Sample records for simulated primitive earth

  1. Hydrazines and carbohydrazides produced from oxidized carbon in earth's primitive environment

    NASA Technical Reports Server (NTRS)

    Folsome, C. E.; Brittain, A.; Smith, A.; Chang, S.

    1981-01-01

    Whether abiological organic compounds can be formed from the interactions of energy sources with nitrogen, oxidized carbon and water is held to be of importance in geochemical models of the primordial earth atmosphere. It is reported that experiments using quenched spark discharges through molecular nitrogen on aqueous suspensions of CaCO3 and other reactants to simulate the hydrosphere/atmosphere interface yield hydrazine and carbohydrazine in significant but low yields. Such reactions in primitive aquatic environments may have supplied a pathway for chemical evolution and the origin of life, on a primitive earth in which fully oxidized states of carbon were available for the primary synthesis of organic matter.

  2. Refractive indices of Early Earth organic aerosol analogs

    NASA Astrophysics Data System (ADS)

    Gavilan, L.; Carrasco, N.; Fleury, B.; Vettier, L.

    2017-09-01

    Organic hazes in the early Earth atmosphere are hypothesized to provide additional shielding to solar radiation. We simulate the conditions of this primitive atmosphere by adding CO2 to a N2:CH4 gas mixture feeding a plasma. In this plasma, solid organic films were produced simulating early aerosols. We performed ellipsometry on these films from the visible to the near-ultraviolet range. Such measurements reveal how organic aerosols in the early Earth atmosphere preferentially absorb photons of shorter wavelengths than typical Titan tholins, suggesting a coolant role in the early Earth.

  3. Non-enzymatic synthesis of the coenzymes, uridine diphosphate glucose and cytidine diphosphate choline, and other phosphorylated metabolic intermediates

    NASA Technical Reports Server (NTRS)

    Mar, A.; Dworkin, J.; Oro, J.

    1987-01-01

    Using urea and cyanamide, the two condensing agents considered to have been present on the primitive earth, uridine diphosphate glucose (UDPG), cytidine diphosphate choline (CDP-choline), glucose-1-phosphate (G1P), and glucose-6-phosphate (G6P) were synthesized under simulated prebiotic conditions. The reaction products were separated and identified using paper chromatography, thin layer chromatography, enzymatic analyses, and ion-pair reverse-phase high performance liquid chromatography. The possibility of nonenzymatic synthesis of metabolic intermediates on the primitive earth from simple precursors was thus demonstrated.

  4. Formation of Complex Amino Acid Precursors in Simulated Primitive Atmosphere and Their Alteration under Simulated Submarine Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kurihara, Hironari; Hirako, Tomoaki; Obayashi, Yumiko; Kaneko, Takeo; Takano, Yoshinori; Yoshimura, Yoshitaka

    Since late 1970's a great number of submarine hydrothermal systems (SHSs) has been dis-covered, and they are considered possible sites of chemical evolution and generation of life on the Earth since their discovery in late 1970s. A number of experiments simulating the con-ditions of SHSs were conducted, and abiotic production and polymerization of amino acids were reported. Free amino acids were frequently used as starting materials to examine possible organic reactions in the simulation experiments. In our early studies, not free amino acids but complex amino acids precursors with large molecular weights were formed abiotically from simulated primitive Earth atmosphere (a mixture of CO, N2 and H2 O) (Takano et al., 2004). Such complex organics (hereafter referred as to CNWs) should have been delivered to SHSs in Primitive Ocean, where they were subjected to further alteration. We examined possible alteration of the complex organics in high-temperature high-pressure environments by the su-percritical water flow reactor (SCWFR) (Islam et al.. 2003) and an autoclave. CNWs were quite hydrophilic compounds whose molecular weights were ca. 3000. After heating 573 K for 2 min in the SCWFR, aggregates of organics were formed, which were separated from aque-ous solution with a Nucleopore filter (pore size: 200 nm). We propose the following scenario of chemical evolution: (1) Complex organics including amino acid precursors were formed in primitive atmosphere and/or extraterrestrial environments, (ii) they were delivered to primor-dial SHSs, (iii) hydrothermal alteration occurred in SHSs to give organic aggregates, (iv) quite primitive molecular systems with subtle biological functions were generated in the competition among such aggregates. References: Islam, Md. N., Kaneko, T., and Kobayashi, K (2003). Reactions of Amino Acids with a Newly ConstructedSupercritical Water Flow Reactor Simulating Submarine Hydrothermal Systems. Bull. Chem. Soc. Jpn., 76, 1171. Takano, Y., Marumo, K., Yabashi, S., Kaneko, T., and Kobayashi, K., (2004). Curie-Point Pyrolysis of Complex Organics Simulated by Cosmic Rays Irradiation of Simple Inorganic Gas Mixture. Appl Phys. Lett., 85, 1633.

  5. Current status of the prebiotic synthesis of small molecules

    NASA Technical Reports Server (NTRS)

    Miller, Stanley L.

    1986-01-01

    Experiments designed to simulate conditions on the primitive earth and to demonstrate how the organic compounds that made up the first living organisms were synthesized are described. Simulated atmospheres with CH4, N2, NH3, and H2O were found to be most effective for synthesis of small prebiotic molecules, although atmospheres with H2, CO, N2, and H2O, and with H2, CO2, N2, and H2O also give good yields of organic compounds provided the H2/CO and H2/CO2 ratios are above 1 and 2, respectively. The spark discharge (which is a good source of HCN) and UV light are also important. Reasonable prebiotic syntheses were worked out for the amino acids that occur in proteins (with the exception of lysine, arginine, and histidine), and for purines, pyrimidines, sugars, and nicotinic acid. Many of the molecules that have been produced in these simulated primitive-earth experiments are found in carbonaceous chondrites.

  6. Hydrothermal Microflow Technology as a Research Tool for Origin-of-Life Studies in Extreme Earth Environments

    PubMed Central

    Kawamura, Kunio

    2017-01-01

    Although studies about the origin of life are a frontier in science and a number of effective approaches have been developed, drawbacks still exist. Examples include: (1) simulation of chemical evolution experiments (which were demonstrated for the first time by Stanley Miller); (2) approaches tracing back the most primitive life-like systems (on the basis of investigations of present organisms); and (3) constructive approaches for making life-like systems (on the basis of molecular biology), such as in vitro construction of the RNA world. Naturally, simulation experiments of chemical evolution under plausible ancient Earth environments have been recognized as a potentially fruitful approach. Nevertheless, simulation experiments seem not to be sufficient for identifying the scenario from molecules to life. This is because primitive Earth environments are still not clearly defined and a number of possibilities should be taken into account. In addition, such environments frequently comprise extreme conditions when compared to the environments of present organisms. Therefore, we need to realize the importance of accurate and convenient experimental approaches that use practical research tools, which are resistant to high temperature and pressure, to facilitate chemical evolution studies. This review summarizes improvements made in such experimental approaches over the last two decades, focusing primarily on our hydrothermal microflow reactor technology. Microflow reactor systems are a powerful tool for performing simulation experiments in diverse simulated hydrothermal Earth conditions in order to measure the kinetics of formation and degradation and the interactions of biopolymers. PMID:28974048

  7. Construction of protocellular structures under simulated primitive earth conditions

    NASA Astrophysics Data System (ADS)

    Yanagawa, Hiroshi; Ogawa, Yoko; Kojima, Kiyotsugu; Ito, Masahiko

    1988-09-01

    We have developed experimental approaches for the construction of protocellular structures under simulated primitive earth conditions and studied their formation and characteristics. Three types of envelopes; protein envelopes, lipid envelopes, and lipid-protein envelopes are considered as candidates for protocellular structures. Simple protein envelopes and lipid envelopes are presumed to have originated at an early stage of chemical evolution, interaction mutually and then evolved into more complex envelopes composed of both lipids and proteins. Three kinds of protein envelopes were constructedin situ from amino acids under simulated primitive earth conditions such as a fresh water tide pool, a warm sea, and a submarine hydrothermal vent. One protein envelope was formed from a mixture of amino acid amides at 80 °C using multiple hydration-dehydration cycles. Marigranules, protein envelope structures, were produced from mixtures of glycine and acidic, basic and aromatic amino acids at 105 °C in a modified sea medium enriched with essential transition elements. Thermostable microspheres were also formed from a mixture of glycine, alanine, valine, and aspartic acid at 250 °C and above. The microspheres did not form at lower temperatures and consist of silicates and peptide-like polymers containing imide bonds and amino acid residues enriched in valine. Amphiphilic proteins with molecular weights of 2000 were necessary for the formation of the protein envelopes. Stable lipid envelopes were formed from different dialkyl phospholipids and fatty acids. Large, stable, lipid-protein envelopes were formed from egg lecithin and the solubilized marigranules. Polycations such as polylysine and polyhistidine, or basic proteins such as lysozyme and cytochromec also stabilized lipid-protein envelopes.

  8. Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Geppert, Wolf D.; Carrasco, Nathalie; Holm, Nils G.; Mousis, Olivier; Palumbo, Maria Elisabetta; Waite, J. Hunter; Watanabe, Naoki; Ziurys, Lucy M.

    2017-08-01

    To examine how prebiotic chemical evolution took place on Earth prior to the emergence of life, laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these investigations. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were used to simulate possible reactions in the primitive atmosphere of Earth, producing amino acids and other organic compounds. Since Earth's early atmosphere is now considered to be less reducing, the contribution of extraterrestrial organics to chemical evolution has taken on an important role. Such organic molecules may have come from molecular clouds and regions of star formation that created protoplanetary disks, planets, asteroids, and comets. The interstellar origin of organics has been examined both experimentally and theoretically, including laboratory investigations that simulate interstellar molecular reactions. Endogenous and exogenous organics could also have been supplied to the primitive ocean, making submarine hydrothermal systems plausible sites of the generation of life. Experiments that simulate such hydrothermal systems where methane played an important role have consequently been conducted. Processes that occur in other Solar System bodies offer clues to the prebiotic chemistry of Earth. Titan and other icy bodies, where methane plays significant roles, are especially good targets. In the case of Titan, methane is both in the atmosphere and in liquidospheres that are composed of methane and other hydrocarbons, and these have been studied in simulation experiments. Here, we review the wide range of experimental work in which these various terrestrial and extraterrestrial environments have been modeled, and we examine the possible role of methane in chemical evolution.

  9. Water Delivery and Giant Impacts in the 'Grand Tack' Scenario

    NASA Technical Reports Server (NTRS)

    O'Brien, David P.; Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; Mandell, Avi M.

    2014-01-01

    A new model for terrestrial planet formation has explored accretion in a truncated protoplanetary disk, and found that such a configuration is able to reproduce the distribution of mass among the planets in the Solar System, especially the Earth/Mars mass ratio, which earlier simulations have generally not been able to match. Walsh et al. tested a possible mechanism to truncate the disk-a two-stage, inward-then-outward migration of Jupiter and Saturn, as found in numerous hydrodynamical simulations of giant planet formation. In addition to truncating the disk and producing a more realistic Earth/Mars mass ratio, the migration of the giant planets also populates the asteroid belt with two distinct populations of bodies-the inner belt is filled by bodies originating inside of 3 AU, and the outer belt is filled with bodies originating from between and beyond the giant planets (which are hereafter referred to as 'primitive' bodies). One implication of the truncation mechanism proposed in Walsh et al. is the scattering of primitive planetesimals onto planet-crossing orbits during the formation of the planets. We find here that the planets will accrete on order 1-2% of their total mass from these bodies. For an assumed value of 10% for the water mass fraction of the primitive planetesimals, this model delivers a total amount of water comparable to that estimated to be on the Earth today. The radial distribution of the planetary masses and the dynamical excitation of their orbits are a good match to the observed system. However, we find that a truncated disk leads to formation timescales more rapid than suggested by radiometric chronometers. In particular, the last giant impact is typically earlier than 20 Myr, and a substantial amount of mass is accreted after that event. This is at odds with the dating of the Moon-forming impact and the estimated amount of mass accreted by Earth following that event. However, 5 of the 27 planets larger than half an Earth mass formed in all simulations do experience large late impacts and subsequent accretion consistent with those constraints.

  10. Navigation Strategies for Primitive Solar System Body Rendezvous and Proximity Operations

    NASA Technical Reports Server (NTRS)

    Getzandanner, Kenneth M.

    2011-01-01

    A wealth of scientific knowledge regarding the composition and evolution of the solar system can be gained through reconnaissance missions to primitive solar system bodies. This paper presents analysis of a baseline navigation strategy designed to address the unique challenges of primitive body navigation. Linear covariance and Monte Carlo error analysis was performed on a baseline navigation strategy using simulated data from a· design reference mission (DRM). The objective of the DRM is to approach, rendezvous, and maintain a stable orbit about the near-Earth asteroid 4660 Nereus. The outlined navigation strategy and resulting analyses, however, are not necessarily limited to this specific target asteroid as they may he applicable to a diverse range of mission scenarios. The baseline navigation strategy included simulated data from Deep Space Network (DSN) radiometric tracking and optical image processing (OpNav). Results from the linear covariance and Monte Carlo analyses suggest the DRM navigation strategy is sufficient to approach and perform proximity operations in the vicinity of the target asteroid with meter-level accuracy.

  11. Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry.

    PubMed

    Kobayashi, Kensei; Geppert, Wolf D; Carrasco, Nathalie; Holm, Nils G; Mousis, Olivier; Palumbo, Maria Elisabetta; Waite, J Hunter; Watanabe, Naoki; Ziurys, Lucy M

    2017-08-01

    To examine how prebiotic chemical evolution took place on Earth prior to the emergence of life, laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these investigations. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were used to simulate possible reactions in the primitive atmosphere of Earth, producing amino acids and other organic compounds. Since Earth's early atmosphere is now considered to be less reducing, the contribution of extraterrestrial organics to chemical evolution has taken on an important role. Such organic molecules may have come from molecular clouds and regions of star formation that created protoplanetary disks, planets, asteroids, and comets. The interstellar origin of organics has been examined both experimentally and theoretically, including laboratory investigations that simulate interstellar molecular reactions. Endogenous and exogenous organics could also have been supplied to the primitive ocean, making submarine hydrothermal systems plausible sites of the generation of life. Experiments that simulate such hydrothermal systems where methane played an important role have consequently been conducted. Processes that occur in other Solar System bodies offer clues to the prebiotic chemistry of Earth. Titan and other icy bodies, where methane plays significant roles, are especially good targets. In the case of Titan, methane is both in the atmosphere and in liquidospheres that are composed of methane and other hydrocarbons, and these have been studied in simulation experiments. Here, we review the wide range of experimental work in which these various terrestrial and extraterrestrial environments have been modeled, and we examine the possible role of methane in chemical evolution. Key Words: Methane-Interstellar environments-Submarine hydrothermal systems-Titan-Origin of life. Astrobiology 17, 786-812.

  12. The thermochemical structure and evolution of Earth's mantle: constraints and numerical models.

    PubMed

    Tackley, Paul J; Xie, Shunxing

    2002-11-15

    Geochemical observations place several constraints on geophysical processes in the mantle, including a requirement to maintain several distinct reservoirs. Geophysical constraints limit plausible physical locations of these reservoirs to a thin basal layer, isolated deep 'piles' of material under large-scale mantle upwellings, high-viscosity blobs/plums or thin strips throughout the mantle, or some combination of these. A numerical model capable of simulating the thermochemical evolution of the mantle is introduced. Preliminary simulations are more differentiated than Earth but display some of the proposed thermochemical processes, including the generation of a high-mu mantle reservoir by recycling of crust, and the generation of a high-(3)He/(4)He reservoir by recycling of residuum, although the resulting high-(3)He/(4)He material tends to aggregate near the top, where mid-ocean-ridge melting should sample it. If primitive material exists as a dense basal layer, it must be much denser than subducted crust in order to retain its primitive (e.g. high-(3)He) signature. Much progress is expected in the near future.

  13. Polymerization of amino acids under primitive earth conditions.

    NASA Technical Reports Server (NTRS)

    Flores, J. J.; Ponnamperuma, C.

    1972-01-01

    Small amounts of peptides were obtained when equal amounts of methane and ammonia were reacted with vaporized aqueous solutions of C14-labeled glycine, L-alanine, L-aspartic acid, L-glutamic acid and L-threonine in the presence of a continuous spark discharge in a 24-hr cyclic process. The experiment was designed to demonstrate the possibility of peptide synthesis under simulated primeval earth conditions. It is theorized that some dehydration-condensation processes may have taken place, with ammonium cyanide, the hydrogencyanide tetramer or aminonitriles as intermediate products, during the early chemical evolution of the earth.

  14. Possible complex organic compounds on Mars.

    PubMed

    Kobayashi, K; Sato, T; Kajishima, S; Kaneko, T; Ishikawa, Y; Saito, T

    1997-01-01

    It is suggested that primitive Mars had somehow similar environments as primitive Earth. If life was born on the primitive earth using organic compounds which were produced from the early Earth environment, the same types of organic compounds were also formed on primitive Mars. Such organic compounds might have been preserved on Mars still now. We are studying possible organic formation on primitive and present Mars. A gaseous mixture of CO2, CO, N2 and H2O with various mixing ratios were irradiated with high energy protons (major components of cosmic rays). Hydrogen cyanide and formaldehyde were detected among volatile products, and yellow-brown-colored water-soluble non-volatile substances were produced, which gave amino acids after acid-hydrolysis. Major part of "amino acid precursors" were not simple molecules like aminonitriles, but complex compounds which eluted earlier than free amino acids in cation-exchange HPLC. These organic compounds should be major targets in the future Mars mission. Strategy for the detection of the complex organics on Mars will be discussed.

  15. The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1983-01-01

    The prebiotic synthesis of organic compounds is investigated using a spark discharge on various simulated prebiotic atmospheres at 25 C. It is found that glycine is almost the only amino acid produced from the model atmospheres containing CO and CO2. These results show that the maximum yield is about the same for the three carbon sources (CO, CO2, and CH4) at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. CH4 is found to yield a much greater variety of amino acids than either CO or CO2. If it is assumed that amino acids more complex than glycine were required for the origin of life, then these findings indicate the need for CH4 in the primitive atmosphere. The yields of cyanide and formaldehyde are shown to parallel the amino acid results, with yields of HCN and H2CO as high as 13 percent based on carbon. Ammonia is also found to be produced from N2 in experiments with no added NH3 in yields as high as 4.9 percent. These results indicate that large amounts of NH3 would have been synthesized on the primitive earth by electric discharges.

  16. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  17. Delivery of extraterrestrial amino acids to the primitive Earth. Exposure experiments in Earth orbit.

    PubMed

    Barbier, B; Bertrand, M; Boillot, F; Chabin, A; Chaput, D; Henin, O; Brack, A

    1998-06-01

    A large collection of micrometeorites has been recently extracted from Antarctic old blue ice. In the 50 to 100 micrometers size range, the carbonaceous micrometeorites represent 80% of the samples and contain 2% of carbon. They might have brought more carbon to the surface of the primitive Earth than that involved in the present surficial biomass. Amino acids such as "-amino isobutyric acid have been identified in these Antarctic micrometeorites. Enantiomeric excesses of L-amino acids have been detected in the Murchison meteorite. A large fraction of homochiral amino acids might have been delivered to the primitive Earth via meteorites and micrometeorites. Space technology in Earth orbit offers a unique opportunity to study the behaviour of amino acids required for the development of primitive life when they are exposed to space conditions, either free or associated with tiny mineral grains mimicking the micrometeorites. Our objectives are to demonstrate that porous mineral material protects amino acids in space from photolysis and racemization (the conversion of L-amino acids into a mixture of L- and D-molecules) and to test whether photosensitive amino acids derivatives can polymerize in mineral grains under space conditions. The results obtained in BIOPAN-1 and BIOPAN-2 exposure experiments on board unmanned satellite FOTON are presented.

  18. The composition of the primitive atmosphere and the synthesis of organic compounds on the early Earth

    NASA Technical Reports Server (NTRS)

    Bada, J. L.; Miller, S. L.

    1985-01-01

    The generally accepted theory for the origin of life on the Earth requires that a large variety of organic compounds be present to form the first living organisms and to provide the energy sources for primitive life either directly or through various fermentation reactions. This can provide a strong constraint on discussions of the formation of the Earth and on the composition of the primitive atmosphere. In order for substantial amounts of organic compounds to have been present on the prebiological Earth, certain conditions must have existed. There is a large body of literature on the prebiotic synthesis of organic compounds in various postulated atmospheres. In this mixture of abiotically synthesized organic compounds, the amino acids are of special interest since they are utilized by modern organisms to synthesize structural materials and a large array of catalytic peptides.

  19. Dicarboxylic acids from electric discharge

    NASA Technical Reports Server (NTRS)

    Zeitman, B.; Chang, S.; Lawless, J. G.

    1974-01-01

    An investigation was conducted concerning the possible synthesis of a suite of dicarboxylic acids similar to that found in the Murchison meteorite. The investigation included the conduction of a chemical evolution experiment which simulated electric discharge through the primitive atmosphere of the earth. The suite of dicarboxylic acids obtained in the electric discharge experiment is similar to that of the Murchison meteorite, except for the fact that 2-chlorosuccinic acid is present in the spark discharge.

  20. Phosphorus, a key to life on the primitive earth

    NASA Technical Reports Server (NTRS)

    Griffith, E. J.; Ponnamperuma, C.; Gabel, N. W.

    1977-01-01

    The phosphorus of the primitive earth was present as phosphates. It is strongly probable that a portion of the phosphate was present as condensed phosphates. The primitive earth was highly deficient in the total available phosphorus until a sufficient quantity of phosphorus weathered from the igneous rocks in which it was entrapped. Approximately three billion years were required for the seas to become saturated. Until this time passed the seas acted as a giant sink for phosphorus, diluting it to the extent that all forms of life were deprived of the vital nutrient. When the seas became saturated, the rate of turnover of the phosphorus increased rapidly. As the seas pulsated, they left the excess precipitate phosphorus as sedimentary rock in locally rich deposits on which life could thrive.

  1. Primordial organic chemistry and the origin of life.

    NASA Technical Reports Server (NTRS)

    Ponnamperuma, C.

    1971-01-01

    Aspects of Darwinian revolution are discussed together with spontaneous generation, the inorganic chemical evolution, the primitive atmosphere, and interstellar matter. The significance of the change of the earth's reducing atmosphere to an atmosphere with oxidizing characteristics is considered. Experiments regarding the abiogenic synthesis of nucleic acids and proteins are reported. It was found that micromolecules can be formed in simulation experiments. The condensation reaction taking place in the presence of water was studied together with the condensation reaction taking place in the relative absence of water or under hypohydrous conditions. Jupiter simulation studies were conducted, and lunar and meteorite material was analyzed.

  2. Effects of primitive photosynthesis on Earth's early climate system

    NASA Astrophysics Data System (ADS)

    Ozaki, Kazumi; Tajika, Eiichi; Hong, Peng K.; Nakagawa, Yusuke; Reinhard, Christopher T.

    2018-01-01

    The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth's oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth's early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth's methane (CH4) cycle, and would thus have represented a critical component of Earth's early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth's early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.

  3. Prebiotic synthesis in atmospheres containing CH4, CO, and CO2. I - Amino acids

    NASA Technical Reports Server (NTRS)

    Schlesinger, G.; Miller, S. L.

    1983-01-01

    The prebiotic synthesis of amino acids, HCN, H2CO, and NH3 using a spark discharge on various simulated primitive earth atmospheres at 25 C is investigated. Various mixtures of CH4, CO, CO2, N2, NH3, H2O, and H2 were utilized in different experiments. The yields of amino acids (1.2-4.7 percent based on the carbon) are found to be approximately independent of the H2/CH4 ratio and the presence of NH3, and a wide variety of amino acids are obtained. Glycine is found to be almost the only amino acid produced from CO and CO2 model atmospheres, with the maximum yield being about the same for the three carbon sources at high H2/carbon ratios,whereas CH4 is superior at low H2/carbon ratios. In addition, it is found that the directly synthesized NH3 together with the NH3 obtained from the hydrolysis of HCN, nitriles, and urea could have been a major source of ammonia in the atmosphere and oceans of the primitive earth. It is determined that prebiotic syntheses from HCN and H2CO to give products such as purines and sugars and some amino acids could have occurred in primitive atmospheres containing CO and CO2 provided the H2/CO and H2/CO2 ratios were greater than about 1.0.

  4. A model for the enantiomeric enrichment of polypeptides on the primitive earth

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Bonner, W. A.

    1981-01-01

    A potential model is presented for the origin of optical activity in polypeptides on the primitive earth due to enantiomeric enrichment in succeeding polymerization-hydrolysis cycles. The model was developed in experiments with the polymerization of a DL-leucine N-carboxyanhydride mixture with a 31.2% enantiomeric excess of the L isomer with sodium methoxide initiator to yield a polyleucine product which was in turn partially hydrolyzed by acid. The polymerization-hydrolysis was found to produce a net 23.8% increase in the enantiomeric excess of the remaining unhydrolyzed polypeptide (14.2% from the polymerization and 9.6% from the partial hydrolysis). On the basis of these results, it is suggested that a slight excess produced by an appropriate chiral physical process may be enhanced by cycles of stereoselective polymerization and hydrolysis driven by fluctuating wet and dry environmental cycles on the primitive earth.

  5. Formation of amino acids and nucleic acid constituents from simulated primitive planetary atmospheres by irradiation with high-energy protons

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Yamanashi, H.; Ohashi, A.; Kaneko, T.; Miyakawa, S.; Saito, T.

    It is suggested that primitive Earth atmosphere was only slightly reduced, which w as composed of carbon dioxide, carbon monoxide, nitrogen and water. It has been shown that bioorganic compounds can be hardly formed by energies as UV light, heat and spark discharges. We therefore examined possible formation pat hways of bioorganic compounds in the primitive E arth. A mixt ure of carbon monoxide, nitrogen and water was irradiated with high-energy prot ons generated by a van de Graaff accelerator, whi c h simulated an action of cosm ic rays. Aqueous solution of the product was hydr olyzed, and then analyzed by chromatography and mass spectrometry. A wide variety of amino acids and uracil, one of the nucle ic acid bases, wer e identified. Ribose, the RNA sugar, has not been identified, but formation of reducing polyols was suggested. A mino acids and uracil were also formed from a mixture of carbo n dioxide, carbon monoxide, nitrogen and water, and their yields correlated to the ratio of carbon monoxide and nitrogen in the mixture. Since a certain percentage of carbon monoxide could be expected to be in it [1], cosmic radiation can be regarded as an effective energ so urce for prebiotic formation of life's building blocks in they primitive Earth [2]. In the conventional scenario of chemical evolution, amino acids were formed in t he primitive ocean from such intermediates as HCN an d HCHO formed in t he atmosphere. T his scenario seem s not to be possible due to the following reasons: (1) The irradiation products were quit e complex organic com pound s whose molecular weights were ca. 1000, and they gave amino acids after hydrolysis. (2) Energy yields of amino ac ids in the hydrolysates were comparable to those of HCN and HCHO in the irradiation pro duct s. (3) Irradiation products from a mixture of carbon monoxide and nitrogen without water als o gave amino acids aft er hydrolysis. T hes e observations strongly sugge s t e d that complex precursors of bioor ganic com poun ds could be formed directly in the atmosphere. A new scenario of chemical evolution via complex organics toward the origin of life will be prop o s e d. [1] J. Kasting, Origins Life Evol. Biosph ere, 20, 199 (1990). [2] K. Kobay ashi , et al., Origins Life Evol. Biosphere, 28, 155 (1998). * Present address: Rensselaer Polytechnic Ins titut e.

  6. How rare is complex life in the Milky Way?

    PubMed

    Bounama, Christine; von Bloh, Werner; Franck, Siegfried

    2007-10-01

    An integrated Earth system model was applied to calculate the number of habitable Earth-analog planets that are likely to have developed primitive (unicellular) and complex (multicellular) life in extrasolar planetary systems. The model is based on the global carbon cycle mediated by life and driven by increasing stellar luminosity and plate tectonics. We assumed that the hypothetical primitive and complex life forms differed in their temperature limits and CO(2) tolerances. Though complex life would be more vulnerable to environmental stress, its presence would amplify weathering processes on a terrestrial planet. The model allowed us to calculate the average number of Earth-analog planets that may harbor such life by using the formation rate of Earth-like planets in the Milky Way as well as the size of a habitable zone that could support primitive and complex life forms. The number of planets predicted to bear complex life was found to be approximately 2 orders of magnitude lower than the number predicted for primitive life forms. Our model predicted a maximum abundance of such planets around 1.8 Ga ago and allowed us to calculate the average distance between potentially habitable planets in the Milky Way. If the model predictions are accurate, the future missions DARWIN (up to a probability of 65%) and TPF (up to 20%) are likely to detect at least one planet with a biosphere composed of complex life.

  7. MARCO POLO: near earth object sample return mission

    NASA Astrophysics Data System (ADS)

    Barucci, M. A.; Yoshikawa, M.; Michel, P.; Kawagushi, J.; Yano, H.; Brucato, J. R.; Franchi, I. A.; Dotto, E.; Fulchignoni, M.; Ulamec, S.

    2009-03-01

    MARCO POLO is a joint European-Japanese sample return mission to a Near-Earth Object. This Euro-Asian mission will go to a primitive Near-Earth Object (NEO), which we anticipate will contain primitive materials without any known meteorite analogue, scientifically characterize it at multiple scales, and bring samples back to Earth for detailed scientific investigation. Small bodies, as primitive leftover building blocks of the Solar System formation process, offer important clues to the chemical mixture from which the planets formed some 4.6 billion years ago. Current exobiological scenarios for the origin of Life invoke an exogenous delivery of organic matter to the early Earth: it has been proposed that primitive bodies could have brought these complex organic molecules capable of triggering the pre-biotic synthesis of biochemical compounds. Moreover, collisions of NEOs with the Earth pose a finite hazard to life. For all these reasons, the exploration of such objects is particularly interesting and urgent. The scientific objectives of MARCO POLO will therefore contribute to a better understanding of the origin and evolution of the Solar System, the Earth, and possibly Life itself. Moreover, MARCO POLO provides important information on the volatile-rich (e.g. water) nature of primitive NEOs, which may be particularly important for future space resource utilization as well as providing critical information for the security of Earth. MARCO POLO is a proposal offering several options, leading to great flexibility in the actual implementation. The baseline mission scenario is based on a launch with a Soyuz-type launcher and consists of a Mother Spacecraft (MSC) carrying a possible Lander named SIFNOS, small hoppers, sampling devices, a re-entry capsule and scientific payloads. The MSC leaves Earth orbit, cruises toward the target with ion engines, rendezvous with the target, conducts a global characterization of the target to select a sampling site, and delivers small hoppers (MINERVA type, JAXA) and SIFNOS. The latter, if added, will perform a soft landing, anchor to the target surface, and make various in situ measurements of surface/subsurface materials near the sampling site. Two surface samples will be collected by the MSC using “touch and go” manoeuvres. Two complementary sample collection devices will be used in this phase: one developed by ESA and another provided by JAXA, mounted on a retractable extension arm. After the completion of the sampling and ascent of the MSC, the arm will be retracted to transfer the sample containers into the MSC. The MSC will then make its journey back to Earth and release the re-entry capsule into the Earth’s atmosphere.

  8. Life on Earth: From Chemicals in Space?

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses experimental evidence for the existence of organic material in the solar system prior to the earth's formation. Indicates that the earth could have received much of its organic compounds from meteors falling on its primitive surface. (CC)

  9. Primitive Earth: So Near to Hell

    ERIC Educational Resources Information Center

    Jastrow, Robert

    1973-01-01

    Discusses the atmospheric characteristics of the earth and their implications for the development of life on earth-like planets. Indicates that the chance of life developing on other planets is not as great as men might have thought. (CC)

  10. Synthesis of phosphatidylcholine under possible primitive earth conditions

    NASA Technical Reports Server (NTRS)

    Rao, M.; Eichberg, J.; Oro, J.

    1982-01-01

    Using a primitive earth evaporating pond model, the synthesis of phosphatidylcholine was accomplished when a reaction mixture of choline chloride and disodium phosphatidate, in the presence of cyanamide and traces of acid, was evaporated and heated at temperatures ranging from 25 to 100 C for 7 hours. Optimum yields of about 15% were obtained at 80 C. Phosphatidylcholine was identified by chromatographic, chemical and enzymatic degradation methods. On enzymatic hydrolysis with phospholipase A2 and phospholipase C, lysophosphatidylcholine and phosphorylcholine were formed, respectively. Alkaline hydrolysis gave glycerophosphorylcholine. The synthesis of phosphatidylcholine as the major compound was accompanied by the formation of lysophosphatidylcholine in smaller amounts. Cyanamide was found to be essential for the formation of phosphatidylcholine, and only traces of HCl, of the order of that required to convert the disodium phosphatidate to free phosphatidic acid were found necessary for the synthesis. This work suggests that phosphatidylcholine, which is an essential component of most biological membranes, could have been synthesized on the primitive earth.

  11. Compositional study of asteroids in the Erigone collisional family using visible spectroscopy at the 10.4 m GTC

    NASA Astrophysics Data System (ADS)

    Morate, David; de León, Julia; De Prá, Mário; Licandro, Javier; Cabrera-Lavers, Antonio; Campins, Humberto; Pinilla-Alonso, Noemí; Alí-Lagoa, Víctor

    2016-02-01

    Two primitive near-Earth asteroids, (101955) Bennu and (162173) Ryugu, will be visited by a spacecraft with the aim of returning samples back to Earth. Since these objects are believed to originate in the inner main belt primitive collisional families (Erigone, Polana, Clarissa, and Sulamitis) or in the background of asteroids outside these families, the characterization of these primitive populations will enhance the scientific return of the missions. The main goal of this work is to shed light on the composition of the Erigone collisional family by means of visible spectroscopy. Asteroid (163) Erigone has been classified as a primitive object, and we expect the members of this family to be consistent with the spectral type of the parent body. We have obtained visible spectra (0.5-0.9 μm) for 101 members of the Erigone family, using the OSIRIS instrument at the 10.4 m Gran Telescopio Canarias. We found that 87% of the objects have typically primitive visible spectra consistent with that of (163) Erigone. In addition, we found that a significant fraction of these objects (~50%) present evidence of aqueous alteration.

  12. Looking for the most "primitive" organism(s) on Earth today: the state of the art.

    PubMed

    Forterre, P

    1995-01-01

    Molecular phylogenetic studies have revealed a tripartite division of the living world into two procaryotic groups, Bacteria and Archaea, and one eucaryotic group, Eucarya. Which group is the most "primitive"? Which groups are sister? The answer to these questions would help to delineate the characters of the last common ancestor to all living beings, as a first step to reconstruct the earliest periods of biological evolution on Earth. The current "Procaryotic dogma" claims that procaryotes are primitive. Since the ancestor of Archaea was most probably a hyperthermophile, and since bacteria too might have originated from hyperthermophiles, the procaryotic dogma has been recently connected to the hot origin of life hypothesis. However, the notion that present-day hyperthermophiles are primitive has been challenged by recent findings, in these unique microorganisms, of very elaborate adaptative devices for life at high temperature. Accordingly, I discuss here alternative hypotheses that challenge the procaryotic dogma, such as the idea of a universal ancestor with molecular features in between those of eucaryotes and procaryotes, or the origin of procaryotes via thermophilic adaptation. Clearly, major evolutionary questions about early cellular evolution on Earth remain to be settled before we can speculate with confidence about which kinds of life might have appeared on other planets.

  13. Could 433 Eros have a Primitive Achondritic Composition?

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; McCoy, T. J.; Nittler, L. R.; Bell, J. F., III

    2001-01-01

    One of the goals of the NEAR (Near Earth Asteroid Rendezvous) mission to 433 Eros is to determine if it has a meteoritic analog. We are currently investigating if primitive achondrites have bulk compositions and spectral properties similar to Eros. Additional information is contained in the original extended abstract.

  14. Is there a single origin of life?

    NASA Astrophysics Data System (ADS)

    Soffen, Gerald A.

    The emergence of the first life on the earth is now established as an early event, and closely related to the evolving earth. Laboratory experiments examining possible chemical events have revealed a multitude of plausible pathways. Lack of knowledge of the primitive terrestrial conditions contemporary with the evolving prebolic organic chemistry limits reconstruction techniques. The primitive earth's aqueous history is essential to unraveling this problem. Based on our current knowledge of other planets of the solar system, we do not expect close analogues to the early earth. We still do not know if there was a second origin or if only earth has life. This may depend upon the question of the survival of information bearing chemical systems in a dynamic or chaotic environment and the chemical protection afforded within such a system. Water is the central molecule of controversy: the blessing and the curse of the chemist. New and novel chemical mechanisms and systems abound.

  15. Circuit design tool. User's manual, revision 2

    NASA Technical Reports Server (NTRS)

    Miyake, Keith M.; Smith, Donald E.

    1992-01-01

    The CAM chip design was produced in a UNIX software environment using a design tool that supports definition of digital electronic modules, composition of these modules into higher level circuits, and event-driven simulation of these circuits. Our design tool provides an interface whose goals include straightforward but flexible primitive module definition and circuit composition, efficient simulation, and a debugging environment that facilitates design verification and alteration. The tool provides a set of primitive modules which can be composed into higher level circuits. Each module is a C-language subroutine that uses a set of interface protocols understood by the design tool. Primitives can be altered simply by recoding their C-code image; in addition new primitives can be added allowing higher level circuits to be described in C-code rather than as a composition of primitive modules--this feature can greatly enhance the speed of simulation.

  16. New numerical determination of habitability in the Galaxy: the SETI connection

    NASA Astrophysics Data System (ADS)

    Ramirez, Rodrigo; Gómez-Muñoz, Marco A.; Vázquez, Roberto; Núñez, Patricia G.

    2018-01-01

    In this paper, we determine the habitability of Sun-like stars in the Galaxy using Monte Carlo simulations, which are guided by the factors of the Drake Equation for the considerations on the astrophysical and biological parameters needed to generate and maintain life on a planet's surface. We used a simple star distribution, initial mass function and star formation history to reproduce the properties and distribution of stars within the Galaxy. Using updated exoplanet data from the Kepler mission, we assign planets to some of the stars, and then follow the evolution of life on the planets that met the habitability criteria using two different civilization hypotheses. We predict that around 51% of Earth-like planets in the habitable zone (HZ) are inhabited by primitive life and 4% by technological life. We apply the results to the Kepler field of view, and predicted that there should be at least six Earth-like planets in the HZ, three of them inhabited by primitive life. According to our model, non-technological life is very common if there are the right conditions, but communicative civilizations are less likely to exist and detect. Nonetheless, we predict a considerable number of detectable civilizations within our Galaxy, making it worthwhile to keep searching.

  17. Prebiotic Soup-Revisiting the Miller Experiment

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.; Lazcano, Antonio

    2003-01-01

    'Isn't life wonderful?' sang Alma Cogan and Les Howard in their almost forgotten 1953 hit. That same year, Stanley L. Miller raised the hopes of understanding the origin of life when on 15 May, Science published his paper on the synthesis of amino acids under conditions that simulated primitive Earth's atmosphere. Miller had applied an electric discharge to a mixture of CH4, NH3, H2O, and H2 - believed at the time to be the atmospheric composition of early Earth. Surprisingly, the products were not a random mixture of organic molecules, but rather a relatively small number of biochemically significant compounds such as amino acids, hydroxy acids, and urea. With the publication of these dramatic results, the modem era in the study of the origin of life began.

  18. Prebiotic Soup: Revisiting the Miller Experiment

    NASA Technical Reports Server (NTRS)

    Bada, Jeffrey L.; Lazcano, Antonio

    2003-01-01

    Isn't life wonderful? sang Alma Cogan and Les Howard in their almost forgotten 1953 hit. That same year, Stanley L. Miller raised the hopes of understanding the origin of life when on 15 May, Science published his paper on the synthesis of amino acids under conditions that simulated primitive Earth's atmosphere. Miller had applied an electric discharge to a mixture of CH4, NH3, H2O, and H2 - believed at the time to be the atmospheric composition of early Earth. Surprisingly, the products were not a random mixture of organic molecules. but rather a relatively small number of biochemically significant compounds such as amino acids, hydroxy acids, and urea. With the publication of these dramatic results, the modern era in the study of the origin of life began.

  19. Energy yields in the prebiotic synthesis of hydrogen cyanide and formaldehyde

    NASA Technical Reports Server (NTRS)

    Stribling, R.; Miller, S. L.

    1986-01-01

    Prebiotic experiments are usually reported in terms of carbon yields, i.e., the yield of product based on the total carbon in the system. These experiments usually involve a large input of energy and are designed to maximize the yields of product. However, large inputs of energy result in multiple activation of the reactants and products. A more realistic prebiotic experiment is to remove the products of the activation step so they are not exposed a second time to the energy source. This is equivalent to transporting the products synthesized in the primitive atmosphere to the ocean, and thereby protecting them from destruction by atmospheric energy sources. Experiments of this type, using lower inputs of energy, give energy yields (moles of products/joule) which can be used to estimate the relative importance of the different energy sources on the primitive earth. Simulated prebiotic atmospheres containing either CH4, CO or CO2 with N2, H2O and variable amounts of H2 were subjected to a high frequency Tesla coil. Samples of the aqueous phase were taken at various time intervals from 1 hr to 7 days, and the energy yields were obtained by extrapolation to zero time. The samples were analyzed for HCN with the cyanide electrode and for H2CO by chromotropic acid. The spark energy was estimated by calorimetry. The temperature rise in an insulated discharge flask was compared with the temperature rise from a resistance heater in the same flask. These results will be compared with calculated production rates of HCN and H2CO from lightning and a number of photochemical processes on the primitive Earth.

  20. Chemical evolution and the origin of life

    NASA Technical Reports Server (NTRS)

    Oro, J.

    1983-01-01

    A review is presented of recent advances made in the understanding of the formation of carbon compounds in the universe and the occurrence of processes of chemical evolution. Topics discussed include the principle of evolutionary continuity, evolution as a fundamental principle of the physical universe, the nuclear synthesis of biogenic elements, organic cosmochemistry and interstellar molecules, the solar nebula and the solar system in chemical evolution, the giant planets and Titan in chemical evolution, and comets and their interaction with the earth. Also examined are carbonaceous chondrites, environment of the primitive earth, energy sources available on the primitive earth, the synthesis of biochemical monomers and oligomers, the abiotic transcription of nucleotides, unified prebiotic and enzymatic mechanisms, phospholipids and membranes, and protobiological evolution.

  1. The prospect of life on Jupiter.

    NASA Technical Reports Server (NTRS)

    Ponnamperuma, C.; Molton, P.

    1973-01-01

    We have simulated electrical discharges in the Jovian atmosphere, using anhydrous methane-ammonia mixtures, and shown the formation of simple aliphatic nitriles, amino-nitriles, and their oligomers. Including hydrogen sulfide in the gas mixture, it appears that sulfur-containing amino-nitriles are not formed, since the hydrolysate of the products did not contain the corresponding amino-acids. There is a strong analogy between these reactions and the classical spark reactions simulating the primitive earth's atmosphere. We are attempting a closer simulation of Jupiter's atmosphere by using appropriate temperature and pressure conditions. It seems that prebiotic synthesis on Jupiter may have reached an advanced state. As an alternative approach we have tested the survival ability of common terrestrial microorganisms in aqueous media at 102 atmospheres pressure and at 20 C in a simulated Jovian atmosphere. E. coli, S. marcescens, A. aerogenes, and B. subtilis will all tolerate 24 hr under these conditions with little death.

  2. HCN - A plausible source of purines, pyrimidines and amino acids on the primitive earth

    NASA Technical Reports Server (NTRS)

    Ferris, J.-P.; Joshi, P. C.; Edelson, E. H.; Lawless, J. G.

    1978-01-01

    Dilute (0.1 M) solutions of HCN condense to oligomers at pH 9.2, and hydrolysis of these oligomers yields 4,5-dihydroxypyrimidine, orotic acid, 5-hydroxyuracil, adenine, 4-aminoimidazole-5-carboxamide, and amino acids. It is suggested that the three main classes of nitrogen-containing biomolecules - purines, pyrimidines, and amino acids may have originated from HCN on the primitive earth. It is also suggested that the presence of orotic acid and 4-aminoimidazole-5-carboxamide might indicate that contemporary biosynthetic pathways for nucleotides evolved from the compounds released on hydrolysis of HCN oligomers.

  3. Energy yields for hydrogen cyanide and formaldehyde syntheses - The HCN and amino acid concentrations in the primitive ocean

    NASA Technical Reports Server (NTRS)

    Stribling, Roscoe; Miller, Stanley L.

    1987-01-01

    Simulated prebiotic atmospheres containing either CH4, CO, or CO2, in addition to N2, H2O, and variable amounts of H2, were subjected to the spark from a high-frequency Tesla coil, and the energy yields for the syntheses of HCN and H2CO were estimated from periodic (every two days) measurements of the compound concentrations. The mixtures with CH4 were found to yield the highest amounts of HCN, whereas the CO mixtures produced the highest yields of H2CO. These results model atmospheric corona discharges. From the yearly energy yields calculated and the corona discharge available on the earth, the yearly production rate of HCN was estimated; using data on the HCN production rates and the experimental rates of decomposition of amino acids through the submarine vents, the steady state amino acid production rate in the primitive ocean was calculated to be about 10 nmoles/sq cm per year.

  4. The origin and early evolution of life on earth

    NASA Technical Reports Server (NTRS)

    Oro, J.; Miller, Stanley L.; Lazcano, Antonio

    1990-01-01

    Results of the studies that have provided insights into the cosmic and primitive earth environments are reviewed with emphasis on those environments in which life is thought to have originated. The evidence bearing on the antiquity of life on the earth and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar-system bodies such as comets, dark asteroids, and carbonaceous chondrites are assessed. The environmental models of the Hadean and early Archean earth are discussed, as well as the prebiotic formation of organic monomers and polymers essential to life. The processes that may have led to the appearance in the Archean of the first cells are considered, and possible effects of these processes on the early steps of biological evolution are analyzed. The significance of these results to the study of the distribution of life in the universe is evaluated.

  5. Chemical evolution of primitive solar system bodies

    NASA Technical Reports Server (NTRS)

    Oro, J.; Mills, T.

    1989-01-01

    Observations on organic molecules and compounds containing biogenic elements in the interstellar medium and in the primitive bodies of the solar system are reviewed. The discovery of phosphorus molecular species in dense interstellar clouds, the existence of organic ions in the dust and gas phase of the comas of Comet Halley, and the presence of presolar, deuterium-hydrogen ratios in the amino acids of carbonaceous chondrites are discussed. The relationships between comets, dark asteroids, and carbonaceous chondrites are examined. Also, consideration is given to the chemical evolution of Titan, the primitive earth, and early Mars.

  6. New hybrid voxelized/analytical primitive in Monte Carlo simulations for medical applications

    NASA Astrophysics Data System (ADS)

    Bert, Julien; Lemaréchal, Yannick; Visvikis, Dimitris

    2016-05-01

    Monte Carlo simulations (MCS) applied in particle physics play a key role in medical imaging and particle therapy. In such simulations, particles are transported through voxelized phantoms derived from predominantly patient CT images. However, such voxelized object representation limits the incorporation of fine elements, such as artificial implants from CAD modeling or anatomical and functional details extracted from other imaging modalities. In this work we propose a new hYbrid Voxelized/ANalytical primitive (YVAN) that combines both voxelized and analytical object descriptions within the same MCS, without the need to simultaneously run two parallel simulations, which is the current gold standard methodology. Given that YVAN is simply a new primitive object, it does not require any modifications on the underlying MC navigation code. The new proposed primitive was assessed through a first simple MCS. Results from the YVAN primitive were compared against an MCS using a pure analytical geometry and the layer mass geometry concept. A perfect agreement was found between these simulations, leading to the conclusion that the new hybrid primitive is able to accurately and efficiently handle phantoms defined by a mixture of voxelized and analytical objects. In addition, two application-based evaluation studies in coronary angiography and intra-operative radiotherapy showed that the use of YVAN was 6.5% and 12.2% faster than the layered mass geometry method, respectively, without any associated loss of accuracy. However, the simplification advantages and differences in computational time improvements obtained with YVAN depend on the relative proportion of the analytical and voxelized structures used in the simulation as well as the size and number of triangles used in the description of the analytical object meshes.

  7. Cave men: stone tools, Victorian science, and the 'primitive mind' of deep time.

    PubMed

    Pettitt, Paul B; White, Mark J

    2011-03-20

    Palaeoanthropology, the study of the evolution of humanity, arose in the nineteenth century. Excavations in Europe uncovered a series of archaeological sediments which provided proof that the antiquity of human life on Earth was far longer than the biblical six thousand years, and by the 1880s authors had constructed a basic paradigm of what 'primitive' human life was like. Here we examine the development of Victorian palaeoanthropology for what it reveals of the development of notions of cognitive evolution. It seems that Victorian specialists rarely addressed cognitive evolution explicitly, although several assumptions were generally made that arose from preconceptions derived from contemporary 'primitive' peoples. We identify three main phases of development of notions of the primitive mind in the period.

  8. Can Fractional Crystallization of a Lunar Magma Ocean Produce the Lunar Crust?

    NASA Technical Reports Server (NTRS)

    Rapp, Jennifer F.; Draper, David S.

    2013-01-01

    New techniques enable the study of Apollo samples and lunar meteorites in unprecedented detail, and recent orbital spectral data reveal more about the lunar farside than ever before, raising new questions about the supposed simplicity of lunar geology. Nevertheless, crystallization of a global-scale magma ocean remains the best model to account for known lunar lithologies. Crystallization of a lunar magma ocean (LMO) is modeled to proceed by two end-member processes - fractional crystallization from (mostly) the bottom up, or initial equilibrium crystallization as the magma is vigorously convecting and crystals remain entrained, followed by crystal settling and a final period of fractional crystallization [1]. Physical models of magma viscosity and convection at this scale suggest that both processes are possible. We have been carrying out high-fidelity experimental simulations of LMO crystallization using two bulk compositions that can be regarded as end-members in the likely relevant range: Taylor Whole Moon (TWM) [2] and Lunar Primitive Upper Mantle (LPUM) [3]. TWM is enriched in refractory elements by 1.5 times relative to Earth, whereas LPUM is similar to the terrestrial primitive upper mantle, with adjustments made for the depletion of volatile alkalis observed on the Moon. Here we extend our earlier equilibrium-crystallization experiments [4] with runs simulating full fractional crystallization

  9. New candidates for active asteroids: Main-belt (145) Adeona, (704) Interamnia, (779) Nina, (1474) Beira, and near-Earth (162,173) Ryugu

    NASA Astrophysics Data System (ADS)

    Busarev, Vladimir V.; Makalkin, Andrei B.; Vilas, Faith; Barabanov, Sergey I.; Scherbina, Marina P.

    2018-04-01

    For the first time, spectral signs of subtle coma activity were observed for four main-belt primitive asteroids (145) Adeona, (704) Interamnia, (779) Nina, and (1474) Beira around their perihelion distances in September 2012, which were interpreted as manifestations of the sublimation of H2O ice in/under the surface matter (Busarev et al., 2015a, 2015b). We confirm the phenomenon for Nina when it approached perihelion in September 2016. At the same time, based on results of spectral observations of near-Earth asteroid (162,173) Ryugu (Vilas, 2008) being a target of Japan's Hayabusa 2 space mission, we suspected a periodic similar transient activity on the Cg-type asteroid. However, unlike the main-belt primitive asteroids demonstrating sublimation of ices close to their perihelion distances, the effect on Ryugu was apparently registered near aphelion. To explain the difference, we calculated the subsolar temperature depending on heliocentric distance of the asteroids, considered qualitative models of internal structure of main-belt and near-Earth primitive asteroids including ice and performed some analytical estimations. Presumed temporal sublimation/degassing activity of Ryugu is a sign of a residual frozen core in its interior. This could be an indication of a relatively recent transition of the asteroid from the main asteroid belt to the near-Earth area.

  10. Presenting Big Data in Google Earth with KML

    NASA Astrophysics Data System (ADS)

    Hagemark, B.

