NASA Astrophysics Data System (ADS)
Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.
2013-04-01
Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.
NASA Astrophysics Data System (ADS)
Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam
2017-04-01
Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.
Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel
NASA Astrophysics Data System (ADS)
Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari
2017-08-01
Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.
NASA Astrophysics Data System (ADS)
Pairan, M. Rasidi; Asmuin, Norzelawati; Isa, Nurasikin Mat; Sies, Farid
2017-04-01
Water mist sprays are used in wide range of application. However it is depend to the spray characteristic to suit the particular application. This project studies the water droplet velocity and penetration angle generated by new development mist spray with a flat spray pattern. This research conducted into two part which are experimental and simulation section. The experimental was conducted by using particle image velocimetry (PIV) method, ANSYS software was used as tools for simulation section meanwhile image J software was used to measure the penetration angle. Three different of combination pressure of air and water were tested which are 1 bar (case A), 2 bar (case B) and 3 bar (case C). The flat spray generated by the new development nozzle was examined at 9cm vertical line from 8cm of the nozzle orifice. The result provided in the detailed analysis shows that the trend of graph velocity versus distance gives the good agreement within simulation and experiment for all the pressure combination. As the water and air pressure increased from 1 bar to 2 bar, the velocity and angle penetration also increased, however for case 3 which run under 3 bar condition, the water droplet velocity generated increased but the angle penetration is decreased. All the data then validated by calculate the error between experiment and simulation. By comparing the simulation data to the experiment data for all the cases, the standard deviation for this case A, case B and case C relatively small which are 5.444, 0.8242 and 6.4023.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, Sibendu; Wang, Zihan; Pei, Yuanjiang
A state-of-the-art spray modeling methodology, recently presented by Senecal et al. [ , , ], is applied to Large Eddy Simulations (LES) of vaporizing gasoline sprays. Simulations of non-combusting Spray G (gasoline fuel) from the Engine Combustion Network are performed. Adaptive mesh refinement (AMR) with cell sizes from 0.09 mm to 0.5 mm are utilized to further demonstrate grid convergence of the dynamic structure LES model for the gasoline sprays. Grid settings are recommended to optimize the accuracy/runtime tradeoff for LES-based spray simulations at different injection pressure conditions typically encountered in gasoline direct injection (GDI) applications. The influence of LESmore » sub-grid scale (SGS) models is explored by comparing the results from dynamic structure and Smagorinsky based models against simulations without any SGS model. Twenty different realizations are simulated by changing the random number seed used in the spray sub-models. It is shown that for global quantities such as spray penetration, comparing a single LES simulation to experimental data is reasonable. Through a detailed analysis using the relevance index (RI) criteria, recommendations are made regarding the minimum number of LES realizations required for accurate prediction of the gasoline sprays.« less
Mixing Characteristics of Coaxial Injectors at High Gas to Liquid Momentum Ratios
NASA Technical Reports Server (NTRS)
Strakey, P. A.; Talley, D. G.; Hutt, J. J.
1999-01-01
A study of the spray of a swirl coaxial gas-liquid injector operating at high gas to liquid momentum ratios is reported. Mixing and droplet size characteristics of the swirl injector are also compared to a shear coaxial injector, currently being used in the Space Shuttle Main Engine fuel preburner. The injectors were tested at elevated chamber pressures using water as a LOX simulant and nitrogen and helium as gaseous hydrogen simulants. The elevated chamber pressure allowed for matching of several of the preburner injector conditions including; gas to liquid momentum ratio, density ratio and Mach number. Diagnostic techniques used to characterize the spray included; strobe back-light imaging, laser sheet spray imaging, mechanical patternation, and a phase Doppler interferometry. Results thus far indicate that the radial spreading of the swirl coaxial spray is much less than was reported in previous studies of swirl injectors operating at atmospheric back-pressure. The swirl coaxial spray does, however, exhibit a smaller overall droplet size which may be interpreted as an increase in local mixing.
Numerical simulations of an impinging liquid spray in a cross-flow
NASA Astrophysics Data System (ADS)
Gomatam, Sreekar; Vengadesan, S.; Chakravarthy, S. R.
2017-11-01
The characteristics of a liquid spray in a uniform cross-flow field are numerically simulated in this study. A hollow cone liquid spray is injected perpendicular to the air stream flowing through a rectangular duct under room temperature and pressure. An Eulerian-Lagrangian framework is adopted to simulate the spray in cross-flow phenomenon. The cross-flow velocity is varied from 6-12 m/s while the liquid injection pressure is varied from 0.3-0.6 MPa. The liquid droplets from the injected spray undergo breakup and/or coalescence further in the cross-flow. Moreover, the spray injected into the cross-flow impinges on the opposite wall resulting in the formation of a liquid film. This liquid film disintegrates further into discrete droplets because of the impingement of the droplets from the spray and the shear from the cross-flow. The overall distribution of the droplets in the cross-flow for varying conditions is studied in detail. The evolution of the liquid film with space and time for varying conditions is also investigated. Suitable sub-models are used to numerically model the droplet break-up, coalescence, liquid film formation and disintegration, splashing of the droplets on the film and subsequent formation of daughter droplets. Department of Applied Mechanics, Indian Inst of Tech-Madras.
NASA Technical Reports Server (NTRS)
Kartuzova, O.; Kassemi, M.; Agui, J.; Moder, J.
2014-01-01
This paper presents a CFD (computational fluid dynamics) model for simulating the self-pressurization of a large scale liquid hydrogen storage tank. In this model, the kinetics-based Schrage equation is used to account for the evaporative and condensing interfacial mass flows. Laminar and turbulent approaches to modeling natural convection in the tank and heat and mass transfer at the interface are compared. The flow, temperature, and interfacial mass fluxes predicted by these two approaches during tank self-pressurization are compared against each other. The ullage pressure and vapor temperature evolutions are also compared against experimental data obtained from the MHTB (Multipuprpose Hydrogen Test Bed) self-pressurization experiment. A CFD model for cooling cryogenic storage tanks by spraying cold liquid in the ullage is also presented. The Euler- Lagrange approach is utilized for tracking the spray droplets and for modeling interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF (volume of fluid) model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux predicted by the model are presented. The ullage pressure is compared with experimental data obtained from the MHTB spray bar mixing experiment. The results of the models with only droplet/ullage heat transfer and with heat and mass transfer between the droplets and ullage are compared.
Simulation of preburner sprays, volumes 1 and 2
NASA Technical Reports Server (NTRS)
Hardalupas, Y.; Whitelaw, J. H.
1993-01-01
The present study considered characteristics of sprays under a variety of conditions. Control of these sprays is important as the spray details can control both rocket combustion stability and efficiency. Under the present study Imperial College considered the following: (1) Measurement of the size and rate of spread of the sprays produced by single coaxial airblast nozzles with axial gaseous stream. The local size, velocity, and flux characteristics for a wide range of gas and liquid flowrates were measured, and the results were correlated with the conditions of the spray at the nozzle exit. (2) Examination of the effect of the geometry of single coaxial airblast atomizers on spray characteristics. The gas and liquid tube diameters were varied over a range of values, the liquid tube recess was varied, and the shape of the exit of the gaseous jet was varied from straight to converging. (3) Quantification of the effect of swirl in the gaseous stream on the spray characteristics produced by single coaxial airblast nozzles. (4) Quantification of the effect of reatomization by impingement of the spray on a flat disc positioned around 200 mm from the nozzle exit. This models spray impingement on the turbopump dome during the startup process of the preburner of the SSME. (5) Study of the interaction between multiple sprays without and with swirl in their gaseous stream. The spray characteristics of single nozzles were compared with that of three identical nozzles with their axis at a small distance from each other. This study simulates the sprays in the preburner of the SSME, where there are around 260 elements on the faceplate of the combustion chamber. (6) Design an experimental facility to study the characteristics of sprays at high pressure conditions and at supercritical pressure and temperature for the gas but supercritical pressure and subcritical temperature for the liquid.
NASA Astrophysics Data System (ADS)
Xue, Rong; Ruan, Yixiao; Liu, Xiufang; Cao, Feng; Hou, Yu
2017-09-01
Spray cooling with cryogen could achieve lower temperature level than refrigerant spray. The internal flow conditions within spray nozzles have crucial impacts on the mass flow rate, particle size, spray angle and spray penetration, thereby influencing the cooling performance. In this paper, CFD simulations based on mixture model are performed to study the cavitating flow of liquid nitrogen in spray nozzles. The cavitation model is verified using the experimental results of liquid nitrogen flow over hydrofoil. The numerical models of spray nozzle are validated against the experimental data of the mass flow rate of liquid nitrogen flow through different types of nozzles including the pressure swirl nozzle and the simple convergent nozzle. The numerical studies are performed under a wide range of pressure difference and inflow temperature, and the vapor volume fraction distribution, outlet vapor quality, mass flow rate and discharge coefficient are obtained. The results show that the outlet diameter, the pressure difference, and the inflow temperature significantly influence the mass flow rate of spray nozzles. The increase of the inflow temperature leads to higher saturation pressure, higher cavitation intensity, and more vapor at nozzle outlet, which can significantly reduce mass flow rate. While the discharge coefficient is mainly determined by the inflow temperature and has little dependence on the pressure difference and outlet diameter. Based on the numerical results, correlations of discharge coefficient are proposed for pressure swirl nozzle and simple convergent nozzles, respectively, and the deviation is less than 20% for 93% of data.
Development of Efficient Real-Fluid Model in Simulating Liquid Rocket Injector Flows
NASA Technical Reports Server (NTRS)
Cheng, Gary; Farmer, Richard
2003-01-01
The characteristics of propellant mixing near the injector have a profound effect on the liquid rocket engine performance. However, the flow features near the injector of liquid rocket engines are extremely complicated, for example supercritical-pressure spray, turbulent mixing, and chemical reactions are present. Previously, a homogeneous spray approach with a real-fluid property model was developed to account for the compressibility and evaporation effects such that thermodynamics properties of a mixture at a wide range of pressures and temperatures can be properly calculated, including liquid-phase, gas- phase, two-phase, and dense fluid regions. The developed homogeneous spray model demonstrated a good success in simulating uni- element shear coaxial injector spray combustion flows. However, the real-fluid model suffered a computational deficiency when applied to a pressure-based computational fluid dynamics (CFD) code. The deficiency is caused by the pressure and enthalpy being the independent variables in the solution procedure of a pressure-based code, whereas the real-fluid model utilizes density and temperature as independent variables. The objective of the present research work is to improve the computational efficiency of the real-fluid property model in computing thermal properties. The proposed approach is called an efficient real-fluid model, and the improvement of computational efficiency is achieved by using a combination of a liquid species and a gaseous species to represent a real-fluid species.
Formation and characterization of simulated small droplet icing clouds
NASA Technical Reports Server (NTRS)
Ingebo, R. D.
1986-01-01
Two pneumatic two-fluid atomizers operating at high liquid and gas pressures produced water sprays that simulated small droplet clouds for use in studying icing effects on aircraft performance. To measure median volume diameter, MVD or D sub v.5, of small droplet water sprays, a scattered-light scanning instrument was developed. Drop size data agreed fairly well with calculated values at water and nitrogen pressures of 60 and 20 psig, respectively, and at water and nitrogen pressures of 250 and 100 psig, respectively, but not very well at intermediate values of water and nitrogen pressure. MVD data were correlated with D sub 0, W sub N, and W sub w, i.e., orifice diameter, nitrogen, and water flowrate, respectively, to give the expression for MVD in microns.
NASA Astrophysics Data System (ADS)
Ivchenko, Dmitrii; Zhang, Tao; Mariaux, Gilles; Vardelle, Armelle; Goutier, Simon; Itina, Tatiana E.
2018-01-01
Plasma spray physical vapor deposition aims to substantially evaporate powders in order to produce coatings with various microstructures. This is achieved by powder vapor condensation onto the substrate and/or by deposition of fine melted powder particles and nanoclusters. The deposition process typically operates at pressures ranging between 10 and 200 Pa. In addition to the experimental works, numerical simulations are performed to better understand the process and optimize the experimental conditions. However, the combination of high temperatures and low pressure with shock waves initiated by supersonic expansion of the hot gas in the low-pressure medium makes doubtful the applicability of the continuum approach for the simulation of such a process. This work investigates (1) effects of the pressure dependence of thermodynamic and transport properties on computational fluid dynamics (CFD) predictions and (2) the validity of the continuum approach for thermal plasma flow simulation under very low-pressure conditions. The study compares the flow fields predicted with a continuum approach using CFD software with those obtained by a kinetic-based approach using a direct simulation Monte Carlo method (DSMC). It also shows how the presence of high gradients can contribute to prediction errors for typical PS-PVD conditions.
Stability relationship for water droplet crystallization with the NASA Lewis icing spray
NASA Technical Reports Server (NTRS)
Marek, C. John; Bartlett, C. Scott
1987-01-01
In order to produce small droplets for icing cloud simulation, high pressure air atomizing nozzles are used. For certain icing testing applications, median drop sizes as small as 5 mm are needed, which require air atomizing pressures greater than 3000 kPa. Isentropic expansion of the ambient temperature atomizing air to atmospheric pressure can result in air stream temperatures of -160 C which results in ice crystals forming in the cloud. To avoid such low temperatures, it is necessary to heat the air and water to high initial temperatures. An icing spray research program was conducted to map the temperatures below which ice crystals form. A soot slide technique was used to determine the presence of crystals in the spray.
NASA Technical Reports Server (NTRS)
Kartuzova, O.; Kassemi, M.
2016-01-01
A CFD model for simulating pressure control in cryogenic storage tanks through the injection of a subcooled liquid into the ullage is presented and applied to the 1g MHTB spray bar cooling experiments. An Eulerian-Lagrangian approach is utilized to track the spray droplets and capture the interaction between the discrete droplets and the continuous ullage phase. The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. A new model for calculating the droplet-ullage heat and mass transfer is developed. In this model, a droplet is allowed to warm up to the saturation temperature corresponding to the ullage vapor pressure, after which it evaporates while remaining at the saturation temperature. The droplet model is validated against the results of the MHTB spray-bar cooling experiments with 50% and 90% tank fill ratios. The predictions of the present T-sat based model are compared with those of a previously developed kinetic-based droplet mass transfer model. The predictions of the two models regarding the evolving tank pressure and temperature distributions, as well as the droplets' trajectories and temperatures, are examined and compared in detail. Finally, the ullage pressure and local vapor and liquid temperature evolutions are validated against the corresponding data provided by the MHTB spray bar mixing experiment.
NASA Astrophysics Data System (ADS)
Oumaya, Toru; Nakamura, Akira; Onojima, Daisuke; Takenaka, Nobuyuki
The pressurizer spray line of PWR plants cools reactor coolant by injecting water into pressurizer. Since the continuous spray flow rate during commercial operation of the plant is considered insufficient to fill the pipe completely, there is a concern that a water surface exists in the pipe and may periodically sway. In order to identify the flow regimes in spray line piping and assess their impact on pipe structure, a flow visualization experiment was conducted. In the experiment, air was used substituted for steam to simulate the gas phase of the pressurizer, and the flow instability causing swaying without condensation was investigated. With a full-scale mock-up made of acrylic, flow under room temperature and atmospheric pressure conditions was visualized, and possible flow regimes were identified based on the results of the experiment. Three representative patterns of swaying of water surface were assumed, and the range of thermal stress fluctuation, when the surface swayed instantaneously, was calculated. With the three patterns of swaying assumed based on the visualization experiment, it was confirmed that the thermal stress amplitude would not exceed the fatigue endurance limit prescribed in the Japanese Design and Construction Code.
NASA Astrophysics Data System (ADS)
Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.
2015-12-01
Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.
High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays
NASA Astrophysics Data System (ADS)
Ivey, Christopher; Bravo, Luis; Kim, Dokyun
2014-11-01
A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.
Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model
NASA Astrophysics Data System (ADS)
Pakseresht, Pedram; Apte, Sourabh V.
2017-11-01
Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).
Heat, Mass and Aerosol Transfers in Spray Conditions for Containment Application
NASA Astrophysics Data System (ADS)
Porcheron, Emmanuel; Lemaitre, Pascal; Nuboer, Amandine; Vendel, Jacques
TOSQAN is an experimental program undertaken by the Institut de Radioprotection et de Surété Nucleaire (IRSN) in order to perform thermal hydraulic containment studies. The TOSQAN facility is a large enclosure devoted to simulating typical accidental thermal hydraulic flow conditions in nuclear Pressurized Water Reactor (PWR) containment. The TOSQAN facility, which is highly instrumented with non-intrusive optical diagnostics, is particularly adapted to nuclear safety CFD code validation. The present work is devoted to studying the interaction of a water spray injection used as a mitigation means in order to reduce the gas pressure and temperature in the containment, to produce gases mixing and washout of fission products. In order to have a better understanding of heat and mass transfers between spray droplets and the gas mixture, and to analyze mixing effects due to spray activation, we performed detailed characterization of the two-phase flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arroyo, R.; Rebollo, L.
1993-06-01
This document presents the comparison between the simulation results and the plant measurements of a real event that took place in JOSE CABRERA nuclear power plant in August 30th, 1984. The event was originated by the total, continuous and inadverted opening of the pressurizer spray valve PCV-400A. JOSE CABRERA power plant is a single loop Westinghouse PWR belonging to UNION ELECTRICA FENOSA, S.A. (UNION FENOSA), an Spanish utility which participates in the International Code Assessment and Applications Program (ICAP) as a member of UNIDAD ELECTRICA, S.A. (UNESA). This is the second of its two contributions to the Program: the firstmore » one was an application case and this is an assessment one. The simulation has been performed using the RELAP5/MOD2 cycle 36.04 code, running on a CDC CYBER 180/830 computer under NOS 2.5 operating system. The main phenomena have been calculated correctly and some conclusions about the 3D characteristics of the condensation due to the spray and its simulation with a 1D tool have been got.« less
Testing of a Spray-bar Thermodynamic Vent System in Liquid Nitrogen
NASA Technical Reports Server (NTRS)
Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.
2005-01-01
To support development of a microgravity pressure control capability for liquid oxygen, thermodynamic vent system (TVS) testing was conducted at Marshall Space Flight Center (MSFC) using liquid nitrogen (LN2) as a LOX simulant. The spray bar TVS hardware used was originally designed by the Boeing Company for testing in liquid hydrogen (LH2). With this concept, a small portion of the tank fluid is passed through a Joule-Thomson (J-T) device, and then through a longitudinal spray bar mixed-heat exchanger in order to cool the bulk fluid. To accommodate the larger mass flow rates associated with LN2, the TVS hardware was modified by replacing the recirculation pump with an LN2 compatible pump and replacing the J-T valve. The primary advantage of the spray-bar configuration is that tank pressure control can be achieved independent of liquid and vapor location, enhancing the applicability of ground test data to microgravity conditions. Performance testing revealed that the spray-bar TVS was effective in controlling tank pressure within a 6.89 kPa band for fill levels of 90%, 50%, and 25%. Tests were also conducted with gaseous helium (GHe) in the ullage. The TVS operated nominally with GHe in the ullage, with performance similar to the tests with gaseous nitrogen (GN2). Testing demonstrated that the spray-bar TVS design was flexible enough for use in two different propellants with minimal hardware modifications.
NASA Technical Reports Server (NTRS)
Raj, S. V.; Ghosn, L. J.; Agarwal, A.; Lachtrupp, T. P.
2002-01-01
Modeling studies were conducted on low pressure plasma sprayed (LPPS) NiAl top coat applied to an advanced Cu-8(at.%)Cr-4%Nb alloy (GRCop-84) substrate using Ni as a bond coat. A thermal analysis suggested that the NiAl and Ni top and bond coats, respectively, would provide adequate thermal protection to the GRCop-84 substrate in a rocket engine operating under high heat flux conditions. Residual stress measurements were conducted at different depths from the free surface on coated and uncoated GRCop-84 specimens by x-ray diffraction. These data are compared with theoretically estimated values assessed by a finite element analysis simulating the development of these stresses as the coated substrate cools down from the plasma spraying temperature to room temperature.
O the Electrohydrodynamics of Drop Extraction from a Conductive Liquid Meniscus
NASA Astrophysics Data System (ADS)
Wright, Graham Scott
This thesis is concerned with the use of an electric field in the extraction of liquid drops from a capillary orifice or nozzle. The motivating application is ink jet printing. Current drop-on-demand ink jets use pressure pulses to eject drops. Literature on electrostatic spraying suggests that by using an electric field, drops could be produced with a wider range of sizes and speeds than is possible with pressure ejection. Previous efforts to apply electric spraying to printing or similar selective coating tasks have taken an experimental approach based on steady or periodic spraying phenomena, without attempting cycle -by-cycle drop control. The centerpiece of this thesis is a simulation tool developed to explore such possibilities. A simplified analytic model is developed as a preliminary step, yielding formulas for force and time scales that provide an appropriate basis for nondimensionalization of the governing differential equations; important dimensionless parameters are identified. The complete self-consistent model permits simulation of meniscus behavior under time -varying applied voltage or pressure, with the electric field solution continually updated as the surface changes shape. The model uses a quasi-one-dimensional hydrodynamic formulation and a two-dimensional axisymmetric boundary element solution for the electric field. The simulation is checked against experimental results for meniscus stability, resonant modes, and drop emission under electric field. The simulation faithfully captures important qualitative aspects of meniscus behavior and gives reasonable quantitative agreement within the limitations of the model. Insights gained in simulation point the way to a successful laboratory demonstration of drop extraction using a shaped voltage pulse. Drop size control is pursued in simulation using pressure and voltage pulses both alone and in combination, for both light and viscous liquids. Combining pressure and field pulses is shown to be synergistic; drop volumes over a range of 175 to 1 were obtained, while maintaining good drop velocity. The differing strategies for obtaining large and small drops are described. Drop extraction using only the electric field is more difficult, but promising approaches remain open.
Radiation-Spray Coupling for Realistic Flow Configurations
NASA Technical Reports Server (NTRS)
El-Asrag, Hossam; Iannetti, Anthony C.
2011-01-01
Three Large Eddy Simulations (LES) for a lean-direct injection (LDI) combustor are performed and compared. In addition to the cold flow simulation, the effect of radiation coupling with the multi-physics reactive flow is analyzed. The flame let progress variable approach is used as a subgrid combustion model combined with a stochastic subgrid model for spray atomization and an optically thin radiation model. For accurate chemistry modeling, a detailed Jet-A surrogate mechanism is utilized. To achieve realistic inflow, a simple recycling technique is performed at the inflow section upstream of the swirler. Good comparison is shown with the experimental data mean and root mean square profiles. The effect of combustion is found to change the shape and size of the central recirculation zone. Radiation is found to change the spray dynamics and atomization by changing the heat release distribution and the local temperature values impacting the evaporation process. The simulation with radiation modeling shows wider range of droplet size distribution by altering the evaporation rate. The current study proves the importance of radiation modeling for accurate prediction in realistic spray combustion configurations, even for low pressure systems.
NASA Technical Reports Server (NTRS)
Kartuzova, Olga; Kassemi, Mohammad
2015-01-01
A CFD model for simulating the self-pressurization of a large scale liquid hydrogen storage tank is utilized in this paper to model the MHTB self-pressurization experiment. The kinetics-based Schrage equation is used to account for the evaporative and condensi ng interfacial mass flows in this model. The effect of the accommodation coefficient for calculating the interfacial mass transfer rate on the tank pressure during tank selfpressurization is studied. The values of the accommodation coefficient which were considered in this study vary from 1.0e-3 to 1.0e-1 for the explicit VOF model and from 1.0e-4 to 1.0e-3 for the implicit VOF model. The ullage pressure evolutions are compared against experimental data. A CFD model for controlling pressure in cryogenic storage tanks by spraying cold liquid into the ullage is also presented. The Euler-Lagrange approach is utilized for tracking the spray droplets and for modeling the interaction between the droplets and the continuous phase (ullage). The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. Droplet-ullage heat and mass transfer are modeled. The flow, temperature, and interfacial mass flux, as well as droplets trajectories, size distribution and temperatures predicted by the model are presented. The ul lage pressure and vapor temperature evolutions are compared with experimental data obtained from the MHTB spray bar mixing experiment. The effect of the accommodation coefficient for calculating the interfacial and droplet mass transfer rates on the tank pressure during mixing of the vapor using spray is studied. The values used for the accommodation coefficient at the interface vary from 1.0e-5 to 1.0e-2. The droplet accommodation coefficient values vary from 2.0e-6 to 1.0e-4.
An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Le; Torelli, Roberto; Zhu, Xiucheng
Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at amore » density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGE framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation. A set of turbulence and spray break-up model constants was identified to properly match the aforementioned measurements of liquid penetration within their experimental confidence intervals. An accuracy study on varying the minimum mesh size was also performed to ensure the grid convergence of the numerical results. Experimentally validated computational fluid dynamics (CFD) simulations were then used to investigate the local spray characteristics in the vicinity of the wall with a particular focus on Sauter Mean Diameter (SMD) and Reynolds and Weber numbers. The analysis was performed by considering before- and after-impingement conditions in order to take in account the influence of the impinged wall on the spray morphology.« less
DNS study of the ignition of n-heptane fuel spray under high pressure and lean conditions
NASA Astrophysics Data System (ADS)
Wang, Yunliang; Rutland, Christopher J.
2005-01-01
Direct numerical simulations (DNS) are used to investigate the ignition of n-heptane fuel spray under high pressure and lean conditions. For the solution of the carrier gas fluid, the Eulerian method is employed, while for the fuel spray, the Lagrangian method is used. A chemistry mechanism for n-heptane with 33 species and 64 reactions is adopted to describe the chemical reactions. Initial carrier gas temperature and pressure are 926 K and 30.56 atmospheres, respectively. Initial global equivalence ratio is 0.258. Two cases with droplet radiuses of 35.5 and 20.0 macrons are simulated. Evolutions of the carrier gas temperature and species mass fractions are presented. Contours of the carrier gas temperature and species mass fractions near ignition and after ignition are presented. The results show that the smaller fuel droplet case ignites earlier than the larger droplet case. For the larger droplet case, ignition occurs first at one location; for the smaller droplet case, however, ignition occurs first at multiple locations. At ignition kernels, significant NO is produced when temperature is high enough at the ignition kernels. For the larger droplet case, more NO is produced than the smaller droplet case due to the inhomogeneous distribution and incomplete mixing of fuel vapor.
Investigation of Spray Cooling Schemes for Dynamic Thermal Management
NASA Astrophysics Data System (ADS)
Yata, Vishnu Vardhan Reddy
This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 ?m thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and 10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2-5 ml/cm2.s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.
On the prediction of spray angle of liquid-liquid pintle injectors
NASA Astrophysics Data System (ADS)
Cheng, Peng; Li, Qinglian; Xu, Shun; Kang, Zhongtao
2017-09-01
The pintle injector is famous for its capability of deep throttling and low cost. However, the pintle injector has been seldom investigated. To get a good prediction of the spray angle of liquid-liquid pintle injectors, theoretical analysis, numerical simulations and experiments were conducted. Under the hypothesis of incompressible and inviscid flow, a spray angle formula was deduced from the continuity and momentum equations based on a control volume analysis. The formula was then validated by numerical and experimental data. The results indicates that both geometric and injection parameters affect the total momentum ratio (TMR) and then influence the spray angle formed by liquid-liquid pintle injectors. TMR is the pivotal non-dimensional number that dominates the spray angle. Compared with gas-gas pintle injectors, spray angle formed by liquid-liquid injectors is larger, which benefits from the local high pressure zone near the pintle wall caused by the impingement of radial and axial sheets.
Large eddy simulation of fine water sprays: comparative analysis of two models and computer codes
NASA Astrophysics Data System (ADS)
Tsoy, A. S.; Snegirev, A. Yu.
2015-09-01
The model and the computer code FDS, albeit widely used in engineering practice to predict fire development, is not sufficiently validated for fire suppression by fine water sprays. In this work, the effect of numerical resolution of the large scale turbulent pulsations on the accuracy of predicted time-averaged spray parameters is evaluated. Comparison of the simulation results obtained with the two versions of the model and code, as well as that of the predicted and measured radial distributions of the liquid flow rate revealed the need to apply monotonic and yet sufficiently accurate discrete approximations of the convective terms. Failure to do so delays jet break-up, otherwise induced by large turbulent eddies, thereby excessively focuses the predicted flow around its axis. The effect of the pressure drop in the spray nozzle is also examined, and its increase has shown to cause only weak increase of the evaporated fraction and vapor concentration despite the significant increase of flow velocity.
Numerical simulation of cavitation and atomization using a fully compressible three-phase model
NASA Astrophysics Data System (ADS)
Mithun, Murali-Girija; Koukouvinis, Phoevos; Gavaises, Manolis
2018-06-01
The aim of this paper is to present a fully compressible three-phase (liquid, vapor, and air) model and its application to the simulation of in-nozzle cavitation effects on liquid atomization. The model employs a combination of the homogeneous equilibrium barotropic cavitation model with an implicit sharp interface capturing volume of fluid (VOF) approximation. The numerical predictions are validated against the experimental results obtained for injection of water into the air from a step nozzle, which is designed to produce asymmetric cavitation along its two sides. Simulations are performed for three injection pressures, corresponding to three different cavitation regimes, referred to as cavitation inception, developing cavitation, and hydraulic flip. Model validation is achieved by qualitative comparison of the cavitation, spray pattern, and spray cone angles. The flow turbulence in this study is resolved using the large-eddy simulation approach. The simulation results indicate that the major parameters that influence the primary atomization are cavitation, liquid turbulence, and, to a smaller extent, the Rayleigh-Taylor and Kelvin-Helmholtz aerodynamic instabilities developing on the liquid-air interface. Moreover, the simulations performed indicate that periodic entrainment of air into the nozzle occurs at intermediate cavitation numbers, corresponding to developing cavitation (as opposed to incipient and fully developed cavitation regimes); this transient effect causes a periodic shedding of the cavitation and air clouds and contributes to improved primary atomization. Finally, the cone angle of the spray is found to increase with increased injection pressure but drops drastically when hydraulic flip occurs, in agreement with the relevant experiments.
LOX/Hydrogen Coaxial Injector Atomization Test Program
NASA Technical Reports Server (NTRS)
Zaller, M.
1990-01-01
Quantitative information about the atomization of injector sprays is needed to improve the accuracy of computational models that predict the performance and stability margin of liquid propellant rocket engines. To obtain this data, a facility for the study of spray atomization is being established at NASA-Lewis to determine the drop size and velocity distributions occurring in vaporizing liquid sprays at supercritical pressures. Hardware configuration and test conditions are selected to make the cold flow simulant testing correspond as closely as possible to conditions in liquid oxygen (LOX)/gaseous H2 rocket engines. Drop size correlations from the literature, developed for liquid/gas coaxial injector geometries, are used to make drop size predictions for LOX/H2 coaxial injectors. The mean drop size predictions for a single element coaxial injector range from 0.1 to 2000 microns, emphasizing the need for additional studies of the atomization process in LOX/H2 engines. Selection of cold flow simulants, measured techniques, and hardware for LOX/H2 atomization simulations are discussed.
2014-05-01
temperature effect in nonreacting and reacting diesel sprays using a novel injector , and imaging diagnostics for liquid phase penetration, light-off...ambient conditions. A single hole, modern common rail injector with an injector diameter of 90 µ (Bosch CRIN 2.4) is used at typical diesel injection... diesel engine operating conditions. The objective of this report is to demonstrate the modeling capability of a recently adopted 3D-Computational Fluid
The effect of process parameters on Twin Wire Arc spray pattern shape
Hall, Aaron Christopher; McCloskey, James Francis; Horner, Allison Lynne
2015-04-20
A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA) spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was mostmore » affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Lastly, coating deposition rate was most affected by arc current.« less
The effect of process parameters on Twin Wire Arc spray pattern shape
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Aaron Christopher; McCloskey, James Francis; Horner, Allison Lynne
A design of experiments approach was used to describe process parameter—spray pattern relationships in the Twin Wire Arc process using zinc feed stock in a TAFA 8835 (Praxair, Concord, NH, USA) spray torch. Specifically, the effects of arc current, primary atomizing gas pressure, and secondary atomizing gas pressure on spray pattern size, spray pattern flatness, spray pattern eccentricity, and coating deposition rate were investigated. Process relationships were investigated with the intent of maximizing or minimizing each coating property. It was determined that spray pattern area was most affected by primary gas pressure and secondary gas pressure. Pattern eccentricity was mostmore » affected by secondary gas pressure. Pattern flatness was most affected by primary gas pressure. Lastly, coating deposition rate was most affected by arc current.« less
Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie
2015-01-01
On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073
Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie
2015-01-01
On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes.
String flash-boiling in gasoline direct injection simulations with transient needle motion
Baldwin, Eli T.; Grover, Jr., Ronald O.; Parrish, Scott E.; ...
2016-09-06
A computational study was performed to investigate the influence of transient needle motion on gasoline direct injection (GDI) internal nozzle flow and near-field sprays. Simulations were conducted with a compressible Eulerian flow solver modeling liquid, vapor, and non-condensable gas phases with a diffuse interface. Variable rate generation and condensation of fuel vapor were captured using the homogeneous relaxation model (HRM). The non-flashing (spray G) and flashing (spray G2) conditions specified by the Engine Combustion Network were modeled using the nominal spray G nozzle geometry and transient needle lift and wobble were based upon ensemble averaged x-ray imaging preformed at Argonnemore » National Lab. The minimum needle lift simulated was 5 μm and dynamic mesh motion was achieved with Laplacian smoothing. The results were qualitatively validated against experimental imaging and the experimental rate of injection profile was captured accurately using pressure boundary conditions and needle motion to actu- ate the injection. Needle wobble was found to have no measurable effect on the flow. Low needle lift is shown to result in vapor generation as fuel rushes past the needle. In conclusion, the internal injector flow is shown to contain many transient and interacting vortices which cause perturbations in the spray angle, fluctuations in the mass flux, and frequently result in string flash-boiling.« less
String flash-boiling in gasoline direct injection simulations with transient needle motion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, Eli T.; Grover, Jr., Ronald O.; Parrish, Scott E.
A computational study was performed to investigate the influence of transient needle motion on gasoline direct injection (GDI) internal nozzle flow and near-field sprays. Simulations were conducted with a compressible Eulerian flow solver modeling liquid, vapor, and non-condensable gas phases with a diffuse interface. Variable rate generation and condensation of fuel vapor were captured using the homogeneous relaxation model (HRM). The non-flashing (spray G) and flashing (spray G2) conditions specified by the Engine Combustion Network were modeled using the nominal spray G nozzle geometry and transient needle lift and wobble were based upon ensemble averaged x-ray imaging preformed at Argonnemore » National Lab. The minimum needle lift simulated was 5 μm and dynamic mesh motion was achieved with Laplacian smoothing. The results were qualitatively validated against experimental imaging and the experimental rate of injection profile was captured accurately using pressure boundary conditions and needle motion to actu- ate the injection. Needle wobble was found to have no measurable effect on the flow. Low needle lift is shown to result in vapor generation as fuel rushes past the needle. In conclusion, the internal injector flow is shown to contain many transient and interacting vortices which cause perturbations in the spray angle, fluctuations in the mass flux, and frequently result in string flash-boiling.« less
NASA Astrophysics Data System (ADS)
van Poppel, Bret; Owkes, Mark; Nelson, Thomas; Lee, Zachary; Sowell, Tyler; Benson, Michael; Vasquez Guzman, Pablo; Fahrig, Rebecca; Eaton, John; Kurman, Matthew; Kweon, Chol-Bum; Bravo, Luis
2014-11-01
In this work, we present high-fidelity Computational Fluid Dynamics (CFD) results of liquid fuel injection from a pressure-swirl atomizer and compare the simulations to experimental results obtained using both shadowgraphy and phase-averaged X-ray computed tomography (CT) scans. The CFD and experimental results focus on the dense near-nozzle region to identify the dominant mechanisms of breakup during primary atomization. Simulations are performed using the NGA code of Desjardins et al (JCP 227 (2008)) and employ the volume of fluid (VOF) method proposed by Owkes and Desjardins (JCP 270 (2013)), a second order accurate, un-split, conservative, three-dimensional VOF scheme providing second order density fluxes and capable of robust and accurate high density ratio simulations. Qualitative features and quantitative statistics are assessed and compared for the simulation and experimental results, including the onset of atomization, spray cone angle, and drop size and distribution.
Numerical simulation of the flow field and fuel sprays in an IC engine
NASA Technical Reports Server (NTRS)
Nguyen, H. L.; Schock, H. J.; Ramos, J. I.; Carpenter, M. H.; Stegeman, J. D.
1987-01-01
A two-dimensional model for axisymmetric piston-cylinder configurations is developed to study the flow field in two-stroke direct-injection Diesel engines under motored conditions. The model accounts for turbulence by a two-equation model for the turbulence kinetic energy and its rate of dissipation. A discrete droplet model is used to simulate the fuel spray, and the effects of the gas phase turbulence on the droplets is considered. It is shown that a fluctuating velocity can be added to the mean droplet velocity every time step if the step is small enough. Good agreement with experimental data is found for a range of ambient pressures in Diesel engine-type microenvironments. The effects of the intake swirl angle in the spray penetration, vaporization, and mixing in a uniflow-scavenged two-stroke Diesel engine are analyzed. It is found that the swirl increases the gas phase turbulence levels and the rates of vaporization.
NASA Technical Reports Server (NTRS)
Moran, Matthew E.; Nyland, Ted W.
1992-01-01
A total of 38 hydrogen no-vent fill tests were performed in this test series using various size spray nozzles and a spray bar with different hole sizes in a 5 cubic foot receiver tank. Fill levels of 90 percent by volume or greater were achieved in 26 of the tests while maintaining a receiver tank pressure below 30 psia. Spray nozzles were mounted at the top of the tank, whereas, the spray bar was centered in the tank axially. The spray nozzle no-vent fills demonstrated tank pressure and temperature responses comparable to previous test series. Receiver tank pressure responses for the spray bar configuration were similar to the spray nozzle tests with the pressure initially rising rapidly, then leveling off as vapor condenses onto the discharging liquid streams, and finally ramping up near the end of the test due to ullage compression. Both liquid injection techniques tested were capable of filling the receiver tank to 90 percent under variable test conditions. Comparisons between the spray nozzle and spray bar configurations for well matched test conditions indicate the spray nozzle injection technique is more effective in minimizing the receiving tank pressure throughout a no-vent fill compared to the spray bar under normal gravity conditions.
Combustion of liquid sprays at high pressures
NASA Technical Reports Server (NTRS)
Shearer, A. J.; Faeth, G. M.
1977-01-01
The combustion of pressure atomized fuel sprays in high pressure stagnant air was studied. Measurements were made of flame and spray boundaries at pressures in the range 0.1-9 MPa for methanol and n-pentane. At the higher test pressure levels, critical phenomena are important. The experiments are compared with theoretical predictions based on a locally homogeneous two-phase flow model. The theory correctly predicted the trends of the data, but underestimates flame and spray boundaries by 30-50 percent, indicating that slip is still important for the present experiments (Sauter mean diameters of 30 microns at atmospheric pressure under cold flow conditions). Since the sprays are shorter at high pressures, slip effects are still important even though the density ratio of the phases approach one another as the droplets heat up. The model indicates the presence of a region where condensed water is present within the spray and provides a convenient means of treating supercritical phenomena.
Liquid Nitrogen (Oxygen Simulent) Thermodynamic Venting System Test Data Analysis
NASA Technical Reports Server (NTRS)
Hedayat, A.; Nelson, S. L.; Hastings, L. J.; Flachbart, R. H.; Tucker, S. P.
2005-01-01
In designing systems for the long-term storage of cryogens in low gravity space environments, one must consider the effects of thermal stratification on excessive tank pressure that will occur due to environmental heat leakage. During low gravity operations, a Thermodynamic Venting System (TVS) concept is expected to maintain tank pressure without propellant resettling. The TVS consists of a recirculation pump, Joule-Thomson (J-T) expansion valve, and a parallel flow concentric tube heat exchanger combined with a longitudinal spray bar. Using a small amount of liquid extracted by the pump and passing it though the J-T valve, then through the heat exchanger, the bulk liquid and ullage are cooled, resulting in lower tank pressure. A series of TVS tests were conducted at the Marshall Space Flight Center using liquid nitrogen as a liquid oxygen simulant. The tests were performed at fill levels of 90%, 50%, and 25% with gaseous nitrogen and helium pressurants, and with a tank pressure control band of 7 kPa. A transient one-dimensional model of the TVS is used to analyze the data. The code is comprised of four models for the heat exchanger, the spray manifold and injector tubes, the recirculation pump, and the tank. The TVS model predicted ullage pressure and temperature and bulk liquid saturation pressure and temperature are compared with data. Details of predictions and comparisons with test data regarding pressure rise and collapse rates will be presented in the final paper.
NASA Astrophysics Data System (ADS)
Ramírez, A. I.; Som, S.; Aggarwal, Suresh K.; Kastengren, A. L.; El-Hannouny, E. M.; Longman, D. E.; Powell, C. F.
2009-07-01
A quantitative and time-resolved X-ray radiography technique has been used for detailed measurements of high-pressure fuel sprays in the near-nozzle region of a diesel engine injector. The technique provides high spatial and temporal resolution, especially in the relatively dense core region. A single spray plume from a hydraulically actuated electronically controlled unit injector model 315B injector with a 6-hole nozzle was isolated and studied at engine-like densities for two different injection pressures. Optical spray imaging was also employed to evaluate the effectiveness of the shield used to isolate a single spray plume. The steady state fuel distributions for both injection pressures are similar and show a dense spray region along the axis of the spray, with the on-axis spray density decreasing as the spray progresses downstream. The higher injection pressure case exhibits a larger cone angle and spray broadening at the exit of the nozzle. For some time periods, the near-nozzle penetration speed is lower for the high injection pressure case than the low injection pressure case, which is unexpected, but can be attributed to the needle and flow dynamics inside the injector causing slower pressure build-up for the former case. Rate of injection testing was performed to further understand near-nozzle behavior. Mass distribution data were obtained and used to find mass-averaged velocity of the spray. Comparisons of the radiography data with that from a common rail single-hole light duty injectors under similar injection conditions show several significant differences. The current data show a larger cone angle and lower penetration speed than that from the light-duty injector. Moreover, these data display a Gaussian mass distribution across the spray near the injector, whereas in previous light-duty injector measurements, the mass distribution had steeper sides and a flatter peak. Measurements are also used to examine the spray models in the STAR-CD software.
Spray bottle apparatus with pressure multiplying pistons
Moss, Owen R.; Gordon, Norman R.; DeFord, Henry S.
1990-01-01
The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber and a corresponding piston which is acted upon the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area thereby generating greater hydraulic pressure for use in forming the spray.
Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko
2016-06-01
Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.
Low pressure cold spraying on materials with low erosion resistance
NASA Astrophysics Data System (ADS)
Shikalov, V. S.; Klinkov, S. V.; Kosarev, V. F.
2017-10-01
In present work, the erosion-adhesion transition was investigated during cold spraying of aluminum particles on brittle ceramic substrates. Cold spraying was carried out with aid of sonic nozzle, which use allows significantly reducing the gas stagnation pressure without the effect of flow separation inside the nozzle and, accordingly, reducing the velocity of the spraying particles. Two stagnation pressures were chosen. The coating tracks were sprayed at different air temperatures in nozzle pre-chamber under each of regimes. Single sprayed tracks were obtained and their profiles were investigated by optical profilometry.
Spray bottle apparatus with force multiply pistons
Eschbach, Eugene A.
1992-01-01
The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber and corresponding piston which is acted upon by the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area thereby generating greater hydraulic pressure for use in forming the spray.
Spray ignition measurements in a constant volume combustion vessel under engine-relevant conditions
NASA Astrophysics Data System (ADS)
Ramesh, Varun
Pressure-based and optical diagnostics for ignition delay (ID) measurement of a diesel spray from a multi-hole nozzle were investigated in a constant volume combustion vessel (CVCV) at conditions similar to those in a conventional diesel engine at the start of injection (SOI). It was first hypothesized that compared to an engine, the shorter ID in a CVCV was caused by NO, a byproduct of premixed combustion. The presence of a significant concentration of NO+NO2 was confirmed experimentally and by using a multi-zone model of premixed combustion. Experiments measuring the effect of NO on ID were performed at conditions relevant to a conventional diesel engine. Depending on the temperature regime and the nature of the fuel, NO addition was found to advance or retard ignition. Constant volume ignition simulations were capable of describing the observed trends; the magnitudes were different due to the physical processes involved in spray ignition, not modeled in the current study. The results of the study showed that ID is sensitive to low NO concentrations (<100 PPM) in the low-temperature regime. A second source of uncertainty in pressure-based ID measurement is the systematic error associated with the correction used to account for the speed of sound. Simultaneous measurements of volumetric OH chemiluminescence (OHC) and pressure during spray ignition found the OHC to closely resemble the pressure-based heat release rate for the full combustion duration. The start of OHC was always found to be shorter than the pressure-based ID for all fuels and conditions tested by 100 ms. Experiments were also conducted measuring the location and timing of high-temperature ignition and the steady-state lift-off length by high-speed imaging of OHC during spray ignition. The delay period calculated using the measured ignition location and the bulk average speed of sound was in agreement with the delay between OHC and the pressure-based ID. Results of the study show that start of OHC is coupled to detectable heat release and the two measurements are correlated by the time required for the pressure wave to propagate at the speed of sound between the ignition site and the transducer.
NASA Astrophysics Data System (ADS)
Zegers, R. P. C.; Yu, M.; Bekdemir, C.; Dam, N. J.; Luijten, C. C. M.; de Goey, L. P. H.
2013-08-01
Planar laser-induced fluorescence (LIF) of toluene has been applied in an optical engine and a high-pressure cell, to determine temperatures of fuel sprays and in-cylinder vapors. The method relies on a redshift of the toluene LIF emission spectrum with increasing temperature. Toluene fluorescence is recorded simultaneously in two disjunct wavelength bands by a two-camera setup. After calibration, the pixel-by-pixel LIF signal ratio is a proxy for the local temperature. A detailed measurement procedure is presented to minimize measurement inaccuracies and to improve precision. n-Heptane is used as the base fuel and 10 % of toluene is added as a tracer. The toluene LIF method is capable of measuring temperatures up to 700 K; above that the signal becomes too weak. The precision of the spray temperature measurements is 4 % and the spatial resolution 1.3 mm. We pay particular attention to the construction of the calibration curve that is required to translate LIF signal ratios into temperature, and to possible limitations in the portability of this curve between different setups. The engine results are compared to those obtained in a constant-volume high-pressure cell, and the fuel spray results obtained in the high-pressure cell are also compared to LES simulations. We find that the hot ambient gas entrained by the head vortex gives rise to a hot zone on the spray axis.
Imaging of high-pressure fuel sprays in the near-nozzle region with supercontinuum illumination
NASA Astrophysics Data System (ADS)
Zheng, Yipeng; Si, Jinhai; Tan, Wenjiang; Wang, Mingxin; Yang, Bo; Hou, Xun
2018-04-01
We employ a supercontinuum (SC) illumination to image the high-pressure fuel sprays in the near-nozzle region. The effect of speckles in the images is significantly mitigated using the SC illumination to improve the identifiability of the microstructures in the spray. The microstructures in the near-nozzle region, i.e., lobes, holes, ligaments, and bridges, are clearly imaged for different fuel pressures and nozzle orifice diameters. The shadowgraphs captured in the experiments also show the spray cone angle of spray is strongly dependent on the injection pressures and nozzle orifice diameters.
NASA Astrophysics Data System (ADS)
Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal
2017-09-01
Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.
Factors influencing the effective spray cone angle of pressure-swirl atomizers
NASA Astrophysics Data System (ADS)
Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.
1992-01-01
The spray cone angles produced by several simplex pressure-swirl nozzles are examined using three liquids whose viscosities range from 0.001 to 0.012 kg/ms (1 to 12 cp). Measurements of both the visible spray cone angle and the effective spray cone angle are carried out over wide ranges of injection pressure and for five different values of the discharge orifice length/diameter ratio. The influence of the number of swirl chamber feed slots on spray cone angle is also examined. The results show that the spray cone angle widens with increase in injection pressure but is reduced by increases in liquid viscosity and/or discharge orifice length/diameter ratio. Variation in the number of swirl chamber feed slots between one and three has little effect on the effective spray cone angle.
New approach to reducing water consumption in commercial kitchen hood
NASA Astrophysics Data System (ADS)
Asmuin, N.; Pairan, M. R.
2017-09-01
Water mist sprays are used in wide range of application. However it is depend to the spray characteristic to suit the particular application. The modern commercial kitchen hood ventilation system was adopted with the water mist nozzle technology as an additional tool to increase the filtration efficiency. However, low level of filtration effectiveness and high water consumption were the major problems among the Commercial Kitchen Ventilation expert. Therefore, this study aims to develop a new mist spray technology to replacing the conventional KSJB nozzle (KSJB is a nozzle’s name). At the same time, an appropriate recommended location to install the nozzle in kitchen hood system was suggested. An extensive simulation works were carried out to observe the spray characteristics, ANSYS (FLUENT) was used for simulation wise. In the case of nozzle studies, nozzles were tested at 1 bar pressure of water and air. In comparison with conventional nozzles configuration, this new approach suggested nozzle configuration was reduce up to 50% of water consumption, which by adopted 3 numbers of nozzles instead of 6 numbers of nozzles in the commercial kitchen hood system. Therefore, this nozzle will be used in industry for their benefits of water consumption, filtration efficiency and reduced the safety limitations.
OpenFOAM Modeling of Particle Heating and Acceleration in Cold Spraying
NASA Astrophysics Data System (ADS)
Leitz, K.-H.; O'Sullivan, M.; Plankensteiner, A.; Kestler, H.; Sigl, L. S.
2018-01-01
In cold spraying, a powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities and temperatures that are sufficient to obtain cohesion of the particles to a substrate. The deposition efficiency of the particles is significantly determined by their velocity and temperature. Particle velocity correlates with the amount of kinetic energy that is converted to plastic deformation and thermal heating. The initial particle temperature significantly influences the mechanical properties of the particle. Velocity and temperature of the particles have nonlinear dependence on the pressure and temperature of the gas at the nozzle entrance. In this contribution, a simulation model based on the reactingParcelFoam solver of OpenFOAM is presented and applied for an analysis of particle velocity and temperature in the cold spray nozzle. The model combines a compressible description of the gas flow in the nozzle with a Lagrangian particle tracking. The predictions of the simulation model are verified based on an analytical description of the gas flow, the particle acceleration and heating in the nozzle. Based on experimental data, the drag model according to Plessis and Masliyah is identified to be best suited for OpenFOAM modeling particle heating and acceleration in cold spraying.
NASA Technical Reports Server (NTRS)
Iannetti, Anthony C.; Moder, Jeffery P.
2010-01-01
Developing physics-based tools to aid in reducing harmful combustion emissions, like Nitrogen Oxides (NOx), Carbon Monoxide (CO), Unburnt Hydrocarbons (UHC s), and Sulfur Dioxides (SOx), is an important goal of aeronautics research at NASA. As part of that effort, NASA Glenn Research Center is performing a detailed assessment and validation of an in-house combustion CFD code known as the National Combustion Code (NCC) for turbulent reacting flows. To assess the current capabilities of NCC for simulating turbulent reacting flows with liquid jet fuel injection, a set of Single Swirler Lean Direct Injection (LDI) experiments performed at the University of Cincinnati was chosen as an initial validation data set. This Jet-A/air combustion experiment operates at a lean equivalence ratio of 0.75 at atmospheric pressure and has a 4 percent static pressure drop across the swirler. Detailed comparisons of NCC predictions for gas temperature and gaseous emissions (CO and NOx) against this experiment are considered in a previous work. The current paper is focused on detailed comparisons of the spray characteristics (radial profiles of drop size distribution and at several radial rakes) from NCC simulations against the experimental data. Comparisons against experimental data show that the use of the correlation for primary spray break-up implemented by Raju in the NCC produces most realistic results, but this result needs to be improved. Given the single or ten step chemical kinetics models, use of a spray size correlation gives similar, acceptable results
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Valenzuela, Juan; LeClair, Andre; Moder, Jeff
2015-01-01
This paper presents a numerical model of a system-level test bed - the multipurpose hydrogen test bed (MHTB) using Generalized Fluid System Simulation Program (GFSSP). MHTB is representative in size and shape of a fully integrated space transportation vehicle liquid hydrogen (LH2) propellant tank and was tested at Marshall Space Flight Center (MSFC) to generate data for cryogenic storage. GFSSP is a finite volume based network flow analysis software developed at MSFC and used for thermo-fluid analysis of propulsion systems. GFSSP has been used to model the self-pressurization and ullage pressure control by Thermodynamic Vent System (TVS). A TVS typically includes a Joule-Thompson (J-T) expansion device, a two-phase heat exchanger, and a mixing pump and spray to extract thermal energy from the tank without significant loss of liquid propellant. Two GFSSP models (Self-Pressurization & TVS) were separately developed and tested and then integrated to simulate the entire system. Self-Pressurization model consists of multiple ullage nodes, propellant node and solid nodes; it computes the heat transfer through Multi-Layer Insulation blankets and calculates heat and mass transfer between ullage and liquid propellant and ullage and tank wall. TVS model calculates the flow through J-T valve, heat exchanger and spray and vent systems. Two models are integrated by exchanging data through User Subroutines of both models. The integrated models results have been compared with MHTB test data of 50% fill level. Satisfactory comparison was observed between test and numerical predictions.
30 CFR 35.21 - Temperature-pressure spray-ignition tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Temperature-pressure spray-ignition tests. 35..., EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS Test Requirements § 35.21 Temperature-pressure spray-ignition tests. (a) Purpose. The purpose of this test shall be to determine the...
30 CFR 35.21 - Temperature-pressure spray-ignition tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Temperature-pressure spray-ignition tests. 35..., EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS Test Requirements § 35.21 Temperature-pressure spray-ignition tests. (a) Purpose. The purpose of this test shall be to determine the...
30 CFR 35.21 - Temperature-pressure spray-ignition tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Temperature-pressure spray-ignition tests. 35..., EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS Test Requirements § 35.21 Temperature-pressure spray-ignition tests. (a) Purpose. The purpose of this test shall be to determine the...
30 CFR 35.21 - Temperature-pressure spray-ignition tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Temperature-pressure spray-ignition tests. 35..., EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS Test Requirements § 35.21 Temperature-pressure spray-ignition tests. (a) Purpose. The purpose of this test shall be to determine the...
Some Characteristics of Fuel Sprays at Low-injection Pressures
NASA Technical Reports Server (NTRS)
Rothrock, A M; Waldron, C D
1931-01-01
This report presents the results of tests conducted at the Langley Memorial Aeronautical Laboratory, Langley Field, Va., to determine some of the characteristics of the fuel sprays obtained from an 0.008-inch and a 0.020-inch open nozzle when injection pressures from 100 to 500 pounds per square inch were used. Fuel oil and gasoline were injected into air at densities of atmospheric land 0.325 pound per cubic foot. It was found that the penetration rate at these low pressures was about the same as the rate obtained with higher pressures. Spray cone-angles were small and individual oil drops were visible in all the sprays. Gasoline and fuel oil sprays had similar characteristics.
Light extinction method on high-pressure diesel injection
NASA Astrophysics Data System (ADS)
Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.
1995-09-01
A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.
Micromechanics of Spray-On Foam Insulation
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.; Sullivan, Roy M.
