scored higher than the isolated group on the holistic Direct Observation of Procedural Skills score for all 3 trials [mean (SD), 45.0 (9.16) vs. 38.4 (9.17); P = 0.01]. The isolated group did not perform better than the holistic group on the technical skills score [10.3 (2.73) vs. 11.6 (3.01); P = 0.11]. Our results suggest that asking learners to set holistic goals did not interfere with their attaining competent holistic and technical skills during hybrid simulation training. This exploratory trial provides preliminary evidence for how to consider integrating hybrid simulation into medical curricula and for the design of learning goals in simulation-based education.

  4. An evaluation to design high performance pinhole array detector module for four head SPECT: a simulation study

    NASA Astrophysics Data System (ADS)

    Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.

    2014-09-01

    The purpose of this study is to derive optimized parameters for a detector module employing an off-the-shelf X-ray camera and a pinhole array collimator applicable for a range of different SPECT systems. Monte Carlo simulations using the Geant4 application for tomographic emission (GATE) were performed to estimate the performance of the pinhole array collimators and were compared to that of low energy high resolution (LEHR) parallel-hole collimator in a four head SPECT system. A detector module was simulated to have 48 mm by 48 mm active area along with 1mm, 1.6mm and 2 mm pinhole aperture sizes at 0.48 mm pitch on a tungsten plate. Perpendicular lead septa were employed to verify overlapping and non-overlapping projections against a proper acceptance angle without lead septa. A uniform shape cylindrical water phantom was used to evaluate the performance of the proposed four head SPECT system of the pinhole array detector module. For each head, 100 pinhole configurations were evaluated based on sensitivity and detection efficiency for 140 keV γ-rays, and compared to LEHR parallel-hole collimator. SPECT images were reconstructed based on filtered back projection (FBP) algorithm where neither scatter nor attenuation corrections were performed. A better reconstruction algorithm development for this specific system is in progress. Nevertheless, activity distribution was well visualized using the backprojection algorithm. In this study, we have evaluated several quantitative and comparative analyses for a pinhole array imaging system providing high detection efficiency and better system sensitivity over a large FOV, comparing to the conventional four head SPECT system. The proposed detector module is expected to provide improved performance in various SPECT imaging.

  5. Visual Data-Analytics of Large-Scale Parallel Discrete-Event Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Caitlin; Carothers, Christopher D.; Mubarak, Misbah

    Parallel discrete-event simulation (PDES) is an important tool in the codesign of extreme-scale systems because PDES provides a cost-effective way to evaluate designs of highperformance computing systems. Optimistic synchronization algorithms for PDES, such as Time Warp, allow events to be processed without global synchronization among the processing elements. A rollback mechanism is provided when events are processed out of timestamp order. Although optimistic synchronization protocols enable the scalability of large-scale PDES, the performance of the simulations must be tuned to reduce the number of rollbacks and provide an improved simulation runtime. To enable efficient large-scale optimistic simulations, one has tomore » gain insight into the factors that affect the rollback behavior and simulation performance. We developed a tool for ROSS model developers that gives them detailed metrics on the performance of their large-scale optimistic simulations at varying levels of simulation granularity. Model developers can use this information for parameter tuning of optimistic simulations in order to achieve better runtime and fewer rollbacks. In this work, we instrument the ROSS optimistic PDES framework to gather detailed statistics about the simulation engine. We have also developed an interactive visualization interface that uses the data collected by the ROSS instrumentation to understand the underlying behavior of the simulation engine. The interface connects real time to virtual time in the simulation and provides the ability to view simulation data at different granularities. We demonstrate the usefulness of our framework by performing a visual analysis of the dragonfly network topology model provided by the CODES simulation framework built on top of ROSS. The instrumentation needs to minimize overhead in order to accurately collect data about the simulation performance. To ensure that the instrumentation does not introduce unnecessary overhead, we perform a scaling study that compares instrumented ROSS simulations with their noninstrumented counterparts in order to determine the amount of perturbation when running at different simulation scales.« less

  6. Accelerated development and flight evaluation of active controls concepts for subsonic transport aircraft. Volume 2: AFT C.G. simulation and analysis

    NASA Technical Reports Server (NTRS)

    Urie, D. M.