    2006-12-01

    KML 2.1 and Google Earth 4 provides support to enable streaming of very large datasets, with "smart" loading of data at multiple levels of resolution and incremental update to previously loaded data. This presentation demonstrates this technology for use with the Google Earth KML geometry and image primitives and shows some techniques and tools for creating this KML.

  11. Humic First Theory: A New Theory on the Origin of Life

    NASA Astrophysics Data System (ADS)

    Daei, Mohammad Ali; Daei, Manijeh; Daei, Bijan

    2017-04-01

    In 1953, Miller & Urey through a brilliant experiment demonstrated that the building blocks of life could evolve in primitive earth conditions [1]. During the recent years scientists revealed that organic matters are not very rare compounds in comets, asteroids, and meteorites which have bombarded the ancient earth repeatedly [2]. So simple organic molecules on early earth could be quite enough to start chemical evolution and steadily, proceeded to the very simple form of life. Many theories have tried to explain how life emerged from non life, but failed, largely due to the lack of a distinct methodology. There is a huge gap between the simple building blocks, like amino acid, sugar, and lipid molecules, to a living cell with a very sophisticated structure and organization. It is unacceptable to fill this great distance, only by accidental reactions in a passive media (primitive soap) even, over a very long time. Obviously, manufacturing of a primitive cell required a natural factory with rather firm and resistant basement, plenty of organic and inorganic raw materials and qualified production line, plus some sources of energy. There were plenty of solar energy and water in the early Earth, but what about the other factors? Availability of essential minerals was not guaranteed at all, in primitive earth which covered with bare, dead rocks. While we are not able today, to multiply any microorganisms in ideal conditions of modern laboratory in the absence of only one of essential nutrients or elements, how can we expect primitive cells appear on early earth conditions without the support of soluble minerals and organic matters? Ideal production line must be active and protective, have catalyzing ability, could provide numerous opportunities for interaction between basic bio molecules (mainly RNA and proteins) and above all, have capability to react with different sources of energy. There are strong evidences that show only some form of stable, rich and active organic matter like modern "humic substances" could perform this great and complicated duty. A mass of warm, wet clay mixed with enough humic substances (HS) in suitable PH, could provide all above requirements, and promote biochemical evolution step by step toward a functional primitive cell. HS are fluorescent compounds and could transform UV radiation to usable light. In addition these protective materials could provide chemical energy plus balanced minerals and organic molecules. While everything in non living world is reducing energy, HS can collect more and more material and energy like a living organism. Fortunately, there are reliable evidences that HS could be accessible on ancient Earth. In fact Ziechman et al [7], in 1994 by finding humic material in Miller's experimental vessels proved that humic substances could be generated on early Earth conditions by polymerizing simple organic molecules. Our investigations show elemental selection and also chairal selection for life are proportionately tailored to Humic materials. For example nearly all heavy metals make insoluble compounds with HS, hence omitted from life processes. In contrast all essential elements have appropriate affinity and workability with HS. There is reliable evidence that shows HS prefer left amino acids and right sugars. As you see many signs and symptoms are referring to "humic substances" as the mother of life, at least on this planet.

  12. Clay-mediated reactions of HCN oligomers - The effect of the oxidation state of the clay

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Alwis, K. W.; Edelson, E. H.; Mount, N.; Hagan, W. J., Jr.

    1981-01-01

    Montmorillonite clays which contain Fe(III) inhibit the oligomerization of aqueous solutions of HCN. The inhibitory effect is due to the rapid oxidation of diaminomaleonitrile, a key intermediate in HCN oligomerization, by the Fe(III) incorporated into the aluminosilicate lattice of the clay. The Fe(III) oxidizes diaminomaleonitrile to diiminosuccinonitrile, a compound which is rapidly hydrolyzed to HCN and oxalic acid derivatives. Diaminomaleonitrile is not oxidized when Fe(III) in the montmorillonite is reduced with hydrazine. The oxidation state of the clay is an important variable in experiments designed to simulate clay catalysis on the primitive earth.

  13. Simulation of organismic morphology and behavior by synthetic poly-alpha-amino acids.

    PubMed

    Fox, S W; McCauley, R; Joseph, D; Windsor, C R; Yuyama, S

    1966-01-01

    Experiments imitating spontaneous geothermal occurrences have yielded most of the amino acids found in protein. All of the amino acids found in protein are simultaneously condensed, by heating in a range of appropriate conditions, to polymers which have many of the properties of proteins. These properties include molecular weights of many thousand, digestibility by proteolytic enzymes, and catalytic activities. One of the other properties is the tendency to form structured units; these units have many of the attributes of biocells. The processes indicated, and others, comprise a conceptual continuum which, according to accumulated information, must have occurred under the conditions existing in regions of the primitive Earth.

  14. Photochemical reactions of water and carbon monoxide in earth's primitive atmosphere

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Chang, S.

    1983-01-01

    The gas-phase photolysis of H2O at 1849 A in the presence of CO yields mainly CO2 and H2 and a variety of organic compounds, including C1-C3 hydrocarbons, alcohols, aldehydes, acetone, and acetic acid. The overall quantum yield for conversion of CO to organic compounds varies between 0.23 and 0.03 as a function of the CO abundance. These results indicate that even if primitive earth's atmosphere initially contained no molecular hydrogen and contained carbon only in the form of CO or a mixture of CO and CO2, the prebiotic environment would have become enriched with a variety of organic compounds produced by photochemical processes.

  15. Prebiotic significance of extraterrestrial ice photochemistry: detection of hydantoin in organic residues.

    PubMed

    de Marcellus, Pierre; Bertrand, Marylène; Nuevo, Michel; Westall, Frances; Le Sergeant d'Hendecourt, Louis

    2011-11-01

    The delivery of extraterrestrial organic materials to primitive Earth from meteorites or micrometeorites has long been postulated to be one of the origins of the prebiotic molecules involved in the subsequent apparition of life. Here, we report on experiments in which vacuum UV photo-irradiation of interstellar/circumstellar ice analogues containing H(2)O, CH(3)OH, and NH(3) led to the production of several molecules of prebiotic interest. These were recovered at room temperature in the semi-refractory, water-soluble residues after evaporation of the ice. In particular, we detected small quantities of hydantoin (2,4-imidazolidinedione), a species suspected to play an important role in the formation of poly- and oligopeptides. In addition, hydantoin is known to form under extraterrestrial, abiotic conditions, since it has been detected, along with various other derivatives, in the soluble part of organic matter of primitive carbonaceous meteorites. This result, together with other related experiments reported recently, points to the potential importance of the photochemistry of interstellar "dirty" ices in the formation of organics in Solar System materials. Such molecules could then have been delivered to the surface of primitive Earth, as well as other telluric (exo-) planets, to help trigger first prebiotic reactions with the capacity to lead to some form of primitive biomolecular activity.

  16. Origin Of The Near-earth Asteroid Phaethon And The Geminids Meteor Shower

    NASA Astrophysics Data System (ADS)

    de Leon, Julia; Campins, H.; Tsiganis, K.; Morbidelli, A.; Licandro, J.

    2010-10-01

    Asteroid (3200) Phaethon is a remarkable Near Earth Asteroid (NEA). It was the first asteroid associated with a meteor shower, namely the Geminid stream1. Phaethon's unusual orbit has a high inclination and a very low perihelion distance (0.14 AU). Its reflectance spectrum suggests a connection with primitive meteorites, best fitting with CI/CM carbonaceous chondrites2, aqueously altered and rich in hydrated silicates. However, its origin is not well determined. Recent studies suggest a connection with the population of main-belt comets3, classifying Phaethon as an activated asteroid. Here we show that the most likely source of Phaethon and the Geminids is the asteroid (2) Pallas, one of the largest asteroids in the main belt, which is surrounded by a collisional family, containing several Phaethon-sized objects. Pallas’ highly inclined orbit and surface composition, also primitive and with evidence of hydration4, support this connection. Our analysis reveals a striking similarity between Phaethon's visual spectrum and those of Pallas family members. Moreover, our numerical simulations show the existence of a robust dynamical pathway, connecting the orbital neighborhood of Pallas with that of Phaethon. In this respect, the Pallas family may constitute a source of primitive NEAs. (The author gratefully acknowledges support from the Spanish "Ministerio de Ciencia e Innovación" projects AYA2005-07808-C03-02 and AYA2008-06202-C03-02.) References 1. Whipple, F. L. 1983, IAU Circular, 3881 2. Licandro, J., Campins, H., Mothe-Diniz, T., Pinilla-Alonso, N. & de Leon, J. 2007, Astron. Astrophys. 461, 751-757 3. Hsieh, H. H., & Jewitt, D. 2006, Science, 312, 561-563 4. Rivkin, A. S., Howell, E. S., Vilas, F. & Lebofsky, L. A. in Asteroids III (eds Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R. P.) 235-253 (Univ. Arizona Press, 2002).

  17. Diurnal forcing of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Houben, Howard C.

    1991-01-01

    The utility of the Mars Planetary Boundary Layer Model (MPBL) for calculations in support of the Mars 94 balloon mission was substantially enhanced by the introduction of a balloon equation of motion into the model. Both vertical and horizontal excursions of the balloon are calculated along with its volume, temperature, and pressure. The simulations reproduce the expected 5-min vertical oscillations of a constant density balloon at altitude on Mars. The results of these calculations are presented for the nominal target location of the balloon. A nonlinear balanced model was developed for the Martian atmosphere. It was used to initialize a primitive equation model for the simulations of the Earth's atmosphere at the time of the El Chichon eruption in 1982. It is also used as an assimilation model to update the temperature and wind fields at frequent intervals.

  18. Self assembly properties of primitive organic compounds

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1991-01-01

    A central event in the origin of life was the self-assembly of amphiphilic, lipid-like compounds into closed microenvironments. If a primitive macromolecular replicating system could be encapsulated within a vesicular membrane, the components of the system would share the same microenvironment, and the result would be a step toward true cellular function. The goal of our research has been to determine what amphiphilic molecules might plausibly have been available on the early Earth to participate in the formation of such boundary structures. To this end, we have investigated primitive organic mixtures present in carbonaceous meteorites such as the Murchison meteorite, which contains 1-2 percent of its mass in the form of organic carbon compounds. It is likely that such compounds contributed to the inventory of organic carbon on the prebiotic earth, and were available to participate in chemical evolution leading to the emergence of the first cellular life forms. We found that Murchison components extracted into non-polar solvent systems are surface active, a clear indication of amphiphilic character. One acidic fraction self-assembles into vesicular membranes that provide permeability barriers to polar solutes. Other evidence indicates that the membranes are bimolecular layers similar to those formed by contemporary membrane lipids. We conclude that bilayer membrane formation by primitive amphiphiles on the early Earth is feasible. However, only a minor fraction of acidic amphiphiles assembles into bilayers, and the resulting membranes require narrowly defined conditions of pH and ionic composition to be stable. It seems unlikely, therefore, that meteoritic infall was a direct source of membrane amphiphiles. Instead, the hydrocarbon components and their derivatives more probably would provide an organic stock available for chemical evolution. Our current research is directed at possible reactions which would generate substantial quantities of membranogenic amphiphiles. One possibility is photochemical oxidation of hydrocarbons.

  19. The origin and early evolution of life on Earth.

    PubMed

    Oró, J; Miller, S L; Lazcano, A

    1990-01-01

    We do not have a detailed knowledge of the processes that led to the appearance of life on Earth. In this review we bring together some of the most important results that have provided insights into the cosmic and primitive Earth environments, particularly those environments in which life is thought to have originated. To do so, we first discuss the evidence bearing on the antiquity of life on our planet and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar system bodies such as comets, dark asteroids, and carbonaceous chondrites. This is followed by a discussion on the environmental models of the Hadean and early Archean Earth, as well as on the prebiotic formation of organic monomers and polymers essential to life. We then consider the processes that may have led to the appearance in the Archean of the first cells, and how these processes may have affected the early steps of biological evolution. Finally, the significance of these results to the study of the distribution of life in the Universe is discussed.

  20. Characterization of complex organics produced by proton irradiation of simulated Titan atmosphere

    NASA Astrophysics Data System (ADS)

    Taniuchi, T.; Hosogai, T.; Kaneko, T.; Kobayashi, K.

    Titan the biggest satellite of Saturn has dense atmosphere that mainly consists of nitrogen and methane Voyager observation showed the presence of organic haze in Titan atmosphere Some scientists suggested the existence liquid hydrocarbon and water ice on surface Recently Huygens probe sent the analytical data about organic aerosol in Titan atmosphere to the Earth while in the Cassini-Huygens Mission It is supposed that Titan has somewhat similar environments to the primitive Earth so many observations and simulation experiments have been done where mainly UV light or electric discharges are used as energy sources Khare and Sagan reported that the organic materials produced by electric discharges in simulated Titan atmosphere tholin had structure with hydrocarbons nitriles hetero aromatic compounds and so on and that tholin yielded amino acids after hydrolysis They simulated the condition of upper atmosphere of Titan Though cosmic rays are possible effective energy source near the surface on Titan for the formation of organic compounds there were few laboratory simulations of cosmic ray tholin In this study we irradiated proton beam to the mixture of nitrogen and methane to verify the possibile formation of cosmic ray tholin in lower Titan atmosphere A mixture of methane 1-5 and nitrogen balance was irradiated with 3 MeV proton from a van de Graaff accelerator The resulting tholin was analyzed by Pyrolysis Py -GC MS and 1 H NMR to estimate the structure Gel permeation chromatography GPC and

  1. Agile Science Operations: A New Approach for Primitive Exploration Bodies

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Thompson, David R.; Castillo-Rogez, Julie C.; Doyle, Richard; Estlin, Tara; Mclaren, David

    2012-01-01

    Primitive body exploration missions such as potential Comet Surface Sample Return or Trojan Tour and Rendezvous would challenge traditional operations practices. Earth-based observations would provide only basic understanding before arrival and many science goals would be defined during the initial rendezvous. It could be necessary to revise trajectories and observation plans to quickly characterize the target for safe, effective observations. Detection of outgassing activity and monitoring of comet surface activity are even more time constrained, with events occurring faster than round-trip light time. "Agile science operations" address these challenges with contingency plans that recognize the intrinsic uncertainty in the operating environment and science objectives. Planning for multiple alternatives can significantly improve the time required to repair and validate spacecraft command sequences. When appropriate, time-critical decisions can be automated and shifted to the spacecraft for immediate access to instrument data. Mirrored planning systems on both sides of the light-time gap permit transfer of authority back and forth as needed. We survey relevant science objectives, identifying time bottlenecks and the techniques that could be used to speed missions' reaction to new science data. Finally, we discuss the results of a trade study simulating agile observations during flyby and comet rendezvous scenarios. These experiments quantify instrument coverage of key surface features as a function of planning turnaround time. Careful application of agile operations techniques can play a significant role in realizing the Decadal Survey plan for primitive body exploration

  2. Polycyclic aromatic hydrocarbons - Primitive pigment systems in the prebiotic environment

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1992-01-01

    The chemical evolution of meteoritic organics in the primitive earth is examined experimentally with attention given to the photochemical effects of hydrocarbon/water mixtures. Also addressed are the generation of amphiphilic products by photochemical reactions and the transduction of light energy into potentially useful forms. Polycyclic aromatic hydrocarbons (PAHs) absorb light and exist in carbonaceous chondrites; PAHs are therefore examined as primitive pigments by means of salt solutions with pyrene, fluoranthene, and pyrene derivatives with hexadecane. The hexadecane undergoes photochemical oxidation and yields long-chain amphiphiles with oxygen supplied by water, and acid pH shifts also occur. PAHs are also tested in lipid bilayer membranes to examine light-energy transduction. Protons are found to accumulate within the membrane-bounded volume to form proton gradients, and this reaction is theorized to be a good model of primitive photochemical reactions that related to the transduction of light energy into useable forms.

  3. The record of mantle heterogeneity preserved in Earth's oceanic crust

    NASA Astrophysics Data System (ADS)

    Burton, K. W.; Parkinson, I. J.; Schiano, P.; Gannoun, A.; Laubier, M.

    2017-12-01

    Earth's oceanic crust is produced by melting of the upper mantle where it upwells beneath mid-ocean ridges, and provides a geographically widespread elemental and isotopic `sample' of Earth's mantle. The chemistry of mid-ocean ridge basalts (MORB), therefore, holds key information on the compositional diversity of the upper mantle, but the problem remains that mixing and reaction during melt ascent acts to homogenise the chemical variations they acquire. Nearly all isotope and elemental data obtained thus far are for measurements of MORB glass, and this represents the final melt to crystallise, evolving in an open system. However, the crystals that are present are often not in equilibrium with their glass host. Melts trapped in these minerals indicate that they crystallised from primitive magmas that possess diverse compositions compared to the glass. Therefore, these melt inclusions preserve information on the true extent of the mantle that sources MORB, but are rarely amenable to precise isotope measurement. An alternative approach is to measure the isotope composition of the primitive minerals themselves. Our new isotope data indicates that these minerals crystallised from melts with significantly different isotope compositions to their glass host, pointing to a mantle source that has experienced extreme melt depletion. These primitive minerals largely crystallised in the lower oceanic crust, and our preliminary data for lower crustal rocks and minerals shows that they preserve a remarkable range of isotope compositions. Taken together, these results indicate that the upper mantle sampled by MORB is extremely heterogeneous, reflecting depletion and enrichment over much of Earth's geological history.

  4. Conducting Miller-Urey Experiments

    NASA Technical Reports Server (NTRS)

    Parker, Eric Thomas; Cleaves, Henderson James; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason; Zhou, Manshui; Bada, Jeffrey L.; Fernandez, Facundo M.

    2014-01-01

    In 1953, Stanley Miller reported the production of biomolecules from simple gaseous starting materials, using apparatus constructed to simulate the primordial Earth's atmosphere-ocean system. Miller introduced 200 ml of water, 100 mmHg of H2, 200mmHg of CH4, and 200mmHg of NH3 into the apparatus, then subjected this mixture, under reflux, to an electric discharge for a week, while the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask. Since the experiment involves exposing inflammable gases to a high voltage discharge, it is worth highlighting important steps that reduce the risk of explosion. The general procedures described in this work can be extrapolated to design and conduct a wide variety of electric discharge experiments simulating primitive planetary environments.

  5. Quantifying chain reptation in entangled polymer melts: Topological and dynamical mapping of atomistic simulation results onto the tube model

    NASA Astrophysics Data System (ADS)

    Stephanou, Pavlos S.; Baig, Chunggi; Tsolou, Georgia; Mavrantzas, Vlasis G.; Kröger, Martin

    2010-03-01

    The topological state of entangled polymers has been analyzed recently in terms of primitive paths which allowed obtaining reliable predictions of the static (statistical) properties of the underlying entanglement network for a number of polymer melts. Through a systematic methodology that first maps atomistic molecular dynamics (MD) trajectories onto time trajectories of primitive chains and then documents primitive chain motion in terms of a curvilinear diffusion in a tubelike region around the coarse-grained chain contour, we are extending these static approaches here even further by computing the most fundamental function of the reptation theory, namely, the probability ψ(s,t) that a segment s of the primitive chain remains inside the initial tube after time t, accounting directly for contour length fluctuations and constraint release. The effective diameter of the tube is independently evaluated by observing tube constraints either on atomistic displacements or on the displacement of primitive chain segments orthogonal to the initial primitive path. Having computed the tube diameter, the tube itself around each primitive path is constructed by visiting each entanglement strand along the primitive path one after the other and approximating it by the space of a small cylinder having the same axis as the entanglement strand itself and a diameter equal to the estimated effective tube diameter. Reptation of the primitive chain longitudinally inside the effective constraining tube as well as local transverse fluctuations of the chain driven mainly from constraint release and regeneration mechanisms are evident in the simulation results; the latter causes parts of the chains to venture outside their average tube surface for certain periods of time. The computed ψ(s,t) curves account directly for both of these phenomena, as well as for contour length fluctuations, since all of them are automatically captured in the atomistic simulations. Linear viscoelastic properties such as the zero shear rate viscosity and the spectra of storage and loss moduli obtained on the basis of the obtained ψ(s,t) curves for three different polymer melts (polyethylene, cis-1,4-polybutadiene, and trans-1,4-polybutadiene) are consistent with experimental rheological data and in qualitative agreement with the double reptation and dual constraint models. The new methodology is general and can be routinely applied to analyze primitive path dynamics and chain reptation in atomistic trajectories (accumulated through long MD simulations) of other model polymers or polymeric systems (e.g., bidisperse, branched, grafted, etc.); it is thus believed to be particularly useful in the future in evaluating proposed tube models and developing more accurate theories for entangled systems.

  6. Some lessons and thoughts from development of an old-fashioned high-resolution atmospheric general circulation model

    NASA Astrophysics Data System (ADS)

    Ohfuchi, Wataru; Enomoto, Takeshi; Yoshioka, Mayumi K.; Takaya, Koutarou

    2014-05-01

    Some high-resolution simulations with a conventional atmospheric general circulation model (AGCM) were conducted right after the first Earth Simulator started operating in the spring of 2002. More simulations with various resolutions followed. The AGCM in this study, AFES (Agcm For the Earth Simulator), is a primitive equation spectral transform method model with a cumulus convection parameterization. In this presentation, some findings from comparisons between high and low-resolution simulations, and some future perspectives of old-fashioned AGCMs will be discussed. One obvious advantage of increasing resolution is capability of resolving the fine structures of topography and atmospheric flow. By increasing resolution from T39 (about 320 km horizontal grid interval) to T79 (160 km), to T159 (80 km) to T319 (40 km), topographic precipitation over Japan becomes increasingly realistic. This feature is necessary for climate and weather studies involving both global and local aspects. In order to resolve submesoscale (about 100 km horizontal scale) atmospheric circulation, about 10-km grid interval is necessary. Comparing T1279 (10 km) simulations with T319 ones, it is found that, for example, the intensity of heavy rain associated with Baiu front and the central pressure of typhoon become more realistic. These realistic submesoscale phenomena should have impact on larger-sale flow through dynamics and thermodynamics. An interesting finding by increasing horizontal resolution of a conventional AGCM is that some cumulus convection parameterizations, such as Arakawa-Schubert type scheme, gradually stop producing precipitation, while some others, such as Emanuel type, do not. With the former, the grid condensation increases with the model resolution to compensate. Which characteristics are more desirable is arguable but it is an important feature one has to consider when developing a high-resolution conventional AGCM. Many may think that conventional primitive equation spectral transform AGCMs, such as AFES, have no future. Developing globally homogeneous nonhydrostatic cloud resolving grid AGCMs is obviously a straightforward direction for the future. However these models will be very expensive for many users for a while, perhaps for the next some decades. On the other hand, old-fashioned AGCMs with a grid interval of 20-100 km will remain to be accurate and efficient tools for many users for many years to come. Also by coupling with a fine-resolution regional nonhydrostatic model, a conventional AGCM may overcome its limitation for use in climate and weather studies in the future.

  7. Seeding life on the moons of the outer planets via lithopanspermia.

    PubMed

    Worth, R J; Sigurdsson, Steinn; House, Christopher H

    2013-12-01

    Material from the surface of a planet can be ejected into space by a large impact and could carry primitive life-forms with it. We performed n-body simulations of such ejecta to determine where in the Solar System rock from Earth and Mars may end up. We found that, in addition to frequent transfer of material among the terrestrial planets, transfer of material from Earth and Mars to the moons of Jupiter and Saturn is also possible, but rare. We expect that such transfers were most likely to occur during the Late Heavy Bombardment or during the ensuing 1-2 billion years. At this time, the icy moons were warmer and likely had little or no ice shell to prevent meteorites from reaching their liquid interiors. We also note significant rates of re-impact in the first million years after ejection. This could re-seed life on a planet after partial or complete sterilization by a large impact, which would aid the survival of early life during the Late Heavy Bombardment.

  8. The organic inventory of primitive meteorites

    NASA Astrophysics Data System (ADS)

    Martins, Zita

    Carbonaceous meteorites are primitive samples that provide crucial information about the solar system genesis and evolution. This class of meteorites has also a rich organic inventory, which may have contributed the first prebiotic building blocks of life to the early Earth. We have studied the soluble organic inventory of several CR and CM meteorites, using high performance liquid chromatography with UV fluorescence detection (HPLC-FD), gas chromatography-mass spectrometry (GC-MS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our target organic molecules include amino acids, nucleobases and polycyclic aromatic hydrocarbons (PAHs), among others. CR chondrites contain the highest amino acids concentration ever detected in a meteorite. The degree of aqueous alteration amongst this class of meteorites seems to be responsible for the amino acid distribution. Pioneering compound-specific carbon isotope measurements of nucleobases present in carbonaceous chondrites show that these compounds have a non-terrestrial origin. This suggests that components of the ge-netic code may have had a crucial role in life's origin. Investigating the abundances, distribution and isotopic composition of organic molecules in primitive meteorites significantly improves our knowledge of the chemistry of the early solar system, and the resources available for the first living organisms on Earth.

  9. A key heterogeneous structure of fractal networks based on inverse renormalization scheme

    NASA Astrophysics Data System (ADS)

    Bai, Yanan; Huang, Ning; Sun, Lina

    2018-06-01

    Self-similarity property of complex networks was found by the application of renormalization group theory. Based on this theory, network topologies can be classified into universality classes in the space of configurations. In return, through inverse renormalization scheme, a given primitive structure can grow into a pure fractal network, then adding different types of shortcuts, it exhibits different characteristics of complex networks. However, the effect of primitive structure on networks structural property has received less attention. In this paper, we introduce a degree variance index to measure the dispersion of nodes degree in the primitive structure, and investigate the effect of the primitive structure on network structural property quantified by network efficiency. Numerical simulations and theoretical analysis show a primitive structure is a key heterogeneous structure of generated networks based on inverse renormalization scheme, whether or not adding shortcuts, and the network efficiency is positively correlated with degree variance of the primitive structure.

  10. Gas Phase Chemistry and Molecular Complexity: How Far Do They Go?

    NASA Astrophysics Data System (ADS)

    Balucani, Nadia

    2016-07-01

    The accumulation of organic molecules of increasing complexity is believed to be an important step toward the emergence of life. But how massive organic synthesis could occur in primitive Earth, i.e. a water-dominated environment, is a matter of debate. Two alternative theories have been suggested so far: endogenous and exogenous synthesis. In the first theory, the synthesis of simple organic molecules having a strong prebiotic potential (simple prebiotic molecules SPMs, such as H2CO, HCN, HC3N, NH2CHO) occurred directly on our planet starting from simple parent molecules of the atmosphere, liquid water and various energy sources. Miller's experiment was a milestone in this theory, but it was later recognized that the complexity of a planet cannot be reproduced in a single laboratory experiment. Some SPMs have been identified in the N2-dominated atmosphere of Titan (a massive moon of Saturn), which is believed to be reminiscent of the primitive terrestrial atmosphere. As such, the atmosphere of Titan represents a planetary scale laboratory for the comprehension of SPM formation in an environment close enough to primitive Earth and is the current frontier in the endogenous theory exploration. In the exogenous theory, SPMs came from space, the carriers being comets, asteroids and meteorites. The rationale behind this suggestion is that plenty of SPMs have been observed in interstellar clouds (ISCs), including star-forming regions, and in small bodies like comets, asteroids and meteorites. Therefore, the basic idea is that SPMs were formed in the solar nebula, preserved during the early phases of the Solar System formation in the body of comets/asteroids/meteorites and finally delivered to Earth by cometary and meteoritic falls. In this contribution, the status of our knowledge on how SPMs can be formed in the gas phase, either in the primitive terrestrial atmosphere or in the cold nebula from which the Solar System originated, will be presented. Particular attention will be given to neutral-neutral reactions.

  11. The Origins of the RNA World

    PubMed Central

    Robertson, Michael P; Joyce, Gerald F

    2012-01-01

    The general notion of an “RNA World” is that, in the early development of life on the Earth, genetic continuity was assured by the replication of RNA and genetically encoded proteins were not involved as catalysts. There is now strong evidence indicating that an RNA World did indeed exist before DNA- and protein-based life. However, arguments regarding whether life on Earth began with RNA are more tenuous. It might be imagined that all of the components of RNA were available in some prebiotic pool, and that these components assembled into replicating, evolving polynucleotides without the prior existence of any evolved macromolecules. A thorough consideration of this “RNA-first” view of the origin of life must reconcile concerns regarding the intractable mixtures that are obtained in experiments designed to simulate the chemistry of the primitive Earth. Perhaps these concerns will eventually be resolved, and recent experimental findings provide some reason for optimism. However, the problem of the origin of the RNA World is far from being solved, and it is fruitful to consider the alternative possibility that RNA was preceded by some other replicating, evolving molecule, just as DNA and proteins were preceded by RNA. PMID:20739415

  12. Global Evolution of the Earth's Magnetosphere in Response to a Sudden Ring Current Injection

    NASA Astrophysics Data System (ADS)

    No, Jincheol; Choe, Gwangson; Park, Geunseok

    2014-05-01

    The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.

  13. Foundations of Nuclear Geophysics

    NASA Astrophysics Data System (ADS)

    Herndon, J. M.; Hollenbach, D. F.

    2002-05-01

    Herndon suggested that the inner core of the Earth consists, not of partially crystallized iron metal, but of nickel silicide. He has shown by fundamental mass ratios that i) the Earth as a whole, especially the inner 82%, has a state of oxidation like primitive enstatite chondrites, and ii) the lower mantle and core are similar in composition to the Abee enstatite chondrite. By analogy with Abee data, CaS and MgS precipitates from the core are expected to collect at the core-mantle boundary and, significantly, a major fraction of the actinides are expected to precipitate from the core and to collect at the center of the Earth. Herndon demonstrated the feasibility of a nuclear fission reactor at the center of the Earth as the energy source for the geomagnetic field and described a natural mechanism that would lead to variations in energy production and thus variations in the geomagnetic field. Hollenbach and Herndon produced numerical simulations of the operation of the geo-reactor over the lifetime of the Earth using the state-of-the-art, validated, industry standard SCALE code package developed at Oak Ridge National Laboratory. The results clearly demonstrate that such a geo-reactor would i) function as a fast-neutron breeder reactor; ii) under appropriate conditions, operate over the entire period of geologic time; iii) function in such a manner as to yield variable and/or intermittent output; iv) generate energy at levels in the range generally accepted by the geophysics community; and, v) produce He-3 and He-4 in ratios that are in the range observed from deep-mantle sources. Deep-source He-3, the authors submit, is evidence of in-core sustained nuclear fission, rather than the out-gassing of primordial He-3; which in turn is evidence of large amounts of uranium residing in the Earth's core; which in turn is evidence that the core has a state of oxidation like the corresponding matter in primitive enstatite chondrites. The factors affecting He-3/He-4 ratios, their causes and implications, will be discussed in the presentation. Also, the current state of investigations into additional deep-Earth nuclear fission signatures will be presented. References: J. M. Herndon, Proc. R. Roc. London, Ser. A, 368 (1979) 495; J. Geomagn. Geoelectr. 45 (1993) 423; Proc. R. Soc. London, Ser. A, 445 (1994) 453; Proc. Nat. Acad. Sci. (USA) 93 (1996) 646. Hollenbach, D. F. and J. M. Herndon, Proc. Nat. Acad. Sci. (USA) 98 (2001) 11085.

  14. Comment on "A non-primitive origin of near-chondritic Ssbnd Sesbnd Te ratios in mantle peridotites: Implications for the Earth's late accretionary history" by König S. et al. [Earth Planet. Sci. Lett. 385 (2014) 110-121

    NASA Astrophysics Data System (ADS)

    Wang, Zaicong; Becker, Harry

    2015-05-01

    The abundances and ratios of S, Se and Te in rocks from the Earth's mantle may yield valuable constraints on the partitioning of these chalcophile elements between the mantle and basaltic magmas and on the compositions of these elements in the primitive mantle (PM) (e.g. Wang and Becker, 2013). Recently, König et al. (2014) proposed a model in which the CI chondrite-like Se/Te of mantle lherzolites (Se /Te = 8 ± 2, 1σ) are explained by mixing of sulfide melts with low Se/Te with harzburgites containing supposedly residual sulfides with high Se/Te. In this model sulfide melts and platinum group element (PGE) rich telluride phases with low Se/Te are assumed to have precipitated during refertilization of harzburgites by basic melts to form lherzolites. Because of the secondary nature of these re-enrichment processes, the authors state that abundances and ratios of S, Se and Te in fertile lherzolites cannot reflect the composition of the PM.

  15. Evidence for magma oceans on asteroids, the moon, and Earth

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey; Norman, Marc D.

    1992-01-01

    There are sound theoretical reasons to suspect that the terrestrial planets melted when they formed. For Earth, the reasons stem largely from the hypothesis that the moon formed as a result of the impact of a Mars-sized planetesimal with the still accreting Earth. Such a monumental event would have led to widespread heating of the Earth and the materials from which the moon was made. In addition, formation of a dense atmosphere on the Earth (and possibly the Moon) would have led to retention of accretional heat and, thus, widespread melting. In other words, contemporary theory suggests that the primitive Moon and terrestrial planets had magma oceans.

  16. The Dynamical Evolution of the Earth-Moon Progenitors. 1; Motivation and Methodology

    NASA Technical Reports Server (NTRS)

    Lissuer, Jack; Rivera, E.; Duncan, M. J.; Levison, H. F.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    The Giant Impact Hypothesis was introduced in the mid-1970's after consideration of results from the Apollo Moon missions. This hypothesis best explains the similarity in elemental proportions in lunar and terrestrial rocks, the depletion of lunar volatiles, the lack of lunar iron. and the large angular momentum in the Earth-Moon system. Comparison between the radiometric ages of inclusions in the most primitive meteorites and those of inclusions in the oldest lunar rocks and the differentiation age of Earth suggests that the Earth-Moon system formed about 100 Myr after the oldest meteorites. In addition, the age of the famous Martian meteorite ALH84001 and an early solidification time estimated from the Martian crust, suggest that the inner Solar System was fairly clear of large bodies about 10 Myr after the oldest meteorites formed. Thus, the 'standard model' suggests that for a period of several tens of millions of years the terrestrial planet region had few. if any, lunar-sized bodies and there were five terrestrial planets, Mercury, Venus, the two progenitors of the Earth-Moon system, and Mars. To simulate the dynamics of the Solar System before the hypothesized Moon-forming impact, we are integrating the Solar System with the Earth-Moon system replaced by two bodies in heliocentric orbits between Venus and Mars. The total (orbital) angular momentum of the Earth-Moon progenitors is that of the present Earth-Moon system, and their total mass is that of the Earth-Moon system. We are looking at ranges in mass ratio and initial values for eccentricity, inclination. and semi-major axis. We are using the SYMBA integrator to integrate these systems until a collision occurs or a time of 200 Myr elapses. Results are presented in a companion paper.

  17. The Dynamical Evolution of the Earth-Moon Progenitors. 1; Motivation and Methodology

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Rivera, E.; Duncan, M. J.; Levison, H. F.

    1998-01-01

    The giant impact hypothesis was introduced in the mid-1970s after consideration of results from the Apollo missions. This hypothesis best explains the similarity in elemental proportions in lunar and terrestrial rocks, the depletion of lunar volatiles, the lack of lunar Fe, and the large angular momentum in the Earth-Moon system. Comparison between the radiometric ages of inclusions in the most primitive meteorites and in the oldest lunar rocks and the differentiation age of Earth suggests that the Earth-Moon system formed about100 m.y. after the oldest meteorites. In addition, the age of the famous martian meteorite ALH 84001 and an early Martian solidification time obtained by Lee and Halliday suggest that the inner solar system was fairly clear of large bodies about 10 m.y. after the oldest meteorites formed. Thus, the "standard model" suggests that for several tens of millions of years, the terrestrial planet region had few, if any, lunar-sized bodies, and there were five terrestrial planets: Mercury, Venus, the two progenitors of the Earth-Moon system, and Mars. To simulate the dynamics of the solar system before the hypothesized Moon-forming impact, we are integrating the solar system with the Earth-Moon system replaced by two bodies in heliocentric orbits between Venus and Mars. The total (orbital) angular momentum of the Earth-Moon progenitors is that of the present Earth-Moon system, and their total mass is that of the Earth-Moon System. We are looking at ranges in mass ratio and initial values for eccentricity, inclination, and semimajor axis. We are using the SYMBA integrator to integrate these systems until a collision occurs or a time of 200 m.y. elapses. Results are presented in a companion abstract, (also presented at this meeting).

  18. Abundant ammonia in primitive asteroids and the case for a possible exobiology

    PubMed Central

    Pizzarello, Sandra; Williams, Lynda B.; Lehman, Jennifer; Holland, Gregory P.; Yarger, Jeffery L.

    2011-01-01

    Carbonaceous chondrites are asteroidal meteorites that contain abundant organic materials. Given that meteorites and comets have reached the Earth since it formed, it has been proposed that the exogenous influx from these bodies provided the organic inventories necessary for the emergence of life. The carbonaceous meteorites of the Renazzo-type family (CR) have recently revealed a composition that is particularly enriched in small soluble organic molecules, such as the amino acids glycine and alanine, which could support this possibility. We have now analyzed the insoluble and the largest organic component of the CR2 Grave Nunataks (GRA) 95229 meteorite and found it to be of more primitive composition than in other meteorites and to release abundant free ammonia upon hydrothermal treatment. The findings appear to trace CR2 meteorites’ origin to cosmochemical regimes where ammonia was pervasive, and we speculate that their delivery to the early Earth could have fostered prebiotic molecular evolution. PMID:21368183

  19. Visible spectroscopy of the Sulamitis and Clarissa primitive families: a possible link to Erigone and Polana

    NASA Astrophysics Data System (ADS)

    Morate, David; de León, Julia; De Prá, Mário; Licandro, Javier; Cabrera-Lavers, Antonio; Campins, Humberto; Pinilla-Alonso, Noemí

    2018-02-01

    The low-inclination (i < 8∘) primitive asteroid families in the inner main belt, that is, Polana-Eulalia, Erigone, Sulamitis, and Clarissa, are considered to be the most likely sources of near-Earth asteroids (101955) Bennu and (162173) Ryugu. These two primitive NEAs will be visited by NASA OSIRIS-REx and JAXA Hayabusa 2 missions, respectively, with the aim of collecting samples of material from their surfaces and returning them back to Earth. In this context, the PRIMitive Asteroid Spectroscopic Survey (PRIMASS) was born, with the main aim to characterize the possible origins of these NEAs and constrain their dynamical evolution. As part of the PRIMASS survey we have already studied the Polana and Erigone collisional families in previously published works. The main goal of the work presented here is to compositionally characterize the Sulamitis and Clarissa families using visible spectroscopy. We have observed 97 asteroids (64 from Sulamitis and 33 from Clarissa) with the OSIRIS instrument (0.5-0.9 μm) at the 10.4 m Gran Telescopio Canarias (GTC). We found that about 60% of the sampled asteroids from the Sulamitis family show signs of aqueous alteration on their surfaces. We also found that the majority of the Clarissa members present no signs of hydration. The results obtained here show similarities between Sulamitis-Erigone and Clarissa-Polana collisional families. The reduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A25

  20. Free energy and phase equilibria for the restricted primitive model of ionic fluids from Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Orkoulas, Gerassimos; Panagiotopoulos, Athanassios Z.

    1994-07-01

    In this work, we investigate the liquid-vapor phase transition of the restricted primitive model of ionic fluids. We show that at the low temperatures where the phase transition occurs, the system cannot be studied by conventional molecular simulation methods because convergence to equilibrium is slow. To accelerate convergence, we propose cluster Monte Carlo moves capable of moving more than one particle at a time. We then address the issue of charged particle transfers in grand canonical and Gibbs ensemble Monte Carlo simulations, for which we propose a biased particle insertion/destruction scheme capable of sampling short interparticle distances. We compute the chemical potential for the restricted primitive model as a function of temperature and density from grand canonical Monte Carlo simulations and the phase envelope from Gibbs Monte Carlo simulations. Our calculated phase coexistence curve is in agreement with recent results of Caillol obtained on the four-dimensional hypersphere and our own earlier Gibbs ensemble simulations with single-ion transfers, with the exception of the critical temperature, which is lower in the current calculations. Our best estimates for the critical parameters are T*c=0.053, ρ*c=0.025. We conclude with possible future applications of the biased techniques developed here for phase equilibrium calculations for ionic fluids.

  1. Perceptual integration of kinematic components in the recognition of emotional facial expressions.

    PubMed

    Chiovetto, Enrico; Curio, Cristóbal; Endres, Dominik; Giese, Martin

    2018-04-01

    According to a long-standing hypothesis in motor control, complex body motion is organized in terms of movement primitives, reducing massively the dimensionality of the underlying control problems. For body movements, this low-dimensional organization has been convincingly demonstrated by the learning of low-dimensional representations from kinematic and EMG data. In contrast, the effective dimensionality of dynamic facial expressions is unknown, and dominant analysis approaches have been based on heuristically defined facial "action units," which reflect contributions of individual face muscles. We determined the effective dimensionality of dynamic facial expressions by learning of a low-dimensional model from 11 facial expressions. We found an amazingly low dimensionality with only two movement primitives being sufficient to simulate these dynamic expressions with high accuracy. This low dimensionality is confirmed statistically, by Bayesian model comparison of models with different numbers of primitives, and by a psychophysical experiment that demonstrates that expressions, simulated with only two primitives, are indistinguishable from natural ones. In addition, we find statistically optimal integration of the emotion information specified by these primitives in visual perception. Taken together, our results indicate that facial expressions might be controlled by a very small number of independent control units, permitting very low-dimensional parametrization of the associated facial expression.

  2. Workshop on Evolution of Martian Volatiles. Part 1

    NASA Technical Reports Server (NTRS)

    Jakosky, B. (Editor); Treiman, A. (Editor)

    1996-01-01

    This volume contains papers that were presented on February 12-14, 1996 at the Evolution for Martian Volatiles Workshop. Topics in this volume include: returned Martian samples; acidic volatiles and the Mars soil; solar EUV Radiation; the ancient Mars Thermosphere; primitive methane atmospheres on Earth and Mars; the evolution of Martian water; the role of SO2 for the climate history of Mars; impact crater morphology; the formation of the Martian drainage system; atmospheric dust-water ice Interactions; volatiles and volcanos; accretion of interplanetary dust particles; Mars' ionosphere; simulations with the NASA Ames Mars General Circulation Model; modeling the Martian water cycle; the evolution of Martian atmosphere; isotopic composition; solar occultation; magnetic fields; photochemical weathering; NASA's Mars Surveyor Program; iron formations; measurements of Martian atmospheric water vapor; and the thermal evolution Models of Mars.

  3. Were micrometeorites a source of prebiotic molecules on the early Earth?

    PubMed

    Maurette, M; Brack, A; Kurat, G; Perreau, M; Engrand, C

    1995-03-01

    "Interplanetary Dust Particles" with sizes approximately 10 micrometers collected in the stratosphere (IDPs), as well as much larger "giant" micrometeorites retrieved from Antarctic ice melt water (AMMs), are mostly composed of unequilibrated assemblages of minerals, thus being related to primitive unequilibrated meteorites. Two independent evaluations of the mass flux of micrometeorites measuring approximately 50 micrometers to approximately 200 micrometers, recovered from either the Greenland or the Antarctic ice sheets have been reported (approximately 20,000 tons/a). A comparison with recent evaluation of the flux of meteorites reaching the Earth's surface (up to masses of 10,000 tons), indicates that micrometeorites represent about 99.5% of the extraterrestrial material falling on the Earth's surface each year. As they show carbon concentrations exceeding that of the most C-rich meteorite (Orgueil), they are the major contributors of extraterrestrial C-rich matter accreting to the Earth today. Moreover they are complex microstructured aggregates of grains. They contain not only a variety of C-rich matter, such as a new "dirty" magnetite phase enriched in P, S, and minor elements, but also a diversity of potential catalysts (hydrous silicates, oxides, sulfides and metal grains of Fe/Ni composition, etc.). They could have individually functioned on the early Earth, as "micro-chondritic-reactors" for the processing of prebiotic organic molecules in liquid water. Future progress requires the challenging development of meaningful laboratory simulation experiments, and a better understanding of the partial reprocessing of micrometeorites in the atmosphere.

  4. Open system models of isotopic evolution in Earth's silicate reservoirs: Implications for crustal growth and mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Kumari, Seema; Paul, Debajyoti; Stracke, Andreas

    2016-12-01

    An open system evolutionary model of the Earth, comprising continental crust (CC), upper and lower mantle (UM, LM), and an additional isolated reservoir (IR) has been developed to study the isotopic evolution of the silicate Earth. The model is solved numerically at 1 Myr time steps over 4.55 Gyr of Earth history to reproduce both the present-day concentrations and isotope ratios of key radioactive decay systems (Rb-Sr, Sm-Nd, and U-Th-Pb) in these terrestrial reservoirs. Various crustal growth scenarios - continuous versus episodic and early versus late crustal growth - and their effect on the evolution of Sr-Nd-Pb isotope systematics in the silicate reservoirs have been evaluated. Modeling results where the present-day UM is ∼60% of the total mantle mass and a lower mantle that is non-primitive reproduce the estimated geochemical composition and isotope ratios in Earth's silicate reservoirs. The isotopic evolution of the silicate Earth is strongly affected by the mode of crustal growth; only an exponential crustal growth pattern with crustal growth since the early Archean satisfactorily explains the chemical and isotopic evolution of the crust-mantle system and accounts for the so-called Pb paradoxes. Assuming that the OIB source is located in the deeper mantle, our model could, however, not reproduce its target ɛNd of +4.6 for the UM, which has been estimated from the average isotope ratios of 32 individual ocean island localities. Hence, either mantle plumes sample the LM in a non-representative way, or the simplified model set-up does not capture the full complexity of Earth's lower mantle (Nd isotope) evolution. Compared to the results obtained for a 4.55 Ga Earth, a model assuming a protracted U-Pb evolution of silicate Earth by ca. 100 Myr reproduces a slightly better fit for the Pb isotope ratios in Earth's silicate reservoirs. One notable feature of successful models is the early depletion of incompatible elements (as well as rapid decrease in Th/U) in the UM within the initial 500 Myr, as a result of early formation of CC, which supports other evidence in favor of the presence of Hadean continental crust. Therefore, a chondritic Th/U ratio (4 ± 0.2) in the UM until 2 Gyr appears rather unlikely. We find that the κ conundrum - the observation that measured Th/U ratios and those deduced from 208Pb-206Pb isotope systematics differ - is a natural outcome of an open system evolution in which preferential recycling of U for the past 2 Gyr has played a dominant role. Overall, our simulations strongly favor exponential crustal growth, starting in the early Hadean, the transient preservation of compositionally distinct mantle reservoirs over billion year time periods, and a generally less incompatible element depleted, but non-primitive composition of the lower mantle.

  5. Seeding Life on the Moons of the Outer Planets via Lithopanspermia

    PubMed Central

    Sigurdsson, Steinn; House, Christopher H.

    2013-01-01

    Abstract Material from the surface of a planet can be ejected into space by a large impact and could carry primitive life-forms with it. We performed n-body simulations of such ejecta to determine where in the Solar System rock from Earth and Mars may end up. We found that, in addition to frequent transfer of material among the terrestrial planets, transfer of material from Earth and Mars to the moons of Jupiter and Saturn is also possible, but rare. We expect that such transfers were most likely to occur during the Late Heavy Bombardment or during the ensuing 1–2 billion years. At this time, the icy moons were warmer and likely had little or no ice shell to prevent meteorites from reaching their liquid interiors. We also note significant rates of re-impact in the first million years after ejection. This could re-seed life on a planet after partial or complete sterilization by a large impact, which would aid the survival of early life during the Late Heavy Bombardment. Key Words: Panspermia—Impact—Meteorites—Titan—Europa. Astrobiology 13, 1155–1165. PMID:24341459

  6. Determining Possible Building Blocks of the Earth

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; O'Brien, K. M.

    2003-01-01

    Introduction: One of the fundamental questions concerning the formation of the Earth is what is it made out of. The Earth appears to have condensed out of material from the solar nebula. We sample this "primitive" material in the form of chondritic meteorites. One of the most important constraints on possible building blocks for the Earth is the Earth#s oxygen iso-topic composition. Rocks from the Earth and Moon plot along a line (the terrestrial fractionation line) in diagrams of delta(sup 17)O (% relative to Standard Mean Ocean Water or SMOW) versus delta(sup 18)O (% relative to SMOW). Chondritic meteorites fall above and below this line. Distances from this line are given as Delta(sup 17)O (%) (= delta(sup 17)O - 0.52 x delta(sup 18)O).

  7. Origin of lead from green glass of Apollo 15426: a search for primitive lunar lead.

    USGS Publications Warehouse

    Tatsumoto, M.; Premo, W.R.; Unruh, D.M.

    1987-01-01

    A major obstacle in lunar U-Pb chronology is the elusiveness of the primary Pb isotopic composition and U/Pb ratio and therefore the Pb evolution for the early history of the moon. In an attempt to seek the primitive lunar Pb isotopoc composition, green glass from lunar clod 15426,49 was studied for U-Th-Pb systematics because it is extremely Mg-rich and known to be the most primitive among sampled lunar volcanic rocks. Because of the low Pb concentration and high U/Pb ratio observed for the interior, the initial Pb was poorly defined. Nevertheless, the data indicate that lunar Pb evolved in an environment with 238U/204Pb = 19-55, which is considerably lower than those for mare basalts (around 300) but higher than values for the Earth (6-8).-from Authors

  8. Prebiotic Synthesis of Methionine and Other Sulfur-Containing Organic Compounds on the Primitive Earth: A Contemporary Reassessment Based on an Unpublished 1958 Stanley Miller Experiment

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; Lazcano, Antonio

    2010-01-01

    Original extracts from an unpublished 1958 experiment conducted by the late Stanley L. Miller were recently found and analyzed using modern state-of-the-art analytical methods. The extracts were produced by the action of an electric discharge on a mixture of methane (CH4), hydrogen sulfide (H2S), ammonia (NH3), and carbon dioxide (CO2). Racemic methionine was farmed in significant yields, together with other sulfur-bearing organic compounds. The formation of methionine and other compounds from a model prebiotic atmosphere that contained H2S suggests that this type of synthesis is robust under reducing conditions, which may have existed either in the global primitive atmosphere or in localized volcanic environments on the early Earth. The presence of a wide array of sulfur-containing organic compounds produced by the decomposition of methionine and cysteine indicates that in addition to abiotic synthetic processes, degradation of organic compounds on the primordial Earth could have been important in diversifying the inventory of molecules of biochemical significance not readily formed from other abiotic reactions, or derived from extraterrestrial delivery.

  9. PRIMitive Asteroids Spectroscopic Survey - PRIMASS: First Results

    NASA Astrophysics Data System (ADS)

    de Leon, Julia; Pinilla-Alonso, Noemi; Campins, Humberto; Lorenzi, Vania; Licandro, Javier; Morate, David; Tanga, Paolo; Cellino, Alberto; Delbo, Marco

    2015-11-01

    NASA OSIRIS-REx and JAXA Hayabusa 2 sample-return missions have targeted two near-Earth asteroids: (101955) Bennu and (162173) 1999 JU3, respectively. These are primitive asteroids that are believed to originate in the inner belt, where five distinct sources have been identified: four primitive collisional families (Polana, Erigone, Sulamitis, and Clarissa), and a population of low-albedo and low-inclination background asteroids. Identifying and characterizing the populations from which these two NEAs might originate will enchance the science return of the two missions.With this main objective in mind, we initiated in 2010 a spectroscopic survey in the visible and the near-infrared to characterize the primitive collisional families in the inner belt and the low-albedo background population. This is the PRIMitive Asteroids Spectroscopic Survey - PRIMASS. So far we have obtained more than 200 spectra using telescopes located at different observatories. PRIMASS uses a variety of ground based facilities. Most of the spectra have been obtained using the 10.4m Gran Telescopio Canarias (GTC), and the 3.6m Telescopio Nazionale Galileo (TNG), both located at the El Roque de los Muchachos Observatory (La Palma, Spain), and the 3.0m NASA Infrared Telescope Facility on Mauna Kea (Hawai, USA).We present the first results from our on-going survey (de Leon et al. 2015; Pinilla-Alonso et al. 2015; Morate et al. 2015), focused on the Polana and the Erigone primitive families, with visible and near-infrared spectra of more than 200 objects, most of them with no previous spectroscopic data. Our survey is already the largest database of primitive asteroids spectra, and we keep obtaining data on the Sulamitis and the Clarissa families, as well as on the background low-albedo population.