2007-01-01
Understanding the thermo-mechanical response of the Space Shuttle External Tank spray-on foam insulation (SOFI) material is critical, to NASA's Return to Flight effort. This closed-cell rigid polymeric foam is used to insulate the metallic Space Shuttle External Tank, which is at cryogenic temperatures immediately prior to and during lift off. The shedding of the SOFI during ascent led to the loss of the Columbia, and eliminating/minimizing foam lass from the tank has become a priority for NASA as it seeks to resume scheduled space shuttle missions. Determining the nature of the SOFI material behavior in response to both thermal and mechanical loading plays an important role as any structural modeling of the shedding phenomenon k predicated on knowledge of the constitutive behavior of the foam. In this paper, the SOFI material has been analyzed using the High-Fidelity Generalized Method of Cells (HFGMC) micromechanics model, which has recently been extended to admit a triply-periodic 3-D repeating unit cell (RUC). Additional theoretical extensions that mere made in order to enable modeling of the closed-cell-foam material include the ability to represent internal boundaries within the RUC (to simulated internal pores) and the ability to impose an internal pressure within the simulated pores. This latter extension is crucial as two sources contribute to significant internal pressure changes within the SOFI pores. First, gas trapped in the pores during the spray process will expand or contract due to temperature changes. Second, the pore pressure will increase due to outgassing of water and other species present in the foam skeleton polymer material. With HFGMC's new pore pressure modeling capabilities, a nonlinear pressure change within the simulated pore can be imposed that accounts for both of these sources, in addition to stmdar&-thermal and mechanical loading; The triply-periodic HFGMC micromechanics model described above was implemented within NASA GRC's MAC/GMC software package, giving the model access to a range of nonlinear constitutive models for the polymeric foam skeleton material. A repeating unit cell architecture was constructed that, while relatively simple, still accounts for the geometric anisotropy of the porous foam microstructure and its thin walls and thicker edges. With the lack of reliable polymeric foam skeleton materia1 properties, many simulations were executed aimed at backing out these material properties. Then, using these properties, predictions of the thermo-mechanical behavior of the foam, including calculated internal applied pressure profiles, were performed and compared with appropriate experimental data.
The Influence of Shaping Air Pressure of Pneumatic Spray Gun
NASA Astrophysics Data System (ADS)
Chen, Wenzhuo; Chen, Yan; Pan, Haiwei; Zhang, Weiming; Li, Bo
2018-02-01
The shaping air pressure is a very important parameter in the application of pneumatic spray gun, and studying its influence on spray flow field and film thickness distribution has practical values. In this paper, Euler-Lagrangian method is adopted to describe the two-phase spray flow of pneumatic painting process, and the air flow fields, spray patterns and dynamic film thickness distributions were obtained with the help of the computational fluid dynamics code—ANSYS Fluent. Results show that with the increase of the shaping air pressure, the air phase flow field spreads in the plane perpendicular to the shaping air hole plane, the spray pattern becomes narrower and flatter, and the width of the dynamic film increases with the reduced maximum value of the film thickness. But the film thickness distribution seems to change little with the shaping air pressure decreasing from 0.6bar to 0.9bar.
Squeeze bottle apparatus with force multiplying pistons
Moss, Owen R.; Gordon, Norman R.; DeFord, Henry S.; Eschbach, Eugene A.
1994-01-01
The present invention comprises a spray bottle in which the pressure resulting from the gripping force applied by the user is amplified and this increased pressure used in generating a spray such as an aerosol or fluid stream. In its preferred embodiment, the invention includes a high pressure chamber and a corresponding piston which is operative for driving fluid out of this chamber at high pressure through a spray nozzle and a low pressure chamber, and a corresponding piston which is acted upon by the hydraulic pressure within the bottle resulting from the gripping force. The low pressure chamber and piston are of larger size than the high pressure chamber and piston. The pistons are rigidly connected so that the force created by the pressure acting on the piston in the low pressure chamber is transmitted to the piston in the high pressure chamber where it is applied over a more limited area, thereby generating greater hydraulic pressure for use in forming the spray.
Optimization of Fibrin Glue Spray Systems for Ophthalmic Surgery
Chaurasia, Shyam S.; Champakalakshmi, Ravi; Angunawela, Romesh I.; Tan, Donald T.; Mehta, Jodhbir S.
2012-01-01
Purpose To optimize fibrin glue (FG) spray for ophthalmic surgery using two spray applicators, EasySpray and DuploSpray systems, by varying the distance from point of application and the pressure/flow rate, and to compare the adhesive strength of sutured and sutureless (FG sprayed) conjunctival graft surgery in a rabbit model. Methods FG was sprayed on a 0.2 mm-thick sheet of paper using EasySpray by variously combining application distances of 2.5, 5, 7.5, and 10 cm with pressures of 10, 15, and 20 psi. DuploSpray was used at the same distances but with varying flow rates of 1 and 2 L/min. Subsequently, FG was sprayed on porcine corneas and FG thickness was analyzed by histology. In addition, adhesive strength of the conjunctival graft (0.5 × 0.5 cm) attached to the rabbit cornea by sutured and sutureless surgery (FG spray) was compared using a tension meter. Results Histology measurements revealed that the FG thickness decreased with increases in distance and pressure of spray using the EasySpray applicator on paper and porcine corneal sections. The adhesive strength of the sutured conjunctival graft (41 ± 4.85 [kilopascal] KPa) was found to be higher than the graft attached by spraying (10 ± 2.3 KPa) and the sequential addition of FG (6 ± 0.714 KPa). Conclusions The EasySpray applicator formed a uniform spread of FG at a distance-pressure combination of 5 cm and 20 psi. The conjunctival graft attached with sutures had higher adhesive strength compared with grafts glued with a spray applicator. Although the adhesive strength of FG applied through the applicator was similar to the drop-wise sequential technique, the former was more cost effective because more samples could be sprayed compared with the sequential manual technique. Translational Relevance The standardization of the spray system for the application of FG in ophthalmology will provide an economical method for delivering consistent healing results after surgery. PMID:24049702
Experimental characterization of gasoline sprays under highly evaporating conditions
NASA Astrophysics Data System (ADS)
Khan, Muhammad Mahabat; Sheikh, Nadeem Ahmed; Khalid, Azfar; Lughmani, Waqas Akbar
2018-05-01
An experimental investigation of multistream gasoline sprays under highly evaporating conditions is carried out in this paper. Temperature increase of fuel and low engine pressure could lead to flash boiling. The spray shape is normally modified significantly under flash boiling conditions. The spray plumes expansion along with reduction in the axial momentum causes the jets to merge and creates a low-pressure area below the injector's nozzle. These effects initiate the collapse of spray cone and lead to the formation of a single jet plume or a big cluster like structure. The collapsing sprays reduces exposed surface and therefore they last longer and subsequently penetrate more. Spray plume momentum increase, jet plume reduction and spray target widening could delay or prevent the closure condition and limit the penetration (delayed formation of the cluster promotes evaporation). These spray characteristics are investigated experimentally using shadowgraphy, for five and six hole injectors, under various boundary conditions. Six hole injectors produce more collapsing sprays in comparison to five hole injector due to enhanced jet to jet interactions. The spray collapse tendency reduces with increase in injection pressure due high axial momentum of spray plumes. The spray evaporation rates of five hole injector are observed to be higher than six hole injectors. Larger spray cone angles of the six hole injectors promote less penetrating and less collapsing sprays.
NASA Technical Reports Server (NTRS)
Schafer, Charles F.; Cheston, Derrick J.; Worlund, Armis L.; Brown, James R.; Hooper, William G.; Monk, Jan C.; Winstead, Thomas W.
2008-01-01
A trade study of the feasibility of conducting J-2X testing in the Glenn Research Center (GRC) Plum Brook Station (PBS) B-2 facility was initiated in May 2006 with results available in October 2006. The Propulsion Test Integration Group (PTIG) led the study with support from Marshall Space Flight Center (MSFC) and Jacobs Sverdrup Engineering. The primary focus of the trade study was on facility design concepts and their capability to satisfy the J-2X altitude simulation test requirements. The propulsion systems tested in the B-2 facility were in the 30,000-pound (30K) thrust class. The J-2X thrust is approximately 10 times larger. Therefore, concepts significantly different from the current configuration are necessary for the diffuser, spray chamber subsystems, and cooling water. Steam exhaust condensation in the spray chamber is judged to be the key risk consideration relative to acceptable spray chamber pressure. Further assessment via computational fluid dynamics (CFD) and other simulation capabilities (e.g. methodology for anchoring predictions with actual test data and subscale testing to support investigation.
Crack Initiation and Growth Behavior of Cold-Sprayed Ni Particles on IN718 Alloy
NASA Astrophysics Data System (ADS)
Cavaliere, P.; Silvello, A.
2017-04-01
Cold spray processing parameters, governing particle velocity and impact energy, are analyzed in the present paper for pure Ni sprayed on IN718 substrates. Finite element modeling (FEM) was used to calculate the particle impact velocity and temperature as a function of gas temperature and pressure and particle density and dimensions. Experimental evidence underlines the possibility of performing repairing through cold spray thanks to the good level of adhesion achievable by employing optimal combinations of materials and spray processing parameters. In the present paper, the potential repairing of cracked superalloys sheets, by employing cold spray technology, is presented. 30° surface V-notched IN718 panels have been repaired by using pure Ni cold-sprayed powders. The bending behavior of the repaired sheets was analyzed by FEM and mechanical testing in order to compare the properties with those belonging to the unrepaired panels. Simulations and mechanical results showed a reduction in the stress intensity factor, a modification of the crack initiation site and a crack retardation in the repaired structures if compared with the unrepaired ones. The K factor was quantified; the resistance of repaired panels was increased of more than eight times in the case of repairing with Ni cold spray particles. Geometrical and mechanical properties of the coating-substrate interfaces, such as adhesion strength and residual stresses influencing the coatings behavior, were largely analyzed.
Partially premixed prevalorized kerosene spray combustion in turbulent flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrigui, M.; Ahmadi, W.; Sadiki, A.
2010-04-15
A detailed numerical simulation of kerosene spray combustion was carried out on a partially premixed, prevaporized, three-dimensional configuration. The focus was on the flame temperature profile dependency on the length of the pre-vaporization zone. The results were analyzed and compared to experimental data. A fundamental study was performed to observe the temperature variation and flame flashback. Changes were made to the droplet diameter, kerosene flammability limits, a combustion model parameter and the location of the combustion initialization. Investigations were performed for atmospheric pressure, inlet air temperature of 90 C and a global equivalence ratio of 0.7. The simulations were carriedmore » out using the Eulerian Lagrangian procedure under a fully two-way coupling. The Bray-Moss-Libby model was adjusted to account for the partially premixed combustion. (author)« less
Mass ejections. [during solar flares
NASA Technical Reports Server (NTRS)
Rust, D. M.; Hildner, E.; Hansen, R. T.; Dryer, M.; Mcclymont, A. N.; Mckenna-Lawlor, S. M. P.; Mclean, D. J.; Schmahl, E. J.; Steinolfson, R. S.; Tandberg-Hanssen, E.
1980-01-01
Observations and model simulations of solar mass ejection phenomena are examined in an investigation of flare processes. Consideration is given to Skylab and other observations of flare-associated sprays, eruptive prominences, surges and coronal transients, and to MHD, gas dynamic and magnetic loop models developed to account for them. Magnetic forces are found to confine spray material, which originates in preexisting active-region filaments, within steadily expanding loops, while surges follow unmoving, preexisting magnetic field lines. Simulations of effects of a sudden pressure pulse at the bottom of the corona are found to exhibit many characteristics of coronal transients associated with flares, and impulsive heating low in the chromosphere is found to be able to account for surges. The importance of the magnetic field as the ultimate source of energy which drives eruptive phenomena as well as flares is pointed out.
Effect of Yaw Angle and Ambient Wind on Fabric Penetration of a Simulated Sleeve
2015-08-20
aerosol dissemination is made using an array of tubing with ejectors (usually in the tunnel contraction or settling chamber) that allow dissemination...atomizing nozzle (Spray Systems, Co., Wheaton, Illinois, 1/4JAUMCO- 316SS2050) that was installed in a 2.5-gal pressure tank (W.R. Brown Co., North Chicago...Illinois, Model Speed). An earth-grounded, 5-gal pressure tank held a mixture of 200-proof ethanol and 10% DOS. The tank was generally set to 6 psi
Impact of nanocrystal spray deposition on inorganic solar cells.
Townsend, Troy K; Yoon, Woojun; Foos, Edward E; Tischler, Joseph G
2014-05-28
Solution-synthesized inorganic cadmium telluride nanocrystals (∼4 nm; 1.45 eV band gap) are attractive elements for the fabrication of thin-film-based low-cost photovoltaic (PV) devices. Their encapsulating organic ligand shell enables them to be easily dissolved in organic solvents, and the resulting solutions can be spray-cast onto indium-tin oxide (ITO)-coated glass under ambient conditions to produce photoactive thin films of CdTe. Following annealing at 380 °C in the presence of CdCl2(s) and evaporation of metal electrode contacts (glass/ITO/CdTe/Ca/Al), Schottky-junction PV devices were tested under simulated 1 sun conditions. An improved PV performance was found to be directly tied to control over the film morphology obtained by the adjustment of spray parameters such as the solution concentration, delivery pressure, substrate distance, and surface temperature. Higher spray pressures produced thinner layers (<60 nm) with lower surface roughness (<200 nm), leading to devices with improved open-circuit voltages (Voc) due to decreased surface roughness and higher short-circuit current (Jsc) as a result of enhanced annealing conditions. After process optimization, spray-cast Schottky devices rivaled those prepared by conventional spin-coating, showing Jsc = 14.6 ± 2.7 mA cm(-2), Voc = 428 ± 11 mV, FF = 42.8 ± 1.4%, and Eff. = 2.7 ± 0.5% under 1 sun illumination. This optimized condition of CdTe spray deposition was then applied to heterojunction devices (ITO/CdTe/ZnO/Al) to reach 3.0% efficiency after light soaking under forward bias. The film thickness, surface morphology, and light absorption were examined with scanning electron microscopy, optical profilometry, and UV/vis spectroscopy.
Inthavong, Kiao; Fung, Man Chiu; Yang, William; Tu, Jiyuan
2015-02-01
To evaluate the deposition efficiency of spray droplets in a nasal cavity produced from a spray device, it is important to determine droplet size distribution, velocity, and its dispersion during atomization. Due to the limiting geometric dimensions of the nasal cavity airway, the spray plume cannot develop to its full size inside the nasal vestibule to penetrate the nasal valve region for effective drug deposition. Particle/droplet image analysis was used to determine local mean droplet sizes at eight regions within the spray plume under different actuation pressures that represent typical hand operation from pediatric to adult patients. The results showed that higher actuation pressure produces smaller droplets in the atomization. Stronger actuation pressure typical of adult users produces a longer period of the fully atomized spray stage, despite a shorter overall spray duration. This produces finer droplets when compared with the data obtained by weaker actuation pressure, typical of pediatric users. The experimental technique presented is able to capture a more complete representation of the droplet size distribution and the atomization process during an actuation. The measured droplet size distribution produced can be related to the empirically defined deposition efficiency curve of the nasal cavity, allowing a prediction of the likely deposition.
CFD Simulation of Aerial Crop Spraying
NASA Astrophysics Data System (ADS)
Omar, Zamri; Qiang, Kua Yong; Mohd, Sofian; Rosly, Nurhayati
2016-11-01
Aerial crop spraying, also known as crop dusting, is made for aerial application of pesticides or fertilizer. An agricultural aircraft which is converted from an aircraft has been built to combine with the aerial crop spraying for the purpose. In recent years, many studies on the aerial crop spraying were conducted because aerial application is the most economical, large and rapid treatment for the crops. The main objective of this research is to study the airflow of aerial crop spraying system using Computational Fluid Dynamics. This paper is focus on the effect of aircraft speed and nozzle orientation on the distribution of spray droplet at a certain height. Successful and accurate of CFD simulation will improve the quality of spray during the real situation and reduce the spray drift. The spray characteristics and efficiency are determined from the calculated results of CFD. Turbulence Model (k-ɛ Model) is used for the airflow in the fluid domain to achieve a more accurate simulation. Furthermore, spray simulation is done by setting the Flat-fan Atomizer Model of Discrete Phase Model (DPM) at the nozzle exit. The interaction of spray from each flat-fan atomizer can also be observed from the simulation. The evaluation of this study is validation and grid dependency study using field data from industry.
NASA Technical Reports Server (NTRS)
Bellan, J.; Ohaska, K.
2001-01-01
The objective of this investigation is to derive a set of consistent mixing rules for calculating diffusivities and thermal diffusion factors over a thermodynamic regime encompassing the subcritical and supercritical ranges. These should serve for modeling purposes, and therefore for accurate simulations of high pressure phenomena such as fluid disintegration, turbulent flows and sprays. A particular consequence of this work will be the determination of effective Lewis numbers for supercritical conditions, thus enabling the examination of the relative importance of heat and mass transfer at supercritical pressures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnotti, G. M.; Genzale, C. L.
The physical mechanisms characterizing the breakup of a diesel spray into droplets are still unknown. This gap in knowledge has largely been due to the challenges of directly imaging this process or quantitatively measuring the outcomes of spray breakup, such as droplet size. Recent x-ray measurements by Argonne National Laboratory, utilized in this work, provide needed information about the spatial evolution of droplet sizes in selected regions of the spray under a range of injection pressures (50–150 MPa) and ambient densities (7.6–22.8 kg/m3) relevant for diesel operating conditions. Ultra-small angle x-ray scattering (USAXS) measurements performed at the Advanced Photon Sourcemore » are presented, which quantify Sauter mean diameters (SMD) within optically thick regions of the spray that are inaccessible by conventional droplet sizing measurement techniques, namely in the near-nozzle region, along the spray centerline, and within the core of the spray. To quantify droplet sizes along the periphery of the spray, a complementary technique is proposed and introduced, which leverages the ratio of path-integrated x-ray and visible laser extinction (SAMR) measurements to quantify SMD. The SAMR and USAXS measurements are then utilized to evaluate current spray models used for engine computational fluid dynamic (CFD) simulations. We explore the ability of a carefully calibrated spray model, premised on aerodynamic wave growth theory, to capture the experimentally observed trends of SMD throughout the spray. The spray structure is best predicted with an aerodynamic primary and secondary breakup process that is represented with a slower time constant and larger formed droplet size than conventionally recommended for diesel spray models. Additionally, spray model predictions suggest that droplet collisions may not influence the resultant droplet size distribution along the spray centerline in downstream regions of the spray.« less
2012-03-01
simple 1-step mechanism taking into account 4 species: CH4, O2, CO2 and H2O. Figure 2. Multiblock grid for the CVRC experiment. Left: Overall view, Right... Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays. Progress in Energy and...hydrogen shear-coaxial jet flames at supercritical pressure. Com- bustion science and technology, 178(1-3):229–252, 2006. 12 B. E. Poling, J. M. Prausnitz
High Fidelity Simulation of Atomization in Diesel Engine Sprays
2015-09-01
ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L Bravo...ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L...Simulation of Atomization in Diesel Engine Sprays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) L Bravo, CB Ivey, D
Effects of hypobaric pressure on human skin: implications for cryogen spray cooling (part II).
Aguilar, Guillermo; Franco, Walfre; Liu, Jie; Svaasand, Lars O; Nelson, J Stuart
2005-02-01
Clinical results have demonstrated that dark purple port wine stain (PWS) birthmarks respond favorably to laser induced photothermolysis after the first three to five treatments. Nevertheless, complete blanching is rarely achieved and the lesions stabilize at a red-pink color. In a feasibility study (Part I), we showed that local hypobaric pressure on PWS human skin prior to laser irradiation induced significant lesion blanching. The objective of the present study (Part II) is to investigate the effects of hypobaric pressures on the efficiency of cryogen spray cooling (CSC), a technique that assists laser therapy of PWS and other dermatoses. Experiments were carried out within a suction cup and vacuum chamber to study the effect of hypobaric pressure on the: (1) interaction of cryogen sprays with human skin; (2) spray atomization; and (3) thermal response of a model skin phantom. A high-speed camera was used to acquire digital images of spray impingement on in vivo human skin and spray cones generated at different hypobaric pressures. Subsequently, liquid cryogen was sprayed onto a skin phantom at atmospheric and 17, 34, 51, and 68 kPa (5, 10, 15, and 20 in Hg) hypobaric pressures. A fast-response temperature sensor measured sub-surface phantom temperature as a function of time. Measurements were used to solve an inverse heat conduction problem to calculate surface temperatures, heat flux, and overall heat extraction at the skin phantom surface. Under hypobaric pressures, cryogen spurts did not produce skin indentation and only minimal frost formation. Sprays also showed shorter jet lengths and better atomization. Lower minimum surface temperatures and higher overall heat extraction from skin phantoms were reached. The combined effects of hypobaric pressure result in more efficient cryogen evaporation that enhances heat extraction and, therefore, improves the epidermal protection provided by CSC. (c) 2005 Wiley-Liss, Inc.
USDA-ARS?s Scientific Manuscript database
The use of simulated and mimic sprays for atomization studies in high speed wind tunnels allows researchers to limit the amount of active ingredients used in spray tests; however, it is important that these simulated and mimic sprays have the same physical and atomization characteristics of spray co...
Evaluation of a locally homogeneous flow model of spray combustion
NASA Technical Reports Server (NTRS)
Mao, C. P.; Szekely, G. A., Jr.; Faeth, G. M.
1980-01-01
A model of spray combustion which employs a second-order turbulence model was developed. The assumption of locally homogeneous flow is made, implying infinitely fast transport rates between the phase. Measurements to test the model were completed for a gaseous n-propane flame and an air atomized n-pentane spray flame, burning in stagnant air at atmospheric pressure. Profiles of mean velocity and temperature, as well as velocity fluctuations and Reynolds stress, were measured in the flames. The predictions for the gas flame were in excellent agreement with the measurements. The predictions for the spray were qualitatively correct, but effects of finite rate interphase transport were evident, resulting in a overstimation of the rate development of the flow. Predictions of spray penetration length at high pressures, including supercritical combustion conditions, were also completed for comparison with earlier measurements. Test conditions involved a pressure atomized n-pentane spray, burning in stagnant air at pressures of 3, 5, and 9 MPa. The comparison between predictions and measurements was fair. This is not a very sensitive test of the model, however, and further high pressure experimental and theoretical results are needed before a satisfactory assessment of the locally homogeneous flow approximation can be made.
Warm Spraying of High-Strength Ni-Al-Bronze: Cavitation Characteristics and Property Prediction
NASA Astrophysics Data System (ADS)
Krebs, Sebastian; Kuroda, Seiji; Katanoda, Hiroshi; Gaertner, Frank; Klassen, Thomas; Araki, Hiroshi; Frede, Simon
2017-01-01
Bronze materials such as Ni-Al-bronze show exceptional performances against cavitation erosion, due to their high fatigue strength and high strength. These materials are used for ship propellers, pump systems or for applications with alternating stresses. Usually, the respective parts are cast. With the aim to use resources more efficiently and to reduce costs, this study aimed to evaluate opportunities to apply bronze as a coating to critical areas of respective parts. The coatings should have least amounts of pores and non-bonded areas and any contaminations that might act as crack nuclei and contribute to material damages. Processes with low oxidation and high kinetic impacts fulfill these criteria. Especially warm spraying, a nitrogen-cooled HVOF process, with similar impact velocities as cold gas spraying but enhanced process temperature, allows for depositing high-strength Ni-Al-bronze. This study systematically simulates and evaluates the formation and performance of warm-sprayed Ni-Al-bronze coatings for different combustion pressures and nitrogen flow rates. Substrate preheating was used to improve coating adhesion for lower spray parameter sets. Furthermore, this study introduces an energy-based concept to compare spray parameter sets and to predict coating properties. Coatings with low porosities and high mechanical strengths are obtained, allowing for a cavitation resistance similar to bulk material.
Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.
Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David
2010-02-01
Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.
Spray process for in situ synthesizing Ti(C,N)-TiB2-Al2O3 composite ceramic coatings
NASA Astrophysics Data System (ADS)
Zhou, Jian; Liu, Hongwei; Sun, Sihao
2017-12-01
Using core wires with Ti-B4C-C as core and Al as strip materials, Ti(C,N)-TiB2-Al2O3 composite ceramic coatings were prepared on 45 steel substrates by the reactive arc spray technology. The influence of spray voltage, current, gas pressure and distance on the coatings was discussed. The spray parameters were optimized with porosity of the coatings as evaluation standard. The results showed that the most important factor which influences the quality of the coatings was spray distance. Then spray gas pressure, current and voltage followed in turn. The optimum process was spray current of 120A, voltage of 36, gas pressure of 0.7MPa and distance of 160mm. The porosity of coatings prepared in this spray process was only 2.11%. The coatings were composed of TiB2, TiC0.3N0.7, TiN, Al2O3 and AlN. Good properties and uniform distribution of these ceramic phases made the coatings have excellent comprehensive performances.
Inhalational and dermal exposures during spray application of biocides.
Berger-Preiss, Edith; Boehncke, Andrea; Könnecker, Gustav; Mangelsdorf, Inge; Holthenrich, Dagmar; Koch, Wolfgang
2005-01-01
Data on inhalational and potential dermal exposures during spray application of liquid biocidal products were generated. On the one hand, model experiments with different spraying devices using fluorescent tracers were carried out to investigate the influence of parameters relevant to the exposure (e.g. spraying equipment, nozzle size, direction of application). On the other hand, measurements were performed at selected workplaces (during disinfection operations in food and feed areas; pest control operations for private, public and veterinary hygiene; wood protection and antifouling applications) after application of biocidal products such as Empire 20, Responsar SC, Omexan-forte, Actellic, Perma-forte; Fendona SC, Pyrethrum mist; CBM 8, Aldekol Des 03, TAD CID, Basileum, Basilit. The measurements taken in the model rooms demonstrated dependence of the inhalation exposure on the type of spraying device used, in the following order: "spraying with low pressure" < "airless spraying" < "fogging" indicating that the particle diameter of the released spray droplets is the most important parameter. In addition inhalation exposure was lowest when the spraying direction was downward. Also for the potential dermal exposure, the spraying direction was of particular importance: overhead spraying caused the highest contamination of body surfaces. The data of inhalational and potential dermal exposures gained through workplace measurements showed considerable variation. During spraying procedures with low-pressure equipments, dose rates of active substances inhaled by the operators ranged from 7 to 230 microg active substance (a.s.)/h. An increase in inhaled dose rates (6-33 mg a.s./h) was observed after use of high application volumes/time unit during wood protection applications indoors. Spraying in the veterinary sector using medium-pressure sprayers led to inhaled dose rates between 2 and 24mga.s./h. The highest inhaled dose rates were measured during fogging (114 mg a.s./h) and after-high-pressure applications in the antifouling sector (110-300 mg a.s./h). The potential dermal exposure of spray operators was lowest (dose rates from 0.2 to 7 mg a.s./h) in the areas of food and feed disinfection and private and public hygiene during spraying with low-pressure devices. During fogging, wood protection and antifouling applications, high-potential dermal exposures of the operators were determined. Dermal dose rates varied between 100 and 34,000 mg a.s./h.
NASA Astrophysics Data System (ADS)
Feddema, Rick
Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative fuels. Optical patternation data and line of sight laser diffraction data show that there is significant difference between jet fuels. Particularly at low fuel injection pressures (0.345 MPa) and cold temperatures (-40 C), the patternation data shows that the total surface area in the spray at 38.1 mm from the pressure swirl injector for the JP-10 fuel type is one-sixth the amount of the JP-8. Finally, this study compares the atomizer performance of a pressure swirl nozzle to a hybrid air blast nozzle. The total surface area for both the hybrid air blast nozzle and the pressure swirl nozzle show a similar decline in atomization performance at low fuel injection pressures and cold temperatures. However, the optical patternator radial profile data and the line of sight laser diffraction data show that the droplet size and spray distribution data are less affected by injection conditions and fuel type in the hybrid air blast nozzle, than they are in the pressure swirl nozzle. One explanation is that the aerodynamic forces associated with the swirler on the hybrid air blast nozzle control the distribution droplets in the spray. This is in contrast to the pressure swirl nozzle droplet distribution that is controlled by internal geometry and droplet ballistics.
The effects of sea spray and atmosphere-wave coupling on air-sea exchange during a tropical cyclone
NASA Astrophysics Data System (ADS)
Garg, Nikhil; Kwee Ng, Eddie Yin; Narasimalu, Srikanth
2018-04-01
The study investigates the role of the air-sea interface using numerical simulations of Hurricane Arthur (2014) in the Atlantic. More specifically, the present study aims to discern the role ocean surface waves and sea spray play in modulating the intensity and structure of a tropical cyclone (TC). To investigate the effects of ocean surface waves and sea spray, numerical simulations were carried out using a coupled atmosphere-wave model, whereby a sea spray microphysical model was incorporated within the coupled model. Furthermore, this study also explores how sea spray generation can be modelled using wave energy dissipation due to whitecaps; whitecaps are considered as the primary mode of spray droplets generation at hurricane intensity wind speeds. Three different numerical simulations including the sea- state-dependent momentum flux, the sea-spray-mediated heat flux, and a combination of the former two processes with the sea-spray-mediated momentum flux were conducted. The foregoing numerical simulations were evaluated against the National Data Buoy Center (NDBC) buoy and satellite altimeter measurements as well as a control simulation using an uncoupled atmosphere model. The results indicate that the model simulations were able to capture the storm track and intensity: the surface wave coupling results in a stronger TC. Moreover, it is also noted that when only spray-mediated heat fluxes are applied in conjunction with the sea-state-dependent momentum flux, they result in a slightly weaker TC, albeit stronger compared to the control simulation. However, when a spray-mediated momentum flux is applied together with spray heat fluxes, it results in a comparably stronger TC. The results presented here allude to the role surface friction plays in the intensification of a TC.
Atomization and combustion performance of antimisting kerosene and jet fuel
NASA Technical Reports Server (NTRS)
Fleeter, R.; Parikh, P.; Sarohia, V.
1983-01-01
Combustion performance of antimisting kerosene (AMK) containing FM-9 polymer was investigated at various levels of degradation (restoration of AMK for normal use in a gas turbine engine). To establish the relationship of degradation and atomization to performance in an aircraft gas turbine combustor, sprays formed by the nozzle of a JT8-D combustor with Jet A and AMK at 1 atmosphere (atm) (14.1 lb/square in absolute) pressure and 22 C at several degradation levels were analyzed. A new spray characterization technique based on digital image analysis of high resolution, wide field spray images formed under pulsed ruby laser sheet illumination was developed. Combustion tests were performed for these fuels in a JT8-D single can combustor facility to measure combustion efficiency and the lean extinction limit. Correlation of combustion performance under simulated engine operating conditions with nozzle spray Sauter mean diameter (SMD) measured at 1 atm and 22 C were observed. Fuel spray SMD and hence the combustion efficiency are strongly influenced by fuel degradation level. Use of even the most highly degraded AMK tested (filter ratio = 1.2) resulted in an increase in fuel consumption of 0.08% to 0.20% at engine cruise conditions.
Self-extinguishing behavior of kerosene spray fire in a completely enclosed compartment
NASA Astrophysics Data System (ADS)
Wang, Changjian; Guo, Jin; Yan, Weigang; Lu, Shouxiang
2013-10-01
The self-extinguishing behavior of kerosene spray fire was investigated in a completely enclosed compartment with the size of 3 m × 3 m × 3.4 m. The spray was generated by locating one BETE nozzle at the center of the bottom wall. A series of spray fire videos were obtained by changing BETE nozzle type and injecting pressure. The results show that spray fire undergoes four stages: the growth stage, the quasi-steady stage, the stretch stage and the self-extinguishing stage. Consumption of large quantities of oxygen causes spray fire to first be stretched and then quench. In this process, fire base migrates away from spray region and leads to the emergence of ghosting fire. Ghosting fire promotes the instability of spray fire and large fluctuation of its height, which provides help to its self-extinguishing. With increasing the injecting pressure or the nozzle diameter, the self-extinguishing time decreases. It is found that the self-extinguishing time is approximately in inverse relation with injecting flow rate. Additionally, we also observed the occurrence of two-phase deflagration just after ignition, and it accelerates the spray fire growth and induces a larger fire height than the following quasi-steady spray fire. The deflagration turns stronger with increasing the injecting pressure.
NASA Astrophysics Data System (ADS)
Majumdar, Alok; Valenzuela, Juan; LeClair, Andre; Moder, Jeff
2016-03-01
This paper presents a numerical model of a system-level test bed-the multipurpose hydrogen test bed (MHTB) using the Generalized Fluid System Simulation Program (GFSSP). MHTB is representative in size and shape of a space transportation vehicle liquid hydrogen propellant tank, and ground-based testing was performed at NASA Marshall Space Flight Center (MSFC) to generate data for cryogenic storage. GFSSP is a finite volume-based network flow analysis software developed at MSFC and used for thermofluid analysis of propulsion systems. GFSSP has been used to model the self-pressurization and ullage pressure control by the Thermodynamic Vent System (TVS). A TVS typically includes a Joule-Thompson (J-T) expansion device, a two-phase heat exchanger (HEX), and a mixing pump and liquid injector to extract thermal energy from the tank without significant loss of liquid propellant. For the MHTB tank, the HEX and liquid injector are combined into a vertical spray bar assembly. Two GFSSP models (Self-Pressurization and TVS) were separately developed and tested and then integrated to simulate the entire system. The Self-Pressurization model consists of multiple ullage nodes, a propellant node, and solid nodes; it computes the heat transfer through multilayer insulation blankets and calculates heat and mass transfer between the ullage and liquid propellant and the ullage and tank wall. A TVS model calculates the flow through a J-T valve, HEX, and spray and vent systems. Two models are integrated by exchanging data through User Subroutines of both models. Results of the integrated models have been compared with MHTB test data at a 50% fill level. Satisfactory comparison was observed between tests and numerical predictions.
NASA Technical Reports Server (NTRS)
Beardsley, E G
1928-01-01
This investigation was undertaken at the Langley Memorial Aeronautical Laboratory in connection with a general research on fuel-injection for aircraft. The purpose of the investigation was to determine the factors controlling the reproducibility of spray penetration and secondary discharges after cut-off. The development of single sprays from automatic injection valves was recorded by means of special high-speed photographic apparatus capable of taking 25 consecutive pictures of the moving spray at a rate of 4,000 per second. The effect of two types of injection valves, injection-valve tube length, initial pressure in the injection-valve tube, speed of the injection control mechanism, and time of spray cut-off, on the reproducibility of spray penetration, and on secondary discharges were investigated. It was found that neither type of injection valve materially affected spray reproducibility. The initial pressure in the injection-valve tube controlled the reproducibility of spray penetrations. An increase in the initial pressure or in the length of the injection-valve tube slightly increased the spray penetration within the limits of this investigation. The speed of the injection-control mechanism did not affect the penetration. Analysis of the results indicates that secondary discharges were caused in this apparatus by pressure waves initiated by the rapid opening of the cut-off valve. The secondary discharges were eliminated in this investigation by increasing the length of the injection-valve tube. (author)
Plasma sprayed coatings on crankshaft used steels
NASA Astrophysics Data System (ADS)
Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.
2017-08-01
Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.
Measurement of Droplet Sizes by the Diffraction Ring Method
1948-07-27
for measuring the droplet size distribution in sprays ob- tained by pressure injection of a liquid through an orifice «roby air- stream atomization...Diameter vs Injection Pressure 10 6. Distribution Curves for Spray Sample of Water Injected into Air Stream .... 11 Page ii Page Hi i^ujJa-je jii...tion in sprays obtained by pressure injection of a liquid through an orifice or by air- stream atomization. Perhaps the most widely used method
Liquid Jets in Crossflow at Elevated Temperatures and Pressures
NASA Astrophysics Data System (ADS)
Amighi, Amirreza
An experimental study on the characterization of liquid jets injected into subsonic air crossflows is conducted. The aim of the study is to relate the droplet size and other attributes of the spray, such as breakup length, position, plume width, and time to flow parameters, including jet and air velocities, pressure and temperature as well as non-dimensional variables. Furthermore, multiple expressions are defined that would summarize the general behavior of the spray. For this purpose, an experimental setup is developed, which could withstand high temperatures and pressures to simulate conditions close to those experienced inside gas turbine engines. Images are captured using a laser based shadowgraphy system similar to a 2D PIV system. Image processing is extensively used to measure droplet size and boundaries of the spray. In total 209 different conditions are tested and over 72,000 images are captured and processed. The crossflow air temperatures are 25°C, 200°C, and 300°C; absolute crossflow air pressures are 2.1, 3.8, and 5.2 bars. Various liquid and gas velocities are tested for each given temperature and pressure in order to study the breakup mechanisms and regimes. Effects of dimensional and non-dimensional variables on droplet size are presented in detail. Several correlations for the mean droplet size, which are generated in this process, are presented. In addition, the influence of non-dimensional variables on the breakup length, time, plume area, angle, width and mean jet surface thickness are discussed and individual correlations are provided for each parameter. The influence of each individual parameter on the droplet sizes is discussed for a better understanding of the fragmentation process. Finally, new correlations for the centerline, windward and leeward trajectories are presented and compared to the previously reported correlations.
Silver-Teflon coating improvement
NASA Technical Reports Server (NTRS)
Reed, M. W.
1976-01-01
Approximately forty adhesives were subjected to laboratory screening. Seven candidate adhesives were selected from the screening tests and evaluated in a thermal vacuum test on radiator panels similar to the anticipated flight hardware configuration. Several classes of adhesives based on epoxide, polyester, silicone, and urethane resin systems were tested. These included contact adhesives, heat cured adhesives, heat and pressure cured adhesives, pressure sensitive adhesives, and two part paint-on or spray-on adhesives. The panels were tested in a space environmental simulation laboratory chamber during the July 9-20, 1973 time span.
Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.
2017-01-01
This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.
SPRAYTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Spray Droplet Dispersion Modeling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allwine, K Jerry; Rutz, Frederick C.; Droppo, James G.
SPRAY TRANsport (SPRAYTRAN) is a comprehensive dispersion modeling system that is used to simulate the offsite drift of pesticides from spray applications. SPRAYTRAN functions as a console application within Environmental System Research Institute’s ArcMap Geographic Information System (Version 9.x) and integrates the widely-used, U.S. Environmental Protection Agency (EPA)-approved CALifornia PUFF (CALPUFF) dispersion model and model components to simulate longer-range transport and diffusion in variable terrain and spatially/temporally varying meteorological (e.g., wind) fields. Area sources, which are used to define spray blocks in SPRAYTRAN, are initialized using output files generated from a separate aerial-spray-application model called AGDISP (AGricultural DISPersal). The AGDISPmore » model is used for estimating the amount of pesticide deposited to the spray block based on spraying characteristics (e.g., pesticide type, spray nozzles, and aircraft type) and then simulating the near-field (less than 300-m) drift from a single pesticide application. The fraction of pesticide remaining airborne from the AGDISP near-field simulation is then used by SPRAYTRAN for simulating longer-range (greater than 300 m) drift and deposition of the pesticide.« less
Comparison of the performance between a spray gun and a spray boom in ornamentals.
Foqué, D; Nuyttens, D
2011-01-01
Flemish greenhouse growers predominantly use handheld spray guns and spray lances for their crop protection purposes although these techniques are known for their heavy workload and their high operator exposure risks. Moreover, when these techniques are compared with spray boom equipment, they are often found to be less effective. On the other hand, handheld spraying techniques are less expensive and more flexible to use. Additionally, many Flemish growers are convinced that a high spray volume and spray pressure is needed to assure a good plant protection. The aim of this work was to evaluate and compare the spray deposition, penetration and uniformity between a manually pulled horizontal spray boom and a spray gun under controlled laboratory conditions. In total, six different spray application techniques were evaluated. In general, the total deposition results were comparable between the spray boom and the spray gun applications but the boom applications resulted in a more uniform spray distribution over the crop. On a plant level, the spray distribution was not uniform for the different techniques with highest deposits on the upper side of the top leaves. Using spray guns at a higher spray pressure did not improve spray penetration and deposition on the bottom side of the leaves. From the different nozzle types, the XR 80 03 gave the best results. Plant density clearly affected crop penetration and deposition on the bottom side of the leaves.
Tan, Y M; Flynn, M R
2000-10-01
The transfer efficiency of a spray-painting gun is defined as the amount of coating applied to the workpiece divided by the amount sprayed. Characterizing this transfer process allows for accurate estimation of the overspray generation rate, which is important for determining a spray painter's exposure to airborne contaminants. This study presents an experimental evaluation of a mathematical model for predicting the transfer efficiency of a high volume-low pressure spray gun. The effects of gun-to-surface distance and nozzle pressure on the agreement between the transfer efficiency measurement and prediction were examined. Wind tunnel studies and non-volatile vacuum pump oil in place of commercial paint were used to determine transfer efficiency at nine gun-to-surface distances and four nozzle pressure levels. The mathematical model successfully predicts transfer efficiency within the uncertainty limits. The least squares regression between measured and predicted transfer efficiency has a slope of 0.83 and an intercept of 0.12 (R2 = 0.98). Two correction factors were determined to improve the mathematical model. At higher nozzle pressure settings, 6.5 psig and 5.5 psig, the correction factor is a function of both gun-to-surface distance and nozzle pressure level. At lower nozzle pressures, 4 psig and 2.75 psig, gun-to-surface distance slightly influences the correction factor, while nozzle pressure has no discernible effect.
NASA Technical Reports Server (NTRS)
Beardsley, Edward G
1928-01-01
Apparatus for recording photographically the start, growth, and cut-off of oil sprays from injection valves has been developed at the Langley Memorial Aeronautical Laboratory. The apparatus consists of a high-tension transformer by means of which a bank of condensers is charged to a high voltage. The controlled discharge of these condensers in sequence, at a rate of several thousand per second, produces electric sparks of sufficient intensity to illuminate the moving spray for photographing. The sprays are injected from various types of valves into a chamber containing gases at pressures up to 600 pounds per square inch. Several series of pictures are shown. The results give the effects of injection pressure, chamber pressure, specific gravity of the fuel oil used, and injection-valve design, upon spray characteristics.
Electrical Resistivity of Wire Arc Sprayed Zn and Cu Coatings for In-Mold-Metal-Spraying
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch; Ochotta, P.
2018-06-01
Electrical functionalities can be integrated into plastic parts by integrating thermally sprayed metal coatings into the non-conductive base material. Thermally sprayed conducting tracks for power and signal transmission are one example. In this case, the electrical resistance or resistivity of the coatings should be investigated. Therefore, the electrical resistivity of wire arc sprayed Zn and Cu coatings has been investigated. In case of Zn coatings, spray distance, gas pressure and wire diameter could be identified as significant influencing parameters on the electrical resistivity. In contrast, process gas, gas pressure and voltage do have a significant influence on the electrical resistivity of Cu coatings. Through the use of the In-Mold-Metal-Spraying method (IMMS), thermal degradation can be avoided by transferring thermally sprayed coating from a mold insert onto the plastic part. Therefore, the influence of the transfer process on the electrical resistance of the coatings has also been investigated.
Temporal and Modal Characterization of DoD Source Air Toxic Emission Factors
2010-04-01
Deviation RTP Research Triangle Park RWS Roadway Simulator S/N Signal Noise SDA Spray Dryer Catwalk Area STP Standard Pressure SVOC Semi...shutdown, and stationary idle conditions. A journal paper detailing the performance of REMPI-TOFMS in characterizing real-time air toxic emissions...the whole (benzene) dataset. The results are currently (July, 2009) being written into a paper prime- authored by Battelle. xvii
Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase
NASA Astrophysics Data System (ADS)
von Niessen, Konstantin; Gindrat, Malko
2011-06-01
Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion resistance but also the simultaneous coverage of multiple air foils.
A numerical study on high-pressure water-spray cleaning for CSP reflectors
NASA Astrophysics Data System (ADS)
Anglani, Francesco; Barry, John; Dekkers, Willem
2016-05-01
Mirror cleaning for concentrated solar thermal (CST) systems is an important aspect of operation and maintenance (O&M), which affects solar field efficiency. The cleaning process involves soil removal by erosion, resulting from droplet impingement on the surface. Several studies have been conducted on dust accumulation and CSP plant reflectivity restoration, demonstrating that parameters such as nozzle diameter, jet impingement angle, interaxial distance between nozzles, standoff distance, water velocity, nozzle pressure and others factors influence the extent of reflectance restoration. In this paper we aim at identifying optimized cleaning strategies suitable for CST plants, able to restore mirror reflectance by high-pressure water-spray systems through the enhancement of shear stress over reflectors' surface. In order to evaluate the forces generated by water-spray jet impingement during the cleaning process, fluid dynamics simulations have been undertaken with ANSYS CFX software. In this analysis, shear forces represent the "critical phenomena" within the soil removal process. Enhancing shear forces on a particular area of the target surface, varying the angle of impingement in combination with the variation of standoff distances, and managing the interaxial distance of nozzles can increase cleaning efficiency. This procedure intends to improve the cleaning operation for CST mirrors reducing spotted surface and increasing particles removal efficiency. However, turbulence developed by adjacent flows decrease the shear stress generated on the reflectors surface. The presence of turbulence is identified by the formation of "fountain regions" which are mostly responsible of cleaning inefficiency. By numerical analysis using ANSYS CFX, we have modelled a stationary water-spray system with an array of three nozzles in line, with two angles of impingement: θ = 90° and θ = 75°. Several numerical tests have been carried out, varying the interaxial distance of nozzles, standoff distance, jet pressure and jet impingement angle in order to identify effective and efficient cleaning procedures to restore collectors' reflectance, decrease turbulence and improve CST plant efficiency. Results show that the forces generated over the flat target surface are proportional to the inlet pressure and to the water velocity over the surface, and that the shear stresses decrease as the standoff distance increases.
Effects of nozzle type and spray angle on spray deposition in ivy pot plants.
Foqué, Dieter; Nuyttens, David
2011-02-01
Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems--instead of the still predominantly used spray guns--might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0-4.9-fold using the appropriate application technique. When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow-cone, the air-inclusion flat-fan and the standard flat-fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry.
Microgravity Spray Cooling Research for High Powered Laser Applications
NASA Technical Reports Server (NTRS)
Zivich, Chad P.
2004-01-01
An extremely powerful laser is being developed at Goddard Space Flight Center for use on a satellite. This laser has several potential applications. One application is to use it for upper atmosphere weather research. In this case, the laser would reflect off aerosols in the upper atmosphere and bounce back to the satellite, where the aerosol velocities could be calculated and thus the upper atmosphere weather patterns could be monitored. A second application would be for the US. Air Force, which wants to use the laser strategically as a weapon for satellite defense. The Air Force fears that in the coming years as more and more nations gain limited space capabilities that American satellites may become targets, and the laser could protect the satellites. Regardless of the ultimate application, however, a critical step along the way to putting the laser in space is finding a way to efficiently cool it. While operating the laser becomes very hot and must be cooled to prevent overheating. On earth, this is accomplished by simply running cool tap water over the laser to keep it cool. But on a satellite, this is too inefficient. This would require too much water mass to be practical. Instead, we are investigating spray cooling as a means to cool the laser in microgravity. Spray cooling requires much less volume of fluid, and thus could be suitable for use on a satellite. We have inherited a 2.2 second Drop Tower rig to conduct our research with. In our experiments, water is pressurized with a compressed air tank and sprayed through a nozzle onto our test plate. We can vary the pressure applied to the water and the temperature of the plate before an experiment trial. The whole process takes place in simulated microgravity in the 2.2 second Drop Tower, and a high speed video camera records the spray as it hits the plate. We have made much progress in the past few weeks on these experiments. The rig originally did not have the capability to heat the test plate, but I did some heat transfer calculations and picked out a heater to order for the rig. I learned QBasic programming language to change the operating code for our drops, allowing us to rapidly cycle the spray nozzle open and closed to study the effects. We have derived an equation for flow rate vs. pressure for our experiment. We have recorded several videos of drops at different pressures, some with heated test plate and some without, and have noticed substantial differences in the liquid behavior. I have also changed the computer program to write a file with temperature vs. time profiles for the test plate, and once the necessary thermocouple comes in (it was ordered last week), we will have temperature profiles to accompany the videos. Once we have these temperature profiles to go with the videos, we will be able to see how the temperature is affected by the spray at different pressures, and how the spray changes its behavior once as the plate changes from hot to cool. With quantitative temperature data, we can then mathematically model the heat transfer from the plate to the cooling spray. Finally, we can look at the differences between trials in microgravity and those in normal earth gravity.
Chen, YaoHan; Su, ChungHwei; Tseng, JoMing; Li, WunJie
2015-01-01
The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS) overestimated the space temperature before water spraying in the case of the same water spray system. PMID:25723519
Application of High Performance Computing for Simulations of N-Dodecane Jet Spray with Evaporation
2016-11-01
sprays and develop a predictive theory for comparison to measurements in the laboratory of turbulent diesel sprays. 15. SUBJECT TERMS high...models into future simulations of turbulent jet sprays and develop a predictive theory for comparison to measurements in the lab of turbulent diesel ...A critical component of maintaining performance and durability of a diesel engine involves the formation of a fuel-air mixture as a diesel jet spray
NASA Astrophysics Data System (ADS)
Movahednejad, E.; Ommi, F.; Nekofar, K.
2013-04-01
The structures of the port injector spray dominates the mixture preparation process and strongly affect the subsequent engine combustion characteristics over a wide range of operating conditions in port-injection gasoline engines. All these spray characteristics are determined by particular injector design and operating conditions. In this paper, an experimental study is made to characterize the breakup mechanism and spray characteristics of a injector with multi-disc nozzle (SAGEM,D2159MA). A comparison was made on injection characteristics of the multi-hole injectors and its effects on various fuel pressure and temperature. The distributions of the droplet size and velocity and volume flux were characterized using phase Doppler anemometry (PDA) technique. Through this work, it was found that the injector produces a finer spray with a wide spray angle in higher fuel pressure and temperature.
A hydrodynamic mechanism of meteor ablation. The melt-spraying model
NASA Astrophysics Data System (ADS)
Girin, Oleksandr G.
2017-10-01
Context. Hydrodynamic conditions are similar in a molten meteoroid and a liquid drop in a high-speed airflow. Despite the fact that the latter is well-studied, both experimentally and theoretically, hydrodynamic instability theory has not been applied to study the fragmentation of molten meteoroids. Aims: We aim to treat quasi-continuous spraying of meteoroid melt due to hydrodynamic instability as a possible mechanism of ablation. Our objectives are to calculate the time development of particle release, the released particle sizes and their distribution by sizes, as well as the meteoroid mass loss law. Methods: We have applied gradient instability theory to model the behaviour of the meteoroid melt layer and its interaction with the atmosphere. We have assumed a spherical meteoroid and that the meteoroid has a shallow entry angle, such that the density of the air stream interacting with the meteoroid is nearly constant. Results: High-frequency spraying of the molten meteoroid is numerically simulated. The intermediate and final size distributions of released particles are calculated, as well as the meteoroid mass loss law. Fast and slow meteoroids of iron and stone compositions are modelled, resulting in significant differences in the size distribution of melt particles sprayed from each meteoroid. Less viscous iron melt produces finer particles and a denser aerosol wake than a stony one does. Conclusions: Analysis of the critical conditions for the gradient instability mechanism shows that the dynamic pressure of the air-stream at heights up to 100 km is sufficient to overcome surface tension forces and pull out liquid particles from the meteoroid melt by means of unstable disturbances. Hence, the proposed melt-spraying model is able to explain quasi-continuous mode of meteoroid fragmentation at large heights and low dynamic pressures. A closed-form solution of the meteoroid ablation problem is obtained due to the melt-spraying model usage, at the meteoroid composition, initial radius and velocity being given. The movies associated to Figs. 6 and 7 are available at http://www.aanda.org
Stochastic simulation of the spray formation assisted by a high pressure
NASA Astrophysics Data System (ADS)
Gorokhovski, M.; Chtab-Desportes, A.; Voloshina, I.; Askarova, A.
2010-03-01
The stochastic model of spray formation in the vicinity of the injector and in the far-field has been described and assessed by comparison with measurements in Diesel-like conditions. In the proposed mesh-free approach, the 3D configuration of continuous liquid core is simulated stochastically by ensemble of spatial trajectories of the specifically introduced stochastic particles. The parameters of the stochastic process are presumed from the physics of primary atomization. The spray formation model consists in computation of spatial distribution of the probability of finding the non-fragmented liquid jet in the near-to-injector region. This model is combined with KIVA II computation of atomizing Diesel spray in two-ways. First, simultaneously with the gas phase RANS computation, the ensemble of stochastic particles is tracking and the probability field of their positions is calculated, which is used for sampling of initial locations of primary blobs. Second, the velocity increment of the gas due to the liquid injection is computed from the mean volume fraction of the simulated liquid core. Two novelties are proposed in the secondary atomization modeling. The first one is due to unsteadiness of the injection velocity. When the injection velocity increment in time is decreasing, the supplementary breakup may be induced. Therefore the critical Weber number is based on such increment. Second, a new stochastic model of the secondary atomization is proposed, in which the intermittent turbulent stretching is taken into account as the main mechanism. The measurements reported by Arcoumanis et al. (time-history of the mean axial centre-line velocity of droplet, and of the centre-line Sauter Mean Diameter), are compared with computations.
Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications
NASA Technical Reports Server (NTRS)
Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.
2002-01-01
Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.
Nance, Thomas A.; Siddall, Alvin A.; Cheng, William Y.; Counts, Kevin T.
2005-05-10
Disclosed is an elongated, tubular, compact high pressure sprayer apparatus for insertion into an access port of vessels having contaminated interior areas that require cleaning by high pressure water spray. The invention includes a spray nozzle and a camera adjacent thereto with means for rotating and raising and lowering the nozzle so that areas identified through the camera may be cleaned with a minimum production of waste water to be removed.
Penetration and Duration of Fuel Sprays from a Pump Injection System
NASA Technical Reports Server (NTRS)
Rothrock, A M; Marsh, E T
1934-01-01
High-speed motion pictures were taken of individual fuel sprays from a pump injection system. The changes in the spray-tip penetration with changes in the pump speed, injection-valve opening and closing pressures, discharge-orifice area, injection-tube length and diameter, and pump throttle setting were measured. The pump was used with and without a check valve. The results show that the penetration of the spray tip can be controlled by the dimensions of the injection tube, the area of the discharge orifice, and the injection-valve opening and closing pressures.
Liquid Hydrogen Zero-Boiloff Testing and Analysis for Long-Term Orbital Storage
NASA Astrophysics Data System (ADS)
Hastings, L. J.; Hedayat, A.; Bryant, C. B.; Flachbart, R. H.
2004-06-01
Advancement of cryocooler and passive insulation technologies in recent years has improved the prospects for zero-boiloff (ZBO) storage of cryogenic fluids. The ZBO concept involves the use of a cryocooler/radiator system to balance storage system incoming and extracted energy such that zero boiloff (no venting) occurs. A large-scale demonstration of the ZBO concept was conducted using the Marshall Space Flight Center (MSFC) multipurpose hydrogen test bed (MHTB) along with a commercial cryocooler unit. The liquid hydrogen (LH2) was withdrawn from the tank, passed through the cryocooler heat exchanger, and then the chilled liquid was sprayed back into the tank through a spray bar. The spray bar recirculation system was designed to provide destratification independent of ullage and liquid positions in a zero-gravity environment. The insulated MHTB tank, combined with the vacuum chamber conditions, enabled orbital storage simulation. ZBO was demonstrated for fill levels of 95%, 50%, and 25%. At each fill level, a steady-state boiloff test was performed prior to operating the cryocooler to establish the baseline heat leak. Control system logic based on real-time thermal data and ullage pressure response was implemented to automatically provide a constant tank pressure. A comparison of test data and analytical results is presented in this paper.
NASA Astrophysics Data System (ADS)
Farjam, Aslan; Cormier, Yannick; Dupuis, Philippe; Jodoin, Bertrand; Corbeil, Antoine
2015-10-01
In this work, aluminum and aluminum-alumina powder mixtures were used to produce pyramidal fin arrays on aluminum substrates using cold spray as an additive manufacturing process. Using aluminum-alumina mixtures instead of pure aluminum powder could be seen as a cost-effective measure, preventing nozzle clogging or the need to use expensive polymer nozzles that wear out rapidly during cold spray. The fin geometries that were produced were observed using a 3D digital microscope to determine the flow passages width and fins' geometric details. Heat transfer and pressure drop tests were carried out using different ranges of appropriate Reynolds numbers for the sought commercial application to compare each fin array and determine the effect of alumina content. It was found that the presence of alumina reduces the fins' performance when compared to pure aluminum fins but that they were still outperforming traditional fins. Numerical simulations were performed to model the fin arrays and were used to predict the pressure loss in the fin array and compare these results with experimental values. The numerical model opens up new avenues in predicting different applicable operating conditions and other possible fin shapes using the same fin composition, instead of performing costly and time-consuming experiments.