    1979-01-01

    Relaxed static stability and stability augmentation with active controls were investigated for subsonic transport aircraft. Analytical and simulator evaluations were done using a contemporary wide body transport as a baseline. Criteria for augmentation system performance and unaugmented flying qualities were evaluated. Augmentation control laws were defined based on selected frequency response and time history criteria. Flying qualities evaluations were conducted by pilots using a moving base simulator with a transport cab. Static margin and air turbulence intensity were varied in test with and without augmentation. Suitability of a simple pitch control law was verified at neutral static margin in cruise and landing flight tasks. Neutral stability was found to be marginally acceptable in heavy turbulence in both cruise and landing conditions.

  7. CAD and CAE Analysis for Siphon Jet Toilet

    NASA Astrophysics Data System (ADS)

    Wang, Yuhua; Xiu, Guoji; Tan, Haishu

    The high precision 3D laser scanner with the dual CCD technology was used to measure the original design sample of a siphon jet toilet. The digital toilet model was constructed from the cloud data measured with the curve and surface fitting technology and the CAD/CAE systems. The Realizable k - ɛ double equation model of the turbulence viscosity coefficient method and the VOF multiphase flow model were used to simulate the flushing flow in the toilet digital model. Through simulating and analyzing the distribution of the flushing flow's total pressure, the flow speed at the toilet-basin surface and the siphoning bent tube, the toilet performance can be evaluated efficiently and conveniently. The method of "establishing digital model, flushing flow simulating, performances evaluating, function shape modifying" would provide a high efficiency approach to develop new water-saving toilets.

  8. A Tutorial on RxODE: Simulating Differential Equation Pharmacometric Models in R.

    PubMed

    Wang, W; Hallow, K M; James, D A

    2016-01-01

    This tutorial presents the application of an R package, RxODE, that facilitates quick, efficient simulations of ordinary differential equation models completely within R. Its application is illustrated through simulation of design decision effects on an adaptive dosing regimen. The package provides an efficient, versatile way to specify dosing scenarios and to perform simulation with variability with minimal custom coding. Models can be directly translated to Rshiny applications to facilitate interactive, real-time evaluation/iteration on simulation scenarios.

  9. Closed loop models for analyzing engineering requirements for simulators

    NASA Technical Reports Server (NTRS)

    Baron, S.; Muralidharan, R.; Kleinman, D.

    1980-01-01

    A closed loop analytic model, incorporating a model for the human pilot, (namely, the optimal control model) that would allow certain simulation design tradeoffs to be evaluated quantitatively was developed. This model was applied to a realistic flight control problem. The resulting model is used to analyze both overall simulation effects and the effects of individual elements. The results show that, as compared to an ideal continuous simulation, the discrete simulation can result in significant performance and/or workload penalties.

  10. A 3D TCAD simulation of a thermoelectric module configured for thermoelectric power generation, cooling and heating

    NASA Astrophysics Data System (ADS)

    Gould, C. A.; Shammas, N. Y. A.; Grainger, S.; Taylor, I.; Simpson, K.

    2012-06-01

    This paper documents the 3D modeling and simulation of a three couple thermoelectric module using the Synopsys Technology Computer Aided Design (TCAD) semiconductor simulation software. Simulation results are presented for thermoelectric power generation, cooling and heating, and successfully demonstrate the basic thermoelectric principles. The 3D TCAD simulation model of a three couple thermoelectric module can be used in the future to evaluate different thermoelectric materials, device structures, and improve the efficiency and performance of thermoelectric modules.

  11. Using the Monopoly[R] Board Game as an In-Class Economic Simulation in the Introductory Financial Accounting Course

    ERIC Educational Resources Information Center

    Shanklin, Stephen B.; Ehlen, Craig R.