  10. From Titan to the primitive Earth

    NASA Astrophysics Data System (ADS)

    Raulin, F.; Gpcos Team

    Our knowledge of the conditions prevailing in the environment of the primitive Earth is still very limited, due to the lack of geological data. Fortunately, there are a few planetary objects in the solar system which present similarities with our planet, including during its early history. Titan is one of these. With a diameter of more than 5100 km, Titan, the largest moon of Saturn, is also the only one to have a dense atmosphere. This atmosphere, clearly evidenced by the presence of haze layers, extends to approximately 1500 km. Like the Earth, Titan's atmosphere is mainly composed of dinitrogen, N2 . The other main constituents are methane, CH4 , about 1.6% to 2.0% in the stratosphere, as measured by CIRS on Cassini and GC-MS on Huygens and dihydrogen (H2 , approximate 0.1%). With surface temperatures of approximately 94 K, and an average surface pressure of 1.5 bar, Titan's atmosphere is nearly five times denser than the Earth's. Despite of these differences between Titan and the Earth there are several analogies that can be drawn between the two planetary bodies. The first resemblances concern the vertical atmospheric structure. Although Titan is much colder, with a troposphere (˜94-˜70 K), a tropopause (70.4 K) and a stratosphere (˜70-175 K) its atmosphere presents a similar complex structure to that of the Earth. These analogies are linked to the presence in both atmospheres of greenhouse gases: CH4 and H2 on Titan, equivalent respectively to terrestrial condensable H2 O and non-condensable CO2 . In addition the haze particles and clouds in Titan's atmosphere play an antigreenhouse effect similar to that of the terrestrial atmospheric aerosols and clouds. Indeed, methane on Titan seems to play the role of water on the Earth, with a complex cycle, which still has to be understood. The possibility that Titan is covered with hydrocarbon oceans is now ruled out, but it is still possible that Titan's surface include lakes of methane and ethane. Moreover, the DISR instrument on Huygens has provided pictures of Titan's surface which clearly shows dentritic structures strongly suggesting recent liquid flow on the surface of Titan. In addition, the Huygens GCMS data show that methane mole fraction increases in the low troposphere (up to 5%) and reaches the saturation level at approximately 8 km altitude, allowing the possible formation of clouds and rain. Furthermore, GC-MS analyses recorded a 50% increase 1 in the methane mole fraction at Titan's surface, suggesting the presence of condensed methane on the surface near the lander. Other observations from the Cassini instruments clearly show the presence of various surface features of different origins indicative of volcanic, tectonic, sedimentological and meteorological processes.as we find on Earth .INMS on Cassini and GC-MS on Huygens have detected the presence of argon in the atmosphere. Similarly to the Earth atmosphere, the most abundant argon isotope is 40 Ar, which comes from the radioactive decay of 40 K. This strongly suggests that Titan's atmosphere is a secondary atmosphere, produced by the degassing of trapped gases. Analogies can also be made between the organic chemistry which is very active now on Titan and the prebiotic chemistry which was active on primitive Earth. In spite of the absence of permanent bodies of liquid water on Titan's surface, several of the organic processes which are occurring today on Titan imply some of the organic compounds which are considered as key molecules in the terrestrial prebiotic chemistry, such as hydrogen cyanide (HCN), cyanoacetylene (HC3 N) and cyanogen (C2 N2 ). A complex organic chemistry seems to be present in the three components of what one can call, always by analogy with our planet, the "geofluids" of Titan: air (gas atmosphere), aerosols (solid atmosphere) and surface (oceans). A recent study on the hydrogen escape from the primitive atmosphere of the Earth suggests that it may have been more reducing that we thought. If this is correct, the chemical processes involved in Titan's atmospheric chemistry may be even closer to those on the primitive Earth. References. Feng T., Owen B. T., Pavlov, A.A, and De Sterck, H. 2005. `A Hydrogen-Rich Early Earth Atmosphere'. Science 308, 1014-1017. Raulin, F. (2005), `Exo-Astrobiological Aspects of Europa and Titan: From Observations to Speculations', Space Science Review 116 (1-2), 471-496. Nature, (2005), `The Huygens probe on Titan', 8 News & Views, Articles and Letters 438, 756-802 2

  11. Impact of Discrete Corrections in a Modular Approach for Trajectory Generation in Quadruped Robots

    NASA Astrophysics Data System (ADS)

    Pinto, Carla M. A.; Santos, Cristina P.; Rocha, Diana; Matos, Vítor

    2011-09-01

    Online generation of trajectories in robots is a very complex task that involves the combination of different types of movements, i.e., distinct motor primitives. The later are used to model complex behaviors in robots, such as locomotion in irregular terrain and obstacle avoidance. In this paper, we consider two motor primitives: rhythmic and discrete. We study the effect on the robots' gaits of superimposing the two motor primitives, considering two distinct types of coupling. Additionally, we simulate two scenarios, where the discrete primitive is inserted in all of the four limbs, or is inserted in ipsilateral pairs of limbs. Numerical results show that amplitude and frequency of the periodic solutions, corresponding to the gaits trot and pace, are almost constant for diffusive and synaptic couplings.

  12. The Composition and Organization of Cytoplasm in Prebiotic Cells

    PubMed Central

    Trevors, Jack T.

    2011-01-01

    This article discusses the hypothesized composition and organization of cytoplasm in prebiotic cells from a theoretical perspective and also based upon what is currently known about bacterial cytoplasm. It is unknown if the first prebiotic, microscopic scale, cytoplasm was initially contained within a primitive, continuous, semipermeable membrane, or was an uncontained gel substance, that later became enclosed by a continuous membrane. Another possibility is that the first cytoplasm in prebiotic cells and a primitive membrane organized at the same time, permitting a rapid transition to the first cell(s) capable of growth and division, thus assisting with the emergence of life on Earth less than a billion years after the formation of the Earth. It is hypothesized that the organization and composition of cytoplasm progressed initially from an unstructured, microscopic hydrogel to a more complex cytoplasm, that may have been in the volume magnitude of about 0.1–0.2 μm3 (possibly less if a nanocell) prior to the first cell division. PMID:21673913

  13. Significance of solvated electrons (e(aq)-) as promoters of life on earth.

    PubMed

    Getoff, Nikola

    2014-01-01

    Based on the present state of knowledge a new hypothesis concerning the origin of life on Earth is presented, and emphasizes the particular significance of solvated electrons (e(aq)(-)). Solvated electrons are produced in seawater, mainly by (40)K radiation and in atmospheric moisture by VUV light, electrical discharges and cosmic ray. Solvated electrons are involved in primary chemical processes and in biological processes. The conversion of aqueous CO2 and CO into simple organic substances, the generation of ammonia from N2 and water, the formation of amines, amino acids and simple proteins under the action of e(aq)(-) has been experimentally proven. Furthermore, it is supposed that the generation of the primitive cell and equilibria of primitive enzymes are also realized due to the strong reducing property of e(aq)(-). The presented hypothesis is mainly founded on recently obtained experimental results. The involvement of e(aq)(-) in such mechanisms, as well as their action as an initiator of life is also briefly discussed.

  14. Prebiotic chemistry and nucleic acid replication

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.; Lohrmann, R.

    1974-01-01

    Recent work is reviewed on some reactions that could have occurred on the primitive earth and that could have played a part in the evolution of a self-replicating system. The transition from the primitive atmosphere to the simplest replicating molecules is considered in four stages: (1) the formation of a 'prebiotic soup' of organic precursors, including the purine and pyrimidine bases and the pentose sugars; (2) the condensation of these precursors and inorganic phosphate to form monomeric nucleotides and activated nucleotide derivatives; (3) the polymerization of nucleotide derivatives to oligonucleotides; and (4) the complementary replication of oligonucleotides in a template-directed process that depends on Watson-Crick base pairing.

  15. Comets and life in the Universe

    NASA Technical Reports Server (NTRS)

    Oro, J.; Mills, T.; Lazcano, A.

    1995-01-01

    The notion that comets supplied the primitive Earth with the requisite chemical species for the process of chemical evolution, which is widely held to have led to the origin of life on Earth, has now gained considerable intellectual momentum since its first formulation in 1961. The role of comets in the Earth's biogenesis has been thoroughly addressed in the literature. At this time, in light of a few recent findings, we present here a concise review of this topic together with a brief discussion of the possible role of cometary material in the origin of life elsewhere in the Universe.

  16. Nitrogen evolution within the Earth's atmosphere-mantle system assessed by recycling in subduction zones

    NASA Astrophysics Data System (ADS)

    Mallik, Ananya; Li, Yuan; Wiedenbeck, Michael

    2018-01-01

    Understanding the evolution of nitrogen (N) across Earth's history requires a comprehensive understanding of N's behaviour in the Earth's mantle - a massive reservoir of this volatile element. Investigation of terrestrial N systematics also requires assessment of its evolution in the Earth's atmosphere, especially to constrain the N content of the Archaean atmosphere, which potentially impacted water retention on the post-accretion Earth, potentially causing enough warming of surface temperatures for liquid water to exist. We estimated the proportion of recycled N in the Earth's mantle today, the isotopic composition of the primitive mantle, and the N content of the Archaean atmosphere based on the recycling rates of N in modern-day subduction zones. We have constrained recycling rates in modern-day subduction zones by focusing on the mechanism and efficiency of N transfer from the subducting slab to the sub-arc mantle by both aqueous fluids and slab partial melts. We also address the transfer of N by aqueous fluids as per the model of Li and Keppler (2014). For slab partial melts, we constrained the transfer of N in two ways - firstly, by an experimental study of the solubility limit of N in melt (which provides an upper estimate of N uptake by slab partial melts) and, secondly, by the partitioning of N between the slab and its partial melt. Globally, 45-74% of N introduced into the mantle by subduction enters the deep mantle past the arc magmatism filter, after taking into account the loss of N from the mantle by degassing at mid-ocean ridges, ocean islands and back-arcs. Although the majority of the N in the present-day mantle remains of primordial origin, our results point to a significant, albeit minor proportion of mantle N that is of recycled origin (17 ± 8% or 12 ± 5% of N in the present-day mantle has undergone recycling assuming that modern-style subduction was initiated 4 or 3 billion years ago, respectively). This proportion of recycled N is enough to cause a departure of N isotopic composition of the primitive mantle from today's δ15N of -5‰ to - 6.8 ± 0.9 ‰ or - 6.3 ± 1.2 ‰. Future studies of Earth's parent bodies based on the bulk Earth N isotopic signature should take into account these revised values for the δ15N composition of the primitive mantle. Also, the Archaean atmosphere had a N partial pressure of 1.4-1.6 times higher than today, which may have warmed the Earth's surface above freezing despite a faint young Sun.

  17. Organic chemical evolution

    NASA Technical Reports Server (NTRS)

    Chang, S.

    1981-01-01

    The course of organic chemical evolution preceding the emergence of life on earth is discussed based on evidence of processes occurring in interstellar space, the solar system and the primitive earth. Following a brief review of the equilibrium condensation model for the origin and evolution of the solar system, consideration is given to the nature and organic chemistry of interstellar clouds, comets, Jupiter, meteorites, Venus and Mars, and the prebiotic earth. Major issues to be resolved in the study of organic chemical evolution on earth are identified regarding condensation and accretion in the solar nebula, early geological evolution, the origin and evolution of the atmosphere, organic production rates, organic-inorganic interactions, environmental fluctuations, phase separation and molecular selectivity.

  18. Compositional study of asteroids in the Erigone collisional family using visible spectroscopy at the 10.4m GTC

    NASA Astrophysics Data System (ADS)

    Morate, David; de León, Julia; De Prá, Mário; Licandro, Javier; Cabrera-Lavers, Antonio; Campins, Humberto; Pinilla-Alonso, Noemí; Alí-Lagoa, Víctor

    2015-11-01

    Asteroid families are formed by the fragments produced by the disruption of a common parent body (Bendjoya & Zappalà 2002). Primitive asteroids in the solar system are believed to have undergone less thermal processing than the S-complex asteroids. Thus, study of primitive asteroid families provides information about the solar system formation period. The Erigone collisional family, together with other three families (Polana, Clarissa and Sulamitis), are believed to be the origin of the two primitive Near-Earth asteroids that are the main targets of the NASA’s OSIRIS-REx ((101955) Bennu) and JAXA’s Hayabusa 2 ((162173) 1999 JU3) missions (Campins et al. 2010; Campins et al. 2013; Lauretta et al. 2010; Tsuda et al. 2013). These spacecrafts will visit the asteroids, and a sample of their surface material will be returned to Earth. Understanding of the families that are considered potential sources will enhance the scientific return of the missions. The main goal of the work presented here is to characterize the Erigone collisional family. Asteroid (163) Erigone has been classified as a primitive object (Bus 1999; Bus & Binzel 2002), and we expect the members of this family to be consistent with the spectral type of the parent body. We have obtained visible spectra (0.5-0.9 μm) for 101 members of the Erigone family, using the OSIRIS instrument at the 10.4m Gran Telescopio Canarias. We performed a taxonomical classification of these asteroids, finding that the number of primitive objects in our sample is in agreement with the hypothesis of a common parent body. In addition, we have found a significant fraction of asteroids in our sample that present evidences of aqueous alteration. Study of aqueous alterations is important, as it can give information on the heating processes of the early Solar System, and for the associated astrobiological implications (it has been suggested that the Earth’s present water supply was brought here by asteroids, instead of comets, in opposition to previous explanations (Morbidelli et al. 2000).

  19. From the Big Bang to the life in the primitive seas. (Spanish Title: Desde la Gran Explosión hasta la vida en los mares primitivos)

    NASA Astrophysics Data System (ADS)

    Esteban, S. B.

    Man has always wondered about the origins of humanity, life, and the world around him. The Earth crust is a vast and natural archive, and its rocks represent the pages of the most documented events in the geological past. These rocks hold large amounts of information about the Earth history, whose age is estimated to be 4,600 million years. Historical Geology seeks to bring together the knowledge of the origin of the Universe as well as the origin of Earth as a member of the Solar System. The Big Bang theory supposes that the Universe began with a huge explosion. In the Earth's history it is possible to differentiate the biological events from the physical ones. The physical events are geographical and environmental transformations. The biological events are related to life on Earth. There are evidences of biological processes back to 3,500 million years ago. At the beginning, the conditions on Earth were catastrophic and unstable. At this stage, the first signs of life were the molecules that started to take energy from the sunlight and the chemical products. It was not a simple accumulation of gradual biological forms, but was accompanied by episodic innovations that allowed increasing complexity and greater use of ecospace. Some of these innovations are shown by certain groups of primitive arthropods adapted to live in oxygen-poor, deep marine environments. These arthropods have been found in 500 million-year-old rocks in northwestern Argentina (provinces of Jujuy and La Rioja), indicating the presence of oxygen-poor seas in that region.

  20. Paleoanthropology: When hobbits (slowly) walked the earth.

    PubMed

    Culotta, Elizabeth

    2008-04-25

    At the recent American Association of Physical Anthropology meetings, a researcher described the foot bones of an 18,000-year-old Indonesian skeleton known as the "hobbit." The tiny hominin would not have walked like we do, he said, and may offer "a window into a primitive bipedal foot."

  1. Chemical evolution. XXII - The hydantoins released on hydrolysis of HCN oligomers

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Lobo, A. P.

    1974-01-01

    The isolation of three hydantoins from HCN oligomers is described. One of these hydantoins, 5-carboxymethylidine hydantoin (5-CMH), rearranges to pyrimidine orotic acid in basic solution. The isolation of 5-CMH suggests the possibility that pyrimidines were formed directly from HCN on the primitive earth.

  2. Numerical simulations of drainage flows on Mars

    NASA Technical Reports Server (NTRS)

    Parish, Thomas R.; Howard, Alan D.

    1992-01-01

    Data collected by Viking Landers have shown that the meteorology of the near surface Martian environment is analogous to desertlike terrestrial conditions. Geological evidence such as dunes and frost streaks indicate that the surface wind is a potentially important factor in scouring of the martian landscape. In particular, the north polar basin shows erosional features that suggest katabatic wind convergence into broad valleys near the margin of the polar cap. The pattern of katabatic wind drainage off the north polar cap is similar to that observed on Earth over Antarctica or Greenland. The sensitivity is explored of Martian drainage flows to variations in terrain slope and diurnal heating using a numerical modeling approach. The model used is a 2-D sigma coordinate primitive equation system that has been used for simulations of Antarctic drainage flows. Prognostic equations include the flux forms of the horizontal scalar momentum equations, temperature, and continuity. Parameterization of both longwave (terrestrial) and shortwave (solar) radiation is included. Turbulent transfer of heat and momentum in the Martian atmosphere remains uncertain since relevant measurements are essentially nonexistent.

  3. Magnetomineralogy as a tool for determination of the meteorite weathering

    NASA Astrophysics Data System (ADS)

    Kohout, T.; Kletetschka, G.; Kobr, M.; Pruner, P.; Wasilewski, P. J.

    2002-12-01

    In early solar system history are several electromagnetic processes expected capable of magnetizing the primitive solid particles condensating from the Solar Nebula. The signature of this magnetic events can be observed in meteorites found on the Earth. It can take a long time from meteorite fall till laboratory study. Some samples are deposited in the desert or Antarctic ice for thousands of years. In this work we used the sample of the LL chondrite found in Libya desert for weathering simulations, magnetic mineralogy and magnetic properties study. The weathering in this sample is related to the desert varnish formation. From high and low temperature magnetic susceptibility measurements we can see, that most important magnetic carriers are iron, magnetite and hematite. The influence on magnetic mineralogy can be seen from weathering simulations done by leaching the samples in different solutions. This change affects the suitability of different samples for primary magnetic record study. Acknowledgements: This work is supported by Charles University Grant Agency, Czech Republic and would not be possible without the help of following people: Jakub Haloda, Petr Jakes, Marcela Bukovanska, Jaroslav Kadlec, Libuse Kohoutova, Vladimir Kohout.

  4. Advanced Numerical Techniques of Performance Evaluation. Volume 2

    DTIC Science & Technology

    1990-06-01

    multiprocessor environment. This factor is determined by the overhead of the primitives available in the system ( semaphore , monitor , or message... semaphore , monitor , or message passing primitives ) and U the programming ability of the user who implements the simulation. " t,: the sequential...Warp Operating System . i Pro" lftevcnth ACM Symposum on Operating Systems Princlplcs, pages 77 9:3, Auslin, TX, Nov wicr 1987. ACM. [121 D.R. Jefferson

  5. Synthesis of the coenzymes adenosine diphosphate glucose, guanosine diphosphate glucose, and cytidine diphosphoethanolamine under primitive Earth conditions

    NASA Technical Reports Server (NTRS)

    Mar, A.; Oro, J.

    1991-01-01

    The nonenzymatic synthesis of the coenzymes adenosine diphosphate glucose (ADPG), guanosine diphosphate glucose (GDPG), and cytidine diphosphoethanolamine (CDP-ethanolamine) has been carried out under conditions considered to have been prevalent on the early Earth. The production of these compounds was performed by allowing simple precursor molecules to react under aqueous solutions, at moderate temperatures and short periods of time, with mediation by cyanamide or urea. These two condensing agents are considered to have been present in significant amounts on the primitive Earth and have been previously used in the nonenzymatic synthesis of several other important biochemical compounds. In our experiments, ADPG was obtained by heating glucose-1-phosphate (G1P) and ATP in the presence of cyanamide for 24 h at 70 degrees C. The reaction of G1P and GTP under the same conditions yielded GDPG. The cyanamide-mediated production of CDP-ethanolamine was carried out by reacting a mixture of ethanolamine phosphate and CTP for 24 h at 70 degrees C. The separation and identification of the reaction products was carried out by paper chromatography, thin-layer chromatography, high performance thin-layer chromatography, high performance liquid chromatography, both normal and reverse-phase, UV spectroscopy, enzymatic assays, and acid hydrolysis. Due to the mild conditions employed, and to the relative ease of these reactions, these studies offer a simple attractive system for the nonenzymatic synthesis of phosphorylated high-energy metabolic intermediates under conditions considered to have been prevalent on the ancient Earth.

  6. Global Magnetospheric Evolution Effected by Sudden Ring Current Injection

    NASA Astrophysics Data System (ADS)

    Park, Geunseok; No, Jincheol; Kim, Kap-Sung; Choe, Gwangson; Lee, Junggi

    2016-04-01

    The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a quasi-steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.

  7. Discovering chemistry with an ab initio nanoreactor

    DOE PAGES

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert; ...

    2014-11-02

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less

  8. Discovering chemistry with an ab initio nanoreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lee-Ping; Titov, Alexey; McGibbon, Robert

    Chemical understanding is driven by the experimental discovery of new compounds and reactivity, and is supported by theory and computation that provides detailed physical insight. While theoretical and computational studies have generally focused on specific processes or mechanistic hypotheses, recent methodological and computational advances harken the advent of their principal role in discovery. Here we report the development and application of the ab initio nanoreactor – a highly accelerated, first-principles molecular dynamics simulation of chemical reactions that discovers new molecules and mechanisms without preordained reaction coordinates or elementary steps. Using the nanoreactor we show new pathways for glycine synthesis frommore » primitive compounds proposed to exist on the early Earth, providing new insight into the classic Urey-Miller experiment. Ultimately, these results highlight the emergence of theoretical and computational chemistry as a tool for discovery in addition to its traditional role of interpreting experimental findings.« less

  9. Radiolysis of alanine adsorbed in a clay mineral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role againstmore » external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.« less

  10. Deictic primitives for general purpose navigation

    NASA Technical Reports Server (NTRS)

    Crismann, Jill D.

    1994-01-01

    A visually-based deictic primative used as an elementary command set for general purpose navigation was investigated. It was shown that a simple 'follow your eyes' scenario is sufficient for tracking a moving target. Limitations of velocity, acceleration, and modeling of the response of the mechanical systems were enforced. Realistic paths of the robots were produced during the simulation. Scientists could remotely command a planetary rover to go to a particular rock formation that may be interesting. Similarly an expert at plant maintenance could obtain diagnostic information remotely by using deictic primitives on a mobile are used in the deictic primitives, we could imagine that the exact same control software could be used for all of these applications.

  11. Comet Dust: The Story of Planet Formation as Told by the Tiniest of Particles

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.

    2005-01-01

    Our planetary system formed out of a gas-rich disk-shaped nebula with the early Sun at its center. Many small icy bodies were consumed by the formation of the giant planets. However, many km-size icy bodies were tossed out of the giant-planet region to the cold, distant reaches of our solar system. Comets remained in their places of cold storage until perturbed into orbits that carry them into the inner solar system where they pass relatively close to the Sun. Comets are warmed by the Sun and shed material from their outer layers. The ices and gases shed by comets reveal simple and complex organic molecules were present at the time and in the region of the formation of the giant planets. Where the Earth was forming was too hot and had too intense sunlight for many of these ices and molecules to survive. The dust shed by comets tells us that some stardust survived unaltered but much of the dust was heated and crystallized before becoming part of the comet. Therefore, comet dust grains tell of large radial migrations from the cold outer reaches near Neptune into the hot regions near the forming Sun, and then back out to the cold regions where icy comets were accreting and forming. On 2005 July 4, the NASA Deep Impact Mission hit a comet and ejected primitive materials fiom its interior. These materials were not released into the comet s coma during normal activity. Despite the many passages of this comet close to the Sun, these primitive volatile gases and dust grains survived in its interior. Comet dust grains show that cold and hot materials were mixed into the same tiny particle very early in the formation of the solar system, and these aggregate dust grains never saw high temperatures again. The survival of primitive materials in comet nuclei suggests comets could have delivered organic molecules and primitive dust grains to early Earth.

  12. The 1st Symposium on Chemical Evolution and the Origin and Evolution of Life

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L. (Editor); Pleasant, L. G. (Editor)

    1982-01-01

    This symposium provided an opportunity for all NASA Exobiology principal investigators to present their most recent research in a scientific meeting forum. Papers were presented in the following exobiology areas: extraterrestrial chemistry primitive earth, information transfer, solar system exploration, planetary protection, geological record, and early biological evolution.

  13. A Hypothesis: Life Initiated from Two Genes, as Deduced from the RNA World Hypothesis and the Characteristics of Life-Like Systems

    PubMed Central

    Kawamura, Kunio

    2016-01-01

    RNA played a central role in the emergence of the first life-like system on primitive Earth since RNA molecules contain both genetic information and catalytic activity. However, there are several drawbacks regarding the RNA world hypothesis. Here, I briefly discuss the feasibility of the RNA world hypothesis to deduce the RNA functions that are essential for forming a life-like system. At the same time, I have conducted a conceptual analysis of the characteristics of biosystems as a useful approach to deduce a realistic life-like system in relation to the definition of life. For instance, an RNA-based life-like system should possess enough stability to resist environmental perturbations, by developing a cell-like compartment, for instance. Here, a conceptual viewpoint is summarized to provide a realistic life-like system that is compatible with the primitive Earth environment and the capabilities of RNA molecules. According to the empirical and conceptual analysis, I propose the hypothesis that the first life-like system could have initiated from only two genes. PMID:27490571

  14. Thermal History of Near-Earth Asteroids: Implications for OSIRIS-REx Asteroid Sample Return

    NASA Astrophysics Data System (ADS)

    Springmann, Alessondra; Lauretta, Dante S.

    2016-10-01

    The connection between orbital and temperature history of small Solar System bodies has only been studied through modeling. The upcoming OSIRIS-REx asteroid sample return mission provides an opportunity to connect thermal modeling predictions with laboratory studies of meteorites to predict past heating and thus dynamical histories of bodies such as OSIRIS-REx mission target asteroid (101955) Bennu. Bennu is a desirable target for asteroid sample return due to its inferred primitive nature, likely 4.5 Gyr old, with chemistry and mineralogy established in the first 10 Myr of solar system history (Lauretta et al. 2015). Delbo & Michel (2011) studied connections between the temperature and orbital history of Bennu. Their results suggest that the surface of Bennu (assuming no regolith turnover) has a 50% probability of being heated to 500 K in the past. Further, the Delbo & Michel simulations show that the temperature within the asteroid below the top layer of regolith could remain at temperatures ~100 K below that of the surface. The Touch-And-Go Sample Acquisition Mechanism on OSIRIS-REx could access both the surface and near surface regolith, collecting primitive asteroid material for study in Earth-based laboratories in 2023. To quantify the effects of thermal metamorphism on the Bennu regolith, laboratory heating experiments on carbonaceous chondrite meteorites with compositions likely similar to that of Bennu were conducted from 300-1200 K. These experiments show mobilization and volatilization of a suite of labile elements (sulfur, mercury, arsenic, tellurium, selenium, antimony, and cadmium) at temperatures that could be reached by asteroids that cross Mercury's orbit. We are able to quantify element loss with temperature for several carbonaceous chondrites and use these results to constrain past orbital histories of Bennu. When OSIRIS-REx samples arrive for analysis we will be able to measure labile element loss in the material, determine maximum past temperature of the samples, and predict the past orbital and thermal history of Bennu.

  15. Training for percutaneous renal access on a virtual reality simulator.

    PubMed

    Zhang, Yi; Yu, Cheng-fan; Liu, Jin-shun; Wang, Gang; Zhu, He; Na, Yan-qun

    2013-01-01

    The need to develop new methods of surgical training combined with advances in computing has led to the development of virtual reality surgical simulators. The PERC Mentor(TM) is designed to train the user in percutaneous renal collecting system access puncture. This study aimed to validate the use of this kind of simulator, in percutaneous renal access training. Twenty-one urologists were enrolled as trainees to learn a fluoroscopy-guided percutaneous renal accessing technique. An assigned percutaneous renal access procedure was immediately performed on the PERC Mentor(TM) after watching instruction video and an analog operation. Objective parameters were recorded by the simulator and subjective global rating scale (GRS) score were determined. Simulation training followed and consisted of 2 hours daily training sessions for 2 consecutive days. Twenty-four hours after the training session, trainees were evaluated performing the same procedure. The post-training evaluation was compared to the evaluation of the initial attempt. During the initial attempt, none of the trainees could complete the appointed procedure due to the lack of experience in fluoroscopy-guided percutaneous renal access. After the short-term training, all trainees were able to independently complete the procedure. Of the 21 trainees, 10 had primitive experience in ultrasound-guided percutaneous nephrolithotomy. Trainees were thus categorized into the group of primitive experience and inexperience. The total operating time and amount of contrast material used were significantly lower in the group of primitive experience versus the inexperience group (P = 0.03 and 0.02, respectively). The training on the virtual reality simulator, PERC Mentor(TM), can help trainees with no previous experience of fluoroscopy-guided percutaneous renal access to complete the virtual manipulation of the procedure independently. This virtual reality simulator may become an important training and evaluation tool in teaching fluoroscopy-guided percutaneous renal access.

  16. I-Pu-Xe dating and the relative ages of the earth and moon

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Caffee, M. W.; Hohenberg, C. M.; Taylor, S. R.

    1986-01-01

    The ages of the earth and moon as determined by various chronometric systems are discussed with primary emphasis placed on the development of an I-Pu-Xe chronometer. Data on excess fission xenon are reviewed with attention given to the strengths and weaknesses of the assumptions required for lunar I-Pu-Xe chronometry. Using I-Pu-Xe dating, it is estimated that the retention of excess fission xenon in lunar samples began no more than 63 + or - 42 m.y. after the time of primitive meteorite formation.

  17. A review of EO image information mining

    NASA Astrophysics Data System (ADS)

    Quartulli, Marco; Olaizola, Igor G.

    2013-01-01

    We analyze the state of the art of content-based retrieval in Earth observation image archives focusing on complete systems showing promise for operational implementation. The different paradigms at the basis of the main system families are introduced. The approaches taken are considered, focusing in particular on the phases after primitive feature extraction. The solutions envisaged for the issues related to feature simplification and synthesis, indexing, semantic labeling are reviewed. The methodologies for query specification and execution are evaluated. Conclusions are drawn on the state of published research in Earth observation (EO) mining.

  18. Reducing greenhouses and the temperature history of earth and Mars

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1977-01-01

    It has been suggested that NH3 and other reducing gases were present in the earth's primitive atmosphere, enhancing the global greenhouse effect; data obtained through isotopic archeothermometry support this hypothesis. Computations have been applied to the evolution of surface temperatures on Mars, considering various bolometric albedos and compositions. The results are of interest in the study of Martian sinuous channels which may have been created by aqueous fluvial errosion, and imply that clement conditions may have previously occurred on Mars, and may occur in the future.

  19. Electric Double-Layer Structure in Primitive Model Electrolytes. Comparing Molecular Dynamics with Local-Density Approximations

    DOE PAGES

    Giera, Brian; Lawrence Livermore National Lab.; Henson, Neil; ...

    2015-02-27

    We evaluate the accuracy of local-density approximations (LDAs) using explicit molecular dynamics simulations of binary electrolytes comprised of equisized ions in an implicit solvent. The Bikerman LDA, which considers ions to occupy a lattice, poorly captures excluded volume interactions between primitive model ions. Instead, LDAs based on the Carnahan–Starling (CS) hard-sphere equation of state capture simulated values of ideal and excess chemical potential profiles extremely well, as is the relationship between surface charge density and electrostatic potential. Excellent agreement between the EDL capacitances predicted by CS-LDAs and computed in molecular simulations is found even in systems where ion correlations drivemore » strong density and free charge oscillations within the EDL, despite the inability of LDAs to capture the oscillations in the detailed EDL profiles.« less

  20. Chemical evolution. XXIX - Pyrimidines from hydrogen cyanide

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Joshi, P. C.; Lawless, J. G.

    1978-01-01

    Compounds obtained by hydrolysis of HCN oligomers formed by allowing pH 9.2, 0.1 M cyanide to stand at room temperature for 4 to 12 months were analyzed. Hydrolysis of HCN oligomers yielded 4,5-dihydroxypyrimidine and 5-hydroxyuracil; orotic acid was detected after hydrolysis at pH 8.5. A unified pathway from diaminofumaronitrile to the pyrimidines observed is suggested. As purines, pyrimidines and amino acids are released by hydrolysis of HCN oligomers in either acidic or mildly basic aqueous solutions, they could have been formed on the primitive earth in spite of fluctuations in pH. 4,5-dihydroxypyrimidines appear to be likely candidates for incorporation into primitive nucleic acids, as they should undergo Watson-Crick hydrogen bonding with adenine.

  1. Observational and Modeling Studies of Radiative, Chemical, and Dynamical Interactions in the Earth''s Atmosphere

    NASA Technical Reports Server (NTRS)

    Salby, Murry

    1998-01-01

    A 3-dimensional model was developed to support mechanistic studies. The model solves the global primitive equations in isentropic coordinates, which directly characterize diabatic processes forcing the Brewer-Dobson circulation of the middle atmosphere. It's numerical formulation is based on Hough harmonics, which partition horizontal motion into its rotational and divergent components. These computational features, along with others, enable 3D integrations to be performed practically on RISC computer architecture, on which they can be iterated to support mechanistic studies. The model conserves potential vorticity quite accurately under adiabatic conditions. Forced by observed tropospheric structure, in which integrations are anchored, the model generates a diabatic circulation that is consistent with satellite observations of tracer behavior and diabatic cooling rates. The model includes a basic but fairly complete treatment of gas-phase photochemistry that represents some 20 chemical species and 50 governing reactions with diurnally-varying shortwave absorption. The model thus provides a reliable framework to study transport and underlying diabatic processes, which can then be compared against chemical and dynamical structure observed and in GCM integrations. Integrations with the Langley GCM were performed to diagnose feedback between simulated convection and the tropical circulation. These were studied in relation to tropospheric properties controlling moisture convergence and environmental conditions supporting deep convection, for comparison against mechanistic integrations of wave CISK that successfully reproduce the Madden-Julian Oscillation (MJO) of the tropical circulation. These comparisons were aimed at identifying and ultimately improving aspects of the convective simulation, with the objective of recovering a successful simulation of the MJO in the Langley GCM, behavior that should be important to budgets of upper-tropospheric water vapor and chemical species.

  2. A Simulation System Based on the Actor Paradigm

    DTIC Science & Technology

    1988-02-01

    of the protocol. Shared memory communication requires the programmer to wait and signal semaphores explicitly to synchronize the communicating parties...wide range of possibilities within the same basic protocol. - The simplicity of the primitive operation set affords those creating new operations...more flexibility (Ada has a large and complicated primitive set). -3- II I I I B A I -I I I I I . 0 1 2 3 4 5 Time 0: Both processes A and B are

  3. Using exact solutions to develop an implicit scheme for the baroclinic primitive equations

    NASA Technical Reports Server (NTRS)

    Marchesin, D.

    1984-01-01

    The exact solutions presently obtained by means of a novel method for nonlinear initial value problems are used in the development of numerical schemes for the computer solution of these problems. The method is applied to a new, fully implicit scheme on a vertical slice of the isentropic baroclinic equations. It was not possible to find a global scale phenomenon that could be simulated by the baroclinic primitive equations on a vertical slice.

  4. Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection

    DTIC Science & Technology

    2008-10-01

    K. Fishman and B. M. W. Tsui, "Development of a computer-generated model for the coronary arterial tree based on multislice CT and morphometric data...mathematical models based on geometric primitives8-22. Bakic et al created synthetic x-ray mammograms using a 3D simulated breast tissue model consisting of...utilized a combination of voxel matrices and geometric primitives to create a breast phantom that includes the breast surface, the duct system, and

  5. A magma ocean and the Earth's internal water budget

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    1992-01-01

    There are lines of evidence which relate bounds on the primordial water content of the Earth's mantle to a magma ocean and the accompanying Earth accretion process. We assume initially (before a magma ocean could form) that as the Earth accreted, it grew from volatile- (H2O, CO2, NH3, CH4, SO2, plus noble) gas-rich planetesimals, which accreted to form an initial 'primitive accretion core' (PAC). The PAC retained the initial complement of planetesimal gaseous components. Shock wave experiments in which both solid, and more recently, the gaseous components of materials such as serpentine and the Murchison meteorite have demonstrated that planetesimal infall velocities of less than 0.5 km/sec, induce shock pressures of less than 0.5 GPa and result in virtually complete retention of planetary gases.

  6. Solar Electric Propulsion for Primitive Body Science Missions

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin E.

    2006-01-01

    This paper describes work that assesses the performance of solar electric propulsion (SEP) for three different primitive body science missions: 1) Comet Rendezvous 2) Comet Surface Sample Return (CSSR), and 3) a Trojan asteroid/Centaur object Reconnaissance Flyby. Each of these missions launches from Earth between 2010 and 2016. Beginning-of-life (BOL) solar array power (referenced at 1 A.U.) varies from 10 to 18 kW. Launch vehicle selections range from a Delta II to a Delta IV medium-class. The primary figure of merit (FOM) is net delivered mass (NDM). This analysis considers the effects of imposing various mission constraints on the Comet Rendezvous and CSSR missions. Specifically, the Comet Rendezvous mission analysis examines an arrival date constraint with a launch year variation, whereas the CSSR mission analysis investigates an Earth entry velocity constraint commensurate with past and current missions. Additionally, the CSSR mission analysis establishes NASA's New Frontiers (NF) Design Reference Mission (DRM) in order to evaluate current and future SEP technologies. The results show that transfer times range from 5 to 9 years (depending on the mission). More importantly, the spacecraft's primary propulsion system performs an average 5-degree plane change on the return leg of the CSSR mission to meet the previously mentioned Earth entry velocity constraint. Consequently, these analyses show that SEP technologies that have higher thrust-to-power ratios can: 1) reduce flight time, and 2) change planes more efficiently.

  7. Origin of primitive ocean island basalts by crustal gabbro assimilation and multiple recharge of plume-derived melts

    NASA Astrophysics Data System (ADS)

    Borisova, Anastassia Y.; Bohrson, Wendy A.; Grégoire, Michel

    2017-07-01

    Chemical Geodynamics relies on a paradigm that the isotopic composition of ocean island basalt (OIB) represents equilibrium with its primary mantle sources. However, the discovery of huge isotopic heterogeneity within olivine-hosted melt inclusions in primitive basalts from Kerguelen, Iceland, Hawaii and South Pacific Polynesia islands implies open-system behavior of OIBs, where during magma residence and transport, basaltic melts are contaminated by surrounding lithosphere. To constrain the processes of crustal assimilation by OIBs, we employed the Magma Chamber Simulator (MCS), an energy-constrained thermodynamic model of recharge, assimilation and fractional crystallization. For a case study of the 21-19 Ma basaltic series, the most primitive series ever found among the Kerguelen OIBs, we performed sixty-seven simulations in the pressure range from 0.2 to 1.0 GPa using compositions of olivine-hosted melt inclusions as parental magmas, and metagabbro xenoliths from the Kerguelen Archipelago as wallrock. MCS modeling requires that the assimilant is anatectic crustal melts (P2O5 ≤ 0.4 wt.% contents) derived from the Kerguelen oceanic metagabbro wallrock. To best fit the phenocryst assemblage observed in the investigated basaltic series, recharge of relatively large masses of hydrous primitive basaltic melts (H2O = 2-3 wt%; MgO = 7-10 wt.%) into a middle crustal chamber at 0.2 to 0.3 GPa is required. Our results thus highlight the important impact that crustal gabbro assimilation and mantle recharge can have on the geochemistry of mantle-derived olivine-phyric OIBs. The importance of crustal assimilation affecting primitive plume-derived basaltic melts underscores that isotopic and chemical equilibrium between ocean island basalts and associated deep plume mantle source(s) may be the exception rather than the rule.

  8. Synergistic Activities of Near-Earth Object Exploration

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2011-01-01

    U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to near-Earth asteroids by 2025. Missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of these primitive objects. Information obtained from a human investigation of a NEO, together with ground-based observations and prior spacecraft investigations of asteroids and comets, will also provide a real measure of ground truth to data obtained from terrestrial meteorite collections. Major advances in the areas of geochemistry, impact history, thermal history, isotope analyses, mineralogy, space weathering, formation ages, thermal inertias, volatile content, source regions, solar system formation, etc. can be expected from human NEO missions. Samples directly returned from a primitive body would lead to the same kind of breakthroughs for understanding NEOs that the Apollo samples provided for understanding the Earth-Moon system and its formation history. In addition, robotic precursor and human exploration missions to NEOs would allow the NASA and its international partners to gain operational experience in performing complex tasks (e.g., sample collection, deployment of payloads, retrieval of payloads, etc.) with crew, robots, and spacecraft under microgravity conditions at or near the surface of a small body. This would provide an important synergy between the worldwide Science and Exploration communities, which will be crucial for development of future international deep space exploration architectures and has potential benefits for future exploration of other destinations beyond low-Earth orbit.

  9. Developmental Approach for Behavior Learning Using Primitive Motion Skills.

    PubMed

    Dawood, Farhan; Loo, Chu Kiong

    2018-05-01

    Imitation learning through self-exploration is essential in developing sensorimotor skills. Most developmental theories emphasize that social interactions, especially understanding of observed actions, could be first achieved through imitation, yet the discussion on the origin of primitive imitative abilities is often neglected, referring instead to the possibility of its innateness. This paper presents a developmental model of imitation learning based on the hypothesis that humanoid robot acquires imitative abilities as induced by sensorimotor associative learning through self-exploration. In designing such learning system, several key issues will be addressed: automatic segmentation of the observed actions into motion primitives using raw images acquired from the camera without requiring any kinematic model; incremental learning of spatio-temporal motion sequences to dynamically generates a topological structure in a self-stabilizing manner; organization of the learned data for easy and efficient retrieval using a dynamic associative memory; and utilizing segmented motion primitives to generate complex behavior by the combining these motion primitives. In our experiment, the self-posture is acquired through observing the image of its own body posture while performing the action in front of a mirror through body babbling. The complete architecture was evaluated by simulation and real robot experiments performed on DARwIn-OP humanoid robot.

  10. A knowledge based system for scientific data visualization

    NASA Technical Reports Server (NTRS)

    Senay, Hikmet; Ignatius, Eve

    1992-01-01

    A knowledge-based system, called visualization tool assistant (VISTA), which was developed to assist scientists in the design of scientific data visualization techniques, is described. The system derives its knowledge from several sources which provide information about data characteristics, visualization primitives, and effective visual perception. The design methodology employed by the system is based on a sequence of transformations which decomposes a data set into a set of data partitions, maps this set of partitions to visualization primitives, and combines these primitives into a composite visualization technique design. Although the primary function of the system is to generate an effective visualization technique design for a given data set by using principles of visual perception the system also allows users to interactively modify the design, and renders the resulting image using a variety of rendering algorithms. The current version of the system primarily supports visualization techniques having applicability in earth and space sciences, although it may easily be extended to include other techniques useful in other disciplines such as computational fluid dynamics, finite-element analysis and medical imaging.

  11. Electromagnetic deep-probing (100-1000 kms) of the Earth's interior from artificial satellites: Constraints on the regional emplacement of crustal resources

    NASA Technical Reports Server (NTRS)

    Hermance, J. F.

    1983-01-01

    The reconnaissance phase of using satellite observtions to studying electromagnetic induction in the solid earth is summarized. Several points are made: (1) satellite data apparently suffer far less from the effects of near surface lateral heterogeneities in the earth than do ground-based data; (2) zonal ionospheric currents during the recovery phase of major magnetic storms appear to be minimal, at least in the dawn and dusk sectors wher MAGSAT was flown; hence the internal contributions that satellites observe during these times is in fact due primarily to induction in the Earth with little or no contribution from ionospheric currents; and (3) the interpretation of satellite data in terms of primitive electromagnetic response functions, while grossly over-simplified, results in a surprisingly well-resolved radius for an equivalent super-conductor representing the conductivity region of the Earth's interior (5,370 + or - 120 km).

  12. Near-Earth Asteroid Returned Sample (NEARS)

    NASA Technical Reports Server (NTRS)

    Shoemaker, Eugene M.; Cheng, Andrew F.

    1994-01-01

    The concept of the Near-Earth Asteroid Returned Sample (NEARS) mission is to return to Earth 10-100 g from each of four to six sites on a near-Earth asteroid and to perform global characterization of the asteroid and measure mass, volume, and density to ten percent. The target asteroid for the mission is 4660 Nereus, probably a primitive C-type asteroid, with the alternate target being 1989ML, an extremely accessible asteroid of unknown type. Launch dates will be 1998, 2000, 2002, and 2004 on the Delta II-7925 launch vehicle. The mission objectives are three-fold. (1) Provide first direct and detailed petrological, chemical, age, and isotopic characterization of a near-Earth asteroid and relate it to terrestrial, lunar, and meteoritic materials. (2) Sample the asteroid regolith and characterize any exotic fragments. (3) Identify heterogeneity in the asteroid's isotopic properties, age, and elemental chemistry.

  13. Early Earth differentiation [rapid communication

    NASA Astrophysics Data System (ADS)

    Walter, Michael J.; Trønnes, Reidar G.

    2004-09-01

    The birth and infancy of Earth was a time of profound differentiation involving massive internal reorganization into core, mantle and proto-crust, all within a few hundred million years of solar system formation ( t0). Physical and isotopic evidence indicate that the formation of iron-rich cores generally occurred very early in planetesimals, the building blocks of proto-Earth, within about 3 million years of t0. The final stages of terrestrial planetary accretion involved violent and tremendously energetic giant impacts among core-segregated Mercury- to Mars-sized objects and planetary embryos. As a consequence of impact heating, the early Earth was at times partially or wholly molten, increasing the likelihood for high-pressure and high-temperature equilibration among core- and mantle-forming materials. The Earth's silicate mantle harmoniously possesses abundance levels of the siderophile elements Ni and Co that can be reconciled by equilibration between iron alloy and silicate at conditions comparable to those expected for a deep magma ocean. Solidification of a deep magma ocean possibly involved crystal-melt segregation at high pressures, but subsequent convective stirring of the mantle could have largely erased nascent layering. However, primitive upper mantle rocks apparently have some nonchondritic major and trace element refractory lithophile element ratios that can be plausibly linked to early mantle differentiation of ultra-high-pressure mantle phases. The geochemical effects of crystal fractionation in a deep magma ocean are partly constrained by high-pressure experimentation. Comparison between compositional models for the primitive convecting mantle and bulk silicate Earth generally allows, and possibly favors, 10-15% total fractionation of a deep mantle assemblage comprised predominantly of Mg-perovskite and with minor but geochemically important amounts of Ca-perovskite and ferropericlase. Long-term isolation of such a crystal pile is generally consistent with isotopic constraints for time-integrated Sm/Nd and Lu/Hf ratios in the modern upper mantle and might account for the characteristics of some mantle isotope reservoirs. Although much remains to be learned about the earliest formative period in the Earth's development, a convergence of theoretical, physical, isotopic and geochemical arguments is beginning to yield a self-consistent portrait of the infant Earth.

  14. Variability simulations with a steady, linearized primitive equations model

    NASA Technical Reports Server (NTRS)

    Kinter, J. L., III; Nigam, S.

    1985-01-01

    Solutions of the steady, primitive equations on a sphere, linearized about a zonally symmetric basic state are computed for the purpose of simulating monthly mean variability in the troposphere. The basic states are observed, winter monthly mean, zonal means of zontal and meridional velocities, temperatures and surface pressures computed from the 15 year NMC time series. A least squares fit to a series of Legendre polynomials is used to compute the basic states between 20 H and the equator, and the hemispheres are assumed symmetric. The model is spectral in the zonal direction, and centered differences are employed in the meridional and vertical directions. Since the model is steady and linear, the solution is obtained by inversion of a block, pente-diagonal matrix. The model simulates the climatology of the GFDL nine level, spectral general circulation model quite closely, particularly in middle latitudes above the boundary layer. This experiment is an extension of that simulation to examine variability of the steady, linear solution.

  15. Primitive chain network simulations for entangled DNA solutions

    NASA Astrophysics Data System (ADS)

    Masubuchi, Yuichi; Furuichi, Kenji; Horio, Kazushi; Uneyama, Takashi; Watanabe, Hiroshi; Ianniruberto, Giovanni; Greco, Francesco; Marrucci, Giuseppe

    2009-09-01

    Molecular theories for polymer rheology are based on conformational dynamics of the polymeric chain. Hence, measurements directly related to molecular conformations appear more appealing than indirect ones obtained from rheology. In this study, primitive chain network simulations are compared to experimental data of entangled DNA solutions [Teixeira et al., Macromolecules 40, 2461 (2007)]. In addition to rheological comparisons of both linear and nonlinear viscoelasticities, a molecular extension measure obtained by Teixeira et al. through fluorescent microscopy is compared to simulations, in terms of both averages and distributions. The influence of flow on conformational distributions has never been simulated for the case of entangled polymers, and how DNA molecular individualism extends to the entangled regime is not known. The linear viscoelastic response and the viscosity growth curve in the nonlinear regime are found in good agreement with data for various DNA concentrations. Conversely, the molecular extension measure shows significant departures, even under equilibrium conditions. The reason for such discrepancies remains unknown.

  16. Comets, Carbonaceous Meteorites, and the Origin of the Biosphere

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    2005-01-01

    The biosphere comprises the Earth s crust, atmosphere, oceans, and ice caps and the living organisms that survive within this habitat. The discoveries of barophilic chemolithoautotrophic thermophiles living deep within the crust and in deep-sea hydrothermal vents, and psychrophiles in permafrost and deep within the Antarctic Ice Sheet indicate the Earth s biosphere is far more extensive than previously recognized. Molecular biomarkers and Bacterial Paleontology provide evidence that life appeared very early on the primitive Earth and the origin of the biosphere is closely linked with the emergence of life. The role of comets, meteorites, and interstellar dust in the delivery of water, organics and prebiotic chemicals has long been recognized. Deuterium enrichment of seawater and comets indicates that comets delivered oceans to the early Earth. Furthermore, the similarity of the D/H ratios and the chemical compositions of CI carbonaceous meteorites and comets indicate that the CI meteorites may be remnants of cometary nuclei with most volatiles removed. Comets, meteorites, and interstellar dust also contain complex organic chemicals, amino acids, macromolecules, and kerogen-like biopolymers and may have played a crucial role in the delivery of complex organics and prebiotic chemicals during the Hadean (4.5-3.8 Gyr) period of heavy bombardment. The existence of indigenous microfossils of morphotypes of cyanobacteria in the CI and CM carbonaceous meteorites suggests that the paradigm that life originated endogenously in the primitive oceans of early Earth may require re-consideration. Recent data on the hot (300-400 K) black crust on comet P/Halley and Stardust images of P/Wild 2 showing depressions, tall cliffs, and pinnacles, indicate the presence of thick, durable, dark crusts on comets. If cavities within the ice and crust sustain vapor pressures in excess of 10 millibar, then localized pools of liquid water and brines could exist within the comet. Since life exists on Earth wherever there is liquid water, it is suggested that comets might also harbour viable and/or cryopreserved microbiota.

  17. Telerobot control system

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor); Tso, Kam S. (Inventor)

    1993-01-01

    This invention relates to an operator interface for controlling a telerobot to perform tasks in a poorly modeled environment and/or within unplanned scenarios. The telerobot control system includes a remote robot manipulator linked to an operator interface. The operator interface includes a setup terminal, simulation terminal, and execution terminal for the control of the graphics simulator and local robot actuator as well as the remote robot actuator. These terminals may be combined in a single terminal. Complex tasks are developed from sequential combinations of parameterized task primitives and recorded teleoperations, and are tested by execution on a graphics simulator and/or local robot actuator, together with adjustable time delays. The novel features of this invention include the shared and supervisory control of the remote robot manipulator via operator interface by pretested complex tasks sequences based on sequences of parameterized task primitives combined with further teleoperation and run-time binding of parameters based on task context.