Classification of spray nozzles based on droplet size distributions and wind tunnel tests.
De Schamphelerie, M; Spanoghe, P; Nuyttens, D; Baetens, K; Cornelis, W; Gabriels, D; Van der Meeren, P
2006-01-01
Droplet size distribution of a pesticide spray is recognised as a main factor affecting spray drift. As a first approximation, nozzles can be classified based on their droplet size spectrum. However, the risk of drift for a given droplet size distribution is also a function of spray structure, droplet velocities and entrained air conditions. Wind tunnel tests to determine actual drift potentials of the different nozzles have been proposed as a method of adding an indication of the risk of spray drift to the existing classification based on droplet size distributions (Miller et al, 1995). In this research wind tunnel tests were performed in the wind tunnel of the International Centre for Eremology (I.C.E.), Ghent University, to determine the drift potential of different types and sizes of nozzles at various spray pressures. Flat Fan (F) nozzles Hardi ISO 110 02, 110 03, 110 04, 110 06; Low-Drift (LD) nozzles Hardi ISO 110 02, 110 03, 110 04 and Injet Air Inclusion (AI) nozzles Hardi ISO 110 02, 110 03, 110 04 were tested at a spray pressures of 2, 3 and 4 bar. The droplet size spectra of the F and the LD nozzles were measured with a Malvern Mastersizer at spray pressures 2 bar, 3 bar and 4 bar. The Malvern spectra were used to calculate the Volume Median Diameters (VMD) of the sprays.
Hornby, Jonathan A; Robinson, Jim; Sterling, Milton
2017-03-01
The droplet spectrum of a mosquito adulticide spray plume determines its ability to drift through the target area, impinge on the mosquito, deliver a toxic dose, and the risk of environmental contamination. This paper provides data on droplet spectra produced from 6 nozzles in a high-pressure nozzle spray system and 5 rotary nozzle systems for common mosquito adulticides. Spray plume spectra were measured by laser diffraction. High-pressure nozzles were evaluated at pressures ranging from 500 psi to 6,000 psi. Rotary nozzles were evaluated at rotational speeds ranging from 500 rpm to 24,000 rpm. Measurements were made at wind speeds of 129 km/h (80 mph) to 225 km/h (140 mph). Adulticides included were Fyfanon ® , Aqua-Reslin ® , Dibrom ® , Duet ® , Permanone ® , and the inert mineral oil, Orchex ® 796. High-pressure nozzles produced spray plumes within the US Environmental Protection Agency (EPA) label requirements for all configurations tested except for one at a wind speed of 225 km/h, BETE ® MW125. Air speed had no significant effect on the spray plume volume median diameter (Dv (0.5) ) at the speeds tested with Fyfanon ® . The spray plume 90% drop volume diameter (Dv (0.9) ) significantly decreased, 13% at the higher wind speed of 225 km/h. Drop size was inversely related to pressure. Dilution of the product formulations increased the Dv (0.5) of the spray plume but it did not exceed the label requirements. For the PJ15 nozzle, orientation of the nozzle into the wind of up to 135° showed a significant increase in Dv (0.5) at 500 psi, 750 psi, and 1,500 psi. The Dv (0.5) varied <5 μm over the 3 angles examined for any specific pressure. Rotary nozzles produced spray plumes within the EPA label requirements for all test configurations examined. Air speed had no significant effect on Dv (0.5) or Dv (0.9) of the plume at speeds tested with Fyfanon for the ASC A20 nozzle. The rotary AU5000 nozzle using Orchex 796 produced plumes of larger drops in all configurations than any of the rotary nozzles of similar configurations using active ingredient formulations and within EPA label requirements.
NASA Astrophysics Data System (ADS)
Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.
Experiments have been completed to characterize coal-water slurry sprays from an electronically-controlled accumulator fuel injection system of a diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures, and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions (50% by mass coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3)), the break-up time was 0.30 ms. An empirical correlation for spray tip penetration, break-up time, and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.
NASA Astrophysics Data System (ADS)
Doisneau, François; Arienti, Marco; Oefelein, Joseph C.
2017-01-01
For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier-Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle-particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doisneau, François, E-mail: fdoisne@sandia.gov; Arienti, Marco, E-mail: marient@sandia.gov; Oefelein, Joseph C., E-mail: oefelei@sandia.gov
For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier–Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle–particle coupling barelymore » influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.« less
Electrokinetically pumped high pressure sprays
Schoeniger, Joseph S [Oakland, CA; Paul, Phillip H [Livermore, CA; Schoeniger, Luke [Pittsford, NY
2005-11-01
An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.
Electrokinetically pumped high pressure sprays
Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke
2002-01-01
An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.
2013-05-01
multiple swirler configurations and fuel injector locations at atmospheric pressure con- ditions. Both single-element and multiple-element LDI...the swirl number, Reynolds’ number and injector location in the LDI element. Besides the multi-phase flow characteristics, several experimen- tal...region downstream of the fuel injector on account of a sta- ble and compact precessing vortex core. Recent ex- periments conducted by the Purdue group have
NASA Astrophysics Data System (ADS)
Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.
Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3), the break-up time was 0.30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6 degrees. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.
Primary atomization of liquid jets issuing from rocket engine coaxial injectors
NASA Astrophysics Data System (ADS)
Woodward, Roger D.
1993-01-01
The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid-propellant rocket engines. Much work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their optical opacity. This work focuses on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact liquid core. The specific application considered is that of shear-coaxial type rocket engine injectors. Real-time x-ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, has been used to make the measurements. Nitrogen and helium were employed as the fuel simulants while an x-ray absorbing potassium iodide aqueous solution was used as the liquid oxygen (LOX) simulant. The intact-liquid-core length data have been obtained and interpreted to illustrate the effects of chamber pressure (gas density), injected-gas and liquid velocities, and cavitation. The results clearly show that the effect of cavitation must be considered at low chamber pressures since it can be the dominant breakup mechanism. A correlation of intact core length in terms of gas-to-liquid density ratio, liquid jet Reynolds number, and Weber number is suggested. The gas-to-liquid density ratio appears to be the key parameter for aerodynamic shear breakup in this study. A small number of hot-fire, LOX/hydrogen tests were also conducted to attempt intact-LOX-core measurements under realistic conditions in a single-coaxial-element rocket engine. The tests were not successful in terms of measuring the intact core, but instantaneous imaging of LOX jets suggests that LOX jet breakup is qualitatively similar to that of cold-flow, propellant-simulant jets. The liquid oxygen jets survived in the hot-fire environment much longer than expected, and LOX was even visualized exiting the chamber nozzle under some conditions. This may be an effect of the single element configuration.
NASA Astrophysics Data System (ADS)
Ebrahim, Mahsa; Ortega, Alfonso; Delbosc, Nicolas; Wilson, Mark C. T.; Summers, Jonathan L.
2017-07-01
Spray cooling is one of the most promising methods of cooling high heat flux electronics. Depending on the type of the nozzle, spray cooling can be categorized as single-phase or two-phase. In the latter, which is known to be more effective, a secondary gas is used to further pressurize the liquid and form smaller droplets at higher velocities. The gas is also assumed to assist the spreading phase by imposing normal and tangential forces on the droplet free surface which adds to the complicated hydrodynamics of the droplet impact. Moreover, the order of magnitude of droplet size in spray cooling is 10-6 m, thereby introducing a low Weber and Reynolds numbers' impact regime which heretofore has not been well understood. A 3D lattice Boltzmann method was implemented to simulate the impact of a single micro-droplet on a dry surface both in ambient air and under a stagnation gas flow. Two cases were closely compared and correlations were proposed for the instantaneous spreading diameter. Contrary to recent findings at higher impact Weber and Reynolds numbers, it was found that a stagnation flow only significantly affects the spreading phase for Ca* ≥ 0.35 but has little influence on the receding physics.
The effect of luting media on the fracture resistance of a flame sprayed all-ceramic crown.
Casson, A M; Glyn Jones, J C; Youngson, C C; Wood, D J
2001-11-01
This in vitro study investigated the effect of selected luting media on the fracture resistance of a flame-sprayed all-ceramic crown. Three groups of 10 human upper premolar teeth were prepared for crowning using a standardised technique. Flame sprayed crowns were fabricated and cemented onto the preparations using zinc phosphate (ZPC), glass polyalkenoate (GPC) or composite luting cement (CLC). During crown seating, a pressure perfusion system simulated pulpal fluid outflow equivalent to 300mm of H2O. Compressive fracture resistance was determined for each group using a Universal Testing Machine with a crosshead speed of 1mm min(-1). A group of unrestored teeth acted as a control. The fracture resistance of the groups ranked as follows: ZPC>CLC>GPC=unrestored teeth. The difference between the fracture resistance of ZPC and CLC groups and the control group was statistically significant. The mode of fracture between the luted crowns and natural crowns was markedly different. When tested in compression, a new, flame-sprayed all-ceramic crown, when luted in place using ZPC, GPC or CLC, could produce strengths comparable to or greater than natural unrestored teeth. The luting agent used significantly affected the recorded fracture loads.
NASA Astrophysics Data System (ADS)
Abani, Neerav; Reitz, Rolf D.
2010-09-01
An advanced mixing model was applied to study engine emissions and combustion with different injection strategies ranging from multiple injections, early injection and grouped-hole nozzle injection in light and heavy duty diesel engines. The model was implemented in the KIVA-CHEMKIN engine combustion code and simulations were conducted at different mesh resolutions. The model was compared with the standard KIVA spray model that uses the Lagrangian-Drop and Eulerian-Fluid (LDEF) approach, and a Gas Jet spray model that improves predictions of liquid sprays. A Vapor Particle Method (VPM) is introduced that accounts for sub-grid scale mixing of fuel vapor and more accurately and predicts the mixing of fuel-vapor over a range of mesh resolutions. The fuel vapor is transported as particles until a certain distance from nozzle is reached where the local jet half-width is adequately resolved by the local mesh scale. Within this distance the vapor particle is transported while releasing fuel vapor locally, as determined by a weighting factor. The VPM model more accurately predicts fuel-vapor penetrations for early cycle injections and flame lift-off lengths for late cycle injections. Engine combustion computations show that as compared to the standard KIVA and Gas Jet spray models, the VPM spray model improves predictions of in-cylinder pressure, heat released rate and engine emissions of NOx, CO and soot with coarse mesh resolutions. The VPM spray model is thus a good tool for efficiently investigating diesel engine combustion with practical mesh resolutions, thereby saving computer time.
Atomization from agricultural spray nozzles: Effects of air shear and tank mix adjuvants
USDA-ARS?s Scientific Manuscript database
Spray adjuvants can have a substantial impact on spray atomization from agricultural nozzles; however, this process is also affected by the nozzle type, operating pressure and, for aerial application, the airspeed of application. Different types of ground spray nozzle can dramatically affect the im...
Effects of nozzle spray angle on droplet size and velocity
USDA-ARS?s Scientific Manuscript database
Spray applicators have many choices in selecting a spray nozzle to make an application of an agricultural product. They must balance flowrate, spray pressure, and nozzle type and setup to deliver their agrochemical in the right droplet size for their particular needs. Studies were conducted to det...
The Use of Particle/Substrate Material Models in Simulation of Cold-Gas Dynamic-Spray Process
NASA Astrophysics Data System (ADS)
Rahmati, Saeed; Ghaei, Abbas
2014-02-01
Cold spray is a coating deposition method in which the solid particles are accelerated to the substrate using a low temperature supersonic gas flow. Many numerical studies have been carried out in the literature in order to study this process in more depth. Despite the inability of Johnson-Cook plasticity model in prediction of material behavior at high strain rates, it is the model that has been frequently used in simulation of cold spray. Therefore, this research was devoted to compare the performance of different material models in the simulation of cold spray process. Six different material models, appropriate for high strain-rate plasticity, were employed in finite element simulation of cold spray process for copper. The results showed that the material model had a considerable effect on the predicted deformed shapes.
Influence of fuel temperature on atomization performance of pressure-swirl atomizers
NASA Astrophysics Data System (ADS)
Wang, X. F.; Lefebvre, A. H.
The influence of fuel temperature on mean drop size and drop-size distribution is examined for aviation gasoline and diesel oil, using three pressure-swirl simplex nozzles. Spray characteristics are measured over wide ranges of fuel injection pressure and ambient air pressure using a Malvern spray analyzer. Fuel temperatures are varied from -20 C to +50 C. Over this range of temperature, the overall effect of an increase in fuel temperature is to reduce the mean drop size and broaden the distribution of drop sizes in the spray. Generally, it is found that the influence of fuel temperature on mean drop size is far more pronounced for diesel oil than for gasoline. For both fuels the beneficial effect of higher fuel temperatures on atomization quality is sensibly independent of ambient air pressure.
Fuel thermal stability effects on spray characteristics
NASA Technical Reports Server (NTRS)
Lefebvre, A. H.; Nickolaus, D.
1987-01-01
The propensity of a heated hydrocarbon fuel toward solids deposition within a fuel injector is investigated experimentally. Fuel is arranged to flow through the injector at constant temperature, pressure, and flow rate and the pressure drop across the nozzle is monitored to provide an indication of the amount of deposition. After deposits have formed, the nozzle is removed from the test rig and its spray performance is compared with its performance before deposition. The spray characteristics measured include mean drop size, drop-size distribution, and radial and circumferential fuel distribution. It is found that small amounts of deposition can produce severe distortion of the fuel spray pattern. More extensive deposition restores spray uniformity, but the nozzle flow rate is seriously curtailed.
Kimbell, Julia S; Segal, Rebecca A; Asgharian, Bahman; Wong, Brian A; Schroeter, Jeffry D; Southall, Jeremy P; Dickens, Colin J; Brace, Geoff; Miller, Frederick J
2007-01-01
Many studies suggest limited effectiveness of spray devices for nasal drug delivery due primarily to high deposition and clearance at the front of the nose. Here, nasal spray behavior was studied using experimental measurements and a computational fluid dynamics model of the human nasal passages constructed from magnetic resonance imaging scans of a healthy adult male. Eighteen commercially available nasal sprays were analyzed for spray characteristics using laser diffraction, high-speed video, and high-speed spark photography. Steadystate, inspiratory airflow (15 L/min) and particle transport were simulated under measured spray conditions. Simulated deposition efficiency and spray behavior were consistent with previous experimental studies, two of which used nasal replica molds based on this nasal geometry. Deposition fractions (numbers of deposited particles divided by the number released) of 20- and 50-microm particles exceeded 90% in the anterior part of the nose for most simulated conditions. Predicted particle penetration past the nasal valve improved when (1) the smaller of two particle sizes or the lower of two spray velocities was used, (2) the simulated nozzle was positioned 1.0 rather than 0.5 or 1.5 cm into the nostril, and (3) inspiratory airflow was present rather than absent. Simulations also predicted that delaying the appearance of normal inspiratory airflow more than 1 sec after the release of particles produced results equivalent to cases in which no inspiratory airflow was present. These predictions contribute to more effective design of drug delivery devices through a better understanding of the effects of nasal airflow and spray characteristics on particle transport in the nose.
Digital image processing techniques for the analysis of fuel sprays global pattern
NASA Astrophysics Data System (ADS)
Zakaria, Rami; Bryanston-Cross, Peter; Timmerman, Brenda
2017-12-01
We studied the fuel atomization process of two fuel injectors to be fitted in a new small rotary engine design. The aim was to improve the efficiency of the engine by optimizing the fuel injection system. Fuel sprays were visualised by an optical diagnostic system. Images of fuel sprays were produced under various testing conditions, by changing the line pressure, nozzle size, injection frequency, etc. The atomisers were a high-frequency microfluidic dispensing system and a standard low flow-rate fuel injector. A series of image processing procedures were developed in order to acquire information from the laser-scattering images. This paper presents the macroscopic characterisation of Jet fuel (JP8) sprays. We observed the droplet density distribution, tip velocity, and spray-cone angle against line-pressure and nozzle-size. The analysis was performed for low line-pressure (up to 10 bar) and short injection period (1-2 ms). Local velocity components were measured by applying particle image velocimetry (PIV) on double-exposure images. The discharge velocity was lower in the micro dispensing nozzle sprays and the tip penetration slowed down at higher rates compared to the gasoline injector. The PIV test confirmed that the gasoline injector produced sprays with higher velocity elements at the centre and the tip regions.
NASA Astrophysics Data System (ADS)
Tillmann, W.; Hagen, L.; Kokalj, D.
2017-10-01
In terms of arc-sprayed coatings, the lamellar coating microstructure is mainly affected by the atomization behavior of the molten electrode tips. When using compressed air, oxide formations occur during atomization, across the particle-laden spray plume and when the molten droplets splash onto the substrate. Within the scope of this study, the potential of a high-velocity arc-spraying process due to elevated atomization gas pressures and its effect on the spray and coating characteristics was analyzed using a cast tungsten carbide (CTC)-reinforced FeCMnSi cored wire. Since the atomization behavior corresponds with the electrode phenomena, the power spectrum and the droplet formation were observed during spraying. The tribo-mechanical properties of CTC-FeCMnSi coatings were examined in dry sliding experiments and indentation tests. In addition, adhesion tests and metallographic investigations were carried out to analyze the bonding strength, cohesive behavior, and lamellar microstructure. The occurrence of oxide phases was evaluated by x-ray diffraction and electron microscopy. Moreover, the oxygen content was determined by using glow discharge optical emission spectroscopy as well as energy-dispersive x-ray spectroscopy. With respect to elevated atomization gas pressures, a dense microstructure with improved adhesion to the substrate and reduced surface roughness was observed. Dry sliding experiments revealed an advanced wear behavior of specimens, when using above average increased atomization gas pressures. Analytic methods verified the existence of oxide phases, which were generated during spraying. A significant change of the extent and type of oxides, when applying an increased flow rate of the atomization gas, cannot be observed. Besides an enhanced coating quality, the use of increased atomization gas pressure exhibited good process stability.
Investigation of High Pressure, Multi-Hole Diesel Fuel Injection Using High Speed Imaging
NASA Astrophysics Data System (ADS)
Morris, Steven; Eagle, Ethan; Wooldridge, Margaret
2012-10-01
Research to experimentally capture and understand transient fuel spray behavior of modern fuel injection systems remains underdeveloped. To this end, a high-pressure diesel common-rail fuel injector was instrumented in a spherical, constant volume combustion chamber to image the early time history of injection of diesel fuel. The research-geometry fuel injector has four holes aligned on a radial plane of the nozzle with hole sizes of 90, 110, 130 and 150 μm in diameter. Fuel was injected into a non-reacting environment with ambient densities of 17.4, 24.0, and 31.8 kg/m3 at fuel rail pressures of 1000, 1500, and 2000 bar. High speed images of fuel injection were taken using backlighting at 100,000 frames per second (100 kfps) and an image processing algorithm. The experimental results are compared with a one-dimensional fuel-spray model that was historically developed and applied to fuel sprays from single-hole fuel injectors. Fuel spray penetration distance was evaluated as a function of time for the different injector hole diameters, fuel injection pressures and ambient densities. The results show the differences in model predictions and experimental data at early times in the spray development.
CFD Simulation of Liquid Rocket Engine Injectors
NASA Technical Reports Server (NTRS)
Farmer, Richard; Cheng, Gary; Chen, Yen-Sen; Garcia, Roberto (Technical Monitor)
2001-01-01
Detailed design issues associated with liquid rocket engine injectors and combustion chamber operation require CFD methodology which simulates highly three-dimensional, turbulent, vaporizing, and combusting flows. The primary utility of such simulations involves predicting multi-dimensional effects caused by specific injector configurations. SECA, Inc. and Engineering Sciences, Inc. have been developing appropriate computational methodology for NASA/MSFC for the past decade. CFD tools and computers have improved dramatically during this time period; however, the physical submodels used in these analyses must still remain relatively simple in order to produce useful results. Simulations of clustered coaxial and impinger injector elements for hydrogen and hydrocarbon fuels, which account for real fluid properties, is the immediate goal of this research. The spray combustion codes are based on the FDNS CFD code' and are structured to represent homogeneous and heterogeneous spray combustion. The homogeneous spray model treats the flow as a continuum of multi-phase, multicomponent fluids which move without thermal or velocity lags between the phases. Two heterogeneous models were developed: (1) a volume-of-fluid (VOF) model which represents the liquid core of coaxial or impinger jets and their atomization and vaporization, and (2) a Blob model which represents the injected streams as a cloud of droplets the size of the injector orifice which subsequently exhibit particle interaction, vaporization, and combustion. All of these spray models are computationally intensive, but this is unavoidable to accurately account for the complex physics and combustion which is to be predicted, Work is currently in progress to parallelize these codes to improve their computational efficiency. These spray combustion codes were used to simulate the three test cases which are the subject of the 2nd International Workshop on-Rocket Combustion Modeling. Such test cases are considered by these investigators to be very valuable for code validation because combustion kinetics, turbulence models and atomization models based on low pressure experiments of hydrogen air combustion do not adequately verify analytical or CFD submodels which are necessary to simulate rocket engine combustion. We wish to emphasize that the simulations which we prepared for this meeting are meant to test the accuracy of the approximations used in our general purpose spray combustion models, rather than represent a definitive analysis of each of the experiments which were conducted. Our goal is to accurately predict local temperatures and mixture ratios in rocket engines; hence predicting individual experiments is used only for code validation. To replace the conventional JANNAF standard axisymmetric finite-rate (TDK) computer code 2 for performance prediction with CFD cases, such codes must posses two features. Firstly, they must be as easy to use and of comparable run times for conventional performance predictions. Secondly, they must provide more detailed predictions of the flowfields near the injector face. Specifically, they must accurately predict the convective mixing of injected liquid propellants in terms of the injector element configurations.
NASA Astrophysics Data System (ADS)
Cizek, J.; Matejkova, M.; Dlouhy, I.; Siska, F.; Kay, C. M.; Karthikeyan, J.; Kuroda, S.; Kovarik, O.; Siegl, J.; Loke, K.; Khor, Khiam Aik
2015-06-01
Titanium powder was deposited onto steel specimens using four thermal spray technologies: plasma spray, low-pressure cold spray, portable cold spray, and warm spray. The specimens were then subjected to strain-controlled cyclic bending test in a dedicated in-house built device. The crack propagation was monitored by observing the changes in the resonance frequency of the samples. For each series, the number of cycles corresponding to a pre-defined specimen cross-section damage was used as a performance indicator. It was found that the grit-blasting procedure did not alter the fatigue properties of the steel specimens (1% increase as compared to as-received set), while the deposition of coatings via all four thermal spray technologies significantly increased the measured fatigue lives. The three high-velocity technologies led to an increase of relative lives to 234% (low-pressure cold spray), 210% (portable cold spray), and 355% (warm spray) and the deposition using plasma spray led to an increase of relative lives to 303%. The observed increase of high-velocity technologies (cold and warm spray) could be attributed to a combination of homogeneous fatigue-resistant coatings and induction of peening stresses into the substrates via the impingement of the high-kinetic energy particles. Given the intrinsic character of the plasma jet (low-velocity impact of semi/molten particles) and the mostly ceramic character of the coating (oxides, nitrides), a hypothesis based on non-linear coatings behavior is provided in the paper.
A simulation technique for predicting thickness of thermal sprayed coatings
NASA Technical Reports Server (NTRS)
Goedjen, John G.; Miller, Robert A.; Brindley, William J.; Leissler, George W.
1995-01-01
The complexity of many of the components being coated today using the thermal spray process makes the trial and error approach traditionally followed in depositing a uniform coating inadequate, thereby necessitating a more analytical approach to developing robotic trajectories. A two dimensional finite difference simulation model has been developed to predict the thickness of coatings deposited using the thermal spray process. The model couples robotic and component trajectories and thermal spraying parameters to predict coating thickness. Simulations and experimental verification were performed on a rotating disk to evaluate the predictive capabilities of the approach.
ELECTROSTATIC ENHANCEMENT OF FABRIC FILTRATION OF FLY ASH AND SPRAY DRYER BY-PRODUCT
The paper describes small pilot-scale experiments, showing that the pressure drop increase during the fabric filtration of redispersed spray dryer by-product (chiefly calcium salts and fly ash) is significantly reduced by electrostatic enhancement of the filtration. The pressure ...
Microalgal cell disruption via ultrasonic nozzle spraying.
Wang, M; Yuan, W
2015-01-01
The objective of this study was to understand the effect of operating parameters, including ultrasound amplitude, spraying pressure, nozzle orifice diameter, and initial cell concentration on microalgal cell disruption and lipid extraction in an ultrasonic nozzle spraying system (UNSS). Two algal species including Scenedesmus dimorphus and Nannochloropsis oculata were evaluated. Experimental results demonstrated that the UNSS was effective in the disruption of microalgal cells indicated by significant changes in cell concentration and Nile red-stained lipid fluorescence density between all treatments and the control. It was found that increasing ultrasound amplitude generally enhanced cell disruption and lipid recovery although excessive input energy was not necessary for best results. The effect of spraying pressure and nozzle orifice diameter on cell disruption and lipid recovery was believed to be dependent on the competition between ultrasound-induced cavitation and spraying-generated shear forces. Optimal cell disruption was not always achieved at the highest spraying pressure or biggest nozzle orifice diameter; instead, they appeared at moderate levels depending on the algal strain and specific settings. Increasing initial algal cell concentration significantly reduced cell disruption efficiency. In all UNSS treatments, the effectiveness of cell disruption and lipid recovery was found to be dependent on the algal species treated.
Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point
NASA Technical Reports Server (NTRS)
Golliher, Eric L.; Yao, Shi-Chune
2013-01-01
The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.
Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys
NASA Technical Reports Server (NTRS)
Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)
1994-01-01
A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.
An experimental study of unsteady sprays at very high injection pressures
NASA Astrophysics Data System (ADS)
Reggiori, A.; Mariani, F.; Parigi, G.; Carlevaro, R.
An experimental study of the development of fuel sprays under very high injection pressures is described. A gas gun capable of generating pressure pulses up to 10,000 bar has been employed as an injection pump. Tests have been carried out with simple cylindrical nozzles, injecting diesel oil in ambient air. The development of the jet has been visualized by means of flash shadowgraphy.
NASA Technical Reports Server (NTRS)
Cooper, Clayton S.; Laurendeau, Normand M.; Hicks, Yolanda R. (Technical Monitor)
2000-01-01
Lean direct-injection (LDI) spray flames offer the possibility of reducing NO(sub x) emissions from gas turbines by rapid mixing of the liquid fuel and air so as to drive the flame structure toward partially-premixed conditions. We consider the technical approaches required to utilize laser-induced fluorescence methods for quantitatively measuring NO concentrations in high-pressure LDI spray flames. In the progression from atmospheric to high-pressure measurements, the LIF method requires a shift from the saturated to the linear regime of fluorescence measurements. As such, we discuss quantitative, spatially resolved laser-saturated fluorescence (LSF), linear laser-induced fluorescence (LIF), and planar laser-induced fluorescence (PLIF) measurements of NO concentration in LDI spray flames. Spatially-resolved LIF measurements of NO concentration (ppm) are reported for preheated, LDI spray flames at pressures of two to five atmospheres. The spray is produced by a hollow-cone, pressure-atomized nozzle supplied with liquid heptane. NO is excited via the Q(sub 2)(26.5) transition of the gamma(0,0) band. Detection is performed in a two nanometer region centered on the gamma(0,1) band. A complete scheme is developed by which quantitative NO concentrations in high-pressure LDI spray flames can be measured by applying linear LIF. NO is doped into the reactants and convected through the flame with no apparent destruction, thus allowing a NO fluorescence calibration to be taken inside the flame environment. The in-situ calibration scheme is validated by comparisons to a reference flame. Quantitative NO profiles are presented and analyzed so as to better understand the operation of lean-direct injectors for gas turbine combustors. Moreover, parametric studies are provided for variations in pressure, air-preheat temperature, and equivalence ratio. Similar parametric studies are performed for lean, premixed-prevaporized flames to permit comparisons to those for LDI flames. Finally, PLIF is expanded to high pressure in an effort to quantify the detected fluorescence image for LDI flames. Success is achieved by correcting the PLIF calibration via a single-point LIF measurement. This procedure removes the influence of any preferential background that occurs in the PLIF detection window. In general, both the LIF and PLIF measurements verify that the LDI strategy could be used to reduce NO(sub x) emissions in future gas turbine combustors.
Taber Wanstall, C; Agrawal, Ajay K; Bittle, Joshua A
2017-10-20
The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recorded by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.
Pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium.
Fevery, Davina; Houbraken, Michael; Spanoghe, Pieter
2016-04-15
Various studies focus on professional pesticide use, whereas pressure of non-professional use on human and the environment is often neglected. In this study, an attempt was made to estimate the pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium based on sales figures and by using three exposure models. A classification in non-professional use was made based on type of pesticide, application method and on intensity of non-professional use. Pressure of non-professional use on operators is highest for intensive operators, caused by the use of insecticides in an aerosol spray can. Pressure of non-professional pesticides on aquatic life is mainly generated by the use of herbicides. The aerosol spray induces the highest pressure whereas the trigger application hardly affects operator and environmental exposure. The ordinary non-professional user generates most pressure on aquatic organisms. Pressure of non-professional pesticides on bees is mainly caused by the use of insecticides, especially the active substance imidacloprid in combination with the aerosol spray can application method applied by an intensive operator. In general, both total usage (kg) and pressure of pesticides decreased for the period 2005 to 2012 due to efforts made by the government and industry. The results of this study suggest to pay special attention to aerosol spray applications and the non-professional use of insecticides. Copyright © 2016 Elsevier B.V. All rights reserved.
Investigations on the self-excited oscillations in a kerosene spray flame
DOE Office of Scientific and Technical Information (OSTI.GOV)
de la Cruz Garcia, M.; Mastorakos, E.; Dowling, A.P.
2009-02-15
A laboratory scale gas turbine type burner at atmospheric pressure and with air preheat was operated with aviation kerosene Jet-A1 injected from a pressure atomiser. Self-excited oscillations were observed and analysed to understand better the relationship between the spray and thermo-acoustic oscillations. The fluctuations of CH{sup *} chemiluminescence measured simultaneously with the pressure were used to determine the flame transfer function. The Mie scattering technique was used to record spray fluctuations in reacting conditions with a high speed camera. Integrating the Mie intensity over the imaged region gave a temporal signal acquired simultaneously with pressure fluctuations and the transfer functionmore » between the light scattered from the spray and the velocity fluctuations in the plenum was evaluated. Phase Doppler anemometry was used for axial velocity and drop size measurements at different positions downstream the injection plane and for various operating conditions. Pressure spectra showed peaks at a frequency that changed with air mass flow rate. The peak for low air mass flow rate operation was at 220 Hz and was associated with a resonance of the supply plenum. At the same global equivalence ratio but at high air mass flow rates, the pressure spectrum peak was at 323 Hz, a combustion chamber resonant frequency. At low air flow rates, the spray fluctuation motion was pronounced and followed the frequency of the pressure oscillation. At high air flow rates, more effective evaporation resulted in a complete disappearance of droplets at an axial distance of about 1/3 burner diameters from the injection plane, leading to a different flame transfer function and frequency of the self-excited oscillation. The results highlight the sensitivity of the self-excited oscillation to the degree of mixing achieved before the main recirculation zone. (author)« less
Multiple-Nozzle Spray Head Applies Foam Insulation
NASA Technical Reports Server (NTRS)
Walls, Joe T.
1993-01-01
Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.
DNS Study of the Ignition of n-Heptane Fuel Spray under HCCI Conditions
NASA Astrophysics Data System (ADS)
Wang, Yunliang; Rutland, Christopher J.
2004-11-01
Direct numerical simulations are carried out to investigate the mixing and auto-ignition processes of n-heptane fuel spray in a turbulent field using a skeletal chemistry mechanism with 44 species and 112 reactions. For the solution of the carrier gas fluid, we use the Eulerian method, while for the fuel spray, the Lagrangian method is used. We use an eighth-order finite difference scheme to calculate spacial derivatives and a fourth-order Runge-Kutta scheme for the time integration. The initial gas temperature is 926 K and the initial gas pressure is 30 atmospheres. The initial global equivalence ratio based on the fuel concentration is around 0.4. The initial droplet diameter is 60 macrons and the droplet temperature is 300 K. Evolutions of averaged temperature, species mass fraction, heat release and reaction rate are presented. Contours of temperature and species mass fractions are presented. The objective is to understand the mechanism of ignition under Homogeneous Charged Compression Ignition (HCCI) conditions, aiming at providing some useful information of HCCI combustion, which is one of the critical issues to be resolved.
ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DEVILBISS JGHV-531-46FF HVLP SPRAY GUN
This report presents the results of the verification test of the DeVilbiss JGHV-531-46FF high-volume, low-pressure pressure-feed spray gun, hereafter referred to as the DeVilbiss JGHV, which is designed for use in industrial finishing. The test coating chosen by ITW Industrial Fi...
30 CFR 35.21 - Temperature-pressure spray-ignition tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... device shall be provided. (c) Test procedures. (1) A 21/2-quart sample of the fluid shall be poured into... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Temperature-pressure spray-ignition tests. 35..., EVALUATION, AND APPROVAL OF MINING PRODUCTS FIRE-RESISTANT HYDRAULIC FLUIDS Test Requirements § 35.21...
Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials
Baszczuk, A.; Rutkowska-Gorczyca, M.; Jasiorski, M.; Małachowska, A.; Posadowski, W.; Znamirowski, Z.
2017-01-01
Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In2O3 coating sprayed onto copper substrate. The microstructure and properties of the feedstock powder prepared using three various methods as well as the deposited ones by low-pressure cold spraying coatings were evaluated, compared, and analysed. Produced cermet Sn+In2O3 targets were employed in first magnetron sputtering process to deposit preliminary, thin, transparent conducting oxide films onto the glass substrates. The resistivity of obtained preliminary films was measured and allows believing that fabrication of TCO (transparent conducting oxide) films using targets produced by cold spraying is possible in the future, after optimization of the deposition conditions. PMID:29109810
Microscopic Examination of Cold Spray Cermet Sn+In2O3 Coatings for Sputtering Target Materials.
Winnicki, M; Baszczuk, A; Rutkowska-Gorczyca, M; Jasiorski, M; Małachowska, A; Posadowski, W; Znamirowski, Z; Ambroziak, A
2017-01-01
Low-pressure cold spraying is a newly developed technology with high application potential. The aim of this study was to investigate potential application of this technique for producing a new type of transparent conductive oxide films target. Cold spraying technique allows the manufacture of target directly on the backing plate; therefore the proposed sputtering target has a form of Sn+In 2 O 3 coating sprayed onto copper substrate. The microstructure and properties of the feedstock powder prepared using three various methods as well as the deposited ones by low-pressure cold spraying coatings were evaluated, compared, and analysed. Produced cermet Sn+In 2 O 3 targets were employed in first magnetron sputtering process to deposit preliminary, thin, transparent conducting oxide films onto the glass substrates. The resistivity of obtained preliminary films was measured and allows believing that fabrication of TCO (transparent conducting oxide) films using targets produced by cold spraying is possible in the future, after optimization of the deposition conditions.
LN2 spray droplet size measurement via ensemble diffraction technique
NASA Technical Reports Server (NTRS)
Saiyed, N. H.; Jurns, J.; Chato, David J.
1991-01-01
The size of subcooled liquified nitrogen droplets are measured with a 5 mW He-Ne laser as a function of pressure difference (delta P) across flat spray and full cone pressure atomizing nozzles. For delta P's of 3 to 30 psid, the spray sauter mean diameter (SMD) ranged between 250 to 50 microns. The pressure range tested is representative of those expected during cryogenic fluid transfer operations in space. The droplet sizes from the flat spray nozzles were greater than those from the full cone nozzle. A power function of the form, SMD varies as delta P(exp a), describes the spray SMD as a function of the delta P very well. The values of a were -0.36 for the flat spray and -0.87 for the full cone. The reduced dependence of the flat spray SMD on the delta P was probably because of: (1) the absence of a swirler that generates turbulence within the nozzle to enhance atomization, and (2) a possible increase in shearing stress resulting from the delayed atomization due to the absence of turbulence. The nitrogen quality, up to 1.5 percent is based on isenthalpic expansion, did not have a distinct and measurable effect on the spray SMD. Both bimodal and monomodal droplet size population distributions were measured. In the bimodal distribution, the frequency of the first mode was much greater than the frequency of the second mode. Also, the frequency of the second mode was low enough such that a monomodal approximation probably would give reasonable results.
Spray nozzle investigation for the Improved Helicopter Icing Spray System (IHISS)
NASA Technical Reports Server (NTRS)
Peterson, Andrew A.; Oldenburg, John R.
1990-01-01
A contract has been awarded by the U.S. Army to design, fabricate and test a replacement for the existing Helicopter Icing Spray System. Data are shown for extensive bench and icing tunnel test programs used to select and modify an improved spray nozzle. The IHISS, capable of deployment from any CH-47 helicopter, will include new icing spray nozzles and pneumatic pressure source, and a significantly larger water tank and spray boom. The resulting system will provide a significantly larger icing cloud with droplet characteristics closely matching natural icing conditions.
Atomization and vaporization characteristics of airblast fuel injection inside a venturi tube
NASA Technical Reports Server (NTRS)
Sun, H.; Chue, T.-H.; Lai, M.-C.; Tacina, R. R.
1993-01-01
This paper describes the experimental and numerical characterization of the capillary fuel injection, atomization, dispersion, and vaporization of liquid fuel in a coflowing air stream inside a single venturi tube. The experimental techniques used are all laser-based. Phase Doppler analyzer was used to characterize the atomization and vaporization process. Planar laser-induced fluorescence visualizations give good qualitative picture of the fuel droplet and vapor distribution. Limited quantitative capabilities of the technique are also demonstrated. A modified version of the KIVA-II was used to simulate the entire spray process, including breakup and vaporization. The advantage of venturi nozzle is demonstrated in terms of better atomization, more uniform F/A distribution, and less pressure drop. Multidimensional spray calculations can be used as a design tool only if care is taken for the proper breakup model, and wall impingement process.
Penetration and Duration of Fuel Sprays from a Pump Injection System
NASA Technical Reports Server (NTRS)
Rothrock, A M; Marsh, E T
1931-01-01
High-speed motion pictures were taken of individual fuel sprays from a pump injection system. The changes in the spray-tip penetration with changes in the pump speed, injection-valve opening and closing pressures, discharge-orifice area, injection-tube length and diameter, and pump throttle setting were measured. In addition, the effects of the variables on the time lag and duration of injection can be controlled by the dimensions of the injection tube, the area of the discharge orifice, and the injection-valve opening and closing pressures.
Hewitt, Andrew J; Solomon, Keith R; Marshall, E J P
2009-01-01
A wind tunnel atomization study was conducted to measure the emission droplet size spectra for water and Glyphos (a glyphosate formulation sold in Colombia) + Cosmo-flux sprays for aerial application to control coca and poppy crops in Colombia. The droplet size spectra were measured in a wind tunnel for an Accu-Flo nozzle (with 16 size 0.085 [2.16 mm] orifices), under appropriate simulated aircraft speeds (up to 333 km/h), using a laser diffraction instrument covering a dynamic size range for droplets of 0.5 to 3,500 microm. The spray drift potential of the glyphosate was modeled using the AGDISP spray application and drift model, using input parameters representative of those occurring in Colombia for typical aerial application operations. The droplet size spectra for tank mixes containing glyphosate and Cosmo-Flux were considerably finer than water and became finer with higher aircraft speeds. The tank mix with 44% glyphosate had a D(v0.5) of 128 microm, while the value at the 4.9% glyphosate rate was 140 microm. These are classified as very fine to fine sprays. Despite being relatively fine, modeling showed that the droplets would not evaporate as rapidly as most similarly sized agricultural sprays because the nonvolatile proportion of the tank mix (active and inert adjuvant ingredients) was large. Thus, longer range drift is small and most drift that does occur will deposit relatively close to the application area. Drift will only occur downwind and, with winds of velocity less than the modeled maximum of 9 km/h, the drift distance would be substantially reduced. Spray drift potential might be additionally reduced through various practices such as the selection of nozzles, tank mix adjuvants, aircraft speeds, and spray pressures that would produce coarser sprays. Species sensitivity distributions to glyphosate were constructed for plants and amphibians. Based on modeled drift and 5th centile concentrations, appropriate no-spray buffer zones (distance from the end of the spray boom as recorded electronically +/-5%) for protection of sensitive plants were 50-120 m for coca spray scenarios and considerably lower for poppy spray scenarios. The equivalent buffer zone for amphibia was 5 m. The low toxicity of glyphosate to humans suggests that these aerial applications are not a concern for human health.
Update to the USDA-ARS fixed-wing spray nozzle models
USDA-ARS?s Scientific Manuscript database
The current USDA ARS Aerial Spray Nozzle Models were updated to reflect both new standardized measurement methods and systems, as well as, to increase operational spray pressure, aircraft airspeed and nozzle orientation angle limits. The new models were developed using both Central Composite Design...
Field Hydraulic and Air-Blast Sprayers for Row Crops.
ERIC Educational Resources Information Center
Cole, Herbert, Jr., Comp.
This agriculture extension service publication from Pennsylvania State University discusses techniques and equipment used in spraying field crops. In the discussion of field hydraulic sprayers, specific topics include types of sprayers, tanks, pumps, pressure regulators, hoses, boom spraying, directed spraying, and nozzle bodies. In the discussion…
Spray combustion model improvement study, 1
NASA Technical Reports Server (NTRS)
Chen, C. P.; Kim, Y. M.; Shang, H. M.
1993-01-01
This study involves the development of numerical and physical modeling in spray combustion. These modeling efforts are mainly motivated to improve the physical submodels of turbulence, combustion, atomization, dense spray effects, and group vaporization. The present mathematical formulation can be easily implemented in any time-marching multiple pressure correction methodologies such as MAST code. A sequence of validation cases includes the nonevaporating, evaporating and_burnin dense_sprays.
NASA Astrophysics Data System (ADS)
Kihm, K. D.; Terracina, D. P.; Payne, S. E.; Caton, J. A.
Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMD's near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 (mu)m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.
A topical haemoglobin spray for oxygenating pressure ulcers: a pilot study.
Tickle, Joy
2015-03-01
The effect of pressure ulcers on patient quality of life have been recognised as a real problem for many years, and the need for robust and effective management of pressure ulcers is now a prominent national health-care issue. Myriad different interventions exist for the treatment of pressure ulcers, including clinically effective dressings and pressure-relieving devices, yet many pressure ulcers still do not heal and often become a chronic wound. This is the second of a series of articles (Norris, 2014) discussing the clinical evaluation of a topical oxygen therapy in practice. It describes a small evaluation involving 18 patients with pressure ulcers. The study set out to determine the effect of a topical oxygen therapy on wound size. The therapy comprises a canister that sprays pure haemoglobin in a water solution into or onto the wound. The haemoglobin spray needs to be used at least once every 3 days, does not require training on its use and can be used in any care setting. Overall, results identified wound healing progression in all 18 wounds and wound size reduction in 17 of the 18 wounds.
Vacuum Plasma Spraying Replaces Electrodeposition
NASA Technical Reports Server (NTRS)
Holmes, Richard R.; Power, Chris; Burns, David H.; Daniel, Ron; Mckechnie, Timothy N.
1992-01-01
Vacuum plasma spraying used to fabricate large parts with complicated contours and inner structures, without uninspectable welds. Reduces time, and expense of fabrication. Wall of combustion chamber built up inside of outer nickel-alloy jacket by plasma spraying. Particles of metal sprayed partially melted in plasma gun and thrown at supersonic speed toward deposition surface. Vacuum plasma-spray produces stronger bond between the grooves and covering layer completing channels and wall of combustion chamber. In tests, bond withstood pressure of 20 kpsi, three times allowable limit by old method.
USDA-ARS?s Scientific Manuscript database
The ultimate goal of a pesticide spraying system is to provide adequate coverage on intended canopies with a minimum amount of spray materials and off-target waste. Better spray coverage requires an understanding of the fate and transport of spray droplets carried by turbulent airflows in orchards. ...
Measurements in liquid fuel sprays
NASA Technical Reports Server (NTRS)
Chigier, N.
1984-01-01
Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.
Spray outputs from a variable-rate sprayer manipulated with PWM solenoid valves
USDA-ARS?s Scientific Manuscript database
Pressure fluctuations during variable-rate spray applications can affect nozzle flow rate fluctuations, resulting in spray outputs that do not coincide with the prescribed canopy structure volume. Variations in total flow rate discharged from 40 nozzles, each coupled with a pulse-width-modulated (PW...
Ceramic coatings on smooth surfaces
NASA Technical Reports Server (NTRS)
Miller, R. A. (Inventor); Brindley, W. J. (Inventor); Rouge, C. J. (Inventor)
1991-01-01
A metallic coating is plasma sprayed onto a smooth surface of a metal alloy substitute or on a bond coating. An initial thin ceramic layer is low pressure sprayed onto the smooth surface of the substrate or bond coating. Another ceramic layer is atmospheric plasma sprayed onto the initial ceramic layer.
Shock tube studies of thermal radiation of diesel-spray combustion under a range of spray conditions
NASA Astrophysics Data System (ADS)
Tsuboi, T.; Kurihara, Y.; Takasaki, M.; Katoh, R.; Ishii, K.
2007-05-01
A tailored interface shock tube and an over-tailored interface shock tube were used to measure the thermal energy radiated during diesel-spray combustion of light oil, α-methylnaphthalene and cetane by changing the injection pressure. The ignition delay of methanol and the thermal radiation were also measured. Experiments were performed in a steel shock tube with a 7 m low-pressure section filled with air and a 6 m high-pressure section. Pre-compressed fuel was injected through a throttle nozzle into air behind a reflected shock wave. Monochromatic emissive power and the power emitted across all infrared wavelengths were measured with IR-detectors set along the central axis of the tube. Time-dependent radii where soot particles radiated were also determined, and the results were as follows. For diesel spray combustion with high injection pressures (from 10 to 80 MPa), the thermal radiation energy of light oil per injection increased with injection pressure from 10 to 30 MPa. The energy was about 2% of the heat of combustion of light oil at P inj = about 30 MPa. At injection pressure above 30 MPa the thermal radiation decreased with increasing injection pressure. This profile agreed well with the combustion duration, the flame length, the maximum amount of soot in the flame, the time-integrated soot volume and the time-integrated flame volume. The ignition delay of light oil was observed to decrease monotonically with increasing fuel injection pressure. For diesel spray combustion of methanol, the thermal radiation including that due to the gas phase was 1% of the combustion heat at maximum, and usually lower than 1%. The thermal radiation due to soot was lower than 0.05% of the combustion heat. The ignition delays were larger (about 50%) than those of light oil. However, these differences were within experimental error.
Ultrafast high-repetition imaging of fuel sprays using picosecond fiber laser.
Purwar, Harsh; Wang, Hongjie; Tang, Mincheng; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Godin, Thomas; Hideur, Ammar
2015-12-28
Modern diesel injectors operate at very high injection pressures of about 2000 bar resulting in injection velocities as high as 700 m/s near the nozzle outlet. In order to better predict the behavior of the atomization process at such high pressures, high-resolution spray images at high repetition rates must be recorded. However, due to extremely high velocity in the near-nozzle region, high-speed cameras fail to avoid blurring of the structures in the spray images due to their exposure time. Ultrafast imaging featuring ultra-short laser pulses to freeze the motion of the spray appears as an well suited solution to overcome this limitation. However, most commercial high-energy ultrafast sources are limited to a few kHz repetition rates. In the present work, we report the development of a custom-designed picosecond fiber laser generating ∼ 20 ps pulses with an average power of 2.5 W at a repetition rate of 8.2 MHz, suitable for high-speed imaging of high-pressure fuel jets. This fiber source has been proof tested by obtaining backlight images of diesel sprays issued from a single-orifice injector at an injection pressure of 300 bar. We observed a consequent improvement in terms of image resolution compared to standard white-light illumination. In addition, the compactness and stability against perturbations of our fiber laser system makes it particularly suitable for harsh experimental conditions.
Flow visualization of a rocket injector spray using gelled propellant simulants
NASA Technical Reports Server (NTRS)
Green, James M.; Rapp, Douglas C.; Roncace, James
1991-01-01
A study was conducted at NASA-Lewis to compare the atomization characteristics of gelled and nongelled propellant simulants. A gelled propellant simulant composed of water, sodium hydroxide, and an acrylic acid polymer resin (as the gelling agent) was used to simulate the viscosity of an aluminum/PR-1 metallized fuel gel. Water was used as a comparison fluid to isolate the rheological effects of the water-gel and to simulate nongelled RP-1. The water-gel was injected through the central orifice of a triplet injector element and the central post of a coaxial injector element. Nitrogen gas flowed through the outer orifices of the triplet injector element and through the annulus of the coaxial injector element and atomized the gelled and nongelled liquids. Photographs of the water-gel spray patterns at different operating conditions were compared with images obtained using water and nitrogen. A laser light was used for illumination of the sprays. The results of the testing showed that the water sprays produced a finer and more uniform atomization than the water-gel sprays. Rheological analysis of the water-gel showed poor atomization caused by high viscosity of water-gel delaying the transition to turbulence.
Influence of Powder Injection Parameters in High-Pressure Cold Spray
NASA Astrophysics Data System (ADS)
Ozdemir, Ozan C.; Widener, Christian A.
2017-10-01
High-pressure cold spray systems are becoming widely accepted for use in the structural repair of surface defects of expensive machinery parts used in industrial and military equipment. The deposition quality of cold spray repairs is typically validated using coupon testing and through destructive analysis of mock-ups or first articles for a defined set of parameters. In order to provide a reliable repair, it is important to not only maintain the same processing parameters, but also to have optimum fixed parameters, such as the particle injection location. This study is intended to provide insight into the sensitivity of the way that the powder is injected upstream of supersonic nozzles in high-pressure cold spray systems and the effects of variations in injection parameters on the nature of the powder particle kinetics. Experimentally validated three-dimensional computational fluid dynamics (3D CFD) models are implemented to study the particle impact conditions for varying powder feeder tube size, powder feeder tube axial misalignment, and radial powder feeder injection location on the particle velocity and the deposition shape of aluminum alloy 6061. Outputs of the models are statistically analyzed to explore the shape of the spray plume distribution and resulting coating buildup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taber Wanstall, C.; Agrawal, Ajay K.; Bittle, Joshua A.
The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recordedmore » by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Our results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.« less
Taber Wanstall, C.; Agrawal, Ajay K.; Bittle, Joshua A.
2017-01-01
The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recordedmore » by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Our results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.« less
Contingency Pest Management Guide. 2010 Edition
2010-08-01
indoors as a residual spray to walls, ceilings, window screens and other fly resting areas. Apply outside as a residual ...applications. Cypermethrin (Demon WP) 35.6% 6840-01-390-4822 LB 1 lb jar 1 packet/gal 0.1% Apply indoors as a residual spray to walls, ceilings... indoors as a coarse, low-pressure spray where pests are found. Apply outdoors as a residual spray to lawns, porches and similar areas. May not
Open-air sprays for capturing and controlling airborne float coal dust on longwall faces
Beck, T.W.; Seaman, C.E.; Shahan, M.R.; Mischler, S.E.
2018-01-01
Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. Controlling airborne dust prior to deposition in the return would make current rock dusting practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. National Institute for Occupational Safety and Health study is to determine the potential of open-air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The results indicate that the preferred spray nozzle should be operated at high fluid pressures to produce smaller droplets and move more air. These findings agree with past respirable dust control research, providing guidance on spray selection and spray array design in ongoing efforts to control airborne float dust over the entire longwall ventilated opening. PMID:29348700
Hard tissue ablation with a spray-assisted mid-IR laser
NASA Astrophysics Data System (ADS)
Kang, H. W.; Rizoiu, I.; Welch, A. J.
2007-12-01
The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.
Open-air sprays for capturing and controlling airborne float coal dust on longwall faces.
Beck, T W; Seaman, C E; Shahan, M R; Mischler, S E
2018-01-01
Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. Controlling airborne dust prior to deposition in the return would make current rock dusting practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. National Institute for Occupational Safety and Health study is to determine the potential of open-air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The results indicate that the preferred spray nozzle should be operated at high fluid pressures to produce smaller droplets and move more air. These findings agree with past respirable dust control research, providing guidance on spray selection and spray array design in ongoing efforts to control airborne float dust over the entire longwall ventilated opening.
NASA Astrophysics Data System (ADS)
Zhang, Lin-wei; Lu, Lei; Wang, Lu; Ning, Xian-jin; Wang, Quan-sheng; Wang, Ri-xin
2017-10-01
CoNiCrAlY coatings were deposited by low-pressure cold spraying and subsequently heat-treated at 1050 °C for 4 h in a vacuum environment. The microstructural characteristics and oxidation behavior of CoNiCrAlY coatings were investigated. The as-sprayed coating exhibited low porosity and oxygen content. The high plastic deformation of the sprayed particles led to significant refinement of γ-matrix and dissolution of β-(Ni,Co)Al phase in the as-sprayed coating. After heat treatment, the single phase (γ) in the as-sprayed coating was converted into a γ/β microstructure, and a continuous single α-Al2O3 scale was formed on the coating surface. Vacuum heat treatment can postpone the formation of spinel oxides within 100 h. After being oxidized at 1050 °C for 400 h, the heat-treated coating exhibited better oxidation resistance than the as-sprayed coating. The reduced growth rate of the oxide scale and the suppression of the formation of spinel oxides can be attributed to the vacuum heat treatment, as well as the intrinsic microstructure of the cold-sprayed coating. Finally, the effects of the microstructural changes induced during the cold spraying process on the growth of the thermally grown oxide and the oxidation mechanisms of the CoNiCrAlY coatings were discussed.
NASA Astrophysics Data System (ADS)
Lee, Kihyung; Reitz, Rolf D.
2004-03-01
Homogeneous charge compression ignition (HCCI) combustion provides extremely low levels of pollutant emissions, and thus is an attractive alternative for future IC engines. In order to achieve a uniform mixture distribution within the engine cylinder, the characteristics of the fuel spray play an important role in the HCCI engine concept. It is well known that high-pressure common rail injection systems, mainly used in diesel engines, achieve poor mixture formation because of the possibility of direct fuel impingement on the combustion chamber surfaces. This paper describes spray characteristics of a low-pressure common rail injector which is intended for use in an HCCI engine. Optical diagnostics including laser diffraction and phase Doppler methods, and high-speed camera photography, were applied to measure the spray drop diameter and to investigate the spray development process. The drop sizing results of the laser diffraction method were compared with those of a phase Doppler particle analyser (PDPA) to validate the accuracy of the experiments. In addition, the effect of fuel properties on the spray characteristics was investigated using n-heptane, Stoddard solvent (gasoline surrogate) and diesel fuel because HCCI combustion is sensitive to the fuel composition. The results show that the injector forms a hollow-cone sheet spray rather than a liquid jet, and the atomization efficiency is high (small droplets are produced). The droplet SMD ranged from 15 to 30 µm. The spray break-up characteristics were found to depend on the fuel properties. The break-up time for n-heptane is shorter and the drop SMD is smaller than that of Stoddard solvent and diesel fuel.
Vapor Phase Deposition Using Plasma Spray-PVD™
NASA Astrophysics Data System (ADS)
von Niessen, K.; Gindrat, M.; Refke, A.
2010-01-01
Plasma spray—physical vapor deposition (PS-PVD) is a low pressure plasma spray technology to deposit coatings out of the vapor phase. PS-PVD is a part of the family of new hybrid processes recently developed by Sulzer Metco AG (Switzerland) on the basis of the well-established low pressure plasma spraying (LPPS) technology. Included in this new process family are plasma spray—chemical vapor deposition (PS-CVD) and plasma spray—thin film (PS-TF) processes. In comparison to conventional vacuum plasma spraying and LPPS, these new processes use a high energy plasma gun operated at a work pressure below 2 mbar. This leads to unconventional plasma jet characteristics which can be used to obtain specific and unique coatings. An important new feature of PS-PVD is the possibility to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats, but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional PVD technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and EB-PVD coatings. This paper reports on the progress made at Sulzer Metco to develop functional coatings build up from vapor phase of oxide ceramics and metals.