    2007-01-01

    This paper discusses using the Monopoly[R] board game as an economic simulation exercise to reinforce an understanding of how the accounting cycle impacts financial statements used to evaluate management performance. This approach uses the rules and strategies of a familiar board game to create a simulation of business and economic realities,…

  12. The Effect of Nursing Faculty Presence on Students' Level of Anxiety, Self-Confidence, and Clinical Performance during a Clinical Simulation Experience

    ERIC Educational Resources Information Center

    Horsley, Trisha Leann

    2012-01-01

    Nursing schools design their clinical simulation labs based upon faculty's perception of the optimal environment to meet the students' learning needs, other programs' success with integrating high-tech clinical simulation, and the funds available. No research has been conducted on nursing faculty presence during a summative evaluation. The…

  13. Embryo transfer simulation improves pregnancy rates and decreases time to proficiency in Reproductive Endocrinology and Infertility fellow embryo transfers.

    PubMed

    Heitmann, Ryan J; Hill, Micah J; Csokmay, John M; Pilgrim, Justin; DeCherney, Alan H; Deering, Shad

    2017-05-01

    To design and evaluate an ET simulator to train Reproductive Endocrinology and Infertility (REI) fellows' techniques of ET. Simulation model development and retrospective cohort analysis. Not applicable. Patients undergoing IVF. Simulation model evaluation and implementation of ET simulation training. Pregnancy rates. The REI fellow and faculty evaluation responses (n = 19/21 [90%]) of the model demonstrated realistic characteristics, with evaluators concluding the model was suitable for training in almost all evaluated areas. A total of 12 REI fellows who performed ET were analyzed: 6 before ET trainer and 6 after ET trainer. Pregnancy rates were 31% in the initial 10 ETs per fellow before simulator vs. 46% after simulator. One of six pre-ET trainer fellows (17%) had pregnancy rates ≥40% in their first 10 ETs; whereas four of six post-ET trainer fellows had pregnancy rates ≥40% in their first 10 ETs. The average number of ETs to obtain >40% pregnancy efficiency was 27 ETs before trainer vs. 15 ETs after trainer. Pregnancy rates were similar in the two groups after 20 ETs, and collective terminal pregnancy rates were >50% after 40 ETs. Embryo transfer simulation improved REI fellow pregnancy rates in their first 10 transfers and led to a more rapid ET proficiency. These data suggest potential value in adopting ET simulation, even in programs with a robust history of live ET in fellowship training. Published by Elsevier Inc.

  14. Validating the simulation of large-scale parallel applications using statistical characteristics

    DOE PAGES

    Zhang, Deli; Wilke, Jeremiah; Hendry, Gilbert; ...

    2016-03-01

    Simulation is a widely adopted method to analyze and predict the performance of large-scale parallel applications. Validating the hardware model is highly important for complex simulations with a large number of parameters. Common practice involves calculating the percent error between the projected and the real execution time of a benchmark program. However, in a high-dimensional parameter space, this coarse-grained approach often suffers from parameter insensitivity, which may not be known a priori. Moreover, the traditional approach cannot be applied to the validation of software models, such as application skeletons used in online simulations. In this work, we present a methodologymore » and a toolset for validating both hardware and software models by quantitatively comparing fine-grained statistical characteristics obtained from execution traces. Although statistical information has been used in tasks like performance optimization, this is the first attempt to apply it to simulation validation. Lastly, our experimental results show that the proposed evaluation approach offers significant improvement in fidelity when compared to evaluation using total execution time, and the proposed metrics serve as reliable criteria that progress toward automating the simulation tuning process.« less

  15. Regional climate simulations over South America: sensitivity to model physics and to the treatment of lateral boundary conditions using the MM5 model

    NASA Astrophysics Data System (ADS)

    Solman, Silvina A.; Pessacg, Natalia L.

    2012-01-01

    In this study the capability of the MM5 model in simulating the main mode of intraseasonal variability during the warm season over South America is evaluated through a series of sensitivity experiments. Several 3-month simulations nested into ERA40 reanalysis were carried out using different cumulus schemes and planetary boundary layer schemes in an attempt to define the optimal combination of physical parameterizations for simulating alternating wet and dry conditions over La Plata Basin (LPB) and the South Atlantic Convergence Zone regions, respectively. The results were compared with different observational datasets and model evaluation was performed taking into account the spatial distribution of monthly precipitation and daily statistics of precipitation over the target regions. Though every experiment was able to capture the contrasting behavior of the precipitation during the simulated period, precipitation was largely underestimated particularly over the LPB region, mainly due to a misrepresentation in the moisture flux convergence. Experiments using grid nudging of the winds above the planetary boundary layer showed a better performance compared with those in which no constrains were imposed to the regional circulation within the model domain. Overall, no single experiment was found to perform the best over the entire domain and during the two contrasting months. The experiment that outperforms depends on the area of interest, being the simulation using the Grell (Kain-Fritsch) cumulus scheme in combination with the MRF planetary boundary layer scheme more adequate for subtropical (tropical) latitudes. The ensemble of the sensitivity experiments showed a better performance compared with any individual experiment.