  18. Probabilistic lifetime strength of aerospace materials via computational simulation

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Keating, Jerome P.; Lovelace, Thomas B.; Bast, Callie C.

    1991-01-01

    The results of a second year effort of a research program are presented. The research included development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic phenomenological constitutive relationship, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects of primitive variables. These primitive variables often originate in the environment and may include stress from loading, temperature, chemical, or radiation attack. This multifactor interaction constitutive equation is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the constitutive equation using actual experimental materials data together with the multiple linear regression of that data.

  19. A theory of circular organization and negative feedback: defining life in a cybernetic context.

    PubMed

    Tsokolov, Sergey

    2010-12-01

    All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.

  20. A Theory of Circular Organization and Negative Feedback: Defining Life in a Cybernetic Context

    NASA Astrophysics Data System (ADS)

    Tsokolov, Sergey

    2010-12-01

    All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.

  1. High pre-eruptive water contents preserved in lunar melt inclusions.

    PubMed

    Hauri, Erik H; Weinreich, Thomas; Saal, Alberto E; Rutherford, Malcolm C; Van Orman, James A

    2011-07-08

    The Moon has long been thought to be highly depleted in volatiles such as water, and indeed published direct measurements of water in lunar volcanic glasses have never exceeded 50 parts per million (ppm). Here, we report in situ measurements of water in lunar melt inclusions; these samples of primitive lunar magma, by virtue of being trapped within olivine crystals before volcanic eruption, did not experience posteruptive degassing. The lunar melt inclusions contain 615 to 1410 ppm water and high correlated amounts of fluorine (50 to 78 ppm), sulfur (612 to 877 ppm), and chlorine (1.5 to 3.0 ppm). These volatile contents are very similar to primitive terrestrial mid-ocean ridge basalts and indicate that some parts of the lunar interior contain as much water as Earth's upper mantle.

  2. Interaction of Tryptophane and Phenylalanine with Cadmium and Molybdenum Ferrocyanides and Its Implications in Chemical Evolution and Origins of Life.

    NASA Astrophysics Data System (ADS)

    Tewari, Brij

    2016-07-01

    Insoluble metal hexacyanoferrate(II) complexes could have concentrated biomonomers from dilute prebiotic soup during course of chemical evolution and origin of life or primitive earth. In the light of above hypothesis, adsorption of tryptophane and phenylalanine was studied on cadmium and molybdenum ferrocyanides at neutral pH (7.0 ± 0.01) and at a temperature of 30 ± 1º C. Interaction of amino acids with metal ferrocyanides are found to be maximum at neutral pH. Neutral pH is chosen for the adsorption studies because most of the reactions in biological systems taken place at neutral pH range. Adsorption trend follow Langmuir isotherm model. The Langmuir constants b and Qo were calculated at neutral pH, tryptophane was found to more adsorbed than phenylalanine on both metal ferrocyanides studied. Molybdenum ferrocyanides studied. Molybdenum ferrocyanides was found to have more uptake capacity for both adsorbates than cadmium ferrocyanides. The present study suggests that metal ferrocyanides might have played a role in the stabilization of biomolecules through their surface activity during course of chemical solution and origins of life on primitive earth.

  3. Ejection of iron-bearing giant-impact fragments and the dynamical and geochemical influence of the fragment re-accretion

    NASA Astrophysics Data System (ADS)

    Genda, Hidenori; Iizuka, Tsuyoshi; Sasaki, Takanori; Ueno, Yuichiro; Ikoma, Masahiro

    2017-07-01

    The Earth was born in violence. Many giant collisions of protoplanets are thought to have occurred during the terrestrial planet formation. Here we investigated the giant impact stage by using a hybrid code that consistently deals with the orbital evolution of protoplanets around the Sun and the details of processes during giant impacts between two protoplanets. A significant amount of materials (up to several tens of percent of the total mass of the protoplanets) is ejected by giant impacts. We call these ejected fragments the giant-impact fragments (GIFs). In some of the erosive hit-and-run and high-velocity collisions, metallic iron is also ejected, which comes from the colliding protoplanets' cores. From ten numerical simulations for the giant impact stage, we found that the mass fraction of metallic iron in GIFs ranges from ∼1 wt% to ∼25 wt%. We also discussed the effects of the GIFs on the dynamical and geochemical characteristics of formed terrestrial planets. We found that the GIFs have the potential to solve the following dynamical and geochemical conflicts: (1) The Earth, currently in a near circular orbit, is likely to have had a highly eccentric orbit during the giant impact stage. The GIFs are large enough in total mass to lower the eccentricity of the Earth to its current value via their dynamical friction. (2) The concentrations of highly siderophile elements (HSEs) in the Earth's mantle are greater than what was predicted experimentally. Re-accretion of the iron-bearing GIFs onto the Earth can contribute to the excess of HSEs. In addition, Iron-bearing GIFs provide significant reducing agent that could transform primitive CO2-H2O atmosphere and ocean into more reducing H2-bearing atmosphere. Thus, GIFs are important for the origin of Earth's life and its early evolution.

  4. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro

    2012-07-01

    A wide variety of complex organic compounds have been detected in extraterrestrial bodies like carbonaceous chondrites and comets, and their roles in the generation of terrestrial life are discussed. It was suggested that organics in small bodies were originally formed in ice mantles of interstellar dusts in dense cloud. Irradiation of frozen mixture of possible interstellar molecules including CO (or CH _{3}OH), NH _{3} and H _{2}O with high-energy particles gave complex amino acid precursors with high molecular weights [1]. Such complex organic molecules were taken in planetesimals or comets in the early solar system. In prior to the generation of the terrestrial life, extraterrestrial organics were delivered to the primitive Earth by such small bodies as meteorites, comets and space dusts. These organics would have been altered by cosmic rays and solar radiation (UV, X-rays) before the delivery to the Earth. We examined possible alteration of amino acids, their precursors and nucleic acid bases in interplanetary space by irradiation with high energy photons and heavy ions. A mixture of CO, NH _{3} and H _{2}O was irradiated with high-energy protons from a van de Graaff accelerator (TIT, Japan). The resulting products (hereafter referred to as CAW) are complex precursors of amino acids. CAW, amino acids (dl-Isovaline, glycine), hydantoins (amino acid precursors) and nucleic acid bases were irradiated with continuous emission (soft X-rays to IR; hereafter referred to as soft X-rays irradiation) from BL-6 of NewSUBARU synchrotron radiation facility (Univ. Hyogo). They were also irradiated with heavy ions (eg., 290 MeV/u C ^{6+}) from HIMAC accelerator (NIRS, Japan). After soft X-rays irradiation, water insoluble materials were formed. After irradiation with soft X-rays or heavy ions, amino acid precursors (CAW and hydantoins) gave higher ratio of amino acids were recovered after hydrolysis than free amino acids. Nucleic acid bases showed higher stability than free amino acids. Complex amino acid precursors with high molecular weights could be formed in simulated dense cloud environments. They would have been altered in the early solar system by irradiation with soft X-rays from the young Sun, which caused increase of hydrophobicity of the organics of interstellar origin. They were taken up by parent bodies of meteorites or comets, and could have been delivered to the Earth by meteorites, comets and cosmic dusts. Cosmic dusts were so small that they were directly exposed to the solar radiation, which might be critical for the survivability of organics in them. In order to evaluate the roles of space dusts as carriers of bioorganic compounds to the primitive Earth, we are planning the Tanpopo Mission, where collection of cosmic dusts by using ultra low-density aerogel, and exposure of amino acids and their precursors for years are planned by utilizing the Japan Experimental Module / Exposed Facility of the ISS [2]. The mission is now scheduled to start in 2013. We thank Dr. Katsunori Kawasaki of Tokyo Institute of Technology, and Dr. Satoshi Yoshida of National Institute of Radiological Sciences for their help in particles irradiation. We also thank to the members of JAXA Tanpopo Working Group (PI: Prof. Akihiko Yamagishi) for their helpful discussion. [1] K. Kobayashi, et al., in ``Astrobiology: from Simple Molecules to Primitive Life,'' ed. by V. Basiuk, American Scientific Publishers, Valencia, CA, (2010), pp. 175-186. [2] K. Kobayashi, et al., Trans. Jpn. Soc. Aero. Space Sci., in press (2012).

  5. Possible formation of amino acid precursors in the lower atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Taniuchi, T.; Kaneko, T.; Al-Hanbali, H.; Yamori, A.; Miyakawa, S.; Takano, Y.

    Titan is a quite interesting satellite of Saturn from the point of view of astrobiology and origins of life It has ca 0 15 MPa atmosphere mainly composed of nitrogen and methane which can give us the possible implication of primitive Earth environments There have been a great number of experiments simulating chemical reactions in Titan atmosphere In most experiments electric discharges and ultraviolet light were used as energy sources The former is simulation of charged particles trapped in Saturn s magnetosphere and the latter is simulation of solar light Thus it can be said that these experiments simulate chemical reaction in the upper thin atmosphere Cosmic rays are another possible energy source available in Titan atmosphere Their energy is so high that they can penetrate into the lower atmosphere of Titan The energy flux of cosmic rays in the lower Titan atmosphere was estimated as to 9 0 x 10 -3 erg cm -2 s -1 Sagan and Thompson 1984 In order to simulate the action of cosmic rays in Titan atmosphere we irradiated simulated Titan atmosphere with high-energy protons A gas mixture of methane 1-10 and nitrogen balance total pressure was 700 Torr was sealed in a Pyrex tube with a window of Havar foil 0 01 mm thick It was irradiated with 3 MeV protons from a van de Graaff accelerator Tokyo Institute of Technology The products were dissolved in water dichloromethane tetrahydrofuran or benzene They were evaporated to dryness and then acid-hydrolyzed Amino acids were analyzed by cation exchange HPLC

  6. The multifaceted role of amino acids in chemical evolution

    NASA Astrophysics Data System (ADS)

    Strasdeit, Henry; Fox, Stefan; Dalai, Punam

    We present an overview of recent ideas about α-amino acids on the Hadean / early Archean Earth and Noachian Mars. Pertinent simulation experiments are discussed. Electrical dis-charges in early Earth's bulk, probably non-reducing atmosphere [1, 2] and in volcanic ash-gas clouds [3] are likely to have synthesized amino acids abiotically. In principle, this may have been followed by the synthesis of peptides. Different kinds of laboratory simulations have, however, revealed severe difficulties with the condensation process under presumed prebiotic conditions. It therefore appears that peptides on the early Earth were mainly di-, tri-and tetramers and slightly longer only in the case of glycine homopeptides. But even such short peptides may have shown primitive catalytic activity after complexation of metal ions to form proto-metalloenzymes. L-enantiomeric excesses (L-ee) of meteoritic amino acids were possibly involved in the origin of biohomochirality [4, 5]. This idea also faces some problems, mainly dilution of the amino acids on Earth and a resulting low overall L-ee. However, as yet unknown reactions might exist that are highly enantioselective even under such unfavorable conditions, perhaps by a combination of autocatalysis and inhibition (compare the Soai reaction). Primor-dial volcanic islands are prebiotically interesting locations. At their hot coasts, solid sea salt probably embedded amino acids [6]. Our laboratory experiments showed that further heating of the salt crusts, simulating the vicinity of lava streams, produced pyrroles among other prod-ucts. Pyrroles are building blocks of biomolecules such as bilins, chlorophylls and heme. Thus, an abiotic route from amino acids to the first photoreceptor and electron-transfer molecules might have existed. There is no reason to assume that the chemical evolutionary processes described above were singular events restricted to Earth and Mars. In fact, they might take place even today on terrestrial exoplanets in our cosmic neighborhood. [1] Plankensteiner, K., Reiner, H., Rode, B. M. (2006), Mol. Diversity 10, 3. [2] Cleaves, H. J., Chalmers, J. H., Lazcano, A., Miller, S. L., Bada, J. L. (2008), Orig. Life Evol. Biosph. 38, 105. [3] Johnson, A. P., Cleaves, H. J., Dworkin, J. P., Glavin, D. P., Lazcano, A., Bada, J. L. (2008), Science 322, 404. [4] Pizzarello, S., Weber, A. L. (2004), Science 303, 1151. [5] Levine, M., Kenesky, C. S., Mazori, D., Breslow, R. (2008), Org. Lett. 10, 2433. [6] Yusenko, K., Fox, S., Guni, P., Strasdeit, H. (2008), Z. Anorg. Allg. Chem. 634, 2347.

  7. A sample return mission to a pristine NEO submitted to ESA CV 2015-2025

    NASA Astrophysics Data System (ADS)

    Michel, P.; Barucci, A.

    2007-08-01

    ESA Cosmic Vision 2015-2025 aims at furthering Europe's achievements in space science, for the benefit of all mankind. ESA' multinational Space Science Advisory Committee prepared the final plan, which contains a selection of themes and priorities. In the theme concerning how the Solar System works, a Near-Earth Object (NEO) sample return mission is indicated among the priorities. Indeed, small bodies, as primitive leftover building blocks of the Solar System formation process, offer clues to the chemical mixture from which the planets formed some 4.6 billion years ago. The Near Earth Objects (NEOs) are representative of the population of asteroids and dead comets and are thought to be similar in many ways to the ancient planetesimal swarms that accreted to form the planets. NEOs are thus fundamentally interesting and highly accessible targets for scientific research and space missions. A sample return space mission to a pristine NEO has thus been proposed in partnership with the Japanese Space Agency JAXA, involving a large European community of scientists. The principal objectives are to obtained crucial information about 1) the properties of the building blocks of the terrestrial planets; 2) the major events (e.g. agglomeration, heating, ... .) which ruled the history of planetesimals; 3) the properties of primitive asteroids which may contain presolar material unknown in meteoritic samples; 4) the organics in primitive materials; 5) the initial conditions and evolution history of the solar nebula; and 6) on the potential origin of molecules necessary for life. This project appears clearly to have the potential to revolutionize our understanding of primitive materials. It involves a main spacescraft which will allow the determination of important physical properties of the target (shape, mass, crater distribution . . . ) and which will take samples by a touch-and-go procedure, a Lander for in-situ investigation of the sampling site, and sampling depending on technological development and resource allocations, a re-entry capsule, and scientific payloads. We will present the mission targets, scenarios and techniques that have been proposed.

  8. Exploration of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2013-01-01

    A major goal for NASA's human spaceflight program is to send astronauts to near-Earth asteroids (NEAs) in the coming decades. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of these primitive objects. However, prior to sending human explorers to NEAs, robotic investigations of these bodies would be required in order to maximize operational efficiency and reduce mission risk. These precursor missions to NEAs would fill crucial strategic knowledge gaps concerning their physical characteristics that are relevant for human exploration of these relatively unknown destinations. Information obtained from a human investigation of a NEA, together with ground-based observations and prior spacecraft investigations of asteroids and comets, will also provide a real measure of ground truth to data obtained from terrestrial meteorite collections. Major advances in the areas of geochemistry, impact history, thermal history, isotope analyses, mineralogy, space weathering, formation ages, thermal inertias, volatile content, source regions, solar system formation, etc. can be expected from human NEA missions. Samples directly returned from a primitive body would lead to the same kind of breakthroughs for understanding NEAs that the Apollo samples provided for understanding the Earth-Moon system and its formation history. In addition, robotic precursor and human exploration missions to NEAs would allow the NASA and its international partners to gain operational experience in performing complex tasks (e.g., sample collection, deployment of payloads, retrieval of payloads, etc.) with crew, robots, and spacecraft under microgravity conditions at or near the surface of a small body. This would provide an important synergy between the worldwide Science and Exploration communities, which will be crucial for development of future international deep space exploration architectures and has potential benefits for future exploration of other destinations beyond low-Earth orbit.

  9. A Low Risk Strategy for the Exploration of Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Landis, Rob R.

    2011-01-01

    The impetus for asteroid exploration is scientific, political, and pragmatic. The notion of sending human explorers to asteroids is not new. Piloted missions to these primitive bodies were first discussed in the 1960s, pairing Saturn V rockets with enhanced Apollo spacecraft to explore what were then called "Earth-approaching asteroids." Two decades ago, NASA's Space Exploration Initiative (SEI) also briefly examined the possibility of visiting these small celestial bodies. Most recently, the U.S. Human Space Flight Review Committee (the second Augustine Commission) suggested that near-Earth objects (NEOs) represent a target-rich environment for exploration via the "Flexible Path" option. However, prior to seriously considering human missions to NEOs, it has become clear that we currently lack a robust catalog of human accessible targets. The majority of the NEOs identified by a study team across several NASA centers as "human-accessible" are probably too small and have orbits that are too uncertain to consider mounting piloted expeditions to these small worlds. The first step in developing such a catalog is, therefore, to complete a space-based NEO survey. The resulting catalog of candidate NEOs would then be transformed into a matrix of opportunities for robotic and human missions for the next several decades. This initial step of a space-based NEO survey first is the linchpin to laying the foundation of a low-risk architecture to venture out and explore these primitive bodies. We suggest such a minimalist framework architecture from 1) extensive ground-based and precursor spacecraft investigations (while applying operational knowledge from science-driven robotic missions), 2) astronaut servicing of spacecraft operating at geosynchronous Earth orbit to retain essential skills and experience, and 3) applying the sum of these skills, knowledge and experience to piloted missions to NEOs.

  10. ALMA observations of Titan's atmospheric chemistry and seasonal variation

    NASA Astrophysics Data System (ADS)

    Cordiner, Martin

    2017-04-01

    Titan is the largest moon of Saturn, with a thick (1.45 bar) atmosphere composed primarily of molecular nitrogen and methane. Photochemistry in Titan's upper atmosphere results in the production of a wide range of organic molecules, including hydrocarbons, nitriles and aromatics, some of which could be of pre-biotic relevance. Thus, we obtain insights into the possible molecular inventories of primitive (reducing) planetary atmospheres. Titan's atmosphere also provides a unique laboratory for testing our understanding of fundamental processes involving the chemistry and spectroscopy of complex organic molecules. In this talk, results will be presented from our studies using the Atacama Large Millimeter/submillimeter Array (ALMA) during the period 2012-2015, focussing in particular on the detection and mapping of emission from various nitrile species. By combining data from multiple ALMA observations, our spectra have reached an unprecedented sensitivity level, enabling the first spectroscopic detection and mapping of C2H3CN (vinyl cyanide) on Titan. Liquid-phase simulations of Titan's seas indicate that vinyl cyanide molecules could combine to form vesicle membranes (similar to the cells of terrestrial biology), and the astrobiological implications of this discovery will be discussed. Furthermore, ALMA observations provide instantaneous snapshot mapping of Titan's entire Earth-facing hemisphere, for gases inaccessible to previous instruments. Combined with complementary data obtained from the Cassini Saturn orbiter, as well as theoretical models and laboratory studies, our observed, seasonally variable, spatially resolved abundance patterns are capable of providing new insights into photochemical production and transport in primitive planetary atmospheres in the Solar System and beyond.

  11. Direct detection of projectile relics from the end of the lunar basin-forming epoch.

    PubMed

    Joy, Katherine H; Zolensky, Michael E; Nagashima, Kazuhide; Huss, Gary R; Ross, D Kent; McKay, David S; Kring, David A

    2012-06-15

    The lunar surface, a key proxy for the early Earth, contains relics of asteroids and comets that have pummeled terrestrial planetary surfaces. Surviving fragments of projectiles in the lunar regolith provide a direct measure of the types and thus the sources of exogenous material delivered to the Earth-Moon system. In ancient [>3.4 billion years ago (Ga)] regolith breccias from the Apollo 16 landing site, we located mineral and lithologic relics of magnesian chondrules from chondritic impactors. These ancient impactor fragments are not nearly as diverse as those found in younger (3.4 Ga to today) regolith breccias and soils from the Moon or that presently fall as meteorites to Earth. This suggests that primitive chondritic asteroids, originating from a similar source region, were common Earth-Moon-crossing impactors during the latter stages of the basin-forming epoch.

  12. The earth as a planet - Paradigms and paradoxes

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1984-01-01

    The independent growth of the various branches of the earth sciences in the past two decades has led to a divergence of geophysical, geochemical, geological, and planetological models for the composition and evolution of a terrestrial planet. Evidence for differentiation and volcanism on small planets and a magma ocean on the moon contrasts with hypotheses for a mostly primitive, still undifferentiated, and homogeneous terrestrial mantle. In comparison with the moon, the earth has an extraordinarily thin crust. The geoid, which should reflect convection in the mantle, is apparently unrelated to the current distribution of continents and oceanic ridges. If the earth is deformable, the whole mantle should wander relative to the axis of rotation, but the implications of this are seldom discussed. The proposal of a mantle rich in olivine violates expectations based on evidence from extraterrestrial sources. These and other paradoxes force a reexamination of some long-held assumptions.

  13. Experimental constraints on Earth's core formation

    NASA Astrophysics Data System (ADS)

    Bouhifd, Mohamed Ali

    2017-04-01

    The Earth contains a Fe-rich metallic core that segregated from the primitive silicate mantle very early in its 4.5 billion year history. One major consequence of this segregation is the depletion of the Earth's mantle from the siderophile elements "high core affinity" relative to primitive solar system abundances. The way in which siderophile elements partition between metal and silicate depends strongly on pressure (P), temperature (T), oxygen fugacity (fO2) and chemical compositions of both metal and silicate phases. In the present presentation, I will discuss the experimental results of metal-silicate partitioning of Ni and Co that show a marked change with increasing pressure (e.g. Bouhifd and Jephcoat, 2011; Siebert et al., 2012; Fischer et al., 2015 for the most recent studies). This behavior coincides with a change in the coordination of silicon (in a basaltic melt composition) from 4-fold coordination under ambient conditions to 6-fold coordination at about 35 GPa, indicating that melt compressibility may controls siderophile-element partitioning (Sanloup et al., 2013). I will also discuss the impact of Earth's core formation on "lithophile" elements such as Sm, Nd, Ta and Nb (e.g. Bouhifd et al. 2015; Cartier et al., 2014), as well as the impact of sulphur on the behavior of various elements during core formation (e.g. Boujibar et al., 2014; Wohlers and Wood, 2015). By combining the metal-silicate partitioning data from siderophile, lithophile and chalcophile elements I will present and discuss the most plausible conditions for Earth's core formation. References Bouhifd and Jephcoat (2011) EPSL, 307, 341-348. Bouhifd et al. (2015) EPSL 413, 158-166. Boujibar et al. (2014) EPSL 391, 42-54. Cartier et al. (2014) Nature Geoscience, 7, 573-576. Fischer et al. (2015) GCA 167, 177-194. Sanloup et al. (2013) Nature, 503, 104-107. Siebert et al. (2012) EPSL 321-322, 189-197. Wohlers and Wood (2015) Nature 520, 337-340.

  14. Reconstructing Holocene climate using a climate model: Model strategy and preliminary results

    NASA Astrophysics Data System (ADS)

    Haberkorn, K.; Blender, R.; Lunkeit, F.; Fraedrich, K.

    2009-04-01

    An Earth system model of intermediate complexity (Planet Simulator; PlaSim) is used to reconstruct Holocene climate based on proxy data. The Planet Simulator is a user friendly general circulation model (GCM) suitable for palaeoclimate research. Its easy handling and the modular structure allow for fast and problem dependent simulations. The spectral model is based on the moist primitive equations conserving momentum, mass, energy and moisture. Besides the atmospheric part, a mixed layer-ocean with sea ice and a land surface with biosphere are included. The present-day climate of PlaSim, based on an AMIP II control-run (T21/10L resolution), shows reasonable agreement with ERA-40 reanalysis data. Combining PlaSim with a socio-technological model (GLUES; DFG priority project INTERDYNAMIK) provides improved knowledge on the shift from hunting-gathering to agropastoral subsistence societies. This is achieved by a data assimilation approach, incorporating proxy time series into PlaSim to initialize palaeoclimate simulations during the Holocene. For this, the following strategy is applied: The sensitivities of the terrestrial PlaSim climate are determined with respect to sea surface temperature (SST) anomalies. Here, the focus is the impact of regionally varying SST both in the tropics and the Northern Hemisphere mid-latitudes. The inverse of these sensitivities is used to determine the SST conditions necessary for the nudging of land and coastal proxy climates. Preliminary results indicate the potential, the uncertainty and the limitations of the method.

  15. Isotopic constraints on the age and early differentiation of the Earth.

    PubMed

    McCulloch, M T

    1996-03-01

    The Earth's age and early differentiation history are re-evaluated using updated isotopic constraints. From the most primitive terrestrial Pb isotopic compositions found at Isua Greenland, and the Pilbara of Western Australia, combined with precise geochronology of these localities, an age 4.49 +/- 0.02 Ga is obtained. This is interpreted as the mean age of core formation as U/Pb is fractionated due to sequestering of Pb into the Earth's core. The long-lived Rb-Sr isotopic system provides constraints on the time interval for the accretion of the Earth as Rb underwent significant depletion by volatile loss during accretion of the Earth or its precursor planetesimals. A primitive measured 87Sr/86Sr initial ratio of 0.700502 +/- 10 has been obtained for an early Archean (3.46 Ga) barite from the Pilbara Block of Western Australia. Using conservative models for the evolution of Rb/Sr in the early Archean mantle allows an estimate to be placed on the Earth's initial Sr ratio at approximately 4.50 Ga, of 0.69940 +/- 10. This is significantly higher than that measured for the Moon (0.69900 +/- 2) or in the achondrite, Angra dos Reis (0.69894 +/- 2) and for a Rb/Sr ratio of approximately 1/2 of chondrites corresponds to a mean age for accretion of the Earth of 4.48 + /- 0.04 Ga. The now extinct 146Sm-142Nd (T1/2(146)=103 l0(6)yrs) combined with the long-lived 147Sm-143Nd isotopic systematics can also be used to provide limits on the time of early differentiation of the Earth. High precision analyses of the oldest (3.8-3.9 Ga) Archean gneisses from Greenland (Amitsoq and Akilia gneisses), and Canada (Acasta gneiss) do not show measurable (> +/- l0ppm) variations of 142Nd, in contrast to the 33 ppm 142Nd excess reported for an Archean sample. The general lack of 142Nd variations, combined with the presence of highly positive epsilon 143 values (+4.0) at 3.9 Ga, indicates that the record of large-scale Sm/Nd fractionation events was not preserved in the early-Earth from 4.56 Ga to approximately 4.3 Ga. This is consistent with large-scale planetary re-homogenisation during ongoing accretion of the Earth. The lack of isotopic anomalies in short-lived decay systems, together with the Pb and Sr isotopic constraints is thus consistent with core formation and accretion of the Earth occurring over an approximately 100 Ma interval following the formation of meteorites at 4.56 Ga.

  16. Question 2: why an astrobiological study of titan will help us understand the origin of life.

    PubMed

    Raulin, Francois

    2007-10-01

    For understanding the origin(s) of life on Earth it is essential to search for and study extraterrestrial environments where some of the processes which participated in the emergence of Life on our planet are still occurring. This is one of the goals of astrobiology. In that frame, the study of extraterrestrial organic matter is essential and is certainly not of limited interest regarding prebiotic molecular evolution. Titan, the largest satellite of Saturn and the only planetary body with an atmosphere similar to that of the Earth is one of the places of prime interest for these astrobiological questions. It presents many analogies with the primitive Earth, and is a prebiotic-like laboratory at the planetary scale, where a complex organic chemistry in is currently going on.

  17. Prebiotic organic matter - Possible pathways for synthesis in a geological context

    NASA Technical Reports Server (NTRS)

    Chang, S.

    1982-01-01

    Models for the accretion of the earth, core formation, differentiation of the planet into core, mantle, crust, and atmosphere, and prebiotic synthesis of organic materials are reviewed. The development of the Haldane-Oparin and Urey models is traced, and the effect of accretion time on the outgassing process and the composition of the consequent atmosphere is examined. Model prebiotic atmospheres are calculated, the extent of equilibration of the primitive atmosphere is studied and the evolution of the atmosphere prior to organic chemical evolution is reviewed. Finally, experimental progress in synthesis of biological monomers and polymers under presumed early earth conditions is covered.

  18. Fayalite Oxidation Processes: Experimental Evidence for the Stability of Pure Ferric Fayalite?

    NASA Technical Reports Server (NTRS)

    Martin, A. M.; Righter, K.; Keller, L. P.; Medard, E.; Devouard, B.; Rahman, Z.

    2011-01-01

    Olivine is one of the most important minerals in Earth and planetary sciences. Fayalite Fe2(2+)SiO4, the ferrous end-member of olivine, is present in some terrestrial rocks and primitive meteorites (CV3 chondrites). A ferric fayalite (or ferri-fayalite), Fe(2+) Fe2(3+)(SiO4)2 laihunite, has been reported in Earth samples (magnetite ore, metamorphic and volcanic rocks...) and in Martian meteorites (nakhlites). Laihunite was also synthesized at 1 atmosphere between 400 and 700 C. We show evidence for the stability of a pure ferrifayalite end-member and for potential minerals with XFe(3+) between 2/3 and 1.

  19. Biological modulation of planetary atmospheres: The early Earth scenario

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.

    1985-01-01

    The establishment and subsequent evolution of life on Earth had a profound impact on the chemical regime at the planet's surface and its atmosphere. A thermodynamic gradient was imposed on near-surface environments that served as the driving force for a number on important geochemical transformations. An example is the redox imbalance between the modern atmosphere and the material of the Earth's crust. Current photochemical models predict extremely low partial pressures of oxygen in the Earth's prebiological atmosphere. There is widespread consensus that any large-scale oxygenation of the primitive atmosphere was contingent on the advent of biological (autotrophic) carbon fixation. It is suggested that photoautotrophy existed both as a biochemical process and as a geochemical agent since at least 3.8 Ga ago. Combining the stoichiometry of the photosynthesis reaction with a carbon isotope mass balance and current concepts for the evolution of the stationary sedimentary mass as a funion of time, it is possible to quantify, the accumulation of oxygen and its photosynthetic oxidation equivalents through Earth history.

  20. Why we need asteroid sample return mission?

    NASA Astrophysics Data System (ADS)

    Barucci, Maria Antonietta

    2016-07-01

    Small bodies retain evidence of the primordial solar nebula and the earliest solar system processes that shaped their evolution. They may also contain pre-solar material as well as complex organic molecules, which could have a major role to the development of life on Earth. For these reasons, asteroids and comets have been targets of interest for missions for over three decades. However, our knowledge of these bodies is still very limited, and each asteroid or comet visited by space mission has revealed unexpected scientific results, e.g. the structure and nature of comet 67P/Churyumov-Gerasimenko (67P/C-G) visited by the Rosetta mission. Only in the laboratory can instruments with the necessary precision and sensitivity be applied to individual components of the complex mixture of materials that forms a small body regolith, to determine their precise chemical and isotopic composition. Such measurements are vital for revealing the evidence of stellar, interstellar medium, pre-solar nebula and parent body processes that are retained in primitive material, unaltered by atmospheric entry or terrestrial contamination. For those reasons, sample return missions are considered a high priority by a number of the leading space agencies. Abundant within the inner Solar System and the main impactors on terrestrial planets, small bodies may have been the principal contributors of the water and organic material essential to create life on Earth. Small bodies can therefore be considered to be equivalent to DNA for unravelling our solar system's history, offering us a unique window to investigate both the formation of planets and the origin of life. A sample return mission to a primitive Near-Earth Asteroid (NEA) has been study at ESA from 2008 in the framework of ESA's Cosmic Vision (CV) programme, with the objective to answer to the fundamental CV questions "How does the Solar System work?" and "What are the conditions for life and planetary formations?". The returned material will allow us to study in terrestrial laboratories some of the most primitive materials available to investigate early solar system formation processes, to explore initial stages of habitable planet formation, to identify and characterize the organics and volatiles in a primitive asteroid. The ideal easy target body for such mission is a D type NEA. D types are the most abundant asteroids beyond the outer edge of the main belt. It is likely that they formed much further out in the Solar System, possibly as far as the transneptunian objects, and were subsequently captured in their present locations following the migration of the gas giants. Spectral features indicate that these bodies are organic rich, contain fine anhydrous minerals but also may be volatile rich and appear to be the most primitive rocky material present in the solar system. In addition to addressing the major science goals, sample return mission from a NEA also involved innovative European technologies. The key sample return capabilities, i.e. asteroid navigation, touch and go, sampling mechanism and the re-entry capsule have reached at ESA a validation status to enter implementation phase. The development of sample return technology represents in Europe a crucial element for planetary science and for the space technology development.

  1. Architecture for an integrated real-time air combat and sensor network simulation

    NASA Astrophysics Data System (ADS)

    Criswell, Evans A.; Rushing, John; Lin, Hong; Graves, Sara

    2007-04-01

    An architecture for an integrated air combat and sensor network simulation is presented. The architecture integrates two components: a parallel real-time sensor fusion and target tracking simulation, and an air combat simulation. By integrating these two simulations, it becomes possible to experiment with scenarios in which one or both sides in a battle have very large numbers of primitive passive sensors, and to assess the likely effects of those sensors on the outcome of the battle. Modern Air Power is a real-time theater-level air combat simulation that is currently being used as a part of the USAF Air and Space Basic Course (ASBC). The simulation includes a variety of scenarios from the Vietnam war to the present day, and also includes several hypothetical future scenarios. Modern Air Power includes a scenario editor, an order of battle editor, and full AI customization features that make it possible to quickly construct scenarios for any conflict of interest. The scenario editor makes it possible to place a wide variety of sensors including both high fidelity sensors such as radars, and primitive passive sensors that provide only very limited information. The parallel real-time sensor network simulation is capable of handling very large numbers of sensors on a computing cluster of modest size. It can fuse information provided by disparate sensors to detect and track targets, and produce target tracks.

  2. Recent collisional jet from a primitive asteroid

    NASA Astrophysics Data System (ADS)

    Novaković, Bojan; Dell'Oro, Aldo; Cellino, Alberto; Knežević, Zoran

    2012-09-01

    In this paper we show an example of a young asteroid cluster located in a dynamically stable region, which was produced by partial disruption of a primitive body about 30 km in size. We estimate its age to be only 1.9 ± 0.3 Myr; thus, its post-impact evolution should have been very limited. The large difference in size between the largest object and the other cluster members means that this was a cratering event. The parent body had a large orbital inclination and was subject to collisions with typical impact speeds higher by a factor of 2 than in the most common situations encountered in the main belt. For the first time, we have at our disposal the observable outcome of a very recent event to study high-speed collisions involving primitive asteroids, providing very useful constraints to numerical simulations of these events and to laboratory experiments.

  3. A real-time robot arm collision avoidance system

    NASA Technical Reports Server (NTRS)

    Shaffer, Clifford A.; Herb, Gregory M.

    1992-01-01

    A data structure and update algorithm are presented for a prototype real-time collision avoidance safety system simulating a multirobot workspace. The data structure is a variant of the octree, which serves as a spatial index. An octree recursively decomposes 3D space into eight equal cubic octants until each octant meets some decomposition criteria. The N-objects octree, which indexes a collection of 3D primitive solids is used. These primitives make up the two (seven-degrees-of-freedom) robot arms and workspace modeled by the system. As robot arms move, the octree is updated to reflect their changed positions. During most update cycles, any given primitive does not change which octree nodes it is in. Thus, modification to the octree is rarely required. Cycle time for interpreting current arm joint angles, updating the octree to reflect new positions, and detecting/reporting imminent collisions averages 30 ms on an Intel 80386 processor running at 20 MHz.

  4. The relative importance of prebiotic synthesis on the Earth and input from comets and meteorites

    NASA Technical Reports Server (NTRS)

    Miller, S. L.

    1991-01-01

    The prebiotic synthesis of hydrogen cyanide and formaldehyde was studied by the action of electric discharges on various model primitive atmospheres containing CH4, CO, and CO2. Photochemical production rates would also have been important and were calculated for HCN and H2CO. A reasonable rate of synthesis of amino acids from these sources is about 10 n moles/(sq cm yr) or 0.10 moles/sq cm in 10(exp 7) yrs. This would give a concentration of 3 x 10(exp -4) M in an ocean of the present size (300 liters/sq cm). The amino acids cannot accumulate over a longer period because the entire ocean passes through the 350 C submarine vents in 10(exp 7) yrs, which decomposes all the organic compounds. A number of workers have calculated the influx of comets and meteorites on the primitive earth, both as a destructive process for organic compounds and for any life that was present, as well as a source of organic compounds. Some of the amino acids from the meteorite proposed to have hit the earth 65 x 10(exp 6) yrs ago were detected at the Cretaceous/Tertiary boundary sediments. The problem with proposing a large scale input of organic compounds from meteorites and comets is that they must survive passage through the atmosphere and impact. There are some processes that would allow survival such as showers of centimeter to meter sized meteorites and various aerodynamic braking processes for larger objects. Even if a significant amount of the organic material survived impact, the destructive processes in the hydrothermal vents would remove these compounds on the average in 10(exp 7) yrs or less. If it is assumed that the input rate was sufficient to overcome these destructive processes, then too much carbon and water, especially from comets, would have been added to the surface of the earth. It was concluded that while some organic material was added to the earth from comets and meteorites, the amount available from these sources at a given time was only a few percent of that from earth based syntheses.

  5. The Moon as a recorder of organic evolution in the early solar system: a lunar regolith analog study.

    PubMed

    Matthewman, Richard; Court, Richard W; Crawford, Ian A; Jones, Adrian P; Joy, Katherine H; Sephton, Mark A

    2015-02-01

    The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter-containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable.

  6. The space program's impact on society

    NASA Astrophysics Data System (ADS)

    Toffler, Alvin

    In terms of human evolution, when viewed from 500 or 1000 years from now, today's primitive, still faltering steps beyond the Earth will be recognized as the most important human project of our era, matched only by what is going on in computers and biology. In this paper the social effects of space activity are addressed at three different levels: key social institutions, key social groups, and key social processes.

  7. Humic first, A new theory on the origin of life

    NASA Astrophysics Data System (ADS)

    Daei, Mohammad Ali; Daei, Manijeh

    2016-04-01

    In 1953, Miller &Urey through a brilliant experiment demonstrated that the building blocks of life could evolve in primitive earth conditions1. In recent years scientists revealed that organic matters are not very rare compounds in comets, asteroids, and meteorites2. These facts show simple organic molecules on early earth could be quite enough to start development of life. But, how? Many theorists have tried to explain how life emerged from non life, but failed2. There is a huge gap between the simple building blocks, like amino acid, sugar, and lipid molecules, to a living cell with a very sophisticated structure and organization. Obviously, creation of a cell needed a qualified production line which had to be durable and active, can gather all biochemical ingredients, protect them from degradation, have catalyzing ability, provide numerous opportunities for interaction between basic molecules, and above all, have capability to react to different sources of energy. We are sure this perfect factory was available on primitive earth and is nothing except humic substance! At the moment, HS, are doing nearly all of these duties, among the others, under your feet in agricultural soils4. What are humic substances? According to IHSS definition "Humic substances (HS) are major components of the natural organic matter (NOM) in soil and water as well as in geological organic deposits such as lake sediments, peats, brown coals, and shales5." They come from polymerization of organic molecules, but looking at them like a simple aggregation of different organic molecules, is a huge mistake6! It seems they do not come together except for making a capable structure! HS are the first organic machinery which appeared in proplanetary disk, more than four billion years ago. Derived from simple inorganic molecules, humic substances construct a firm intermediate structure which connects none life to life. In other word, life road pass over the humic bridge. This does not mean that necessarily they had extra terrestrial origin. In fact Ziechman et al7, in 1994 by finding humic material in Miller's experimental vessels proved that humic substances could be generate on early earth conditions by polymerizing simple organic molecules. Which evidences support our Ideas? 1- Suppose a wet land located in a warm area of primitive earth, covered with a layer of black humic materials, ready to action and reaction. Under this umbrella, basic molecules of life can interact freely and benefit from catalyzing and stimulating effects of HS. Amino and nucleic acid molecules may line up, grow, and develop mutually. Protein molecules can appear and do practices and before decaying a strand of nucleotides is ready to save their information and can rebuilt them for further practices. Thus, chemical evolution on a bed of humic acid can promote targeted, firmly and continuously towards a large network that be able to support a self replicating cell! We deliberately suggested, land and not the sea, as cradle of life. Because sodium, the most prevalent cation in oceans could not participate in primitive life, instead potassium played an important role. 2- There are strong evidences that show HS, really acted as the main elemental selector and even chairal selector for life on early earth. HS, show strong affinity and fast releasing tendency for macro nutrients (N, P, K).There is moderate affinity and releasing tendency for Ca, Mg, S. Also there is weak affinity and reluctance for liberating micronutrients. More interesting, HS generate insoluble compounds with nearly all toxic elements. As you see not only HS selected some and rejected other elements but also definite their proportions in the cell structure. 3- What is the reason of homochairality in living organism? As you know, none of previous theories in this field provided an easy explanation for this difficult and fundamental question. But, humic theory has a simple answer. Humic substances accepted some and rejected the other enantiomers, because their spatial structure dictate, as did so regarding elemental selection. References: 1- Miller, Stanly L." production of amino acid under possible primitive Earth conditions" Science 117:528.(may 1953) 2- Encyclopedia Britannica website "carbonaceous contrite" October 17, 2014 3- Shapiro, Robert " A simpler origin for life" Science American February 12 . 2007 4- Pettit, Robert, "organic matter, humus, humate, humic acid, fulvic acid humin: their importance in soil fertility and plant health" 5- International Humic Substances Society website, " What are humic substances" 6- Humic, Fulvic and microbial balance: organic soil conditioning, by William R. Jackson 1993, pag 165-167 7- Steinberg, Christian E.W "Ecology of humic substances in freshwater-determination from geochemistry to ecological niches" (2003)

  8. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep and thermal fatigue

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    This report presents the results of a fourth year effort of a research program, conducted for NASA-LeRC by the University of Texas at San Antonio (UTSA). The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subject to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 has been analyzed using the developed methodology.

  9. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep, and thermal fatigue

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    The results of a fourth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA) are presented. The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue, or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation was randomized and is included in the computer program, PROMISC. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.

  10. Implications of the (H2O)n + CO ↔ trans-HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions for primordial atmospheres of Venus and Earth

    NASA Astrophysics Data System (ADS)

    Vichietti, R. M.; Spada, R. F. K.; da Silva, A. B. F.; Machado, F. B. C.; Haiduke, R. L. A.

    2018-04-01

    The forward and backward (H2O)n + CO ↔ HCOOH + (H2O)n-1 (n = 1, 2, and 3) reactions were studied in order to furnish trustworthy thermochemical and kinetic data. Stationary point structures involved in these chemical processes were achieved at the B2PLYP/cc-pVTZ level so that the corresponding vibrational frequencies, zero-point energies, and thermal corrections were scaled to consider anharmonicity effects. A complete basis set extrapolation was also employed with the CCSD(T) method in order to improve electronic energy descriptions and providing therefore more accurate results for enthalpies, Gibbs energies, and rate constants. Forward and backward rate constants were encountered at the high-pressure limit between 200 and 4000 K. In turn, modified Arrhenius' equations were fitted from these rate constants (between 700 and 4000 K). Next, considering physical and chemical conditions that have supposedly prevailed on primitive atmospheres of Venus and Earth, our main results indicate that 85-88 per cent of all water forms on these atmospheres were monomers, whereas (H2O)2 and (H2O)3 complexes would represent 12-15 and ˜0 per cent, respectively. Besides, we estimate that Earth's and Venus' primitive atmospheres could have been composed by ˜0.001-0.003 per cent of HCOOH when their temperatures were around 1000-2000 K. Finally, the water loss process on Venus may have occurred by a mechanism that includes the formic acid as intermediate species.

  11. Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon.

    PubMed

    Caro, Guillaume; Bourdon, Bernard; Halliday, Alex N; Quitté, Ghylaine

    2008-03-20

    Small isotopic differences in the atomic abundance of neodymium-142 (142Nd) in silicate rocks represent the time-averaged effect of decay of formerly live samarium-146 (146Sm) and provide constraints on the timescales and mechanisms by which planetary mantles first differentiated. This chronology, however, assumes that the composition of the total planet is identical to that of primitive undifferentiated meteorites called chondrites. The difference in the 142Nd/144Nd ratio between chondrites and terrestrial samples may therefore indicate very early isolation (<30 Myr from the formation of the Solar System) of the upper mantle or a slightly non-chondritic bulk Earth composition. Here we present high-precision 142Nd data for 16 martian meteorites and show that Mars also has a non-chondritic composition. Meteorites belonging to the shergottite subgroup define a planetary isochron yielding an age of differentiation of 40 +/- 18 Myr for the martian mantle. This isochron does not pass through the chondritic reference value (100 x epsilon(142)Nd = -21 +/- 3; 147Sm/144Nd = 0.1966). The Earth, Moon and Mars all seem to have accreted in a portion of the inner Solar System with approximately 5 per cent higher Sm/Nd ratios than material accreted in the asteroid belt. Such chemical heterogeneities may have arisen from sorting of nebular solids or from impact erosion of crustal reservoirs in planetary precursors. The 143Nd composition of the primitive mantle so defined by 142Nd is strikingly similar to the putative endmember component 'FOZO' characterized by high 3He/4He ratios.

  12. The nitrogen cycle on Mars

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.

    1989-01-01

    Nirtogen is an essential element for the evolution of life, because it is found in a variety of biologically important molecules. Therefore, N is an important element to study from a exobiological perspective. In particular, fixed nitrogen is the biologically useful form of nitrogen. Fixed nitrogen is generally defines as NH3, NH4(+), NO(x), or N that is chemically bound to either inorganic or organic molecules, and releasable by hydrolysis to NH3 or NH4(+). On Earth, the vast majority of nitrogen exists as N2 in the atmosphere, and not in the fixes form. On early Mars the same situations probably existed. The partial pressure of N2 on early Mars was thought to be 18 mb, significantly less than that of Earth. Dinitrogen can be fixed abiotically by several mechanisms. These mechanisms include thernal shock from meteoritic infall and lightning, as well as the interaction of light and sand containing TiO2 which produces NH3 that would be rapidly destroyed by photolysis and reaction with OH radicals. These mechanisms could have been operative on primitive Mars.The chemical processes effecting these compounds and possible ways of fixing or burying N in the Martian environment are described. Data gathered in this laboratory suggest that the low abundance of nitrogen along (compared to primitive Earth) may not significantly deter the origin and early evolution of a nitrogen utilizing organisms. However, the conditions on current Mars with respect to nitrogen are quite different, and organisms may not be able to utilize all of the available nitrogen.

  13. The climate of Mars

    NASA Astrophysics Data System (ADS)

    Haberle, R. M.

    1986-05-01

    The composition of the primitive Martian atmosphere and its development into the present environment are described. The primitive atmosphere consisted of water vapor, carbon dioxide, and nitrogen released from rocks; the greenhouse effect which maintained the surface temperature above the frost point of water is examined. Volcanic activity reduced the greenhouse effect and along with CO2 removal from the atmosphere caused a lowering of the planet temperature. The global circulation patterns on earth and Mars are compared; the similarities in the circulation patterns and Mars' seasonal variations are studied. The carbon dioxide and water cycles on Mars are analyzed; the carbon dioxide cycle determines seasonal variations in surface pressure and the behavior of the water cycle. The behavior of the atmospheric dust and the relationship between the seasonal dust cycle and Hadley circulation are investigated. The periodic variations in the three orbital parameters of Mars, which affect the climate by changing the seasonal and latitudinal distribution of incoming solar energy are discussed

  14. Molecular replication

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.

    1986-01-01

    The object of our research program is to understand how polynucleotide replication originated on the primitive Earth. This is a central issue in studies of the origins of life, since a process similar to modern DNA and RNA synthesis is likely to have formed the basis for the most primitive system of genetic information transfer. The major conclusion of studies so far is that a preformed polynucleotide template under many different experimental conditions will facilitate the synthesis of a new oligonucleotide with a sequence complementary to that of the template. It has been shown, for example, that poly(C) facilitates the synthesis of long oligo(G)s and that the short template CCGCC facilities the synthesis of its complement GGCGG. Very recently we have shown that template-directed synthesis is not limited to the standard oligonucleotide substrates. Nucleic acid-like molecules with a pyrophosphate group replacing the phosphate of the standard nucleic acid backbone are readily synthesized from deoxynucleotide 3'-5'-diphosphates on appropriate templates.

  15. Terrestrial planet formation in a protoplanetary disk with a local mass depletion: A successful scenario for the formation of Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izidoro, A.; Winter, O. C.; Haghighipour, N.

    Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars' semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e ∼ 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodiesmore » in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50%-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.« less

  16. Photochemical synthesis of simple organic free radicals on simulated planetary surfaces - An ESR study

    NASA Technical Reports Server (NTRS)

    Tseng, S.-S.; Chang, S.

    1975-01-01

    Electron spin resonance (ESR) spectroscopy provided evidence for formation of hydroxyl radicals during ultraviolet photolysis (254 nm) at -170 C of H2O adsorbed on silica gel or of silica gel alone. The carboxyl radical was observed when CO or CO2 or a mixture of CO and CO2 adsorbed on silica gel at -170 C was irradiated. The ESR signals of these radicals slowly disappeared when the irradiated samples were warmed to room temperature. However, reirradiation of CO or CO2, or the mixture CO and CO2 on silica gel at room temperature then produced a new species, the carbon dioxide anion radical, which slowly decayed and was identical with that produced by direct photolysis of formic acid adsorbed on silica gel. The primary photochemical process may involve formation of hydrogen and hydroxyl radicals. Subsequent reactions of these radicals with adsorbed CO or CO2 or both yield carboxyl radicals, CO2H, the precursors of formic acid. These results confirm the formation of formic acid under simulated Martian conditions and provide a mechanistic basis for gauging the potential importance of gas-solid photochemistry for chemical evolution on other extraterrestrial bodies, on the primitive earth, and on dust grains in the interstellar medium.

  17. Probabilistic Simulation of Multi-Scale Composite Behavior

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2012-01-01

    A methodology is developed to computationally assess the non-deterministic composite response at all composite scales (from micro to structural) due to the uncertainties in the constituent (fiber and matrix) properties, in the fabrication process and in structural variables (primitive variables). The methodology is computationally efficient for simulating the probability distributions of composite behavior, such as material properties, laminate and structural responses. Bi-products of the methodology are probabilistic sensitivities of the composite primitive variables. The methodology has been implemented into the computer codes PICAN (Probabilistic Integrated Composite ANalyzer) and IPACS (Integrated Probabilistic Assessment of Composite Structures). The accuracy and efficiency of this methodology are demonstrated by simulating the uncertainties in composite typical laminates and comparing the results with the Monte Carlo simulation method. Available experimental data of composite laminate behavior at all scales fall within the scatters predicted by PICAN. Multi-scaling is extended to simulate probabilistic thermo-mechanical fatigue and to simulate the probabilistic design of a composite redome in order to illustrate its versatility. Results show that probabilistic fatigue can be simulated for different temperature amplitudes and for different cyclic stress magnitudes. Results also show that laminate configurations can be selected to increase the redome reliability by several orders of magnitude without increasing the laminate thickness--a unique feature of structural composites. The old reference denotes that nothing fundamental has been done since that time.

  18. Non-Black-Box Simulation from One-Way Functions and Applications to Resettable Security

    DTIC Science & Technology

    2012-11-05

    from 2001, Barak (FOCS’01) introduced a novel non-black-box simulation technique. This technique enabled the construc- tion of new cryptographic...primitives, such as resettably-sound zero-knowledge arguments, that cannot be proven secure using just black-box simulation techniques. The work of Barak ... Barak requires the existence of collision-resistant hash functions, and a very recent result by Bitansky and Paneth (FOCS’12) instead requires the

  19. Phosphate sorption and desorption on pyrite in primitive aqueous scenarios: relevance of acidic --> alkaline transitions.