A numerical analysis of flat fan aerial crop spray
NASA Astrophysics Data System (ADS)
Malik Fesal, Siti Natasha; Fawzi, Mas; Omar, Zamri
2017-09-01
Spray drift mitigation, in the agriculture aerial spraying literature, and spray quality in the application of plant protection products, still continues as two critical components in evaluating shareholder value. A study on off-target drift and ground deposit onto a 250 m strip were simulated through series of Computational Fluid Dynamic (CFD) simulations. The drift patterns for evaporating droplets were released from a constant aircraft velocity at 30 m/s (60 mph) carrying 20 m swath width spray boom with 12 fan-type nozzles at released height from the ground ranging from 3.7 m to 4.7 m. Droplet trajectories are calculated from the given airspeed with a Lagrangian model for particle dispersion excluding any wind effect perturbation. The proposed CFD’s model predictions agreed well with cited literatures for a wide range of atmospheric stability values. The results revealed that there is considerable increased in spray drift and droplets trajectories with the increased in spray released height. It suggested that a combination of low aircraft spray released height with low airspeed is essential to improve spray quality and maximizing uniform deposition on the target area are significant in minimizing spray drift risks.
A Lagrangian stochastic model for aerial spray transport above an oak forest
Wang, Yansen; Miller, David R.; Anderson, Dean E.; McManus, Michael L.
1995-01-01
An aerial spray droplets' transport model has been developed by applying recent advances in Lagrangian stochastic simulation of heavy particles. A two-dimensional Lagrangian stochastic model was adopted to simulate the spray droplet dispersion in atmospheric turbulence by adjusting the Lagrangian integral time scale along the drop trajectory. The other major physical processes affecting the transport of spray droplets above a forest canopy, the aircraft wingtip vortices and the droplet evaporation, were also included in each time step of the droplets' transport.The model was evaluated using data from an aerial spray field experiment. In generally neutral stability conditions, the accuracy of the model predictions varied from run-to-run as expected. The average root-mean-square error was 24.61 IU cm−2, and the average relative error was 15%. The model prediction was adequate in two-dimensional steady wind conditions, but was less accurate in variable wind condition. The results indicated that the model can simulate successfully the ensemble; average transport of aerial spray droplets under neutral, steady atmospheric wind conditions.
NASA Astrophysics Data System (ADS)
Hong, Se-Woon; Zhao, Lingying; Zhu, Heping
2018-02-01
The ultimate goal of a pesticide spraying system is to provide adequate coverage on intended canopies with a minimum amount of spray materials and off-target waste. Better spray coverage requires an understanding of the fate and transport of spray droplets carried by turbulent airflows in orchards. In this study, an integrated computational fluid dynamics (CFD) model was developed to predict displacement of pesticide spray droplets discharged from an air-assisted sprayer, depositions onto tree canopies, and off-target deposition and airborne drift in an apple orchard. Pesticide droplets discharged from a moving sprayer were tracked using the Lagrangian particle transport model, and the deposition model was applied to droplets entering porous canopy zones. Measurements of the droplet deposition and drift in the same orchard were used to validate the model simulations. Good agreement was found between the measured and simulated spray concentrations inside tree canopies and off-target losses (ground deposition and airborne drifts) with the overall relative errors of 22.1% and 40.6%, respectively, under three growth stages. The CFD model was able to estimate the mass balance of pesticide droplets in the orchard, which was practically difficult to investigate by measurements in field conditions. As the foliage of trees became denser, spray deposition inside canopies increased from 8.5% to 65.8% and airborne drift and ground deposition decreased from 25.8% to 7.0% and 47.8% to 21.2%, respectively. Higher wind speed also increased the spray airborne drift downwind of the orchard. This study demonstrates that CFD model can be used to evaluate spray application performance and design and operate sprayers with increased spray efficiencies and reduced drift potentials.
Modeling spray drift and runoff-related inputs of pesticides to receiving water.
Zhang, Xuyang; Luo, Yuzhou; Goh, Kean S
2018-03-01
Pesticides move to surface water via various pathways including surface runoff, spray drift and subsurface flow. Little is known about the relative contributions of surface runoff and spray drift in agricultural watersheds. This study develops a modeling framework to address the contribution of spray drift to the total loadings of pesticides in receiving water bodies. The modeling framework consists of a GIS module for identifying drift potential, the AgDRIFT model for simulating spray drift, and the Soil and Water Assessment Tool (SWAT) for simulating various hydrological and landscape processes including surface runoff and transport of pesticides. The modeling framework was applied on the Orestimba Creek Watershed, California. Monitoring data collected from daily samples were used for model evaluation. Pesticide mass deposition on the Orestimba Creek ranged from 0.08 to 6.09% of applied mass. Monitoring data suggests that surface runoff was the major pathway for pesticide entering water bodies, accounting for 76% of the annual loading; the rest 24% from spray drift. The results from the modeling framework showed 81 and 19%, respectively, for runoff and spray drift. Spray drift contributed over half of the mass loading during summer months. The slightly lower spray drift contribution as predicted by the modeling framework was mainly due to SWAT's under-prediction of pesticide mass loading during summer and over-prediction of the loading during winter. Although model simulations were associated with various sources of uncertainties, the overall performance of the modeling framework was satisfactory as evaluated by multiple statistics: for simulation of daily flow, the Nash-Sutcliffe Efficiency Coefficient (NSE) ranged from 0.61 to 0.74 and the percent bias (PBIAS) < 28%; for daily pesticide loading, NSE = 0.18 and PBIAS = -1.6%. This modeling framework will be useful for assessing the relative exposure from pesticides related to spray drift and runoff in receiving waters and the design of management practices for mitigating pesticide exposure within a watershed. Published by Elsevier Ltd.
2015-09-01
NC. 14. ABSTRACT A high-resolution numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at diesel engine... diesel fuel injector at diesel engine type conditions has been performed. A full understanding of the primary atomization process in diesel fuel... diesel liquid sprays the complexity is further compounded by the physical attributes present including nozzle turbulence, large density ratios
49 CFR 173.465 - Type A packaging tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., with contents, must be capable of withstanding the water spray, free drop, stacking and penetration... paragraph (b) of this section are met. (b) Water spray test. The water spray test must precede each test or test sequence prescribed in this section. The water spray test must simulate exposure to rainfall of...
NASA Technical Reports Server (NTRS)
Chigier, N.; Mao, C.-P.
1984-01-01
It is pointed out that most practical power generation and propulsion systems involve the burning of different types of fuel sprays, taking into account aircraft propulsion, industrial furnaces, boilers, gas turbines, and diesel engines. There has been a lack of data which can serve as a basis for spray model development and validation. A major aim of the present investigation is to fill this gap. Experimental apparatus and techniques for studying the characteristics of fuel sprays are discussed, taking into account two-dimensional still photography, cinematography, holography, a laser diffraction particle sizer, and a laser anemometer. The considered instruments were used in a number of experiments, taking into account three different types of fuel spray. Attention is given to liquid fuel sprays, high pressure pulsed diesel sprays, and coal-water slurry sprays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathwara, Nishit, E-mail: nishit-25@live.in; Metallurgical & Materials Engineering Department, Indus University, Ahmedabad-382115; Jariwala, C., E-mail: chetanjari@yahoo.com
High Velocity Oxy-Fuel (HVOF) thermal sprayed coatingmade from Tungsten Carbide (WC) isconsidered as one of the most durable materials as wear resistance for industrial applications at room temperature. WC coating offers high wear resistance due to its high hardness and tough matrix imparts. The coating properties strongly depend on thermal spray processing parameters, surface preparation and surface finish. In this investigation, the effect of variousHVOF process parameters was studied on WC coating properties. The WC-12%Co coating was produced on Copper substrate. Prior to coating, theCopper substrate surface was prepared by grit blasting. WC-12%Co coatings were deposited on Coppersubstrates with varyingmore » process parameters such as Oxygen gas pressure, Air pressure, and spraying distance. Microstructure of coating was examined using Scanning Electron Microscope (SEM) and characterization of phasespresentin the coating was examined by X-Ray Diffraction (XRD). Microhardness of all coatingswas measured by VickerMicrohardness tester. At low Oxygen Pressure(10.00 bar), high Air pressure (7bar) and short nozzle to substrate distance of 170mm, best coating adhesion and porosity less structure isachieved on Coppersubstrate.« less
NASA Astrophysics Data System (ADS)
Sathwara, Nishit; Jariwala, C.; Chauhan, N.; Raole, P. M.; Basa, D. K.
2015-08-01
High Velocity Oxy-Fuel (HVOF) thermal sprayed coatingmade from Tungsten Carbide (WC) isconsidered as one of the most durable materials as wear resistance for industrial applications at room temperature. WC coating offers high wear resistance due to its high hardness and tough matrix imparts. The coating properties strongly depend on thermal spray processing parameters, surface preparation and surface finish. In this investigation, the effect of variousHVOF process parameters was studied on WC coating properties. The WC-12%Co coating was produced on Copper substrate. Prior to coating, theCopper substrate surface was prepared by grit blasting. WC-12%Co coatings were deposited on Coppersubstrates with varying process parameters such as Oxygen gas pressure, Air pressure, and spraying distance. Microstructure of coating was examined using Scanning Electron Microscope (SEM) and characterization of phasespresentin the coating was examined by X-Ray Diffraction (XRD). Microhardness of all coatingswas measured by VickerMicrohardness tester. At low Oxygen Pressure(10.00 bar), high Air pressure (7bar) and short nozzle to substrate distance of 170mm, best coating adhesion and porosity less structure isachieved on Coppersubstrate.
Optical study on thermal radiation energy of diesel spray combustion in a shock tube
NASA Astrophysics Data System (ADS)
Tsuboi, T.; Nagaya, K.; Ishii, K.
. A ``tailored'' interface shock tube was used to measure the thermal energy radiated from diesel-spray combustion. Experiments were performed in a steel shock tube with a seven m long low-pressure section filled with air and a six m long high-pressure section. Pre-compressed fuel was injected through a throttling nozzle into air behind a reflected shock wave. Monochromatic emissive powers and emissive powers of the whole IR-wavelengths were followed with IR-detectors set along the central axis of the tube. Time-dependent-radii, where soot particles radiate, were also determined. Results were : (1) the tailored interface shock tube could be applied to a study of diesel-spray combustion. (2) thermal radiation energy could be described well from the ignition delay of the fuel spray.
Subchronic JP-8 Jet Fuel Exposure Enhances Vulnerability to Noise-Induced Hearing Loss in Rats
2012-01-01
square inch (psi) pressure was attached to the side arm of the Sonomist. At this pressure the spray nozzle developed an air flow of approximately 20...L/min (lpm) through the nebulizer. This air flow coupled with the nebulizer nozzle design created an ultrasonic whistle that aerosolized the droplets...pipe contained the spray pattern. The pipe was reduced in size to accept an orifice plate, which was used to measure flow rate by the pressure drop
Carlton, G N; England, E C
2000-09-01
1,6-Hexamethylene diisocyanate (HDI) exposures were measured during polyurethane enamel spray painting at four Air Force bases. Breathing zone samples were collected for HDI monomer and polyisocyanates (oligomers) using three sampling methods: NIOSH Method 5521, the Iso-Chek sampler, and the total aerosol mass method (TAMM). Exposures to HDI monomer are low when compared to current occupational exposure limits; the highest 8-hr time-weighted average (TWA) exposure found was 3.5 micrograms/m3, below the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 34 micrograms/m3. HDI oligomer levels were higher; mean task exposures indicated by either the Iso-Chek sampler or TAMM are above the Oregon ceiling limit of 1 mg/m3. Eight-hour TWA exposures, however, were much lower, with only one exceeding the Oregon standard of 0.5 mg/m3. Poor worker practices commonly observed during this study included: standing in downwind positions so paint overspray passed through breathing zones; spraying toward other painters; and using excessive paint spray gun air cap pressures. Workers should stand in upwind orientation relative to the aircraft being painted, causing overspray to move away from the painter's breathing zone; adjust their position to prevent spraying other painters or limit paint application to one worker at a time; and use air cap pressure gauges prior to spraying to limit spray gun air cap pressures and reduce paint overspray generation rates. These improved techniques will result in reduced worker exposures to isocyanates.
Modeling metal droplet sprays in spray forming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muoio, N.G.; Crowe, C.T.; Fritsching, U.
1995-12-31
Spray casting is a process whereby a molten metal stream is atomized and deposited on a substrate. The rapid solidification of the metal droplets gives rise to a fine grain structure and improved material properties. This paper presents a simulation for the fluid and thermal interaction of the fluid and droplets in the spray and the effect on the droplet spray pattern. Good agreement is obtained between the measured and predicted droplet mass flux distribution in the spray.
Soot and Spectral Radiation Modeling for a High-Pressure Turbulent Spray Flame
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreryo-Fernandez, Sebastian; Paul, Chandan; Sircar, Arpan
Simulations are performed of a transient high-pressure turbulent n-dodecane spray flame under engine-relevant conditions. An unsteady RANS formulation is used, with detailed chemistry, a semi-empirical two-equation soot model, and a particle-based transported composition probability density function (PDF) method to account for unresolved turbulent fluctuations in composition and temperature. Results from the PDF model are compared with those from a locally well-stirred reactor (WSR) model to quantify the effects of turbulence-chemistry-soot interactions. Computed liquid and vapor penetration versus time, ignition delay, and flame lift-off height are in good agreement with experiment, and relatively small differences are seen between the WSR andmore » PDF models for these global quantities. Computed soot levels and spatial soot distributions from the WSR and PDF models show large differences, with PDF results being in better agreement with experimental measurements. An uncoupled photon Monte Carlo method with line-by-line spectral resolution is used to compute the spectral intensity distribution of the radiation leaving the flame. This provides new insight into the relative importance of molecular gas radiation versus soot radiation, and the importance of turbulent fluctuations on radiative heat transfer.« less
Development of the improved helicopter icing spray system (IHISS)
NASA Technical Reports Server (NTRS)
Peterson, Andrew A.; Jenks, Mark D.; Gaitskill, William H.
1989-01-01
Boeing Helicopters has been awarded a contract by the U.S. Army to design, fabricate and test a replacement for the existing Helicopter Icing Spray System (HISS). The Improved Hiss (IHISS), capable of deployment from any CH-47D helicopter, will include new icing spray nozzles and pneumatic pressure source, and a significantly larger water tank and spray boom. Results are presented for extensive bench and icing tunnel test programs used to select and modify an improved spray nozzle and validate spray boom aerodynamic characteristics. The resulting system will provide a significantly larger icing cloud with droplet characteristics closely matching natural icing conditions.
Inter-plume aerodynamics for gasoline spray collapse
Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.; ...
2017-11-10
The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. But, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtainedmore » using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. Furthermore, the effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.« less
Inter-plume aerodynamics for gasoline spray collapse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sphicas, Panos; Pickett, Lyle M.; Skeen, Scott A.
The collapse or merging of individual plumes of direct-injection gasoline injectors is of fundamental importance to engine performance because of its impact on fuel–air mixing. But, the mechanisms of spray collapse are not fully understood and are difficult to predict. The purpose of this work is to study the aerodynamics in the inter-spray region, which can potentially lead to plume collapse. High-speed (100 kHz) particle image velocimetry is applied along a plane between plumes to observe the full temporal evolution of plume interaction and potential collapse, resolved for individual injection events. Supporting information along a line of sight is obtainedmore » using simultaneous diffused back illumination and Mie-scatter techniques. Experiments are performed under simulated engine conditions using a symmetric eight-hole injector in a high-temperature, high-pressure vessel at the “Spray G” operating conditions of the engine combustion network. Indicators of plume interaction and collapse include changes in counter-flow recirculation of ambient gas toward the injector along the axis of the injector or in the inter-plume region between plumes. Furthermore, the effect of ambient temperature and gas density on the inter-plume aerodynamics and the subsequent plume collapse are assessed. Increasing ambient temperature or density, with enhanced vaporization and momentum exchange, accelerates the plume interaction. Plume direction progressively shifts toward the injector axis with time, demonstrating that the plume interaction and collapse are inherently transient.« less
NASA Astrophysics Data System (ADS)
Grünwald, Nikolas; Sebold, Doris; Sohn, Yoo Jung; Menzler, Norbert Heribert; Vaßen, Robert
2017-09-01
Dense coatings on metallic interconnectors are necessary to suppress chromium poisoning of SOFC cathodes. Atmospherically plasma sprayed (APS) Mn1.0Co1.9Fe0.1O4 (MCF) protective layers demonstrated reduced chromium related degradation in laboratory and stack tests. Previous analyses revealed strong microstructural changes comparing the coating's as-sprayed and operated condition. This work concentrates on the layer-densification and crack-healing observed by annealing APS-MCF in air, which simulates the cathode operation conditions. The effect is described by a volume expansion induced by a phase transformation. Reducing conditions during the spray process lead to a deposition of the MCF in a metastable rock salt configuration. Annealing in air activates diffusion processes for a phase transformation to the low temperature stable spinel phase (T < 1050 °C). This transformation is connected to an oxygen incorporation which occurs at regions facing high oxygen partial pressures, as there are the sample surface, cracks and pore surfaces. Calculations reveal a volume expansion induced by the oxygen uptake which seals the cracks and densifies the coating. The process decelerates when the cracks are closed, as the gas route is blocked and further oxidation continues over solid state diffusion. The self-healing abilities of metastable APS coatings could be interesting for other applications.
Droplet Impact Sub-cavity Histories and PDPA Spray Experiments for Spray Cooling Modeling
NASA Astrophysics Data System (ADS)
Hillen, Nicholas Lee
Spray cooling is a topic of current interest for its ability to uniformly remove high levels of waste heat from densely packed microelectronics. It has demonstrated the ability to achieve very high heat fluxes, up to 500 W/cm2 with water as the coolant, making it an attractive active thermal management tool. Full Computational Fluid Dynamic (CFD) simulations of spray cooling are infeasible due to the complexity of the spray (drops fluxes of 106 drops/cm2-sec) and heater surface physics requiring impractical resources. Thus a Monte-Carlo (MC) spray cooling simulation model based on empirical data is under development to serve as a cost effective design tool. The initial MC model shows promise, but it lacks additional physics necessary to predict accurate heat fluxes based on nozzle conditions and heated surface geometry. This work reports spray and single drop experiments with the goal of computing the volume beneath a droplet impact cavity (the sub-cavity volume) created by a single impinging droplet on an initial liquid layer. A Phase Doppler Particle Analyzer (PDPA) was utilized to characterize a spray of interest in terms of integrated global Weber, Reynolds, and Froude numbers for varying flow conditions. Results showed that the spray droplet diameters decreased and velocities increased with increasing nozzle gage pressure. A relevant test plan for the single drop experiments has been created from the measured PDPA spray profiles combined with residual spray film thickness measurements from literature resulting in: 140≤We≤1,000, 1,200≤ Re≤3,300, and 0.2≤h0*≤1.0. Froude numbers were not able to be matched for the current single drop experiments (spray: 32,800≤Fr≤275,000). Liquid film thicknesses under the cavity formed by a single droplet have been measured versus radius and time via a non-contact optical thickness sensor for the selected range of dimensionless numbers (We, Re, and h0*). Sub-cavity radius histories have also been analyzed utilizing high-speed imagery techniques to create the cavity thickness traverse profiles. Time dependent sub-cavity volumes have been computed by integrating these subcavity liquid film thicknesses versus radius at various times. It is found that higher We and lower h0* result in a more radially uniform sub-cavity surface contour versus time, except for thinner liquid film regions which are observed near the outer bottom cavity radius. The subcavity volume was found to be nearly constant for a majority of the cavity lifetime and increased with We and h0*. These results will be incorporated into the MC model to improve its predictive capability in future work. In addition, splashed droplet diameters and velocities have been extracted from PDPA data for a spray impinging normal to a smooth surface. It was found that the splashed droplets had sizes which were similar to the impinging spray droplets, and had velocities that never exceeded 3 m/s. The splashed droplet results have a negligible contribution to cavity formations due to their low Weber number. This splashing data has been detailed for future implementation into the MC model in terms of mass conservation in the liquid film.
Numerical Simulation of Droplet Breakup and Collision in the Solution Precursor Plasma Spraying
NASA Astrophysics Data System (ADS)
Shan, Y.; Coyle, T. W.; Mostaghimi, J.
2007-12-01
Finely structured ceramic coatings can be obtained by solution precursor plasma spraying. The final structure of the coating highly depends on the droplet size and velocity distribution at the injection, the evolution of the spray in the jet, and droplet breakup and collision within the spray. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. O’Rourke’s droplet collision model is used to take into account the influence of droplet collision. The influence of droplet breakup is also considered by implementing TAB droplet breakup models into the plasma jet model. The effects of droplet collisions and breakup on the droplet size, velocity, and temperature distribution of the solution spray are investigated. The results indicate that droplet breakup and collision play an important role in determining the final particle size and velocity distributions on the substrate.
Pretest analysis document for Semiscale Test S-FS-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, T.H.
This report documents the pretest analysis calculation completed with the RELAP5/MOD2/CY21 code for Semiscale Test S-FS-1. The test will simulate the double-ended offset shear of the main steam line at the exit of the broken loop steam generator (downstream of the flow restrictor) and the subsequent plant recovery. The recovery portion of the test consists of a plant stabilization phase and a plant cooldown phase. The recovery procedures involve normal charging/letdown operation, pressurizer heater operation, secondary steam and feed of the unaffected steam generator, and pressurizer auxiliary spray. The test will be terminated after the unaffected steam generator and pressurizermore » pressures and liquid levels are stable, and the average priamry fluid temperature is stable at about 480 K (405/sup 0/F) for at least 10 minutes.« less
SNL/JAEA Collaborations on Sodium Fire Benchmarking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Andrew Jordan; Denman, Matthew R; Takata, Takashi
Two sodium spray fire experiments performed by Sandia National Laboratories (SNL) were used for a code - to - code comparison between CONTAIN - LMR and SPHINCS. Both computer codes are used for modeling sodium accidents in sodium fast reactors. The comparison between the two codes provides insights into the ability of both codes to model sodium spray fires. The SNL T3 and T4 experiments are 20 kg sodium spray fires with sodium spray temperature s of 200 deg C and 500 deg C, respe ctively. Given the relatively low sodium temperature in the SNL T3 experiment, the sodium spraymore » experienced a period of non - combustion. The vessel in the SNL T4 experiment experienced a rapid pressurization that caused of the instrumentation ports to fail during the sodium spray. Despite these unforeseen difficulties, both codes were shown in good agreement with the experiment s . The subsequent pool fire that develops from the unburned sodium spray is a significant characteristic of the T3 experiment. SPHIN CS showed better long - term agreement with the SNL T3 experiment than CONTAIN - LMR. The unexpected port failure during the SNL T4 experiment presented modelling challenges. The time at which the port failure occurred is unknown, but is believed to have occur red at about 11 seconds into the sodium spray fire. The sensitivity analysis for the SNL T4 experiment shows that with a port failure, the sodium spray fire can still maintain elevated pressures during the spray.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutland, Christopher J.
2009-04-26
The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with newmore » numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.« less
Experimental investigation of atomization characteristics of swirling spray by ADN gelled propellant
NASA Astrophysics Data System (ADS)
Guan, Hao-Sen; Li, Guo-Xiu; Zhang, Nai-Yuan
2018-03-01
Due to the current global energy shortage and increasingly serious environmental issues, green propellants are attracting more attention. In particular, the ammonium dinitramide (ADN)-based monopropellant thruster is gaining world-wide attention as a green, non-polluting and high specific impulse propellant. Gel propellants combine the advantages of liquid and solid propellants, and are becoming popular in the field of spaceflight. In this paper, a swirling atomization experimental study was carried out using an ADN aqueous gel propellant under different injection pressures. A high-speed camera and a Malvern laser particle size analyzer were used to study the spray process. The flow coefficient, cone angle of swirl atomizing spray, breakup length of spray membrane, and droplet size distribution were analyzed. Furthermore, the effects of different injection pressures on the swirling atomization characteristics were studied.
Novel design for transparent high-pressure fuel injector nozzles.
Falgout, Z; Linne, M
2016-08-01
The efficiency and emissions of internal combustion (IC) engines are closely tied to the formation of the combustible air-fuel mixture. Direct-injection engines have become more common due to their increased practical flexibility and efficiency, and sprays dominate mixture formation in these engines. Spray formation, or rather the transition from a cylindrical liquid jet to a field of isolated droplets, is not completely understood. However, it is known that nozzle orifice flow and cavitation have an important effect on the formation of fuel injector sprays, even if the exact details of this effect remain unknown. A number of studies in recent years have used injectors with optically transparent nozzles (OTN) to allow observation of the nozzle orifice flow. Our goal in this work is to design various OTN concepts that mimic the flow inside commercial injector nozzles, at realistic fuel pressures, and yet still allow access to the very near nozzle region of the spray so that interior flow structure can be correlated with primary breakup dynamics. This goal has not been achieved until now because interior structures can be very complex, and the most appropriate optical materials are brittle and easily fractured by realistic fuel pressures. An OTN design that achieves realistic injection pressures and grants visual access to the interior flow and spray formation will be explained in detail. The design uses an acrylic nozzle, which is ideal for imaging the interior flow. This nozzle is supported from the outside with sapphire clamps, which reduces tensile stresses in the nozzle and increases the nozzle's injection pressure capacity. An ensemble of nozzles were mechanically tested to prove this design concept.
Kinetic energy of rainfall simulation nozzles
USDA-ARS?s Scientific Manuscript database
Different spray nozzles are used frequently to simulate natural rain for soil erosion and chemical transport, particularly phosphorous (P), studies. Oscillating VeeJet nozzles are used mostly in soil erosion research while constant spray FullJet nozzles are commonly used for P transport. Several ch...
Recent developments in plasma spray processes for applications in energy technology
NASA Astrophysics Data System (ADS)
Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.
2017-03-01
This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zihan; Swantek, Andrew; Scarcelli, Riccardo
This paper focuses on detailed numerical simulations of direct injection diesel and gasoline sprays from production grade, multi-hole injectors. In a dual-fuel engine the direct injection of both the fuels can facilitate appropriate mixture preparation prior to ignition and combustion. Diesel and gasoline sprays were simulated using high-fidelity Large Eddy Simulations (LES) with the dynamic structure sub-grid scale model. Numerical predictions of liquid penetration, fuel density distribution as well as transverse integrated mass (TIM) at different axial locations versus time were compared against x-ray radiography data obtained from Argonne National Laboratory. A necessary, but often overlooked, criterion of grid-convergence ismore » ensured by using Adaptive Mesh Refinement (AMR) for both diesel and gasoline. Nine different realizations were performed and the effects of random seeds on spray behavior were investigated. Additional parametric studies under different ambient and injection conditions were performed to study their influence on global and local flow structures for gasoline sprays. It is concluded that LES can generally well capture all experimental trends and comes close to matching the x-ray data. Discrepancies between experimental and simulation results can be correlated to uncertainties in boundary and initial conditions such as rate of injection and spray and turbulent dispersion sub-model constants.« less
Expected outcomes from topical haemoglobin spray in non-healing and worsening venous leg ulcers.
Arenberger, P; Elg, F; Petyt, J; Cutting, K
2015-05-01
To evaluate the effect of topical haemoglobin spray on treatment response and wound-closure rates in patients with chronic venous leg ulcers. A linear regression model was used to forecast healing outcomes over a 12-month period. Simulated data were taken from normal distributions based on post-hoc analysis of a 72-patient study in non-healing and worsening wounds (36 patients receiving standard care and 36 receiving standard care plus topical haemoglobin spray). Using a simulated 25,000 'patients' from each group, the proportion of wound closure over time was projected. Simulation results predicted a 55% wound closure rate at six months in the haemoglobin group, compared with 4% in the standard care group. Over a 12-month simulation period, a 43% overall reduction in wound burden was predicted. With the haemoglobin spray, 85% of wounds were expected to heal in 12 months, compared with 13% in the standard care group. Topical haemoglobin spray promises a more effective treatment for chronic venous leg ulcers than standard care alone in wounds that are non-healing or worsening. Further research is required to validate these predictions and to identify achievable outcomes in other chronic wound types.
Method and apparatus for spraying molten materials
Glovan, R.J.; Tierney, J.C.; McLean, L.L.; Johnson, L.L.; Nelson, G.L.; Lee, Y.M.
1996-06-25
A metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments. 12 figs.
NASA Astrophysics Data System (ADS)
Qi, Y. L.; Xu, B. Y.; Cai, S. L.
2006-12-01
To control fuel injection, optimize combustion and reduce emissions for LPG (liquefied petroleum gas) engines, it is necessary and important to understand the characteristics of LPG sprays. The present work investigates the geometry of LPG sprays, including spray tip penetration, spray angle, projected spray area and spray volume, by using schlieren photography and digital image processing techniques. Two types of single nozzle injectors were studied, with the same nozzle diameter, but one with and one without a double-hole flow-split head. A code developed to analyse the results directly from the digitized images is shown to be more accurate and efficient than manual measurement and analysis. Test results show that a higher injection pressure produces a longer spray tip penetration, a larger projected spray area and spray volume, but a smaller spray cone angle. The injector with the double-hole split-head nozzle produces better atomization and shorter tip penetration at medium and late injection times, but longer tip penetration in the early stage.
NASA Technical Reports Server (NTRS)
Kartuzova, Olga; Kassemi, Mohammad
2015-01-01
In this paper, a computational model that describes pressure control phase of a typical MHTB experiment will be presented. The fidelity of the model will be assessed by comparing the models predictions with MHTB experimental data. In this paper CFD results for MHTB spray bar cooling case with 50 tank fill ratio will be presented and analyzed. Effect of accommodation coefficient for calculating droplet-ullage mass transfer will be evaluated.
Pressurized feed-injection spray-forming apparatus
Berry, R.A.; Fincke, J.R.; McHugh, K.M.
1995-08-29
A spray apparatus and method are disclosed for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers. 22 figs.
Pressurized feed-injection spray-forming apparatus
Berry, Ray A.; Fincke, James R.; McHugh, Kevin M.
1995-01-01
A spray apparatus and method for injecting a heated, pressurized liquid in a first predetermined direction into a pressurized gas flow that is flowing in a second predetermined direction, to provide for atomizing and admixing the liquid with the gas to form a two-phase mixture. A valve is also disposed within the injected liquid conduit to provide for a pulsed injection of the liquid and timed deposit of the atomized gas phase. Preferred embodiments include multiple liquid feed ports and reservoirs to provide for multiphase mixtures of metals, ceramics, and polymers.
Dry-spraying of ascorbic acid or acetaminophen solutions with supercritical carbon dioxide
NASA Astrophysics Data System (ADS)
Wubbolts, F. E.; Bruinsma, O. S. L.; van Rosmalen, G. M.
1999-03-01
Carbon dioxide is a very poor solvent for many organic compounds, which makes it a good anti-solvent. When a solution is sprayed into carbon dioxide vapour the anti-solvent reduces the solubility within several tens of milliseconds and the solute precipitates. Two distinct regions can be identified, below and above the mixture critical pressure. Below this critical pressure the yield remains relatively low and the process is not well controlled. Above the critical pressure small crystals are obtained of about 2 μm with a yield of 90%.
Your Guide To Lowering Your Blood Pressure with DASH
... cereals, soy sauce, seasoned salts, monosodium glutamate (MSG), baking soda, and some antacids—the range is wide. ... F. Lightly spray a 9- by 13-inch baking dish with vegetable oil spray. 2. In a ...
Computational fluid dynamics combustion analysis evaluation
NASA Technical Reports Server (NTRS)
Kim, Y. M.; Shang, H. M.; Chen, C. P.; Ziebarth, J. P.
1992-01-01
This study involves the development of numerical modelling in spray combustion. These modelling efforts are mainly motivated to improve the computational efficiency in the stochastic particle tracking method as well as to incorporate the physical submodels of turbulence, combustion, vaporization, and dense spray effects. The present mathematical formulation and numerical methodologies can be casted in any time-marching pressure correction methodologies (PCM) such as FDNS code and MAST code. A sequence of validation cases involving steady burning sprays and transient evaporating sprays will be included.
Alvarez, J.L.; Watson, L.D.
1988-01-21
An apparatus and method for continuously analyzing liquids by creating a supersonic spray which is shaped and sized prior to delivery of the spray to a analysis apparatus. The gas and liquid is sheared into small particles which are of a size and uniformity to form a spray which can be controlled through adjustment of pressures and gas velocity. The spray is shaped by a concentric supplemental flow of gas. 5 figs.
Arc spray fabrication of metal matrix composite monotape
NASA Technical Reports Server (NTRS)
Westfall, L. J. (Inventor)
1985-01-01
Arc metal spraying is used to spray liquid metal onto an array of high strength fibers that were previously wound onto a large drum contained inside a controlled atmosphere chamber. This chamber is first evacuated to remove gaseous contaminants and then backfilled with a neutral gas up to atmospheric pressure. This process is used to produce a large size metal matrix composite monotape.
Code of Federal Regulations, 2010 CFR
2010-07-01
... accumulate on electrical installations, wiring shall be in rigid conduit or in boxes containing no taps... pressure. (12) Wiring, motors and equipment in a spray booth shall be of approved explosion-proof type for..., Hazardous Locations. Wiring, motors and equipment within 20 feet (6.1m) of any interior spraying area and...
Spatio-temporal droplet size statistics in developing spray of starchy solution
NASA Astrophysics Data System (ADS)
Naz, Muhammad Yasin; Sulaiman, Shaharin Anwar; Ariwahjoedi, Bambang
2015-07-01
In the given research, the spray jet breakup of a modified starch solution was studied as a function of jet injection time and nozzle orifice diameter. The starch-urea-borax solution was prepared and tested with three axisymmetric full cone nozzles at service temperature of 80°C and the injection pressure of 5 bar. It is worth mentioning that no jet breakup was seen below these temperature and pressure values. The imaging studies on the time based spray evolution revealed monotonic increase in both; spray cone angle and tip penetration with an increase in injection time form 0-300 mm. Hereinafter, both parameters exhibited constants value over injection time. Phase Doppler Anemometry (PDA) measurements of the droplet size revealed significant decrease in the Sauter Mean Diameter (SMD) along the spray centerline. However, a steady decrease in SMD was seen towards the spray boundary. For fixed injection time of 300 ms, the overall SMD was decreased from 112 to 71 µm at 60 mm downstream, from 102 to 64 µm at 100 mm downstream and from 85 to 61 µm at 140 mm downstream with an increase in orifice diameter from 1.19 to 1.59 mm.
Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy
NASA Astrophysics Data System (ADS)
Caliari, F. R.; Miranda, F. S.; Reis, D. A. P.; Essiptchouk, A. M.; Filho, G. P.
2017-06-01
Plasma spray is a versatile technology used for production of environmental and thermal barrier coatings, mainly in the aerospace, gas turbine, and automotive industries, with potential application in the renewable energy industry. New plasma spray technologies have been developed recently to produce high-quality coatings as an alternative to the costly low-pressure plasma-spray process. In this work, we studied the properties of as-sprayed CoNiCrAlY coatings deposited on Ti-6Al-4V substrate with smooth surface ( R a = 0.8 μm) by means of a plasma torch operating in supersonic regime at atmospheric pressure. The CoNiCrAlY coatings were evaluated in terms of their surface roughness, microstructure, instrumented indentation, and phase content. Static and dynamic depositions were investigated to examine their effect on coating characteristics. Results show that the substrate surface velocity has a major influence on the coating properties. The sprayed CoNiCrAlY coatings exhibit low roughness ( R a of 5.7 μm), low porosity (0.8%), excellent mechanical properties ( H it = 6.1 GPa, E it = 155 GPa), and elevated interface toughness (2.4 MPa m1/2).
Verification on spray simulation of a pintle injector for liquid rocket engine
NASA Astrophysics Data System (ADS)
Son, Min; Yu, Kijeong; Radhakrishnan, Kanmaniraja; Shin, Bongchul; Koo, Jaye
2016-02-01
The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.
Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air
NASA Astrophysics Data System (ADS)
Duran, Sean P.; Porter, Jason M.; Parker, Terence E.
2015-04-01
The first successful demonstration of picosecond ballistic imaging using a 15-ps-pulse-duration laser in diesel sprays at temperature and pressure is reported. This technique uses an optical Kerr effect shutter constructed from a CS2 liquid cell and a 15-ps pulse at 532 nm. The optical shutter can be adjusted to produce effective imaging pulses between 7 and 16 ps. This technique is used to image the near-orifice region (first 3 mm) of diesel sprays from a high-pressure single-hole fuel injector. Ballistic imaging of dodecane and methyl oleate sprays injected into ambient air and diesel injection at preignition engine-like conditions are reported. Dodecane was injected into air heated to 600 °C and pressurized to 20 atm. The resulting images of the near-orifice region at these conditions reveal dramatic shedding of the liquid near the nozzle, an effect that has been predicted, but to our knowledge never before imaged. These shedding structures have an approximate spatial frequency of 10 mm-1 with lengths from 50 to 200 μm. Several parameters are explored including injection pressure, liquid fuel temperature, air temperature and pressure, and fuel type. Resulting trends are summarized with accompanying images.
Yousefi, Morteza; Inthavong, Kiao; Tu, Jiyuan
2017-10-01
A key issue in pulmonary drug delivery is improvement of the delivery device for effective and targeted treatment. Pressurized metered dose inhalers (pMDIs) are the most popular aerosol therapy device for treating lung diseases. This article studies the effect of spray characteristics: injection velocity, spray cone angle, particle size distribution (PSD), and its mass median aerodynamic diameter (MMAD) on drug delivery. An idealized oral airway geometry, extending from mouth to the main bronchus, was connected to a pMDI device. Inhalation flow rates of 15, 30, and 60 L/min were used and drug particle tracking was a one-way coupled Lagrangian model. The results showed that most particles deposited in the pharynx, where the airway has a reduced cross-sectional area. Particle deposition generally decreased with initial spray velocity and with increased spray cone angle for 30 and 60 L/min flow rates. However, for 15 L/min flow rate, the deposition increased slightly with an increase in the spray velocity and cone angle. The effect of spray cone angle was more significant than the initial spray velocity on particle deposition. When the MMAD of a PSD was reduced, the deposition efficiency also reduces, suggesting greater rates of particle entry into the lung. The deposition rate showed negligible change when the MMAD was more than 8 μm. Spray injection angle and velocity change the drug delivery efficacy; however, the efficiency shows more sensitivity to the injection angle. The 30 L/min airflow rate delivers spray particles to the lung more efficiently than 15 and 60 L/min airflow rate, and reducing MMAD can help increase drug delivery to the lung.
PTV analysis of the entrained air into the diesel spray at high-pressure injection
NASA Astrophysics Data System (ADS)
Toda, Naoki; Yamashita, Hayato; Mashida, Makoto
2014-08-01
In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.
Slurry spray distribution within a simulated laboratory scale spray dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertone, P.C.
1979-12-20
It was found that the distribution of liquid striking the sides of a simulated room temperature spray dryer was not significantly altered by the choice of nozles, nor by a variation in nozzle operating conditions. Instead, it was found to be a function of the spray dryer's configuration. A cocurrent flow of air down the drying cylinder, not possible with PNL's closed top, favorably altered the spray distribution by both decreasing the amount of liquid striking the interior of the cylinder from 72 to 26% of the feed supplied, and by shifting the zone of maximum impact from 1.0 tomore » 1.7 feet from the nozzle. These findings led to the redesign of the laboratory scale spray dryer to be tested at the Savannah River Plant. The diameter of the drying chamber was increased from 5 to 8 inches, and a cocurrent flow of air was established with a closed recycle. Finally, this investigation suggested a drying scheme which offers all the advantages of spray drying without many of its limitations.« less
Steinstraesser, Lars; Flak, Ewa; Witte, Bernd; Ring, Andrej; Tilkorn, Daniel; Hauser, Jörg; Langer, Stefan; Steinau, Hans-Ulrich; Al-Benna, Sammy
2011-10-01
Published trials evaluating pressure garment and/or silicone therapy as a treatment for hypertrophic burn scarring are of poor quality and highly susceptible to bias. The authors' aim was to compare the efficacy of pressure garment therapy alone and in combination with silicone gel sheet or spray therapy for the prevention of hypertrophic scarring. The authors conducted an open, single-center, randomized controlled study with intraindividual comparison of study preparations and control to standard treatment. Forty-three consecutive patients with two comparable areas of split-thickness graft burn wounds were recruited into the study, and 38 patients were followed up for 18 months. All patients received compression garments and were randomized to one of two treatment groups: (1) self-drying silicone spray and compression versus compression alone and (2) silicone sheeting and compression versus compression alone. Clinical assessment, measurement of scar redness, height, and photographic documentation of each treated area were performed at different visits over an 18-month follow-up period. Significance was tested using repeated-measures analyses and Wilcoxon paired-sample signed rank tests. Use of pressure garment therapy alone produced results equivalent to those of combined silicone and pressure garment therapy in the prevention of hypertrophic scars. The efficacy of silicone spray therapy was comparable to that of silicone gel sheet therapy in the prevention of hypertrophic scars. Patients treated with silicone spray had fewer side effects when compared with the silicone sheet group. Multimodal therapy with silicone and pressure garment therapy failed to prevent hypertrophic scars beyond that observed with pressure garment therapy alone. Therapeutic, II.
Spot Spraying Reduces Herbicide Concentrations in Runoff.
Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen
2016-05-25
Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.
Glovan, Ronald J.; Tierney, John C.; McLean, Leroy L.; Johnson, Lawrence L.; Verbael, David J.
1995-01-01
An electrically heated metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments.
Moreira, Grazielle Furtado; Batista, Elder Simões de Paula; Campos, Henrique Borges Neves; Lemos, Raphael Emilio; Ferreira, Marcelo da Costa
2013-01-01
The objective of this study was to evaluate different strategies for the application of entomopathogenic nematodes (EPN). Three different models of spray nozzles with air induction (AI 11003, TTI 11003 and AD-IA 11004), three spray pressures (207, 413 and 720 kPa), four different additives for tank mixtures (cane molasses, mineral oil, vegetable oil and glycerin) and the influence of tank mixture stirring time were all evaluated for their effect on EPN (Steinernema feltiae) viability and pathogenicity. The different nozzles, at pressures of up to 620 kPa, were found to be compatible with S. feltiae. Vegetable oil, mineral oil and molasses were found to be compatible adjuvants for S. feltiae, and stirring in a motorized backpack sprayer for 30 minutes did not impact the viability or pathogenicity of this nematode. Appropriate techniques for the application of nematodes with backpack sprayers are discussed. PMID:23755280
Moreira, Grazielle Furtado; Batista, Elder Simões de Paula; Campos, Henrique Borges Neves; Lemos, Raphael Emilio; Ferreira, Marcelo da Costa
2013-01-01
The objective of this study was to evaluate different strategies for the application of entomopathogenic nematodes (EPN). Three different models of spray nozzles with air induction (AI 11003, TTI 11003 and AD-IA 11004), three spray pressures (207, 413 and 720 kPa), four different additives for tank mixtures (cane molasses, mineral oil, vegetable oil and glycerin) and the influence of tank mixture stirring time were all evaluated for their effect on EPN (Steinernema feltiae) viability and pathogenicity. The different nozzles, at pressures of up to 620 kPa, were found to be compatible with S. feltiae. Vegetable oil, mineral oil and molasses were found to be compatible adjuvants for S. feltiae, and stirring in a motorized backpack sprayer for 30 minutes did not impact the viability or pathogenicity of this nematode. Appropriate techniques for the application of nematodes with backpack sprayers are discussed.
Glovan, R.J.; Tierney, J.C.; McLean, L.L.; Johnson, L.L.; Verbael, D.J.
1995-10-17
An electrically heated metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments. 12 figs.
EVALUATION OF THE AGDISP AERIAL SPRAY ALGORITHMS IN THE AGDRIFT MODEL
A systematic evaluation of the AgDISP algorithms, which simulate off-site drift and deposition of aerially applied pesticides, contained in the AgDRIFT model was performed by comparing model simulations to field-trial data collected by the Spray Drift Task Force. Field-trial data...
Portable tripod-mounted boom sprayer for applying herbicides on tall shrubs
Charles A. Graham; Jay R. Bentley
1975-01-01
A tripod-supported boom sprayer was developed and used to spray herbicides on shrubs up to 15 feet tall on experimental plots where use of other spray equipment was not feasible. A pneumatic pressurized sprayer with 10 diaphragm nozzles, geometrically spaced along the outer 20 feet (6.1 m) of a 25-foot (7.6-m) boom, distributed the spray uniformly. Brush leaves were...
NASA Astrophysics Data System (ADS)
Bashirzadeh, Milad
This study examines microstructural-based mechanical properties of Al-Cu composite deposited by cold spraying and wire arc sprayed nickel-based alloy 625 coating using numerical modeling and experimental techniques. The microhardness and elastic modulus of samples were determined using the Knoop hardness technique. Hardness in both transverse and longitudinal directions on the sample cross-sections has been measured. An image-based finite element simulation algorithm was employed to determine the mechanical properties through an inverse analysis. In addition mechanical tests including, tensile, bending, and nano-indentation tests were performed on alloy 625 wire arc sprayed samples. Overall, results from the experimental tests are in relatively good agreement for deposited Al-Cu composites and alloy 625 coating. However, results obtained from numerical simulation are significantly higher in value than experimentally obtained results. Examination and comparison of the results are strong indications of the influence of microstructure characteristics on the mechanical properties of thermally spray deposited coatings.
Atomization of coal water mixtures: evaluation of fuel nozzles and a cellulose gum simulant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosfjord, T.J.
1985-03-01
An experimental evaluation of four air-assist fuel nozzles has been conducted to determine atomization levels of coal-water mixture (CWM) fuels at operating conditions simulating a high pressure combustor. Two of the nozzles were commercial units marketed for use in atmospheric burners, while two nozzles were specially designed for CWM operation in a high pressure combustor. Sprays from all four injectors were characterized in tests performed over a range of liquid and air flowrates. Most of the tests were performed using a cellulose-gum water solution prepared to match the viscosity and drip characteristics of an available CWM. Atomization data acquired frommore » a limited test series using the CWM were found to be properly represented by the gum solution data. High levels of atomization (SMD about 10 micron) were achieved by two of the nozzles - one commercial unit and one special unit - at an assist airflow level corresponding to a nozzle air-fuel ratio between 0.6 - 0.8.« less
Skogan, Gunnar
2017-01-01
ABSTRACT The ability to perform controlled experiments with bioaerosols is a fundamental enabler of many bioaerosol research disciplines. A practical alternative to using hazardous biothreat agents, e.g., for detection equipment development and testing, involves using appropriate model organisms (simulants). Several species of Gram-negative bacteria have been used or proposed as biothreat simulants. However, the appropriateness of different bacterial genera, species, and strains as simulants is still debated. Here, we report aerobiological stability characteristics of four species of Gram-negative bacteria (Pantoea agglomerans, Serratia marcescens, Escherichia coli, and Xanthomonas arboricola) in single-cell particles and cell clusters produced using four spray liquids (H2O, phosphate-buffered saline[PBS], spent culture medium[SCM], and a SCM-PBS mixture). E. coli showed higher stability in cell clusters from all spray liquids than the other species, but it showed similar or lower stability in single-cell particles. The overall stability was higher in cell clusters than in single-cell particles. The highest overall stability was observed for bioaerosols produced using SCM-containing spray liquids. A key finding was the observation that stability differences caused by particle size or compositional changes frequently followed species-specific patterns. The results highlight how even moderate changes to one experimental parameter, e.g., bacterial species, spray liquid, or particle size, can strongly affect the aerobiological stability of Gram-negative bacteria. Taken together, the results highlight the importance of careful and informed selection of Gram-negative bacterial biothreat simulants and also the accompanying particle size and composition. The outcome of this work contributes to improved selection of simulants, spray liquids, and particle size for use in bioaerosol research. IMPORTANCE The outcome of this work contributes to improved selection of simulants, spray liquids, and particle size for use in bioaerosol research. Taken together, the results highlight the importance of careful and informed selection of Gram-negative bacterial biothreat simulants and also the accompanying particle size and composition. The results highlight how even moderate changes to one experimental parameter, e.g., bacterial species, spray liquid, or particle size, can strongly affect the aerobiological stability of Gram-negative bacteria. A key finding was the observation that stability differences caused by particle size or compositional changes frequently followed species-specific patterns. PMID:28687646
NASA Astrophysics Data System (ADS)
Vautherin, B.; Planche, M.-P.; Quet, A.; Bianchi, L.; Montavon, G.
2014-11-01
Very Low Pressure Plasma Spraying (VLPPS) is an emerging spray process nowadays intensively studied by many research centers in the World. To date, studies are mostly focused on the manufacturing of ceramic or metallic coatings. None refers to composite coatings manufacturing by reactive plasma spraying under very low pressure (i.e., ~150 Pa). This paper aims at presenting the carried-out developments and some results concerning the manufacturing of composite coatings by reactive spraying. Titanium was selected as metallic material in order to deposit titanium-nitride titanium coatings (Ti-TiN). Nitrogen was used as plasma gas and was injected along an Ar-H2-N2 plasma jet via a secondary injector in order to reach the nitrogen content on the substrate surface. Thus, different kind of reactive mechanisms were highlighted. Resulting coatings were characterized by Scanning Electron Microscopy (SEM) observations. Porous microstructures are clearly identified and the deposits exhibit condensed vapours and molten particles. Glow Discharge Optical Emission Spectroscopy (GDOES) analysis evidenced nitrogen inside the deposits and X-Ray Diffraction (XRD) analysis confirmed the formation of titanium nitride phases, such as TiN and Ti2N, depending upon the location of the nitrogen injection. Microhardness values as high as 800 VHN were measured on manufactured samples (to be compared to 220 VHN for pure titanium VLPPS-manufactured coatings).
Influence of ambient air pressure on effervescent atomization
NASA Technical Reports Server (NTRS)
Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.
1993-01-01
The influence of ambient air pressure on the drop-size distributions produced in effervescent atomization is examined in this article. Also investigated are the effects on spray characteristics of variations in air/liquid mass ratio, liquid-injection pressure, and atomizer discharge-orifice diameter at different levels of ambient air pressure. It is found that continuous increase in air pressure above the normal atmospheric value causes the mean drop-size to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the various contributing factors to the overall atomization process. It is also observed that changes in atomizer geometry and operating conditions have little effect on the distribution of drop-sizes in the spray.
Experimental study on spray characteristics of alternate jet fuels using Phase Doppler Anemometry
NASA Astrophysics Data System (ADS)
Kannaiyan, Kumaran; Sadr, Reza
2013-11-01
Gas-to-Liquid (GTL) fuels have gained global attention due to their cleaner combustion characteristics. The chemical and physical properties of GTL jet fuels are different from conventional jet fuels owing to the difference in their production methodology. It is important to study the spray characteristics of GTL jet fuels as the change of physical properties can affect atomization, mixing, evaporation and combustion process, ultimately affecting emission process. In this work, spray characteristics of two GTL synthetic jet fuels are studied using a pressure-swirl nozzle at different injection pressures and atmospheric ambient condition. Phase Doppler Anemometry (PDA) measurements of droplet size and velocity are compared with those of regular Jet A-1 fuel at several axial and radial locations downstream of the nozzle exit. Experimental results show that although the GTL fuels have different physical properties such as viscosity, density, and surface tension, among each other the resultant change in the spray characteristics is insignificant. Furthermore, the presented results show that GTL fuel spray characteristics exhibit close similarity to those of Jet A-1 fuel. Funded by Qatar Science and Technology Park.
NASA Technical Reports Server (NTRS)
Keen, Jill M.; Evans, Kurt B.; Schiffman, Robert L.; Deweese, C. Darrell; Prince, Michael E.
1995-01-01
Experimental design testing was conducted to identify critical parameters of an aqueous spray process intended for cleaning solid rocket motor metal components (steel and aluminum). A two-level, six-parameter, fractional factorial matrix was constructed and conducted for two cleaners, Brulin 815 GD and Diversey Jettacin. The matrix parameters included cleaner temperature and concentration, wash density, wash pressure, rinse pressure, and dishwasher type. Other spray parameters: nozzle stand-off, rinse water temperature, wash and rinse time, dry conditions, and type of rinse water (deionized) were held constant. Matrix response testing utilized discriminating bond specimens (fracture energy and tensile adhesion strength) which represent critical production bond lines. Overall, Jettacin spray cleaning was insensitive to the range of conditions tested for all parameters and exhibited bond strengths significantly above the TCA test baseline for all bond lines tested. Brulin 815 was sensitive to cleaning temperature, but produced bond strengths above the TCA test baseline even at the lower temperatures. Ultimately, the experimental design database was utilized to recommend process parameter settings for future aqueous spray cleaning characterization work.
Metallization of Various Polymers by Cold Spray
NASA Astrophysics Data System (ADS)
Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen
2018-01-01
Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.
Thermodynamic performance testing of the orbiter flash evaporator system
NASA Technical Reports Server (NTRS)
Jaax, J. R.; Melgares, M. A.; Frahm, J. P.
1980-01-01
System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.
Surface-initiated phase transition in solid hydrogen under the high-pressure compression
NASA Astrophysics Data System (ADS)
Lei, Haile; Lin, Wei; Wang, Kai; Li, Xibo
2018-03-01
The large-scale molecular dynamics simulations have been performed to understand the microscopic mechanism governing the phase transition of solid hydrogen under the high-pressure compression. These results demonstrate that the face-centered-cubic-to-hexagonal close-packed phase transition is initiated first at the surfaces at a much lower pressure than in the volume and then extends gradually from the surface to volume in the solid hydrogen. The infrared spectra from the surface are revealed to exhibit a different pressure-dependent feature from those of the volume during the high-pressure compression. It is thus deduced that the weakening intramolecular H-H bonds are always accompanied by hardening surface phonons through strengthening the intermolecular H2-H2 coupling at the surfaces with respect to the counterparts in the volume at high pressures. This is just opposite to the conventional atomic crystals, in which the surface phonons are softening. The high-pressure compression has further been predicted to force the atoms or molecules to spray out of surface to degrade the pressure. These results provide a glimpse of structural properties of solid hydrogen at the early stage during the high-pressure compression.
The functional TiO2-biodegradable plastic composite material produced by HVOF spraying process.
Bang, Hee-Seon; Bang, Han-Sur; Lee, Yoon-Ki
2007-11-01
Photocatalytic TiO2 coatings on bio-degradable plastic(polybutylene succinate: PBS) were prepared by HVOF spraying using three kinds of agglomerated powders (P200: 200 nm, P30: 30 nm, P7: 7 nm). The microstructures of the coatings were characterized with SEM and XRD analysis, and the photocatalytic efficiency of the coatings was evaluated by photo degradation of gaseous acetaldehyde. For both the HVOF sprayed P200 and P30 coatings, high anatase ratio of 100% was achieved, regardless of the fuel gas pressure. On the other hand, for the HVOF sprayed P7 coating, the anatase ratio decreased from 100% to 49.1% with increasing fuel gas pressure. This decrease may be attributed to the much higher susceptibility to heat of the 7 nm agglomerated powders than the 30 nm and 200 nm agglomerated powders. In terms of the photocatalytic efficiency, HVOF sprayed P200 and P30 coatings seemed to outperform the P7 coatings because of their higher anatase ratios. However, the HVOF sprayed P7 coatings did not show photocatalytic activity possibly because of the extremely small reaction surface area to the photo-catalytic activity and low anatase ratio. Therefore, the present study found that functional PBS plastic with photocatalytic performance could be produced by spraying of ceramics such as TiO2.
Understanding the ignition mechanism of high-pressure spray flames
Dahms, Rainer N.; Paczko, Günter A.; Skeen, Scott A.; ...