  16. Assessing teamwork performance in obstetrics: A systematic search and review of validated tools.

    PubMed

    Fransen, Annemarie F; de Boer, Liza; Kienhorst, Dieneke; Truijens, Sophie E; van Runnard Heimel, Pieter J; Oei, S Guid

    2017-09-01

    Teamwork performance is an essential component for the clinical efficiency of multi-professional teams in obstetric care. As patient safety is related to teamwork performance, it has become an important learning goal in simulation-based education. In order to improve teamwork performance, reliable assessment tools are required. These can be used to provide feedback during training courses, or to compare learning effects between different types of training courses. The aim of the current study is to (1) identify the available assessment tools to evaluate obstetric teamwork performance in a simulated environment, and (2) evaluate their psychometric properties in order to identify the most valuable tool(s) to use. We performed a systematic search in PubMed, MEDLINE, and EMBASE to identify articles describing assessment tools for the evaluation of obstetric teamwork performance in a simulated environment. In order to evaluate the quality of the identified assessment tools the standards and grading rules have been applied as recommended by the Accreditation Council for Graduate Medical Education (ACGME) Committee on Educational Outcomes. The included studies were also assessed according to the Oxford Centre for Evidence Based Medicine (OCEBM) levels of evidence. This search resulted in the inclusion of five articles describing the following six tools: Clinical Teamwork Scale, Human Factors Rating Scale, Global Rating Scale, Assessment of Obstetric Team Performance, Global Assessment of Obstetric Team Performance, and the Teamwork Measurement Tool. Based on the ACGME guidelines we assigned a Class 3, level C of evidence, to all tools. Regarding the OCEBM levels of evidence, a level 3b was assigned to two studies and a level 4 to four studies. The Clinical Teamwork Scale demonstrated the most comprehensive validation, and the Teamwork Measurement Tool demonstrated promising results, however it is recommended to further investigate its reliability. Copyright © 2017. Published by Elsevier B.V.

  17. A multimodal assessment of driving performance in HIV infection.

    PubMed

    Marcotte, T D; Wolfson, T; Rosenthal, T J; Heaton, R K; Gonzalez, R; Ellis, R J; Grant, I

    2004-10-26

    To examine if HIV-seropositive (HIV+) individuals are at risk for impaired driving. Sixty licensed drivers (40 HIV+, 20 HIV-) completed a neuropsychological (NP) test battery and driving assessments. Eleven HIV+ subjects were NP-impaired. Driving-related skills were assessed using 1) two driving simulations (examining accident avoidance and navigational abilities), 2) the Useful Field of View (UFOV) test, and 3) an on-road evaluation. HIV+ NP-impaired subjects had greater difficulty than cognitively intact subjects on all driving measures, whereas the HIV- and HIV+ NP-normal groups performed similarly. On the UFOV, the HIV+ NP-impaired group had worse performance on Visual Processing and Divided Attention tasks but not in overall risk classification. They also had a higher number of simulator accidents (1.3 vs 2.0; p = 0.03), were less efficient at completing the navigation task (3.2 vs 9.2 blocks; p = 0.001), and were more likely to fail the on-road evaluation (6 vs 36%; p = 0.02). Impairment in Executive Functioning was the strongest NP predictor of failing the on-road drive test. NP performance and both simulations independently contributed to a model predicting 48% of the variance in on-road performance. HIV+ NP-impaired individuals are at increased risk for on-road driving impairments, whereas HIV+ individuals with normal cognition are not at a significantly higher risk than HIV- subjects. Executive Functioning is most strongly associated with impaired on-road performance. Cognitive and simulator testing may each provide data in identifying driving-impaired individuals.