    PubMed

    de Souza-Barros, Fernando; Braz-Levigard, Raphael; Ching-San, Yonder; Monte, Marisa M B; Bonapace, José A P; Montezano, Viviane; Vieyra, Adalberto

    2007-02-01

    Phosphate (P(i)) sorption assays onto pyrite in media simulating primeval aquatic scenarios affected by hydrothermal emissions, reveal that acidic conditions favour P(i) sorption whereas mild alkaline media--as well as those simulating sulfur oxidation to SO(2-) (4)--revert this capture process. Several mechanisms relevant to P(i) availability in prebiotic eras are implicated in the modulation of these processes. Those favouring sorption are: (a) hydrophobic coating of molecules, such as acetate that could be formed in the vicinity of hydrothermal vents; (b) water and Mg(2+) bridging in the interface mineral-aqueous media; (c) surface charge neutralization by monovalent cations (Na+ and K+). The increase of both the medium pH and the SO(2-) (4) trapping by the mineral interface would provoke the release of sorbed P(i) due to charge polarization. Moreover it is shown that P(i) self-modulates its sorption, a mechanism that depends on the abundance of SO(2-) (4) in the interface. The relevance of the proposed mechanisms of P(i) capture, release and trapping arises from the need of abundant presence of this molecule for primitive phosphorylations, since--similarly to contemporary aqueous media--inorganic phosphate concentrations in primitive seas should have been low. It is proposed that the presence of sulphide minerals with high affinity to P(i) could have trapped this molecule in an efficient manner, allowing its concentration in specific niches. In these niches, the conditions studied in the present work would have been relevant for its availability in soluble form, specially in primitive insulated systems with pH gradients across the wall.

  20. Determining Possible Building Blocks of the Earth and Mars

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; OBrien, K. M.

    2004-01-01

    One of the fundamental questions concerning planetary formation is exactly what material did the planets form from? All the planets in our solar system are believed to have formed out of material from the solar nebula. Chondritic meteorites appear to sample this primitive material. Chondritic meteorites are generally classified into 13 major groups, which have a variety of compositions. Detailed studies of possible building blocks of the terrestrial planets require samples that can be used to estimate the bulk chemistry of these bodies. This study will focus on trying to determine possible building blocks of Earth and Mars since samples of these two planets can be studied in detail in the laboratory.

  1. The fate of the hydroxyl radical in the earth's primitive atmosphere and implications for the production of molecular oxygen

    NASA Technical Reports Server (NTRS)

    Vander Wood, T. B.; Thiemens, M. H.

    1980-01-01

    Behavior of the hydroxyl radical produced by the photolysis of water vapor in the earth's early atmosphere is examined. Because of the substantial OH radical reactivity with trace species (CO, HCl, SO2, H2S, NH3, and CH4) the formation of molecular oxygen may be prevented, even at a trace species mixing ratio. The photolysis rate of H2O, with corrections for hydrogen exospheric escape, is capable of describing the oxidation of the atmosphere and crust but may not be used to determine the rate of molecular oxygen generation without consideration of the various OH-trace species reactions.

  2. Evidence for Primordial Water in Earths Deep Mantle: D/h Ratios in Baffin Island and Icelandic Picrites

    NASA Astrophysics Data System (ADS)

    Hallis, L. J.; Huss, G. R.; Nagashima, K.; Taylor, J.; Hilton, D. R.; Mottl, M. J.; Meech, K. J.; Halldorsson, S. A.

    2016-12-01

    Experimentally based chemical models suggest Jeans escape could have caused an increase in Earth's atmospheric D/H ratio of between a factor of 2 and 9 since the planets formation1. Plate tectonic mixing ensures this change has been incorporated into the mantle. In addition, collisions with hydrogen bearing planetesimals or cometary material after Earth's accretion could have altered the D/H ratio of the planet's surface and upper mantle2. Therefore, to determine Earth's original D/H ratio, a reservoir that has been completely unaffected by these surface and upper mantle changes is required. Most studies suggest that high 3He/4He ratios in some OIBs indicate the existence of relatively undegassed regions in the deep mantle compared to the upper mantle, which retain a greater proportion of their primordial He3-4. Early Tertiary (60-million-year-old) picrites from Baffin Island and west Greenland, which represent volcanic rocks from the proto/early Iceland mantle plume, contain the highest recorded terrestrial 3He/4He ratios3-4. These picrites also have Pb and Nd isotopic ratios consistent with primordial mantle ages (4.45 to 4.55 Ga)5, indicating the persistence of an ancient, isolated reservoir in the mantle. The undegassed and primitive nature6of this reservoir suggests that it could preserve Earth's initial D/H ratio. We measured the D/H ratios of olivine-hosted glassy melt inclusions in Baffin Island and Icelandic picrites to establish whether their deep mantle source region exhibits a different D/H ratio to known upper mantle and surface reservoirs. Baffin Island D/H ratios were found to extend lower than any previously measured mantle values (δD -97 to -218 ‰), suggesting that areas of the deep mantle do preserve a more primitive hydrogen reservoir, hence are unaffected by plate tectonic mixing. Comparing our measured low D/H ratios to those of known extra-terrestrial materials can help determine where Earths water came from. References: [1] Genda and Ikoma, 2008 Icarus 194, 42-52. [2] Abramov, and Mojzsis, (2009) Nature 459, 419-422. [3] Stuart et al. (2003) Nature 424, 57-59. [4] Starkey et al. (2009) Earth Planet. Sci. Lett. 277, 91-100. [5] Jackson et al. (2010) Nature 466, 853-856. [6] Robillard et al. (1992) Contrib. Mineral. Petrol. 112, 230-241.

  3. Biomolecules from HCN

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Wos, J. D.; Ryan, T. J.; Lobo, A. P.; Donner, D. B.

    1974-01-01

    It has been suggested by Sanchez et al. (1967) that HCN might have been one of the more important precursors of biological molecules on the primitive earth. Studies were conducted to determine the mechanisms involved in HCN oligomerizations in dilute aqueous solutions and to identify the compounds which are produced in these oligomerization mixtures. Indirect evidence for the formation of cyanate was obtained along with direct evidence for the formation of citrulline, aspartic acid, and orotic acid.

  4. Synchrotron FTIR Examination of Interplanetary Dust Particles: An Effort to Determine the Compounds and Minerals in Interstellar and Circumstellar Dust

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.

    2002-01-01

    Some interplanetary dust particles (IDPs), collected by NASA from the Earth's stratosphere, are the most primitive extraterrestrial material available for laboratory analysis. Many exhibit isotopic anomalies in H, N, and O, suggesting they contain preserved interstellar matter. We report the preliminary results of a comparison of the infrared absorption spectra of subunits of the IDPs with astronomical spectra of interstellar grains.

  5. Possible generation of heat from nuclear fusion in Earth's inner core.

    PubMed

    Fukuhara, Mikio

    2016-11-23

    The cause and source of the heat released from Earth's interior have not yet been determined. Some research groups have proposed that the heat is supplied by radioactive decay or by a nuclear georeactor. Here we postulate that the generation of heat is the result of three-body nuclear fusion of deuterons confined in hexagonal FeDx core-centre crystals; the reaction rate is enhanced by the combined attraction effects of high-pressure (~364 GPa) and high-temperature (~5700 K) and by the physical catalysis of neutral pions: 2 D +  2 D +  2 D → 2 1 H +  4 He + 2  + 20.85 MeV. The possible heat generation rate can be calculated as 8.12 × 10 12  J/m 3 , based on the assumption that Earth's primitive heat supply has already been exhausted. The H and He atoms produced and the anti-neutrino are incorporated as Fe-H based alloys in the H-rich portion of inner core, are released from Earth's interior to the universe, and pass through Earth, respectively.

  6. Probabilistic evaluation of fuselage-type composite structures

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Chamis, Christos C.

    1992-01-01

    A methodology is developed to computationally simulate the uncertain behavior of composite structures. The uncertain behavior includes buckling loads, natural frequencies, displacements, stress/strain etc., which are the consequences of the random variation (scatter) of the primitive (independent random) variables in the constituent, ply, laminate and structural levels. This methodology is implemented in the IPACS (Integrated Probabilistic Assessment of Composite Structures) computer code. A fuselage-type composite structure is analyzed to demonstrate the code's capability. The probability distribution functions of the buckling loads, natural frequency, displacement, strain and stress are computed. The sensitivity of each primitive (independent random) variable to a given structural response is also identified from the analyses.

  7. Memory efficient solution of the primitive equations for numerical weather prediction on the CYBER 205

    NASA Technical Reports Server (NTRS)

    Tuccillo, J. J.

    1984-01-01

    Numerical Weather Prediction (NWP), for both operational and research purposes, requires only fast computational speed but also large memory. A technique for solving the Primitive Equations for atmospheric motion on the CYBER 205, as implemented in the Mesoscale Atmospheric Simulation System, which is fully vectorized and requires substantially less memory than other techniques such as the Leapfrog or Adams-Bashforth Schemes is discussed. The technique presented uses the Euler-Backard time marching scheme. Also discussed are several techniques for reducing computational time of the model by replacing slow intrinsic routines by faster algorithms which use only hardware vector instructions.

  8. Cometary dust in Antarctic ice and snow: Past and present chondritic porous micrometeorites preserved on the Earth's surface

    NASA Astrophysics Data System (ADS)

    Noguchi, Takaaki; Ohashi, Noriaki; Tsujimoto, Shinichi; Mitsunari, Takuya; Bradley, John P.; Nakamura, Tomoki; Toh, Shoichi; Stephan, Thomas; Iwata, Naoyoshi; Imae, Naoya

    2015-01-01

    Chondritic porous interplanetary dust particles (CP IDPs) collected in the stratosphere are regarded as possibly being cometary dust, and are therefore the most primitive solar system material that is currently available for analysis in laboratories. In this paper we report the discovery of more than 40 chondritic porous micrometeorites (CP MMs) in the surface snow and blue ice of Antarctica, which are indistinguishable from CP IDPs. The CP MMs are botryoidal aggregates, composed mainly of sub-micrometer-sized constituents. They contain two components that characterize them as CP IDPs: enstatite whiskers and GEMS (glass with embedded metal and sulfides). Enstatite whiskers appear as <2-μm-long acicular objects that are attached on, or protrude from the surface, and when included in the interior of the CP MMs are composed of a unit-cell scale mixture of clino- and ortho-enstatite, and elongated along the [100] direction. GEMS appear as 100-500 nm spheroidal objects containing <50 nm Fe-Ni metal and Fe sulfide. The CP MMs also contain low-iron-manganese-enriched (LIME) and low-iron-chromium-enriched (LICE) ferromagnesian silicates, kosmochlor (NaCrSi2O6)-rich high-Ca pyroxene, roedderite (K, Na)2Mg5Si12O30, and carbonaceous nanoglobules. These components have previously been discovered in primitive solar system materials such as the CP IDPs, matrices of primitive chondrites, phyllosilicate-rich MMs, ultracarbonaceous MMs, and cometary particles recovered from the 81P/Wild 2 comet. The most outstanding feature of these CP MMs is the presence of kosmochlor-rich high-Ca pyroxene and roedderite, which suggest that they have building blocks in common with CP IDPs and cometary dust particles and therefore suggest a possible cometary origin of both CP MMs and CP IDPs. It is therefore considered that CP MMs are CP IDPs that have fallen to Earth and have survived the terrestrial environment.

  9. The divergent fates of primitive hydrospheric water on Earth and Mars.

    PubMed

    Wade, Jon; Dyck, Brendan; Palin, Richard M; Moore, James D P; Smye, Andrew J

    2017-12-20

    Despite active transport into Earth's mantle, water has been present on our planet's surface for most of geological time. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet's magnetic field, the widespread serpentinization of Martian crust suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet's surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth's mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained close to its surface, and thus creating conditions conducive for the evolution of complex multicellular life.

  10. Endogenous Synthesis of Prebiotic Organic Molecules

    NASA Technical Reports Server (NTRS)

    Miller, Stanley L.

    1996-01-01

    The necessary condition for the synthesis of organic compounds on the primitive earth is the presence of reducing conditions. This means an atmosphere of CH4, CO, or CO2 + H2. The atmospheric nitrogen can be N2 with a trace of NH3, but NH4(+) is needed in the ocean at least for amino acid synthesis. Many attempts have been made to use CO2 + H2O atmospheres for prebiotic synthesis, but these give at best extremely low yields of organic compounds, except in the presence of H2. Even strong reducing agents such as FeS + H2S or the mineral assemblages of the submarine vents fail to give significant yields of organic compounds with CO2. There appears to be a high kinetic barrier to the non-biological reduction of CO2 at low temperatures using geological reducing agents. The most abundant source of energy for prebiotic synthesis is ultraviolet light followed by electric discharges, with electric discharges being more efficient, although it is not clear which was the important energy source. Photochemical process would also make significant contributions. In an atmosphere Of CO2, N2, and H2O with no H2, the production rates of HCN and H2CO would be very low, 0.001 or less than that of a relatively reducing atmosphere. The concentration of organic compounds under these non-reducing conditions would be so low that there is doubt whether the concentration mechanism would be adequate for further steps toward the origin of life. A number of workers have calculated the influx of comets and meteorites on the primitive earth as a source of organic compounds. We conclude that while some organic material was added to the earth from comets and meteorites the amount available from these sources at a given time was at best only a few percent of that from earth bases syntheses under reducing conditions.

  11. Alkali element constraints on Earth-Moon relations

    NASA Technical Reports Server (NTRS)

    Norman, M. D.; Drake, M. J.; Jones, J. H.

    1994-01-01

    Given their range of volatilities, alkali elements are potential tracers of temperature-dependent processes during planetary accretion and formation of the Earth-Moon system. Under the giant impact hypothesis, no direct connection between the composition of the Moon and the Earth is required, and proto-lunar material does not necessarily experience high temperatures. Models calling for multiple collisions with smaller planetesimals derive proto-lunar materials mainly from the Earth's mantle and explicitly invoke vaporization, shock melting and volatility-related fractionation. Na/K, K/Rb, and Rb/Cs should all increase in response to thermal volatization, so theories which derive the Moon substantially from Earth's mantle predict these ratios will be higher in the Moon than in the primitive mantle of the Earth. Despite the overall depletion of volatile elements in the Moon, its Na/K and K/Rb are equal to or less than those of Earth. A new model presented here for the composition of Earth's continental crust, a major repository of the alkali elements, suggests the Rb/Cs of the Moon is also less than that of Earth. Fractionation of the alkali elements between Earth and Moon are in the opposite sense to predictions based on the relative volatilities of these elements, if the Moon formed by high-T processing of Earth's mantle. Earth, rather than the Moon, appears to carry a signature of volatility-related fractionation in the alkali elements. This may reflect an early episode of intense heating on Earth with the Moon's alkali budget accreting from cooler material.

  12. Geochemistry and the origin of life

    NASA Technical Reports Server (NTRS)

    Kvenvolden, K. A.

    1974-01-01

    The origin of life on earth is examined from a viewpoint stressing the validity of the concept of chemical evolution. The different geological formations supporting the mechanisms of the theory are described; the stage of chemical evolution (preceding that of biological evolution) would have taken place from the time of the origin of the earth and meteorites, 4.6 billion years ago, to the early Precambrian period, about 3.2 billion years ago. Specific aspects of the problem discussed include amino acids from spark discharges and their comparison with the Murchison meteorite amino acids, the properties and theory of genesis of the carbonaceous complex within the cold Bokevelt meteorite, ammonion ion concentration in the primitive ocean, the oxygen isotope chemistry of ancient charts, the origin and rise of oxygen concentration in the earth's atmosphere, Precambrian microorganisms and evolutionary events prior to the origin of vascular plants, and biogenicity and significance of the oldest known stromatolites.

  13. Comets and the origins and evolution of life; Proceedings of the Conference, Univ. of Wisconsin, Eau Claire, Sept. 30-Oct. 2, 1991

    NASA Technical Reports Server (NTRS)

    Thomas, Paul J. (Editor)

    1992-01-01

    Papers are presented on comets and the formation of biochemical compounds on the primitive earth; the cometary origin of carbon, nitrogen, and water on the earth; comets as a possible source of prebiotic molecules; comet impacts and chemical evolution on the bombarded earth; and cometary supply of terrestrial organics (lessons from the K/T and the present epoch). Other papers are on a computational study of radiation chemical processing in comet nuclei, the origin of the polycyclic aromatic hydrocarbons in meteorites, the fate of organic matter during planetary accretion (preliminary studies of the organic chemistry of experimentally shocked Murchison meteorite), recent observations of interstellar molecules (detection of CCO and a limit on H2C3O), terrestrial and extraterrestrial sources of molecular monochirality, and dark matter in the solar system (hydrogen cyanide polymers).

  14. Human Exploration of Near-Earth Asteroids

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2013-01-01

    A major goal for NASA's human spaceflight program is to send astronauts to near-Earth asteroids (NEA) in the coming decades. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of these primitive objects. However, before sending human explorers to NEAs, robotic investigations of these bodies would be required to maximize operational efficiency and reduce mission risk. These precursor missions to NEAs would fill crucial strategic knowledge gaps concerning their physical characteristics that are relevant for human exploration of these relatively unknown destinations. Dr. Paul Abell discussed some of the physical characteristics of NEOs that will be relevant for EVA considerations, reviewed the current data from previous NEA missions (e.g., Near-Earth Asteroid Rendezvous (NEAR) Shoemaker and Hayabusa), and discussed why future robotic and human missions to NEAs are important from space exploration and planetary defense perspectives.

  15. PHYS: Division of Physical Chemistry 258 - Properties and Origins of Cometary and Asteroidal Organic Matter Delivered to the Early Earth

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nguyen, Ann

    2017-01-01

    Comets and asteroids may have contributed much of the Earth's water and organic matter. The Earth accretes approximately 4x10(exp 7) Kg of dust and meteorites from these sources every year. The least altered meteorites contain complex assemblages of organic compounds and abundant hydrated minerals. These carbonaceous chondrite meteorites probably derive from asteroids that underwent hydrothermal processing within the first few million years after their accretion. Meteorite organics show isotopic and chemical signatures of low-T ion-molecule and grain-surface chemistry and photolysis of icy grains that occurred in cold molecular clouds and the outer protoplanetary disk. These signatures have been overprinted by aqueously mediated chemistry in asteroid parent bodies, forming amino acids and other prebiotic molecules. Comets are much richer in organic matter but it is less well characterized. Comet dust collected in the stratosphere shows larger H and N isotopic anomalies than most meteorites, suggesting better preservation of primordial organics. Rosetta studies of comet 67P coma dust find complex organic matter that may be related to the macromolecular material that dominates the organic inventory of primitive meteorites. The exogenous organic material accreting on Earth throughout its history is made up of thousands of molecular species formed in diverse processes ranging from circumstellar outflows to chemistry at near absolute zero in dark cloud cores and the formative environment within minor planets. NASA and JAXA are currently flying sample return missions to primitive, potentially organic-rich asteroids. The OSIRIS-REx and Hayabusa2 missions will map their target asteroids, Bennu and Ryugu, in detail and return regolith samples to Earth. Laboratory analyses of these pristine asteroid samples will provide unprecedented views of asteroidal organic matter relatively free of terrestrial contamination within well determined geological context. Studies of extraterrestrial materials and returned samples are essential to understand the origins of Solar System organic material and the roles of comets and asteroids to providing the starting materials for the emergence of life.

  16. Shock Effects on Cometary-Dust Simulants

    NASA Technical Reports Server (NTRS)

    Lederer, Susan M.; Jensen, Elizabeth; Wooden, Diane H.; Lindsay, Sean S.; Smith, Douglas H.; Nakamura-Messenger, Keiko; Keller, Lindsay P.; Cardenas, Francisco; Cintala, Mark J.; Montes, Roland

    2014-01-01

    While comets are perhaps best known for their ability to put on spectacular celestial light shows, they are much more than that. Composed of an assortment of frozen gases mixed with a collection of dust and minerals, comets are considered to be very primitive bodies and, as such, they are thought to hold key information about the earliest chapters in the history of the solar system. (The dust and mineral grains are usually called the "refractory" component, indicating that they can survive much higher temperatures than the ices.) It has long been thought, and spacecraft photography has confirmed, that comets suffer the effects of impacts along with every other solar system body. Comets spend most of their lifetimes in the Kuiper Belt, a region of the solar system between 30 and 50 times the average distance of the Earth from the Sun, or the Oort Cloud, which extends to approximately 1 light year from the Sun. Those distances are so far from the Sun that water ice is the equivalent of rock, melting or vaporizing only through the action of strong, impact-generated shock waves.

  17. Finite element techniques for the Navier-Stokes equations in the primitive variable formulation and the vorticity stream-function formulation

    NASA Technical Reports Server (NTRS)

    Glaisner, F.; Tezduyar, T. E.

    1987-01-01

    Finite element procedures for the Navier-Stokes equations in the primitive variable formulation and the vorticity stream-function formulation have been implemented. For both formulations, streamline-upwind/Petrov-Galerkin techniques are used for the discretization of the transport equations. The main problem associated with the vorticity stream-function formulation is the lack of boundary conditions for vorticity at solid surfaces. Here an implicit treatment of the vorticity at no-slip boundaries is incorporated in a predictor-multicorrector time integration scheme. For the primitive variable formulation, mixed finite-element approximations are used. A nine-node element and a four-node + bubble element have been implemented. The latter is shown to exhibit a checkerboard pressure mode and a numerical treatment for this spurious pressure mode is proposed. The two methods are compared from the points of view of simulating internal and external flows and the possibilities of extensions to three dimensions.

  18. A knowledge-based object recognition system for applications in the space station

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1988-01-01

    A knowledge-based three-dimensional (3D) object recognition system is being developed. The system uses primitive-based hierarchical relational and structural matching for the recognition of 3D objects in the two-dimensional (2D) image for interpretation of the 3D scene. At present, the pre-processing, low-level preliminary segmentation, rule-based segmentation, and the feature extraction are completed. The data structure of the primitive viewing knowledge-base (PVKB) is also completed. Algorithms and programs based on attribute-trees matching for decomposing the segmented data into valid primitives were developed. The frame-based structural and relational descriptions of some objects were created and stored in a knowledge-base. This knowledge-base of the frame-based descriptions were developed on the MICROVAX-AI microcomputer in LISP environment. The simulated 3D scene of simple non-overlapping objects as well as real camera data of images of 3D objects of low-complexity have been successfully interpreted.

  19. Identification, Characterization, and Exploration of Environments for Life on Mars

    NASA Technical Reports Server (NTRS)

    Acevedo, Sara E.

    2002-01-01

    A bibliography (18 references) listing the publications during the current grant period of The Center for the Study of Life in the Universe, part of the SETI (Search for Extraterrestrial Intelligence) Institute is presented. The publications, from the Period of Performance September 1, 2000 to February 28, 2002, primarily cover Mars and its potential for life, as well as extreme environments and primitive life forms on Earth. One of the publications covers Europa and the Galileo spacecraft.

  20. Discovery of Brownleeite: a New Manganese Silicide Mineral in an Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Nakamura-Messenger, Keiko; Clemett, Simon J.; Messenger, Scott; Jones, John H.; Palma, Russell L.; Pepin, Robert O.; Klock, Wolfgang; Zolensky, Michael E.; Tatsuoka, Hirokazu

    2011-01-01

    The Earth accretes approximately 40,000 tons of cosmic dust annually, originating mainly from the disintegration of comets and collisions among asteroids. This cosmic dust, also known as interplanetary dust particles (IDPs), is a subject of intense interest since it is made of the original building blocks of our Solar System. Although the specific parent bodies of IDPs are unknown, the anhydrous chondritic-porous IDPs (CP-IDPs) subset has been potentially linked to a cometary source. The CP-IDPs are extremely primitive materials based on their unequilibrated mineralogy, C-rich chemistry, and anomalous isotopic signatures. In particular, some CP-IDPs escaped the thermal, aqueous and impact shock processing that has modified or destroyed the original mineralogy of meteorites. Thus, the CP-IDPs represent some of the most primitive solar system materials available for laboratory study. Most CP-IDPs are comprised of minerals that are common on Earth. However, in the course of an examination of one of the CP-IDPs, we encountered three sub-micrometer sized grains of manganese silicide (MnSi), a phase that has heretofore not been found in nature. In the seminar, we would like to focus on IDP studies and this manganese silicide phase that has been approved as the first new mineral identified from a comet by the International Mineralogical Association (IMA) in 2008. The mineral is named in honour of Donald E. Brownlee, an American astronomer and a founder of the field of cosmic dust research who is the principal investigator of the NASA Stardust Mission that collected dust samples from Comet 81P/Wild-2 and returned them to Earth. Much of our current view and understanding of the early solar system would not exist without the pioneering work of professor Don Brownlee in the study of IDPs.

  1. Spitzer Evidence for a Late Heavy Bombardment and the Formation of Urelites in {eta}Corvi at Approximately 1 Gyr

    NASA Technical Reports Server (NTRS)

    Lisse, C. M.; Wyatt, M. C.; Chen, C. H.; Morlok, A.; Watson, D. M.; Manj, P.; Sheehan, P.; Currie, T. M.; Thebault, P.; Sitko, M. L.

    2011-01-01

    We have analyzed Spitzer and NASA/IRTF 2 - 35 micrometer spectra of the warm, 350 K circumstellar dust around the nearby MS star eta Corvi (F2V, 1.4 plus or minus 0.3 Gyr). The spectra show clear evidence for warm, water- and carbon-rich dust at 3 AU from the central star, in the system's Terrestrial Habitability Zone. Spectral features due to ultra-primitive cometary material were found, in addition to features due to impact produced silica and high temperature carbonaceous phases. At least 9 x 10(exp 18) kg of 0.1 - 100 micrometer warm dust is present in a collisional equilibrium distribution with dn/da a(exp -3.5), the equivalent of a 130 km radius KBO of 1.0 grams per cubic centimeter density and similar to recent estimates of the mass delivered to the Earth at 0.6 - 0.8 Gyr during the Late Heavy Bombardment. We conclude that the parent body was a Kuiper-Belt body or bodies which captured a large amount of early primitive material in the first Myrs of the system's lifetime and preserved it in deep freeze at approximately 150 AU. At approximately 1.4 Gyr they were prompted by dynamical stirring of their parent Kuiper Belt into spiraling into the inner system, eventually colliding at 5-10 kilometers per second with a rocky planetary body of mass less than or equal to M(sub Earth at approximately 3 AU, delivering large amounts of water (greater than 0.1 % of M(sub Earth's Oceans)) and carbon-rich material. The Spitzer spectrum also closely matches spectra reported for the Ureilite meteorites of the Sudan Almahata Sitta fall in 2008, suggesting that one of the Ureilite parent bodies was a KBO.

  2. The first steps towards a de minimus, affordable NEA exploration architecture

    NASA Astrophysics Data System (ADS)

    Landis, Rob R.; Abell, Paul A.; Adamo, Daniel R.; Barbee, Brent W.; Johnson, Lindley N.

    2013-03-01

    The impetus for asteroid exploration is scientific, political, and pragmatic. The notion of sending human explorers to asteroids is not new. Piloted missions to these primitive bodies were first discussed in the 1960s, pairing Saturn V rockets with enhanced Apollo spacecraft to explore what were then called "Earth-approaching asteroids." Two decades ago, NASA's Space Exploration Initiative (SEI) also briefly examined the possibility of visiting these small celestial bodies. Most recently, the US Human Space Flight Review Committee (the second Augustine Commission) suggested that near-Earth objects (NEOs) represent a target-rich environment for exploration via the "Flexible Path" option. However, prior to seriously considering human missions to NEOs, it has become clear that we currently lack a robust catalog of human-accessible targets. The majority of the known NEOs identified by a study team across several NASA centers as "human-accessible" are probably too small and have orbits that are too uncertain to consider mounting piloted expeditions to these small worlds. The first step in developing a comprehensive catalog is, therefore, to complete a space-based NEO survey. The resulting catalog of candidate NEOs would then be transformed into a matrix of opportunities for robotic and human missions for the next several decades and shared with the international community. This initial step of a space-based NEO survey is therefore the linchpin to laying the foundation of a low-risk architecture to venture out and explore these primitive bodies. We suggest such a minimalist framework architecture from (1) extensive ground-based and precursor spacecraft investigations (while applying operational knowledge from science-driven robotic missions), (2) astronaut servicing of spacecraft operating at geosynchronous Earth orbit to retain essential skills and experience, and (3) applying the sum of these skills, knowledge and experience to piloted missions to NEOs.

  3. Photochemical Concepts on the Origin of Biomolecular Asymmetry

    NASA Astrophysics Data System (ADS)

    Meierhenrich, Uwe J.; Thiemann, Wolfram H.-P.

    2004-02-01

    Biopolymers like DNA and proteins are strongly selective towards the chirality of their monomer units. The use of homochiral monomers is regarded as essential for the construction and function of biopolymers; the emergence of the molecular asymmetry is therefore considered as a fundamental step in Chemical Evolution. This work focuses on physicochemical mechanisms for the origin of biomolecular asymmetry. Very recently two groups, one from Allamandola at NASA Ames and the other from our Inter-European team, demonstrated simultaneously the spontaneous photoformation of a variety of chiral amino acid structures under simulated interstellar conditions. Since both groups used unpolarized light for the photoreaction the obtained amino acids turned out racemic as expected. The obtained experimental data support the assumption that tiny ice grains can furthermore play host to important asymmetric reactions when irradiated by interstellar circularly polarized ultraviolet light. It is possible that such ice grains could have become incorporated into the early cloud that formed our Solar System and ended up on Earth, assisting life to start. Several lines of evidence suggest that some of the building blocks of life were delivered to the primitive Earth via (micro-) meteoroids and/or comets. These results suggest that asymmetric interstellar photochemistry may have played a significant part in supplying Earth with some of the enantioenriched organic materials needed to trigger life. The search for the origin of biomolecular homochirality leads to a strong interest in the fields of asymmetric photochemistry with special emphasis on absolute asymmetric synthesis. We outline here the theoretical background on asymmetric interstellar ice photochemistry, summarize recent concepts and advances in the field, and discuss briefly its implications. The obtained data are crucial for the design of the enantioselective COSAC GC-MS experiment onboard the ROSETTA spacecraft to a comet to be launched in the very near future.

  4. The Moon as a Recorder of Organic Evolution in the Early Solar System: A Lunar Regolith Analog Study

    PubMed Central

    Court, Richard W.; Crawford, Ian A.; Jones, Adrian P.; Joy, Katherine H.; Sephton, Mark A.

    2015-01-01

    Abstract The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter–containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable. Key Words: Moon—Regolith—Organic preservation—Biomarkers. Astrobiology 15, 154–168. PMID:25615648

  5. Amino Acid Degradation after Meteoritic Impact Simulation

    NASA Technical Reports Server (NTRS)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  6. Secondary overprinting of S-Se-Te signatures in the Earth's mantle: Implications for the Late Veneer

    NASA Astrophysics Data System (ADS)

    Koenig, S.; Luguet, A.; Lorand, J.; Pearson, D.

    2013-12-01

    Sulphur, Selenium and Tellurium are both chalcophile and highly siderophile elements (HSE) with near-chondritic ratios and absolute abundances in the terrestrial mantle that exceed those predicted by core-mantle differentiation[1]. These 'excess' HSE abundances have been attributed to addition of ca. 0.5% of chondrite-like material that hit the Earth in its accretionary stage between 4 to 3.8 billion years ago after core-mantle differentiation (Late Veneer[2]). Therefore, like other HSE, S, Se and Te are considered potential tracers for the composition of the Late Veneer, provided that their bulk silicate Earth abundances are properly constrained. In contrast to ca. 250 ppm S, Se and Te are ultra-trace elements in the terrestrial mantle. Like all HSE, they are furthermore controlled by base metal sulphides (BMS) and micrometric platinum group minerals (PGMs)[3]. This strong control exerted by the host mineralogy and petrology on the S-Se-Te systematics at both the micro-scale and the whole-rock scale makes detailed mineralogical and petrological studies of BMS and PGM a pre-requisite to fully understand and accurately interpret the whole-rock signatures. Here we combine in-situ sulphide data and detailed mineralogical observations with whole-rock S-Se-Te-HSE signatures of both lherzolites and harburgites from different geodynamic settings. We demonstrate that the near-chondritic Se and Te signature of 'fertile' mantle rocks (Se/Te ≈9×5) is not a primitive signature of the Earth's mantle, but rather reflects strong enrichment in metasomatic HSE host phases, which erased previous pristine signatures. Consequently, current attempts to identify a potential Late Veneer composition are seriously flawed because, neither refertilisation/metasomatism nor true melt depletion (e.g. harzburgitic residues) have been taken into account for the Primitive Upper Mantle composition estimate[4]. Our combined whole rock and in-situ sulphide data indicate a refertilisation trend towards sub-chondritic Se/Te ratios (i.e. Se/Te < 2). On the other hand, harzburgites that preserve depletion signatures show suprachondritic Se/Te ratios (< 31). Altogether this shows that metasomatic enrichment of mantle rocks may lead to a systematic bias and hence underestimation of the current Se/Te estimate of the primitive mantle. The metasomatic origin of the reported S, Se and Te ratios in peridotites that reflect the control of metasomatic BMS and PGMs[5;6] furthermore show that not all whole rock signatures in the Earth's mantle that scatter around near-chondritic values are primary and hence challenge the simple conception that these features may readily solve the long-standing conundrum of the Late Veneer composition. Refs: [1] Rose-Weston et al. (2009) GCA 73, 4598-4615; [2] Kimura et al. (1974) GCA 38, 683-701; [3] Lorand and Alard (2010) 67, 4137-4151; [4] Wang and Becker (2013) Nature 499, 328-331; [5] König et al. (2012) GCA 86, 354-366; [6] König et al. (2013, in press), EPSL.

  7. Unprecedented concentrations of indigenous amino acids in primitive CR meteorites

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; Martins, Zita; Alexander, Conel; Orzechowska, Grazyna; Fogel, Marylin

    CR meteorites are among the most primitive meteorites. We have performed pioneering work determining the compositional characteristics of amino acids in this type of carbonaceous chondrites. We report the first measurements of amino acids in Antarctic CR meteorites, two of which show the highest amino acid concentrations ever found in a chondrite. We have analyzed the amino acid content of the Antarctic CRs EET92042, GRA95229 and GRO95577 using high performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatography-mass spectrometry (GC-MS). Additionally, compound-specific carbon isotopic measurements for most of the individual amino acids from the EET92042 and GRA95229 meteorites were achieved by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Our data show that EET92042 and GRA95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations of 180 and 249 parts-per-million (ppm), respectively. GRO95577, however, is depleted in amino acids (<1 ppm). The most abundant amino acids present in the EET92042 and GRA95229 meteorites are the α-amino acids glycine, isovaline, α-aminoisobutyric acid (α-AIB), and alanine, with δ 13 C values ranging from +31.6% to +50.5%. The highly enriched carbon isotope results together with racemic enantiomeric ratios determined for most amino acids indicate that primitive organic matter was preserved in these meteorites. In addition, the relative abundances of α-AIB and β-alanine amongst Antarctic CR meteorites appear to correspond to the degree of aqueous alteration on their respective parent body. Investigating the abundances and isotopic composition of amino acids in primitive chondrites helps to understand the role of meteorites as a source of extraterrestrial prebiotic organic compounds to the early Earth.

  8. SOCCER: Comet Coma Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Albee, A. L.; Uesugi, K. T.; Tsou, Peter

    1994-01-01

    Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. Sample Of Comet Coma Earth Return (SOCCER), a joint effort between NASA and the Institute of Space and Astronautical Science (ISAS) in Japan, has two primary science objectives: (1) the imaging of the comet nucleus and (2) the return to Earth of samples of volatile species and intact dust. This effort makes use of the unique strengths and capabilities of both countries in realizing this important quest for the return of samples from a comet. This paper presents an overview of SOCCER's science payloads, engineering flight system, and its mission operations.

  9. Science Data Preservation: Implementation and Why It Is Important

    NASA Technical Reports Server (NTRS)

    Kempler, Steven J.; Moses, John F.; Gerasimov, Irina V.; Johnson, James E.; Vollmer, Bruce E.; Theobald, Michael L.; Ostrenga, Dana M.; Ahmad, Suraiya; Ramapriyan, Hampapuram K.; Khayat, Mohammad G.

    2013-01-01

    Remote Sensing data generation by NASA to study Earth s geophysical processes was initiated in 1960 with the launch of the first Television Infrared Observation Satellite Program (TIROS), to develop a meteorological satellite information system. What would be deemed as a primitive data set by today s standards, early Earth science missions were the foundation upon which today s remote sensing instruments have built their scientific success, and tomorrow s instruments will yield science not yet imagined. NASA Scientific Data Stewardship requirements have been documented to ensure the long term preservation and usability of remote sensing science data. In recent years, the Federation of Earth Science Information Partners and NASA s Earth Science Data System Working Groups have organized committees that specifically examine standards, processes, and ontologies that can best be employed for the preservation of remote sensing data, supporting documentation, and data provenance information. This presentation describes the activities, issues, and implementations, guided by the NASA Earth Science Data Preservation Content Specification (423-SPEC-001), for preserving instrument characteristics, and data processing and science information generated for 20 Earth science instruments, spanning 40 years of geophysical measurements, at the NASA s Goddard Earth Sciences Data and Information Services Center (GES DISC). In addition, unanticipated preservation/implementation questions and issues in the implementation process are presented.

  10. Winter and summer simulations with the GLAS climate model

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Straus, D.; Randall, D.; Sud, Y.; Marx, L.

    1981-01-01

    The GLAS climate model is a general circulation model based on the primitive equations in sigma coordinates on a global domain in the presence of orography. The model incorporates parameterizations of the effects of radiation, convection, large scale latent heat release, turbulent and boundary layer fluxes, and ground hydrology. Winter and summer simulations were carried out with this model, and the resulting data are compared to observations.

  11. Probabilistic evaluation of uncertainties and risks in aerospace components

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Shiao, M. C.; Nagpal, V. K.; Chamis, C. C.

    1992-01-01

    A methodology is presented for the computational simulation of primitive variable uncertainties, and attention is given to the simulation of specific aerospace components. Specific examples treated encompass a probabilistic material behavior model, as well as static, dynamic, and fatigue/damage analyses of a turbine blade in a mistuned bladed rotor in the SSME turbopumps. An account is given of the use of the NESSES probabilistic FEM analysis CFD code.

  12. DIATOM (Data Initialization and Modification) Library Version 7.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, David A.; Schmitt, Robert G.; Hensinger, David M.

    DIATOM is a library that provides numerical simulation software with a computational geometry front end that can be used to build up complex problem geometries from collections of simpler shapes. The library provides a parser which allows for application-independent geometry descriptions to be embedded in simulation software input decks. Descriptions take the form of collections of primitive shapes and/or CAD input files and material properties that can be used to describe complex spatial and temporal distributions of numerical quantities (often called “database variables” or “fields”) to help define starting conditions for numerical simulations. The capability is designed to be generalmore » purpose, robust and computationally efficient. By using a combination of computational geometry and recursive divide-and-conquer approximation techniques, a wide range of primitive shapes are supported to arbitrary degrees of fidelity, controllable through user input and limited only by machine resources. Through the use of call-back functions, numerical simulation software can request the value of a field at any time or location in the problem domain. Typically, this is used only for defining initial conditions, but the capability is not limited to just that use. The most recent version of DIATOM provides the ability to import the solution field from one numerical solution as input for another.« less

  13. Reasons for the occurrence of the twenty coded protein amino acids

    NASA Technical Reports Server (NTRS)

    Weber, A. L.; Miller, S. L.

    1981-01-01

    Factors involved in the selection of the 20 protein L-alpha-amino acids during chemical evolution and the early stages of Darwinian evolution are discussed. The selection is considered on the basis of the availability in the primitive ocean, function in proteins, the stability of the amino acid and its peptides, stability to racemization, and stability on the transfer RNA. It is concluded that aspartic acid, glutamic acid, arginine, lysine, serine and possibly threonine are the best choices for acidic, basic and hydroxy amino acids. The hydrophobic amino acids are reasonable choices, except for the puzzling absences of alpha-amino-n-butyric acid, norvaline and norleucine. The choices of the sulfur and aromatic amino acids seem reasonable, but are not compelling. Asparagine and glutamine are apparently not primitive. If life were to arise on another planet, it would be expected that the catalysts would be poly-alpha-amino acids and that about 75% of the amino acids would be the same as on the earth.

  14. Petit-spot as definitive evidence for partial melting in the asthenosphere caused by CO2

    NASA Astrophysics Data System (ADS)

    Machida, Shiki; Kogiso, Tetsu; Hirano, Naoto

    2017-02-01

    The deep carbon cycle plays an important role on the chemical differentiation and physical properties of the Earth's mantle. Especially in the asthenosphere, seismic low-velocity and high electrical conductivity due to carbon dioxide (CO2)-induced partial melting are expected but not directly observed. Here we discuss the experimental results relevant to the genesis of primitive CO2-rich alkali magma forming petit-spot volcanoes at the deformation front of the outer rise of the northwestern Pacific plate. The results suggest that primitive melt last equilibrated with depleted peridotite at 1.8-2.1 GPa and 1,280-1,290 °C. Although the equilibration pressure corresponds to the pressure of the lower lithosphere, by considering an equilibration temperature higher than the solidus in the volatile-peridotite system along with the temperature of the lower lithosphere, we conclude that CO2-rich silicate melt is always produced in the asthenosphere. The melt subsequently ascends into and equilibrates with the lower lithosphere before eruption.

  15. Effective screening length and quasiuniversality for the restricted primitive model of an electrolyte solution.

    PubMed

    Janecek, Jirí; Netz, Roland R

    2009-02-21

    Monte Carlo simulations for the restricted primitive model of an electrolyte solution above the critical temperature are performed at a wide range of concentrations and temperatures. Thermodynamic properties such as internal energy, osmotic coefficient, activity coefficient, as well as spatial correlation functions are determined. These observables are used to investigate whether quasiuniversality in terms of an effective screening length exists, similar to the role played by the effective electron mass in solid-state physics. To that end, an effective screening length is extracted from the asymptotic behavior of the Fourier-transformed charge-correlation function and plugged into the Debye-Huckel limiting expressions for various thermodynamic properties. Comparison with numerical results is favorable, suggesting that correlation and other effects not captured on the Debye-Huckel limiting level can be successfully incorporated by a single effective parameter while keeping the functional form of Debye-Huckel expressions. We also compare different methods to determine mean ionic activity coefficient in molecular simulations and check the internal consistency of the numerical data.

  16. Project Cassini: a Saturn Orbiter/titan Probe Mission Proposal

    NASA Astrophysics Data System (ADS)

    Gautier, D.; Ip, W. H.

    1984-12-01

    Titan is the only moon in the solar system with a substantial atmosphere. The organic chemistry of its N2-CH4 atmosphere may resemble that of the earth's primitive atmosphere before life arose. The investigation of the synthesis of prebiotic molecules in Titan's atmosphere and the atmospheric and surface environments of this planet-sized moon will be the focal point of the Cassini Project proposed to the European Space Agency for an international Saturn Orbiter/Titan Probe mission.

  17. Formation of nucleoside 5'-polyphosphates under potentially prebiological conditions

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.

    1976-01-01

    The characteristics and efficiencies of biochemical reactions involving nucleoside 5'-diphosphates and -triphosphates (important substrates of RNA and DNA synthesis) under conditions corresponding to the primitive prebiotic earth are investigated. Urea catalysis of the formation of linear inorganic polyphosphates and metal ions promoting the reactions are discussed. Linear polyphosphate was incubated with Mg(++) in the presence of a nucleoside 5'-phosphate, to yield nucleoside 5'-polyphosphates when products are dried, while Mg(++) prompts depolymerization to trimetaphosphate in aqueous solutions. Plausible biogenetic pathways are examined.

  18. Prebiotic Synthesis of Vitamin B6-type Compounds

    NASA Astrophysics Data System (ADS)

    Austin, Sabrina M.; Waddell, Thomas G.

    1999-05-01

    Heating a dilute solution of NH3 and glycoaldehyde gives a large family of pyridines substituted with the same functional groups as occur in the forms of vitamin B6. Thus, vitamin B6-like molecules could have been present on the early Earth and could have been available for catalysis of primitive transamination reactions. Ethanolamine and N-methylethanolamine are also formed as major products. These are choline-like molecules, the latter of which is apparently formed by a prebiotic methylation process.

  19. Formation of CaS-MgS in Enstatite Chondrites and Achondrites as a Function of Redox Conditions and Temperature: Constraints on Their Evolution in a Planetesimal and in a Proto-planet

    NASA Technical Reports Server (NTRS)

    Malavergne, Valerie; Berthet, S.; Righter, K.

    2007-01-01

    The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in the enstatite chondrite (EH) and aubrite meteorite groups. In the Earth s mantle, sulfide minerals are associated with peridotites and eclogites. Study of these sulfide mineral systems is of interest for the mineralogy and petrology of planetary mantles. For example, MgS could occur in the primitive Earth and because it remains a low density phase compared to metal, would stay a separate phase during the core formation process, and thus not segregate to the core. (Mg,Ca,Mn,Fe)S sulphides might thus be important phases even in planetary differentiation processes. The importance of such minerals, and their formation, composition and textural relationships for understanding the genesis of enstatite chondrites and aubrites, has long been recognized. The main objective of this experimental study is to understand the formation and evolution of (Mg,Ca,Mn,Fe)S sulphides, particularly the oldhamite CaS and ningerite MgS, with pressure, temperature but also with redox conditions because EH and aubrites are meteorites that formed under reduced conditions. Piston-cylinder (PC) and multi-anvil (MA) experiments at high pressure (HP) and high temperature (HT) have been performed in order to simulate the evolution of these phases in a small planetary body from a planetesimal (with PC experiments) up to a proto-planet (with MA experiments).

  20. Chemical evolution on Titan: comparisons to the prebiotic earth.

    PubMed

    Clarke, D W; Ferris, J P

    1997-06-01

    Models for the origin of Titan's atmosphere, the processing of the atmosphere and surface and its exobiological role are reviewed. Titan has gained widespread acceptance in the origin of life field as a model for the types of evolutionary processes that could have occurred on prebiotic Earth. Both Titan and Earth possess significant atmospheres (> or = 1 atm) composed mainly of molecular nitrogen with smaller amounts of more reactive species. Both of these atmospheres are processed primarily by solar ultraviolet light with high energy particles interactions contributing to a lesser extent. The products of these reactions condense or are dissolved in other atmospheric species (aerosols/clouds) and fall to the surface. There these products may have been further processed on Titan and the primitive Earth by impacting comets and meteorites. While the low temperatures on Titan (approximately 72-180 K) preclude the presence of permanent liquid water on the surface, it has been suggested that tectonic activity or impacts by meteors and comets could produce liquid water pools on the surface for thousands of years. Hydrolysis and oligomerization reactions in these pools might form chemicals of prebiological significance. Other direct comparisons between the conditions on present day Titan and those proposed for prebiotic Earth are also presented.

  1. Comets: Cosmic connections with carbonaceous meteorites, interstellar molecules and the origin of life

    NASA Technical Reports Server (NTRS)

    Chang, S.

    1979-01-01

    The ions, radicals, and molecules observed in comets may be derived intact or by partial decomposition from parent compounds of the sort found either in the interstellar medium or in carbonaceous meteorites. The early loss of highly reducing primitive atmosphere and its replacement by a secondary atmosphere dominated by H2O, CO2, and N2, as depicted in current models of the earth's evolution, pose a dilemma for the origin of life: the synthesis of organic compounds necessary for life from components of the secondary atmosphere appears to be difficult, and plausible mechanisms have not been evaluated. Both comets and carbonaceous meteorites are implicated as sources for the earth's atmophilic and organogenic elements. A mass balance argument involving the estimated ratios of hydrogen to carbon in carbonaceous meteorites, comets, and the crust and upper mantle suggests that comets supplied the earth with a large fraction of its volatiles. The probability that comets contributed significantly to the earth's volatile inventory suggests a chemical evolutionary link between comets, prebiotic organic synthesis, and the origin of life.

  2. Mineral evolution and Earth history

    USGS Publications Warehouse

    Bradley, Dwight C.

    2015-01-01

    The field of mineral evolution—a merger of mineralogy and Earth history—coalesced in 2008 with the first of several global syntheses by Robert Hazen and coworkers in the American Mineralogist. They showed that the cumulative abundance of mineral species has a stepwise trend with first appearances tied to various transitions in Earth history such as the end of planetary accretion at ca. 4.55 Ga and the onset of bio-mediated mineralogy at ca. >2.5 Ga. A global age distribution is best established for zircon. Observed abundance of zircon fluctuates through more than an order of magnitude during successive supercontinent cycles. The pulse of the Earth is also recorded, albeit imperfectly, by the 87Sr/86Sr composition of marine biogenic calcite; the Sr-isotopic ratio of this mineral reflects the balance of inputs of primitive strontium at mid-ocean ridges and evolved strontium that drains off the continents. A global mineral evolution database, currently in the works, will greatly facilitate the compilation and analysis of extant data and the expansion of research in mineralogy outside its traditional bounds and into more interdisciplinary realms.

  3. [Preface to special issue: "Molecular mechanism of the adaptation of terrestrial plants to gravity environment on Earth"].

    PubMed

    Kamisaka, Seiichiro

    2003-08-01

    Organisms borne in the primitive sea about 30 million years ago had evolved in water without a large influence of gravity on earth. About 4 million years ago, the first terrestrial organisms, plants appeared on the land from the sea. The terrestrial plants have adapted to and evolved on the land environment so that they can extend their roots downward in soil and their shoots upward against 1 g gravity. At least two functions that were acquired during the process of evolution helped the terrestrial plants to adapt to gravity environment on earth. One is gravitropism. The other is the reinforcement of the cell wall, particularly the secondary cell wall. In the present feature articles, the molecular mechanism of the adaptation of terrestrial plants to gravity environment on earth will be reviewed, paying special attention to the mechanism of the genetic control of the signaling of gravity stimulus in gravitropism, automorphogenesis, genes involved in auxin transport, gravity effect on cell wall properties and gravimorphogenesis in terrestrial plants.

  4. Commissioning of the upgraded CSC Endcap Muon Port Cards at CMS

    NASA Astrophysics Data System (ADS)

    Ecklund, K.; Liu, J.; Madorsky, A.; Matveev, M.; Michlin, B.; Padley, P.; Rorie, J.

    2016-01-01

    There are 180 1.6 Gbps optical links from 60 Muon Port Cards (MPC) to the Cathode Strip Chamber Track Finder (CSCTF) in the original system. Before the upgrade each MPC was able to provide up to three trigger primitives from a cluster of nine CSC chambers to the Level 1 CSCTF. With an LHC luminosity increase to 1035 cm-2s-1 at full energy of 7 TeV/beam, the simulation studies suggest that we can expect two or three times more trigger primitives per bunch crossing from the front-end electronics. To comply with this requirement, the MPC, CSCTF, and optical cables need to be upgraded. The upgraded MPC allows transmission of up to 18 trigger primitives from the peripheral crate. This feature would allow searches for physics signatures of muon jets that require more trigger primitives per trigger sector. At the same time, it is very desirable to preserve all the old optical links for compatibility with the older Track Finder during transition period at the beginning of Run 2. Installation of the upgraded MPC boards and the new optical cables has been completed at the CMS detector in the summer of 2014. We describe the final design of the new MPC mezzanine FPGA, its firmware, and results of tests in laboratory and in situ with the old and new CSCTF boards.

  5. Editorial: Special issue “Planetary evolution and life”

    NASA Astrophysics Data System (ADS)

    Spohn, Tilman

    2014-08-01

    Given the enormous number of stars in the universe and the number of confirmed and postulated planets in our galaxy, it is generally agreed that our home planet Earth is not likely to be unique (e.g., Sagan, 1980; Bignami et al., 2005; Hawking and Mlodinow, 2010). But is it? Although the number of known extrasolar planets grows almost by the day, observational bias caused by the technological challenges of finding Earth-size, rocky extrasolar planets and determining their masses and sizes have thus far prohibited the detection of a second Earth. But even if a second Earth were to be found-located in what is termed the habitable zone (e.g., Kasting et al., 1993)-can we expect that life would have originated there and have evolved beyond the most primitive forms? Is the universe "bio-friendly" as Paul Davies said (cited after Sullivan and Baross, 2007) using the Anthropic Principle (Barrow and Tipler, 1986) or is the origin of life so complex and our home planet so peculiar (Ward and Brownlee, 2000) that we are the unlikely product of a chain of unlikely events (Gould, 1989)? And if life existed on a second Earth or on many other planets, would we be able to detect it? Would life have shaped these planets such as life has shaped the Earth?