2016-10-25
A conceptual model for turbulent ignition in high-pressure spray flames is presented. The model is motivated by first-principles simulations and optical diagnostics applied to the Sandia n-dodecane experiment. The Lagrangian flamelet equations are combined with full LLNL kinetics (2755 species; 11,173 reactions) to resolve all time and length scales and chemical pathways of the ignition process at engine-relevant pressures and turbulence intensities unattainable using classic DNS. The first-principles value of the flamelet equations is established by a novel chemical explosive mode-diffusion time scale analysis of the fully-coupled chemical and turbulent time scales. Contrary to conventional wisdom, this analysis reveals thatmore » the high Damköhler number limit, a key requirement for the validity of the flamelet derivation from the reactive Navier–Stokes equations, applies during the entire ignition process. Corroborating Rayleigh-scattering and formaldehyde PLIF with simultaneous schlieren imaging of mixing and combustion are presented. Our combined analysis establishes a characteristic temporal evolution of the ignition process. First, a localized first-stage ignition event consistently occurs in highest temperature mixture regions. This initiates, owed to the intense scalar dissipation, a turbulent cool flame wave propagating from this ignition spot through the entire flow field. This wave significantly decreases the ignition delay of lower temperature mixture regions in comparison to their homogeneous reference. This explains the experimentally observed formaldehyde formation across the entire spray head prior to high-temperature ignition which consistently occurs first in a broad range of rich mixture regions. There, the combination of first-stage ignition delay, shortened by the cool flame wave, and the subsequent delay until second-stage ignition becomes minimal. A turbulent flame subsequently propagates rapidly through the entire mixture over time scales consistent with experimental observations. As a result, we demonstrate that the neglect of turbulence-chemistry-interactions fundamentally fails to capture the key features of this ignition process.« less
NASA Astrophysics Data System (ADS)
Hu, Yong; Olguin, Hernan; Gutheil, Eva
2017-05-01
A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new insight into the local structure of this complex spray flame.
Turbulent dispersion of the icing cloud from spray nozzles used in icing tunnels
NASA Technical Reports Server (NTRS)
Marek, C. J.; Olsen, W. A., Jr.
1986-01-01
To correctly simulate flight in natural icing conditions, the turbulence in an icing simulator must be as low as possible. But some turbulence is required to mix the droplets from the spray nozzles and achieve an icing cloud of uniform liquid water content. The goal for any spray system is to obtain the widest possible spray cloud with the lowest possible turbulence in the test section of a icing tunnel. This investigation reports the measurement of turbulence and the three-dimensional spread of the cloud from a single spray nozzle. The task was to determine how the air turbulence and cloud width are affected by spray bars of quite different drag coefficients, by changes in the turbulence upstream of the spray, the droplet size, and the atomizing air. An ice accretion grid, located 6.3 m downstream of the single spray nozzle, was used to measure cloud spread. Both the spray bar and the grid were located in the constant velocity test section. Three spray bar shapes were tested: the short blunt spray bar used in the NASA Lewis Icing Research Tunnel, a thin 14.6 cm chord airfoil, and a 53 cm chord NACA 0012 airfoil. At the low airspeed (56 km/hr) the ice accretion pattern was axisymmetric and was not affected by the shape of the spray bar. At the high airspeed (169 km/hr) the spread was 30 percent smaller than at the low airspeed. For the widest cloud the spray bars should be located as far upstream in the low velocity plenum of the icing tunnel. Good comparison is obtained between the cloud spread data and predicitons from a two-dimensional cloud mixing computer code using the two equation turbulence (k epsilon g) model.
Synthesis and characterization of Cu3(BTC)2 membranes by thermal spray seeding and secondary growth.
Noh, Seung-Jun; Kwon, Hyuk Taek; Kim, Jinsoo
2013-08-01
Crack-free Cu3(BTC)2 membranes were successfully prepared by thermal spray seeding and secondary growth method. Thermal spray seeding method, combining thermal seeding and pressurized spraying, uniformly distributed seed solution on the support, anchoring seed crystals tightly on the support. After secondary growth of the seeded support in the autoclave, continuous crack-free membrane was obtained by controlling cooling and drying steps. The gas permeation test was conducted at various temperatures using H2, CO2, CH4 and N2 gases.
Alvarez, Joseph L.; Watson, Lloyd D.
1989-01-01
An apparatus and method for continuously analyzing liquids by creating a supersonic spray which is shaped and sized prior to delivery of the spray to a analysis apparatus. The gas and liquid are mixed in a converging-diverging nozzle where the liquid is sheared into small particles which are of a size and uniformly to form a spray which can be controlled through adjustment of pressures and gas velocity. The spray is shaped by a concentric supplemental flow of gas.
Cahoon, D.R.; Cowan, J.H.
1988-01-01
The capabilities of a new wetland dredging technology were assessed along with associated newly developed state and federal regulatory policies to determine if policy expectations realistically match the technological achievement. Current regulatory practices require amelioration of spoil bank impacts upon abandonment of an oil/gas well, but this may not occur for many years or decades, if at all. Recently, a dreding method (high-pressure spray spoil disposal) was developed that does not create a spoil bank in the traditional sense. Its potential for reducing environmental impacts was recognized immediately by regulatory agencies for whom minimizing spoil bank impacts is a major concern. The use of high-pressure spray disposal as a suitable alternative to traditional dreding technology has been adopted as policy even though its value as a management tool has never been tested or verified. A qualitative evaluation at two spoil disposal sites in saline marsh indicates that high-pressure spray disposal may indeed have great potential to minimize impacts, but most of this potential remains unverified. Also, some aspects of current regulatory policy may be based on unrealistic expectations as to the ability of this new technology to minimize or eliminate spoil bank impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Jonathan H.; Pickett, Lyle M.; Bisson, Scott E.
In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitativemore » high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.« less
NASA Astrophysics Data System (ADS)
Zhu, J. Y.; Chin, J. S.
1986-06-01
A numerical calculation method is used to predict the variation of the characteristics of fuel spray moving in a high temperature air crossflow, mainly, Sauter mean diameter SMD, droplet size distribution index N of Rosin-Rammler distribution and evaporation percentage changing with downstream distance X from the nozzle. The effect of droplet heat-up period evaporation process and forced convection are taken into full account; thus, the calculation model is a very good approximation to the process of spray evaporation in a practical combustor, such as ramjet, aero-gas turbine, liquid propellant rocket, diesel and other liquid fuel-powered combustion devices. The changes of spray characteristics N, SMD and spray evaporation percentage with air velocity, pressure, temperature, fuel injection velocity, and the initial spray parameters are presented.
Novel method for the measurement of liquid film thickness during fuel spray impingement on surfaces.
Henkel, S; Beyrau, F; Hardalupas, Y; Taylor, A M K P
2016-02-08
This paper describes the development and application of a novel optical technique for the measurement of liquid film thickness formed on surfaces during the impingement of automotive fuel sprays. The technique makes use of the change of the light scattering characteristics of a metal surface with known roughness, when liquid is deposited. Important advantages of the technique over previously established methods are the ability to measure the time-dependent spatial distribution of the liquid film without a need to add a fluorescent tracer to the liquid, while the measurement principle is not influenced by changes of the pressure and temperature of the liquid or the surrounding gas phase. Also, there is no need for non-fluorescing surrogate fuels. However, an in situ calibration of the dependence of signal intensity on liquid film thickness is required. The developed method can be applied to measure the time-dependent and two-dimensional distribution of the liquid fuel film thickness on the piston or the liner of gasoline direct injection (GDI) engines. The applicability of this technique was evaluated with impinging sprays of several linear alkanes and alcohols with different thermo-physical properties. The surface temperature of the impingement plate was controlled to simulate the range of piston surface temperatures inside a GDI engine. Two sets of liquid film thickness measurements were obtained. During the first set, the surface temperature of the plate was kept constant, while the spray of different fuels interacted with the surface. In the second set, the plate temperature was adjusted to match the boiling temperature of each fuel. In this way, the influence of the surface temperature on the liquid film created by the spray of different fuels and their evaporation characteristics could be demonstrated.
Analysis of large-scale tablet coating: Modeling, simulation and experiments.
Boehling, P; Toschkoff, G; Knop, K; Kleinebudde, P; Just, S; Funke, A; Rehbaum, H; Khinast, J G
2016-07-30
This work concerns a tablet coating process in an industrial-scale drum coater. We set up a full-scale Design of Simulation Experiment (DoSE) using the Discrete Element Method (DEM) to investigate the influence of various process parameters (the spray rate, the number of nozzles, the rotation rate and the drum load) on the coefficient of inter-tablet coating variation (cv,inter). The coater was filled with up to 290kg of material, which is equivalent to 1,028,369 tablets. To mimic the tablet shape, the glued sphere approach was followed, and each modeled tablet consisted of eight spheres. We simulated the process via the eXtended Particle System (XPS), proving that it is possible to accurately simulate the tablet coating process on the industrial scale. The process time required to reach a uniform tablet coating was extrapolated based on the simulated data and was in good agreement with experimental results. The results are provided at various levels of details, from thorough investigation of the influence that the process parameters have on the cv,inter and the amount of tablets that visit the spray zone during the simulated 90s to the velocity in the spray zone and the spray and bed cycle time. It was found that increasing the number of nozzles and decreasing the spray rate had the highest influence on the cv,inter. Although increasing the drum load and the rotation rate increased the tablet velocity, it did not have a relevant influence on the cv,inter and the process time. Copyright © 2015 Elsevier B.V. All rights reserved.
Thermal barrier coating life prediction model development
NASA Technical Reports Server (NTRS)
Strangman, T. E.; Neumann, J. F.; Tasooji, A.
1985-01-01
This program focuses on predicting the lives of two types of strain-tolerant and oxidation-resistant thermal barrier coating (TBC) systems that are produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system is composed of a low pressure, plasma sprayed applied, oxidation resistant NiCrAlY bond coating. The other system is an air plasma sprayed yttria (8 percent) partially stabilized zirconia insulative layer.
Passive Rocket Diffuser Testing: Reacting Flow Performance of Four Second-Throat Geometries
NASA Technical Reports Server (NTRS)
Jones, Daniel R.; Allgood, Daniel C.; Saunders, Grady P.
2016-01-01
Second-throat diffusers serve to isolate rocket engines from the effects of ambient back pressure. As one of the nation's largest rocket testing facilities, the performance and design limitations of diffusers are of great interest to NASA's Stennis Space Center. This paper describes a series of tests conducted on four diffuser configurations to better understand the effects of inlet geometry and throat area on starting behavior and boundary layer separation. The diffusers were tested for a duration of five seconds with a 1455-pound thrust, LO2/GH2 thruster to ensure they each reached aerodynamic steady state. The effects of a water spray ring at the diffuser exits and a water-cooled deflector plate were also evaluated. Static pressure and temperature measurements were taken at multiple axial locations along the diffusers, and Computational Fluid Dynamics (CFD) simulations were used as a tool to aid in the interpretation of data. The hot combustion products were confirmed to enable the diffuser start condition with tighter second throats than predicted by historical cold-flow data or the theoretical normal shock method. Both aerodynamic performance and heat transfer were found to increase with smaller diffuser throats. Spray ring and deflector cooling water had negligible impacts on diffuser boundary layer separation. CFD was found to accurately capture diffuser shock structures and full-flowing diffuser wall pressures, and the qualitative behavior of heat transfer. However, the ability to predict boundary layer separated flows was not consistent.
Zwertvaegher, Ingrid Ka; Van Daele, Inge; Verheesen, Peter; Peferoen, Marnix; Nuyttens, David
2017-01-01
Rainfall greatly affects the retention of foliar-applied agroformulations. Improving their resistance to wash-off is therefore of great importance in spray applications. When developing such formulations, small-scale laboratory assays are generally required. A set-up for retention studies using only small amounts of agroformulations (<0.5 L) was developed. The set-up consists of a spray device and a rainfall simulator. The effect of rain quantity (1, 3, 6 mm) on the spray retention of agroformulations was evaluated using this set-up. The data showed that uniform and repeatable spraying was achieved with the small-scale spray device (coefficient of variation 23.4%) on potato pot plants (Solanum tuberosum L.). Rain quantity significantly affected the spray retention. Approximately 40% of the initial deposition was lost after 1 mm of rain at an intensity of 25 mm h -1 . Additional losses decreased with increasing volumes of rain (65 and 80% loss after 3 and 6 mm of rain respectively). Future studies could implement the set-up to evaluate the effect of different rainfall characteristics and formulations on spray retention in order to improve the rainfastness of agroformulations. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Taghavifar, Hadi; Khalilarya, Shahram; Jafarmadar, Samad; Taghavifar, Hamid
2016-08-01
A multidimensional computational fluid dynamic code was developed and integrated with probability density function combustion model to give the detailed account of multiphase fluid flow. The vapor phase within injector domain is treated with Reynolds-averaged Navier-Stokes technique. A new parameter is proposed which is an index of plane-cut spray propagation and takes into account two parameters of spray penetration length and cone angle at the same time. It was found that spray propagation factor (SPI) tends to increase at lower r/ d ratios, although the spray penetration tends to decrease. The results of SPI obtained by empirical correlation of Hay and Jones were compared with the simulation computation as a function of respective r/ d ratio. Based on the results of this study, the spray distribution on plane area has proportional correlation with heat release amount, NO x emission mass fraction, and soot concentration reduction. Higher cavitation is attributed to the sharp edge of nozzle entrance, yielding better liquid jet disintegration and smaller spray droplet that reduces soot mass fraction of late combustion process. In order to have better insight of cavitation phenomenon, turbulence magnitude in nozzle and combustion chamber was acquired and depicted along with spray velocity.
NASA Technical Reports Server (NTRS)
Rothrock, A M; Lee, D W
1932-01-01
Tests were made to determine the effect of the reservoir volume on the discharge pressures in the injection system of the N.A.C.A. spray photography equipment. The data obtained are applicable to the design of a common rail fuel-injection system. The data show that an injection system of the type described can be designed so that not more than full load fuel quantity can be injected into the engine cylinders, and so that the fuel spray characteristics remain constant over a large range of engine speeds. Formulas are presented for computing the volume of the reservoir and the diameter of the discharge orifice.
F-15B in on ramp with close-up of test panels covered with advanced spray-on foam insulation materia
NASA Technical Reports Server (NTRS)
1999-01-01
Test panels covered with an advanced foam insulation material for the Space Shuttle's giant external fuel tank were test flown aboard an F-15B research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Six panels were mounted on the left side of a heavily instrumented Flight Text Fixture mounted underneath the F-15B's fuselage. Insulation on this panel was finely machined over a horizontal rib structure to simulate in-line airflow past the tank; other panels had the ribs mounted vertically or had the insulation left in a rough as-sprayed surface. The tests were part of an effort by NASA's Marshall Space Flight Center to determine why small particles of the new insulation flaked off the tank on recent Shuttle missions. The tests with Dryden's F-15B were designed to replicate the pressure environment the Shuttle encounters during the first minute after launch. No noticeable erosion of the insulation material was noted after the flight experiment at Dryden.
Laser Shearographic Inspection for Debonds in Sprayed On Foam Insulation (SOFI)
NASA Technical Reports Server (NTRS)
Adams, F. W.; Hooker, J.; Simmons, S.
1997-01-01
Preliminary results of shearographic inspections of the test panels simulating the Space Shuttle's external tank (ET) spray on foam insulation (SOFI) are presented. Debonding of SOFI may introduce flight debris that may damage the orbiter's thermal protection system (TPS) exposing the orbiter (as well as the ET) to thermal loading. It is estimated that 90 percent of the TPS damage on the orbiter's 'belly' results from debonded SOFI during ascent. A series of test panels were fabricated, with programmed debonds of different geometries and sizes, to determine the sensitivity of shearography as a function of debond size, SOFI thickness,'and vacuum excitation. Results show that a Probability of Detection (POD) of 0.95 or better can be expected for debonds with a diameter equal to the SOFI thickness as less than 0.4-psi pressure reduction. More testing will be required to validate the laser shearography imaging process for certifying its use in nondestructive evaluation (NDE) of Space Shuttle space flight components.
GAS-ATOMIZED SPRAY SCRUBBER EVALUATION
The report gives results of fine particle collection efficiency measurements of a gas-atomized spray scrubber, cleaning effluent gas from a No. 7 gray iron cupola. Tests were made at several levels of pressure drop and liquid/gas ratio. Particle size measurements on inlet and out...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Meng; Duan, YuFeng; Zhang, TieNan
2010-09-15
The purpose of this research was to investigate the dependence of effervescent spray unsteadiness on operational conditions and atomizer internal design by the ideal spray theory of Edwards and Marx. The convergent-divergent effervescent atomizer spraying water with air as atomizing medium in the ''outside-in'' gas injection was used in this study. Results demonstrated that droplet formation process at various air to liquid ratio (ALR) led to the spray unsteadiness and all droplet size classes exhibited unsteadiness behavior in spray. The spray unsteadiness reduced quickly at ALR of 3% and decreased moderately at ALR of other values as the axial distancemore » increased. When the axial distance was 200 mm, the spray unsteadiness reduced dramatically with the increase in radial distance, but lower spray unsteadiness at the center of spray and higher spray unsteadiness at the edge of spray were shown as the axial distance increased. The spray unsteadiness at the center region of spray increased with the injection pressure. Low spray unsteadiness and good atomization performance can be obtained when the diameter of incline aeration holes increased at ALR of 10%. Although short mixing chamber with large discharge orifice diameter for convergent-divergent effervescent atomizer produced good atomization, the center region of spay showed high spray unsteadiness and maybe formed the droplet clustering. (author)« less
Moore, Karen A.; Zatorski, Raymond A.
2005-07-12
Systems and methods for applying a coating to an interior surface of a conduit. In one embodiment, a spray gun configured to apply a coating is attached to an extension arm which may be inserted into the bore of a pipe. The spray gun may be a thermal spray gun adapted to apply a powder coating. An evacuation system may be used to provide a volume area of reduced air pressure for drawing overspray out of the pipe interior during coating. The extension arm as well as the spray gun may be cooled to maintain a consistent temperature in the system, allowing for more consistent coating.
Methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm
Moore, Karen A.; Zatorski, Raymond A.
2007-10-02
Systems and methods for applying a coating to an interior surface of a conduit. In one embodiment, a spray gun configured to apply a coating is attached to an extension arm which may be inserted into the bore of a pipe. The spray gun may be a thermal spray gun adapted to apply a powder coating. An evacuation system may be used to provide a volume area of reduced air pressure for drawing overspray out of the pipe interior during coating. The extension arm as well as the spray gun may be cooled to maintain a consistent temperature in the system, allowing for more consistent coating.
Some Characteristics of Fuel Sprays from Open Nozzles
NASA Technical Reports Server (NTRS)
Rothrock, A M; Lee, D W
1930-01-01
The penetration and cone-angle of fuel sprays from open nozzles were recorded with the NACA Spray Photography Equipment. The results show that for injection systems in which the rate of pressure rise at the discharge orifice is high, open nozzles give spray-tip velocities and penetrations which compare favorably with those of closed nozzles. The spray cone-angle was the same for all tests, although open nozzles having different orifice diameters were used, and one nozzle was used both as an open and as a closed nozzle. In designing a fuel system using open nozzles, particular care must be taken to avoid air pockets. The check valve should be placed close to the discharge orifice.
Spray Penetration with a Simple Fuel Injection Nozzle
NASA Technical Reports Server (NTRS)
Miller, Harold E; Beardsley, Edward G
1926-01-01
The purpose of the tests covered by this report was to obtain specific information on the rate of penetration of the spray from a simple injection nozzle, having a single orifice with a diameter of 0.015 inch when injecting into compressed gases. The results have shown that the effects of both chamber and fuel pressures on penetration are so marked that the study of sprays by means of high-speed photography or its equivalent is necessary if the effects are to be appreciated sufficiently to enable rational analysis. It was found for these tests that the negative acceleration of the spray tip is approximately proportional to the 1.5 power of the instantaneous velocity of the spray tip.
Modeling the influence of nozzle-generated turbulence on diesel sprays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magnotti, G M; Matusik, K E; Duke, D J
The physical mechanisms governing spray breakup in direct injection engines, such as aerodynamic induced instabilities and nozzle-generated cavitation and turbulence, are not well understood due to the experimental and computational limitations in resolving these processes. Recent x-ray and visible extinction measurements have been con-ducted with a targeted interest in the spray formation region in order to characterize the distribution of droplet sizes throughout the spray. Detailed analysis of these measurements shows promise of yielding insight into likely mechanisms governing atomization, which can inform the improvement of spray models for engine computational fluid dynamic (CFD) codes. In order to investigate potentialmore » atomization mechanisms, we employ a joint experimental and computational approach to characterize the structure of the spray formation region using the Engine Combustion Network Spray D injector. X-ray tomography, radiography and ultra-small angle x-ray scattering measurements conducted at the Advanced Photon Source at Argonne National Laboratory quantify the injector geometry, liquid fuel mass and Sauter mean diameter (SMD) distributions under non-vaporizing conditions. Diffused back-illumination imaging measurements, conducted at the Georgia Institute of Technology, characterize the asymmetry of the spray structure. The selected range of injection pressures (50 – 150 MPa) and ambient densities (1.2 – 22.8 kg/m3) allow for the influence of aerodynamic forces on the spray to be studied in a controlled and systematic manner, while isolating the atomization process from the effects of vaporization. In comparison to high ambient density conditions, the spray is observed to be more asymmetric at low ambient density conditions. Although several mechanisms may cause asymmetries in the nozzle exit flow conditions and ultimately the spray distribution, irregularities in the internal nozzle geometry were identified, suggesting an increased sensitivity of the spray structure to internal nozzle surface finish imperfections at such conditions. The presence of these asymmetries may influence the ability to interpret line-of-sight measurements and their derived SMD values and trends from a single viewing angle of the spray. With this consideration in mind, the measured local sensitivities to ambient density suggest that for ambient densities less than 2.4 kg/m3, aerodynamic effects are likely suppressed, allowing the influence of turbulent-induced breakup to be isolated. In concert with the experimental measurements, we utilize three-dimensional, CFD Lagrangian-Eulerian spray simulations in CONVERGE to evaluate the details of the predicted spray structure. In particular, we compare measured and predicted sensitivities of the SMD distribution to changes in injection and ambient conditions from three different atomization models, namely Kelvin Helmholtz (KH), KH Aerodynamics Cavitation Turbulence (KH-ACT), and the newly developed KH-Faeth hybrid model. While none of the existing hybrid spray models were able to replicate the experimentally observed sensitivities, it was found that the scales characterizing the KH-Faeth model show promise of capturing the experimentally observed trends if the effects of secondary droplet breakup are neglected. These results inform recommendations for future experiments and computational studies that can guide the development of an improved spray breakup model.« less
Liquid Fertilizer Spraying Performance Using A Knapsack Power Sprayer On Soybean Field
NASA Astrophysics Data System (ADS)
Gatot, P.; Anang, R.
2018-05-01
An effort for increasing soybean production can be conducted by applying liquid fertilizer on soybean cultivation field. The objective of this research was to determine liquid fertilizer spraying performance using knapsack power sprayer TASCO TF-900 on a soybean cultivation field. Performances test were conducted in the Laboratory of Spraying Test and on a soybean cultivation field to determine (1) effective spraying width, (2) droplets diameter, (3) droplets density, (4) effective spraying discharge rate, and (5) effective field capacity of spraying. The research was conducted using 2 methods: (1) one-nozzle spraying, and (2) four- nozzles spraying. Results of the research showed that at a constant pressure of 900 kPa effective spraying width using one-nozzle spraying and four-nozzles spraying were 0.62 m and 1.10 m. A bigger effective spraying width was resulted in a bigger average effective spraying discharge rate and average effective spraying field capacity of 4.52 l/min and 83.92 m2/min on forward walking speed range of 0.94 m/s up to 1.77 m/s. On the contrary, bigger effective spraying width was result in bigger droplets diameter of 502.73 μm and a smaller droplets density of 98.39 droplets/cm2, whereas smaller effective spraying width was resulted in a smaller droplets diameter of 367.09 μm and a bigger droplets density of 350.53 droplets/cm2. One-nozzle spraying method produced a better spraying quality than four-nozzles spraying method, although four-nozzles spraying was resulted in a bigger effective field capacity of spraying.
Nasal saline for chronic sinonasal symptoms: a randomized controlled trial.
Pynnonen, Melissa A; Mukerji, Shraddha S; Kim, H Myra; Adams, Meredith E; Terrell, Jeffrey E
2007-11-01
To determine if isotonic sodium chloride (hereinafter "saline") nasal irrigations performed with large volume and delivered with low positive pressure are more effective than saline sprays at improving quality of life and decreasing medication use. A prospective, randomized controlled trial. Community. A total of 127 adults with chronic nasal and sinus symptoms. Patients were randomly assigned to irrigation performed with large volume and delivered with low positive pressure (n = 64) or spray (n = 63) for 8 weeks. Change in symptom severity measured by mean 20-Item Sino-Nasal Outcome Test (SNOT-20) score; change in symptom frequency measured with a global question; and change in medication use. A total of 121 patients were evaluable. The irrigation group achieved lower SNOT-20 scores than the spray group at all 3 time points: 4.4 points lower at 2 weeks (P = .02); 8.2 points lower at 4 weeks (P < .001); and 6.4 points lower at 8 weeks (P = .002). When symptom frequency was analyzed, 40% of subjects in the irrigation group reported symptoms "often or always" at 8 weeks compared with 61% in the spray group (absolute risk reduction, 0.2; 95% confidence interval, 0.02-0.38 (P = .01). No significant differences in sinus medication use were seen between groups. Nasal irrigations performed with large volume and delivered with low positive pressure are more effective than saline sprays for treatment of chronic nasal and sinus symptoms in a community-based population.
Effect of adjuvant physical properties on spray characteristics
USDA-ARS?s Scientific Manuscript database
The effects of adjuvant physical properties on spray characteristics were studied. Dynamic surface tension was measured with a Sensa Dyne surface tensiometer 6000 using the maximum bubble pressure method. Viscosity was measured with a Brookfield synchro-lectric viscometer model LVT using a UL adap...
Assessment of Some Atomization Models Used in Spray Calculations
NASA Technical Reports Server (NTRS)
Raju, M. S.; Bulzin, Dan
2011-01-01
The paper presents the results from a validation study undertaken as a part of the NASA s fundamental aeronautics initiative on high altitude emissions in order to assess the accuracy of several atomization models used in both non-superheat and superheat spray calculations. As a part of this investigation we have undertaken the validation based on four different cases to investigate the spray characteristics of (1) a flashing jet generated by the sudden release of pressurized R134A from cylindrical nozzle, (2) a liquid jet atomizing in a subsonic cross flow, (3) a Parker-Hannifin pressure swirl atomizer, and (4) a single-element Lean Direct Injector (LDI) combustor experiment. These cases were chosen because of their importance in some aerospace applications. The validation is based on some 3D and axisymmetric calculations involving both reacting and non-reacting sprays. In general, the predicted results provide reasonable agreement for both mean droplet sizes (D32) and average droplet velocities but mostly underestimate the droplets sizes in the inner radial region of a cylindrical jet.
Creating a Bimodal Drop-Size Distribution in the NASA Glenn Icing Research Tunnel
NASA Technical Reports Server (NTRS)
King-Steen, Laura E.; Ide, Robert F.
2017-01-01
The Icing Research Tunnel at NASA Glenn has demonstrated that they can create a drop-size distribution that matches the FAA Part 25 Appendix O FZDZ, MVD <40 microns normalized cumulative volume within 10%. This is done by simultaneously spraying the Standard and Mod1 nozzles at the same nozzle air pressure and different nozzle water pressures. It was also found through these tests that the distributions that are measured when the two nozzle sets are sprayed simultaneously closely matched what was found by combining the two individual distributions analytically. Additionally, distributions were compared between spraying all spraybars and also by spraying only every-other spraybar, and were found to match within 4%. The cloud liquid water content uniformity for this condition has been found to be excellent. It should be noted, however, that the liquid water content for this condition in the IRT is much higher than the requirement specified in Part 25 Appendix O.
Creating a Bimodal Drop-Size Distribution in the NASA Glenn Icing Research Tunnel
NASA Technical Reports Server (NTRS)
King-Steen, Laura E.; Ide, Robert F.
2017-01-01
The Icing Research Tunnel at NASA Glenn has demonstrated that they can create a drop-size distribution that matches the FAA Part 25 Appendix O FZDZ, MVD40 m normalized cumulative volume within 10. This is done by simultaneously spraying the Standard and Mod1 nozzles at the same nozzle air pressure and different nozzle water pressures. It was also found through these tests that the distributions that are measured when the two nozzle sets are sprayed simultaneously closely matched what was found by combining the two individual distributions analytically. Additionally, distributions were compared between spraying all spraybars and also by spraying only every-other spraybar, and were found to match within 4. The cloud liquid water content uniformity for this condition has been found to be excellent: 10. It should be noted, however, that the liquid water content for this condition in the IRT is much higher than the requirement specified in Part 25 Appendix O.
Schilke, Peter W.; Muth, Myron C.; Schilling, William F.; Rairden, III, John R.
1983-01-01
In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.
In-situ control system for atomization
Anderson, I.E.; Figliola, R.S.; Terpstra, R.L.
1995-06-13
Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray is disclosed. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray. 3 figs.
In-situ control system for atomization
Anderson, Iver E.; Figliola, Richard S.; Terpstra, Robert L.
1995-06-13
Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray.
Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang
2016-07-01
Biopharmaceutical products are increasingly commercialized as drug/device combinations to enable self-administration. Siliconization of the inner syringe/cartridge glass barrel for adequate functionality is either performed at the supplier or drug product manufacturing site. Yet, siliconization processes are often insufficiently investigated. In this study, an optimized bake-on siliconization process for cartridges using a pilot-scale siliconization unit was developed. The following process parameters were investigated: spray quantity, nozzle position, spray pressure, time for pump dosing and the silicone emulsion concentration. A spray quantity of 4mg emulsion showed best, immediate atomization into a fine spray. 16 and 29mg of emulsion, hence 4-7-times the spray volume, first generated an emulsion jet before atomization was achieved. Poor atomization of higher quantities correlated with an increased spray loss and inhomogeneous silicone distribution, e.g., due to runlets forming build-ups at the cartridge lower edge and depositing on the star wheel. A prolonged time for pump dosing of 175ms led to a more intensive, long-lasting spray compared to 60ms as anticipated from a higher air-to-liquid ratio. A higher spray pressure of 2.5bar did not improve atomization but led to an increased spray loss. At a 20mm nozzle-to-flange distance the spray cone exactly reached the cartridge flange, which was optimal for thicker silicone layers at the flange to ease piston break-loose. Initially, 10μg silicone was sufficient for adequate extrusion in filled cartridges. However, both maximum break-loose and gliding forces in filled cartridges gradually increased from 5-8N to 21-22N upon 80weeks storage at room temperature. The increase for a 30μg silicone level from 3-6N to 10-12N was moderate. Overall, the study provides a comprehensive insight into critical process parameters during the initial spray-on process and the impact of these parameters on the characteristics of the silicone layer, also in context of long-term product storage. The presented experimental toolbox may be utilized for development or evaluation of siliconization processes. Copyright © 2016 Elsevier B.V. All rights reserved.
Sánchez-Hermosilla, Julián; Rincón, Víctor J; Páez, Francisco; Agüera, Francisco; Carvajal, Fernando
2011-08-01
In the greenhouses of south-eastern Spain, plant protection products are applied using mainly sprayers at high pressures and high volumes. This results in major losses on the ground and less than uniform spray deposition on the canopy. Recently, self-propelled vehicles equipped with vertical spray booms have appeared on the market. In this study, deposition on the canopy and the losses to the ground at different spray volumes have been compared, using a self-propelled vehicle with vertical spray booms versus a gun sprayer. Three different spray volumes have been tested with a boom sprayer, and two with a spray gun. The vehicle with the vertical spray boom gave similar depositions to those made with the gun, but at lower application volumes. Also, the distribution of the vertical spray boom was more uniform, with lower losses to the ground. The vertical spray booms used in tomato crops improve the application of plant protection products with respect to the spray gun, reducing the application volumes and the environmental risks of soil pollution. Copyright © 2011 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Nissanka, I. D.; Richter, D. H.
2017-12-01
Previous studies have shown that sea spray droplets can play a significant role in air-sea heat and moisture exchange. The larger spray droplets have potential to transfer considerable amount of mass, momentum and heat, however they remain closer to surface and their residence times are shorter due to the faster settling. On the other hand, smaller droplets have high vertical mobility which allows sufficient time for droplets to adjust to ambient conditions. Hence, to study the heat and moisture characteristics of sea spray droplets it is important to understand how different droplet sizes behave in the Marine Atmospheric Boundary Layer (MABL), especially their temporal evolutions. In this study sea spray droplet transport in the MABL is simulated using Large Eddy Simulation combined with a Lagrangian Particle model which represents spray droplets of varying size. The individual droplets are tracked while their radius and temperature evolve based on local ambient conditions. The particles are advected based on the local resolved velocities and the particle dispersion due to sub-filtered scale motions are modeled using a Lagrangian stochastic model. In this study a series of simulations are conducted with the focus of understanding fundamental droplet microphysics, which will help characterize and quantify the lifetime and airborne concentrations of spray droplets in the MABL, thus elucidating ongoing knowledge gaps which are impossible to fill using observations alone. We measure the size resolved spray droplet vertical concentrations, particle residence times, and temporal evolution of droplet radius and temperature to explain the behavior of sea spry droplets in MABL. The PDF of residence time of different initial droplet sizes and joint PDFs of droplet life time and radius and temperature for different droplet sizes are calculated to further quantify the temporal and spatial behavior of sea spray droplets in the MABL, which can be used as inputs into bulk models of air-sea transfer.
A malaria transmission-directed model of mosquito life cycle and ecology
2011-01-01
Background Malaria is a major public health issue in much of the world, and the mosquito vectors which drive transmission are key targets for interventions. Mathematical models for planning malaria eradication benefit from detailed representations of local mosquito populations, their natural dynamics and their response to campaign pressures. Methods A new model is presented for mosquito population dynamics, effects of weather, and impacts of multiple simultaneous interventions. This model is then embedded in a large-scale individual-based simulation and results for local elimination of malaria are discussed. Mosquito population behaviours, such as anthropophily and indoor feeding, are included to study their effect upon the efficacy of vector control-based elimination campaigns. Results Results for vector control tools, such as bed nets, indoor spraying, larval control and space spraying, both alone and in combination, are displayed for a single-location simulation with vector species and seasonality characteristic of central Tanzania, varying baseline transmission intensity and vector bionomics. The sensitivities to habitat type, anthropophily, indoor feeding, and baseline transmission intensity are explored. Conclusions The ability to model a spectrum of local vector species with different ecologies and behaviours allows local customization of packages of interventions and exploration of the effect of proposed new tools. PMID:21999664
Characterization of plasma sprayed and explosively consolidated simulated lunar soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, S.J.; Inal, O.T.; Smith, M.F.
1997-06-01
Two methods for the use of lunar materials for the construction of shelters on the Moon are being proposed: explosive consolidation of the soil into structural components and plasma spraying of the soil to join components. The plasma-sprayed coating would also provide protection from the intense radiation. In this work, a mare simulant was plasma-sprayed onto a stainless steel substrate. Deposition of a 0.020 inch coating using power inputs of 23, 25, 27 and 29 kW were compared. Hardness of the coatings increased with each increase of power to the system, while porosity at the interface decreased. All coatings exhibitedmore » good adhesion. Simultaneously, an explosively consolidated sample was similarly characterized to afford a comparison of structural features associated with each mode of proposed use.« less
Cold Flow Testing for Liquid Propellant Rocket Injector Scaling and Throttling
NASA Technical Reports Server (NTRS)
Kenny, Jeremy R.; Moser, Marlow D.; Hulka, James; Jones, Gregg
2006-01-01
Scaling and throttling of combustion devices are important capabilities to demonstrate in development of liquid rocket engines for NASA's Space Exploration Mission. Scaling provides the ability to design new injectors and injection elements with predictable performance on the basis of test experience with existing injectors and elements, and could be a key aspect of future development programs. Throttling is the reduction of thrust with fixed designs and is a critical requirement in lunar and other planetary landing missions. A task in the Constellation University Institutes Program (CUIP) has been designed to evaluate spray characteristics when liquid propellant rocket engine injectors are scaled and throttled. The specific objectives of the present study are to characterize injection and primary atomization using cold flow simulations of the reacting sprays. These simulations can provide relevant information because the injection and primary atomization are believed to be the spray processes least affected by the propellant reaction. Cold flow studies also provide acceptable test conditions for a university environment. Three geometric scales - 1/4- scale, 1/2-scale, and full-scale - of two different injector element types - swirl coaxial and shear coaxial - will be designed, fabricated, and tested. A literature review is currently being conducted to revisit and compile the previous scaling documentation. Because it is simple to perform, throttling will also be examined in the present work by measuring primary atomization characteristics as the mass flow rate and pressure drop of the six injector element concepts are reduced, with corresponding changes in chamber backpressure. Simulants will include water and gaseous nitrogen, and an optically accessible chamber will be used for visual and laser-based diagnostics. The chamber will include curtain flow capability to repress recirculation, and additional gas injection to provide independent control of the backpressure. This paper provides a short review of the appropriate literature, as well as descriptions of plans for experimental hardware, test chamber instrumentation, diagnostics, and testing.
A comparative study on NbOx films reactively sputtered from sintered and cold gas sprayed targets
NASA Astrophysics Data System (ADS)
Lorenz, Roland; O'Sullivan, Michael; Fian, Alexander; Sprenger, Dietmar; Lang, Bernhard; Mitterer, Christian
2018-04-01
The aim of this work is to evaluate novel cold gas sprayed Nb targets in a reactive sputter deposition process of thin films with respect to the widely used sintered Nb targets. With the exception of a higher target discharge voltage of ∼100 V for the cold gas sprayed targets and the thus higher film growth rate compared to sintered targets, NbOx films with comparable microstructure and properties were obtained for both target variants. The amorphous films with thicknesses between 2.9 and 4.9 μm present an optical shift from dark and non-transparent towards transparent properties, as the oxygen partial pressure increases. X-ray photoelectron spectroscopy confirms the occurrence of the Nb5+ oxidation state for the highest oxygen partial pressure, while Nb4+ is additionally present at lower oxygen partial pressure settings. With a maximal transparency of ∼80% and a refractive index of ∼2.5, the transparent films show characteristics similar to Nb2O5.
Formulation and Development of Metered Dose Inhalations of Salbutamol in Solution Form
Khale, Anubha; Bajaj, Amrita
2011-01-01
In the present study attempts were made to prepare metered dose inhalation of salbutamol in solution form and compared it with the marketed metered dose inhalation in suspension form. Solution form of the drug was found better than marketed suspension formulation with respect to homogeneity and content uniformity. Propellant blend P-11 and P-12 in the proportion 30:70 was selected as it gave optimum vapour pressure. Surfactant oleic acid in concentration 10 mg per can was selected as it gave best results with clarity, spray pattern, vapour pressure, content per spray and rate of evaporation. Ethyl alcohol 2 ml per can was used as a cosolvent to give a clear solution, optimum vapour pressure, maximum content per spray and fair rate of evaporation. The selected formulation was subjected to the physico-chemical evaluation tests as per the standard pharmacopoeial procedures and the characteristics of the formulations were further compared with a conventional marketed formulation. In vitro study reveled the net respirable fraction was better than marketed preparation. PMID:22923867
Effect of Gas Pressure on Polarization of SOFC Cathode Prepared by Plasma Spray
NASA Astrophysics Data System (ADS)
Li, Cheng-Xin; Wang, Zhun-Zhun; Liu, Shuai; Li, Chang-Jiu
2013-06-01
A cermet-supported tubular SOFC was fabricated using thermal spray. The cell performance was investigated at temperatures from 750 to 900 °C and pressures from 0.1 to 0.5 MPa to examine the effect of operating gas pressure on the cell performance. The influence of gas pressure on the cathodic polarization was studied through the electrochemical impedance approach to examine the controlling electrochemical processes during cell operation. Results show that increasing the operating gas pressure improves the power output performance significantly. When the gas pressure is increased from 0.1 to 0.3 MPa, the maximum power density is increased by a factor of 32% at a temperature of 800 °C. The cathode polarization decreases significantly with the increase of the gas pressure. The electrochemical analysis shows that the main control processes of the cathode reaction are the oxygen species transfer at the three-phase boundary and oxygen diffusion on the surface or in the bulk of the cathode, which are enhanced with increasing gas pressure.
USDA-ARS?s Scientific Manuscript database
Field efficacy of the entomopathogenic Ascomycete Beauveria bassiana strain GHA and Metarhizium brunneum strain F52 was evaluated against nymphs of the Mormon cricket, Anabrus simplex. Fungi were applied with a new apparatus that allows simulated aerial sprays to 0.1m2 areas in the field. The Mormon...
Combustion response to acoustic perturbation in liquid rocket engines
NASA Astrophysics Data System (ADS)
Ghafourian, Akbar
An experimental study of the effect of acoustic perturbations on combustion behavior of a model liquid propellant rocket engine has been carried out. A pair of compression drivers were used to excite transverse and longitudinal acoustic fields at strengths of up to 156.6 dB and 159.5 dB respectively in the combustion chamber of the experimental rocket engine. Propellant simulants were injected into the combustion chamber through a single element shear coaxial injector. Water and air were used in cold flow studies and ethanol and oxygen-enriched air were used as fuel and oxidizer in reacting hot flow studies. In cold flow studies an imposed transverse acoustic field had a more pronounced effect on the spray pattern than a longitudinal acoustic fields. A transverse acoustic field widened the spray by as much as 33 percent and the plane of impingement of the spray with chamber walls moved up closer to the injection plane. The behavior was strongly influenced by the gas phase velocity but was less sensitive to changes in the liquid phase velocity. In reacting hot flow studies the effects of changes in equivalence ratio, excitation amplitude, excitation frequency, liquid and gas phase velocity and chamber pressure on the response of the injector to imposed high frequency transverse acoustic excitation were measured. Reducing the equivalence ratio from 7.4 to 3.8 increased the chamber pressure response to the imposed excitation at 3000 Hz. Increasing the excitation amplitude from 147 dB to 155.6 dB at 3000 Hz increased the chamber pressure response to the excitation. In the frequency range of 1240 Hz to 3220 Hz, an excitation frequency of 3000 Hz resulted in the largest response of the chamber pressure indicating the importance of fluid dynamic coupling. Increasing the liquid phase velocity from 9.2 m/sec to 22.7 m/sec, did not change the amplitude of the chamber pressure response to excitation. This implied the importance of local equivalence ratio and not the overall equivalence ratio on chamber pressure response to excitation. Increasing the chamber pressure from 1.5 atm to 3.1 atm and gas phase velocity from 93.2 m/sec to 105.1 m/sec significantly increased the chamber pressure response to acoustic excitation. This emphasized the significance of the gas phase density and velocity. Measurements of the free radical C2 emission zone and Schlieren images indicated that transverse acoustic excitation moved the combustion zone closer to the injection plane and longitudinal acoustic excitation widened the combustion zone. The histogram of these images indicates that the area over which combustion takes place in the chamber increases under imposed acoustic excitation. This implied that more propellants combust prior to exiting from the exhaust nozzle under unsteady conditions.
NASA Astrophysics Data System (ADS)
Desantes, J. M.; Salvador, F. J.; López, J. J.; de La Morena, J.
2011-02-01
In this paper, a research aimed at quantifying mass and momentum transfer in the near-nozzle field of diesel sprays injected into stagnant ambient air is reported. The study combines X-ray measurements for two different nozzles and axial positions, which provide mass distributions in the spray, with a theoretical model based on momentum flux conservation, which was previously validated. This investigation has allowed the validation of Gaussian profiles for local fuel concentration and velocity near the nozzle exit, as well as the determination of Schmidt number at realistic diesel spray conditions. This information could be very useful for those who are interested in spray modeling, especially at high-pressure injection conditions.
NASA Astrophysics Data System (ADS)
Shan, Yanguang; Coyle, Thomas W.; Mostaghimi, Javad
2007-12-01
Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature, and position distribution on the substrate are predicted.
NASA Technical Reports Server (NTRS)
Sakowski, Barbara; Edwards, Daryl; Dickens, Kevin
2014-01-01
Modeling droplet condensation via CFD codes can be very tedious, time consuming, and inaccurate. CFD codes may be tedious and time consuming in terms of using Lagrangian particle tracking approaches or particle sizing bins. Also since many codes ignore conduction through the droplet and or the degradating effect of heat and mass transfer if noncondensible species are present, the solutions may be inaccurate. The modeling of a condensing spray chamber where the significant size of the water droplets and the time and distance these droplets take to fall, can make the effect of droplet conduction a physical factor that needs to be considered in the model. Furthermore the presence of even a relatively small amount of noncondensible has been shown to reduce the amount of condensation [Ref 1]. It is desirable then to create a modeling tool that addresses these issues. The path taken to create such a tool is illustrated. The application of this tool and subsequent results are based on the spray chamber in the Spacecraft Propulsion Research Facility (B2) located at NASA's Plum Brook Station that tested an RL-10 engine. The platform upon which the condensation physics is modeled is SINDAFLUINT. The use of SINDAFLUINT enables the ability to model various aspects of the entire testing facility, including the rocket exhaust duct flow and heat transfer to the exhaust duct wall. The ejector pumping system of the spray chamber is also easily implemented via SINDAFLUINT. The goal is to create a transient one dimensional flow and heat transfer model beginning at the rocket, continuing through the condensing spray chamber, and finally ending with the ejector pumping system. However the model of the condensing spray chamber may be run independently of the rocket and ejector systems detail, with only appropriate mass flow boundary conditions placed at the entrance and exit of the condensing spray chamber model. The model of the condensing spray chamber takes into account droplet conduction as well as the degrading effect of mass and heat transfer due to the presence of noncondensibles. The one dimension model of the condensing spray chamber makes no presupposition on the pressure profile within the chamber, allowing the implemented droplet physics of heat and mass transfer coupled to the SINDAFLUINT solver to determine a transient pressure profile of the condensing spray chamber. Model results compare well to the RL-10 engine pressure test data.
[A microbiological investigation of the effectiveness of Micro Megas E-spray].
Kardel, K; Hegna, I K; Kardel, M
1976-06-01
The disinfecting effect of Micro Megas E-spray was tested using a microbiological technique which also included a practical test. Contra-angels and straight handpieces which were sprayed after being used for treatment on patients, and then dried and incubated in a liquid medium, showed a marked growth of microorganisms. The spray had a weak and barely significant growth inhibiting effect on contaminated, simulated instrument surfaces. using Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as test bacteria. It is concluded that the spray is not suitable for distinfection of contra-angels and straight handpieces.
This report presents the results of the verification test of the Sharpe Platinum 2013 high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the Sharpe Platinum, which is designed for use in automotive refinishing. The test coating chosen by Sharpe Manufacturi...
46 CFR 13.121 - Courses for tankerman endorsements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... (open and closed). (vii) Rules of the Coast Guard governing operations in general and prevention of..., carbon dioxide (CO2), foam... X Halogenated hydrocarbons X Pressure-water spray system in special..., spray, fog, and flooding) X Foam (high, medium and low expansion) X Carbon dioxide (CO2) X X Halon X...
46 CFR 13.121 - Courses for tankerman endorsements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (open and closed). (vii) Rules of the Coast Guard governing operations in general and prevention of..., carbon dioxide (CO2), foam... X Halogenated hydrocarbons X Pressure-water spray system in special..., spray, fog, and flooding) X Foam (high, medium and low expansion) X Carbon dioxide (CO2) X X Halon X...
46 CFR 13.121 - Courses for tankerman endorsements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... (open and closed). (vii) Rules of the Coast Guard governing operations in general and prevention of..., carbon dioxide (CO2), foam... X Halogenated hydrocarbons X Pressure-water spray system in special..., spray, fog, and flooding) X Foam (high, medium and low expansion) X Carbon dioxide (CO2) X X Halon X...
Jang, Young Jun; Kim, Hyeon Ok
2018-04-01
This study aimed to compare the effects of three interventions on pain, blood pressure, and pulse rate during infiltration anesthesia in patients about to undergo gamma knife surgeries. The three interventions employed in a university-affiliated Hospital in J City, South Korea were as follows: EMLA cream plus Vapocoolant spray (Vapocoolant, n=30), EMLA cream plus 10.0% Lidocaine spray (Lidocaine, n=30), and EMLA cream only (EMLA, n=30). The equivalent control-group pre test - post test study design was used. Pain was assessed subjectively using the numeric rating scale (NRS) and objectively using a Galvanic Skin Response (GSR) tester. NRS scores were assessed after infiltration anesthesia and the GSR was assessed during infiltration anesthesia. Blood pressure and pulse rate were assessed twice: before and after infiltration anesthesia. Data were collected between August 3, 2016 and March 24, 2017. NRS scores after infiltration anesthesia and the GSR during infiltration anesthesia were significantly lower in the Vapocoolant group than in the Lidocaine and EMLA groups (F=13.56, p<.001 and F=14.43, p<.001, respectively). The increase in systolic blood pressure (F=4.77, p=.011) and in pulse rates (F=4.78, p=.011) before and after infiltration anesthesia were significantly smaller in the Vapocoolant group than in the Lidocaine and EMLA groups; however, no significant differences were observed in diastolic blood pressures (F=1.51, p=.227). EMLA cream plus Vapocoolant spray was the most effective intervention to relieve pain and to lower increase in systolic blood pressure and pulse rate caused by infiltration anesthesia for stereotactic frame fixation. Thus, application of Vapocoolant spray in addition to EMLA cream is highly recommended as a nursing intervention for patients undergoing gamma knife surgeries. © 2018 Korean Society of Nursing Science.
Transfer of Wire Arc-Sprayed Metal Coatings onto Plastic Parts
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch.; Ochotta, P.
2018-01-01
By means of In-Mold-Metal-Spraying (IMMS), metal coatings deposited by means of arc spraying process (ASP) can be transferred onto plastic parts during injection molding, thus realizing an efficient production of metallized plastic parts. Parts produced by means of IMMS can be used in electrical applications. In the current study, the electrical resistivity of coatings applied with different feedstock materials was determined. As a starting point, pressurized air is used as atomizing gas for ASP. In contrast to Zn coatings, Cu coatings applied with pressurized air exhibit a significantly higher electrical resistivity in comparison with massive material. One possible reason is the more pronounced oxidation of Cu particles during ASP. Therefore, N2 and a mixture of N2 and H2 were used as atomizing gas. As a result, the electrical resistivity of coatings applied by means of IMMS could be significantly reduced. Furthermore, standoff distance, current and pressure of the atomizing gas were varied to investigate the influence of these process parameters on the electrical resistivity of Zn coatings using a full factorial experiment design with center point. It can be observed that the electrical resistivity of the Zn coatings increases with decreasing current and increasing standoff distance and pressure.
Transfer of Wire Arc-Sprayed Metal Coatings onto Plastic Parts
NASA Astrophysics Data System (ADS)
Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Hopmann, Ch.; Ochotta, P.
2017-12-01
By means of In-Mold-Metal-Spraying (IMMS), metal coatings deposited by means of arc spraying process (ASP) can be transferred onto plastic parts during injection molding, thus realizing an efficient production of metallized plastic parts. Parts produced by means of IMMS can be used in electrical applications. In the current study, the electrical resistivity of coatings applied with different feedstock materials was determined. As a starting point, pressurized air is used as atomizing gas for ASP. In contrast to Zn coatings, Cu coatings applied with pressurized air exhibit a significantly higher electrical resistivity in comparison with massive material. One possible reason is the more pronounced oxidation of Cu particles during ASP. Therefore, N2 and a mixture of N2 and H2 were used as atomizing gas. As a result, the electrical resistivity of coatings applied by means of IMMS could be significantly reduced. Furthermore, standoff distance, current and pressure of the atomizing gas were varied to investigate the influence of these process parameters on the electrical resistivity of Zn coatings using a full factorial experiment design with center point. It can be observed that the electrical resistivity of the Zn coatings increases with decreasing current and increasing standoff distance and pressure.
Atomization and dense-fluid breakup regimes in liquid rocket engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oefelein, Joseph; Dahms, Rainer Norbert Uwe
Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less
Atomization and dense-fluid breakup regimes in liquid rocket engines
Oefelein, Joseph; Dahms, Rainer Norbert Uwe
2015-04-20
Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less
Dhummakupt, Elizabeth S; Carmany, Daniel O; Mach, Phillip M; Tovar, Trenton M; Ploskonka, Ann M; Demond, Paul S; DeCoste, Jared B; Glaros, Trevor
2018-03-07
Paper spray mass spectrometry has been shown to successfully analyze chemical warfare agent (CWA) simulants. However, due to the volatility differences between the simulants and real G-series (i.e., sarin, soman) CWAs, analysis from an untreated paper substrate proved difficult. To extend the analytical lifetime of these G-agents, metal-organic frameworks (MOFs) were successfully integrated onto the paper spray substrates to increase adsorption and desorption. In this study, several MOFs and nanoparticles were tested to extend the analytical lifetimes of sarin, soman, and cyclosarin on paper spray substrates. It was found that the addition of either UiO-66 or HKUST-1 to the paper substrate increased the analytical lifetime of the G-agents from less than 5 min detectability to at least 50 min.
Jet Simulation in a Diesel Engine
NASA Astrophysics Data System (ADS)
Xu, Zhiliang
2005-03-01
We present a numerical study of the jet breakup and spray formation in a diesel engine by the Front Tracking method. The mechanisms of jet breakup and spray formation of a high speed diesel jet injected through a circular nozzle are the key to design a fuel efficient, nonpolluting diesel engine. We conduct the simulations for the jet breakup within a 2D axis-symmetric geometry. Our goal is to model the spray at a micro-physical level, with the creation of individual droplets. The problem is multiscale. The droplets are a few microns in size. The nozzle is about 0.2 mm in diameter and 1 mm in length. To resolve various physical patterns such as vortex, shock waves, vacuum and track droplets and spray, the Burger-Colella adaptive mesh refinement technique is used. To simulate the spray formation, we model mixed vapor-liquid region through a heterogeneous model with dynamic vapor bubble insertion. The formation of the cavitation is represented by the dynamic creation of vapor bubbles. On the liquid/vapor interface, a phase transition problem is solved numerically. The phase transition is governed by the compressible Euler equations with heat diffusion. Our solution is a new description for the Riemann problem associated with a phase transition in a fully compressible fluid.
Evaporating Spray in Supersonic Streams Including Turbulence Effects
NASA Technical Reports Server (NTRS)
Balasubramanyam, M. S.; Chen, C. P.
2006-01-01
Evaporating spray plays an important role in spray combustion processes. This paper describes the development of a new finite-conductivity evaporation model, based on the two-temperature film theory, for two-phase numerical simulation using Eulerian-Lagrangian method. The model is a natural extension of the T-blob/T-TAB atomization/spray model which supplies the turbulence characteristics for estimating effective thermal diffusivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating sprays. High speed cross flow spray results indicate the effectiveness of the T-blob/T-TAB model and point to the needed improvements in high speed evaporating spray modeling.
System Study: High-Pressure Core Spray 1998-2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroeder, John Alton
2015-12-01
This report presents an unreliability evaluation of the high-pressure core spray (HPCS) at eight U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing or decreasing trends were identified in the HPCS results.
Plasma sprayed Fe(76)Nd(16)B(8) permanent magnets
NASA Technical Reports Server (NTRS)
Overfelt, R. A.; Anderson, C. D.; Flanagan, W. F.
1986-01-01
Thin coatings (0.16 mm) and thick coatings (0.50 mm) of Fe(76)Nd(16)B(8) were deposited on stainless-steel substrates by low pressure plasma spraying. Microscopic examination of the coatings in a light microscope revealed excessive porosity, but good bonding to the substrate. Fracture cross sections examined in a scanning electron microscope showed the grains to be equiaxed and approximately 1 micron or less in diameter in the as-sprayed condition. The intrinsic coercivities of the as-sprayed coatings varied from 5.8 to 10.9 kOe. The effects of postspray heat treatments on the intrinsic coercivity are also given.
NASA Technical Reports Server (NTRS)
Ingebo, R. D.
1977-01-01
A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.
NASA Technical Reports Server (NTRS)
Ingebo, R. D.
1977-01-01
A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.