  18. Effect of Above Real Time Training and Post Flight Feedback in Training of Novice Pilots in a PC-Based Flight Simulator

    NASA Technical Reports Server (NTRS)

    Khan, M. Javed; Rossi, Marcia; Heath, Bruce E.; Ali, Syed firasat; Crane, Peter; Knighten, Tremaine; Culpepper, Christi

    2003-01-01

    The use of Post-Flight Feedback (PFFB) and Above Real-Time Training (ARTT) while training novice pilots to perform a coordinated level turn on a PC-based flight simulator was investigated. One group trained at 1.5 ARTT followed by an equal number of flights at 2.0 ARTT; the second group experienced Real Time Training (RTT). The total number of flights for both groups was equal. Each group was further subdivided into two groups one of which was provided PFFB while the other was not. Then, all participants experienced two challenging evaluation missions in real time. Performance was assessed by comparing root-mean-square error in bank-angle and altitude. Participants in the 1.512.0 ARTT No-PFFB sequence did not show improvement in performance across training sessions. An ANOVA on performance in evaluation flights found that the PFFB groups performed significantly better than those with No-PFFB. Also, the RTT groups performed significantly better than the ARTT groups. Data from two additional groups trained under a 2.011.5 ARTT PFFB and No-PFFB regimes were collected and combined with data from the previously Trainers, Real-time simulation, Personal studied groups and reanalyzed to study the computers, Man-in-the-loop simulation influence of sequence. An ANOVA on test trials found no significant effects between groups. Under training situations involving ARTT we recommend that appropriate PFFB be provided.

  19. Analysis of Expert Diagnosis of a Computer Simulation of Congenital Heart Disease

    ERIC Educational Resources Information Center

    Johnson, Paul E.; And Others

    1975-01-01

    It is concluded that while behavior of experts in the hospital and clinic is the primary means of evaluating successful student performance, computer simulations of patient cases offer the opportunity to use expert data in the calibration of student error. (Editor)

  20. Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts

    NASA Astrophysics Data System (ADS)

    Zaherpour, Jamal; Gosling, Simon N.; Mount, Nick; Müller Schmied, Hannes; Veldkamp, Ted I. E.; Dankers, Rutger; Eisner, Stephanie; Gerten, Dieter; Gudmundsson, Lukas; Haddeland, Ingjerd; Hanasaki, Naota; Kim, Hyungjun; Leng, Guoyong; Liu, Junguo; Masaki, Yoshimitsu; Oki, Taikan; Pokhrel, Yadu; Satoh, Yusuke; Schewe, Jacob; Wada, Yoshihide

    2018-06-01

    Global-scale hydrological models are routinely used to assess water scarcity, flood hazards and droughts worldwide. Recent efforts to incorporate anthropogenic activities in these models have enabled more realistic comparisons with observations. Here we evaluate simulations from an ensemble of six models participating in the second phase of the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP2a). We simulate monthly runoff in 40 catchments, spatially distributed across eight global hydrobelts. The performance of each model and the ensemble mean is examined with respect to their ability to replicate observed mean and extreme runoff under human-influenced conditions. Application of a novel integrated evaluation metric to quantify the models’ ability to simulate timeseries of monthly runoff suggests that the models generally perform better in the wetter equatorial and northern hydrobelts than in drier southern hydrobelts. When model outputs are temporally aggregated to assess mean annual and extreme runoff, the models perform better. Nevertheless, we find a general trend in the majority of models towards the overestimation of mean annual runoff and all indicators of upper and lower extreme runoff. The models struggle to capture the timing of the seasonal cycle, particularly in northern hydrobelts, while in southern hydrobelts the models struggle to reproduce the magnitude of the seasonal cycle. It is noteworthy that over all hydrological indicators, the ensemble mean fails to perform better than any individual model—a finding that challenges the commonly held perception that model ensemble estimates deliver superior performance over individual models. The study highlights the need for continued model development and improvement. It also suggests that caution should be taken when summarising the simulations from a model ensemble based upon its mean output.

Top