  6. On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Bashmachnikov, I. L.; Sokolovskiy, M. A.; Belonenko, T. V.; Volkov, D. L.; Isachsen, P. E.; Carton, X.

    2017-10-01

    The Lofoten Vortex (LV), a quasi-permanent anticyclonic eddy in the Lofoten Basin of the Norwegian Sea, is investigated with an eddy-permitting primitive equation model nested into the ECCO2 ocean state estimate. The LV, as simulated by the model, extends from the sea surface to the ocean bottom at about 3000 m and has the subsurface core between 50 m and 1100 m depths. Above and below the vortex core the relative vorticity signal decreases in amplitude while the radius increases by as much as 25-30% relative to the values in the core. Analyzing the model run, we show that the vertical structure of the LV can be casted into four standard configurations, each of which forms a distinct cluster in the parameter space of potential vorticity anomalies in and above the LV core. The stability of the LV for each of the configurations is then studied with three-layer and a two-layer (in winter) quasi-geostrophic (QG) models over a flat bottom as well as over a realistic topography. The QG results show a number of common features with those of the primitive equation model. Thus, among the azimuthal modes dominating the LV instability, both the QG model and the primitive equation model show a major role the 2nd and 3rd modes. In the QG model simulations the LV is the subject of a rather strong dynamic instability, penetrating deep into the core. The results predict 50-95% volume loss from the vortex within 4-5 months. Such a drastic effect is not observed in the primitive equation model, where, for the same intensity of perturbations, only 10-30% volume loss during the same period is detected. Taking into account the gently sloping topography of the central part of the Lofoten basin and the mean flow in the QG model, brings the rate of development of instability close to that in the primitive equation model. Some remaining differences in the two models are discussed. Overall, the LV decay rate obtained in the models is slow enough for eddy mergers and convection to restore the thermodynamic properties of the LV, primarily re-building its potential energy anomaly. This justifies the quasi-permanent presence of the LV in the Lofoten Basin.

  7. Biomimetic mineral self-organization from silica-rich spring waters.

    PubMed

    García-Ruiz, Juan Manuel; Nakouzi, Elias; Kotopoulou, Electra; Tamborrino, Leonardo; Steinbock, Oliver

    2017-03-01

    Purely inorganic reactions of silica, metal carbonates, and metal hydroxides can produce self-organized complex structures that mimic the texture of biominerals, the morphology of primitive organisms, and that catalyze prebiotic reactions. To date, these fascinating structures have only been synthesized using model solutions. We report that mineral self-assembly can be also obtained from natural alkaline silica-rich water deriving from serpentinization. Specifically, we demonstrate three main types of mineral self-assembly: (i) nanocrystalline biomorphs of barium carbonate and silica, (ii) mesocrystals and crystal aggregates of calcium carbonate with complex biomimetic textures, and (iii) osmosis-driven metal silicate hydrate membranes that form compartmentalized, hollow structures. Our results suggest that silica-induced mineral self-assembly could have been a common phenomenon in alkaline environments of early Earth and Earth-like planets.

  8. The global topography of Bennu: altimetry, photoclinometry, and processing

    NASA Astrophysics Data System (ADS)

    Perry, M. E.; Barnouin, O. S.; Daly, M. G.; Seabrook, J.; Palmer, E. E.; Gaskell, R. W.; Craft, K. L.; Roberts, J. H.; Philpott, L.; Asad, M. Al; Johnson, C. L.; Nair, A. H.; Espiritu, R. C.; Nolan, M. C.; Lauretta, D. S.

    2017-09-01

    The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission will spend two years observing (101955) Bennu and will then return pristine samples of carbonaceous material from the asteroid [1]. Launched in September 2016, OSIRISREx arrives at Bennu in August 2018, acquires a sample in July 2020, and returns the sample to Earth in September 2023. The instruments onboard OSIRIS-REx will measure the physical and chemical properties of this B-class asteroid, a subclass within the larger group of C-complex asteroids that might be organic-rich. At approximately 500m in average diameter [2], Bennu is sufficiently large to retain substantial regolith and as an Apollo asteroid with a low inclination (6°), it is one of the most accessible primitive near-Earth asteroid.

  9. Prebiotic phosphorus chemistry reconsidered

    NASA Technical Reports Server (NTRS)

    Schwartz, A. W.; Orgel, L. E. (Principal Investigator)

    1997-01-01

    The available evidence indicates that the origin of life on Earth certainly occurred earlier than 3.5 billion years ago and perhaps substantially earlier. The time available for the chemical evolution which must have preceded this event is more difficult to estimate. Both endogenic and exogenic contributions to chemical evolution have been considered; i.e., from chemical reactions in a primitive atmosphere, or by introduction in the interiors of comets and/or meteorites. It is argued, however, that the phosphorus chemistry of Earth's earliest hydrosphere, whether primarily exogenic or endogenic in origin, was most likely dominated by compounds less oxidized than phosphoric acid and its esters. A scenario is presented for the early production of a suite of reactive phosphonic acid derivatives, the properties of which may have foreshadowed the later appearance of biophosphates.

  10. Mimicking the surface and prebiotic chemistry of early Earth using flow chemistry.

    PubMed

    Ritson, Dougal J; Battilocchio, Claudio; Ley, Steven V; Sutherland, John D

    2018-05-08

    When considering life's aetiology, the first questions that must be addressed are "how?" and "where?" were ostensibly complex molecules, considered necessary for life's beginning, constructed from simpler, more abundant feedstock molecules on primitive Earth. Previously, we have used multiple clues from the prebiotic synthetic requirements of (proto)biomolecules to pinpoint a set of closely related geochemical scenarios that are suggestive of flow and semi-batch chemistries. We now wish to report a multistep, uninterrupted synthesis of a key heterocycle (2-aminooxazole) en route to activated nucleotides starting from highly plausible, prebiotic feedstock molecules under conditions which mimic this scenario. Further consideration of the scenario has uncovered additional pertinent and novel aspects of prebiotic chemistry, which greatly enhance the efficiency and plausibility of the synthesis.

  11. Origin of life: hypothesized roles of high-energy electrical discharges, infrared radiation, thermosynthesis and pre-photosynthesis.

    PubMed

    Trevors, J T

    2012-12-01

    The hypothesis is proposed that during the organization of pre-biotic bacterial cell(s), high-energy electrical discharges, infrared radiation (IR), thermosynthesis and possibly pre-photosynthesis were central to the origin of life. High-energy electrical discharges generated some simple organic molecules available for the origin of life. Infrared radiation, both incoming to the Earth and generated on the cooling Earth with day/night and warming/cooling cycles, was a component of heat engine thermosynthesis before enzymes and the genetic code were present. Eventually, a primitive forerunner of photosynthesis and the capability to capture visible light emerged. In addition, the dual particle-wave nature of light is discussed from the perspective that life requires light acting both as a wave and particle.

  12. Chemical evolution and the origin of life.

    PubMed

    Oro, J

    1983-01-01

    During the last three decades major advances have been made in our understanding of the formation of carbon compounds in the universe and of the occurence of processes of chemical evolution. 1) Carbon and other biogenic elements (C,H,N,O,S and P) are some of the most abundant in the universe. 2) The interstellar medium has been found to contain a diversity of molecules of these elements. 3) Some of these molecules have also been found in comets which are considered the most primordial bodies of the solar system. 4) The atmospheres of the outer planets and their satellites, for example, Titan, are actively involved in the formation of organic compounds which are the precursors of biochemical molecules. 5) Some of these biochemical molecules, such as amino acids, purines and pyrimidines, have been found in carbonaceous chondrites. 6) Laboratory experiments have shown that most of the monomers and oligomers necessary for life can be synthesized under hypothesized but plausible primitive Earth conditions from compounds found in the above cosmic bodies. 7) It appears that the primitive Earth had the necessary and sufficient conditions to allow the chemical synthesis of biomacromolecules and to permit the processes required for the emergence of life on our planet. 8) It is unlikely that the emergence of life occurred in any other body of the solar system, although the examination of the Jovian satellite Europa may provide important clues about the constraints of this evolutionary process. Some of the fundamental principles of chemical evolution are briefly discussed.

  13. Biomarkers as tracers for life on early earth and Mars

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Summons, R. E.; Jahnke, L. L.

    1998-01-01

    Biomarkers in geological samples are products derived from biochemical (natural product) precursors by reductive and oxidative processes (e.g., cholestanes from cholesterol). Generally, lipids, pigments and biomembranes are preserved best over longer geological times and labile compounds such as amino acids, sugars, etc. are useful biomarkers for recent times. Thus, the detailed characterization of biomarker compositions permits the assessment of the major contributing species of extinct and/or extant life. In the case of the early Earth, work has progressed to elucidate molecular structure and carbon isotropic signals preserved in ancient sedimentary rocks. In addition, the combination of bacterial biochemistry with the organic geochemistry of contemporary and ancient hydrothermal ecosystems permits the modeling of the nature, behavior and preservation potential of primitive microbial communities. This approach uses combined molecular and isotopic analyses to characterize lipids produced by cultured bacteria (representative of ancient strains) and to test a variety of culture conditions which affect their biosynthesis. On considering Mars, the biomarkers from lipids and biopolymers would be expected to be preserved best if life flourished there during its early history (3.5-4 x 10(9) yr ago). Both oxidized and reduced products would be expected. This is based on the inferred occurrence of hydrothermal activity during that time with the concomitant preservation of biochemically-derived organic matter. Both known biomarkers (i.e., as elucidated for early terrestrial samples and for primitive terrestrial microbiota) and novel, potentially unknown compounds should be characterized.

  14. Spectrophotometry of Dust in Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Comets, such as Hale-Bopp (C/1995 O1), are frozen reservoirs of primitive solar nebula dust grains and ices. Analysis of the composition of cometary dust grains from infrared spectroscopic techniques permits an estimation of the types of organic and inorganic materials that constituted the early primitive solar nebula. In addition, the cometary bombardment of the Earth (approximately 3.5 Gy ago) supplied the water for the oceans and brought organic materials to Earth which may have been biogenic. Spectroscopic observations of comet Hale-Bopp suggest the possible presence of organic hydrocarbon species, silicate and olivine dust grains, and water ice. Spectroscopy near 3 microns obtained in Nov 1996 r=2.393 AU, delta=3.034 AU) shows a feature which we attribute to PAH emission. The spatial morphology of the 3.28 microns PAH feature is also presented. Optical and infrared spectrophotometric observations of comets convey valuable information about the spatial distribution and properties of dust and gas within the inner coma. In the optical and NIR shortward of 2 microns, the observed light is primarily scattered sunlight from the dust grains. At longer wavelengths, particularly in the 10 gm window, thermal emission from these grains dominates the radiation allowing an accurate estimate of grain sizes and chemical composition. Here we present an initial analysis of spectra taken with the NASA HIFOGS at 7-14 microns as part of a multiwavelength temporal study of the "comet of the century".

  15. Detection of CMOS bridging faults using minimal stuck-at fault test sets

    NASA Technical Reports Server (NTRS)

    Ijaz, Nabeel; Frenzel, James F.

    1993-01-01

    The performance of minimal stuck-at fault test sets at detecting bridging faults are evaluated. New functional models of circuit primitives are presented which allow accurate representation of bridging faults under switch-level simulation. The effectiveness of the patterns is evaluated using both voltage and current testing.

  16. Graphical Means for Inspecting Qualitative Models of System Behaviour

    ERIC Educational Resources Information Center

    Bouwer, Anders; Bredeweg, Bert

    2010-01-01

    This article presents the design and evaluation of a tool for inspecting conceptual models of system behaviour. The basis for this research is the Garp framework for qualitative simulation. This framework includes modelling primitives, such as entities, quantities and causal dependencies, which are combined into model fragments and scenarios.…

  17. The contribution of cometary volatiles to the primitive Earth.

    PubMed

    Oro, J; Holzer, G; Lazcano-Araujo, A

    1980-01-01

    It has been estimated that during its early history the Earth captured a mass of cometary material of the order of 10(23) grams. Since carbon is supposed to be at least three times more abundant in comets than in carbonaceous chondrites (3.5% C in C 1 chondrites), it can be deduced that about 1 x 10(22) grams of carbon (as carbon compounds), was added by comets to the surface of the prebiotic Earth. This carbon value is of the same order of magnitude as the value of the organic carbon buried in the Earth's sedimentary shell, but approximately one order of magnitude lower than the Earth's surface total carbon (7 x 10(22) gm). The capture of comets by the Earth would also have contributed to generating the appropriate aqueous and reducing environmental conditions necessary for organic synthesis. Although it is possible that some of the cometary carbon compounds falling on the Earth survived, most of them were probably decomposed by the heat and shock waves of the cometary collision. Upon quenching to low temperatures, however, the reactive chemical species produced by the impact would have recombined, leading to the synthesis of a great variety of organic molecules. Laboratory experiments with radiation, heat and shock waves have demonstrated that some of the synthesized compounds are biochemical molecules: amino acids, sugars, purines, and pyrimidines. These are essential to all living systems.

  18. Are comets connected to the origin of life

    NASA Technical Reports Server (NTRS)

    Delsemme, A. H.

    1981-01-01

    Possible connections between comets and the origin of life on earth are discussed. The orbital evolution of comets and their origin are considered within a framework for the origin of the solar system, with particular attention given to the origin of the biosphere, and the origin of the Oort cloud. Evidence suggesting that cometary nuclei are undifferentiated throughout is considered, and a model of the average composition of a mean new comet is obtained from observational data which is similar to that of an interstellar frost. The chemistry of the model composition giving rise to the species observed in cometary spectra is considered, as well as the relations of cometary to cosmic abundances of oxygen, carbon and sulfur. The characteristics of possible sites for prebiotic chemistry, including interstellar clouds, the protosolar nebula, comets in the Oort cloud, periodic comets and the primitive earth, are examined, and a possible role of comets in bringing the interstellar prebiotic chemistry to earth is suggested.

  19. Amino Acid Stability in the Early Oceans

    NASA Technical Reports Server (NTRS)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  20. Studies of Stirring and Mixing at the Submesoscale in the Ocean: FY2013 Annual Report

    DTIC Science & Technology

    2013-09-30

    uhler, and R. Ferrari. Particle dispersion by random waves in the rotating Boussinesq system . J. Fluid Mech., 670:150-175, 2011. Ferrari, R.. A...We have now run a suite of QG simulations in parallel with Boussinesq Primitive Equation (PE) simulations (using the Diablo code), systematicaly...density fronts. J. Phys. Oceanogr., 40:1222-1242, 2010. Taylor, J., K. S. Smith and R. Ferrari. Submesoscale stirring of tracers in Boussinesq and quasi

  1. Hydrothermal simulation experiments as a tool for studies of the origin of life on Earth and other terrestrial planets: a review.

    PubMed

    Holm, Nils G; Andersson, Eva

    2005-08-01

    The potential of life's origin in submarine hydrothermal systems has been evaluated by a number of investigators by conducting high temperature-high pressure experiments involving organic compounds. In the majority of these experiments little attention has been paid to the importance of constraining important parameters, such as the pH and the redox state of the system. This is particularly revealed in the apparent difficulties in interpreting experimental data from hydrothermal organic synthesis and stability studies. However, in those cases where common mineral assemblages have been used in an attempt to buffer the pH and redox conditions to geologically and geochemically realistic values, theoretical and experimental data seem to converge. The use of mineral buffer assemblages provides a convenient way by which to constrain the experimental conditions. Studies at high temperatures and pressure in the laboratory have revealed a number of reactions that proceed rapidly in hydrothermal fluids, including the Strecker synthesis of amino acids. In other cases, the verification of postulated abiotic reaction mechanisms has not been possible, at least for large molecules such as large fatty acids and hydrocarbons. This includes the Fischer-Tropsch synthesis reaction. High temperature-high pressure experimental methods have been developed and used successfully for a long time in, for example, mineral solubility studies under hydrothermal conditions. By taking advantage of this experimental experience new and, at times, unexpected directions can be taken in bioorganic geochemistry, one being, for instance, primitive two-dimensional information coding. This article critically reviews some of the organic synthesis and stability experiments that have been conducted under simulated submarine hydrothermal conditions. We also discuss some of the theoretical and practical considerations that apply to hydrothermal laboratory studies of organic molecules related to the origin of life on Earth and probably also to the other terrestrial planets.

  2. Human and Robotic Exploration of Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2010-01-01

    A study in late 2006 was sponsored by the Advanced Projects Office within NASA's Constellation Program to examine the feasibility of sending the Orion Crew Exploration Vehicle to a near-Earth object (NEO). The ideal mission profile would involve two or three astronauts on a 90 to 180 day flight, which would include a 7 to 14 day stay for proximity operations at the target NEO. More recently U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for NEO exploration in order to follow U.S. space exploration policy. Prior to sending a human mission, a series of robotic spacecraft would be launched to reduce the risk to crew, and enhance the planning for the proximity and surface operations at the NEO. The human mission would ideally follow five or more years later. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other solar system destinations. Piloted missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. The main scientific advantage of sending piloted missions to NEOs would be the flexibility of the crew to perform tasks and to adapt to situations in real time. A crewed vehicle would be able to test several different sample collection techniques and target specific areas of interest via extra-vehicular activities (EVAs) more efficiently than robotic spacecraft. Such capabilities greatly enhance the scientific return from these missions to NEOs, destinations vital to understanding the evolution and thermal histories of primitive bodies during the formation of the early solar system. Data collected from these missions would help constrain the suite of materials possibly delivered to the early Earth, and would identify potential source regions from which NEOs originate. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense.

  3. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.

  4. The 1953 Stanley L. Miller Experiment: Fifty Years of Prebiotic Organic Chemistry

    NASA Technical Reports Server (NTRS)

    Lazcano, Antonio; Bada, Jeffrey L.

    2003-01-01

    The field of prebiotic chemistry effectively began with a publication in Science 50 years ago by Stanley L. Miller on the spark discharge synthesis of amino acids and other compounds using a mixture of reduced gases that were thought to represent the components of the atmosphere on the primitive Earth. On the anniversary of this landmark publication, we provide here an accounting of the events leading to the publication of the paper. We also discuss the historical aspects that lead up to the landmark Miller experiment.

  5. Drawbacks of the ancient RNA-based life-like system under primitive earth conditions.

    PubMed

    Kawamura, Kunio

    2012-07-01

    Following the discovery of ribozymes, the "RNA world" hypothesis has become the most accepted hypothesis concerning the origin of life and genetic information. However, this hypothesis has several drawbacks. Verification of the hypothesis from different viewpoints led us to proposals from the viewpoint of the hydrothermal origin of life, solubility of RNA and related biopolymers, and the possibility of creating an evolutionary system comparable to the in vitro selection technique for functional RNA molecules based on molecular biology. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Zahnle, K. J.

    1986-01-01

    A one-dimensional photochemical model is used to analyze the photochemistries of CH4 and HCN in the primitive terrestrial atmosphere. CH4, N2, and HCN photolysis are examined. The background atmosphere and boundary conditions applied in the analysis are described. The formation of HCN as a by-product of N2 and CH4 photolysis is investigated; the effects of photodissociation and rainfall on HCN is discussed. The low and high CH4 mixing ratios and radical densities are studied.

  7. The planets and life.

    NASA Technical Reports Server (NTRS)

    Young, R. S.

    1971-01-01

    It is pointed out that planetary exploration is not simply a program designed to detect life on another planet. A planet similar to earth, such as Mars, when studied for evidence as to why life did not arise, may turn out to be scientifically more important than a planet which has already produced a living system. Of particular interest after Mars are Venus and Jupiter. Jupiter has a primitive atmosphere which may well be synthesizing organic molecules today. Speculations have been made concerning the possibility of a bio-zone in the upper atmosphere of Venus.

  8. Sensitivity of the terrestrial planet finder

    NASA Technical Reports Server (NTRS)

    Beichman, Charles

    1998-01-01

    A key long-term goal of NASA's Origins program is the detection and characterization of habitable planets orbiting stars within the solar neighborhood. A cold, space-borne interferometer operating in the mid-infrared with a approx. 75 m baseline can null the light of a parent star and detect the million-times fainter radiation from an Earth-like planet located in the "habitable zone" around stars as far as 15 pc away. Such an interferometer, designated the Terrestrial Planet Finder (TPF) by NASA, could even detect atmospheric signatures of species such as CO2, O3, and H2O indicative of either the possibility or presence of primitive life. This talk highlights some of the sensitivity issues affecting the detectability of terrestrial planets. Sensitivity calculations show that a system consisting of 2 m apertures operating at 5 AU or 4 m apertures operating at 1 AU can detect terrestrial planets in reasonable integration times for levels of exo-zodiacal emission up to 10 times that seen in our solar system (hereafter denoted as 10xSS). Additionally, simulations show that confusion noise from structures in the exo-zodiacal cloud should not impede planet detection until the exo-zodiacal emission reaches the 10xSS level.

  9. Human Exploration of Near-Earth Asteroids and Sample Collection Considerations

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2013-01-01

    In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. Subsequently, the U.S. presidential administration directed NASA on April 15, 2010 to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. Human Exploration Considerations: These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of these primitive objects. However, prior to sending human explorers to NEAs, robotic investigations of these bodies would be required in order to maximize operational efficiency and reduce mission risk. These precursor missions to NEAs would fill crucial strategic knowledge gaps concerning their physical characteristics that are relevant for human exploration of these relatively unknown destinations. Sample Science Benefits: Information obtained from a human investigation of a NEA, together with ground-based observations and prior spacecraft investigations of asteroids and comets, will also provide a real measure of ground truth to data obtained from terrestrial meteorite collections. Major advances in the areas of geochemistry, impact history, thermal history, isotope analyses, mineralogy, space weathering, formation ages, thermal inertias, volatile content, source regions, solar system formation, etc. can be expected from human NEA missions. Samples directly returned from a primitive body would lead to the same kind of breakthroughs for understanding NEAs that the Apollo samples provided for understanding the Earth-Moon system and its formation history. International Participation: In addition, robotic precursor and human exploration missions to NEAs would allow the NASA and its international partners to gain operational experience in performing complex tasks (e.g., sample collection, deployment of payloads, retrieval of payloads, etc.) with crew, robots, and spacecraft under microgravity conditions at or near the surface of a small body. This would provide an important synergy between the worldwide Science and Exploration communities, which will be crucial for development of future international deep space exploration architectures and has potential benefits for future exploration of other destinations beyond low-Earth orbit.

  10. Large-Eddy/Reynolds-Averaged Navier-Stokes Simulation of Shock-Train Development in a Coil-Laser Diffuser

    DTIC Science & Technology

    2014-09-06

    as the Riemann solver . The primitive-variable vector Ts kTwvupW ],,,,,,[ ω= is used in the reconstruction. The initial step in the PPM...University’s (NCSU) REACTMB flow solver is used in the present effort. REACTMB solves the Navier-Stokes equations governing a multi-component

  11. Combination Chemotherapy in Treating Patients With Non-Metastatic Extracranial Ewing Sarcoma

    ClinicalTrials.gov

    2018-02-09

    Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Childhood Supratentorial Primitive Neuroectodermal Tumor; Ewing Sarcoma of Bone; Extraosseous Ewing Sarcoma; Extraosseous Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Peripheral Primitive Neuroectodermal Tumor of the Kidney; Untreated Childhood Supratentorial Primitive Neuroectodermal Tumor

  12. The Gulliver Mission: A Short-Cut to Primitive Body and Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Britt, D. T.

    2003-05-01

    The Martian moon Deimos has extraordinary potential for future sample return missions. Deimos is spectrally similar to D-type asteroids and may be a captured primitive asteroid that originated in the outer asteroid belt. This capture probably took place in the earliest periods of Martian history, over 4.4 Gyrs ago [1], and Deimos has been accumulating material ejected from the Martian surface ever since. Analysis of Martian ejecta, material accumulation, capture cross-section, regolith over-turn, and Deimos's albedo suggest that Mars material may make up as much as 10% of Deimos's regolith. The Martian material on Deimos would be dominated by ejecta from the ancient crust of Mars, delivered during the Noachian Period of basin-forming impacts and heavy bombardment. Deimos could be a repository of samples from ancient Mars, including the full range of Martian crustal and upper mantle material from the early differentiation and crustal-forming epoch as well as samples from the era of high volatile flux, thick atmosphere, and possible surface water. In addition to Martian ejecta, 90% of the Deimos sample will be spectral type D asteroidal material. D-type asteroids are thought to be highly primitive and are most common in the difficult to access outer asteroid belt and the Jupiter Trojans. The Gulliver Mission proposes to directly collect up to 10 kilograms of Deimos regolith and return it to Earth. This sample may contain up to 1000 grams of Martian material along with up to 9 kilograms of primitive asteroidal material. Because of stochastic processes of regolith mixing over 4.4 Gyrs, the rock fragments and grains will likely sample the diversity of the Martian ancient surface as well as the asteroid. In essence, Gulliver represents two shortcuts, to Mars sample return and to the outer asteroid belt. References: [1] Burns J. A. (1992) Mars (Kieffer H. H. et al., eds), 1283-1302.

  13. Salinity Effects on the Adsorption of Nucleic Acid Compounds on Na-Montmorillonite: a Prebiotic Chemistry Experiment

    NASA Astrophysics Data System (ADS)

    Villafañe-Barajas, Saúl A.; Baú, João Paulo T.; Colín-García, María; Negrón-Mendoza, Alicia; Heredia-Barbero, Alejandro; Pi-Puig, Teresa; Zaia, Dimas A. M.

    2018-02-01

    Any proposed model of Earth's primitive environments requires a combination of geochemical variables. Many experiments are prepared in aqueous solutions and in the presence of minerals. However, most sorption experiments are performed in distilled water, and just a few in seawater analogues, mostly inconsistent with a representative primitive ocean model. Therefore, it is necessary to perform experiments that consider the composition and concentration of dissolved salts in the early ocean to understand how these variables could have affected the absorption of organic molecules into minerals. In this work, the adsorption of adenine, adenosine, and 5'AMP onto Na+montmorillonite was studied using a primitive ocean analog (4.0 Ga) from experimental and computational approaches. The order of sorption of the molecules was: 5'AMP > adenine > adenosine. Infrared spectra showed that the interaction between these molecules and montmorillonite occurs through the NH2 group. In addition, electrostatic interaction between negatively charged montmorillonite and positively charge N1 of these molecules could occur. Results indicate that dissolved salts affect the sorption in all cases; the size and structure of each organic molecule influence the amount sorbed. Specifically, the X-ray diffraction patterns show that dissolved salts occupy the interlayer space in Na-montmorillonite and compete with organic molecules for available sites. The adsorption capacity is clearly affected by dissolved salts in thermodynamic terms as deduced by isotherm models. Indeed, molecular dynamic models suggest that salts are absorbed in the interlamellar space and can interact with oxygen atoms exposed in the edges of clay or in its surface, reducing the sorption of the organic molecules. This research shows that the sorption process could be affected by high concentration of salts, since ions and organic molecules may compete for available sites on inorganic surfaces. Salt concentration in primitive oceans may have strongly affected the sorption, and hence the concentration processes of organic molecules on minerals.

  14. Rosetta/VIRTIS-M spectral data: Comet 67P/CG compared to other primitive small bodies.

    NASA Astrophysics Data System (ADS)

    De Sanctis, M. C.; Capaccioni, F.; Filacchione, G.; Erard, S.; Tosi, F.; Ciarniello, M.; Raponi, A.; Piccioni, G.; Leyrat, C.; Bockelée-Morvan, D.; Drossart, P.; Fornasier, S.

    2014-12-01

    VIRTIS-M, the Visible InfraRed Thermal Imaging Spectrometer, onboard the Rosetta Mission orbiter (Coradini et al., 2007) acquired data of the comet 67P/Churyumov-Gerasimenko in the 0.25-5.1 µm spectral range. The initial data, obtained during the first mission phases to the comet, allow us to derive albedo and global spectral properties of the comet nucleus as well as spectra of different areas on the nucleus. The characterization of cometary nuclei surfaces and their comparison with those of related populations such as extinct comet candidates, Centaurs, near-Earth asteroids (NEAs), trans-Neptunian objects (TNOs), and primitive asteroids is critical to understanding the origin and evolution of small solar system bodies. The acquired VIRTIS data are used to compare the global spectral properties of comet 67P/CG to published spectra of other cometary nuclei observed from ground or visited by space mission. Moreover, the spectra of 67P/Churyumov-Gerasimenko are also compared to those of primitive asteroids and centaurs. The comparison can give us clues on the possible common formation and evolutionary environment for primitive asteroids, centaurs and Jupiter-family comets. Authors acknowledge the funding from Italian and French Space Agencies. References: Coradini, A., Capaccioni, F., Drossart, P., Arnold, G., Ammannito, E., Angrilli, F., Barucci, A., Bellucci, G., Benkhoff, J., Bianchini, G., Bibring, J. P., Blecka, M., Bockelee-Morvan, D., Capria, M. T., Carlson, R., Carsenty, U., Cerroni, P., Colangeli, L., Combes, M., Combi, M., Crovisier, J., De Sanctis, M. C., Encrenaz, E. T., Erard, S., Federico, C., Filacchione, G., Fink, U., Fonti, S., Formisano, V., Ip, W. H., Jaumann, R., Kuehrt, E., Langevin, Y., Magni, G., McCord, T., Mennella, V., Mottola, S., Neukum, G., Palumbo, P., Piccioni, G., Rauer, H., Saggin, B., Schmitt, B., Tiphene, D., Tozzi, G., Space Science Reviews, Volume 128, Issue 1-4, 529-559, 2007.

  15. Carbon Raman Spectroscopy of 36 Inter-Planetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Busemann, H.; Nittler, L. R.; Davidson, J.; Franchi, I. A.; Messenger, S.; Nakamura-Messenger, K.; Palma, R. L.; Pepin, R. O.

    2009-01-01

    Carbon Raman spectroscopy is a useful tool to determine the degree of order of organic material (OM) in extra-terrestrial matter. As shown for meteoritic OM [e.g., 2], peak parameters of D and G bands are a measure of thermal alteration, causing graphitization (order), and amorphization, e.g. during protoplanetary irradiation, causing disorder. Th e most pristine interplanetary dust particles (IDPs) may come from comets. However, their exact provenance is unknown. IDP collection during Earth?s passage through comet Grigg-Skjellerup?s dust stream ("GSC" collectors) may increase the probability of collecting fresh IDPs from a known, cometary source. We used Raman spectroscopy to compare 21 GSC-IDPs with 15 IDPs collected at different periods, and found that the variation among GSC-IDPs is larger than among non-GSC IDPs, with the most primitive IDPs being mostly GSC-IDPs.

  16. Deuterium fractionation of water in the Solar nebula

    NASA Astrophysics Data System (ADS)

    Albertsson, Tobias; Semenov, Dmitry; Henning, Thomas

    2013-07-01

    Water evaporates in the inner regions of protoplanetary disks and is frozen onto grains in the outer regions. Therefore its presence in vast quantities on Earth is puzzling. Subsequent delivery through bombardment by primitive bodies formed in the outer icy regions is the favored mechanism. By studying water D/H ratios one hopes to understand whether the water was mainly delivered by comets or asteroids. Using an extended deuterium chemistry network coupled to a 2D chemo-dynamical disk model, we investigate the evolution of the D/H ratio of water in the young Solar nebula. We find that both the laminar and mixing Solar nebula models show the Earth's ocean water D/H ratio at 2-3 AU. In addition, the 2D-mixing model explains better the water D/H values observed in the Oort- and Jupiter-family comets.

  17. Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust

    NASA Astrophysics Data System (ADS)

    Ushikubo, Takayuki; Kita, Noriko T.; Cavosie, Aaron J.; Wilde, Simon A.; Rudnick, Roberta L.; Valley, John W.

    2008-08-01

    In situ Li analyses of 4348 to 3362 Ma detrital zircons from the Jack Hills, Western Australia by SIMS reveal that the Li abundances (typically 10 to 60 ppm) are commonly over 10,000 times higher than in zircons crystallized from mantle-derived magmas and in mantle-derived zircon megacrysts (typically < 2 ppb). High Li concentrations in zircons (10 to 250 ppm) have also been found in igneous zircons from three continental parent rocks: granites, Li-rich pegmatites, and migmatites in pelitic metasediment. The substitution of trivalent cations (REEs and Y) in zircon correlates with Li + 1 and P + 5 , suggesting that an interstitial site for Li, as well as the xenotime substitution for P, provides charge balance for REEs. Li is thus fixed in the zircon structure by coupled substitutions, and diffusive changes in [Li] composition are rate-limited by slow diffusion of REEs. The Jack Hills zircons also have fractionated lithium isotope ratios ( δ7Li = - 19 to + 13‰) about five times more variable than those recorded in primitive ocean floor basalts (2 to 8‰), but similar to continental crust and its weathering products. Values of δ7Li below - 10‰ are found in zircons that formed as early as 4300 Ma. The high Li compositions indicate that primitive magmas were not the source of Jack Hills zircons and the fractionated values of δ7Li suggest that highly weathered regolith was sampled by these early Archean magmas. These new Li data provide evidence that the parent magmas of ancient zircons from Jack Hills incorporated materials from the surface of the Earth that interacted at low temperature with liquid water. These data support the hypothesis that continental-type crust and oceans existed by 4300 Ma, within 250 million years of the formation of Earth and the low values of δ7Li suggest that weathering was extensive in the early Archean.

  18. Redox dependent behaviour of molybdenum during magmatic processes in the terrestrial and lunar mantle: Implications for the Mo/W of the bulk silicate Moon

    NASA Astrophysics Data System (ADS)

    Leitzke, F. P.; Fonseca, R. O. C.; Sprung, P.; Mallmann, G.; Lagos, M.; Michely, L. T.; Münker, C.

    2017-09-01

    We present results of high-temperature olivine-melt, pyroxene-melt and plagioclase-melt partitioning experiments aimed at investigating the redox transition of Mo in silicate systems. Data for a series of other minor and trace elements (Sc, Ba, Sr, Cr, REE, Y, HFSE, U, Th and W) were also acquired to constrain the incorporation of Mo in silicate minerals. All experiments were carried out in vertical tube furnaces at 1 bar and temperatures ranging from ca. 1220 to 1300 °C. Oxygen fugacity was controlled via CO-CO2 gas mixtures and varied systematically from 5.5 log units below to 1.9 log units above the fayalite-magnetite-quartz (FMQ) redox buffer thereby covering the range in oxygen fugacities of terrestrial and lunar basalt genesis. Molybdenum is shown to be volatile at oxygen fugacities above FMQ and that its compatibility in pyroxene and olivine increases three orders of magnitude towards the more reducing conditions covered in this study. The partitioning results show that Mo is dominantly tetravalent at redox conditions below FMQ-4 and dominantly hexavalent at redox conditions above FMQ. Given the differences in oxidation states of the terrestrial (oxidized) and lunar (reduced) mantles, molybdenum will behave significantly differently during basalt genesis in the Earth (i.e. highly incompatible; average DMoperidotite/melt ∼ 0.008) and Moon (i.e. moderately incompatible/compatible; average DMoperidotite/melt ∼ 0.6). Thus, it is expected that Mo will strongly fractionate from W during partial melting in the lunar mantle, given that W is broadly incompatible at FMQ-5. Moreover, the depletion of Mo and the Mo/W range in lunar samples can be reproduced by simply assuming a primitive Earth-like Mo/W for the bulk silicate Moon. Such a lunar composition is in striking agreement with the Moon being derived from the primitive terrestrial mantle after core formation on Earth.

  19. Halogens in chondritic meteorites and terrestrial accretion

    NASA Astrophysics Data System (ADS)

    Clay, Patricia L.; Burgess, Ray; Busemann, Henner; Ruzié-Hamilton, Lorraine; Joachim, Bastian; Day, James M. D.; Ballentine, Christopher J.

    2017-11-01

    Volatile element delivery and retention played a fundamental part in Earth’s formation and subsequent chemical differentiation. The heavy halogens—chlorine (Cl), bromine (Br) and iodine (I)—are key tracers of accretionary processes owing to their high volatility and incompatibility, but have low abundances in most geological and planetary materials. However, noble gas proxy isotopes produced during neutron irradiation provide a high-sensitivity tool for the determination of heavy halogen abundances. Using such isotopes, here we show that Cl, Br and I abundances in carbonaceous, enstatite, Rumuruti and primitive ordinary chondrites are about 6 times, 9 times and 15-37 times lower, respectively, than previously reported and usually accepted estimates. This is independent of the oxidation state or petrological type of the chondrites. The ratios Br/Cl and I/Cl in all studied chondrites show a limited range, indistinguishable from bulk silicate Earth estimates. Our results demonstrate that the halogen depletion of bulk silicate Earth relative to primitive meteorites is consistent with the depletion of lithophile elements of similar volatility. These results for carbonaceous chondrites reveal that late accretion, constrained to a maximum of 0.5 ± 0.2 per cent of Earth’s silicate mass, cannot solely account for present-day terrestrial halogen inventories. It is estimated that 80-90 per cent of heavy halogens are concentrated in Earth’s surface reservoirs and have not undergone the extreme early loss observed in atmosphere-forming elements. Therefore, in addition to late-stage terrestrial accretion of halogens and mantle degassing, which has removed less than half of Earth’s dissolved mantle gases, the efficient extraction of halogen-rich fluids from the solid Earth during the earliest stages of terrestrial differentiation is also required to explain the presence of these heavy halogens at the surface. The hydropilic nature of halogens, whereby they track with water, supports this requirement, and is consistent with volatile-rich or water-rich late-stage terrestrial accretion.

  20. On Synchronization Primitive Systems.

    DTIC Science & Technology

    The report studies the question: what synchronization primitive should be used to handle inter-process communication. A formal model is presented...between these synchronization primitives. Although only four synchronization primitives are compared, the general methods can be used to compare other... synchronization primitives. Moreover, in the definitions of these synchronization primitives, conditional branches are explicitly allowed. In addition

  1. Ancient Hydrothermal Springs in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2008-01-01

    Hydrothermal springs are important astrobiological sites for several reasons: 1) On Earth, molecular phylogeny suggests that many of the most primitive organisms are hyperthermophiles, implying that life on this planet may have arisen in hydrothermal settings; 2) on Mars, similar settings would have supplied energy- and nutrient-rich waters in which early martian life may have evolved; 3) such regions on Mars would have constituted oases of continued habitability providing warm, liquid water to primitive life forms as the planet became colder and drier; and 4) mineralization associated with hydrothermal settings could have preserved biosignatures from those martian life forms. Accordingly, if life ever developed on Mars, then hydrothermal spring deposits would be excellent localities in which to search for morphological or chemical remnants of that life. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel which allows detailed analysis of geologic structure and geomorphology. Based on these new data, we report several features in Vernal Crater, Arabia Terra that we interpret as ancient hydrothermal springs.

  2. Growth of continental crust: Clues from Nd isotopes and Nb-Th relationships in mantle-derived magmas

    NASA Astrophysics Data System (ADS)

    Arndt, N. T.; Chauvel, C.; Jochum, K.-P.; Gruau, G.; Hofmann, A. W.

    Isotope and trace element geochemistry of Precambrian mantle derived rocks and implications for the formation of the continental crust is discussed. Epsilon Nd values of Archean komatiites are variable, but range up to at least +5, suggesting that the Archean mantle was heterogeneous and, in part, very depleted as far back as 3.4 to 3.5 Ga. This may be taken as evidence for separation of continental crust very early in Earth history. If these komatiite sources were allowed to evolve in a closed system, they would produce modern day reservoirs with much higher epsilon Nd values than is observed. This implies recycling of some sort of enriched material, perhaps subducted sediments, although other possibilities exist. Archean volcanics show lower Nb/Th than modern volcanics, suggesting a more primitive mantle source than that observed nowadays. However, Cretaceous komatiites from Gorgona island have similar Nb/Th to Archean volcanics, indicating either the Archean mantle source was indeed more primitive, or Archean magmas were derived from a deep ocean island source like that proposed for Gorgona.

  3. Growth of continental crust: Clues from Nd isotopes and Nb-Th relationships in mantle-derived magmas

    NASA Technical Reports Server (NTRS)

    Arndt, N. T.; Chauvel, C.; Jochum, K.-P.; Gruau, G.; Hofmann, A. W.

    1988-01-01

    Isotope and trace element geochemistry of Precambrian mantle derived rocks and implications for the formation of the continental crust is discussed. Epsilon Nd values of Archean komatiites are variable, but range up to at least +5, suggesting that the Archean mantle was heterogeneous and, in part, very depleted as far back as 3.4 to 3.5 Ga. This may be taken as evidence for separation of continental crust very early in Earth history. If these komatiite sources were allowed to evolve in a closed system, they would produce modern day reservoirs with much higher epsilon Nd values than is observed. This implies recycling of some sort of enriched material, perhaps subducted sediments, although other possibilities exist. Archean volcanics show lower Nb/Th than modern volcanics, suggesting a more primitive mantle source than that observed nowadays. However, Cretaceous komatiites from Gorgona island have similar Nb/Th to Archean volcanics, indicating either the Archean mantle source was indeed more primitive, or Archean magmas were derived from a deep ocean island source like that proposed for Gorgona.

  4. Abstract-Reasoning Software for Coordinating Multiple Agents

    NASA Technical Reports Server (NTRS)

    Clement, Bradley; Barrett, Anthony; Rabideau, Gregg; Knight, Russell

    2003-01-01

    A computer program for scheduling the activities of multiple agents that share limited resources has been incorporated into the Automated Scheduling and Planning Environment (ASPEN) software system, aspects of which have been reported in several previous NASA Tech Briefs articles. In the original intended application, the agents would be multiple spacecraft and/or robotic vehicles engaged in scientific exploration of distant planets. The program could also be used on Earth in such diverse settings as production lines and military maneuvers. This program includes a planning/scheduling subprogram of the iterative repair type that reasons about the activities of multiple agents at abstract levels in order to greatly improve the scheduling of their use of shared resources. The program summarizes the information about the constraints on, and resource requirements of, abstract activities on the basis of the constraints and requirements that pertain to their potential refinements (decomposition into less-abstract and ultimately to primitive activities). The advantage of reasoning about summary information is that time needed to find consistent schedules is exponentially smaller than the time that would be needed for reasoning about the same tasks at the primitive level.

  5. Petit-spot as definitive evidence for partial melting in the asthenosphere caused by CO2

    PubMed Central

    Machida, Shiki; Kogiso, Tetsu; Hirano, Naoto

    2017-01-01

    The deep carbon cycle plays an important role on the chemical differentiation and physical properties of the Earth's mantle. Especially in the asthenosphere, seismic low-velocity and high electrical conductivity due to carbon dioxide (CO2)-induced partial melting are expected but not directly observed. Here we discuss the experimental results relevant to the genesis of primitive CO2-rich alkali magma forming petit-spot volcanoes at the deformation front of the outer rise of the northwestern Pacific plate. The results suggest that primitive melt last equilibrated with depleted peridotite at 1.8–2.1 GPa and 1,280–1,290 °C. Although the equilibration pressure corresponds to the pressure of the lower lithosphere, by considering an equilibration temperature higher than the solidus in the volatile–peridotite system along with the temperature of the lower lithosphere, we conclude that CO2-rich silicate melt is always produced in the asthenosphere. The melt subsequently ascends into and equilibrates with the lower lithosphere before eruption. PMID:28148927

  6. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  7. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.

    PubMed

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  8. Construction of a magnetostrictive hysteresis operator using a tripod-like primitive hopfield neural network

    NASA Astrophysics Data System (ADS)

    Adly, A. A.; Abd-El-Hafiz, S. K.

    2018-05-01

    It is well known that accurate modeling of magnetostrictive hysteresis is crucial to different industrial applications. Although several magnetostrictive models have been developed in the past, the accuracy-efficiency balance has always been crucial. Recently, the possibility of constructing a primitive vector hysteresis operator using a tri-node Hopfield Neural Network (HNN) was demonstrated. Based upon the fact that mechanical stress along a certain direction results in dimensional deformation, this paper introduces a novel extension to the aforementioned recently developed approach. More specifically, a stress-driven evolution of a tri-node HNN hysteresis operator pair is proposed, thus yielding a tripod-like HNN pair having different input offset values. Model identification, sample simulation results and comparison with experimental measurements are given in the paper.

  9. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions

    NASA Technical Reports Server (NTRS)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; hide

    2011-01-01

    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  10. Organic matter on the early surface of Mars: An assessment of the contribution by interplanetary dust

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.

    1993-01-01

    Calculations by Anders and Chyba et al. have recently revived interest in the suggestion that organic compounds important to the development of life were delivered to the primitive surface of the Earth by comets, asteroids or the interplanetary dust derived from these two sources. Anders has shown that the major post-accretion contribution of extraterrestrial organic matter to the surface of the Earth is from interplanetary dust. Since Mars is a much more favorable site for the gentle deceleration of interplanetary dust particles than is Earth, model calculations show that biologically important organic compounds are likely to have been delivered to the early surface of Mars by the interplanetary dust in an order-of-magnitude higher surface density than onto the early Earth. Using the method described by Flynn and McKay, the size frequency distribution, and the atmospheric entry velocity distribution of IDP's at Mars were calculated. The entry velocity distribution, coupled with the atmospheric entry heating model developed by Whipple and extended by Fraundorf was used to calculate the fraction of the particles in each mass decade which survives atmospheric entry without melting (i.e., those not heated above 1600K). The incident mass and surviving mass in each mass decade are shown for both Earth and Mars.

  11. Partial separation of halogens during the subduction of oceanic crust

    NASA Astrophysics Data System (ADS)

    Joachim, Bastian; Pawley, Alison; Lyon, Ian; Henkel, Torsten; Clay, Patricia L.; Ruzié, Lorraine; Burgess, Ray; Ballentine, Christopher J.

    2014-05-01

    Incompatible elements, such as halogens, have the potential to act as key tracers for volatile transport processes in Earth and planetary systems. The determination of halogen abundances and ratios in different mantle reservoirs gives us the ability to better understand volatile input mechanisms into the Earth's mantle through subduction of oceanic crust. Halogen partition coefficients were experimentally determined between forsterite, orthopyroxene and silicate melt at pressures ranging from 1.0 to 2.3 GPa and temperatures ranging from 1500-1600°C, thus representing partial melting conditions of the Earth's mantle. Combining our data with results of recent studies (Beyer et al. 2012; Dalou et al. 2012) shows that halogen partitioning between forsterite and melt increases by factors of about 1000 (fluorine) and 100 (chlorine) between 1300°C and 1600°C and does not show any pressure dependence. Chlorine partitioning between orthopyroxene and melt increases by a factor of about 1500 for a temperature increase of 100°C (anywhere between 1300°C and 1600°C), but decreases by a factor of about 1500 for a pressure increase of 1.0 GPa (anywhere between 1.0 GPa and 2.5 GPa). At similar P-T conditions, a comparable effect is observed for the fluorine partitioning behaviour, which increases by 500-fold for a temperature increase of 100°C and decreases with increasing pressure. Halogen abundances in mid-ocean ridge basalts (MORB; F=3-15, Cl=0.5-14ppm) and ocean island basalts (OIB; F=35-65, Cl=21-55 ppm) source regions were estimated by combining our experimentally determined partition coefficients with natural halogen concentrations in oceanic basalts (e.g. Ruzié et al. 2012). The estimated chlorine OIB source mantle concentration is in almost perfect agreement with primitive mantle estimates (Palme and O'Neill 2003). If we expect an OIB source mantle slightly depleted in incompatible elements, this suggests that at least small amounts of chlorine are recycled deep into the mantle through subduction of oceanic crust, possibly via marine pore fluids (Sumino et al. 2010). The OIB source region is, however, significantly enriched in fluorine relative to the primitive mantle by a factor of 1.4-3.6, which indicates that significantly larger amounts of fluorine are transported deep into the Earth's mantle through subduction. An explanation for the partial separation of chlorine and fluorine during subduction is that the heavy halogens are more likely to escape from the subducting slab in hydrous fluids at an early subduction stage whereas significant amounts of fluorine are likely to remain in the slab, possibly incorporated in the lattice of hydrous amphibole or mica, or in anhydrous high-pressure phases of eclogite. The MORB source mantle is degassed in fluorine (17-88%) and chlorine (22-99%) relative to primitive mantle estimates. Preliminary data suggest that the bromine partitioning behaviour between forsterite and melt is roughly comparable to the behaviour of fluorine and chlorine. If true, this would imply that the Earth's upper mantle is presumably degassed of all halogens despite the more likely escape of heavy halogens from the slab at an early subduction stage, implying that these halogens are at least partly accumulating in the crust after leaving the slab. Beyer C, Klemme S, Wiedenbeck M, Stracke A, Vollmer C (2012) Earth Planet Sci. Lett. 337-338, pp. 1-9. Dalou C, Koga KT, Shimizu N, Boulon J, Devidal JL (2012) Contrib. Mineral. Petrol. 163, pp. 591-609. Palme H, O'Neill HSTC (2003) Treatise Geochem. 2, pp. 1-38. Ruzié L, Burgess R, Hilton DR, Ballentine CJ (2012) AGU Fall Meeting 2012. V31A-2762 (abstr.). Sumino H, Burgess R, Mizukami T, Wallis SR, Holland G, Ballentine CJ (2010) Earth Planet. Sci. Lett. 294, pp. 163-172.

  12. Origin and mixing timescale of Earth's late veneer

    NASA Astrophysics Data System (ADS)

    Prescher, C.; Allu Peddinti, D.; Bell, E. A.; Bello, L.; Cernok, A.; Ghosh, N.; Tucker, J.; Wielicki, M. M.; Zahnle, K. J.

    2012-12-01

    Experimental studies on the partitioning behavior of highly siderophile elements (HSE) between silicate and metallic melts imply that the Earth's mantle should have been highly depleted in these elements by core formation in an early magma ocean. However, present HSE contents of the Earth's mantle are ~3 orders of magnitude higher than that expected by experiments. The apparent over-abundance of HSE has commonly been explained by the addition of meteoritic material in the "late veneer" which describes the exogenous mass addition following the moon forming impact and concluding with the late heavy bombardment at ~3.8-3.9 Ga. The strongest evidence for this theory is that the platinum group element (PGE) contents in today's mantle are present in chondritic relative abundances, as opposed to a fractionated pattern expected with metal-silicate partitioning. Archean komatiites indicate that the PGE content of the Earth's mantle increased from about half their present abundances at 3.5 Ga to their present abundances at 2.9 Ga. This secular increase in PGE content suggests a progressive mixing of the late veneer material into the Earth's mantle. However, this time scale also implies that the whole mantle was relatively well mixed by 2.9 Ga. We use a compilation of existing isotopic and trace element data in order to constrain the origin and composition of the late veneer. We use PGE abundances, W abundances and W isotopic compositions in chondritic meteorites and the primitive upper mantle to compute the amount of mass delivered during the late veneer and find the late veneer mass to be ~0.6 % the mass of the bulk silicate Earth (consistent with earlier estimates). We also use the 187Re-187Os and 190Pt-186Os systems to constrain the composition and timing of delivery of the impacting population. We model the efficiency of mantle mixing in this time frame by using 3-dimensional numerical geodynamical simulations and geochemical constraints. Initial parameters include the amount of mass delivered in the late veneer and the Archean internal heating which is at least 4 times higher than the present values, due to the higher abundance of radioactive elements. Another important parameter is the mechanism of mass addition to the Earth. We test three end-member scenarios: (1) a single very large impactor accounting for the entire mass addition, (2) sprinkling of a large number of small impactors over the whole Earth which then mix into the mantle, or (3) by using a size/frequency distribution estimated from the lunar cratering record and corrected for the difference in gravitational cross section of the Earth and the Moon. This project results from collaborations begun at the CIDER II workshop held at KITP, UCSB, 2012.