Supercritical fluid molecular spray film deposition and powder formation
Smith, Richard D.
1986-01-01
Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.
Mathematical simulation of surface heating during plasma spraying
NASA Astrophysics Data System (ADS)
Bogdanovich, V. I.; Giorbelidze, M. G.
2017-02-01
A mathematical model of temperature distribution over the flat ‘coating-substrate’ system section during plasma spraying, taking into account a plasma gun travel and coating buildup has been developed. It has been shown that the temperature value in the near-surface layer of the sprayed coating during the plasma gun passage can significantly exceed the temperature values in underlayers.
Environmental and internal controls of tropical cyclone intensity change
NASA Astrophysics Data System (ADS)
Desflots, Melicie
Tropical cyclone (TC) intensity change is governed by internal dynamics and environmental conditions. This study aims to gain a better understanding of the physical mechanisms responsible for TC intensity changes with a particular focus to those related to the vertical wind shear and the impact of sea spray on the hurricane boundary layer, by using high resolution, full physics numerical simulations. The coupled model consists of three components: the non-hydrostatic, 5th generation Pennsylvania State University-NCAR mesoscale model (MM5), the NOAA/NCEP WAVEWATCH III (WW3) ocean surface wave model, and the WHOI three-dimensional upper ocean circulation model (3DPWP). Sea spray parameterizations (SSP) were developed at NOAA/ESRL, modified by the author and introduced in uncoupled and coupled simulations. The 0.5 km grid resolution MM5 simulation of Hurricane Lili showed a rapid intensification associated with a contracting eyewall. Hurricane Lili weakened in a 5-10 m s-1 vertical wind shear environment. The simulated storm experienced wind shear direction normal to the storm motion, which produced a strong wavenumber one rainfall asymmetry in the downshear-left quadrant of the storm. The increasing vertical wind shear induced a vertical tilt of the vortex with a time lag of 5-6 hours after the wavenumber one rainfall asymmetry was first observed in the model simulation. Other factors controlling intensity and intensity change in tropical cyclones are the air-sea fluxes. Recent studies have shown that the momentum exchange coefficient levels off at high wind speed. However, the behavior of the exchange coefficient for enthalpy flux in high wind and the potential impact of sea spray on it is still uncertain. The current SSP are closely tied to wind speed and overestimate the mediated heat fluxes by sea spray in the hurricane boundary layer. As the sea spray generation depends on wind speed and the variable wave state, a new SSP based on the surface wave energy dissipation (WED) is introduced in the coupled model. In the coupled simulations, the WED is used to quantify the amount of wave breaking related to the generation of spray. The SSP coupled to the waves offers an improvement compared to the wind dependent SSP.
Spray and High-Pressure Flow Computations in the National Combustion Code (NCC) Improved
NASA Technical Reports Server (NTRS)
Raju, Manthena S.
2002-01-01
Sprays occur in a wide variety of industrial and power applications and in materials processing. A liquid spray is a two-phase flow with a gas as the continuous phase and a liquid as the dispersed phase in the form of droplets or ligaments. The interactions between the two phases--which are coupled through exchanges of mass, momentum, and energy--can occur in different ways at disparate time and length scales involving various thermal, mass, and fluid dynamic factors. An understanding of the flow, combustion, and thermal properties of a rapidly vaporizing spray requires careful modeling of the ratecontrolling processes associated with turbulent transport, mixing, chemical kinetics, evaporation, and spreading rates of the spray, among many other factors. With the aim of developing an efficient solution procedure for use in multidimensional combustor modeling, researchers at the NASA Glenn Research Center have advanced the state-of-the-art in spray computations in several important ways.
Experimental testing of spray dryer for control of incineration emissions.
Wey, M Y; Wu, H Y; Tseng, H H; Chen, J C
2003-05-01
The research investigated the absorption/adsorption efficiency of sulfur dioxide (SO2), heavy metals, and polycyclic aromatic hydrocarbons (PAHs) with different Ca-based sorbents in a spray dryer during incineration process. For further improving the adsorption capacity of Ca-based sorbents, different spraying pressure and additives were carried out in this study. Experimental results showed that CaO could be used as an alternative sorbent in the spray dryer at an optimal initial particle size distribution of spraying droplet. In the spray dryer, Ca-based sorbents provided a lot of sites for heavy metals and PAHs condensing and calcium and alkalinity to react with metals to form merged species. As a result, heavy metals and PAHs could be removed from the flue gas simultaneously by condensation and adsorption. The additions of additives NaHCO3, SiO2, and KMnO4 were also found to be effective in improving the removal efficiency of these air pollutants.
NASA Technical Reports Server (NTRS)
Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.
1998-01-01
Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. For one injector, further comparison is also made with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.
Numerical model of spray combustion in a single cylinder diesel engine
NASA Astrophysics Data System (ADS)
Acampora, Luigi; Sequino, Luigi; Nigro, Giancarlo; Continillo, Gaetano; Vaglieco, Bianca Maria
2017-11-01
A numerical model is developed for predicting the pressure cycle from Intake Valve Closing (IVC) to the Exhaust Valve Opening (EVO) events. The model is based on a modified one-dimensional (1D) Musculus and Kattke spray model, coupled with a zero-dimensional (0D) non-adiabatic transient Fed-Batch reactor model. The 1D spray model provides an estimate of the fuel evaporation rate during the injection phenomenon, as a function of time. The 0D Fed-Batch reactor model describes combustion. The main goal of adopting a 0D (perfectly stirred) model is to use highly detailed reaction mechanisms for Diesel fuel combustion in air, while keeping the computational cost as low as possible. The proposed model is validated by comparing its predictions with experimental data of pressure obtained from an optical single cylinder Diesel engine.
Gaseous Nitrogen Orifice Mass Flow Calculator
NASA Technical Reports Server (NTRS)
Ritrivi, Charles
2013-01-01
The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.
NASA Technical Reports Server (NTRS)
Corrigan, Jackie
2004-01-01
A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM, a computational model developed at Glenn, that simulates the cavitational collapse of a single bubble in a liquid (water) and the subsequent combustion of the gaseous contents inside the bubble. The model solves the time-dependent, compressible Navier-Stokes equations in one-dimension with finite-rate chemical kinetics using the CHEMKIN package. Specifically, parameters such as frequency, pressure, bubble radius, and the equivalence ratio were varied while examining their effect on the maximum temperature, radius, and chemical species. These studies indicate that the radius of the bubble is perhaps the most critical parameter governing bubble combustion dynamics and its efficiency. Based on the results of the parametric studies, we plan on conducting experiments to study the effect of ultrasonic perturbations on the bubble generation process with respect to the bubble radius and size distribution.
Apparatus and method for spraying liquid materials
Alvarez, J.L.; Watson, L.D.
1988-01-21
A method for spraying liquids involving a flow of gas which shears the liquid. A flow of gas is introduced in a converging-diverging nozzle where it meets and shears the liquid into small particles which are of a size and uniformity which can be controlled through adjustment of pressures and gas velocity. 5 figs.
Apparatus and method for spraying liquid materials
Alvarez, Joseph L.; Watson, Lloyd D.
1990-01-01
A method for spraying liquids involving a flow of gas which shears the liquid. A flow of gas is introduced in a converging-diverging nozzle where it meets and shears the liquid into small particles which are of a size and uniformity which can be controlled through adjustment of pressures and gas velocity.
Tailored plasma sprayed MCrAlY coatings for aircraft gas turbine applications
NASA Technical Reports Server (NTRS)
Pennisi, F. J.; Gupta, D. K.
1981-01-01
Eighteen plasma sprayed coating systems, nine based on the NiCoCrAly chemistry and nine based on the CoCrAly composition, were evaluated to identify coating systems which provide equivalent or superior life to that shown by the electron beam physical vapor deposited NiCoCrAly and CoCrAly coatings respectively. NiCoCrAly type coatings were examined on a single crystal alloy and the CoCrAly based coatings were optimized on the B1900+ Hf alloy. Cyclic burner rig oxidation and hot corrosion and tensile ductility tests used to evaluate the various coating candidates. For the single crystal alloy, a low pressure chamber plasma sprayed NiCoCrAly + Si coating exhibited a 2x oxidation life improvement at 1394 K (2050 F) over the vapor deposited NiCoCrAly material while showing equivalent tensile ductility. A silicon modified low pressure chamber plasma sprayed CoCrAly coating was found to be more durable than the baseline vapor deposited CoCrAly coating on the B1900+ Hf alloy.
PIV measurement of internal structure of diesel fuel spray
NASA Astrophysics Data System (ADS)
Cao, Z.-M.; Nishino, K.; Mizuno, S.; Torii, K.
2000-12-01
This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called `branch-like structures' by Azetsu etal. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented.
PIV measurement of internal structure of diesel fuel spray
NASA Astrophysics Data System (ADS)
Cao, Z.-M.; Nishino, K.; Mizuno, S.; Torii, K.
This paper reports particle image velocimetry (PIV) measurements of diesel fuel spray injected from a single-hole nozzle at injection pressures ranging from 30 to 70MPa, which are comparable to partial-load operating conditions of commercial diesel engines. The fuel is injected into a non-combusting environment pressurized up to 2.0MPa. A laser-induced fluorescent (LIF) technique is utilized to visualize internal structures of fuel sprays formed by densely-distributing droplets. A specially designed synchronization system is developed to acquire double-frame spray images at an arbitrary time delay after injection. A direct cross-correlation PIV technique is applied to measure instantaneous droplet velocity distribution. Unique large-scale structures in droplet concentration, called `branch-like structures' by Azetsu etal. (1990), are observed and shown to be associated with active vortical motions, which appear to be responsible for the mixing between droplets and the surrounding gas. It is found that the droplets tend to move out of the vortical structures and accumulate in the regions of low vorticity. Some other interesting features concerning droplet velocity fields are also presented.
NASA Technical Reports Server (NTRS)
Spanogle, J A; Moore, C S
1931-01-01
Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.
Diffusional aspects of the high-temperature oxidation of protective coatings
NASA Technical Reports Server (NTRS)
Nesbitt, J. A.
1989-01-01
The role of diffusional transport associated with the high-temperature oxidation of coatings is examined, with special attention given to the low-pressure plasma spraying MCrAl-type overlay coatings and similar Ni-base alloys which form protective AlO3 scales. The use of diffusional analysis to predict the minimum solute concentration necessary to form and grow a solute oxide scale is illustrated. Modeling procedures designed to simulate the diffusional transport in coatings and substrates are presented to show their use in understanding coating degradation, predicting the protective life of a coating, and evaluating various coating parameters to guide coating development.
Landscape irrigation sprinklers are often installed at sites where the system pressure is higher than what is recommended for the sprinkler nozzle, which can lead to water waste. WaterSense labeled sprinkler bodies help control pressure.
Corrosion Resistance of Copper Coatings Deposited by Cold Spraying
NASA Astrophysics Data System (ADS)
Winnicki, M.; Baszczuk, A.; Jasiorski, M.; Małachowska, A.
2017-12-01
In the article, a study of corrosion resistance of copper and copper-based cermet (Cu+Al2O3 and Cu+SiC) coatings deposited onto aluminum alloy substrate using the low-pressure cold spraying method is presented. The samples were subjected to two different corrosion tests at room temperature: (1) Kesternich test and (2) a cyclic salt spray test. The selected tests were allowed to simulate service conditions typical for urban, industrial and marine environment. Examination of corroded samples included analysis changes on the coating surface and in the microstructure. The physicochemical tests were carried out using x-ray diffraction to define corrosion products. Moreover, microhardness and electrical conductivity measurements were conducted to estimate mechanical and physical properties of the coatings after corrosion tests. XRD analysis clearly showed that regardless of corrosion conditions, for all samples cuprite (Cu2O) was the main product. However, in the case of Cu+Al2O3 cermet coating, chlorine- and sulfate-containing phases such as Cu2Cl(OH)3 (paracetamite) and Cu3(SO4)(OH)4 (antlerite) were also recorded. This observation gives better understanding of the lowest microstructure changes observed for Cu+Al2O3 coating after the corrosion tests. This is also a justification for the lowest decrease in electrical conductivity registered after the corrosion tests for this coating.
Measurements in liquid fuel sprays
NASA Technical Reports Server (NTRS)
Chigier, N.; Mao, C. P.
1985-01-01
A ground test facility is being established at NASA Lewis Research Center to simulate the environmental and flight conditions needed to study adverse weather effects. One of the most important components is the water spray system which consists of many nozzles fitted on spray bars. Water is injected through air-assisted atomizers to generate uniform size drops to simulate icing in clouds. The primary objective is to provide experimental data on drop size distribution over a wide range of operating conditions. Correlation equations for mean drop size and initial injection parameters are being determined to assist in the design and modification of the Altitude Wind Tunnel. Special emphasis is being placed on the study of the aerodynamic structure of the air-assisted atomizer sprays. Detailed measurements of the variation of drop size distribution and velocity as a function of time and space are being made. Accurate initial and boundary conditions are being provided for computer model evaluation.
Spray pattern analysis in TWAS using photogrammetry and digital image correlation
NASA Astrophysics Data System (ADS)
Tillmann, W.; Rademacher, H. G.; Hagen, L.; Abdulgader, M.; El Barad’ei, M.
2018-06-01
In terms of arc spraying processes, the spray plume characteristic is mainly affected by the flow characteristic of the atomization gas at the nozzle inlet and intersection point of the wire tips, which in turn affect the particle distribution at the moment of impact when molten spray particles splash onto the substrate. With respect to the route of manufacturing of near net-shaped coatings on complex geometries, the acquisition of the spray patterns is pressingly necessary to determine the produced coating thickness. Within the scope of this study, computer fluid dynamics (CFD) simulations were carried out to determine the distribution of spray particles for different spray parameter settings. The results were evaluated by three-dimensional spray spot analyses using an optical measurement based on photogrammetry and digital image correlation. The optical measurement represents a promising and much faster candidate to measure spray patterns compared to the tactile measurement system but with an equal accuracy. For given nozzle configurations and spray parameter settings, numerous spray patterns were examined to their shape factors, demonstrating the potential of an online analysis, which encompasses a “fast sample loop” and a data processing system to generate a three-dimensional surface of the spray spot profile.
Pandey, Preetanshu; Levins, Christopher; Pafiakis, Steve; Zacour, Brian; Bindra, Dilbir S; Trinh, Jade; Buckley, David; Gour, Shruti; Sharif, Shasad; Stamato, Howard
2018-07-01
The objective of this study was to improve the disintegration and dissolution characteristics of a highly water-soluble tablet matrix by altering the manufacturing process. A high disintegration time along with high dependence of the disintegration time on tablet hardness was observed for a high drug loading (70% w/w) API when formulated using a high-shear wet granulation (HSWG) process. Keeping the formulation composition mostly constant, a fluid-bed granulation (FBG) process was explored as an alternate granulation method using a 2 (4-1) fractional factorial design with two center points. FBG batches (10 batches) were manufactured using varying disingtegrant amount, spray rate, inlet temperature (T) and atomization air pressure. The resultant final blend particle size was affected significantly by spray rate (p = .0009), inlet T (p = .0062), atomization air pressure (p = .0134) and the interaction effect between inlet T*spray rate (p = .0241). The compactibility of the final blend was affected significantly by disintegrant amount (p < .0001), atomization air pressure (p = .0013) and spray rate (p = .05). It was observed that the fluid-bed batches gave significantly lower disintegration times than the HSWG batches, and mercury intrusion porosimetry data revealed that this was caused by the higher internal pore structure of tablets manufactured using the FBG batches.
NASA Astrophysics Data System (ADS)
Qiu, Ming; Lu, Jianjun; Li, Yingchun; Lv, Guisen
2016-07-01
With constant enlargement of the application areas of the spherical plain bearings, higher quality lubrication of the bearings is required. To solve the lubricating problems of spherical plain bearings under high temperature, high vacuum, high speed, heavy loads and strong oxidation conditions, it is urgent for us to develop more excellent self-lubricating technologies. In this paper, the bonded solid lubricant coatings, which use inorganic phosphate as the binder, the mixture of MoS2 and graphite with two different weight proportions as the solid lubricant, are prepared by spraying under three different spray gun pressures. The bonding strength tests on the coatings show that the best spraying pressure is 0.2 MPa and the better mixing proportion of MoS2 to Graphite is 3:1. Then for the radial spherical plain bearings with steel/steel friction pair, after the coatings are made on the inner ring outer surfaces, the friction coefficient, the wear loss and the friction temperature of the bearings under four oscillating frequencies are investigated by a self-made tribo-tester. The test results, SEM of the worn morphologies and EDS of worn areas show that tribological properties of the bearing are obviously improved by the bonded solid lubricant coatings. When sprayed under the spray gun pressure of 0.2 MPa, the bearings have better anti-friction and anti-wear properties than those sprayed under 0.1 MPa and 0.3 MPa. Further as proved from the XPS analysis, between the coating with 3:1 mixing ratio of MoS2 to Graphite and the coating with 1:1 ratio, the former has less oxidation occurred on the surface and therefore has better tribological characteristics than the latter. This paper provides a reference to developing a new product of the radial spherical plain bearings with high bonding strength, oxidation resistance and abrasion resistance.
Dynamic characteristics of pulsed supersonic fuel sprays
NASA Astrophysics Data System (ADS)
Pianthong, K.; Matthujak, A.; Takayama, K.; Milton, B. E.; Behnia, M.
2008-06-01
This paper describes the dynamic characteristics of pulsed, supersonic liquid fuel sprays or jets injected into ambient air. Simple, single hole nozzles were employed with the nozzle sac geometries being varied. Different fuel types, diesel fuel, bio-diesel, kerosene, and gasoline were used to determine the effects of fuel properties on the spray characteristics. A vertical two-stage light gas gun was employed as a projectile launcher to provide a high velocity impact to produce the liquid jet. The injection pressure was around 0.88-1.24 GPa in all cases. The pulsed, supersonic fuel sprays were visualized by using a high-speed video camera and shadowgraph method. The spray tip penetration and velocity attenuation and other characteristics were examined and are described here. An instantaneous spray tip velocity of 1,542 m/s (Mach number 4.52) was obtained. However, this spray tip velocity can be sustained for only a very short period (a few microseconds). It then attenuates very quickly. The phenomenon of multiple high frequency spray pulses generated by a single shot impact and the changed in the angle of the shock structure during the spray flight, which had already been observed in previous studies, is again noted. Multiple shock waves from the conical nozzle spray were also clearly captured.
NASA Technical Reports Server (NTRS)
Trinh, Huu P. (Inventor); Myers, William Neill (Inventor)
2014-01-01
A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The tangential inlet area for each throttleable stage is calculated. The correlation between the tangential inlet areas and delta pressure values is used to calculate the spring displacement and variable inlet geometry. An injector designed using the method includes a plurality of geometrically calculated tangential inlets in an injection tube; an injection tube cap with a plurality of inlet slots slidably engages the injection tube. A pressure differential across the injector element causes the cap to slide along the injection tube and variably align the inlet slots with the tangential inlets.
Simulation of fundamental atomization mechanisms in fuel sprays
NASA Technical Reports Server (NTRS)
Childs, Robert, E.; Mansour, Nagi N.
1988-01-01
Growth of instabilities on the liquid/gas interface in the initial region of fuel sprays is studied by means of numerical simulations. The simulations are based on solutions of the variable-density incompressible Navier-Stokes equations, which are obtained with a new numerical algorithm. The simulations give good agreement with analytical results for the instabilities on a liquid cylinder induced by surface tension and wind-induced instabilities. The effects of boundary layers on the wind-induced instabilities are investigated. It is found that a boundary layer reduces the growth rate for a single interface, and a comparison with inviscid theory suggests that boundary layer effects may be significantly more important than surface tension effects. The results yield a better estimate than inviscid theory for the drop sizes as reported for diesel sprays. Results for the planar jet show that boundary layer effects hasten the growth of Squire's 'symmetric' mode, which is responsible for jet disintegration. This result helps explain the rapid atomization which occurs in swirl and air-blast atomizers.
Winchell, Michael F; Pai, Naresh; Brayden, Benjamin H; Stone, Chris; Whatling, Paul; Hanzas, John P; Stryker, Jody J
2018-01-01
The estimation of pesticide concentrations in surface water bodies is a critical component of the environmental risk assessment process required by regulatory agencies in North America, the European Union, and elsewhere. Pesticide transport to surface waters via deposition from off-field spray drift can be an important route of potential contamination. The spatial orientation of treated fields relative to receiving water bodies make prediction of off-target pesticide spray drift deposition and resulting aquatic estimated environmental concentrations (EECs) challenging at the watershed scale. The variability in wind conditions further complicates the simulation of the environmental processes leading to pesticide spray drift contributions to surface water. This study investigates the use of the Soil Water Assessment Tool (SWAT) for predicting concentrations of malathion (O,O-deimethyl thiophosphate of diethyl mercaptosuccinate) in a flowing water body when exposure is a result of off-target spray drift, and assesses the model's performance using a parameterization typical of a screening-level regulatory assessment. Six SWAT parameterizations, each including incrementally more site-specific data, are then evaluated to quantify changes in model performance. Results indicate that the SWAT model is an appropriate tool for simulating watershed scale concentrations of pesticides resulting from off-target spray drift deposition. The model predictions are significantly more accurate when the inputs and assumptions accurately reflect application practices and environmental conditions. Inclusion of detailed wind data had the most significant impact on improving model-predicted EECs in comparison to observed concentrations. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Measurements of Fuel Distribution Within Sprays for Fuel-Injection Engines
NASA Technical Reports Server (NTRS)
Lee, Dana W
1937-01-01
Two methods were used to measure fuel distribution within sprays from several types of fuel-injection nozzles. A small tube inserted through the wall of an air tight chamber into which the sprays were injected could be moved about inside the chamber. When the pressure was raised to obtain air densities of 6 and 14 atmospheres, some air was forced through the tube and the fuel that was carried with it was separated by absorbent cotton and weighed. Cross sections of sprays from plain, pintle, multiple-orifice, impinging-jets, centrifugal, lip, slit, and annular-orifice nozzles were investigated, at distances of 1, 3, 5, and 7 inches from the nozzles.
Residual Stresses in Thermal Barrier Coatings for a Cu-8Cr-4Nb Substrate System
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Raj, Sai V.
2002-01-01
Analytical calculations were conducted to determine the thermal stresses developed in a coated copper-based alloy, Cu-8%(at.%)Cr-4%Nb (designated as GRCop-84), after plasma spraying and during heat-up in a simulated rocket engine environment. Finite element analyses were conducted for two coating systems consisting of a metallic top coat, a pure copper bond coat and the GRCop-84. The through thickness temperature variations were determined as a function of coating thickness for two metallic coatings, a Ni-17%(wt%)Cr-6%Al-0.5%Y alloy and a Ni-50%(at.%)Al alloy. The residual stresses after low-pressure plasma spraying of the NiCrAlY and NiAl coatings on GRCop-84 substrate were also evaluated. These analyses took into consideration a 50.8 mm copper bond coat and the effects of an interface coating roughness. The through the thickness thermal stresses developed in coated liners were also calculated after 15 minutes of exposure in a rocket environment with and without an interfacial roughness.
Unstructured LES of Reacting Multiphase Flows in Realistic Gas Turbine Combustors
NASA Technical Reports Server (NTRS)
Ham, Frank; Apte, Sourabh; Iaccarino, Gianluca; Wu, Xiao-Hua; Herrmann, Marcus; Constantinescu, George; Mahesh, Krishnan; Moin, Parviz
2003-01-01
As part of the Accelerated Strategic Computing Initiative (ASCI) program, an accurate and robust simulation tool is being developed to perform high-fidelity LES studies of multiphase, multiscale turbulent reacting flows in aircraft gas turbine combustor configurations using hybrid unstructured grids. In the combustor, pressurized gas from the upstream compressor is reacted with atomized liquid fuel to produce the combustion products that drive the downstream turbine. The Large Eddy Simulation (LES) approach is used to simulate the combustor because of its demonstrated superiority over RANS in predicting turbulent mixing, which is central to combustion. This paper summarizes the accomplishments of the combustor group over the past year, concentrating mainly on the two major milestones achieved this year: 1) Large scale simulation: A major rewrite and redesign of the flagship unstructured LES code has allowed the group to perform large eddy simulations of the complete combustor geometry (all 18 injectors) with over 100 million control volumes; 2) Multi-physics simulation in complex geometry: The first multi-physics simulations including fuel spray breakup, coalescence, evaporation, and combustion are now being performed in a single periodic sector (1/18th) of an actual Pratt & Whitney combustor geometry.
Just, Sarah; Toschkoff, Gregor; Funke, Adrian; Djuric, Dejan; Scharrer, Georg; Khinast, Johannes; Knop, Klaus; Kleinebudde, Peter
2013-11-30
The objective of this study was to enhance the inter-tablet coating uniformity in an active coating process at lab and pilot scale by statistical design of experiments. The API candesartan cilexetil was applied onto gastrointestinal therapeutic systems containing the API nifedipine to obtain fixed dose combinations of these two drugs with different release profiles. At lab scale, the parameters pan load, pan speed, spray rate and number of spray nozzles were examined. At pilot scale, the parameters pan load, pan speed, spray rate, spray time, and spray pressure were investigated. A low spray rate and a high pan speed improved the coating uniformity at both scales. The number of spray nozzles was identified as the most influential variable at lab scale. With four spray nozzles, the highest CV value was equal to 6.4%, compared to 13.4% obtained with two spray nozzles. The lowest CV of 4.5% obtained with two spray nozzles was further reduced to 2.3% when using four spray nozzles. At pilot scale, CV values between 2.7% and 11.1% were achieved. Since the test of uniformity of dosage units accepts CV values of up to 6.25%, this active coating process is well suited to comply with the pharmacopoeial requirements. Copyright © 2013 Elsevier B.V. All rights reserved.
Integration of process diagnostics and three dimensional simulations in thermal spraying
NASA Astrophysics Data System (ADS)
Zhang, Wei
Thermal spraying is a group of processes in which the metallic or ceramic materials are deposited in a molten or semi-molten state on a prepared substrate. In atmospheric plasma spray process, a thermal plasma jet is used to heat up and accelerate loading particles. The process is inherently complex due to the deviation from equilibrium conditions, three dimensional nature, multitude of interrelated variables involved, and stochastic variability at different stages. This dissertation is aimed at understanding the in-flight particle state and plasma plume characteristics in atmospheric plasma spray process through the integration of process diagnostics and three-dimensional simulation. Effects of injection angle and carrier gas flow rate on in-flight particle characteristics are studied experimentally and interpreted through numerical simulation. Plasma jet perturbation by particle injection angle, carrier gas, and particle loading are also identified. Maximum particle average temperature and velocity at any given spray distance is systematically quantified. Optimum plasma plume position for particle injection which was observed in experiments was verified numerically along with description of physical mechanisms. Correlation of spray distance with in-flight particle behavior for various kinds of materials is revealed. A new strategy for visualization and representation of particle diagnostic results for thermal spray processes has been presented. Specifically, 1 st order process maps (process-particle interactions) have been addressed by converting the Temperature-Velocity of particles obtained via diagnostics into non-dimensional group parameters [Melting Index-Reynolds number]. This approach provides an improved description of the thermal and kinetic energy of particles and allows for cross-comparison of diagnostic data within a given process for different materials, comparison of a single material across different thermal spray processes, and detailed assessment of the melting behavior through recourse to analysis of the distributions. An additional group parameter, Oxidation Index, has been applied to relatively track the oxidation extent of metallic particles under different operating conditions. The new mapping strategies have also been proposed in circumstances where only ensemble particle diagnostics are available. Through the integration of process diagnostics and numerical simulation, key issues concerning in-flight particle status as well as the controlling physical mechanisms have been analyzed. A scientific and intellectual strategy for universal description of particle characteristics has been successfully developed.
NASA Technical Reports Server (NTRS)
Locke, R. J.; Hicks, Y. R.; Anderson, R. C.; Zaller, M. M.
1998-01-01
Planar laser-induced fluorescence (PLIF) imaging and planar Mie scattering are used to examine the fuel distribution pattern (patternation) for advanced fuel injector concepts in kerosene burning, high pressure gas turbine combustors. Three diverse fuel injector concepts for aerospace applications were investigated under a broad range of operating conditions. Fuel PLIF patternation results are contrasted with those obtained by planar Mie scattering. Further comparison is also made for one injector with data obtained through phase Doppler measurements. Differences in spray patterns for diverse conditions and fuel injector configurations are readily discernible. An examination of the data has shown that a direct determination of the fuel spray angle at realistic conditions is also possible. The results obtained in this study demonstrate the applicability and usefulness of these nonintrusive optical techniques for investigating fuel spray patternation under actual combustor conditions.
Investigation of spray dispersion and particulate formation in diesel fuel flames
NASA Technical Reports Server (NTRS)
Back, L. H.; Bankston, C. P.; Kwack, E. Y.; Bellan, J.; Harstad, K.
1988-01-01
An experimental study of electrostatical atomized and dispersed diesel fuel jets was conducted at various back pressures to 40 atm. A new electrostatic injection technique was utilized to generate continuous, stable fuel sprays at charge densities of 1.5 to 2.0 C/m3 of fluid at one atm, and about 1.0 C/m3 at 40 atm. Flowrates were varied from 0.5 to 2.5 ml/s and electric potentials to -18 kV. Visual observations showed that significant enhanced dispersion of charged fuel jets occurred at high back pressures compared to aerodynamic breakup and dispersion. The average drop size was about the same as the spray triode orifice diameter, and was between the Kelly theory and the Rayleigh limit. The ignition tests, done only at one atm, indicated stable combustion of the electrostatically dispersed fuel jets.
Investigation of Critical Burning of Fuel Droplets. [of liquid rocket propellant
NASA Technical Reports Server (NTRS)
Chanin, S. P.; Shearer, A. J.; Faeth, G. M.
1976-01-01
An earlier analysis for the combustion response of a liquid monopropellant strand (hydrazine) was extended to consider individual droplets and sprays. While small drops gave low or negative response, large droplets provided response near unity at low frequencies, with the response declining at frequencies greater than the characteristic liquid phase frequency. Temperature gradients in the liquid phase resulted in response peaks greater than unity. A second response peak was found for large drops which corresponded to gas phase transient effects. Spray response was generally reduced from the response of the largest injected droplet, however, even a small percentage of large droplets can yield appreciable response. An apparatus was designed and fabricated to allow observation of bipropellant fuel spray combustion at elevated pressures. A locally homogeneous model was developed to describe this combustion process which allows for high pressure phenomena associated with the thermodynamic critical point.
Effect of microbubble-induced cavitation on the dispersion of sprays
NASA Astrophysics Data System (ADS)
van der Voort, D. D.; Dam, N. J.; Kunnen, R. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.
2017-03-01
The presence of bubbles and voids inside nozzles has a large effect on the morphology and atomization of sprays. In this investigation the voids formed by microbubbles entering the nozzle are investigated using transparent glass nozzles, pressure transducers, and high-speed diffuse backlight imaging. A correlation is found between the magnitude of pressure pulses inside the nozzle and the size of the bubbles causing these pulses. This relation allows the prediction of cavity formation also in nontransparent nozzles, which allow more realistic conditions of operation. Subsequently, the direct measurements of dispersion derived from the spread of glowing fluid showed no significant increase of the dispersion compared to cavitation-free conditions. This indicates that, while the spray angle may increase, the turbulence (in both liquid and gas phase) that governs the dispersion remains the same and the cavitation bubble events do not have a significant impact on this process.
Time variation in the reaction-zone structure of two-phase spray detonations.
NASA Technical Reports Server (NTRS)
Pierce, T. H.; Nicholls, J. A.
1973-01-01
A detailed theoretical analysis of the time-varying detonation structure in a monodisperse spray is presented. The theory identifies experimentally observed reaction-zone overpressures as deriving from blast waves formed therein by the explosive ignition of the spray droplets, and follows in time the motion, change in strength, and interactions of these blast waves with one another, and with the leading shock. The results are compared with experimental data by modeling the motion of a finite-size circular pressure transducer through the theoretical data field in an x-t space.
This report presents the results of the verification test of the DeVilbiss GTi-600G high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the DeVilbiss GTi, which is designed for use in automotive refinishing. The test coating chosen by ITW Automotive Refinis...
This report presents the results of the verification test of the DeVilbiss FLG-631-318 high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the DeVilbiss FLG, which is designed for use in automotive refinishing. The test coating chosen by ITW Automotive Refi...
Decontamination apparatus and method
Oakley, David J.
1987-01-01
A blast head including a plurality of spray nozzles mounted in a chamber for receiving a workpiece. The several spray nozzles concurrently direct a plurality of streams of a pressurized gas and abrasive grit mixture toward a peripheral portion of the workpiece to remove particulates or debris therefrom. An exhaust outlet is formed in the chamber for discharging the particulates and spent grit.
21 CFR 101.17 - Food labeling warning, notice, and safe handling statements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... bear the following warning: WARNING—Avoid spraying in eyes. Contents under pressure. Do not puncture or... warning required by paragraph (a)(1) of this section. (4) The words “Avoid spraying in eyes” may be... containing dry or incompletely hydrated psyllium husk, also known as psyllium seed husk, and bearing a health...
Erosion of polyurethane insulation.
NASA Technical Reports Server (NTRS)
Kraus, S.
1973-01-01
Detailed description of the test program in which erosion of the spray foam insulation used in the S-II stage of the Saturn-V Apollo launch vehicle was investigated. The behavior of the spray foam was investigated at the elevated temperature and static pressure appropriate to the S-II stage environment, but in the absence of the aerodynamic shear stress.
Decontamination apparatus and method
Oakley, David J.
1987-01-06
A blast head including a plurality of spray nozzles mounted in a chamber for receiving a workpiece. The several spray nozzles concurrently direct a plurality of streams of a pressurized gas and abrasive grit mixture toward a peripheral portion of the workpiece to remove particulates or debris therefrom. An exhaust outlet is formed in the chamber for discharging the particulates and spent grit.
NASA Astrophysics Data System (ADS)
Grosshans, Holger; Cao, Le; Fuchs, Laszlo; Szász, Robert-Zoltán
2017-04-01
A swirl stabilized gas turbine burner has been simulated in order to assess the effects of the fuel properties on spray dispersion and fuel-air mixing. The properties under consideration include fuel surface tension, viscosity and density. The turbulence of the gas phase is modeled applying the methodology of large eddy simulation whereas the dispersed liquid phase is described by Lagrangian particle tracking. The exchange of mass, momentum and energy between the two phases is accounted for by two-way coupling. Bag and stripping breakup regimes are considered for secondary droplet breakup, using the Reitz-Diwakar and the Taylor analogy breakup models. Moreover, a model for droplet evaporation is included. The results reveal a high sensitivity of the spray structure to variations of all investigated parameters. In particular, a decrease in the surface tension or the fuel viscosity, or an increase in the fuel density, lead to less stable liquid structures. As a consequence, smaller droplets are generated and the overall spray surface area increases, leading to faster evaporation and mixing. Furthermore, with the trajectories of the small droplets being strongly influenced by aerodynamic forces (and less by their own inertia), the spray is more affected by the turbulent structures of the gaseous phase and the spray dispersion is enhanced.
Hall, Lawrence B.
1955-01-01
The new demands placed upon application equipment by the introduction of modern insecticides have revealed the deficiencies of this equipment when required for continuous use on a large scale. If adequate equipment is to be produced, specifications must be based not only on basic materials tests but also on “use” tests, in which the conditions of field use are simulated. The author outlines suggested techniques to be followed and standards to be adopted in testing the performance of compression sprayers and allied equipment, with reference to the following features: compression-sprayer tank fatigue; tank impact; pump resistance to bursting; pump resistance to collapse; pump friction; cut-off valve durability; constant-pressure valves; cut-off valve actuation; hose flexure; hose tension and bursting-pressure; hose friction; gaskets, valve faces, and similar non-metallic parts; nozzle-orifice erosion; and nozzle pattern. ImagesFIG. 1FIG. 14FIG. 20 PMID:14364189
NASA Technical Reports Server (NTRS)
Strutzenberg, Louise L.; Putman, Gabriel C.
2011-01-01
The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Building on dry simulations of the ASMAT tests with the vehicle at 5 ft. elevation (100 ft. real vehicle elevation), wet simulations of the ASMAT test setup have been performed using the Loci/CHEM computational fluid dynamics software to explore the effect of rainbird water suppression inclusion on the launch platform deck. Two-phase water simulation has been performed using an energy and mass coupled lagrangian particle system module where liquid phase emissions are segregated into clouds of virtual particles and gas phase mass transfer is accomplished through simple Weber number controlled breakup and boiling models. Comparisons have been performed to the dry 5 ft. elevation cases, using configurations with and without launch mounts. These cases have been used to explore the interaction between rainbird spray patterns and launch mount geometry and evaluate the acoustic sound pressure level knockdown achieved through above-deck rainbird deluge inclusion. This comparison has been anchored with validation from live-fire test data which showed a reduction in rainbird effectiveness with the presence of a launch mount.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.
Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogatemore » fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends.« less
NASA Astrophysics Data System (ADS)
Ashrafizadeh, H.; McDonald, A.; Mertiny, P.
2016-02-01
Deposition of metallic coatings on elastomeric polymers is a challenging task due to the heat sensitivity and soft nature of these materials and the high temperatures in thermal spraying processes. In this study, a flame spraying process was employed to deposit conductive coatings of aluminum-12silicon on polyurethane elastomers. The effect of process parameters, i.e., stand-off distance and air added to the flame spray torch, on temperature distribution and corresponding effects on coating characteristics, including electrical resistivity, were investigated. An analytical model based on a Green's function approach was employed to determine the temperature distribution within the substrate. It was found that the coating porosity and electrical resistance decreased by increasing the pressure of the air injected into the flame spray torch during deposition. The latter also allowed for a reduction of the stand-off distance of the flame spray torch. Dynamic mechanical analysis was performed to investigate the effect of the increase in temperature within the substrate on its dynamic mechanical properties. It was found that the spraying process did not significantly change the storage modulus of the polyurethane substrate material.
NASA Astrophysics Data System (ADS)
Gao, J.; Nishida, K.
2010-10-01
This paper describes an Ultraviolet-Visible Laser Absorption-Scattering (UV-Vis LAS) imaging technique applied to asymmetric fuel sprays. Continuing from the previous studies, the detailed measurement principle was derived. It is demonstrated that, by means of this technique, cumulative masses and mass distributions of vapor/liquid phases can be quantitatively measured no matter what shape the spray is. A systematic uncertainty analysis was performed, and the measurement accuracy was also verified through a series of experiments on the completely vaporized fuel spray. The results show that the Molar Absorption Coefficient (MAC) of the test fuel, which is typically pressure and temperature dependent, is the major error source. The measurement error in the vapor determination has been shown to be approximately 18% under the assumption of constant MAC of the test fuel. Two application examples of the extended LAS technique were presented for exploring the dynamics and physical insight of the evaporating fuel sprays: diesel sprays injected by group-hole nozzles and gasoline sprays impinging on an inclined wall.
A study of processing parameters in thermal-sprayed alumina and zircon mixtures
NASA Astrophysics Data System (ADS)
Li, Y.; Khor, K. A.
2002-06-01
A method of plasma spraying of alumina and zircon mixtures to form ZrO2-mullite composites has been proposed and developed. The feedstock is prepared by a combination of mechanical alloying, which allows formation of fine-grained, homogeneous solid-solution mixtures, followed by plasma spheroidization that yields rapid solidified microstructures and enhanced compositional homogeneity. The effects of ball-milling duration and milling media were studied. It was found that zirconia is a more efficient milling media and that increasing milling duration enhanced the dissociation of zircon. Flame spray and plasma spray processes were used to spheroidize the spray-dried powders. The temperature of the flame spray was found to be insufficient to melt the powders completely. The processing parameters of the plasma spray played an important role in zircon decomposition and mullite formation. Increasing the arc current or reducing secondary gas pressure caused more zircon to decompose and more mullite to form after heat treatment at 1200 °C for 3 h. Dissociation of zircon and the amount of mullite for med can be enhanced significantly when using the more efficient, computerized plasma-spraying system and increasing the ball-milling duration from 4 to 8 h.
A Direct Numerical Simulation of a Temporally Evolving Liquid-Gas Turbulent Mixing Layer
NASA Astrophysics Data System (ADS)
Vu, Lam Xuan; Chiodi, Robert; Desjardins, Olivier
2017-11-01
Air-blast atomization occurs when streams of co-flowing high speed gas and low speed liquid shear to form drops. Air-blast atomization has numerous industrial applications from combustion engines in jets to sprays used for medical coatings. The high Reynolds number and dynamic pressure ratio of a realistic air-blast atomization case requires large eddy simulation and the use of multiphase sub-grid scale (SGS) models. A direct numerical simulations (DNS) of a temporally evolving mixing layer is presented to be used as a base case from which future multiphase SGS models can be developed. To construct the liquid-gas mixing layer, half of a channel flow from Kim et al. (JFM, 1987) is placed on top of a static liquid layer that then evolves over time. The DNS is performed using a conservative finite volume incompressible multiphase flow solver where phase tracking is handled with a discretely conservative volume of fluid method. This study presents statistics on velocity and volume fraction at different Reynolds and Weber numbers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ctibor, Pavel; Kotlan, Jiri, E-mail: kotlan@ipp.cas.cz; Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6
Highlights: • Calcium titanate was sprayed by two different plasma spray systems. • Significant improvement of dielectric properties after annealing was observed. • Calcium titanate self-supporting parts can be fabricated by plasma spraying. - Abstract: This paper studies calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray technology. A water stabilized plasma gun (WSP) as well as a widely used gas stabilized plasma gun (GSP) were employed in this study to deposit three sample sets at different spray conditions. Prepared specimens were annealed in air at atmospheric pressure for 2 h at various temperatures from 530 to 1170 °C. X-raymore » diffraction (XRD), Raman spectroscopy and porosity measurements were used for sample characterization. Dielectric spectroscopy was applied to obtain relative permittivity, conductivity and loss factor frequency dependence. Band gap energy was estimated from reflectance measurements. The work is focused on the explanation of changes in microstructure and properties of a plasma sprayed deposit after thermal annealing. Obtained results show significant improvement of dielectric properties after thermal annealing.« less
The Effects of Fuel and Cylinder Gas Densities on the Characteristics of Fuel Sprays for Oil Engines
NASA Technical Reports Server (NTRS)
Joachim, W F; Beardsley, Edward G
1928-01-01
This investigation was conducted as a part of a general research on fuel-injection engines for aircraft. The purpose of the investigation was to determine the effects of fuel and cylinder gas densities with several characteristics of fuel sprays for oil engines. The start, growth, and cut-off of single fuel sprays produced by automatic injection valves were recorded on photographic film by means of special high-speed motion-picture apparatus. This equipment, which has been described in previous reports, is capable of taking twenty-five consecutive pictures of the moving spray at the rate of 4,000 per second. The penetrations of the fuel sprays increased and the cone angles and relative distributions decreased with increase in the specific gravity of the fuel. The density of the gas into which the fuel sprays were injected controlled their penetration. This was the only characteristic of the chamber gas that had a measurable effect upon the fuel sprays. Application of fuel-spray penetration data to the case of an engine, in which the pressure is rising during injection, indicated that fuel sprays may penetrate considerably farther than when injected into a gas at a density equal to that of the gas in an engine cylinder at top center.
Pehlivaner Kara, Meryem O; Ekenseair, Adam K
2016-10-01
In this study, the efficacy of creating cellular hydrogel coatings on warm tissue surfaces through the minimally invasive, sprayable delivery of thermoresponsive liquid solutions was investigated. Poly(N-isopropylacrylamide)-based (pNiPAAm) thermogelling macromers with or without addition of crosslinking polyamidoamine (PAMAM) macromers were synthesized and used to produce in situ forming thermally and chemically gelling hydrogel systems. The effect of solution and process parameters on hydrogel physical properties and morphology was evaluated and compared to poly(ethylene glycol) and injection controls. Smooth, fast, and conformal hydrogel coatings were obtained when pNiPAAm thermogelling macromers were sprayed with high PAMAM concentration at low pressure. Cellular hydrogel coatings were further fabricated by different spraying techniques: single-stream, layer-by-layer, and dual stream methods. The impact of spray technique, solution formulation, pressure, and spray solution viscosity on the viability of fibroblast and osteoblast cells encapsulated in hydrogels was elucidated. In particular, the early formation of chemically crosslinked micronetworks during bulk liquid flow was shown to significantly affect cell viability under turbulent conditions compared to injectable controls. The results demonstrated that sprayable, in situ forming hydrogels capable of delivering cell populations in a homogeneous therapeutic coating on diseased tissue surfaces offer promise as novel therapies for applications in regenerative medicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2383-2393, 2016. © 2016 Wiley Periodicals, Inc.
Spray flow structure from twin-hole diesel injector nozzles
Nguyen, D.; Duke, D.; Kastengren, A.; ...
2017-04-18
Two techniques were used to study non-evaporating diesel sprays from common rail injectors which were equipped with twin-hole and single-hole nozzles for comparison. To characterise the sprays, high speed optical imaging and x-ray radiography were used. The former was performed at the LTRAC laboratory at Monash University, while the latter was performed at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. The optical imaging made use of high temporal, high spatial resolution spray recordings on a digital camera from which peripheral parameters in the initial injection phase were investigated based on edge detection. The x-ray radiographymore » was used to explore quantitative mass distributions, which were measured on a point-wise basis at roughly similar sampling rate. Three twin-hole nozzles of different subtended angles and a single-hole nozzle were investigated at injection pressure of 1000 bar in environments of 20 bar back pressure. Evidence of strong cavitation was found for all nozzles examined with their C D ranging from 0.62 to 0.69. Penetration of the twin-hole nozzles was found to lag the single-hole nozzle, even before the sprays merged. Finally, switching in hole dominance was observed from one twin-hole nozzle, and this was accompanied by greater instability in mass flow during the transient opening phase of the injector.« less
Spray flow structure from twin-hole diesel injector nozzles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, D.; Duke, D.; Kastengren, A.
Two techniques were used to study non-evaporating diesel sprays from common rail injectors which were equipped with twin-hole and single-hole nozzles for comparison. To characterise the sprays, high speed optical imaging and x-ray radiography were used. The former was performed at the LTRAC laboratory at Monash University, while the latter was performed at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. The optical imaging made use of high temporal, high spatial resolution spray recordings on a digital camera from which peripheral parameters in the initial injection phase were investigated based on edge detection. The x-ray radiographymore » was used to explore quantitative mass distributions, which were measured on a point-wise basis at roughly similar sampling rate. Three twin-hole nozzles of different subtended angles and a single-hole nozzle were investigated at injection pressure of 1000 bar in environments of 20 bar back pressure. Evidence of strong cavitation was found for all nozzles examined with their C D ranging from 0.62 to 0.69. Penetration of the twin-hole nozzles was found to lag the single-hole nozzle, even before the sprays merged. Finally, switching in hole dominance was observed from one twin-hole nozzle, and this was accompanied by greater instability in mass flow during the transient opening phase of the injector.« less
NASA Astrophysics Data System (ADS)
Mahdavi, Amirhossein; McDonald, André
2018-02-01
The final quality of cold-sprayed coatings can be significantly influenced by gas-substrate heat exchange, due to the dependence of the deposition efficiency of the particles on the substrate temperature distribution. In this study, the effect of the air temperature and pressure, as process parameters, and surface roughness and thickness, as substrate parameters, on the convective heat transfer coefficient of the impinging air jet was investigated. A low-pressure cold spraying unit was used to generate a compressed air jet that impinged on a flat substrate. A comprehensive mathematical model was developed and coupled with experimental data to estimate the heat transfer coefficient and the surface temperature of the substrate. The effect of the air total temperature and pressure on the heat transfer coefficient was studied. It was found that increasing the total pressure would increase the Nusselt number of the impinging air jet, while total temperature of the air jet had negligible effect on the Nusslet number. It was further found that increasing the roughness of the substrate enhanced the heat exchange between the impinging air jet and the substrate. As a result, higher surface temperatures on the rough substrate were measured. The study of the effect of the substrate thickness on the heat transfer coefficient showed that the Nusselt number that was predicted by the model was independent of the thickness of the substrate. The surface temperature profile, however, decreased in increasing radial distances from the stagnation point of the impinging jet as the thickness of the substrate increased. The results of the current study were aimed to inform on the influence and effect of substrate and process parameters on the gas-substrate heat exchange and the surface temperature of the substrate on the final quality of cold-sprayed coatings.
Finite Element Modeling and Analysis of Powder Stream in Low Pressure Cold Spray Process
NASA Astrophysics Data System (ADS)
Goyal, Tarun; Walia, Ravinderjit Singh; Sharma, Prince; Sidhu, Tejinder Singh
2016-07-01
Low pressure cold gas dynamic spray (LPCGDS) is a coating process that utilize low pressure gas (5-10 bars instead of 25-30 bars) and the radial injection of powder instead of axial injection with the particle range (1-50 μm). In the LPCGDS process, pressurized compressed gas is accelerated to the critical velocity, which depends on length of the divergent section of nozzle, the propellant gas and particle characteristics, and the diameters ratio of the inlet and outer diameters. This paper presents finite element modeling (FEM) of powder stream in supersonic nozzle wherein adiabatic gas flow and expansion of gas occurs in uniform manner and the same is used to evaluate the resultant temperature and velocity contours during coating process. FEM analyses were performed using commercial finite volume package, ANSYS CFD FLUENT. The results are helpful to predict the characteristics of powder stream at the exit of the supersonic nozzle.
Review of patents and application of spray drying in pharmaceutical, food and flavor industry.
Patel, Bhavesh B; Patel, Jayvadan K; Chakraborty, Subhashis
2014-04-01
Spray drying has always remained an energetic field of innovation in pharmaceutical, food and flavor industry since last couple of decades. The current communication embodies an in-depth application of spray drying in pulmonary drug delivery for production of uniform and respirable size particles suitable for nebulizers, dry powder inhalers (DPI) and pressurized metered dose inhalers (pMDI). The review also highlights spray drying application in the manufacturing of mucoadhesive formulation suitable for nasal cavities to improve the drug absorption and bioavailability. Recent research works and patents filed by various researchers on spray drying technology for solubility enhancement have also been accentuated. Benefits of spray drying in production of dry flavorings to meet a product with maximum yield and least flavor loss are also discussed. The use of spray drying in production of various food products like milk or soymilk powder, tomato pulp, dry fruit juice etc, and in encapsulation of vegetable oil or fish oil and dry creamer has been discussed. Current review also highlights the application of spray drying in the biotechnology field like production of dry influenza or measles vaccine as well as application in ceramic industry. Spray drying based patents issued by the U.S. Patent and Trademark Office in the area of drug delivery have also been included in the current review to emphasize importance of spray drying in the recent research scenario.
NASA Astrophysics Data System (ADS)
Jeong, Haeyoung; Lee, Kihyung; Ikeda, Yuji
2007-05-01
There are many ways to reduce diesel engine exhaust emissions. However, NOx emission is difficult to reduce because the hydrocarbon (HC) concentration in a diesel engine is not sufficient for NOx conversion. Therefore, in order to create stoichiometric conditions in the De-NOx catalyst, a secondary injection system is designed to inject liquid HC into the exhaust pipe. The atomization and distribution characteristics of the HC injected from a secondary injector are key technologies to obtain a high NOx conversion because inhomogeneous droplets of injected HC cause not only high fuel consumption but also deterioration of NOx emission. This paper describes the spray characteristics of a secondary injector including the spray angle, penetration length and breakup behaviour of the spray to optimize the reduction rate of the NOx catalyst. In this study, various optical diagnostics were applied to investigate these spray characteristics, the atomization mechanism and spray developing process. The visualization and image processing method for the spray pulsation were developed by high speed photography. The influence of the fuel supply pressure on the spray behaviour and a more detailed spray developing process have been analysed experimentally using image processing. Finally, the experimental results were used to correlate the spray structure to the injection system performance and to provide a design guide for a secondary injector nozzle.
Planar Laser Imaging of Sprays for Liquid Rocket Studies
NASA Technical Reports Server (NTRS)
Lee, W.; Pal, S.; Ryan, H. M.; Strakey, P. A.; Santoro, Robert J.
1990-01-01
A planar laser imaging technique which incorporates an optical polarization ratio technique for droplet size measurement was studied. A series of pressure atomized water sprays were studied with this technique and compared with measurements obtained using a Phase Doppler Particle Analyzer. In particular, the effects of assuming a logarithmic normal distribution function for the droplet size distribution within a spray was evaluated. Reasonable agreement between the instrument was obtained for the geometric mean diameter of the droplet distribution. However, comparisons based on the Sauter mean diameter show larger discrepancies, essentially because of uncertainties in the appropriate standard deviation to be applied for the polarization ratio technique. Comparisons were also made between single laser pulse (temporally resolved) measurements with multiple laser pulse visualizations of the spray.
NASA Astrophysics Data System (ADS)
Mindivan, H.
2018-01-01
In this study, surface modification of aluminum alloy using High-Velocity Oxygen Fuel (HVOF) thermal spray and pulsed plasma nitriding processes was investigated. AISI 316 stainless steel coating on 1050 aluminum alloy substrate by HVOF process was pulsed plasma nitrided at 793 K under 0.00025 MPa pressure for 43200 s in a gas mixture of 75 % N2 and 25 % H2. The results showed that the pulse plasma nitriding process produced a surface layer with CrN, iron nitrides (Fe3N, Fe4N) and expanded austenite (γN). The pulsed plasma nitrided HVOF-sprayed coating showed higher surface hardness, lower wear rate and coefficient of friction than the untreated HVOF-sprayed one.
Modelling storm development and the impact when introducing waves, sea spray and heat fluxes
NASA Astrophysics Data System (ADS)
Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik
2015-04-01
In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal Netherlands Meteorological Institute.
Performance of Plasma Sprayed Al2O3 Coating in Bio-Simulated Environment
NASA Astrophysics Data System (ADS)
Yıldız, F.; Yetim, A. F.; Alsaran, A.; Çelik, A.
2014-01-01
Alumina coatings deposited on the surface of stainless steel 316L by the method of plasma spraying are studied. Tests for wear and corrosion are preformed in Ringer's solution simulating a human body environment. The structure, microhardness, wear resistance and corrosion resistance of the steel are determined with and without a coating. Deposition of a coating onto the stainless steel is shown to be an effective means for protecting implants from corrosion and wear.
Water injected fuel cell system compressor
Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe
2001-01-01
A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehrke, Christopher R.; Radovanovic, Michael S.; Milam, David M.
2008-04-01
Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes x 70/mD and 5 holes x 35/mD) with 103-/gmm-diameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70/mD before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around amore » 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load. High-speed movies of natural luminosity were acquired by viewing through a window in the cylinder wall and through a window in the piston to provide quasi-3D information about the combustion process. These movies revealed that advanced combustion phasing resulted in intense pool fires within the piston bowl, after the end of significant heat release. These pool fires are a result of fuel-films created when the injected fuel impinged on the piston surface. The emissions results showed a strong correlation with pool-fire activity. Smoke and NO/dx emissions rose steadily as pool-fire intensity increased, whereas HC and CO showed a dramatic increase with near-zero pool-fire activity.« less
Thermal barrier coating life-prediction model development
NASA Technical Reports Server (NTRS)
Strangman, T. E.; Neumann, J.
1985-01-01
Life predictions are made for two types of strain-tolerant and oxidation-resistant Thermal Barrier Coating (TBC) systems produced by commercial coating suppliers to the gas turbine industry. The plasma-sprayed TBC system, composed of a low-pressure plasma spray (LPPS) applied oxidation-resistant NiCrAlY bond coating and an air-plasma-sprayed yttria (8 percent) partially stabilized zirconia insulative layer, is applied by both Chromalloy and Klock. The second type of TBC is applied by the electron-beam/physical vapor deposition process by Temescal. Thermomechanical and thermochemical testing of the program TBCs is in progress. A number of the former tests has been completed. Fracture mechanics data for the Chromalloy plasma-sprayed TBC system indicate that the cohesive toughness of the zirconia layer is increased by thermal cycling and reduced by high temperature exposure at 1150 C. Eddy current technology feasibility has been established with respect to nondestructively measuring zirconia layer thickness of a TBC system. High pressure turbine blades have been coated with program TBC systems for a piggyback test in a TFE731-5 turbofan factory engine test. Data from this test will be used to validate the TBC life models.