  13. Possible solar noble-gas component in Hawaiian basalts

    USGS Publications Warehouse

    Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A.; Clague, D.A.

    1991-01-01

    THE noble-gas elemental and isotopic composition in the Earth is significantly different from that of the present atmosphere, and provides an important clue to the origin and history of the Earth and its atmosphere. Possible candidates for the noble-gas composition of the primordial Earth include a solar-like component, a planetary-like component (as observed in primitive meteorites) and a component similar in composition to the present atmosphere. In an attempt to identify the contributions of such components, we have measured isotope ratios of helium and neon in fresh basaltic glasses dredged from Loihi seamount and the East Rift Zone of Kilauea1-3. We find a systematic enrichment in 20Ne and 21Ne relative to 22Ne, compared with atmospheric neon. The helium and neon isotope signatures observed in our samples can be explained by mixing of solar, present atmospheric, radiogenic and nucleogenic components. These data suggest that the noble-gas isotopic composition of the mantle source of the Hawaiian plume is different from that of the present atmosphere, and that it includes a significant solar-like component. We infer that this component was acquired during the formation of the Earth.

  14. Near-Earth Objects: Targets for Future Human Exploration, Solar System Science, Resource Utilization, and Planetary Defense

    NASA Technical Reports Server (NTRS)

    Abell, Paul A.

    2011-01-01

    U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for near-Earth object (NEO) exploration in order to follow U.S. Space Exploration Policy. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other Solar System destinations. Missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.

  15. Interfacial characteristics of propylene carbonate and validation of simulation models for electrochemical applications

    NASA Astrophysics Data System (ADS)

    You, Xinli

    Supercapacitors have occupy an indispensable role in today's energy storage systems due to their high power density and long life. The introduction of car- bon nanotube (CNT) forests as electrode offers the possibility of nano-scale design and high capacitance. We have performed molecular dynamics simulations on a CNT forest-based electrochemical double-layer capacitor (EDLC) and a widely used electrolyte solution (tetra-ethylammonium tetra-fluoroborate in propylene carbonate, TEABF4 /PC). We compare corresponding primitive model and atomically detailed model of TEABF4 /P, emphasizing the significance of ion clustering in electrolytes. The molecular dynamic simulation results suggests that the arrangement of closest neigh- bors leads to the formation of cation-anion chains or rings. Fuoss's discussion of ion-pairing model provides the approximation for a primitive model of 1-1 electrolyte is not broadly satisfactory for both primitive and atomically detailed cases. A more general Poisson statistical assumption is shown to be satisfactory when coordina- tion numbers are low, as is likely to be the case when ion-pairing initiates. We examined the Poisson-based model over a range of concentrations for both models of TEABF4 /P, and the atomically detailed model results identified solvent-separated nearest-neighbor ion-pairs. Large surface areas plays an essential role in nanomaterial properties, which calls for an accurate description of interfaces through modeling. We studied propylene carbonate, a widely used solvent in EDLC systems. PC wets graphite with a contact angle of 31°. The MD simulation model reproduced this contact angle after reduction 40% of the strength of graphite-C atom Lennard-Jones interactions with the solvent. The critical temperature of PC was accurately evaluated by extrapolating the PC liquid-vapor surface tensions. PC molecules tend to lie flat on the PC liquid-vapor surface, and project the propyl carbon toward the vapor phase. Liquid PC simulations also provide basic data for construction of accurate information to assist in device- level modeling of EDLCs. The most serious uncertainty with previous simulations of CNT based EDLCs was definition of the actual composition of the pores. Therefore, direct simulations of filling of CNT forest based electrochemical double-layer capacitors with TEABF4 /P solution was performed. Those calculation characterize the charging and discharg- ing process, including rates of charging responses, the possibility of bubble forma- tion, and kinetic properties with confinement. The mobilities of ions and solvent was investigated through mean square displacement (MSD) and velocity autocorrela- tion functions (VACF). The memory kernel was extracted from VACF by discretized linear-equation solving and a specialized Fourier transform method, results implies the existence of dielectric friction. With the interest in chemical features of EDLCs, a multi-scale theory was de- veloped to embed high resolution ab initio molecular dynamics (AIMD) methods into studies of EDLCs. This theory was based on McMillan-Mayer theory, potential dis- tribution approach, and quasi-chemical theory. The quasi-chemical theory allow us to break-up the free energies into packing, outer-shell and chemical contributions, where the last part can be done by AIMD directly. For the primitive model of TEABF4 /P, Gaussian statistical models are effective for these outer-shell contributions. And the Gaussian approximation is more efficient than the Bennett method in achieving an accurate mean activity coefficient.

  16. Influence of H2O on Liquidus Temperatures of Primitive Basalts and Olivine-Liquid Thermometry.

    NASA Astrophysics Data System (ADS)

    Medard, E.; Grove, T. L.

    2005-12-01

    We have undertaken a systematic experimental study aimed at understanding the effect of water on olivine liquidus temperatures of primitive basalts. Experiments have been performed on a primitive tholeiitic basalt from Medicine Lake Volcano, California (sample 82-72f, Bartels et al. 1991). The dry liquidus has been characterized from 0.1 MPa to 1.2 GPa. The wet liquidus has been constrained to within 15 °C using water-saturated experiments performed in a MHC externally heated pressure vessel. Preliminary results show that the olivine-liquidus depression (i.e., the difference between dry and water-bearing liquidus) is essentially a linear function of the water content of the melt: ΔT = 560  X(HO0.5), where X(HO0.5) is the mole fraction of water, calculated on a single-cation oxide basis. For 82-72f, this roughly translates into a 30 °C / wt% H2O depression. Simple systems (e.g., diopside/H2O, albite/H2O) suggest that melt structure / composition may have an influence on H2O liquidus depression, and this potential influence is currently under investigation. Experimental phase equilibria and thermobarometry of primitive basalts provide the primary evidence for estimating melting conditions and thermal structures in the Earth's mantle. Assessing the influence of H2O is critical, because it is the dominant volatile component involved in igneous processes, and it has been shown to cause a significant reduction in liquidus temperatures. However, recent model parameterizations vary from very large effects at low H2O contents (about 75 °C at 1 wt% H2O, Falloon and Danyushevsky 2000) to linear effect of H2O vs liquidus temperature (about 25 °C at 1 wt% H2O, Sugawara 2000). Our experimental determination more closely approximates the latter model. A key consequence is that the presence of small amounts of water in MORB magmas (< 1wt%) will only have a very small effect (< 30 °C) on liquidus temperature determination for mid-ocean-ridges. For magmas that are more water-rich, as observed in subduction zones, ocean island and continental magmatism, this parameterization of H2O liquidus depression can be included in existing thermodynamic models to retrieve magmatic temperatures from petrology of primitive basalts.

  17. Microfluidic assay of the deformability of primitive erythroblasts.

    PubMed

    Zhou, Sitong; Huang, Yu-Shan; Kingsley, Paul D; Cyr, Kathryn H; Palis, James; Wan, Jiandi

    2017-09-01

    Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied. In this work, we examined the deformability of primitive erythroblasts at physiologically relevant flow conditions in microfluidic channels and identified the regulatory roles of the maturation stage of primitive erythroblasts and cytoskeletal protein 4.1 R in shear-induced cell deformation. The results showed that the maturation stage affected the deformability of primitive erythroblasts significantly and that primitive erythroblasts at later maturational stages exhibited a better deformability due to a matured cytoskeletal structure in the cell membrane.

  18. The catalytic effect of L- and D-histidine on alanine and lysine peptide formation.

    PubMed

    Fitz, Daniel; Jakschitz, Thomas; Rode, Bernd M

    2008-12-01

    A starting phase of chemical evolution on our ancient Earth around 4 billion years ago was the formation of amino acids and their combination to peptides and proteins. The salt-induced peptide formation (SIPF) reaction has been shown to be appropriate for this condensation reaction under moderate and plausible primitive Earth conditions, forming short peptides from amino acids in aqueous solution containing sodium chloride and Cu(II) ions. In this paper we report results about the formation of dialanine and dilysine from their monomers in this reaction. The catalytic influence of l- and d-histidine dramatically increases dialanine yields when starting from lower alanine concentrations, but also dilysine formation is markedly boosted by these catalysts. Attention is paid to measurable preferences for one enantiomeric form of alanine and lysine in the SIPF reaction. Alanine, especially, shows stereospecific behaviour, mostly in favour of the l-form.

  19. Cosmic Dust Collection Facility: Scientific objectives and programmatic relations

    NASA Technical Reports Server (NTRS)

    Hoerz, Fred (Editor); Brownlee, D. E.; Bunch, T. E.; Grounds, D.; Grun, E.; Rummel, Y.; Quaide, W. L.; Walker, R. M.

    1990-01-01

    The science objectives are summarized for the Cosmic Dust Collection Facility (CDCF) on Space Station Freedom and these objectives are related to ongoing science programs and mission planning within NASA. The purpose is to illustrate the potential of the CDCF project within the broad context of early solar system sciences that emphasize the study of primitive objects in state-of-the-art analytical and experimental laboratories on Earth. Current knowledge about the sources of cosmic dust and their associated orbital dynamics is examined, and the results are reviewed of modern microanalytical investigations of extraterrestrial dust particles collected on Earth. Major areas of scientific inquiry and uncertainty are identified and it is shown how CDCF will contribute to their solution. General facility and instrument concepts that need to be pursued are introduced, and the major development tasks that are needed to attain the scientific objectives of the CDCF project are identified.

  20. Experimental partitioning of rare earth elements and scandium among armalcolite, ilmenite, olivine and mare basalt liquid

    NASA Technical Reports Server (NTRS)

    Irving, A. J.; Merrill, R. B.; Singleton, D. E.

    1978-01-01

    An experimental study was carried out to measure partition coefficients for two rare-earth elements (Sm and Tm) and Sc among armalcolite, ilmenite, olivine and liquid coexisting in a system modeled on high-Ti mare basalt 74275. This 'primitive' sample was chosen for study because its major and trace element chemistry as well as its equilibrium phase relations at atmospheric pressure are known from previous studies. Beta-track analytical techniques were used so that partition coefficients could be measured in an environment whose bulk trace element composition is similar to that of the natural basalt. Partition coefficients for Cr and Mn were determined in the same experiments by microprobe analysis. The only equilibrium partial melting model appears to be one in which ilmenite is initially present in the source region but is consumed by melting before segregation of the high-Ti mare basalt liquid from the residue.

  1. Magnesium Isotopes in the Earth, Moon, Mars, and Pallasite Parent Body: High-Precision Analysis of Olivine by Laser-Ablation Multi-Collector ICPMS

    NASA Technical Reports Server (NTRS)

    Norman, M.; McCulloch, M.; ONeill, H.; Brandon, A.

    2004-01-01

    Magnesium isotopes potentially offer new insights into a diverse range of processes including evaporation and condensation in the solar nebula, melting and metasomatism in planetary interiors, and hydrothermal alteration [1,2,3,4]. Volatility-related Mg isotopic variations of up to 10 per mil/amu relative to a terrestrial standard have been found in early nebular phases interpreted as evaporation residues [1], and relatively large variations (up to 3 per mil/amu) in the terrestrial mantle have been reported recently [4]. In order to investigate possible differences in the nebular history of material contributing to the terrestrial planets, and to search for evidence of a high-temperature origin of the Moon, we have measured the magnesium isotopic composition of primitive olivines from the Earth, Moon, Mars, and pallasite parent body using laser-ablation multicollector ICPMS.

  2. Sample Return from Small Solar System Bodies

    NASA Astrophysics Data System (ADS)

    Orgel, L.; A'Hearn, M.; Bada, J.; Baross, J.; Chapman, C.; Drake, M.; Kerridge, J.; Race, M.; Sogin, M.; Squyres, S.

    With plans for multiple sample return missions in the next decade, NASA requested guidance from the National Research Council's SSB on how to treat samples returned from solar system bodies such as planetary satellites, asteroids and comets. A special Task Group assessed the potential for a living entity to be included in return samples from various bodies as well as the potential for large scale effects if such an entity were inadvertently introduced into the Earth's biosphere. The Group also assessed differences among solar system bodies, identified investigations that could reduce uncertainty about the bodies, and considered risks of returned samples compared to natural influx of material to the Earth in the form of interplanetary dust particles, meteorites and other small impactors. The final report (NRC, 1998) provides a decision making framework for future missions and makes recommendations on how to handle samples from different planetary satellites and primitive solar system bodies

  3. Apollo 15 impact melts, the age of Imbrium, and the Earth-Moon impact cataclysm

    NASA Technical Reports Server (NTRS)

    Ryder, Graham; Dalrymple, G. Brent

    1992-01-01

    The early impact history of the lunar surface is of critical importance in understanding the evolution of both the primitive Moon and the Earth, as well as the corresponding populations of planetesimals in Earth-crossing orbits. Two endmember hypotheses call for greatly dissimilar impact dynamics. One is a heavy continuous (declining) bombardment from about 4.5 Ga to 3.85 Ga. The other is that an intense but brief bombardment at about 3.85 +/- Ga was responsible for producing the visible lunar landforms and for the common 3.8-3.9 Ga ages of highland rocks. The Apennine Front, the main topographic ring of the Imbrium Basin, was sampled on the Apollo 15 mission. The Apollo 15 impact melts show a diversity of chemical compositions, indicating their origin in at least several different impact events. The few attempts at dating them have generally not produced convincing ages, despite their importance. Thus, we chose to investigate the ages of melt rock samples from the Apennine Front, because of their stratigraphic importance yet lack of previous age definition.

  4. Bolide impacts and the oxidation state of carbon in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1990-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean.

  5. Earth's early O2 cycle suppressed by primitive continents

    NASA Astrophysics Data System (ADS)

    Smit, Matthijs A.; Mezger, Klaus

    2017-10-01

    Free oxygen began to accumulate in Earth's surface environments between 3.0 and 2.4 billion years ago. Links between oxygenation and changes in the composition of continental crust during this time are suspected, but have been difficult to demonstrate. Here we constrain the average composition of the exposed continental crust since 3.7 billion years ago by compiling records of the Cr/U ratio of terrigenous sediments. The resulting record is consistent with a predominantly mafic crust prior to 3.0 billion years ago, followed by a 500- to 700-million-year transition to a crust of modern andesitic composition. Olivine and other Mg-rich minerals in the mafic Archaean crust formed serpentine minerals upon hydration, continuously releasing O2-scavenging agents such as dihydrogen, hydrogen sulfide and methane to the environment. Temporally, the decline in mafic crust capable of such process coincides with the first accumulation of O2 in the oceans, and subsequently the atmosphere. We therefore suggest that Earth's early O2 cycle was ultimately limited by the composition of the exposed upper crust, and remained underdeveloped until modern andesitic continents emerged.

  6. Ultraviolet photochemistry of cyanoacetylene: Application to Titan. [Abstract only

    NASA Technical Reports Server (NTRS)

    Clarke, D. W.; Ferris, J. P.

    1994-01-01

    Cyanoacetylene is believed to have had a central role in the formation of the pyrimidines essential for RNA synthesis leading to the origin of life on Earth. Cyanoacetylene has also been detected on Titan, Saturn's largest moon, and the only moon in the solar system that possesses a dense atmosphere. It is generally accepted that photochemistry plays a major role in the formation of the complex organic molecules and aerosols found in Titan's atmosphere. Because of its long wavelength absorption and low dissociation threshold it is expected that cyanoacetylene is an important part of these photochemical processes. Since cyanoacetylene would also have been subject to ultraviolet light in the atmosphere of early Earth, an investigation of cyanoacetylene photochemistry on Titan might lead to a better understanding of both the photochemical reactions occurring on primitive earth and the processes of chemical evolution as they occur in planetary atmospheres. The effects of irradiation wavelength, mixing with Titan's atmospheric gases, reducing the temperature and lowering cyanoacetylene partial pressures on product formation and polymer composition have been determined with the ultimate goal of understanding the chemical transformations taking place in Titan's atmosphere.

  7. Phosphorus: a Case for Mineral-Organic Reactions in Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Pasek, Matthew; Herschy, Barry; Kee, Terence P.

    2015-06-01

    The ubiquity of phosphorus (P) in modern biochemistry suggests that P may have participated in prebiotic chemistry prior to the emergence of life. Of the major biogenic elements, phosphorus alone lacks a substantial volatile phase and its ultimate source therefore had to have been a mineral. However, as most native P minerals are chemically un-reactive within the temperature-pressure-pH regimes of contemporary life, it begs the question as to whether the most primitive early living systems on earth had access to a more chemically reactive P-mineral inventory. The meteoritic mineral schreibersite has been proposed as an important source of reactive P on the early earth. The chemistry of schreibersite as a P source is summarized and reviewed here. Recent work has also shown that reduced oxidation state P compounds were present on the early earth; these compounds lend credence to the relevance of schreibersite as a prebiotic mineral. Ultimately, schreibersite will oxidize to phosphate, but several high-energy P intermediates may have provided the reactive material necessary for incorporating P into prebiotic molecules.

  8. The properties of an ion selective enzymatic asymmetric synthetic membrane.

    NASA Technical Reports Server (NTRS)

    Mitz, M. A.

    1971-01-01

    With the aid of a simple model membrane system, the properties of cellulose enzymes and of membrane selectivity and pump-like action are considered. The model is based on materials possibly present on a primitive earth, as well as on a membrane able to sort or concentrate these materials. An overview of the model membrane system is presented in terms of how it is constructed, what its properties are, and what to expect in performance characteristics. The model system is shown to be useful for studying the selective and in some cases accelerated transfer of nutrients and metabolites.

  9. Oxidoreductase mimic activity of natural pyrrhotite

    NASA Astrophysics Data System (ADS)

    Ibáñez de Aldecoa, A. L.; Velasco, F.; Menor-Salván, C.

    2012-09-01

    The theory of the chemo-autotrophic origin of life, also called the "iron-sulfur world hypothesis", proposes that the system FeS/FeS2 present in the primitive Earth crust gave the reductive power necessary to conduct the first protometabolic redox reactions. Some experimental studies demonstrated the redox activity of the FeS/SH2 system, but none of them used natural FeS. Here, we show that the iron sulfide mineral pyrrhotite is able to mimic the redox activity of the enzyme lactate dehydrogenase, which reversibly reduces the pyruvate in lactate, under prebiotic conditions with pyrite formation.

  10. ISSOL Meeting, Barcelona, Spain, 1993

    NASA Technical Reports Server (NTRS)

    Ferris, James P. (Editor)

    1995-01-01

    Topics in a conference on the origins of life and the evolution of the biosphere include the origin of chirality, prebiotic chemistry of small biomolecules, primitive polymer formation, RNA regulation and control. Early origins of life and the ecology of hydrothermal systems such as ocean floor vents and their simple organisms are examined. The process of mineral catalysis in Montmorillonite as a model for early metabolism is used. The origin of the genetic code and the development of branching in molecular structures of amino acids is described. Studies are reported of the effects of meteorite impact on early Earth life.

  11. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay - The effect of mononucleotide structure on phosphodiester bond formation

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; KAMALUDDIN

    1989-01-01

    The formation of oligomers from deoxynucleotides, catalyzed by Na(+)-montmorillonite, was investigated with special attention given to the effect of the monomer structure on the phosphodiester bond formation. It was found that adenine deoxynucleotides bind more strongly to montmorillonite than do the corresponding ribonucleotides and thymidine nucleotides. Tetramers of 2-prime-dpA were detected in the reaction of 2-prime-d-5-prime-AMP with a water-soluble carbodiimide EDAC in the presence of Na(+)-montmorillonite, illustrating the possible role of minerals in the formation of biopolymers on the primitive earth.

  12. Mars Life? - Microscopic Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the center of this electron microscope image of a small chip from a meteorite are several tiny structures that are possible microscopic fossils of primitive, bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.

  13. Spectral Characterization of Analog Samples in Anticipation of OSIRIS-REx's Arrival at Bennu

    NASA Technical Reports Server (NTRS)

    Donaldson Hanna, K. L.; Schrader, D. L.; Bowles, N. E.; Clark, B. E.; Cloutis, E. A.; Connolly, H. C., Jr.; Hamilton, V. E.; Keller, L. P.; Lauretta, D. S.; Lim, L. F.; hide

    2017-01-01

    NASA's Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission successfully launched on September 8th, 2016. During its rendezvous with near-Earth asteroid (101955) Bennu beginning in 2018, OSIRIS-REx will characterize the asteroid's physical, mineralogical, and chemical properties in an effort to globally map the properties of Bennu, a primitive carbonaceous asteroid, and choose a sampling location]. In preparation for these observations, analog samples were spectrally characterized across visible, near- and thermal-infrared wavelengths and were used in initial tests on mineral-phase-detection and abundance-determination software algorithms.

  14. Water and processes of degradation in the Martian landscape

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1973-01-01

    It is shown that erosion has been active on Mars so that many of the surface landforms are products of degradation. Unlike earth, erosion has not been a universal process, but one areally restricted and intermittently active so that a landscape is the product of one or two cycles of erosion and large areas of essentially undisturbed primitive terrain; running water has been the principal agent of degradation. Many features on Mars are most easily explained by assuming running surface water at some time in the past; for a few features, running water is the only possible explanation.

  15. Whole-Body Radiation Therapy, Systemic Chemotherapy, and High-Dose Chemotherapy Followed By Stem Cell Rescue in Treating Patients With Poor-Risk Ewing Sarcoma

    ClinicalTrials.gov

    2015-01-07

    Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Ewing Sarcoma of Bone; Extraosseous Ewing Sarcoma; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Untreated Childhood Supratentorial Primitive Neuroectodermal Tumor

  16. The elemental abundances (with uncertainties) of the most Earth-like planet

    NASA Astrophysics Data System (ADS)

    Wang, Haiyang S.; Lineweaver, Charles H.; Ireland, Trevor R.

    2018-01-01

    To first order, the Earth as well as other rocky planets in the Solar System and rocky exoplanets orbiting other stars, are refractory pieces of the stellar nebula out of which they formed. To estimate the chemical composition of rocky exoplanets based on their stellar hosts' elemental abundances, we need a better understanding of the devolatilization that produced the Earth. To quantify the chemical relationships between the Earth, the Sun and other bodies in the Solar System, the elemental abundances of the bulk Earth are required. The key to comparing Earth's composition with those of other objects is to have a determination of the bulk composition with an appropriate estimate of uncertainties. Here we present concordance estimates (with uncertainties) of the elemental abundances of the bulk Earth, which can be used in such studies. First we compile, combine and renormalize a large set of heterogeneous literature values of the primitive mantle (PM) and of the core. We then integrate standard radial density profiles of the Earth and renormalize them to the current best estimate for the mass of the Earth. Using estimates of the uncertainties in i) the density profiles, ii) the core-mantle boundary and iii) the inner core boundary, we employ standard error propagation to obtain a core mass fraction of 32.5 ± 0.3 wt%. Our bulk Earth abundances are the weighted sum of our concordance core abundances and concordance PM abundances. Unlike previous efforts, the uncertainty on the core mass fraction is propagated to the uncertainties on the bulk Earth elemental abundances. Our concordance estimates for the abundances of Mg, Sn, Br, B, Cd and Be are significantly lower than previous estimates of the bulk Earth. Our concordance estimates for the abundances of Na, K, Cl, Zn, Sr, F, Ga, Rb, Nb, Gd, Ta, He, Ar, and Kr are significantly higher. The uncertainties on our elemental abundances usefully calibrate the unresolved discrepancies between standard Earth models under various geochemical and geophysical assumptions.

  17. Generating Enhanced Natural Environments and Terrain for Interactive Combat Simulations (GENETICS)

    DTIC Science & Technology

    2005-09-01

    split to avoid T-junctions ........................................................................52 Figure 2-23 Longest edge bisection...database. This feature allows trainers the flexibility to use the same terrain repeatedly or use a new one each time, forcing trainees to avoid ...model are favored to create a good surface approximation. Cracks are avoided by projecting primitives and their respective textures onto multiple

  18. A systematic Monte Carlo simulation study of the primitive model planar electrical double layer over an extended range of concentrations, electrode charges, cation diameters and valences

    NASA Astrophysics Data System (ADS)

    Valiskó, Mónika; Kristóf, Tamás; Gillespie, Dirk; Boda, Dezső

    2018-02-01

    The purpose of this study is to provide data for the primitive model of the planar electrical double layer, where ions are modeled as charged hard spheres, the solvent as an implicit dielectric background (with dielectric constant ɛ = 78.5), and the electrode as a smooth, uniformly charged, hard wall. We use canonical and grand canonical Monte Carlo simulations to compute the concentration profiles, from which the electric field and electrostatic potential profiles are obtained by solving Poisson's equation. We report data for an extended range of parameters including 1:1, 2:1, and 3:1 electrolytes at concentrations c = 0.0001 - 1 M near electrodes carrying surface charges up to σ = ±0.5 Cm-2. The anions are monovalent with a fixed diameter d- = 3 Å, while the charge and diameter of cations are varied in the range z+ = 1, 2, 3 and d+ = 1.5, 3, 6, and 9 Å (the temperature is 298.15 K). We provide all the raw data in the supplementary material (ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-084802">supplementary material).

  19. Enhanced Photolysis of Nucleic Acid Monomers by Pyrophosphate in the Simulated Primitive Soup

    NASA Astrophysics Data System (ADS)

    Kongjiang, Wang; Zhifang, Chai; Xianming, Pan

    1999-05-01

    In our simulation of the photochemistry of the primitive soup, it was found that yield of chromophore loss of some nucleic acid bases, nucleosides and nucleotides [NA] undergoing ultraviolet radiation by medium pressure mercury lamp [MPML] was enhanced by pyrophosphate and triphosphate whether O2 is present or not. The yield of chromophore loss of guanosine, uracil, 5' CMP, and the derivatives of adenine and thymine was observed to rise with the increase of molar concentration of pyrophosphate in N2-saturated systems. In air-saturated samples, increase in yield of chromophore loss was observed when the concentration of pyrophosphate reaches 5×10-4 M, relative yield of chromophore loss (CLrel) coming to maximum in the range from 0.01 to 0.1 M, followed by a slight decline with the further increase of pyrophosphate concentration. The enhancement of photolysis of NA by pyrophosphate was due to the interaction between NA and pyrophosphate radicals photoionized by UV quanta of wavelength less than about 210 nm in the emission spectrum of a MPML. The relevance of this phenomenon to the origin of life has been discussed as well.

  20. Secure Heterogeneous Multicore Platform Through Diversity and Redundancy

    DTIC Science & Technology

    2012-03-31

    implementation detects synchronization in this way. If a programmer uses custom synchronization primitives , our approach assumes that such primitives ... synchronization primitives . Primitives such as barriers and spinlocks explicitly enforce a pre- determined ordering among threads. Therefore, the outcome of...these synchronization operations are deterministic. In the discussion, we will refer to these primitives as ordering synchronization operations. On the

  1. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.

    2014-03-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  2. Modeling crust-mantle evolution using radiogenic Sr, Nd, and Pb isotope systematics

    NASA Astrophysics Data System (ADS)

    Kumari, Seema; Paul, Debajyoti

    2015-04-01

    The present-day elemental and isotopic composition of Earth's terrestrial reservoirs can be used as geochemical constraints to study evolution of the crust-mantle system. A flexible open system evolutionary model of the Earth, comprising continental crust (CC), upper depleted mantle (UM) -source of mid-ocean ridge basalts (MORB), and lower mantle (LM) reservoir with a D" layer -source of ocean island basalts (OIB), and incorporating key radioactive isotope systematics (Rb-Sr, Sm-Nd, and U-Th-Pb), is solved numerically at 1 Ma time step for 4.55 Ga, the age of the Earth. The best possible solution is the one that produces the present-day concentrations as well as isotopic ratios in terrestrial reservoirs, compiled from published data. Different crustal growth scenarios (exponential, episodic, early and late growth), proposed in earlier studies, and its effect on the evolution of isotope systematics of terrestrial reservoirs is studied. Model simulations strongly favor a layered mantle structure satisfying majority of the isotopic constraints. In the successful model, which is similar to that proposed by Kellogg et al. (1999), the present-day UM comprises of 60% of mantle mass and extends to a depth 1600 km, whereas the LM becomes non-primitive and more enriched than the bulk silicate Earth, mainly due to addition of recycled crustal material. Modeling suggest that isotopic evolution of reservoirs is affected by the mode of crustal growth. Only two scenarios satisfied majority of the Rb-Sr and Sm-Nd isotopic constraints but failed to reproduce the present-day Pb-isotope systematics; exponential growth of crust (mean age, tc=2.3 Ga) and delayed and episodic growth (no growth for initial 900 Ma, tc=2.05 Ga) proposed by Patchett and Arndt (1986). However, assuming a slightly young Earth (4.45 Ga) better satisfies the Pb-isotope systematics. Although, the delayed crustal growth model satisfied Sr-Nd isotopic constraints, presence of early Hadean crust (4.03 and 4.4 Ga detrital zircon in Acasta gneiss and Yilgarn block, respectively), argues against it. One notable feature of successful models is an early depletion of incompatible elements (as well as Th/U ratio in the UM) by the initial 500 Ma, as a result of early formation of continental crust. Our results strongly favor exponential crustal growth and layered mantle structure. Patchett, P.J., Arndt, N.T. (1986), Earth and Planetary Science Letters, 78, 329-338. Kellogg, L.H., Hager, B.H., van der Hilst, R.D (1999), Science, 283, 1881-1884.

  3. Energy Balance Models of planetary climate as a tool for investigating the habitability of terrestrial planets and its evolution

    NASA Astrophysics Data System (ADS)

    Ferri, G.; Murante, G.; Provenzale, A.; Silva, L.; Vladilo, G.

    2012-04-01

    The study of the habitability and potential for life formation of terrestrial planets requires a considerable work of modelization owing to the limited amount of experimental constraints typical of this type of research. As an example, the paucity of experimental Archean data severely limits the study of the habitability of the primitive Earth at the epoch of the origin of life. In the case of exoplanets the amount of experimental information available is quite limited and the need for modelization strong. Here we focus on the modelization of the surface planetary temperature, a key thermodynamical quantity used to define the habitability. Energy Balance Models (EBM) of planetary climate provide a simple way to calculate the temperature-latitude profile of terrestrial planets with a small amount of computing resources. Thanks to this fact EBMs offer an excellent tool to exploring a wide range of parameter space and therefore testing the effects of variations of physical/chemical quantities unconstrained by experimental data. In particular, one can easily probe possible scenarios of habitability at different stages of planetary evolution. We have recently implemented one-dimensional EBMs featuring the possibility of probing variations of astronomical and geophysical parameters, such as stellar luminosity, orbital semi-major axis and eccentricity, obliquity of the planetary axis, planet rotational velocity, land/ocean surface fractions and thermal capacities, and latitudinal heat diffusion. After testing our models against results obtained in previous work (Williams & Kasting 1997, Icarus, 129, 254; Spiegel et al. 2008, ApJ, 681, 1609), we introduced a novel parametrization of the diffusion coefficient as a function of the stellar zenith distance. Our models have been validated using the mean temperature-latitude profiles of the present Earth and its seasonal variations; the global albedo has been used as an additional constraint. In this work we present specific examples of application of our EBMs to studies of habitability of terrestrial planets. In the first part we focus on the primitive Earth, taking into account the effects of the higher speed of Earth rotation and reduced solar luminosity at the epoch of life formation. In the second part we provide examples of habitability studies of planetary systems discovered in surveys of exoplanets. These examples allow us to critically discuss the concept of circumstellar habitable zone.

  4. Prediction of Rare Transitions in Planetary Atmosphere Dynamics Between Attractors with Different Number of Zonal Jets

    NASA Astrophysics Data System (ADS)

    Bouchet, F.; Laurie, J.; Zaboronski, O.

    2012-12-01

    We describe transitions between attractors with either one, two or more zonal jets in models of turbulent atmosphere dynamics. Those transitions are extremely rare, and occur over times scales of centuries or millennia. They are extremely hard to observe in direct numerical simulations, because they require on one hand an extremely good resolution in order to simulate accurately the turbulence and on the other hand simulations performed over an extremely long time. Those conditions are usually not met together in any realistic models. However many examples of transitions between turbulent attractors in geophysical flows are known to exist (paths of the Kuroshio, Earth's magnetic field reversal, atmospheric flows, and so on). Their study through numerical computations is inaccessible using conventional means. We present an alternative approach, based on instanton theory and large deviations. Instanton theory provides a way to compute (both numerically and theoretically) extremely rare transitions between turbulent attractors. This tool, developed in field theory, and justified in some cases through the large deviation theory in mathematics, can be applied to models of turbulent atmosphere dynamics. It provides both new theoretical insights and new type of numerical algorithms. Those algorithms can predict transition histories and transition rates using numerical simulations run over only hundreds of typical model dynamical time, which is several order of magnitude lower than the typical transition time. We illustrate the power of those tools in the framework of quasi-geostrophic models. We show regimes where two or more attractors coexist. Those attractors corresponds to turbulent flows dominated by either one or more zonal jets similar to midlatitude atmosphere jets. Among the trajectories connecting two non-equilibrium attractors, we determine the most probable ones. Moreover, we also determine the transition rates, which are several of magnitude larger than a typical time determined from the jet structure. We discuss the medium-term generalization of those results to models with more complexity, like primitive equations or GCMs.

  5. Stochastic Ocean Predictions with Dynamically-Orthogonal Primitive Equations

    NASA Astrophysics Data System (ADS)

    Subramani, D. N.; Haley, P., Jr.; Lermusiaux, P. F. J.

    2017-12-01

    The coastal ocean is a prime example of multiscale nonlinear fluid dynamics. Ocean fields in such regions are complex and intermittent with unstationary heterogeneous statistics. Due to the limited measurements, there are multiple sources of uncertainties, including the initial conditions, boundary conditions, forcing, parameters, and even the model parameterizations and equations themselves. For efficient and rigorous quantification and prediction of these uncertainities, the stochastic Dynamically Orthogonal (DO) PDEs for a primitive equation ocean modeling system with a nonlinear free-surface are derived and numerical schemes for their space-time integration are obtained. Detailed numerical studies with idealized-to-realistic regional ocean dynamics are completed. These include consistency checks for the numerical schemes and comparisons with ensemble realizations. As an illustrative example, we simulate the 4-d multiscale uncertainty in the Middle Atlantic/New York Bight region during the months of Jan to Mar 2017. To provide intitial conditions for the uncertainty subspace, uncertainties in the region were objectively analyzed using historical data. The DO primitive equations were subsequently integrated in space and time. The probability distribution function (pdf) of the ocean fields is compared to in-situ, remote sensing, and opportunity data collected during the coincident POSYDON experiment. Results show that our probabilistic predictions had skill and are 3- to 4- orders of magnitude faster than classic ensemble schemes.

  6. QCAPUF: QCA-based physically unclonable function as a hardware security primitive

    NASA Astrophysics Data System (ADS)

    Abutaleb, M. M.

    2018-04-01

    Physically unclonable functions (PUFs) are increasingly used as innovative security primitives to provide the hardware authentication and identification as well as the secret key generation based on unique and random variations in identically fabricated devices. Security and low power have appeared to become two crucial necessities to modern designs. As an emerging nanoelectronic technology, a quantum-dot cellular automata (QCA) can achieve ultra-low power consumption as well as an extremely small area for implementing digital designs. However, there are various classes of permanent defects that can happen during the manufacture of QCA devices. The recent extensive research has been focused on how to eliminate errors in QCA structures resulting from fabrication variances. By a completely different vision, to turn this disadvantage into an advantage, this paper presents a novel QCA-based PUF (QCAPUF) architecture to exploit the unique physical characteristics of fabricated QCA cells in order to produce different hardware fingerprint instances. This architecture is composed of proposed logic and interconnect blocks that have critical vulnerabilities and perform unexpected logical operations. The behaviour of QCAPUF is thoroughly analysed through physical relations and simulations. Results confirm that the proposed QCAPUF has state of the art PUF characteristics in the QCA technology. This paper will serve as a basis for further research into QCA-based hardware security primitives and applications.

  7. Synthesis of Large Molecules in Cometary Ice Analogs: Physical Properties Related to Self-Assembly Processes

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Sandford, Scott A.; Deamer, David W.; Gillette, J. Seb; Zare, Richard N.; Allamandola, Louis J. (Technical Monitor)

    1999-01-01

    The combination of realistic laboratory simulations and infrared observations have revolutionized our understanding of interstellar dust and ice-the main component of comets. Since comets and carbonaceous micrometeorites may have been important sources of volatiles and carbon compounds on the early Earth, their organic composition may be related to the origin of life. Ices on grains in molecular clouds contain a variety of simple molecules. The D/H ratios of the comets Hale-Bopp and Hyakutake are consistent with a primarily interstellar ice mixture. Within the cloud and especially in the presolar nebula through the early solar system, these icy grains would have been photoprocessed by the ultraviolet producing more complex species such as hexamethylenetetramine, polyoxymethylenes, and simple keones. We reported at the 1999 Bioastronomy meeting laboratory simulations studied to identify the types of molecules which could have been generated in pre-cometary ices. Experiments were conducted by forming a realistic interstellar mixed-molecular ice (H2O, CH3OH, NH3 and CO) at approximately 10 K under high vacuum irradiated with UV light from a hydrogen plasma lamp. The gas mixture was typically 100:50:1:1, however when different ratios were used material with similar characteristics was still produced. The residue that remained after warming to room temperature was analyzed by HPLC, and by several mass spectrometric methods. This material contains a rich mixture of complex compounds with mass spectral profiles resembling those found in IDPs and meteorites. Surface tension measurements show that an amphiphilic component is also present. These species do not appear in various controls or in unphotolyzed samples. Residues from the simulations were also dispersed in aqueous media for microscopy. The organic material forms 10-40 gm diameter droplets that fluoresce at 300-450 nm under UV excitation. These droplets have a morphology and internal structure which appear strikingly similar to those produced by extracts of the Murchison meteorite. Together, these results suggest a link between organic material photochemically synthesized on the cold grains in dense, interstellar molecular clouds and compounds that may have contributed to the organic inventory of the primitive Earth. For example, the amphiphilic properties of such compounds permit self-assembly into the membranous boundary structures that required for the first forms of cellular life.

  8. Experimentally Tracing the Key Steps in the Origin of Life: The Aromatic World

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; Rasmussen, Steen; Cleaves, James; Chen, Liaohai

    2006-06-01

    Life is generally believed to emerge on Earth, to be at least functionally similar to life as we know it today, and to be much simpler than modern life. Although minimal life is notoriously difficult to define, a molecular system can be considered alive if it turns resources into building blocks, replicates, and evolves. Primitive life may have consisted of a compartmentalized genetic system coupled with an energy-harvesting mechanism. How prebiotic building blocks self-assemble and transform themselves into a minimal living system can be broken into two questions: (1) How can prebiotic building blocks form containers, metabolic networks, and informational polymers? (2) How can these three components cooperatively organize to form a protocell that satisfies the minimal requirements for a living system? The functional integration of these components is a difficult puzzle that requires cooperation among all the aspects of protocell assembly: starting material, reaction mechanisms, thermodynamics, and the integration of the inheritance, metabolism, and container functionalities. Protocells may have been self-assembled from components different from those used in modern biochemistry. We propose that assemblies based on aromatic hydrocarbons may have been the most abundant flexible and stable organic materials on the primitive Earth and discuss their possible integration into a minimal life form. In this paper we attempt to combine current knowledge of the composition of prebiotic organic material of extraterrestrial and terrestrial origin, and put these in the context of possible prebiotic scenarios. We also describe laboratory experiments that might help clarify the transition from nonliving to living matter using aromatic material. This paper presents an interdisciplinary approach to interface state of the art knowledge in astrochemistry, prebiotic chemistry, and artificial life research.

  9. Is the Sun Lighter than the Earth? Isotopic CO in the Photosphere, Viewed through the Lens of Three-dimensional Spectrum Synthesis

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.; Lyons, J. R.; Ludwig, H.-G.; Caffau, E.; Wedemeyer-Böhm, S.

    2013-03-01

    We consider the formation of solar infrared (2-6 μm) rovibrational bands of carbon monoxide (CO) in CO5BOLD 3D convection models, with the aim of refining abundances of the heavy isotopes of carbon (13C) and oxygen (18O, 17O), to compare with direct capture measurements of solar wind light ions by the Genesis Discovery Mission. We find that previous, mainly 1D, analyses were systematically biased toward lower isotopic ratios (e.g., R 23 ≡ 12C/13C), suggesting an isotopically "heavy" Sun contrary to accepted fractionation processes that were thought to have operated in the primitive solar nebula. The new 3D ratios for 13C and 18O are R 23 = 91.4 ± 1.3 (R ⊕ = 89.2) and R 68 = 511 ± 10 (R ⊕ = 499), where the uncertainties are 1σ and "optimistic." We also obtained R 67 = 2738 ± 118 (R ⊕ = 2632), but we caution that the observed 12C17O features are extremely weak. The new solar ratios for the oxygen isotopes fall between the terrestrial values and those reported by Genesis (R 68 = 530, R 67 = 2798), although including both within 2σ error flags, and go in the direction favoring recent theories for the oxygen isotope composition of Ca-Al inclusions in primitive meteorites. While not a major focus of this work, we derive an oxygen abundance, epsilonO ~ 603 ± 9 ppm (relative to hydrogen; log epsilon ~ 8.78 on the H = 12 scale). The fact that the Sun is likely lighter than the Earth, isotopically speaking, removes the necessity of invoking exotic fractionation processes during the early construction of the inner solar system.

  10. The relative influence of H2O and CO2 on the primitive surface conditions and evolution of rocky planets

    NASA Astrophysics Data System (ADS)

    Salvador, A.; Massol, H.; Davaille, A.; Marcq, E.; Sarda, P.; Chassefière, E.

    2017-07-01

    How the volatile content influences the primordial surface conditions of terrestrial planets and, thus, their future geodynamic evolution is an important question to answer. We simulate the secular convective cooling of a 1-D magma ocean (MO) in interaction with its outgassed atmosphere. The heat transfer in the atmosphere is computed either using the grey approximation or using a k-correlated method. We vary the initial CO2 and H2O contents (respectively from 0.1 × 10-2 to 14 × 10-2 wt % and from 0.03 to 1.4 times the Earth Ocean current mass) and the solar distance—from 0.63 to 1.30 AU. A first rapid cooling stage, where efficient MO cooling and degassing take place, producing the atmosphere, is followed by a second quasi steady state where the heat flux balance is dominated by the solar flux. The end of the rapid cooling stage (ERCS) is reached when the mantle heat flux becomes negligible compared to the absorbed solar flux. The resulting surface conditions at ERCS, including water ocean's formation, strongly depend both on the initial volatile content and solar distance D. For D > DC, the "critical distance," the volatile content controls water condensation and a new scaling law is derived for the water condensation limit. Although today's Venus is located beyond DC due to its high albedo, its high CO2/H2O ratio prevents any water ocean formation. Depending on the formation time of its cloud cover and resulting albedo, only 0.3 Earth ocean mass might be sufficient to form a water ocean on early Venus.

  11. Primitive-path statistics of entangled polymers: mapping multi-chain simulations onto single-chain mean-field models

    NASA Astrophysics Data System (ADS)

    Steenbakkers, Rudi J. A.; Tzoumanekas, Christos; Li, Ying; Liu, Wing Kam; Kröger, Martin; Schieber, Jay D.

    2014-01-01

    We present a method to map the full equilibrium distribution of the primitive-path (PP) length, obtained from multi-chain simulations of polymer melts, onto a single-chain mean-field ‘target’ model. Most previous works used the Doi-Edwards tube model as a target. However, the average number of monomers per PP segment, obtained from multi-chain PP networks, has consistently shown a discrepancy of a factor of two with respect to tube-model estimates. Part of the problem is that the tube model neglects fluctuations in the lengths of PP segments, the number of entanglements per chain and the distribution of monomers among PP segments, while all these fluctuations are observed in multi-chain simulations. Here we use a recently proposed slip-link model, which includes fluctuations in all these variables as well as in the spatial positions of the entanglements. This turns out to be essential to obtain qualitative and quantitative agreement with the equilibrium PP-length distribution obtained from multi-chain simulations. By fitting this distribution, we are able to determine two of the three parameters of the model, which govern its equilibrium properties. This mapping is executed for four different linear polymers and for different molecular weights. The two parameters are found to depend on chemistry, but not on molecular weight. The model predicts a constant plateau modulus minus a correction inversely proportional to molecular weight. The value for well-entangled chains, with the parameters determined ab initio, lies in the range of experimental data for the materials investigated.

  12. The Search for Extraterrestrial Life

    NASA Astrophysics Data System (ADS)

    Peter, Ulmschneider

    Looking at the nature, origin, and evolution of life on Earth is one way of assessing whether extraterrestrial life exists on Earth-like planets elsewhere (see Chaps. 5 and 6). A more direct approach is to search for favorable conditions and traces of life on other celestial bodies, both in the solar system and beyond. Clearly, there is little chance of encountering nonhuman intelligent beings in the solar system. But there could well be primitive life on Mars, particularly as in the early history of the solar system the conditions on Mars were quite similar to those on Earth. In addition, surprisingly favorable conditions for life once existed on the moons of Jupiter. Yet even if extraterrestrial life is not encountered in forthcoming space missions, it would be of utmost importance to recover fossils of past organisms as such traces would greatly contribute to our basic understanding of the formation of life. In addition to the planned missions to Mars and Europa, there are extensive efforts to search for life outside the solar system. Rapid advances in the detection of extrasolar planets, outlined in Chap. 3, are expected to lead to the discovery of Earth-like planets in the near future. But how can we detect life on these distant bodies?

  13. `Reverse Chemical Evolution': A New Method to Search for Thermally Stable Biopolymers

    NASA Astrophysics Data System (ADS)

    Mitsuzawa, Shigenobu; Yukawa, Tetsuyuki

    2003-04-01

    The primitive sea on Earth may have had high-temperature and high-pressure conditions similar to those in present-day hydrothermal environments. If life originated in the hot sea, thermal stability of the constituent molecules would have been necessary. Thus far, however, it has been reported that biopolymers hydrolyze too rapidly to support life at temperatures of more than 200 °C. We herein propose a novel approach, called reverse chemical evolution, to search for biopolymers notably more stable against thermal decomposition than previously reported. The essence of the approach is that hydrolysis of a protein or functional RNA (m-, t-, r-RNA) at high temperature and high pressure simulating the ancient sea environment may yield thermally stable peptides or RNAs at higher concentrations than other peptides or RNAs. An experimental test hydrolyzing bovine ribonuclease A in aqueous solution at 205 °C and 25 MPa yielded three prominently stable molecules weighing 859, 1030 and 695 Da. They are thermally some tens or hundreds times more stable than a polyglycine of comparable mass. Sequence analyses of the 859- and 1030-Da molecules revealed that they are a heptapeptide and its homologue, respectively, elongated by two amino acids at the N-terminal region, originally embedded as residues 112-120 in the protein. They consist mainly of hydrophobic amino acids.

  14. Solar Wind Plasma Interaction with Asteroid 16 Psyche: Implication for Formation Theories

    NASA Astrophysics Data System (ADS)

    Fatemi, Shahab; Poppe, Andrew R.

    2018-01-01

    The asteroid 16 Psyche is a primitive metal-rich asteroid that has not yet been visited by spacecraft. Based on remote observations, Psyche is most likely composed of iron and nickel metal; however, the history of its formation and solidification is still unknown. If Psyche is a remnant core of a differentiated planetesimal exposed by collisions, it opens a unique window toward understanding the cores of the terrestrial bodies, including the Earth and Mercury. If not, it is perhaps a reaccreted rubble pile that has never melted. In the former case, Psyche may have a remanent, dipolar magnetic field; in the latter case, Psyche may have no intrinsic field, but nevertheless would be a conductive object in the solar wind. We use Advanced Modeling Infrastructure in Space Simulation (AMITIS), a three-dimensional GPU-based hybrid model of plasma that self-consistently couples the interior electromagnetic response of Psyche (i.e., magnetic diffusion) to its ambient plasma environment in order to quantify the different interactions under these two cases. The model results provide estimates for the electromagnetic environment of Psyche, showing that the magnetized case and the conductive case present very different signatures in the solar wind. These results have implications for an accurate interpretation of magnetic field observations by NASA's Discovery mission (Psyche mission) to the asteroid 16 Psyche.

  15. Stardust Interstellar Preliminary Examination (ISPE)

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajt, S.; Basset, R.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker F.; Bridges, J.

    2009-01-01

    In January 2006 the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, C omet 81P/Wild2, and a collector dedicated to the capture and return o f contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the co llecting area) and aluminum foils. The Stardust Interstellar Dust Col lector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2-) day during two periods before the co metary encounter. The Stardust Interstellar Preliminary Examination ( ISPE) is a three-year effort to characterize the collection using no ndestructive techniques. The ISPE consists of six interdependent proj ects: (1) Candidate identification through automated digital microsco py and a massively distributed, calibrated search (2) Candidate extr action and photodocumentation (3) Characterization of candidates thro ugh synchrotronbased FourierTranform Infrared Spectroscopy (FTIR), S canning XRay Fluoresence Microscopy (SXRF), and Scanning Transmission Xray Microscopy (STXM) (4) Search for and analysis of craters in f oils through FESEM scanning, Auger Spectroscopy and synchrotronbased Photoemission Electron Microscopy (PEEM) (5) Modeling of interstell ar dust transport in the solar system (6) Laboratory simulations of h ypervelocity dust impacts into the collecting media

  16. Dynamic Primitives of Motor Behavior

    PubMed Central

    Hogan, Neville; Sternad, Dagmar

    2013-01-01

    We present in outline a theory of sensorimotor control based on dynamic primitives, which we define as attractors. To account for the broad class of human interactive behaviors—especially tool use—we propose three distinct primitives: submovements, oscillations and mechanical impedances, the latter necessary for interaction with objects. Due to fundamental features of the neuromuscular system, most notably its slow response, we argue that encoding in terms of parameterized primitives may be an essential simplification required for learning, performance, and retention of complex skills. Primitives may simultaneously and sequentially be combined to produce observable forces and motions. This may be achieved by defining a virtual trajectory composed of submovements and/or oscillations interacting with impedances. Identifying primitives requires care: in principle, overlapping submovements would be sufficient to compose all observed movements but biological evidence shows that oscillations are a distinct primitive. Conversely, we suggest that kinematic synergies, frequently discussed as primitives of complex actions, may be an emergent consequence of neuromuscular impedance. To illustrate how these dynamic primitives may account for complex actions, we briefly review three types of interactive behaviors: constrained motion, impact tasks, and manipulation of dynamic objects. PMID:23124919

  17. Simulations of the 2.5D inviscid primitive equations in a limited domain

    NASA Astrophysics Data System (ADS)

    Chen, Qingshan; Temam, Roger; Tribbia, Joseph J.

    2008-12-01

    The primitive equations (PEs) of the atmosphere and the oceans without viscosity are considered. These equations are not well-posed for any set of local boundary conditions. In space dimension 2.5 a set of nonlocal boundary conditions has been proposed in Chen et al. [Q. Chen, J. Laminie, A. Rousseau, R. Temam, J. Tribbia, A 2.5D Model for the equations of the ocean and the atmosphere, Anal. Appl. 5(3) (2007) 199-229]. The present article is aimed at testing the validity of these boundary conditions with physically relevant data. The issues tested are the well-posedness in the nonlinear case and the computational efficiency of the boundary conditions for limited area models [T.T. Warner, R.A. Peterson, R.E. Treadon, A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction, Bull. Amer. Meteor. Soc. 78(11) (1997) 2599-2617].

  18. Application of the Probabilistic Dynamic Synthesis Method to the Analysis of a Realistic Structure

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ferri, Aldo A.

    1998-01-01

    The Probabilistic Dynamic Synthesis method is a new technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. A previous work verified the feasibility of the PDS method on a simple seven degree-of-freedom spring-mass system. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.

  19. Application of the Probabilistic Dynamic Synthesis Method to Realistic Structures

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Ferri, Aldo A.