Quantitative Laser-Saturated Fluorescence Measurements of Nitric Oxide in a Heptane Spray Flame
NASA Technical Reports Server (NTRS)
Cooper, Clayton S.; Laurendeau, Normand M.; Lee, Chi (Technical Monitor)
1997-01-01
We report spatially resolved laser-saturated fluorescence measurements of NO concentration in a pre-heated, lean-direct injection (LDI) spray flame at atmospheric pressure. The spray is produced by a hollow-cone, pressure-atomized nozzle supplied with liquid heptane. NO is excited via the Q2(26.5) transition of the gamma(0,0) band. Detection is performed in a 2-nm region centered on the gamma(0,1) band. Because of the relatively close spectral spacing between the excitation (226 nm) and detection wavelengths (236 nm), the gamma(0,1) band of NO cannot be isolated from the spectral wings of the Mie scattering signal produced by the spray. To account for the resulting superposition of the fluorescence and scattering signals, a background subtraction method has been developed that utilizes a nearby non-resonant wavelength. Excitation scans have been performed to locate the optimum off-line wavelength. Detection scans have been performed at problematic locations in the flame to determine possible fluorescence interferences from UHCs and PAHs at both the on-line and off-line excitation wavelengths. Quantitative radial NO profiles are presented and analyzed so as to better understand the operation of lean-direct injectors for gas turbine combustors.
Jjunju, Fred P M; Maher, Simon; Damon, Deidre E; Barrett, Richard M; Syed, S U; Heeren, Ron M A; Taylor, Stephen; Badu-Tawiah, Abraham K
2016-01-19
Direct analysis and identification of long chain aliphatic primary diamine Duomeen O (n-oleyl-1,3-diaminopropane), corrosion inhibitor in raw water samples taken from a large medium pressure water tube boiler plant water samples at low LODs (<0.1 pg) has been demonstrated for the first time, without any sample preparation using paper spray mass spectrometry (PS-MS). The presence of Duomeen O in water samples was confirmed via tandem mass spectrometry using collision-induced dissociation and supported by exact mass measurement and reactive paper spray experiments using an LTQ Orbitrap Exactive instrument. Data shown herein indicate that paper spray ambient ionization can be readily used as a rapid and robust method for in situ direct analysis of polymanine corrosion inhibitors in an industrial water boiler plant and other related samples in the water treatment industry. This approach was applied for the analysis of three complex water samples including feedwater, condensate water, and boiler water, all collected from large medium pressure (MP) water tube boiler plants, known to be dosed with varying amounts of polyamine and amine corrosion inhibitor components. Polyamine chemistry is widely used for example in large high pressure (HP) boilers operating in municipal waste and recycling facilities to prevent corrosion of metals. The samples used in this study are from such a facility in Coventry waste treatment facility, U.K., which has 3 × 40 tonne/hour boilers operating at 17.5 bar.
Senecal, P. K.; Pomraning, E.; Anders, J. W.; ...
2014-05-28
A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senecal, P. K.; Pomraning, E.; Anders, J. W.
A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less
Visualisation of diesel injector with neutron imaging
NASA Astrophysics Data System (ADS)
Lehmann, E.; Grünzweig, C.; Jollet, S.; Kaiser, M.; Hansen, H.; Dinkelacker, F.
2015-12-01
The injection process of diesel engines influences the pollutant emissions. The spray formation is significantly influenced by the internal flow of the injector. One of the key parameters here is the generation of cavitation caused by the geometry and the needle lift. In modern diesel engines the injection pressure is established up to 3000 bar. The details of the flow and phase change processes inside the injector are of increasing importance for such injectors. With these experimental measurements the validation of multiphase and cavitation models is possible for the high pressure range. Here, for instance, cavitation effects can occur. Cavitation effects in the injection port area destabilize the emergent fuel jet and improve the jet break-up. The design of the injection system in direct-injection diesel engines is an important challenge, as the jet breakup, the atomization and the mixture formation in the combustion chamber are closely linked. These factors have a direct impact on emissions, fuel consumption and performance of an engine. The shape of the spray at the outlet is determined by the internal flow of the nozzle. Here, geometrical parameters, the injection pressure, the injection duration and the cavitation phenomena play a major role. In this work, the flow dependency in the nozzles are analysed with the Neutron-Imaging. The great advantage of this method is the penetrability of the steel structure while a high contrast to the fuel is given due to the interaction of the neutrons with the hydrogen amount. Compared to other methods (optical with glass structures) we can apply real components under highest pressure conditions. During the steady state phase of the injection various cavitation phenomena are visible in the injector, being influenced by the nozzle geometry and the fuel pressure. Different characteristics of cavitation in the sac and spray hole can be detected, and the spray formation in the primary breakup zone is influenced.
Investigation about the Chrome Steel Wire Arc Spray Process and the Resulting Coating Properties
NASA Astrophysics Data System (ADS)
Wilden, J.; Bergmann, J. P.; Jahn, S.; Knapp, S.; van Rodijnen, F.; Fischer, G.
2007-12-01
Nowadays, wire-arc spraying of chromium steel has gained an important market share for corrosion and wear protection applications. However, detailed studies are the basis for further process optimization. In order to optimize the process parameters and to evaluate the effects of the spray parameters DoE-based experiments had been carried out with high-speed camera shoots. In this article, the effects of spray current, voltage, and atomizing gas pressure on the particle jet properties, mean particle velocity and mean particle temperature and plume width on X46Cr13 wire are presented using an online process monitoring device. Moreover, the properties of the coatings concerning the morphology, composition and phase formation were subject of the investigations using SEM, EDX, and XRD-analysis. These deep investigations allow a defined verification of the influence of process parameters on spray plume and coating properties and are the basis for further process optimization.
On the spray pulsations of the effervescent atomizers
NASA Astrophysics Data System (ADS)
Mlkvik, Marek; Knizat, Branislav
2018-06-01
The presented paper focuses on the comparison of the two effervescent atomizer configurations—the outside-in-gas (OIG) and the outside-in-liquid (OIL). The comparison was based on the spray pulsation assessment by different methods. The atomizers were tested under the same operating conditions given by the constant injection pressure (0.14 MPa) and the gas to the liquid mass ratio (GLR) varying from 2.5 to 5%. The aqueous maltodextrin solution was used as the working liquid (μ = 60 and 146 mPa·s). We found that the time-averaging method does not provide sufficient spray quality description. Based on the cumulative distribution function (CDF) we found that the OIG atomizer generated the spray with non-uniform droplet size distribution at all investigated GLRs. Exceptionally large droplets were present even in the spray which appeared stable when was analyzed by the time-averaging method.
The effects of turbulence on droplet drag and secondary droplet breakup
NASA Technical Reports Server (NTRS)
Song, Y.-H.; Coy, E.; Greenfield, S.; Ondas, M.; Prevish, T.; Spegar, T.; Santavicca, D.
1994-01-01
The objective of this research is to obtain an improved understanding of the behavior of droplets in vaporizing sprays, particularly under conditions typical of those in high pressure rocket sprays. Experiments are conducted in a variety of high pressure, high temperature, optically-accessible flow systems, including one which is capable of operation at pressures up to 70 atm, temperatures up to 600 K, gas velocities up to 30 m/sec and turbulence intensities up to 40 percent. Single droplets, 50 to 500 micron in diameter, are produced by an aerodynamic droplet generator and transversely injected into the flow. Measurements are made of the droplet position, size, velocity and temperature and of the droplet's vapor wake from which droplet drag, dispersion, heating, vaporization and breakup are characterized.
Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction
Fritz, Bradley K.; Hoffmann, W. Clint
2016-01-01
When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected. PMID:27684589
Modeling the Transport Phenomena in the Solution Precursor Plasma Spraying
NASA Astrophysics Data System (ADS)
Shan, Yanguang
2008-10-01
Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This work describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. O'Rourke's droplet collision model is used to take into account of the influence of droplet collision. The influence of droplet breakup is also considered by implementing TAB droplet breakup models into the plasma jet model. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature and position distribution on the substrate are predicted.
LIME SPRAY DRYER FLUE GAS DESULFURIZATION COMPUTER MODEL USERS MANUAL
The report describes a lime spray dryer/baghouse (FORTRAN) computer model that simulates SO2 removal and permits study of related impacts on design and economics as functions of design parameters and operating conditions for coal-fired electric generating units. The model allows ...
Yonekura, Lina; Sun, Han; Soukoulis, Christos; Fisk, Ian
2014-01-01
We evaluated sodium alginate, chitosan and hydroxypropyl methylcellulose (HPMC) as co-encapsulants for spray dried Lactobacillus acidophilus NCIMB 701748 by assessing their impact on cell viability and physicochemical properties of the dried powders, viability over 35 days of storage at 25 °C and survival after simulated digestion. Fibres were added to a control carrier medium containing whey protein concentrate, d-glucose and maltodextrin. Sodium alginate and HPMC did not affect cell viability but chitosan reduced viable counts in spray dried powders, as compared to the control. Although chitosan caused large losses of viability during spray-drying, these losses were counteracted by the excellent storage stability compared to control, sodium alginate and HPMC, and the overall effect became positive after the 35-day storage. Chitosan also improved survival rates in simulated GI conditions, however no single fibre could improve L. acidophilus NCIMB 701748 viability in all steps from production through storage and digestion. PMID:24748900
2015-04-14
NASA Glenn’s Propulsion Systems Lab (PSL) is conducting research to characterize ice crystal clouds that can create a hazard to aircraft engines in certain conditions. With specialized equipment, scientists can create a simulated ice crystal cloud with the set of bars in the back spraying out a mist. The red area includes lasers, which measure the intensity of the cloud and a series of probes to measure everything from humidity to air pressure. The isokinetic probe (in gold) samples particles and the robotic arm (in orange) has a test tube on the end that catches ice particles for further measuring. NASA Glenn’s PSL is the only place in the world which can create these kind of ice crystal cloud conditions.
Experimental study of the spray characteristics of a research airblast atomizer
NASA Technical Reports Server (NTRS)
Acosta, W. A.
1985-01-01
Airblast atomization was studied using a especially designed atomizer in which the liquid first impinges on a splash plate, then is directed radially outward and is atomized by the air passing through two concentric, vaned swirlers that swirl the air in opposite directions. The effect of flow conditions, air mass velocity (mass flow rate per unit area) and liquid to air ratio on the mean drop size was studied. Seven different ethanol solutions were used to simulate changes in fuel physical properties. The range of atomizing air velocities was from 30 to 80 m/s. The mean drop diameter was measured at ambient temperature (295 K) and atmospheric pressure.
Experimental study of the spray characteristics of a research airblast atomizer
NASA Technical Reports Server (NTRS)
Acosta, W. A.
1985-01-01
Airblast atomization was studied using a especially designed atomizer in which the liquid first impinges on a splash plate, then is directed radically outward and is atomized by the air passing through two concentric, vaned swirlers that swirl the air in opposite directions. The effect of flow conditions, air mass velocity (mass flow rate per unit area) and liquid to air ratio on the mean drop size was studied. Seven different ethanol solutions were used to simulate changes in fuel physical properties. The range of atomizing air velocities was from 30 to 80 m/s. The mean drop diameter was measured at ambient temperature (295 K) and atmospheric pressure.
A review of various nozzle range of wire arc spray on FeCrBMnSi metal coating
NASA Astrophysics Data System (ADS)
Purwaningsih, Hariyati; Rochiem, Rochman; Suchaimi, Muhammad; Jatimurti, Wikan; Wibisono, Alvian Toto; Kurniawan, Budi Agung
2018-04-01
Low Temperature Hot Corrosion (LTHC) is type of hot corrosion which occurred on 700-800°C and usually on turbine blades. So, as a result the material of turbine blades is crack and degredation of rotation efficiency. Hot corrosion protection with the use of barrier that separate substrate and environment is one of using metal surface coating, wire arc spray method. This study has a purpose to analyze the effect of nozzle distance and gas pressure on FeCrBMnSi coating process using wire arc spray method on thermal resistance. The parameter of nozzle distance and gas pressure are used, resulted the best parameter on distance 400 mm and gas pressure 3 bar which has the bond strength of 12,58 MPa with porosity percentage of 5,93% and roughness values of 16,36 µm. While the examination of thermal cycle which by heating and cooling continuously, on the coating surface is formed oxide compound (Fe3O4) which cause formed crack propagation and delamination. Beside that hardness of coating surface is increase which caused by precipitate boride (Fe9B)0,2
Quadratic formula for determining the drop size in pressure-atomized sprays with and without swirl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, T.-W, E-mail: attwl@asu.edu; An, Keju
2016-06-15
We use a theoretical framework based on the integral form of the conservation equations, along with a heuristic model of the viscous dissipation, to find a closed-form solution to the liquid atomization problem. The energy balance for the spray renders to a quadratic formula for the drop size as a function, primarily of the liquid velocity. The Sauter mean diameter found using the quadratic formula shows good agreements and physical trends, when compared with experimental observations. This approach is shown to be applicable toward specifying initial drop size in computational fluid dynamics of spray flows.
Development and Testing of a Mobile Platform for Tank Remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nance, T.A.
2001-01-16
The Department of Energy (DOE) is committed to removing millions of gallons of high level radioactive waste from waste storage tanks at the Savannah River Site (SRS). SRS was the first site in the DOE complex to have emptied and closed high level waste tanks. Tank closure at the Site is now progressing to tanks containing waste composed of liquid and large deposits of solids, including a tank that has a potential ''heel''. A heel is a hardened mass of solid waste material spread across the tank bottom. Tank closure requires breaking up this heel and moving the material tomore » the intake of a pumping system for transfer from the tank. In the past, overhead spray systems have been used with some success at moving waste. But the limited number of risers restricts the coverage area of the overhead spray system. Therefore, a floor- level spray system will be used to separate manageable size chunks of the material from the heel. The chunks will be guided into the pump's intake to be remove from the tank. The floor-level spray system movement will be accomplished by using a mobile platform, a crawler, which provides transport to nearly every point on the tank floor. Transport of the spray system will allow the system to ''corral'' the waste away from the tank walls and control the movement of the material across the tank floor. Because the available access riser is small, and a wide crawler platform is required to support the spray system, the crawler's frame must fold to enter the tank. After entry into the tank, the crawler unfolds on the tank floor using the crawler drive tracks to expand the frame and position the mobile platform under the entry riser. The spray system will then be lowered separately through the entry riser and mated onto the crawler on the tank floor. The crawler and spray system are tethered and controlled remotely by personnel at the control station. Motorized cable reels will also be remotely controlled to pay out, retrieve, and manage the tethers as the mobile platform moves the spray system across the tank floor. Both the crawler and spray systems are designed to be retrievable. Development of the tank cleaning system was evaluated using a performance test program. The tests evaluated the spray system dynamics, the crawler's fit through the riser, the crawler landing in mocked up tank with simulant, the crawler's traction, and the crawler and spray system mating. Initial testing verified the crawler platform was compatible with the dynamics produced by the spray system. The riser fit test confirmed that a dedicated riser is required for deployment of the crawler and the spray system. The crawler traction test defined the capabilities of the crawler at different levels of simulant. Deployment testing through a mockup riser verified the basic system processes. Finally, testing of the complete system in a full-scale mockup with sludge simulant was performed to evaluate the tank cleaning ability of the crawler. This paper describes th e tank conditions, the tank closure process, the development of the crawler and spray system, and the testing program and results used to evaluate the mobile platform and spray system.« less
New Icing Cloud Simulation System at the NASA Glenn Research Center Icing Research Tunnel
NASA Technical Reports Server (NTRS)
Irvine, Thomas B.; Oldenburg, John R.; Sheldon, David W.
1999-01-01
A new spray bar system was designed, fabricated, and installed in the NASA Glenn Research Center's Icing Research Tunnel (IRT). This system is key to the IRT's ability to do aircraft in-flight icing cloud simulation. The performance goals and requirements levied on the design of the new spray bar system included increased size of the uniform icing cloud in the IRT test section, faster system response time, and increased coverage of icing conditions as defined in Appendix C of the Federal Aviation Regulation (FAR), Part 25 and Part 29. Through significant changes to the mechanical and electrical designs of the previous-generation spray bar system, the performance goals and requirements were realized. Postinstallation aerodynamic and icing cloud calibrations were performed to quantify the changes and improvements made to the IRT test section flow quality and icing cloud characteristics. The new and improved capability to simulate aircraft encounters with in-flight icing clouds ensures that the 1RT will continue to provide a satisfactory icing ground-test simulation method to the aeronautics community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haslam, J J; Farmer, J C
2004-03-31
Ceramic materials have been considered as corrosion resistant coatings for nuclear waste containers. Their suitability can be derived from the fully oxidized state for selected metal oxides. Several types of ceramic coatings applied to plain carbon steel substrates by thermal spray techniques have been exposed to 90 C simulated ground water for nearly 6 years. In some cases no apparent macroscopic damage such as coating spallation was observed in coatings. Thermal spray processes examined in this work included plasma spray, High Velocity Oxy Fuel (HVOF), and Detonation Gun. Some thermal spray coatings have demonstrated superior corrosion protection for the plainmore » carbon steel substrate. In particular the HVOF and Detonation Gun thermal spray processes produced coatings with low connected porosity, which limited the growth rate of corrosion products. It was also demonstrated that these coatings resisted spallation of the coating even when an intentional flaw (which allowed for corrosion of the carbon steel substrate underneath the ceramic coating) was placed in the coating. A model for prediction of the corrosion protection provided by ceramic coatings is presented. The model includes the effect of the morphology and amount of the porosity within the thermal spray coating and provides a prediction of the exposure time needed to produce a crack in the ceramic coating.« less
Fuel Combustion Laboratory | Transportation Research | NREL
detection of compounds at sub-parts per billion by volume levels. A high-performance liquid chromatograph ) platform; a high-pressure (1,200- bar) direct-injection system to minimize spray physics effects; and an combustion chamber. A high-speed pressure transducer measures chamber pressure to detect fuel ignition. Air
Numerical simulation of flow in the wet scrubber for desulfurization
NASA Astrophysics Data System (ADS)
Novosád, Jan; Vít, Tomáš
2015-05-01
This article deals with numerical simulation of flow and chemical reactions in absorber for desulfurization of flue-gas. The objective of the work is the investigation of effect of different nozzles types and their placement in spray layers. These nozzles distribute lime suspension into flue gas stream. The research includes two types of nozzles and four different arrangements of nozzles and spray layers. Conclusion describes the effect of nozzle types and their arrangements on the suspension concentration in absorber.
Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings
NASA Technical Reports Server (NTRS)
Harder, Bryan J.; Zhu, Dongming
2011-01-01
In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (< 10 microns) single layers to be deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers
NASA Astrophysics Data System (ADS)
Gockeln, Michael; Pokhrel, Suman; Meierhofer, Florian; Glenneberg, Jens; Schowalter, Marco; Rosenauer, Andreas; Fritsching, Udo; Busse, Matthias; Mädler, Lutz; Kun, Robert
2018-01-01
Reduction of lithium-ion battery (LIB) production costs is inevitable to make the use of LIB technology more viable for applications such as electric vehicles or stationary storage. To meet the requirements in today's LIB cost efficiency, our current research focuses on an alternative electrode fabrication method, characterized by a combination of double flame spray pyrolysis and lamination technique (DFSP/lamination). In-situ carbon coated nano-Li4Ti5O12 (LTO/C) was synthesized using versatile DFSP. The as-prepared composite powder was then directly laminated onto a conductive substrate avoiding the use of any solvent or binder for electrode preparation. The influence of lamination pressures on the microstructure and electrochemical performance of the electrodes was also investigated. Enhancements in intrinsic electrical conductivity were found for higher lamination pressures. Capacity retention of highest pressurized DFSP/lamination-prepared electrode was 87.4% after 200 dis-/charge cycles at 1C (vs. Li). In addition, LTO/C material prepared from the double flame spray pyrolysis was also used for fabricating electrodes via doctor blading technique. Laminated electrodes obtained higher specific discharge capacities compared to calendered and non-calendered blade-casted electrodes due to superior microstructural properties. Such a fast and industrially compelling integrative DFSP/lamination tool could be a prosperous, next generation technology for low-cost LIB electrode fabrication.
Su, Bo; Caller-Guzman, Herbert A; Körstgens, Volker; Rui, Yichuan; Yao, Yuan; Saxena, Nitin; Santoro, Gonzalo; Roth, Stephan V; Müller-Buschbaum, Peter
2017-12-20
Mesoporous titania is a cheap and widely used material for photovoltaic applications. To enable a large-scale fabrication and a controllable pore size, we combined a block copolymer-assisted sol-gel route with spray coating to fabricate titania films, in which the block copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) is used as a structure-directing template. Both the macroscale and nanoscale are studied. The kinetics and thermodynamics of the spray deposition processes are simulated on a macroscale, which shows a good agreement with the large-scale morphology of the spray-coated films obtained in practice. On the nanoscale, the structure evolution of the titania films is probed with in situ grazing incidence small-angle X-ray scattering (GISAXS) during the spray process. The changes of the PS domain size depend not only on micellization but also on solvent evaporation during the spray coating. Perovskite (CH 3 NH 3 PbI 3 ) solar cells (PSCs) based on sprayed titania film are fabricated, which showcases the suitability of spray-deposited titania films for PSCs.
Photographic characterization of spark-ignition engine fuel injectors
NASA Technical Reports Server (NTRS)
Evanich, P. L.
1978-01-01
Manifold port fuel injectors suitable for use in general aviation spark-ignition engines were evaluated qualitatively on the basis of fuel spray characteristics. Photographs were taken at various fuel flow rates or pressure levels. Mechanically and electronically operated pintle injectors generally produced the most atomization. The plain-orifice injectors used on most fuel-injected general aviation engines did not atomize the fuel when sprayed into quiescent air.
Testing of a Spray-Bar Zero Gravity Cryogenic Vent System for Upper Stages
NASA Technical Reports Server (NTRS)
Lak, Tibor; Flachbart, Robin; Nguyen, Han; Martin, James
1999-01-01
The capability to vent in zero gravity without resettling is a fundamental technology need that involves practically all uses of subcritical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule- Thomson (J-T) valve to extract then-nal energy from the propellant. In a cooperative effort, Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (N4HTB) was used to test a unique "spray bar" TVS system developed by Boeing. A schematic of this system is included in Figure 1. The system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it radially into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the spray bar heat exchanger element, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. Figure 2 is a plot of ullage pressure (P4) and liquid vapor pressure (PSAI) versus time. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. The primary advantage of the spray bar configuration is that pressure reduction is achieved independent of liquid and vapor location, thereby enhancing the applicability of normal gravity test data to zero gravity conditions. The in-tank components are minimized with the proposed TVS design. Because the recirculation pump is external to the tank, no electrical power penetration of the tank is required for pump or valve operation. This is especially desirable for L02 tanks since the presence of an electrical ignition source in oxygen represents a critical failure mode. Also, since the critical components (pump, motor, valve, orifice) are external to the tank, system checkout and ground servicing/replacement are easier. For zero-g operation, component replacement external to the tank may be a significant benefit. In addition to satisfying the zero g TVS design objectives, the TVS concept tested offers additional benefits to the integrated subcritical cryogenic storage and launch system.
Flexibility Considerations on the Hydrodynamic Loading on a Vertical Wedge Drop
NASA Astrophysics Data System (ADS)
Ren, Zhongshu; Wang, Zhaoyuan; Judge, Carolyn; Stern, Fred; Ikeda, Christine
2017-11-01
High-speed craft operating at in waves frequently become airborne and slam into the water surface. This fluid-structure interaction problem is important to understand in order to increase the operating envelope of these craft. The goals of the current work are to investigate both the hydrodynamic loads and the resulting structural response on a planing hull. A V-shaped wedge is dropped vertically into calm water. The hydrodynamic pressure is measured using pressure sensors at discrete points on the hull. Two hulls are studied: one is rigid and one is flexible. Predictions of the hydrodynamic loading are made using Wagner's theory, Vorus's theory, and simulations in CFDShip Iowa. These predictions assume the structure is completely rigid. These predictions of the pressure coefficient match well with the rigid hull, as expected. The spray root is tracked in the rigid experimental set and compared with the theoretical and computational models. The pressure coefficient measured on the flexible hull shows discrepancies with the predictions due to the fluid-structure interaction. These discrepancies are quantified and interpreted in light of the structural flexibility. Funding for this work is from the Office of Naval Research Grant Number N00014-16-1-3188.
Spray Characterization of Gas-to-Liquid Synthetic Jet Fuels
NASA Astrophysics Data System (ADS)
Kannaiyan, Kumaran; Sadr, Reza; GTL jet fuel Consortium Team
2012-11-01
Gas-to-Liquid (GTL) Synthetic Paraffinic Kerosene (SPK) fuel obtained from Fischer-Tropsch synthesis has grabbed the global attention due to its cleaner combustion characteristics. GTL fuels are expected to meet the vital qualities such as atomization, combustion and emission characteristics of conventional jet fuels. It is imperative to understand fuel atomization in order to gain insights on the combustion and emission aspects of an alternative fuel. In this work spray characteristics of GTL-SPK, which could be used as a drop-in fuel in aircraft gas turbine engines, is studied. This work outlines the spray experimental facility, the methodology used and the results obtained using two SPK's with different chemical compositions. The spray characteristics, such as droplet size and distribution, are presented at three differential pressures across a simplex nozzle and compared with that of the conventional Jet A-1 fuel. Experimental results clearly show that although the chemical composition is significantly different between SPK's, the spray characteristics are not very different. This could be attributed to the minimal difference in fluid properties between the SPK's. Also, the spray characteristics of SPK's show close resemblance to the spray characteristics of Jet A-1 fuel.
Experimental Studies of Spray Deposition on a Flat Surface in a Vacuum Environment
NASA Technical Reports Server (NTRS)
Golliher, Eric L.; Yao, S. C.
2015-01-01
Cooling of spacecraft components in the space environment is an on-going research effort. The electronics used in modern spacecraft are always changing and the heat flux is increasing. New, one-of-a-kind missions require new approaches to thermal control. In this research, under vacuum conditions, a pulsed water spray impinged on a small disc, while a high speed data acquisition system recorded the temperature histories of this copper disc. The water droplets froze quickly and accumulated on the disc as the spray continued. After the spray stopped, the frozen water that remained on the disc then sublimated into the vacuum environment and cooled the disc. This paper examines two important aspects of this process: 1) the difference in spray start up and shutdown in a vacuum environment versus in a standard atmospheric pressure environment, and 2) the water utilization efficiency in a vacuum environment due to the effects of drop trajectories and drop bouncing on the surface. Both phenomena play a role during spray cooling in a vacuum. This knowledge should help spacecraft designers plan for spray cooling as an option to cool spacecraft electronics, human metabolic generated heat, and heat from other sources.
Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process.
Schafroth, Nina; Arpagaus, Cordin; Jadhav, Umesh Y; Makne, Sushil; Douroumis, Dennis
2012-02-01
In the current study nano and microparticle engineering of water insoluble drugs was conducted using a novel piezoelectric spray-drying approach. Cyclosporin A (CyA) and dexamethasone (DEX) were encapsulated in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) grades of different molecular weights. Spray-drying studies carried out with the Nano Spray Dryer B-90 employed with piezoelectric driven actuator. The processing parameters including inlet temperature, spray mesh diameter, sample flow rate, spray rate, applied pressure and sample concentration were examined in order to optimize the particle size and the obtained yield. The process parameters and the solute concentration showed a profound effect on the particle engineering and the obtained product yield. The produced powder presented consistent and reproducible spherical particles with narrow particle size distribution. Cyclosporin was found to be molecularly dispersed while dexamethasone was in crystalline state within the PLGA nanoparticles. Further evaluation revealed excellent drug loading, encapsulation efficiency and production yield. In vitro studies demonstrated sustained release patterns for the active substances. This novel spray-drying process proved to be efficient for nano and microparticle engineering of water insoluble active substances. Copyright © 2011 Elsevier B.V. All rights reserved.
Development of a plasma sprayed ceramic gas path seal for high pressure turbine application
NASA Technical Reports Server (NTRS)
Shiembob, L. T.
1978-01-01
Development of the plasma sprayed graded, layered ZRO2/CoCrAlY seal system for gas turbine engine blade tip seal applications up to 1589 K (2400 F) surface temperature was continued. The effect of changing ZRO2/CoCrAlY ratios in the intermediate layers on thermal stresses was evaluated analytically with the goal of identifying the materials combinations which would minimize thermal stresses in the seal system. Three methods of inducing compressive residual stresses in the sprayed seal materials to offset tensile thermal stresses were analyzed. The most promising method, thermal prestraining, was selected based upon potential, feasibility and complexity considerations. The plasma spray equipment was modified to heat, control and monitor the substrate temperature during spraying. Specimens were fabricated and experimentally evaluated to: (1) substantiate the capability of the thermal prestrain method to develop compressive residual stresses in the sprayed structure and (2) define the effect of spraying on a heated substate on abradability, erosion and thermal shock characteristics of the seal system. Thermal stress analysis, including residual stresses and material properties variations, was performed and correlated with thermal shock test results. Seal system performance was assessed and recommendations for further development were made.
Preliminary investigation tests of novel antifungal topical aerosol
Kapadia, Monali M.; Solanki, S. T.; Parmar, V.; Thosar, M. M.; Pancholi, S. S.
2012-01-01
Spray formulation can minimize pain and irritation experience during the application of conventional dosage forms. Econazole Nitrate is an active ingredient of the aerosol concentrate to be used for twice-daily application because of its long durability in the superficial layers of the fungal infected skin. The aim of this study is preliminary investigation of Econazole Nitrate spray by varying the concentrations of different constituents of the spray. The ratios of Propylene glycol (PG) and isopropyl myristate (IPM) were selected as independent variables in 22 full factorial designs, keeping the concentration of solvent, co-solvent and propellant LPG constant. Aerosol also contained Ethanol as solvent and Isopropyl alcohol as co-solvent. All ingredients of the aerosol were packaged in an aluminum container fitted with continuous-spray valves. Physical properties evaluated for the Econazole Nitrate spray included delivery rate, delivery amount, pressure, minimum fill, leakage, flammability, spray patterns, particle image and plume angle. Glass containers were used to study incompatibility between concentrate and propellant due to the ease of visible inspection. Isopropyl myristate at lower concentrate showed turbidity, while at high concentration it met the requirements for aerosol and produced Econazole Nitrate spray with expected characteristics. PMID:23066214
NASA Astrophysics Data System (ADS)
Moreau, David; Borit, François; Corté, Laurent; Guipont, Vincent
2017-06-01
We report an approach using cold spray technology to coat poly(vinyl alcohol) (PVA) in polymer and hydrogel states with hydroxyapatite (HA). Using porous aggregated HA powder, we hypothesized that fragmentation of the powder upon cold spray could lead to formation of a ceramic coating on the surface of the PVA substrate. However, direct spraying of this powder led to complete destruction of the swollen PVA hydrogel substrate. As an alternative, HA coatings were successfully produced by spraying onto dry PVA substrates prior to swelling in water. Dense homogeneous HA coatings composed of submicron particles were obtained using rather low-energy spraying parameters (temperature 200-250 °C, pressure 1-3 MPa). Coated PVA substrates could swell in water without removal of the ceramic layer to form HA-coated hydrogels. Microscopic observations and in situ measurements were used to explain how local heating and impact of sprayed aggregates induced surface roughening and strong binding of HA particles to the molten PVA substrate. Such an approach could lead to design of ceramic coatings whose roughness and crystallinity can be finely adjusted to improve interfacing with biological tissues.
A multi-scalar PDF approach for LES of turbulent spray combustion
NASA Astrophysics Data System (ADS)
Raman, Venkat; Heye, Colin
2011-11-01
A comprehensive joint-scalar probability density function (PDF) approach is proposed for large eddy simulation (LES) of turbulent spray combustion and tests are conducted to analyze the validity and modeling requirements. The PDF method has the advantage that the chemical source term appears closed but requires models for the small scale mixing process. A stable and consistent numerical algorithm for the LES/PDF approach is presented. To understand the modeling issues in the PDF method, direct numerical simulation of a spray flame at three different fuel droplet Stokes numbers and an equivalent gaseous flame are carried out. Assumptions in closing the subfilter conditional diffusion term in the filtered PDF transport equation are evaluated for various model forms. In addition, the validity of evaporation rate models in high Stokes number flows is analyzed.
Spray Behavior and Atomization Characteristics of Biodiesel
NASA Astrophysics Data System (ADS)
Choi, Seung-Hun; Oh, Young-Taig
Biodiesel has large amount of oxygen in itself, which make it very efficient in reducing exhaust emission by improving combustion inside an engine. But biodiesel has a low temperature flow problem because it has a high viscosity. In this study, the spray behavior and atomization characteristics were investigated to confirm of some effect for the combination of non-esterification biodiesel and fuel additive WDP and IPA. The process of spray was visualized through the visualization system composed of a halogen lamp and high speed camera, and atomization characteristics were investigated through LDPA. When blending WDP and IPA with biodiesel, atomization and spray characteristics were improved. Through this experimental result, SMD of blended fuel, WDP 25% and biodiesel 75%, was 33.9% reduced at distance 6cm from a nozzle tip under injection pressure 30MPa.
NASA Technical Reports Server (NTRS)
Daniel, R. L.; Sanders, H. L.; Zimmerman, F. R.
1995-01-01
With the advent of new environmental laws restricting volatile organic compounds and hexavalent chrome emissions, 'environmentally safe' thermal spray coatings are being developed to replace the traditional corrosion protection chromate primers. A wire arc sprayed aluminum coating is being developed for corrosion protection of low pressure liquid hydrogen carrying ducts on the Space Shuttle Main Engine. Currently, this hardware utilizes a chromate primer to provide protection against corrosion pitting and stress corrosion cracking induced by the cryogenic operating environment. The wire are sprayed aluminum coating has been found to have good potential to provide corrosion protection for flight hardware in cryogenic applications. The coating development, adhesion test, corrosion test and cryogenic flexibility test results will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tierney, J.C.; Glovan, R.J.; Witt, S.J.
1995-12-31
A four-phase experimental design was utilized to evaluate the abrasive wear and corrosion protection characteristics of VERSAlloy 50 coatings applied to AISI 4130 steel sheet. The coatings were applied with the Pressure Controlled Atomization Process (PCAP), a new thermal spray process being developed for the United States Air Force to replace hard chromium plating. Phase 1 of the design consisted of an evaluation of deposit profiles that were sprayed at five different standoff distances. Profile measurements yielded standard deviations ({sigma}) of the plume at each of the spray distances. Phase 2 consisted of a completely randomized series of eight spraymore » tests in which the track gap or distance between consecutive spray passes was varied by amounts of 0.5{sigma}, 1{sigma}, 2{sigma}, and 3{sigma}. The sprayed test coupons were then evaluated for corrosion protection, abrasive wear resistance, microhardness, and porosity. Results from Phase 2 were used to determine the best track gap or overlap for Phase 3 and Phase 4 testing. Phase 3 consisted of 22-run central composite design. The test coupons were evaluated the same as in Phase 2. Statistical analysis of Phase 3 data revealed that the optimal system operating parameters produced coatings that would either provide superior corrosion protection or resistance to abrasive wear. Phase 4 consisted of four spray tests to validate the results obtained in Phase 3. Phase 4 test coupons were again evaluated with the same analysis as in Phases 2 and 3. The validation tests indicated that PCAP system operating parameters could be controlled to produce VERSAlloy 50 coatings with superior corrosion protection or resistance to abrasive wear.« less
Finite Element Simulation of Residual Stress Development in Thermally Sprayed Coatings
NASA Astrophysics Data System (ADS)
Elhoriny, Mohamed; Wenzelburger, Martin; Killinger, Andreas; Gadow, Rainer
2017-04-01
The coating buildup process of Al2O3/TiO2 ceramic powder deposited on stainless-steel substrate by atmospheric plasma spraying has been simulated by creating thermomechanical finite element models that utilize element death and birth techniques in ANSYS commercial software and self-developed codes. The simulation process starts with side-by-side deposition of coarse subparts of the ceramic layer until the entire coating is created. Simultaneously, the heat flow into the material, thermal deformation, and initial quenching stress are computed. The aim is to be able to predict—for the considered spray powder and substrate material—the development of residual stresses and to assess the risk of coating failure. The model allows the prediction of the heat flow, temperature profile, and residual stress development over time and position in the coating and substrate. The proposed models were successfully run and the results compared with actual residual stresses measured by the hole drilling method.
A Numerical Study of Spray Injected in a Gas Turbine Lean Pre-Mixed Pre-Vaporized Combustor
NASA Astrophysics Data System (ADS)
Amoresano, Amedeo; Cameretti, Maria Cristina; Tuccillo, Raffaele
2015-04-01
The authors have performed a numerical study to investigate the spray evolution in a modern gas turbine combustor of the Lean Pre-Mixed Pre-vaporized type. The CFD tool is able to simulate the injection conditions, by isolating and studying some specific phenomena. The calculations have been performed by using a 3-D fluid dynamic code, the FLUENT flow solver, by choosing the injection models on the basis of a comparative analysis with some experimental data, in terms of droplet diameters, obtained by PDA technique. In a first phase of the investigation, the numerical simulation refers to non-evaporating flow conditions, in order to validate the estimation of the fundamental spray parameters. Next, the calculations employ boundary conditions close to those occurring in the actual combustor operation, in order to predict the fuel vapour distribution throughout the premixing chamber. The results obtained allow the authors to perform combustion simulation in the whole domain.
NASA Astrophysics Data System (ADS)
Septiani, Eka Lutfi; Widiyastuti, W.; Winardi, Sugeng; Machmudah, Siti; Nurtono, Tantular; Kusdianto
2016-02-01
Flame assisted spray dryer are widely uses for large-scale production of nanoparticles because of it ability. Numerical approach is needed to predict combustion and particles production in scale up and optimization process due to difficulty in experimental observation and relatively high cost. Computational Fluid Dynamics (CFD) can provide the momentum, energy and mass transfer, so that CFD more efficient than experiment due to time and cost. Here, two turbulence models, k-ɛ and Large Eddy Simulation were compared and applied in flame assisted spray dryer system. The energy sources for particle drying was obtained from combustion between LPG as fuel and air as oxidizer and carrier gas that modelled by non-premixed combustion in simulation. Silica particles was used to particle modelling from sol silica solution precursor. From the several comparison result, i.e. flame contour, temperature distribution and particle size distribution, Large Eddy Simulation turbulence model can provide the closest data to the experimental result.
NASA Astrophysics Data System (ADS)
Fan, Xiaofeng; Wang, Jiangfeng
2016-06-01
The atomization of liquid fuel is a kind of intricate dynamic process from continuous phase to discrete phase. Procedures of fuel spray in supersonic flow are modeled with an Eulerian-Lagrangian computational fluid dynamics methodology. The method combines two distinct techniques and develops an integrated numerical simulation method to simulate the atomization processes. The traditional finite volume method based on stationary (Eulerian) Cartesian grid is used to resolve the flow field, and multi-component Navier-Stokes equations are adopted in present work, with accounting for the mass exchange and heat transfer occupied by vaporization process. The marker-based moving (Lagrangian) grid is utilized to depict the behavior of atomized liquid sprays injected into a gaseous environment, and discrete droplet model 13 is adopted. To verify the current approach, the proposed method is applied to simulate processes of liquid atomization in supersonic cross flow. Three classic breakup models, TAB model, wave model and K-H/R-T hybrid model, are discussed. The numerical results are compared with multiple perspectives quantitatively, including spray penetration height and droplet size distribution. In addition, the complex flow field structures induced by the presence of liquid spray are illustrated and discussed. It is validated that the maker-based Eulerian-Lagrangian method is effective and reliable.
Current Status of Superheat Spray Modeling With NCC
NASA Technical Reports Server (NTRS)
Raju, M. S.; Bulzan, Dan L.
2012-01-01
An understanding of liquid fuel behavior at superheat conditions is identified to be a topic of importance in the design of modern supersonic engines. As a part of the NASA's supersonics project office initiative on high altitude emissions, we have undertaken an effort to assess the accuracy of various existing CFD models used in the modeling of superheated sprays. As a part of this investigation, we have completed the implementation of a modeling approach into the national combustion code (NCC), and then applied it to investigate the following three cases: (1) the validation of a flashing jet generated by the sudden release of pressurized R134A from a cylindrical nozzle, (2) the differences between two superheat vaporization models were studied based on both hot and cold flow calculations of a Parker-Hannifin pressure swirl atomizer, (3) the spray characteristics generated by a single-element LDI (Lean Direct Injector) experiment were studied to investigate the differences between superheat and non-superheat conditions. Further details can be found in the paper.
NASA Astrophysics Data System (ADS)
Knapp, Wolfgang; Gillet, Vincent; Courant, Bruno; Aubignat, Emilie; Costil, Sophie; Langlade, Cécile
2017-02-01
Surface pre-treatment is fundamental in thermal spraying processes to obtain a sufficient bonding strength between substrate and coating. Different pre-treatments can be used, mostly grit-blasting for current industrial applications. This study is focused on Cu-Al2O3 coatings obtained by Low Pressure Cold Spray on AW5083 aluminum alloy substrate. Bonding strength is measured by tensile adhesion test, while deposition efficiency is measured. Substrates are textured by laser, using a pattern of equally spaced grooves with almost constant diameter and variations of depth. Results show that bonding strength is improved up to +81% compared to non-treated substrate, while deposition efficiency remains constant. The study of the samples after rupture reveals a modification of the failure mode, from mixed failure to cohesive failure. A modification of crack propagation is also noticed, the shape of laser textured grooves induces a deviation of cracks inside the coating instead of following the interface between the layers.
Tapered plug foam spray apparatus
NASA Technical Reports Server (NTRS)
Allen, Peter B. (Inventor)
1996-01-01
A two-component foam spray gun is readily disassembled for cleaning. It includes a body (1) with reactant (12, 14) and purge gas (16) inlet ports. A moldable valve packing (32) inside the body has a tapered conical interior surface (142), and apertures which match the reactant ports. A valve/tip (40) has a conical outer surface (48) which mates with the valve packing (32). The valve/tip (40) is held in place by a moldable packing washer (34), held at non-constant pressure by a screw (36, 38). The interior of the valve/tip (40) houses a removable mixing chamber (50). The mixing chamber (50) has direct flow orifices (60) and an auxiliary flow path (58, 60) which ameliorate pressure surges. The spray gun can be disassembled for cleaning without disturbing the seal, by removing the valve/tip (40) to the rear, thereby breaking it free of the conical packing. Rotation of the valve/tip (40) relative to the body (1) shuts off the reactant flow, and starts the purge gas flow.
A Morphological Approach to the Modeling of the Cold Spray Process
NASA Astrophysics Data System (ADS)
Delloro, F.; Jeandin, M.; Jeulin, D.; Proudhon, H.; Faessel, M.; Bianchi, L.; Meillot, E.; Helfen, L.
2017-12-01
A coating buildup model was developed, the aim of which was simulating the microstructure of a tantalum coating cold sprayed onto a copper substrate. To do so, first was operated a fine characterization of the irregular tantalum powder in 3D, using x-ray microtomography and developing specific image analysis algorithms. Particles were grouped by shape in seven classes. Afterward, 3D finite element simulations of the impact of the previously observed particles were realized. To finish, a coating buildup model was developed, based on the results of finite element simulations of particle impact. In its first version, this model is limited to 2D.
Kundoor, Vipra; Dalby, Richard N
2011-08-01
To systematically evaluate the effect of formulation- and administration-related variables on nasal spray deposition using a nasal cast. Deposition pattern was assessed by uniformly coating a transparent nose model with Sar-Gel®, which changes from white to purple on contact with water. Sprays were subsequently discharged into the cast, which was then digitally photographed. Images were quantified using Adobe® Photoshop. The effects of formulation viscosity (which influences droplet size), simulated administration techniques (head orientation, spray administration angle, spray nozzle insertion depth), spray pump design and metering volume on nasal deposition pattern were investigated. There was a significant decrease in the deposition area associated with sprays of increasing viscosity. This appeared to be mediated by an increase in droplet size and a narrowing of the spray plume. Administration techniques and nasal spray pump design also had a significant effect on the deposition pattern. This simple color-based method provides quantitative estimates of the effects that different formulation and administration variables may have on the nasal deposition area, and provides a rational basis on which manufacturers of nasal sprays can base their patient instructions or post approval changes when it is impractical to optimize these using a clinical study.
Plasma spray processing of TiC-based coatings for sliding wear resistance
NASA Astrophysics Data System (ADS)
Mohanty, Mahesh
Titanium carbide-reinforced metallic coatings, produced by plasma spraying, can be used for sliding wear resistant applications. The sliding wear properties of such coatings are governed to a large extent by the strength, structure and stability of the bond interface between the carbide and the metallic phases. In the present investigation, the microstructure and sliding wear properties of plasma sprayed metal-bonded TiC coatings containing up to 90 v/o carbide have been studied. It was shown that alloying of the metallic phase improved carbide retention in TiC cermets due to better interface bonding, and increased wear resistance and lowered sliding coefficient of friction. TiC-based coatings were produced from both physically blended and synthesized feed powders. It was observed that the precursor TiC-based powder morphology and structure greatly affected the plasma sprayed coating microstructures and the resultant physical and mechanical characteristics. Physical blending of powders induced segregation during spraying, leading to somewhat lower deposit efficiencies and coating uniformity, while synthesized and alloyed titanium carbide/metal composite powders reduced problems of segregation and reactions associated with plasma spraying of physically blended powders where the TiC was in direct contact with the plasma jet. To understand oxidation effects of the environment, Ti and TiC-based coatings were produced under low pressure (VPS), air plasma (APS) and shrouded plasma sprayed conditions. APS Ti and TiC-based powders with reactive matrices suffered severe oxidation decomposition during flight, leading to poor deposition efficiencies and oxidized microstructures. High particle temperatures and cold air plasma spraying. Coating oxidation due to reactions of the particles with the surrounding air during spraying reduced coating hardness and wear resistance. TiC-with Ti or Ti-alloy matrix coatings with the highest hardness, density and wear resistance was achieved by spraying under vacuum plasma spray conditions. VPS coating microstructures of synthesized 40, 60 and 80 v/o TiC in Ti10Ni10Cr5Al and 80 v/o TiC in Fe30Cr alloy matrices exhibited fine and uniform distributions of spheroidal carbides. High volume fraction carbides were also obtained with no segregation effects. It was also shown that coatings produced from mechanically blended powders of 50, 70 and 90 vol. % TiC and commercially pure (C.P.) Ti, using low pressure plasma spray process (VPS), had densities >98% and were well bonded to steel, aluminum alloy or titanium alloy substrates. Reductions in jet oxygen contents by the use of an inert gas shroud enabled Ti and TiC-based coatings to be produced which were cleaner and denser than air plasma sprayed and comparable to vacuum plasma sprayed coatings. Direct oxygen concentration measurements in shrouded plasma jets made using an enthalpy probe and a gas analyzer also showed significant reductions in the entrainment of atmospheric oxygen. VPS and shrouded plasma spraying minimized carbide-matrix interface oxidation and improved coating wear resistance. The sliding wear resistance of synthesized coatings was very high and comparable with standard HVOF sprayed WC/Co and Crsb3Csb2/NiCr coatings. Shrouded plasma spray deposits of Crsb3Csb2/NiCr also performed much better than similar air plasma sprayed coatings, as result of reduced oxidation.
Spray Cooling Trajectory Angle Impact Upon Heat Flux Using a Straight Finned Enhanced Surface
NASA Technical Reports Server (NTRS)
Silk, Eric A.; Kim, Jungho; Kiger, Ken
2005-01-01
Experiments were conducted to study the effects of spray trajectory angles upon heat flux for flat and enhanced surface spray cooling. The surface enhancement consisted of straight fins machined on the top surface of a copper heater block. Spray cooling curves were obtained with the straight fin surface aligned both parallel (axial) and perpendicular (transverse) to the spray axis. Measurements were also obtained on a flat surface heater block for comparison purposes. Each copper block had a cross-sectional area of 2.0 sq cm. A 2x2 nozzle array was used with PF-5060 as the working fluid. Thermal performance data was obtained under nominally degassed (chamber pressure of 41.4 kPa) conditions. Results show that the maximum CHF in all cases was attained for a trajectory angle of 30' from the surface normal. Furthermore, trajectory angles applied to straight finned surfaces can have a critical heat flux (CHF) enhancement as much as 75% (heat flux value of 140 W/sq cm) relative to the vertical spray orientation for the analogous flat surface case under nominally degassed conditions.
Test Data Analysis of a Spray Bar Zero-Gravity Liquid Hydrogen Vent System for Upper Stages
NASA Technical Reports Server (NTRS)
Hedayat, A.; Bailey, J. W.; Hastings, L. J.; Flachbart, R. H.
2003-01-01
To support development of a zero-gravity pressure control capability for liquid hydrogen (LH2), a series of thermodynamic venting system (TVS) tests was conducted in 1996 and 1998 using the Marshall Space Flight Center (MSFC) multipurpose hydrogen test bed (MHTB). These tests were performed with ambient heat leaks =20 and 50 W for tank fill levels of 90%, 50%, and 25%. TVS performance testing revealed that the spray bar was highly effective in providing tank pressure control within a 7-kPa band (131-138 Wa), and complete destratification of the liquid and the ullage was achieved with all test conditions. Seven of the MHTB tests were correlated with the TVS performance analytical model. The tests were selected to encompass the range of tank fill levels, ambient heat leaks, operational modes, and ullage pressurants. The TVS model predicted ullage pressure and temperature and bulk liquid saturation pressure and temperature obtained from the TVS model were compared with the test data. During extended self-pressurization periods, following tank lockup, the model predicted faster pressure rise rates than were measured. However, once the system entered the cyclic mixing/venting operational mode, the modeled and measured data were quite similar.
NASA Technical Reports Server (NTRS)
VanDresar, Neil T.; Zimmerli, Gregory A.
2014-01-01
Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.
Jiang, Hai; Miao, Hai-Sheng; Jin, San-Qing; Chen, Li-Hong; Tian, Jing-Ling
2011-12-01
Difficult airway remains not only a challenge to the anesthesiologists, but also a life-threatening event to the patients. Awake intubation is the principal choice to deal with difficult airway, and a key point for awake intubation is airway topical anesthesia. Yet, so far there is no ideal topical anesthesia approach for awake intubation. This study aimed at evaluating the effect of pressure-driven (by 10 L/min oxygen flow) lidocaine spray on airway topical anesthesia in order to find a powerful and convenient method for airway topical anesthesia for conscious sedation intubation. Thirty adult patients referred for elective surgery under general anesthesia, aged 18 - C60 years and Mallampati class I or II, were recruited for the study. Before topical anesthesia, the observer's assessment of alert and sedation (OAA/S) scale was controlled between 3 and 4 by intravenous midazolam (0.03 mg/kg), propofol (2 mg×kg(-1)×h(-1)) and remifentanil (0.05 µg×kg(-1)×min(-1)). Ten minutes after sedation, topical anesthesia was performed with the pressure-driven lidocaine spray; the driving pressure was achieved by an oxygen flow of 10 L/min. After topical anesthesia, tracheal intubation was performed and the intubation condition was assessed with modified the Erhan's intubation condition score by an experienced anesthesiologist, and a score of less than 10 was considered to be satisfactory. Attempts to intubate the patient were recorded, and the complications such as local anesthetic toxicity, mucosa injury, and respiration depression were also recorded. The mean arterial blood pressure (MAP), heart rate (HR) and pulse oxygen saturation (SpO2) were recorded at different time points before and after intubation. Patients were asked 24 hours after the operation whether they could recall the events during intubation. All patients were intubated at the first attempt, the average intubation condition score was 7.0 ± 1.1, from 6 to 10, satisfied intubation condition. MAP and HR increased significantly but mildly immediately after the tracheal intubation (P < 0.05), and decreased to the pre-intubation level soon after intubation. There were no related complications and patients had no recall of the intubation procedures. Topical anesthesia with pressure driven 2% lidocaine spray, where pressure is achieved by 10 L/min oxygen flow, can offer satisfactory intubation conditions for conscious sedation intubation.
Carli, V; Menu-Bouaouiche, L; Cardinael, P; Benissan, L; Coquerel, G
2018-07-01
The objective of this work is to show the feasibility of manufacturing from a spray drying process particles containing immunoglobulin G capable of being administered by inhalation via a pressurized metered dose inhaler. Spray drying were made from aqueous solutions containing IgG and two types of excipients, mannitol and trehalose, with two ratios: 25% w/w and 75%w/w. The physicochemical and aerodynamic properties of the powders obtained were characterized just after manufacturing and after 1 month of storage at 40°C/75% RH according to criteria defined as needed to satisfy an inhaled formulation with a pressurized metered dose inhaler. Maintain of the biological activity and the structure of IgG after atomization was also tested by slot blot and circular dichroism. All spray-dried powders presented a median diameter lower than 5μm. The powders atomized with trehalose showed a solid state more stable than those atomized with mannitol. All atomized powders were in the form of wrinkled particles regardless the nature and the ratios of excipients. The results showed that the aerosolisation properties were compliant with the target, independently of the excipient used at a ratio of 25% w/w IgG-excipient. Moreover, the addition of excipient during the atomization process the denaturation of IgG was limited. This study showed that the use of trehalose as excipient could satisfy the requirements of an inhaled formulation with a pressurized metered dose inhaler. Copyright © 2018 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Aamir, Muhammad; Liao, Qiang; Hong, Wang; Xun, Zhu; Song, Sihong; Sajid, Muhammad
2017-02-01
High heat transfer performance of spray cooling on structured surface might be an additional measure to increase the safety of an installation against any threat caused by rapid increase in the temperature. The purpose of present experimental study is to explore heat transfer performance of structured surface under different spray conditions and surface temperatures. Two cylindrical stainless steel samples were used, one with pyramid pins structured surface and other with smooth surface. Surface heat flux of 3.60, 3.46, 3.93 and 4.91 MW/m2 are estimated for sample initial average temperature of 600, 700, 800 and 900 °C, respectively for an inlet pressure of 1.0 MPa. A maximum cooling rate of 507 °C/s was estimated for an inlet pressure of 0.7 MPa at 900 °C for structured surface while for smooth surface maximum cooling rate of 356 °C/s was attained at 1.0 MPa for 700 °C. Structured surface performed better to exchange heat during spray cooling at initial sample temperature of 900 °C with a relative increase in surface heat flux by factor of 1.9, 1.56, 1.66 and 1.74 relative to smooth surface, for inlet pressure of 0.4, 0.7, 1.0 and 1.3 MPa, respectively. For smooth surface, a decreasing trend in estimated heat flux is observed, when initial sample temperature was increased from 600 to 900 °C. Temperature-based function specification method was utilized to estimate surface heat flux and surface temperature. Limited published work is available about the application of structured surface spray cooling techniques for safety of stainless steel structures at very high temperature scenario such as nuclear safety vessel and liquid natural gas storage tanks.
Attrill, D C; Davies, R M; King, T A; Dickinson, M R; Blinkhorn, A S
2004-01-01
To quantify the temperature increments in a simulated dental pulp following irradiation with an Er:YAG laser, and to compare those increments when the laser is applied with and without water spray. Two cavities were prepared on either the buccal or lingual aspect of sound extracted teeth using the laser. One cavity was prepared with water spray, the other without and the order of preparation randomised. Identical preparation parameters were used for both cavities. Temperature increments were measured in the pulp chamber using a calibrated thermocouple and a novel pulp simulant. Maximum increments were 4.0 degrees C (water) and 24.7 degrees C (no water). Water was shown to be highly significant in reducing the overall temperature increments in all cases (p<0.001; paired t-test). None of the samples prepared up to a maximum of 135 J cumulative energy prepared with water spray exceeded that threshold at which pulpal damage can be considered to occur. Only 25% of those prepared without water spray remained below this threshold. Extrapolation of the figures suggests probably tolerable limits of continuous laser irradiation with water in excess to 160 J. With the incorporation of small breaks in the continuity of laser irradiation that occur in the in vivo situation, the cumulative energy dose tolerated by the pulp should far exceed these figures. The Er:YAG laser must be used in conjunction with water during cavity preparation. As such it should be considered as an effective tool for clinical use based on predicted pulpal responses to thermal stimuli.
Multiple Ignition, Normal and Catalytic Combustion and Quenching of Fuel/Air Mixtures.
1980-05-10
spray ignition results. Spray systems will be produced using a TSI vibrating orifice aerosol generator. From a small liquid reservoir under high pressure...Liebman used laser ignition of electromagnetically -15- levitated particles. An interesting contradiction presents itself in Figures 7 and 8. Because...the substrate surface has been developed and tested. When the experimental wall temperature is used as boundary condition for the gas- phase equations
Cleansing technique using high-velocity steam-air micromist jet spray.
Fukuda, Koichi; Ishihara, Masayuki; Murakami, Kaoru; Nakamura, Shingo; Sato, Yoko; Kuwabara, Masahiro; Fujita, Masanori; Kiyosawa, Tomoharu; Yokoe, Hidetaka
2017-10-01
Application of a high-velocity steam-air micromist jet spray (HVS-AMJS; micromist average diameter: 2.4 μm) for cleansing the skin is proposed. Low-pressure steam is mixed with compressed air (pH 6.5) in a nozzle, and then sprayed at a pressure of ≦0.25 MPa and a velocity of ≧0.34 m/s on the skin or surface of material located approximately 5-10 cm from the nozzle. The temperature on the sprayed surface and water flow rate could be controlled between 42 °C and 46 °C and at approximately 50 mL/min, respectively. Compared with ultrasonic cleansing with tap water and rubbing with only tap water, the HVS-AMJS successfully removed fluorescent lotion covering pieces of wood and significantly reduced both the number of coliforms and the total viable counts on pieces of wood and gauze. Furthermore, the HVS-AMJS effectively removed oily ink from the skin of hairless rats, and temporarily elevated the skin temperature and blood flow, indicating massage effects. The striking characteristics of this cleansing technique using HVS-AMJS are not only its ability to remove microbes and residue without using any chemicals or detergents but also its massage effects.
Efficiency of surface cleaning by a glow discharge for plasma spraying coating
NASA Astrophysics Data System (ADS)
Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.
2016-06-01
The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.
Effects of Preprocessing on Multi-Direction Properties of Aluminum Alloy Cold-Spray Deposits
NASA Astrophysics Data System (ADS)
Rokni, M. R.; Nardi, A. T.; Champagne, V. K.; Nutt, S. R.
2018-05-01
The effects of powder preprocessing (degassing at 400 °C for 6 h) on microstructure and mechanical properties of 5056 aluminum deposits produced by high-pressure cold spray were investigated. To investigate directionality of the mechanical properties, microtensile coupons were excised from different directions of the deposit, i.e., longitudinal, short transverse, long transverse, and diagonal and then tested. The results were compared to properties of wrought 5056 and the coating deposited with as-received 5056 Al powder and correlated with the observed microstructures. Preprocessing softened the particles and eliminated the pores within them, resulting in more extensive and uniform deformation upon impact with the substrate and with underlying deposited material. Microstructural characterization and finite element simulation indicated that upon particle impact, the peripheral regions experienced more extensive deformation and higher temperatures than the central contact zone. This led to more recrystallization and stronger bonding at peripheral regions relative to the contact zone area and yielded superior properties in the longitudinal direction compared with the short transverse direction. Fractography revealed that crack propagation takes place along the particle-particle interfaces in the transverse directions (caused by insufficient bonding and recrystallization), whereas through the deposited particles, fracture is dominant in the longitudinal direction.
NASA Astrophysics Data System (ADS)
Chishty, Wajid Ali
Thermoacoustic instabilities in modern high-performance, low-emission gas turbine engines are often observable as large amplitude pressure oscillations and can result in serious performance and structural degradations. These acoustic oscillations can cause oscillations in combustor through-flows and given the right phase conditions, can also drive unsteady heat release. To curb the potential harms caused by the existence of thermoacoustic instabilities, recent efforts have focused on the active suppression of these instabilities. Intuitively, development of effective active combustion control methodologies is strongly dependent on the knowledge of the onset and sustenance of thermoacoustic instabilities. Specially, non-premixed spray combustion environment pose additional challenges due to the inherent unstable dynamics of sprays. The understanding of the manner in which the combustor acoustics affect the spray characteristics, which in turn result in heat release oscillation, is therefore, of paramount importance. The experimental investigations and the modeling studies conducted towards achieving this knowledge have been presented in this dissertation. Experimental efforts comprise both reacting and non-reacting flow studies. Reacting flow experiments were conducted on a overall lean direct injection, swirl-stabilized combustor rig. The investigations spanned combustor characterization and stability mapping over the operating regime. The onset of thermoacoustic instability and the transition of the combustor to two unstable regimes were investigated via phase-locked chemiluminescence imaging and measurement and phase-locked acoustic characterization. It was found that the onset of the thermoacoustic instability is a function of the energy gain of the system, while the sustenance of instability is due to the in-phase relationship between combustor acoustics and unsteady heat release driven by acoustic oscillations. The presence of non-linearities in the system between combustor acoustic and heat release and also between combustor acoustics and air through-flow were found to exist. The impact of high amplitude limit-cycle pressure on droplet breakdown under very low mean airflow and the localized effects of forced primary fuel modulations on heat release were also investigated. The non-reacting flow experiments were conducted to study the spray behavior under the presence of an acoustic field. An isothermal acoustic rig was specially fabricated, where the pressure oscillations were generated using an acoustic driver. Phase Doppler Anemometry was used to measure the droplet velocities and sizes under varying acoustic forcing conditions and spray feed pressures. Measurements made at different locations in the spray were related to these variations in mean and unsteady inputs. The droplet velocities were found to show a second order response to acoustic forcing with the cut-off frequency equal to the relaxation time corresponding to mean droplet size. It was also found that under acoustic forcing the droplets migrate radially away from the spray centerline and show oscillatory excursions in their movement. Modeling efforts were undertaken to gain physical insights of spray dynamics under the influence of acoustic forcing and to explain the experimental findings. The radial migration of droplets and their oscillatory movement were validated. The flame characteristics in the two unstable regimes and the transition between them were explained. It was found that under certain acoustic and mean air-flow condition, bands of high droplet densities were formed which resulted in diffusion type group burning of droplets. It was also shown that very high acoustic amplitudes cause secondary breakup of droplets.
Radiation-transparent windows, method for imaging fluid transfers
Shu, Deming [Darien, IL; Wang, Jin [Burr Ridge, IL
2011-07-26
A thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 40 bar is presented. The window allows for x-ray access to such phenomena as fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions.
Wang, Jin
2005-03-01
With brilliant synchrotron X-ray sources, microsecond time-resolved synchrotron X-ray radiography and tomography have been used to elucidate the detailed three-dimensional structure and dynamics of high-pressure high-speed fuel sprays in the near-nozzle region. The measurement allows quantitative determination of the fuel distribution in the optically impenetrable region owing to the multiple scattering of visible light by small atomized fuel droplets surrounding the jet. X-radiographs of the jet-induced shock waves prove that the fuel jets become supersonic under appropriate injection conditions and that the quantitative analysis of the thermodynamic properties of the shock waves can also be derived from the most direct measurement. In other situations where extremely axial-asymmetric sprays are encountered, mass deconvolution and cross-sectional fuel distribution models can be computed based on the monochromatic and time-resolved X-radiographic images collected from various rotational orientations of the sprays. Such quantitative analysis reveals the never-before-reported characteristics and most detailed near-nozzle mass distribution of highly transient fuel sprays.
Landscape analysis software tools
Don Vandendriesche
2008-01-01
Recently, several new computer programs have been developed to assist in landscape analysis. The âSequential Processing Routine for Arraying Yieldsâ (SPRAY) program was designed to run a group of stands with particular treatment activities to produce vegetation yield profiles for forest planning. SPRAY uses existing Forest Vegetation Simulator (FVS) software coupled...
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Singhal, A. K.; Tam, L. T.
1984-01-01
The capability of simulating three dimensional two phase reactive flows with combustion in the liquid fuelled rocket engines is demonstrated. This was accomplished by modifying an existing three dimensional computer program (REFLAN3D) with Eulerian Lagrangian approach to simulate two phase spray flow, evaporation and combustion. The modified code is referred as REFLAN3D-SPRAY. The mathematical formulation of the fluid flow, heat transfer, combustion and two phase flow interaction of the numerical solution procedure, boundary conditions and their treatment are described.
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen; Wey, Thomas; Buehrle, Robert
2009-01-01
A computational fluid dynamic (CFD) code is used to simulate the J-2X engine exhaust in the center-body diffuser and spray chamber at the Spacecraft Propulsion Facility (B-2). The CFD code is named as the space-time conservation element and solution element (CESE) Euler solver and is very robust at shock capturing. The CESE results are compared with independent analysis results obtained by using the National Combustion Code (NCC) and show excellent agreement.
Britch, Seth C; Linthicum, Kenneth J; Aldridge, Robert L; Breidenbaugh, Mark S; Latham, Mark D; Connelly, Peter H; Rush, Mattie J E; Remmers, Jennifer L; Kerce, Jerry D; Silcox, Charles A
2018-01-01
We conducted aerial fixed wing ultra low volume (ULV) spray trials with naled to investigate penetration of exposed and simulated cryptic habitat within opened buildings, partially sealed buildings, and outdoor locations targeting sentinel adult Aedes aegypti mosquitoes in north central Florida. Mortality was observed in open and closed buildings and outdoors, even in mosquitoes placed in cryptic habitats. Observations on the impact of building type, mosquito exposure method such as placement in cryptic habitat, and spray nozzle size on mosquito mortality are described and analyzed.
Tong, Xuwen; Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Tu, Jiyuan
2016-10-01
In this study, the effects of nasal drug delivery device and the spray nozzle orientation on sprayed droplets deposition in a realistic human nasal cavity were numerically studied. Prior to performing the numerical investigation, an in-house designed automated actuation system representing mean adults actuation force was developed to produce realistic spray plume. Then, the spray plume development was filmed by high speed photography system, and spray characteristics such as spray cone angle, break-up length, and average droplet velocity were obtained through off-line image analysis. Continuing studies utilizing those experimental data as boundary conditions were applied in the following numerical spray simulations using a commercially available nasal spray device, which was inserted into a realistic adult nasal passage with external facial features. Through varying the particle releasing direction, the deposition fractions of selected particle sizes on the main nasal passage for targeted drug delivery were compared. The results demonstrated that the middle spray direction showed superior spray efficiency compared with upper or lower directions, and the 10µm agents were the most suitable particle size as the majority of sprayed agents can be delivered to the targeted area, the main passage. This study elaborates a comprehensive approach to better understand nasal spray mechanism and evaluate its performance for existing nasal delivery practices. Results of this study can assist the pharmaceutical industry to improve the current design of nasal drug delivery device and ultimately benefit more patients through optimized medications delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modeling of Thickness and Profile Uniformity of Thermally Sprayed Coatings Deposited on Cylinders
NASA Astrophysics Data System (ADS)
Yanjun, Zhang; Wenbo, Li; Dayu, Li; Jinkun, Xiao; Chao, Zhang
2018-02-01
In thermal spraying processes, kinematic parameters of the robot play a decisive role in the coating thickness and profile. In this regard, some achievements have been made to optimize the spray trajectory on flat surfaces. However, few reports have focused on nonholonomic or variable-curvature cylindrical surfaces. The aim of this study is to investigate the correlation between the coating profile, coating thickness, and scanning step, which is determined by the radius of curvature and scanning angle. A mathematical simulation model was developed to predict the thickness of thermally sprayed coatings. Experiments were performed on cylinders with different radiuses of curvature to evaluate the predictive ability of the model.
Recent advances in large-eddy simulation of spray and coal combustion
NASA Astrophysics Data System (ADS)
Zhou, L. X.
2013-07-01
Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.
Antimisting kerosene atomization and flammability
NASA Technical Reports Server (NTRS)
Fleeter, R.; Petersen, R. A.; Toaz, R. D.; Jakub, A.; Sarohia, V.
1982-01-01
Various parameters found to affect the flammability of antimisting kerosene (Jet A + polymer additive) are investigated. Digital image processing was integrated into a technique for measurement of fuel spray characteristics. This technique was developed to avoid many of the error sources inherent to other spray assessment techniques and was applied to the study of engine fuel nozzle atomization performance with Jet A and antimisting fuel. Aircraft accident fuel spill and ignition dynamics were modeled in a steady state simulator allowing flammability to be measured as a function of airspeed, fuel flow rate, fuel jet Reynolds number and polymer concentration. The digital imaging technique was employed to measure spray characteristics in this simulation and these results were related to flammability test results. Scaling relationships were investigated through correlation of experimental results with characteristic dimensions spanning more than two orders of magnitude.
In Situ Monitoring of Particle Consolidation During Low Pressure Cold Spray by Ultrasonic Techniques
NASA Astrophysics Data System (ADS)
Maev, R. Gr.; Titov, S.; Leshchynsky, V.; Dzhurinskiy, D.; Lubrick, M.
2011-06-01
This study attempts to test the viability of the examination of the cold spray process using acoustic methods, specifically in situ testing during the actual spray process itself. Multiple composites studied by flat and multi-channel transducers as well as the results of actual online measurements are presented. It is shown that the final thickness as well as the dynamics of buildup can be evaluated (including plotting rates of buildup). Cross sections of the coating thickness are also easy to obtain and show true profiles of the coating. The data can also be used to generate real estimates for nozzle speed and spray diameter. Finally, comparisons of real thickness and acoustically estimated thickness show a close linear relationship. The data clearly show that online acoustic measurement is a viable method for estimating thickness buildup.
Research on the Fatigue Flexural Performance of RC Beams Attacked by Salt Spray
NASA Astrophysics Data System (ADS)
Mao, Jiang-hong; Xu, Fang-yuan; Jin, Wei-liang; Zhang, Jun; Wu, Xi-xi; Chen, Cai-sheng
2018-04-01
The fatigue flexural performance of RC beams attacked by salt spray was studied. A testing method involving electro osmosis, electrical accelerated corrosion and salt spray was proposed. This corrosion process method effectively simulates real-world salt spray and fatigue loading exerted by RC components on sea bridges. Four RC beams that have different stress amplitudes were tested. It is found that deterioration by corrosion and fatigue loading reduces the fatigue life of the RC and decreases the ability of deformation. The fatigue life and deflection ability could be reduced by increasing the stress amplitude and the corrosion duration time. The test result demonstrates that this experimental method can couple corrosion deterioration and fatigue loading reasonably. This procedure may be applied to evaluate the fatigue life and concrete durability of RC components located in a natural salt spray environment.
Development of a Self-Sluicing Pressure Leaf Filter
NASA Astrophysics Data System (ADS)
Cousineau, Bernard L.; Lumsden, J. R.
The cylindrical Kelly filter presses installed in the Ewarton Works "C" phase did not perform satisfactorily because of difficulties with head seals, locking rings, and shell retraction mechanisms. As rectification required major modifications, a concept of a press which did not require to be opened for sluicing was proposed. Test work of various sluicing and res lurrying spray arrangements was carried out, and this led to the design of a self-sluicing press which used the shell of an existing Kelly press with its main axis vertical. One press was converted by July 1972, and a development period started. Although initial operation was encouraging, effective sluicing could not be guaranteed after 30 shifts. Modifications to leaf spacing, spray rotational speed, spray slot width, feed pressure and pre-coat control by November 1973, however, allowed effective performance for all of the 800 hour canvas life. Advantages are: reduced operating and maintenance manpower, clean environment, and reduced maintenance cost. The use of 1st wash overflow for sluicing has reduced caustic soda and canvas consumption. Ewarton Works now has four converted self-sluicing presses, and arc converting five more, and Arvida Works plan the installation of one for tests on red pressing (blow-off filtration). A side benefit of the development was the study of the benefits of constant pressure overflow filtration.
Exposure of patient and dental staff to fine and ultrafine particles from scanning spray.
Rupf, Stefan; Berger, Hendrik; Buchter, Axel; Harth, Volker; Ong, Mei Fang; Hannig, Matthias
2015-05-01
Sprays containing fine and ultrafine particles are commonly used for optical scanning. The aim of this study was to measure the particle exposure of patient and dentist during application of scanning spray and to evaluate measures for its reduction. A lower molar in a dental simulator was powdered with scanning spray. Patient's particle exposure was measured by a condensation particle counter in the nasal region of the simulator without (P) and with rubber dam (PC). Dentist's exposure (D) was measured behind a surgical mask. Particle concentrations were determined 5-fold without suction (NS), using conventional dental suction (CDS), or high volume evacuation (HVE). Mean background air particle concentrations for the patient were 3.3 × 10(3) and 1.3 × 10(3) pt/cm(3) for the dentist. Particle concentrations increased after spraying; mean cumulated additional particle exposures for the patient were the following: P-NS 7.2 × 10(6), P-CDS 4.6 × 10(6), P-HVE 2.4 × 10(4); using rubber dam: PC-NS 3.6 × 10(6), PC-CDS 3.3 × 10(5), PC-HVE 2.2 × 10(5). The particle exposures of the dentist were the following: D-NS 9.7 × 10(5), D-CDS 1.8 × 10(5), D-HVE 1.6 × 10(4). The use of HVE is recommended to reduce exposure of patients and dental staff to fine and ultrafine particles when using scanning sprays. Effective protection is available for staff and patient by means of high volume evacuation. In patients suffering from obstructive lung diseases, the use of scanning sprays should be avoided altogether.
Production of drug nanosuspensions: effect of drug physical properties on nanosizing efficiency.
Liu, Tao; Müller, Rainer H; Möschwitzer, Jan P
2018-02-01
Drug nanosuspension is one of the established methods to improve the bioavailability of poorly soluble drugs. Drug physical properties aspect (morphology, solid state, starting size et al) is a critical parameter determining the production efficiency. Some drug modification approaches such as spray-drying were proved to improve the millability of drug powders. However, the mechanism behind those improved performances is unclear. This study is to systematically investigate the influence of those physical properties. Five different APIs (active pharmaceutical ingredients) with different millabilities, i.e. resveratrol, hesperetin, glibenclamide, rutin, and quercetin, were processed by standard high pressure homogenization (HPH), wet bead milling (WBM), and a combinative method of spray-drying and HPH. Smaller starting sizes of certain APIs could accelerate the particle size reduction velocity during both HPH and WBM processes. Spherical particles were observed for almost all spray-dried powders (except spray-dried hesperetin) after spray-drying. The crystallinity of some spray-dried samples such as rutin and glibenclamide became much lower than their corresponding unmodified powders. Almost all spray-dried drug powders after HPH processes could lead to smaller nanocrystal particle size than unmodified APIs. The modified microstructure instead of solid state after spray-drying explained the potential reason for improved nanosizing efficiency. In addition, the contribution of starting size on the production efficiency was also critical according to both HPH and WBM results.
Effects of injection pressure variation on mixing in a cold supersonic combustor with kerosene fuel
NASA Astrophysics Data System (ADS)
Liu, Wei-Lai; Zhu, Lin; Qi, Yin-Yin; Ge, Jia-Ru; Luo, Feng; Zou, Hao-Ran; Wei, Min; Jen, Tien-Chien
2017-10-01
Spray jet in cold kerosene-fueled supersonic flow has been characterized under different injection pressures to assess the effects of the pressure variation on the mixing between incident shock wave and transverse cavity injection. Based on the real scramjet combustor, a detailed computational fluid dynamics model is developed. The injection pressures are specified as 0.5, 1.0, 2.0, 3.0 and 4.0 MPa, respectively, with the other constant operation parameters (such as the injection diameter, angle and velocity). A three dimensional Couple Level Set & Volume of Fluids approach incorporating an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical simulations primarily concentrate on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with/without evaporation. Validation has been implemented by comparing the calculated against the measured in literature with good qualitative agreement. Results show that the penetration depth, span-wise angle and expansion area of the transverse cavity jet are all increased with the injection pressure. However, when the injection pressure is further increased, the value in either penetration depth or expansion area increases appreciably. This study demonstrates the feasibility and effectiveness of the combination of Couple Level Set & Volume of Fluids approach and an improved Kelvin-Helmholtz & Rayleigh-Taylor model, in turn providing insights into scramjet design improvement.
NASA Astrophysics Data System (ADS)
Afshar, Ali
An evaluation of Lagrangian-based, discrete-phase models for multi-component liquid sprays encountered in the combustors of gas turbine engines is considered. In particular, the spray modeling capabilities of the commercial software, ANSYS Fluent, was evaluated. Spray modeling was performed for various cold flow validation cases. These validation cases include a liquid jet in a cross-flow, an airblast atomizer, and a high shear fuel nozzle. Droplet properties including velocity and diameter were investigated and compared with previous experimental and numerical results. Different primary and secondary breakup models were evaluated in this thesis. The secondary breakup models investigated include the Taylor analogy breakup (TAB) model, the wave model, the Kelvin-Helmholtz Rayleigh-Taylor model (KHRT), and the Stochastic secondary droplet (SSD) approach. The modeling of fuel sprays requires a proper treatment for the turbulence. Reynolds-averaged Navier-Stokes (RANS), large eddy simulation (LES), hybrid RANS/LES, and dynamic LES (DLES) were also considered for the turbulent flows involving sprays. The spray and turbulence models were evaluated using the available benchmark experimental data.
Beheshti, Novid; Mcintosh, Andy C
2007-12-01
In this paper the combustion chamber of the bombardier beetle is considered and recent findings are presented which demonstrate that certain parts of the anatomy are in fact inlet and outlet valves. In particular, the authors show that the intake and exhaust valve mechanism involves a repeated (pulsating) steam explosion, the principle of which was up till now unclear. New research here has now shown the characteristics of the ejections and the role of important valves. In this paper numerical simulations of the two-phase flow ejection are presented which demonstrate that the principle of cyclic water injection followed by water and steam decompression explosions is the fundamental mechanism used to create the repeated ejections.
An investigation of air solubility in Jet A fuel at high pressures
NASA Technical Reports Server (NTRS)
Faeth, G. M.
1981-01-01
Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.
Rapid gas hydrate formation process
Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.
2013-01-15
The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.
Spark Ignition of Monodisperse Fuel Sprays. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Danis, Allen M.; Cernansky, Nicholas P.; Namer, Izak
1987-01-01
A study of spark ignition energy requirements was conducted with a monodisperse spray system allowing independent control of droplet size, equivalent ratio, and fuel type. Minimum ignition energies were measured for n-heptane and methanol sprays characterized at the spark gap in terms of droplet diameter, equivalence ratio (number density) and extent of prevaporization. In addition to sprays, minimum ignition energies were measured for completely prevaporized mixtures of the same fuels over a range of equivalence ratios to provide data at the lower limit of droplet size. Results showed that spray ignition was enhanced with decreasing droplet size and increasing equivalence ratio over the ranges of the parameters studied. By comparing spray and prevaporized ignition results, the existence of an optimum droplet size for ignition was indicated for both fuels. Fuel volatility was seen to be a critical factor in spray ignition. The spray ignition results were analyzed using two different empirical ignition models for quiescent mixtures. Both models accurately predicted the experimental ignition energies for the majority of the spray conditions. Spray ignition was observed to be probabilistic in nature, and ignition was quantified in terms of an ignition frequency for a given spark energy. A model was developed to predict ignition frequencies based on the variation in spark energy and equivalence ratio in the spark gap. The resulting ignition frequency simulations were nearly identical to the experimentally observed values.
Naz, M. Y.; Sulaiman, S. A.; Ariwahjoedi, B.; Shaari, Ku Zilati Ku
2014-01-01
The objective of the research was to understand and improve the unusual physical and atomization properties of the complexes/adhesives derived from the tapioca starch by addition of borate and urea. The characterization of physical properties of the synthesized adhesives was carried out by determining the effect of temperature, shear rate, and mass concentration of thickener/stabilizer on the complex viscosity, density, and surface tension. In later stage, phenomenological analyses of spray jet breakup of heated complexes were performed in still air. Using a high speed digital camera, the jet breakup dynamics were visualized as a function of the system input parameters. The further analysis of the grabbed images confirmed the strong influence of the input processing parameters on full cone spray patternation. It was also predicted that the heated starch adhesive solutions generate a dispersed spray pattern by utilizing the partial evaporation of the spraying medium. Below 40°C of heating temperature, the radial spray cone width and angle did not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The discharge coefficient, mean flow rate, and mean flow velocity were significantly influenced by the load pressure but less affected by the temperature. PMID:24592165
Novel Online Diagnostic Analysis for In-Flight Particle Properties in Cold Spraying
NASA Astrophysics Data System (ADS)
Koivuluoto, Heli; Matikainen, Ville; Larjo, Jussi; Vuoristo, Petri
2018-02-01
In cold spraying, powder particles are accelerated by preheated supersonic gas stream to high velocities and sprayed on a substrate. The particle velocities depend on the equipment design and process parameters, e.g., on the type of the process gas and its pressure and temperature. These, in turn, affect the coating structure and the properties. The particle velocities in cold spraying are high, and the particle temperatures are low, which can, therefore, be a challenge for the diagnostic methods. A novel optical online diagnostic system, HiWatch HR, will open new possibilities for measuring particle in-flight properties in cold spray processes. The system employs an imaging measurement technique called S-PTV (sizing-particle tracking velocimetry), first introduced in this research. This technique enables an accurate particle size measurement also for small diameter particles with a large powder volume. The aim of this study was to evaluate the velocities of metallic particles sprayed with HPCS and LPCS systems and with varying process parameters. The measured in-flight particle properties were further linked to the resulting coating properties. Furthermore, the camera was able to provide information about variations during the spraying, e.g., fluctuating powder feeding, which is important from the process control and quality control point of view.
NASA Astrophysics Data System (ADS)
Chakrabarty, Rohan; Song, Jun
2017-10-01
During the cold spraying of particle-reinforced metal matrix composite coatings (ceramic and metal particles mixture) on metal substrates, ceramic particles may either get embedded in the substrate/deposited coating or may rebound from the substrate surface. In this study, the dependence of the ceramic rebounding phenomenon on the spray angle and its effect on substrate erosion have been analyzed using finite-element analysis. From the numerical simulations, it was found that the ceramic particle density and substrate material strength played the major roles in determining the embedding and ceramic retention behavior. Substrate material erosion also influenced the ceramic retention, and the material loss increased as the impact angles decreased from normal. In general, the results concluded that decreasing the impact angle promoted the retention possibility of ceramics in the substrate. This study provides new theoretical insights into the effect of spray angles on the ceramic retention and suggests a new route toward optimizing the spraying process to increase the ceramic retention in composite coatings cold spray.
A Comparison of Shadowgraphy and X-ray Computed Tomography in Liquid Spray Analysis
2014-11-14
atomizers and downstream of the nozzle exit gives insight into optimizing atomizers, particularly for combustion applications. The performance of gas ...regions near the spray nozzle [9, 10]. Because light refraction by liquid sheets is significant, these areas all cast a full shadow on the camera...hollow-cone pressure swirl design. Within this nozzle design, liquid swirls around an air-cored vortex. Upon exiting, the fluid expands due to its
Pak, S I; Chang, K S
2006-12-01
A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements.
Cylinder-averaged histories of nitrogen oxide in a DI diesel with simulated turbocharging
NASA Astrophysics Data System (ADS)
Donahue, Ronald J.; Borman, Gary L.; Bower, Glenn R.
1994-10-01
An experimental study was conducted using the dumping technique (total cylinder sampling) to produce cylinder mass-averaged nitric oxide histories. Data were taken using a four stroke diesel research engine employing a quiescent chamber, high pressure direct injection fuel system, and simulated turbocharging. Two fuels were used to determine fuel cetane number effects. Two loads were run, one at an equivalence ratio of 0.5 and the other at a ratio of 0.3. The engine speed was held constant at 1500 rpm. Under the turbocharged and retarded timing conditions of this study, nitric oxide was produced up to the point of about 85% mass burned. Two different models were used to simulate the engine mn conditions: the phenomenological Hiroyasu spray-combustion model, and the three dimensional, U.W.-ERO modified KIVA-2 computational fluid dynamic code. Both of the models predicted the correct nitric oxide trend. Although the modified KIVA-2 combustion model using Zeldovich kinetics correctly predicted the shapes of the nitric oxide histories, it did not predict the exhaust concentrations without arbitrary adjustment based on experimental values.
2001-01-24
Dr. Forman Williams of the University of California, San Diego. He is principal investigator for Droplet Combustion Experiment (DCE/DCE-2) and High Pressure Combustion of Binary Fuel Sprays experiment.
Technical product bulletin: this surface washing agent used in oil spill cleanups can be applied by spray, brush, mop, or standard pressure washing equipment. Agitation during application assists efficiency.
NASA Astrophysics Data System (ADS)
Ghose, Prakash; Patra, Jitendra; Datta, Amitava; Mukhopadhyay, Achintya
2016-05-01
Combustion of kerosene fuel spray has been numerically simulated in a laboratory scale combustor geometry to predict soot and the effects of thermal radiation at different swirl levels of primary air flow. The two-phase motion in the combustor is simulated using an Eulerian-Lagragian formulation considering the stochastic separated flow model. The Favre-averaged governing equations are solved for the gas phase with the turbulent quantities simulated by realisable k-ɛ model. The injection of the fuel is considered through a pressure swirl atomiser and the combustion is simulated by a laminar flamelet model with detailed kinetics of kerosene combustion. Soot formation in the flame is predicted using an empirical model with the model parameters adjusted for kerosene fuel. Contributions of gas phase and soot towards thermal radiation have been considered to predict the incident heat flux on the combustor wall and fuel injector. Swirl in the primary flow significantly influences the flow and flame structures in the combustor. The stronger recirculation at high swirl draws more air into the flame region, reduces the flame length and peak flame temperature and also brings the soot laden zone closer to the inlet plane. As a result, the radiative heat flux on the peripheral wall decreases at high swirl and also shifts closer to the inlet plane. However, increased swirl increases the combustor wall temperature due to radial spreading of the flame. The high incident radiative heat flux and the high surface temperature make the fuel injector a critical item in the combustor. The injector peak temperature increases with the increase in swirl flow mainly because the flame is located closer to the inlet plane. On the other hand, a more uniform temperature distribution in the exhaust gas can be attained at the combustor exit at high swirl condition.
Design and characterization of a cough simulator.
Zhang, Bo; Zhu, Chao; Ji, Zhiming; Lin, Chao-Hsin
2017-02-23
Expiratory droplets from human coughing have always been considered as potential carriers of pathogens, responsible for respiratory infectious disease transmission. To study the transmission of disease by human coughing, a transient repeatable cough simulator has been designed and built. Cough droplets are generated by different mechanisms, such as the breaking of mucus, condensation and high-speed atomization from different depths of the respiratory tract. These mechanisms in coughing produce droplets of different sizes, represented by a bimodal distribution of 'fine' and 'coarse' droplets. A cough simulator is hence designed to generate transient sprays with such bimodal characteristics. It consists of a pressurized gas tank, a nebulizer and an ejector, connected in series, which are controlled by computerized solenoid valves. The bimodal droplet size distribution is characterized for the coarse droplets and fine droplets, by fibrous collection and laser diffraction, respectively. The measured size distributions of coarse and fine droplets are reasonably represented by the Rosin-Rammler and log-normal distributions in probability density function, which leads to a bimodal distribution. To assess the hydrodynamic consequences of coughing including droplet vaporization and polydispersion, a Lagrangian model of droplet trajectories is established, with its ambient flow field predetermined from a computational fluid dynamics simulation.
21 CFR 501.17 - Animal food labeling warning statements.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Animal food labeling warning statements. 501.17... food labeling warning statements. (a) Self-pressurized containers. (1) The label of a food packaged in... the following warning: Warning Avoid spraying in eyes. Contents under pressure. Do not puncture or...
Zero Gravity Cryogenic Vent System Concepts for Upper Stages
NASA Astrophysics Data System (ADS)
Ravex, Alain; Flachbart, Robin; Holt, Barney
The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. TVS performance testing demonstrated that the spray bar was effective in providing tank pressure control within a 6.89 kPa (1psi) band for fill levels of 90%, 50%, and 25%. Complete destratification of the liquid and ullage was achieved at these fill levels. The axial jet was effective in providing tank pressure control within the same pressure control band at the 90% fill level. However, at the 50% level, the system reached a point at which it was unable to extract enough energy to keep up with the heat leak into the tank. Due to a hardware problem, the recirculation pump operated well below the axial jet design flow rate. Therefore, it is likely that the performance of the axial jet would have improved had the pump operated at the proper flow rate. A CFD model is being used to determine if the desired axial jet performance would be achieved if a higher pump flow rate were available. Testing conducted thus far has demonstrated that both TVS concepts can be effective in destratifying a propellant tank, rejecting stored heat energy, and thus, controlling tank pressure.
EFFECTS OF ACID RAIN ON APPLE TREE PRODUCTIVITY AND FRUIT QUALITY
Mature 'McIntosh', 'Empire', and 'Golden Delicious' apple trees (Malus domestica) were sprayed with simulated acid rain solutions in the pH range of 2.5 to 5.5 at full bloom in 1980 and 1981. In 1981, weekly sprays were applied at pH 2.75 and pH 3.25. Necrotic lesions developed o...
Statistical representation of a spray as a point process
NASA Astrophysics Data System (ADS)
Subramaniam, S.
2000-10-01
The statistical representation of a spray as a finite point process is investigated. One objective is to develop a better understanding of how single-point statistical information contained in descriptions such as the droplet distribution function (ddf), relates to the probability density functions (pdfs) associated with the droplets themselves. Single-point statistical information contained in the droplet distribution function (ddf) is shown to be related to a sequence of single surrogate-droplet pdfs, which are in general different from the physical single-droplet pdfs. It is shown that the ddf contains less information than the fundamental single-point statistical representation of the spray, which is also described. The analysis shows which events associated with the ensemble of spray droplets can be characterized by the ddf, and which cannot. The implications of these findings for the ddf approach to spray modeling are discussed. The results of this study also have important consequences for the initialization and evolution of direct numerical simulations (DNS) of multiphase flows, which are usually initialized on the basis of single-point statistics such as the droplet number density in physical space. If multiphase DNS are initialized in this way, this implies that even the initial representation contains certain implicit assumptions concerning the complete ensemble of realizations, which are invalid for general multiphase flows. Also the evolution of a DNS initialized in this manner is shown to be valid only if an as yet unproven commutation hypothesis holds true. Therefore, it is questionable to what extent DNS that are initialized in this manner constitute a direct simulation of the physical droplets. Implications of these findings for large eddy simulations of multiphase flows are also discussed.
Numerical investigations on the rebound phenomena and the bonding mechanisms in cold spray processes
NASA Astrophysics Data System (ADS)
Viscusi, A.
2018-05-01
Cold spray technology is a relatively new additive process allowing to create high quality metallic coatings, on both metallic and non-metallic substrates, without extensive heating of the powders sprayed. Upon impact with a target surface, conversion of kinetic energy to plastic deformation occurs, the solid particles deform and bond together. The actual bonding mechanism for cold spray particles is still not well understood, a high number of works has been carried out during the past two decades, several theories have been proposed to explain the adhesion/rebound mechanisms making the system ineffective for industrial applications. Therefore, the aim of this research activity is to better explain the complex adhesion/rebound phenomena into cold spray impact processes through numerical simulations; for this purpose, on the base of simplified hypothesis and results found in literature, an original 3D Finite Element Method (FEM) model of an aluminium particle impacting on an aluminium substrate was proposed. A cohesive behaviour algorithm was implemented in the particle-substrate contact regions aiming to simulate the bonding between the impacting particle and the substrate under specific working conditions. A rebound coefficient was also defined representing the particle residual energy. Different simulations were performed using a range of impact velocities and varying the interfacial cohesive strength. It was shown that at low impact velocities the rebound phenomenon is governed by the elastic energy stored in the system, meanwhile at high impact velocities, the rebound phenomenon is mainly due to the strain rate effects making the system mechanically stronger; therefore, a specific range of bonding velocities depending on substrate-particle contact area were found.
Pei, Yuanjiang; Som, Sibendu; Pomraning, Eric; ...
2015-10-14
An n-dodecane spray flame (Spray A from Engine Combustion Network) was simulated using a δ function combustion model along with a dynamic structure large eddy simulation (LES) model to evaluate its performance at engine-relevant conditions and to understand the transient behavior of this turbulent flame. The liquid spray was treated with a traditional Lagrangian method and the gas-phase reaction was modeled using a δ function combustion model. A 103-species skeletal mechanism was used for the n-dodecane chemical kinetic model. Significantly different flame structures and ignition processes are observed for the LES compared to those of Reynolds-averaged Navier—Stokes (RANS) predictions. Themore » LES data suggests that the first ignition initiates in a lean mixture and propagates to a rich mixture, and the main ignition happens in the rich mixture, preferably less than 0.14 in mixture fraction space. LES was observed to have multiple ignition spots in the mixing layer simultaneously while the main ignition initiates in a clearly asymmetric fashion. The temporal flame development also indicates the flame stabilization mechanism is auto-ignition controlled. Soot predictions by LES present much better agreement with experiments compared to RANS, both qualitatively and quantitatively. Multiple realizations for LES were performed to understand the realization to realization variation and to establish best practices for ensemble-averaging diesel spray flames. The relevance index analysis suggests that an average of 5 and 6 realizations can reach 99% of similarity to the target average of 16 realizations on the mixture fraction and temperature fields, respectively. In conclusion, more realizations are necessary for the hydroxide (OH) and soot mass fractions due to their high fluctuations.« less
Fracture Mechanics Modelling of an In Situ Concrete Spalling Experiment
NASA Astrophysics Data System (ADS)
Siren, Topias; Uotinen, Lauri; Rinne, Mikael; Shen, Baotang
2015-07-01
During the operation of nuclear waste disposal facilities, some sprayed concrete reinforced underground spaces will be in use for approximately 100 years. During this time of use, the local stress regime will be altered by the radioactive decay heat. The change in the stress state will impose high demands on sprayed concrete, as it may suffer stress damage or lose its adhesion to the rock surface. It is also unclear what kind of support pressure the sprayed concrete layer will apply to the rock. To investigate this, an in situ experiment is planned in the ONKALO underground rock characterization facility at Olkiluoto, Finland. A vertical experimental hole will be concreted, and the surrounding rock mass will be instrumented with heat sources, in order to simulate an increase in the surrounding stress field. The experiment is instrumented with an acoustic emission system for the observation of rock failure and temperature, as well as strain gauges to observe the thermo-mechanical interactive behaviour of the concrete and rock at several levels, in both rock and concrete. A thermo-mechanical fracture mechanics study is necessary for the prediction of the damage before the experiment, in order to plan the experiment and instrumentation, and for generating a proper prediction/outcome study due to the special nature of the in situ experiment. The prediction of acoustic emission patterns is made by Fracod 2D and the model later compared to the actual observed acoustic emissions. The fracture mechanics model will be compared to a COMSOL Multiphysics 3D model to study the geometrical effects along the hole axis.
Kuck, Luiza Siede; Wesolowski, Júlia Lerina; Noreña, Caciano Pelayo Zapata
2017-09-01
The stability of microparticles of Bordo grape skin aqueous extract, produced by spray-drying and freeze-drying using polydextrose (5%) and partially hydrolyzed guar gum (5%), was evaluated under accelerated conditions (75 and 90% relative humidity, at 35, 45, and 55°C for 35days) and simulated gastrointestinal digestion. The temperature had a significant effect on the reduction of phenolics content, with retentions varying from 82.5 to 93.5%. The retention of total monomer anthocyanins were in the range of 3.9-42.3%. The antioxidant activity had a final retention of 38.5-59.5%. In the simulated gastrointestinal digestion, a maximum release was observed for the phenolic compounds in the intestinal phase (90.6% for the spray-dried powder and 94.9% for the freeze-dried powder), as well as the antioxidant activity (69.4% for the spray-dried powder and 67.8% for the freeze-dried powder). However, a reduction of monomeric anthocyanins was observed in the intestinal phase. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zero Gravity Cryogenic Vent System Concepts for Upper Stages
NASA Technical Reports Server (NTRS)
Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.
1999-01-01
The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy is required. a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point. the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating, boil-off losses.
Zero Gravity Cryogenic Vent System Concepts for Upper Stages
NASA Technical Reports Server (NTRS)
Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.
2001-01-01
The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space, and would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray-bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray-bar system consists of a recirculation pump, a parallel flow concentric tube heat exchanger, and a spray-bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses.
NASA Technical Reports Server (NTRS)
Solomon, A. S. P.; Chen, L. D.; Faeth, G. M.
1982-01-01
The flow, atomization and spreading of flashing injector flowing liquids containing dissolved gases (jet/air) as well as superheated liquids (Freon II) were considered. The use of a two stage expansion process separated by an expansion chamber, ws found to be beneficial for flashing injection particularly for dissolved gas systems. Both locally homogeneous and separated flow models provided good predictions of injector flow properties. Conventional correlations for drop sizes from pressure atomized and airblast injectors were successfully modified, using the separated flow model to prescribe injector exit conditions, to correlate drop size measurements. Additional experimental results are provided for spray angle and combustion properties of sprays from flashing injectors.
The study on injection parameters of selected alternative fuels used in diesel engines
NASA Astrophysics Data System (ADS)
Balawender, K.; Kuszewski, H.; Lejda, K.; Lew, K.
2016-09-01
The paper presents selected results concerning fuel charging and spraying process for selected alternative fuels, including regular diesel fuel, rape oil, FAME, blends of these fuels in various proportions, and blends of rape oil with diesel fuel. Examination of the process included the fuel charge measurements. To this end, a set-up for examination of Common Rail-type injection systems was used constructed on the basis of Bosch EPS-815 test bench, from which the high-pressure pump drive system was adopted. For tests concerning the spraying process, a visualisation chamber with constant volume was utilised. The fuel spray development was registered with the use of VisioScope (AVL).
Liquid Oxygen Thermodynamic Vent System Testing with Helium Pressurization
NASA Technical Reports Server (NTRS)
VanDresar, Neil T.
2014-01-01
This report presents the results of several thermodynamic vent system (TVS) tests with liquid oxygen plus a test with liquid nitrogen. In all tests, the liquid was heated above its normal boiling point to 111 K for oxygen and 100 K for nitrogen. The elevated temperature was representative of tank conditions for a candidate lunar lander ascent stage. An initial test series was conducted with saturated oxygen liquid and vapor at 0.6 MPa. The initial series was followed by tests where the test tank was pressurized with gaseous helium to 1.4 to 1.6 MPa. For these tests, the helium mole fraction in the ullage was quite high, about 0.57 to 0.62. TVS behavior is different when helium is present than when helium is absent. The tank pressure becomes the sum of the vapor pressure and the partial pressure of helium. Therefore, tank pressure depends not only on temperature, as is the case for a pure liquid-vapor system, but also on helium density (i.e., the mass of helium divided by the ullage volume). Thus, properly controlling TVS operation is more challenging with helium pressurization than without helium pressurization. When helium was present, the liquid temperature would rise with each successive TVS cycle if tank pressure was kept within a constant control band. Alternatively, if the liquid temperature was maintained within a constant TVS control band, the tank pressure would drop with each TVS cycle. The final test series, which was conducted with liquid nitrogen pressurized with helium, demonstrated simultaneous pressure and temperature control during TVS operation. The simultaneous control was achieved by systematic injection of additional helium during each TVS cycle. Adding helium maintained the helium partial pressure as the liquid volume decreased because of TVS operation. The TVS demonstrations with liquid oxygen pressurized with helium were conducted with three different fluid-mixer configurations-a submerged axial jet mixer, a pair of spray hoops in the tank ullage, and combined use of the axial jet and spray hoops. A submerged liquid pump and compact heat exchanger located inside the test tank were used with all the mixer configurations. The initial series without helium and the final series with liquid nitrogen both used the axial jet mixer. The axial jet configuration successfully demonstrated the ability to control tank pressure; but in the normal-gravity environment, the temperature in the upper tank region (ullage and unwetted wall) was not controlled. The spray hoops and axial jet combination also successfully demonstrated pressure control as well as temperature control of the entire tank and contents. The spray-hoops-only configuration was not expected to be a reliable means of tank mixing because there was no direct means to produce liquid circulation. However, surprisingly good results also were obtained with the sprayhoops- only configuration (i.e., performance metrics such as cycle-averaged vent flowrate were similar to those obtained with the other configurations). A simple thermodynamic model was developed that correctly predicted the TVS behavior (temperature rise or pressure drop per TVS cycle) when helium was present in the ullage. The model predictions were correlated over a range of input parameters. The correlations show that temperature rise or pressure drop per cycle was proportional to both helium mole fraction and tank heat input. The response also depended on the tank fill fraction: the temperature rise or pressure drop (per TVS cycle) increased as the ullage volume decreased.
Two-way coupled SPH and particle level set fluid simulation.
Losasso, Frank; Talton, Jerry; Kwatra, Nipun; Fedkiw, Ronald
2008-01-01
Grid-based methods have difficulty resolving features on or below the scale of the underlying grid. Although adaptive methods (e.g. RLE, octrees) can alleviate this to some degree, separate techniques are still required for simulating small-scale phenomena such as spray and foam, especially since these more diffuse materials typically behave quite differently than their denser counterparts. In this paper, we propose a two-way coupled simulation framework that uses the particle level set method to efficiently model dense liquid volumes and a smoothed particle hydrodynamics (SPH) method to simulate diffuse regions such as sprays. Our novel SPH method allows us to simulate both dense and diffuse water volumes, fully incorporates the particles that are automatically generated by the particle level set method in under-resolved regions, and allows for two way mixing between dense SPH volumes and grid-based liquid representations.
An equivalent dissipation rate model for capturing history effects in non-premixed flames
Kundu, Prithwish; Echekki, Tarek; Pei, Yuanjiang; ...
2016-11-11
The effects of strain rate history on turbulent flames have been studied in the. past decades with 1D counter flow diffusion flame (CFDF) configurations subjected to oscillating strain rates. In this work, these unsteady effects are studied for complex hydrocarbon fuel surrogates at engine relevant conditions with unsteady strain rates experienced by flamelets in a typical spray flame. Tabulated combustion models are based on a steady scalar dissipation rate (SDR) assumption and hence cannot capture these unsteady strain effects; even though they can capture the unsteady chemistry. In this work, 1D CFDF with varying strain rates are simulated using twomore » different modeling approaches: steady SDR assumption and unsteady flamelet model. Comparative studies show that the history effects due to unsteady SDR are directly proportional to the temporal gradient of the SDR. A new equivalent SDR model based on the history of a flamelet is proposed. An averaging procedure is constructed such that the most recent histories are given higher weights. This equivalent SDR is then used with the steady SDR assumption in 1D flamelets. Results show a good agreement between tabulated flamelet solution and the unsteady flamelet results. This equivalent SDR concept is further implemented and compared against 3D spray flames (Engine Combustion Network Spray A). Tabulated models based on steady SDR assumption under-predict autoignition and flame lift-off when compared with an unsteady Representative Interactive Flamelet (RIF) model. However, equivalent SDR model coupled with the tabulated model predicted autoignition and flame lift-off very close to those reported by the RIF model. This model is further validated for a range of injection pressures for Spray A flames. As a result, the new modeling framework now enables tabulated models with significantly lower computational cost to account for unsteady history effects.« less
An equivalent dissipation rate model for capturing history effects in non-premixed flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Prithwish; Echekki, Tarek; Pei, Yuanjiang
The effects of strain rate history on turbulent flames have been studied in the. past decades with 1D counter flow diffusion flame (CFDF) configurations subjected to oscillating strain rates. In this work, these unsteady effects are studied for complex hydrocarbon fuel surrogates at engine relevant conditions with unsteady strain rates experienced by flamelets in a typical spray flame. Tabulated combustion models are based on a steady scalar dissipation rate (SDR) assumption and hence cannot capture these unsteady strain effects; even though they can capture the unsteady chemistry. In this work, 1D CFDF with varying strain rates are simulated using twomore » different modeling approaches: steady SDR assumption and unsteady flamelet model. Comparative studies show that the history effects due to unsteady SDR are directly proportional to the temporal gradient of the SDR. A new equivalent SDR model based on the history of a flamelet is proposed. An averaging procedure is constructed such that the most recent histories are given higher weights. This equivalent SDR is then used with the steady SDR assumption in 1D flamelets. Results show a good agreement between tabulated flamelet solution and the unsteady flamelet results. This equivalent SDR concept is further implemented and compared against 3D spray flames (Engine Combustion Network Spray A). Tabulated models based on steady SDR assumption under-predict autoignition and flame lift-off when compared with an unsteady Representative Interactive Flamelet (RIF) model. However, equivalent SDR model coupled with the tabulated model predicted autoignition and flame lift-off very close to those reported by the RIF model. This model is further validated for a range of injection pressures for Spray A flames. As a result, the new modeling framework now enables tabulated models with significantly lower computational cost to account for unsteady history effects.« less
a Numerical Model for Flue Gas Desulfurization System.
NASA Astrophysics Data System (ADS)
Kim, Sung Joon
The purpose of this work is to develop a reliable numerical model for spray dryer desulfurization systems. The shape of the spray dryer requires that a body fitted orthogonal coordinate system be used for the numerical model. The governing equations are developed in the general orthogonal coordinates and discretized to yield a system of algebraic equations. A turbulence model is also included in the numerical program. A new second order numerical scheme is developed and included in the numerical model. The trajectory approach is used to simulate the flow of the dispersed phase. Two-way coupling phenomena is modeled by this scheme. The absorption of sulfur dioxide into lime slurry droplets is simulated by a model based on gas -phase mass transfer. The program is applied to a typical spray dryer desulfurization system. The results show the capability of the program to predict the sensitivity of system performance to changes in operational parameters.
Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kastengren, A.; Ilavsky, J.; Viera, Juan Pablo
Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzlemore » until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. As a result, liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.« less
Rapid Evaporation of Binary Mixture Injections
NASA Astrophysics Data System (ADS)
McCahan, S.; Kessler, C.
1998-11-01
When a fuel under pressure is heated above its normal boiling point and expanded through a nozzle into atmospheric conditions, rapid evaporation can occur. The resulting sprays typically exhibit increased atomization and shorter liquid penetration lengths. When heavy fuels with high specific heats are used, complete evaporation is theoretically possible. This is a continuation of work done by Sloss and McCahan (APS/DFD meeting 1996), in which dodecane, fuel oil, kerosene, and diesel oil were studied, and McCahan and Kessler (APS/DFD meeting 1997), in which preliminary results were presented on decane and tetradecane. At a pressure of 10 bar, the working fluid (decane/tetradecane mixture) is preheated to temperatures ranging from room temperature to the decane saturation temperature and then expanded through a simple converging nozzle into a chamber at 1 bar. From the photographic and mass flow rate data, the effect of degree of superheat on the spray cone angle and mass flow rate is observed. Results show that the addition of a heavier hydrocarbon has the expected damping effects on the spray characteristics.
Measurements of droplet size in shear-driven atomization using ultra-small angle x-ray scattering
Kastengren, A.; Ilavsky, J.; Viera, Juan Pablo; ...
2017-03-16
Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzlemore » until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. As a result, liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.« less
Computed Intranasal Spray Penetration: Comparisons Before and After Nasal Surgery
Frank, Dennis O.; Kimbell, Julia S.; Cannon, Daniel; Rhee, John S.
2012-01-01
Background Quantitative methods for comparing intranasal drug delivery efficiencies pre- and postoperatively have not been fully utilized. The objective of this study is to use computational fluid dynamics techniques to evaluate aqueous nasal spray penetration efficiencies before and after surgical correction of intranasal anatomic deformities. Methods Ten three-dimensional models of the nasal cavities were created from pre- and postoperative computed tomography scans in five subjects. Spray simulations were conducted using a particle size distribution ranging from 10–110μm, a spray speed of 3m/s, plume angle of 68°, and with steady state, resting inspiratory airflow present. Two different nozzle positions were compared. Statistical analysis was conducted using Student T-test for matched pairs. Results On the obstructed side, posterior particle deposition after surgery increased by 118% and was statistically significant (p-value=0.036), while anterior particle deposition decreased by 13% and was also statistically significant (p-value=0.020). The fraction of particles that by-passed the airways either pre- or post-operatively was less than 5%. Posterior particle deposition differences between obstructed and contralateral sides of the airways were 113% and 30% for pre- and post-surgery, respectively. Results showed that nozzle positions can influence spray delivery. Conclusions Simulations predicted that surgical correction of nasal anatomic deformities can improve spray penetration to areas where medications can have greater effect. Particle deposition patterns between both sides of the airways are more evenly distributed after surgery. These findings suggest that correcting anatomic deformities may improve intranasal medication delivery. For enhanced particle penetration, patients with nasal deformities may explore different nozzle positions. PMID:22927179
Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow
NASA Astrophysics Data System (ADS)
Li, Peibo; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo
2017-05-01
The gas-liquid interaction process of a liquid jet in supersonic crossflow with a Mach number of 1.94 was investigated numerically using the Eulerian-Lagrangian method. The KH (Kelvin-Helmholtz) breakup model was used to calculate the droplet stripping process, and the secondary breakup process was simulated by the competition of RT (Rayleigh-Taylor) breakup model and TAB (Taylor Analogy Breakup) model. A correction of drag coefficient was proposed by considering the compressible effects and the deformation of droplets. The location and velocity models of child droplets after breakup were improved according to droplet deformation. It was found that the calculated spray features, including spray penetration, droplet size distribution and droplet velocity profile agree reasonably well with the experiment. Numerical results revealed that the streamlines of air flow could intersect with the trajectory of droplets and are deflected towards the near-wall region after they enter into spray zone around the central plane. The analysis of gas-liquid relative velocity and droplet deformation suggested that the breakup of droplets mainly occurs around the front region of the spray where gathered a large number of droplets with different sizes. The liquid trailing phenomenon of jet spray which has been discovered by the previous experiment was successfully captured, and a reasonable explanation was given based on the analysis of gas-liquid interaction process.
Time-resolved measurements of supersonic fuel sprays using synchrotron X-rays.
Powell, C F; Yue, Y; Poola, R; Wang, J
2000-11-01
A time-resolved radiographic technique has been developed for probing the fuel distribution close to the nozzle of a high-pressure single-hole diesel injector. The measurement was made using X-ray absorption of monochromatic synchrotron-generated radiation, allowing quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 micros. These quantitative measurements constitute the most detailed near-nozzle study of a fuel spray to date.
1999-10-01
Electrostatic guns provide opportunities for exterior application of topcoats such as urethanes, acrylics , alkyds and epoxies. Most shipbuilding...A hybrid of airless spray and conventional air-atomized spray, this kind of gun uses fluid pressures higher than those used in conventional air...voltage) by simply flipping a switch. All essential controls are located right at the back of the gun. Other electrostatic systems require constant
NASA Astrophysics Data System (ADS)
Huang, Zhi-wei; He, Guo-qiang; Qin, Fei; Cao, Dong-gang; Wei, Xiang-geng; Shi, Lei
2016-10-01
This study reports combustion characteristics of a rocket-based combined-cycle engine combustor operating at ramjet mode numerically. Compressible large eddy simulation with liquid kerosene sprayed and vaporized is used to study the intrinsic unsteadiness of combustion in such a propulsion system. Results for the pressure oscillation amplitude and frequency in the combustor as well as the wall pressure distribution along the flow-path, are validated using experimental data, and they show acceptable agreement. Coupled with reduced chemical kinetics of kerosene, results are compared with the simultaneously obtained Reynolds-Averaged Navier-Stokes results, and show significant differences. A flow field analysis is also carried out for further study of the turbulent flame structures. Mixture fraction is used to determine the most probable flame location in the combustor at stoichiometric condition. Spatial distributions of the Takeno flame index, scalar dissipation rate, and heat release rate reveal that different combustion modes, such as premixed and non-premixed modes, coexisted at different sections of the combustor. The RBCC combustor is divided into different regions characterized by their non-uniform features. Flame stabilization mechanism, i.e., flame propagation or fuel auto-ignition, and their relative importance, is also determined at different regions in the combustor.