    1998-01-01

    The Probabilistic Dynamic Synthesis method is a technique for obtaining the statistics of a desired response engineering quantity for a structure with non-deterministic parameters. The method uses measured data from modal testing of the structure as the input random variables, rather than more "primitive" quantities like geometry or material variation. This modal information is much more comprehensive and easily measured than the "primitive" information. The probabilistic analysis is carried out using either response surface reliability methods or Monte Carlo simulation. In previous work, the feasibility of the PDS method applied to a simple seven degree-of-freedom spring-mass system was verified. In this paper, extensive issues involved with applying the method to a realistic three-substructure system are examined, and free and forced response analyses are performed. The results from using the method are promising, especially when the lack of alternatives for obtaining quantitative output for probabilistic structures is considered.

  20. Ion Irradiation Experiments on the Murchison CM2 Carbonaceous Chondrite: Simulating Space Weathering of Primitive Asteroids

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Christoffersen, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Remote sensing observations show that space weathering processes affect all airless bodies in the Solar System to some degree. Sample analyses and lab experiments provide insights into the chemical, spectroscopic and mineralogic effects of space weathering and aid in the interpretation of remote- sensing data. For example, analyses of particles returned from the S-type asteroid Itokawa by the Hayabusa mission revealed that space-weathering on that body was dominated by interactions with the solar wind acting on LL ordinary chondrite-like materials [1, 2]. Understanding and predicting how the surface regoliths of primitive carbonaceous asteroids respond to space weathering processes is important for future sample return missions (Hayabusa 2 and OSIRIS-REx) that are targeting objects of this type. Here, we report the results of our preliminary ion irradiation experiments on a hydrated carbonaceous chondrite with emphasis on microstructural and infrared spectral changes.

  1. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  2. Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Xiong, Xue; Yang, Ming; Liu, Changlin; Li, Xiaobo; Tang, Dawei

    2017-07-01

    The thermal conductivity of cross-linked bulk polyethylene is studied using molecular dynamics simulation. The atomic structure of the cross-linked polyethylene (PEX) is generated through simulated bond formation using LAMMPS. The thermal conductivity of PEX is studied with different degrees of crosslinking, chain length, and tensile strain. Generally, the thermal conductivity increases with the increasing degree of crosslinking. When the length of the primitive chain increases, the thermal conductivity increases linearly. When the polymer is stretched along one direction, the thermal conductivity increases in the stretched direction and decreases in the direction perpendicular to it. However, the thermal conductivity varies slightly when the polymer is stretched in three directions simultaneously.

  3. Shock synthesis of amino acids in simulated primitive environments.

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Bar-Nun, N.; Bauer, S. H.; Sagan, C.

    1971-01-01

    A single pulse shock tube of a uniform bore was used in the experiments. The reaction mixture consisted of 3.3 per cent methane, 11 per cent ethane, and 5.6 per cent ammonia, diluted with ultra-pure argon. The formation of glycine, alanine, valine, and leucine under conditions of shock heating was observed. Thermodynamic relations are discussed together with questions of conversion efficiency.

  4. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nakamura-Messenger, Keiko

    2015-01-01

    Interplanetary dust particles (IDPs) collected in the Earth's stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (less than um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission.

  5. Organic Analysis in the Miller Range 090657 CR2 Chondrite: Part 2 Amino Acid Analyses

    NASA Technical Reports Server (NTRS)

    Burton, A. S.; Cao, T.; Nakamura-Messenger, K.; Berger, E. L.; Messenger, S.; Clemett, S. J.; Aponte, J. C.; Elsila, J. E.

    2016-01-01

    Primitive carbonaceous chondrites contain a wide variety of organic material, ranging from soluble discrete molecules to insoluble, unstructured kerogen-like components, as well as structured nano-globules of macromolecular carbon. The relationship between the soluble organic molecules, macromolecular organic material, and host minerals are poorly understood. Due to the differences in extractability of soluble and insoluble organic materials, the analysis methods for each differ and are often performed independently. The combination of soluble and insoluble analyses, when performed concurrently, can provide a wider understanding of spatial distribution, and elemental, structural and isotopic composition of organic material in primitive meteorites. Using macroscale extraction and analysis techniques in combination with in situ microscale observation, we have been studying both insoluble and soluble organic material in the primitive CR2 chondrite Miller Range (MIL) 090657. In accompanying abstracts (Cao et al. and Messenger et al.) we discuss insoluble organic material in the samples. By performing the consortium studies, we aim to improve our understanding of the relationship between the meteorite minerals and the soluble and insoluble organic phases and to delineate which species formed within the meteorite and those that formed in nebular or presolar environments. In this abstract, we present the results of amino acid analyses of MIL 090657 by ultra performance liquid chromatography with fluorescence detection and quadrupole-time of flight mass spectrometry. Amino acids are of interest because they are essential to life on Earth, and because they are present in sufficient structural, enantiomeric and isotopic diversity to allow insights into early solar system chemical processes. Furthermore, these are among the most isotopically anomalous species, yet at least some fraction are thought to have formed by aqueously-mediated processes during parent body alteration.

  6. Impact of modeled microgravity on migration, differentiation, and cell cycle control of primitive human hematopoietic progenitor cells.

    PubMed

    Plett, P Artur; Abonour, Rafat; Frankovitz, Stacy M; Orschell, Christie M

    2004-08-01

    Migration, proliferation, and differentiation of bone marrow (BM) hematopoietic stem cells (HSC) are important factors in maintaining hematopoietic homeostasis. Homeostatic control of erythrocytes and lymphocytes is perturbed in humans exposed to microgravity (micro-g), resulting in space flight-induced anemia and immunosuppression. We sought to determine whether any of these anomalies can be explained by micro-g-induced changes in migration, proliferation, and differentiation of human BM CD34+ cells, and whether such changes can begin to explain any of the shifts in hematopoietic homeostasis observed in astronauts. BM CD34+ cells were cultured in modeled micro-g (mmicro-g) using NASA's rotating wall vessels (RWV), or in control cultures at earth gravity for 2 to 18 days. Cells were harvested at different times and CD34+ cells assessed for migration potential, cell-cycle kinetics and regulatory proteins, and maturation status. Culture of BM CD34+ cells in RWV for 2 to 3 days resulted in a significant reduction of stromal cell-derived factor 1 (SDF-1alpha)-directed migration, which correlated with decreased expression of F-actin. Modeled micro-g induced alterations in cell-cycle kinetics that were characterized by prolonged S phase and reduced cyclin A expression. Differentiation of primitive CD34+ cells cultured for 14 to 18 days in RWV favored myeloid cell development at the expense of erythroid development, which was significantly reduced compared to controls. These results illustrate that mmicro-g significantly inhibits the migration potential, cell-cycle progression, and differentiation patterns of primitive BM CD34+ cells, which may contribute to some of the hematologic abnormalities observed in humans during space flight.

  7. Investigating the Geological History of Asteroid 101955 Bennu Through Remote Sensing and Returned Sample Analyses

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.

    2014-01-01

    The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.

  8. Ultraviolet to near-infrared spectroscopy of the potentially hazardous, low delta-V asteroid (175706) 1996 FG3. Backup target of the sample return mission MarcoPolo-R

    NASA Astrophysics Data System (ADS)

    Perna, D.; Dotto, E.; Barucci, M. A.; Fornasier, S.; Alvarez-Candal, A.; Gourgeot, F.; Brucato, J. R.; Rossi, A.

    2013-07-01

    Context. Primitive near-Earth asteroids (NEAs) are important subjects of study for current planetary research. Their investigation can provide crucial information on topics such as the formation of the solar system, the emergence of life, and the mitigation of the risk of asteroid impact. Sample return missions from primitive asteroids have been scheduled or are being studied by space agencies, including the MarcoPolo-R mission selected for the assessment study phase of ESA M3 missions. Aims: We want to improve our knowledge of the surface composition and physical nature of the potentially hazardous, low delta-V asteroid (175706) 1996 FG3, backup target of MarcoPolo-R. This intriguing object shows an as-yet unexplained spectral variability. Methods: We performed spectroscopic observations of 1996 FG3 using the visible spectrograph DOLORES at the Telescopio Nazionale Galileo (TNG), and the UV-to-NIR X-Shooter instrument at the ESO Very Large Telescope (VLT). Results: We find featureless spectra and we classify 1996 FG3 as a primitive Xc-type in the Bus-DeMeo taxonomy. Based on literature comparison, we confirm the spectral variability of this object at near-infrared (NIR) wavelengths, and find that spectral variations exist also for the visible spectral region. Phase reddening cannot explain such variations. Obtained with the same observational conditions for the whole 0.3-2.2 μm range, our X-Shooter spectrum allowed a proper comparison with the RELAB meteorite database. A very good fit is obtained with the very primitive C2 Tagish Lake carbonaceous chondrite (pressed powder), confirming 1996 FG3 as a suitable target for a sample return mission from primitive NEAs. Conclusions: We hypothesize a compacted/cemented surface for 1996 FG3, like that observed by the Hayabusa mission on (25143) Itokawa, with the possible presence of regions showing different degrees of surface roughness. This variegation could be related to the binary nature of 1996 FG3, but to check this hypothesis further observations are necessary. Based on observations carried out at the European Southern Observatory (ESO), Chile (programme 088.C-0695), and with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias (programme AOT25/TAC13).

  9. Interaction, at Ambient Temperature and 80 °C, between Minerals and Artificial Seawaters Resembling the Present Ocean Composition and that of 4.0 Billion Years Ago.

    PubMed

    Carneiro, Cristine E A; Stabile, Antonio C; Gomes, Frederico P; da Costa, Antonio C S; Zaia, Cássia T B V; Zaia, Dimas A M

    2017-09-01

    Probably one of the most important roles played by minerals in the origin of life on Earth was to pre-concentrate biomolecules from the prebiotic seas. There are other ways to pre concentrate biomolecules such as wetting/drying cycles and freezing/sublimation. However, adsorption is most important. If the pre-concentration did not occur-because of degradation of the minerals-other roles played by them such as protection against degradation, formation of polymers, or even as primitive cell walls would be seriously compromised. We studied the interaction of two artificial seawaters with kaolinite, bentonite, montmorillonite, goethite, ferrihydrite and quartz. One seawater has a major cation and anion composition similar to that of the oceans of the Earth 4.0 billion years ago (ASW 4.0 Ga). In the other, the major cations and anions are an average of the compositions of the seawaters of today (ASWT). When ASWT, which is rich in Na + and Cl - , interacted with bentonite and montmorrilonite structural collapse occurred on the 001 plane. However, ASW 4.0 Ga, which is rich in Mg 2+ and SO 4 2- , did not induce this behavior. When ASW 4.0 Ga was reacted with the minerals for 24 h at room temperature and 80 °C, the release of Si and Al to the fluid was below 1 % of the amount in the minerals-meaning that dissolution of the minerals did not occur. In general, minerals adsorbed Mg 2+ and K + from the ASW 4.0 Ga and these cations could be used for the formation of polymers. Also, when the minerals were mixed with ASW 4.0 Ga at 80 °C and ASWT at room temperature or 80 °C it caused the precipitation of CaSO 4 ∙2H 2 O and halite, respectively. Finally, further experiments (adsorption, formation of polymers, protection of molecules against degradation, primitive cell wall formation) performed under the conditions described in this paper will probably be more representative of what happened on the prebiotic Earth.

  10. Interaction, at Ambient Temperature and 80 °C, between Minerals and Artificial Seawaters Resembling the Present Ocean Composition and that of 4.0 Billion Years Ago

    NASA Astrophysics Data System (ADS)

    Carneiro, Cristine E. A.; Stabile, Antonio C.; Gomes, Frederico P.; da Costa, Antonio C. S.; Zaia, Cássia T. B. V.; Zaia, Dimas A. M.

    2017-09-01

    Probably one of the most important roles played by minerals in the origin of life on Earth was to pre-concentrate biomolecules from the prebiotic seas. There are other ways to pre concentrate biomolecules such as wetting/drying cycles and freezing/sublimation. However, adsorption is most important. If the pre-concentration did not occur—because of degradation of the minerals—other roles played by them such as protection against degradation, formation of polymers, or even as primitive cell walls would be seriously compromised. We studied the interaction of two artificial seawaters with kaolinite, bentonite, montmorillonite, goethite, ferrihydrite and quartz. One seawater has a major cation and anion composition similar to that of the oceans of the Earth 4.0 billion years ago (ASW 4.0 Ga). In the other, the major cations and anions are an average of the compositions of the seawaters of today (ASWT). When ASWT, which is rich in Na+ and Cl-, interacted with bentonite and montmorrilonite structural collapse occurred on the 001 plane. However, ASW 4.0 Ga, which is rich in Mg2+ and SO4 2-, did not induce this behavior. When ASW 4.0 Ga was reacted with the minerals for 24 h at room temperature and 80 °C, the release of Si and Al to the fluid was below 1 % of the amount in the minerals—meaning that dissolution of the minerals did not occur. In general, minerals adsorbed Mg2+ and K+ from the ASW 4.0 Ga and these cations could be used for the formation of polymers. Also, when the minerals were mixed with ASW 4.0 Ga at 80 °C and ASWT at room temperature or 80 °C it caused the precipitation of CaSO4•2H2O and halite, respectively. Finally, further experiments (adsorption, formation of polymers, protection of molecules against degradation, primitive cell wall formation) performed under the conditions described in this paper will probably be more representative of what happened on the prebiotic Earth.

  11. Electro-optical co-simulation for integrated CMOS photonic circuits with VerilogA.

    PubMed

    Sorace-Agaskar, Cheryl; Leu, Jonathan; Watts, Michael R; Stojanovic, Vladimir

    2015-10-19

    We present a Cadence toolkit library written in VerilogA for simulation of electro-optical systems. We have identified and described a set of fundamental photonic components at the physical level such that characteristics of composite devices (e.g. ring modulators) are created organically - by simple instantiation of fundamental primitives. Both the amplitude and phase of optical signals as well as optical-electrical interactions are simulated. We show that the results match other simulations and analytic solutions that have previously been compared to theory for both simple devices, such as ring resonators, and more complicated devices and systems such as single-sideband modulators, WDM links and Pound Drever Hall Locking loops. We also illustrate the capability of such toolkit for co-simulation with electronic circuits, which is a key enabler of the electro-optic system development and verification.

  12. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.; Williams, A. G.; Chambers, S. D.

    2014-10-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the IFS model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The atmospheric lifetime of methane in EC-Earth is 9.4 years, which is 7% longer than the lifetime obtained with ERA-Interim but remains well within the range reported in the literature. We further evaluate the model by comparing the simulated climatologies of surface radon-222 and carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  13. Multiple origins of life

    NASA Technical Reports Server (NTRS)

    Raup, D. M.; Valentine, J. W.

    1983-01-01

    There is some indication that life may have originated readily under primitive earth conditions. If there were multiple origins of life, the result could have been a polyphyletic biota today. Using simple stochastic models for diversification and extinction, we conclude: (1) the probability of survival of life is low unless there are multiple origins, and (2) given survival of life and given as many as 10 independent origins of life, the odds are that all but one would have gone extinct, yielding the monophyletic biota we have now. The fact of the survival of our particular form of life does not imply that it was unique or superior.

  14. Life on Mars? 1: The chemical environment

    NASA Technical Reports Server (NTRS)

    Banin, A.; Mancinelli, R. L.

    1995-01-01

    The origin of life at its abiotic evolutionary stage, requires a combination of constituents and environmental conditions that enable the synthesis of complex replicating macromolecules from simpler monomeric molecules. It is very likely that the early stages of this evolutionary process have been spontaneous, rapid and widespread on the surface of the primitive Earth, resulting in the formation of quite sophisticated living organisms within less than a billion years. To what extend did such conditions prevail on Mars? Two companion-papers will review and discuss the available information related to the chemical, physical and environmental conditions on Mars and assess it from the perspective of potential exobiological evolution.

  15. Chemical evolution and the origin of life; Proceedings of the Third International Conference, Pont-a-Mousson, France, April 19-25, 1970. Volume 1 - Molecular evolution.

    NASA Technical Reports Server (NTRS)

    Buvet, R. (Editor); Ponnamperuma, C.

    1971-01-01

    The present state of investigations on the origin of life is surveyed together with the current state of molecular paleontology. General and theoretical subjects discussed include an energetic approach to prebiological chemistry, the recognition of description and function in chemical reaction networks, and the origin and development of optical activity of bio-organic compounds on the primordial earth. Other fields considered are the syntheses of small molecules, oligomers and polymers; photochemical processes; the origin of biological structures; primitive biochemistry and biology; and exobiology. Individual items are abstracted in this issue.

  16. Indigenous Amino Acids in Iron Meteorites

    NASA Technical Reports Server (NTRS)

    Elsila, J. E.; Dworkin, J. P.; Glavin, D. P.; Johnson, N. M.

    2018-01-01

    Understanding the organic content of meteorites and the potential delivery of molecules relevant to the origin of life on Earth is an important area of study in astrobiology. There have been many studies of meteoritic organics, with much focus on amino acids as monomers of proteins and enzymes essential to terrestrial life. The majority of these studies have involved analysis of carbonaceous chondrites, primitive meteorites containing approx. 3-5 wt% carbon. Amino acids have been observed in varying abundances and distributions in representatives of all eight carbonaceous chondrite groups, as well as in ungrouped carbonaceous chondrites, ordinary and R chondrites, ureilites, and planetary achondrites [1 and references therein].

  17. The mevalonate pathway regulates primitive streak formation via protein farnesylation

    PubMed Central

    Okamoto-Uchida, Yoshimi; Yu, Ruoxing; Miyamura, Norio; Arima, Norie; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Yoshida, Suguru; Hosoya, Takamitsu; Nawa, Makiko; Kasama, Takeshi; Asaoka, Yoichi; Alois, Reiner Wimmer; Elling, Ulrich; Penninger, Josef M.; Nishina, Sachiko; Azuma, Noriyuki; Nishina, Hiroshi

    2016-01-01

    The primitive streak in peri-implantation embryos forms the mesoderm and endoderm and controls cell differentiation. The metabolic cues regulating primitive streak formation remain largely unknown. Here we utilised a mouse embryonic stem (ES) cell differentiation system and a library of well-characterised drugs to identify these metabolic factors. We found that statins, which inhibit the mevalonate metabolic pathway, suppressed primitive streak formation in vitro and in vivo. Using metabolomics and pharmacologic approaches we identified the downstream signalling pathway of mevalonate and revealed that primitive streak formation requires protein farnesylation but not cholesterol synthesis. A tagging-via-substrate approach revealed that nuclear lamin B1 and small G proteins were farnesylated in embryoid bodies and important for primitive streak gene expression. In conclusion, protein farnesylation driven by the mevalonate pathway is a metabolic cue essential for primitive streak formation. PMID:27883036

  18. A new potential for the numerical simulations of electrolyte solutions on a hypersphere

    NASA Astrophysics Data System (ADS)

    Caillol, Jean-Michel

    1993-12-01

    We propose a new way of performing numerical simulations of the restricted primitive model of electrolytes—and related models—on a hypersphere. In this new approach, the system is viewed as a single component fluid of charged bihard spheres constrained to move at the surface of a four dimensional sphere. A charged bihard sphere is defined as the rigid association of two antipodal charged hard spheres of opposite signs. These objects interact via a simple analytical potential obtained by solving the Poisson-Laplace equation on the hypersphere. This new technique of simulation enables a precise determination of the chemical potential of the charged species in the canonical ensemble by a straightforward application of Widom's insertion method. Comparisons with previous simulations demonstrate the efficiency and the reliability of the method.

  19. Statistical Constraints from Siderophile Elements on Earth's Accretion, Differentiation, and Initial Core Stratification

    NASA Astrophysics Data System (ADS)

    O'Rourke, J. G.; Stevenson, D. J.

    2015-12-01

    Abundances of siderophile elements in the primitive mantle constrain the conditions of Earth's core/mantle differentiation. Core growth occurred as Earth accreted from collisions between planetesimals and larger embryos of unknown original provenance, so geochemistry is directly related to the overall dynamics of Solar System formation. Recent studies claim that only certain conditions of equilibration (pressure, temperature, and oxygen fugacity) during core formation can reproduce the available data. Typical analyses, however, only consider the effects of varying a few out of tens of free parameters in continuous core formation models. Here we describe the Markov chain Monte Carlo method, which simultaneously incorporates the large uncertainties on Earth's composition and the parameterizations that describe elemental partitioning between metal and silicate. This Bayesian technique is vastly more computationally efficient than a simple grid search and is well suited to models of planetary accretion that involve a plethora of variables. In contrast to previous work, we find that analyses of siderophile elements alone cannot yield a unique scenario for Earth's accretion. Our models predict a wide range of possible light element contents for the core, encompassing all combinations permitted by seismology and mineral physics. Specifically, we are agnostic between silicon and oxygen as the dominant light element, and the addition of carbon or sulfur is also permissible but not well constrained. Redox conditions may have remained roughly constant during Earth's accretion or relatively oxygen-rich material could have been incorporated before reduced embryos. Pressures and temperatures of equilibration, likewise, may only increase slowly throughout accretion. Therefore, we do not necessarily expect a thick (>500 km), compositionally stratified layer that is stable against convection to develop at the top of the core of Earth (or, by analogy, Venus). A thinner stable layer might inhibit the initialization of the dynamo.

  20. Meteorite zircon constraints on the bulk Lu-Hf isotope composition and early differentiation of the Earth.

    PubMed

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Hibiya, Yuki; Amelin, Yuri

    2015-04-28

    Knowledge of planetary differentiation is crucial for understanding the chemical and thermal evolution of terrestrial planets. The (176)Lu-(176)Hf radioactive decay system has been widely used to constrain the timescales and mechanisms of silicate differentiation on Earth, but the data interpretation requires accurate estimation of Hf isotope evolution of the bulk Earth. Because both Lu and Hf are refractory lithophile elements, the isotope evolution can be potentially extrapolated from the present-day (176)Hf/(177)Hf and (176)Lu/(177)Hf in undifferentiated chondrite meteorites. However, these ratios in chondrites are highly variable due to the metamorphic redistribution of Lu and Hf, making it difficult to ascertain the correct reference values for the bulk Earth. In addition, it has been proposed that chondrites contain excess (176)Hf due to the accelerated decay of (176)Lu resulting from photoexcitation to a short-lived isomer. If so, the paradigm of a chondritic Earth would be invalid for the Lu-Hf system. Herein we report the first, to our knowledge, high-precision Lu-Hf isotope analysis of meteorite crystalline zircon, a mineral that is resistant to metamorphism and has low Lu/Hf. We use the meteorite zircon data to define the Solar System initial (176)Hf/(177)Hf (0.279781 ± 0.000018) and further to identify pristine chondrites that contain no excess (176)Hf and accurately represent the Lu-Hf system of the bulk Earth ((176)Hf/(177)Hf = 0.282793 ± 0.000011; (176)Lu/(177)Hf = 0.0338 ± 0.0001). Our results provide firm evidence that the most primitive Hf in terrestrial zircon reflects the development of a chemically enriched silicate reservoir on Earth as far back as 4.5 billion years ago.

  1. Meteorite zircon constraints on the bulk Lu−Hf isotope composition and early differentiation of the Earth

    PubMed Central

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Hibiya, Yuki; Amelin, Yuri

    2015-01-01

    Knowledge of planetary differentiation is crucial for understanding the chemical and thermal evolution of terrestrial planets. The 176Lu−176Hf radioactive decay system has been widely used to constrain the timescales and mechanisms of silicate differentiation on Earth, but the data interpretation requires accurate estimation of Hf isotope evolution of the bulk Earth. Because both Lu and Hf are refractory lithophile elements, the isotope evolution can be potentially extrapolated from the present-day 176Hf/177Hf and 176Lu/177Hf in undifferentiated chondrite meteorites. However, these ratios in chondrites are highly variable due to the metamorphic redistribution of Lu and Hf, making it difficult to ascertain the correct reference values for the bulk Earth. In addition, it has been proposed that chondrites contain excess 176Hf due to the accelerated decay of 176Lu resulting from photoexcitation to a short-lived isomer. If so, the paradigm of a chondritic Earth would be invalid for the Lu−Hf system. Herein we report the first, to our knowledge, high-precision Lu−Hf isotope analysis of meteorite crystalline zircon, a mineral that is resistant to metamorphism and has low Lu/Hf. We use the meteorite zircon data to define the Solar System initial 176Hf/177Hf (0.279781 ± 0.000018) and further to identify pristine chondrites that contain no excess 176Hf and accurately represent the Lu−Hf system of the bulk Earth (176Hf/177Hf = 0.282793 ± 0.000011; 176Lu/177Hf = 0.0338 ± 0.0001). Our results provide firm evidence that the most primitive Hf in terrestrial zircon reflects the development of a chemically enriched silicate reservoir on Earth as far back as 4.5 billion years ago. PMID:25870298

  2. Low-Earth-Orbit and Geosynchronous-Earth-Orbit Testing of 80 Ah Batteries under Real-time Profiles

    NASA Technical Reports Server (NTRS)

    Staniewicz, Robert J.; Willson, John; Briscoe, J. Douglas; Rao, Gopalakrishna M.

    2004-01-01

    This viewgraph presentation gives an update on test results from two 16 cell batteries, one in a simulated Low Earth Orbit (LEO) environment and the other in simulated Geosynchronous Earth Orbit (GEO) environment. The tests measured how voltage and capacity are affected over time by thermal cycling.

  3. 18F-FLT Positron Emission Tomography and Diffusion-Weighted Magnetic Resonance Imaging in Planning Surgery and Radiation Therapy and Measuring Response in Patients With Newly Diagnosed Ewing Sarcoma

    ClinicalTrials.gov

    2017-11-16

    Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Ewing Sarcoma of Bone; Extraosseous Ewing Sarcoma; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Untreated Childhood Supratentorial Primitive Neuroectodermal Tumor

  4. Re-Purposing Commercial Entertainment Software for Military Use

    DTIC Science & Technology

    2000-09-01

    and simulation needs of the military can be awkward or impossible. Video games are designed to be both technologically advanced and flexible in design...We evaluated current games and modified Quake 3 Arena(Q3A) to serve as both an architectural walkthrough and a primitive team trainer. To accomplish...weapons models and characteristics, and overall game play. By re-purposing commercial entertainment software, we have produced a viable military virtual

  5. 1982 Federal Acquisition Research Symposium, Integrating Theory and Experience: The Acquisition Research Connection

    DTIC Science & Technology

    1982-05-07

    Technology. March 1981. 114(157. 16-17. Guetzkow, Harold, Kotler , Philip , i Schultz, Randall L, Simulation in social and administrative science...Primitive. Arcnaic and Modem Economies. Edited bv George Dalton. Beacon Press, Boston, 1968, |16) WOGAMAN, PHILIP I,, Tie Great Economic Debate: An...Department of Energy Washington, DC 20585 Mr. Philip M. King Grant and Contract Specialist National Science Foundation 1800 G Street, NW Washington

  6. Testing a Hypothesis for the Evolution of Sex

    NASA Astrophysics Data System (ADS)

    Örçal, Bora; Tüzel, Erkan; Sevim, Volkan; Jan, Naeem; Erzan, Ayşe.

    An asexual set of primitive bacteria is simulated with a bit-string Penna model with a Fermi function for survival. A recent hypothesis by Jan, Stauffer, and Moseley on the evolution of sex from asexual cells as a strategy for trying to escape the effects of deleterious mutations is checked. This strategy is found to provide a successful scenario for the evolution of a stable macroscopic sexual population.

  7. Developing Realistic Behaviors in Adversarial Agents for Air Combat Simulation

    DTIC Science & Technology

    1993-12-01

    34Building Symbolic Primitives with Continuous Control Rou- tines." Proceedings of the 1st International Conference on Aritificial Intelligence Planning...shortcoming is the minimal Air Force participation in this field. 1-1 Some of the artificial intelligence (AI) personnel at the Air Force Institute of... intelligent system that operates in a moderately complex or unpredictable environment must be reactive. In being reactive the intelligent system must

  8. Diagnostic Study of Tumor Characteristics in Patients With Ewing's Sarcoma

    ClinicalTrials.gov

    2013-06-20

    Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor

  9. Galileo's Telescope and the Birth of Space Science

    NASA Astrophysics Data System (ADS)

    van Helden, A.

    2002-01-01

    The age of telescopic astronomy began in December 1609, when Galileo Galilei (1564-1642) began the first telescopic astronomical research project, an extended series of observations of the Moon. Over the next 18 months, he discovered the earth-like nature of the Moon, four satellites of Jupiter, the strange appearances of Saturn, the phases of Venus, and sunspots. His discoveries cut at the roots of the Aristotelian cosmological system with its central, corrupt, Earth and perfect heavens; and they provided important evidence for the Copernican heliocentric system. The instruments that provided the turning point in this great transition were by modern standards exceedingly primitive, and there is no question about the fact that Galileo must have been an exceptional observer to discover what he did. But he was also a great communicator. His scientific arguments for the new world system were models of logic and rigor; they were also rhetorical masterpieces. Galileo never needed a popularizer to bring his ideas to a wide audience. For that he paid a price.

  10. Avian embryonic development in hyperdynamic environments

    NASA Technical Reports Server (NTRS)

    Abbott, U. K.; Smith, A. H.

    1983-01-01

    Embryos which developed for 24 hours in the oviduct of hens maintained at 2 G and which were subsequently incubated at Earth gravity had a 14% reduction in hatchability. Increased mortality during the first 4 days, and an increase in embryonic abnormalities were of the types usually found during the first mortality peak (2-3 days). Embryos in eggs that were produced at Earth gravity and continued their development on the centrifuge at fields of 2 G or less did not appear to be greatly affected by the treatment. At 4 G, 91% of the embryos died, mostly on the first and second days of incubation. Abnormalities prominent in the centrifuged eggs include: (a) a failure of the primitive streak to develop; (b) interference with the development of the axial skeleton; (c) multiple hemorrhages, mostly petechial which is consistent with capillary fragility; and (d) retardation of embryo growth, possibly caused by an interference with gaseous diffusion, the result of an acceleration-induced increase in gas density in the centrifuging incubator.

  11. The Organic Composition of Carbonaceous Meteorites: The Evolutionary Story Ahead of Biochemistry

    PubMed Central

    Pizzarello, Sandra; Shock, Everett

    2010-01-01

    Carbon-containing meteorites provide a natural sample of the extraterrestrial organic chemistry that occurred in the solar system ahead of life's origin on the Earth. Analyses of 40 years have shown the organic content of these meteorites to be materials as diverse as kerogen-like macromolecules and simpler soluble compounds such as amino acids and polyols. Many meteoritic molecules have identical counterpart in the biosphere and, in a primitive group of meteorites, represent the majority of their carbon. Most of the compounds in meteorites have isotopic compositions that date their formation to presolar environments and reveal a long and active cosmochemical evolution of the biogenic elements. Whether this evolution resumed on the Earth to foster biogenesis after exogenous delivery of meteoritic and cometary materials is not known, yet, the selective abundance of biomolecule precursors evident in some cosmic environments and the unique L-asymmetry of some meteoritic amino acids are suggestive of their possible contribution to terrestrial molecular evolution. PMID:20300213

  12. A GPU-based large-scale Monte Carlo simulation method for systems with long-range interactions

    NASA Astrophysics Data System (ADS)

    Liang, Yihao; Xing, Xiangjun; Li, Yaohang

    2017-06-01

    In this work we present an efficient implementation of Canonical Monte Carlo simulation for Coulomb many body systems on graphics processing units (GPU). Our method takes advantage of the GPU Single Instruction, Multiple Data (SIMD) architectures, and adopts the sequential updating scheme of Metropolis algorithm. It makes no approximation in the computation of energy, and reaches a remarkable 440-fold speedup, compared with the serial implementation on CPU. We further use this method to simulate primitive model electrolytes, and measure very precisely all ion-ion pair correlation functions at high concentrations. From these data, we extract the renormalized Debye length, renormalized valences of constituent ions, and renormalized dielectric constants. These results demonstrate unequivocally physics beyond the classical Poisson-Boltzmann theory.

  13. Modeling the Gulf Stream System: How Far from Reality?

    NASA Technical Reports Server (NTRS)

    Choa, Yi; Gangopadhyay, Avijit; Bryan, Frank O.; Holland, William R.

    1996-01-01

    Analyses of a primitive equation ocean model simulation of the Atlantic Ocean circulation at 1/6 deg horizontal resolution are presented with a focus on the Gulf Stream region. Among many successful features of this simulation, this letter describes the Gulf Stream separation from the coast of North America near Cape Hatteras, meandering of the Gulf Stream between Cape Hatteras and the Grand Banks, and the vertical structure of temperature and velocity associated with the Gulf Stream. These results demonstrate significant improvement in modeling the Gulf Stream system using basin- to global scale ocean general circulation models. Possible reasons responsible for the realistic Gulf Stream simulation are discussed, contrasting the major differences between the present model configuration and those of previous eddy resolving studies.

  14. Collecting and Storing Biological Samples From Patients With Ewing Sarcoma

    ClinicalTrials.gov

    2017-12-11

    Askin Tumor; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor

  15. High-performing simulations of the space radiation environment for the International Space Station and Apollo Missions

    NASA Astrophysics Data System (ADS)

    Lund, Matthew Lawrence

    The space radiation environment is a significant challenge to future manned and unmanned space travels. Future missions will rely more on accurate simulations of radiation transport in space through spacecraft to predict astronaut dose and energy deposition within spacecraft electronics. The International Space Station provides long-term measurements of the radiation environment in Low Earth Orbit (LEO); however, only the Apollo missions provided dosimetry data beyond LEO. Thus dosimetry analysis for deep space missions is poorly supported with currently available data, and there is a need to develop dosimetry-predicting models for extended deep space missions. GEANT4, a Monte Carlo Method, provides a powerful toolkit in C++ for simulation of radiation transport in arbitrary media, thus including the spacecraft and space travels. The newest version of GEANT4 supports multithreading and MPI, resulting in faster distributive processing of simulations in high-performance computing clusters. This thesis introduces a new application based on GEANT4 that greatly reduces computational time using Kingspeak and Ember computational clusters at the Center for High Performance Computing (CHPC) to simulate radiation transport through full spacecraft geometry, reducing simulation time to hours instead of weeks without post simulation processing. Additionally, this thesis introduces a new set of detectors besides the historically used International Commission of Radiation Units (ICRU) spheres for calculating dose distribution, including a Thermoluminescent Detector (TLD), Tissue Equivalent Proportional Counter (TEPC), and human phantom combined with a series of new primitive scorers in GEANT4 to calculate dose equivalence based on the International Commission of Radiation Protection (ICRP) standards. The developed models in this thesis predict dose depositions in the International Space Station and during the Apollo missions showing good agreement with experimental measurements. From these models the greatest contributor to radiation dose for the Apollo missions was from Galactic Cosmic Rays due to the short time within the radiation belts. The Apollo 14 dose measurements were an order of magnitude higher compared to other Apollo missions. The GEANT4 model of the Apollo Command Module shows consistent doses due to Galactic Cosmic Rays and Radiation Belts for all missions, with a small variation in dose distribution across the capsule. The model also predicts well the dose depositions and equivalent dose values in various human organs for the International Space Station or Apollo Command Module.

  16. Channel Simulation in Quantum Metrology

    NASA Astrophysics Data System (ADS)

    Laurenza, Riccardo; Lupo, Cosmo; Spedalieri, Gaetana; Braunstein, Samuel L.; Pirandola, Stefano

    2018-04-01

    In this review we discuss how channel simulation can be used to simplify the most general protocols of quantum parameter estimation, where unlimited entanglement and adaptive joint operations may be employed. Whenever the unknown parameter encoded in a quantum channel is completely transferred in an environmental program state simulating the channel, the optimal adaptive estimation cannot beat the standard quantum limit. In this setting, we elucidate the crucial role of quantum teleportation as a primitive operation which allows one to completely reduce adaptive protocols over suitable teleportation-covariant channels and derive matching upper and lower bounds for parameter estimation. For these channels,wemay express the quantum Cramér Rao bound directly in terms of their Choi matrices. Our review considers both discrete- and continuous-variable systems, also presenting some new results for bosonic Gaussian channels using an alternative sub-optimal simulation. It is an open problem to design simulations for quantum channels that achieve the Heisenberg limit.

  17. A family of rare earth molybdenum bronzes: Oxides consisting of periodic arrays of interacting magnetic units

    DOE PAGES

    Schneemeyer, L. F.; Siegrist, T.; Besara, T.; ...

    2015-04-06

    The family of rare earth molybdenum bronzes, reduced ternary molybdates of composition LnMo 16O 44, was synthesized and a detailed structural study carried out. Bond valence sum (BVS) calculations clearly show that the molybdenum ions in tetrahedral coordination are hexavalent while the electron count in the primitive unit cell is odd. Yet, measurements show that the phases are semiconductors. The temperature dependence of the magnetic susceptibility of samples containing several different rare earth elements was measured. These measurements verified the presence of a 6.5 K magnetic phase transition not arising from the rare earth constituent, but likely associated with themore » unique isolated ReO 3-type Mo 8O 36 structural subunits in this phase. To better understand the behavior of these materials, electronic structure calculations were performed within density functional theory. Results suggest a magnetic state in which these structural moieties have an internal ferromagnetic arrangement, with small ~1/8 μ B moments on each Mo. We suggest that the Mo 8O 36 units behave like pseudoatoms with spin ½ derived from a single hole distributed over the eight Mo atoms that are strongly hybridized with the O atoms of the subunit. As a result, while the compound is antiferromagnetic, our calculations suggest that a field-stabilized ferromagnetic state, if achievable, will be a narrow band half-metal.« less

  18. Climatic consequences of very high CO2 levels in Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1985-01-01

    Earth has approximately 60 bars of carbon dioxide tied up in carbonate rocks, or roughly 2/3 the amount of CO2 of Venus' atmosphere. Two different lines of evidence, one based on thermodynamics and the other on geochemical cycles, indicate that a substantial fraction of this CO2 may have resulted in the atmosphere during the first few hundred million years of the Earth's history. A natural question which arises concerning this hypothesis is whether this would have resulted in a runaway greenhouse affect. One-dimensional radiative/convective model calculations show that the surface temperature of a hypothetical primitive atmosphere containing 20 bars of CO2 would have been less than 100C and no runaway greenhouse should have occurred. The climatic stability of the early atmosphere is a consequence of three factors: (1) reduced solar luminosity at that time; (2) an increase in planetary albedo caused by Rayleigh scattering by CO2; and (3) the stabilizing effects of moist convection. The latter two factors are sufficient to prevent a CO2-induced runaway greenhouse on the present Earth and for CO2 levels up to 100 bars. It is determined whether a runaway greenhouse could have occurred during the latter stages of the accretion process and, if so, whether it would have collapsed once the influx of material slowed down.

  19. The principle of cooperation and life's origin and evolution

    NASA Technical Reports Server (NTRS)

    Oro, J.; Armangue, G.; Mar, A.

    1986-01-01

    In simple terms a living entity is a negentropic system that replicates, mutates and evoluves. A number of suggestions have been made, such as directed panspermia, atmospheric photosynthesis, genetic overtaking from inorganic processes, etc., as alternative models to the accepted Oparin-Haldane-Urey model of the origin of life on Earth. This has probably occurred because in spite of tremendous advances in the prebiotic synthesis of biochemical compounds, the fundamental problem of the appearance of the first life--a primordial replicating cell-ancestral to all other forms of extant life, has remained elusive. This is indeed a reflection on the different fundamental nature of the problem involved. Regardless of which were the fundamental processes which occurred on the primitive Earth, it has to end up with the fundamental characteristics of an ancestral protocell. The problem of the emergence of the first ancestral cell was one of synergistic macromolecular cooperation, as it has been discussed by authors recently (COSPAR XXV Plenary Meeting). An analogous situation must have occurred at the time of the appearance of the first eucaryotic organism. Procaryotic life appeared probably during the first 600 million years of Earth history when the Earth was sufficiently cool and continually bombarded (in the late accretion period) by comets and minor bodies of the solar system, when the sea had not yet acquired its present form.

  20. Performance-based robotic assistance during rhythmic arm exercises.

    PubMed

    Leconte, Patricia; Ronsse, Renaud

    2016-09-13

    Rhythmic and discrete upper-limb movements are two fundamental motor primitives controlled by different neural pathways, at least partially. After stroke, both primitives can be impaired. Both conventional and robot-assisted therapies mainly train discrete functional movements like reaching and grasping. However, if the movements form two distinct neural and functional primitives, both should be trained to recover the complete motor repertoire. Recent studies show that rhythmic movements tend to be less impaired than discrete ones, so combining both movement types in therapy could support the execution of movements with a higher degree of impairment by movements that are performed more stably. A new performance-based assistance method was developed to train rhythmic movements with a rehabilitation robot. The algorithm uses the assist-as-needed paradigm by independently assessing and assisting movement features of smoothness, velocity, and amplitude. The method relies on different building blocks: (i) an adaptive oscillator captures the main movement harmonic in state variables, (ii) custom metrics measure the movement performance regarding the three features, and (iii) adaptive forces assist the patient. The patient is encouraged to improve performance regarding these three features with assistance forces computed in parallel to each other. The method was tested with simulated jerky signals and a pilot experiment with two stroke patients, who were instructed to make circular movements with an end-effector robot with assistance during half of the trials. Simulation data reveal sensitivity of the metrics for assessing the features while limiting interference between them. The assistance's effectiveness with stroke patients is established since it (i) adapts to the patient's real-time performance, (ii) improves patient motor performance, and (iii) does not lead the patient to slack. The smoothness assistance was by far the most used by both patients, while it provided no active mechanical work to the patient on average. Our performance-based assistance method for training rhythmic movements is a viable candidate to complement robot-assisted upper-limb therapies for training a larger motor repertoire.

  1. Evaluating structural pattern recognition for handwritten math via primitive label graphs

    NASA Astrophysics Data System (ADS)

    Zanibbi, Richard; Mouchère, Harold; Viard-Gaudin, Christian

    2013-01-01

    Currently, structural pattern recognizer evaluations compare graphs of detected structure to target structures (i.e. ground truth) using recognition rates, recall and precision for object segmentation, classification and relationships. In document recognition, these target objects (e.g. symbols) are frequently comprised of multiple primitives (e.g. connected components, or strokes for online handwritten data), but current metrics do not characterize errors at the primitive level, from which object-level structure is obtained. Primitive label graphs are directed graphs defined over primitives and primitive pairs. We define new metrics obtained by Hamming distances over label graphs, which allow classification, segmentation and parsing errors to be characterized separately, or using a single measure. Recall and precision for detected objects may also be computed directly from label graphs. We illustrate the new metrics by comparing a new primitive-level evaluation to the symbol-level evaluation performed for the CROHME 2012 handwritten math recognition competition. A Python-based set of utilities for evaluating, visualizing and translating label graphs is publicly available.

  2. Sea Surface Salinity Variability from Simulations and Observations: Preparing for Aquarius

    NASA Technical Reports Server (NTRS)

    Jacob, S. Daniel; LeVine, David M.

    2010-01-01

    Oceanic fresh water transport has been shown to play an important role in the global hydrological cycle. Sea surface salinity (SSS) is representative of the surface fresh water fluxes and the upcoming Aquarius mission scheduled to be launched in December 2010 will provide excellent spatial and temporal SSS coverage to better estimate the net exchange. In most ocean general circulation models, SSS is relaxed to climatology to prevent model drift. While SST remains a well observed variable, relaxing to SST reduces the range of SSS variability in the simulations (Fig.1). The main objective of the present study is to simulate surface tracers using a primitive equation ocean model for multiple forcing data sets to identify and establish a baseline SSS variability. The simulated variability scales are compared to those from near-surface argo salinity measurements.

  3. Confidence range estimate of extended source imagery acquisition algorithms via computer simulations. [in optical communication systems

    NASA Technical Reports Server (NTRS)

    Chen, CHIEN-C.; Hui, Elliot; Okamoto, Garret

    1992-01-01

    Spatial acquisition using the sun-lit Earth as a beacon source provides several advantages over active beacon-based systems for deep-space optical communication systems. However, since the angular extend of the Earth image is large compared to the laser beam divergence, the acquisition subsystem must be capable of resolving the image to derive the proper pointing orientation. The algorithms used must be capable of deducing the receiver location given the blurring introduced by the imaging optics and the large Earth albedo fluctuation. Furthermore, because of the complexity of modelling the Earth and the tracking algorithms, an accurate estimate of the algorithm accuracy can only be made via simulation using realistic Earth images. An image simulator was constructed for this purpose, and the results of the simulation runs are reported.

  4. Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy

    2006-01-01

    This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patnaik, P. C.

    The SIGMET mesoscale meteorology simulation code represents an extension, in terms of physical modelling detail and numerical approach, of the work of Anthes (1972) and Anthes and Warner (1974). The code utilizes a finite difference technique to solve the so-called primitive equations which describe transient flow in the atmosphere. The SIGMET modelling contains all of the physics required to simulate the time dependent meteorology of a region with description of both the planetary boundary layer and upper level flow as they are affected by synoptic forcing and complex terrain. The mathematical formulation of the SIGMET model and the various physicalmore » effects incorporated into it are summarized.« less

  6. Initial Investigation on the Aerodynamic Performance of Flapping Wings for Nano Air Vehicles

    DTIC Science & Technology

    2008-02-01

    Experiments with Primitive Equations”, Monthly Weather Review, 93:99-164, 1963. 36. Yuan, W., Schilling, R., “Numerical Simulation of the Draft Tube and...LE and TE wake vorticity – Fully flexible wake – Linear approximation of Kutta condition yields a linear system of equations at each time step...all cases one must consider the drain rate. High drain rates substantially diminish capacity! Some batteries simply not capable of delivering

  7. Study of three-dimensional effects on vortex breakdown

    NASA Technical Reports Server (NTRS)

    Salas, M. D.; Kuruvila, G.

    1988-01-01

    The incompressible axisymmetric steady Navier-Stokes equations in primitive variables are used to simulate vortex breakdown. The equations, discretized using a second-order, central-difference scheme, are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers, based on vortex-core radius, as high as 1500. An attempt to study the stability of the axisymmetric solutions against three-dimensional perturbations is discussed.

  8. MarcoPolo-R: Mission and Spacecraft Design

    NASA Astrophysics Data System (ADS)

    Peacocke, L.; Kemble, S.; Chapuy, M.; Scheer, H.

    2013-09-01

    The MarcoPolo-R mission is a candidate for the European Space Agency's medium-class Cosmic Vision programme, with the aim to obtain a 100 g sample of asteroid surface material and return it safely to the Earth. Astrium is one of two industrial contractors currently studying the mission to Phase A level, and the team has been working on the mission and spacecraft design since January 2012. Asteroids are some of the most primitive bodies in our solar system and are key to understanding the formation of the Earth, Sun and other planetary bodies. A returned sample would allow extensive analyses in the large laboratory-sized instruments here on Earth that are not possible with in-situ instruments. This analysis would also increase our understanding of the composition and structure of asteroids, and aid in plans for asteroid deflection techniques. In addition, the mission would be a valuable precursor for missions such as Mars Sample Return, demonstrating a high speed Earth re-entry and hard landing of an entry capsule. Following extensive mission analysis of both the baseline asteroid target 1996 FG3 and alternatives, a particularly favourable trajectory was found to the asteroid 2008 EV5 resulting in a mission duration of 4.5 to 6 years. In October 2012, the MarcoPolo-R baseline target was changed to 2008 EV5 due to its extremely primitive nature, which may pre-date the Sun. This change has a number of advantages: reduced DeltaV requirements, an orbit with a more benign thermal environment, reduced communications distances, and a reduced complexity propulsion system - all of which simplify the spacecraft design significantly. The single spacecraft would launch between 2022 and 2024 on a Soyuz-Fregat launch vehicle from Kourou. Solar electric propulsion is necessary for the outward and return transfers due to the DeltaV requirements, to minimise propellant mass. Once rendezvous with the asteroid is achieved, an observation campaign will begin to characterise the asteroid properties and map the surface in detail. Five potential sampling sites will be selected and closely observed in a local characterisation phase, leading to a single preferred sampling site being identified. The baseline instruments are a Narrow Angle Camera, a Mid-Infrared Spectrometer, a Visible Near-Infrared Spectrometer, a Radio Science Experiment, and a Close-up Camera. For the sampling phase, the spacecraft will perform a touch-and-go manoeuvre. A boom with a sampling mechanism at the end will be deployed, and the spacecraft will descend using visual navigation to touch the asteroid for some seconds. The rotary brush sampling mechanism will be activated on touchdown to obtain a good quality sample comprising regolith dust and pebbles. Low touchdown velocities and collision avoidance are critical at this point to prevent damage to the spacecraft and solar arrays. The spacecraft will then move away, returning to a safe orbit, and the sample will be transferred to an Earth Re-entry Capsule. After a final post-sampling characterisation campaign, the spacecraft will perform the return transfer to Earth. The Earth Re-entry Capsule will be released to directly enter the Earth's atmosphere, and is designed to survive a hard landing with no parachute deceleration. Once recovered, the asteroid sample would be extracted in a sample curation facility in preparation for the full analysis campaign. This presentation will describe Astrium's MarcoPolo-R mission and spacecraft design, with a focus on the innovative aspects of the design.

  9. Fitting primitive shapes in point clouds: a practical approach to improve autonomous underwater grasp specification of unknown objects

    NASA Astrophysics Data System (ADS)

    Fornas, D.; Sales, J.; Peñalver, A.; Pérez, J.; Fernández, J. J.; Marín, R.; Sanz, P. J.

    2016-03-01

    This article presents research on the subject of autonomous underwater robot manipulation. Ongoing research in underwater robotics intends to increase the autonomy of intervention operations that require physical interaction in order to achieve social benefits in fields such as archaeology or biology that cannot afford the expenses of costly underwater operations using remote operated vehicles. Autonomous grasping is still a very challenging skill, especially in underwater environments, with highly unstructured scenarios, limited availability of sensors and adverse conditions that affect the robot perception and control systems. To tackle these issues, we propose the use of vision and segmentation techniques that aim to improve the specification of grasping operations on underwater primitive shaped objects. Several sources of stereo information are used to gather 3D information in order to obtain a model of the object. Using a RANSAC segmentation algorithm, the model parameters are estimated and a set of feasible grasps are computed. This approach is validated in both simulated and real underwater scenarios.

  10. The interaction between giant gaseous protoplanets and the primitive solar nebula

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1979-01-01

    The manner in which a giant gaseous protoplanet becomes embedded in the primitive solar nebula determines surface boundary conditions which must be used in studying the evolution of such objects. On the one hand, if the system resembles a contact binary system, then the envelope of the protoplanet should approach the entropy of the surrounding nebula. On the other hand angular momentum transfer by resonance and tidal effects between the nebula and the protoplanet may cause the nebula to exhibit a zone of avoidance near the protoplanet, thus inhibiting exchange of material. This problem has been studied with a computer program developed by D. N. C. Lin which simulates disk hydrodynamics by particle motions with dissipation. These studies suggest that for expected values of the protoplanet/protosun mass ratios, significant inhibition of mass exchange is likely, so that it is a reasonable next step to undertake protoplanet evolution studies with the imposition of minimum protoplanet surface temperatures.

  11. Melting relations in the Fe-rich portion of the system FeFeS at 30 kb pressure

    USGS Publications Warehouse

    Brett, R.; Bell, P.M.

    1969-01-01

    The melting relations of FeFeS mixtures covering the composition range from Fe to Fe67S33 have been determined at 30 kb pressure. The phase relations are similar to those at low pressure. The eutectic has a composition of Fe72.9S27.1 and a temperature of 990??C. Solubility of S in Fe at elevated temperatures at 30 kb is of the same order of magnitude as at low pressure. Sulfur may have significantly lowered the melting point of iron in the upper mantle during the period of coalescence of metal prior to core formation in the primitive earth. ?? 1969.

  12. Formation of amino acids by cobalt-60 irradiation of hydrogen cyanide solutions

    NASA Technical Reports Server (NTRS)

    Sweeney, M. A.; Toste, A. P.; Ponnamperuma, C.

    1976-01-01

    Experiments were conducted to study the pathway for the prebiotic origin of amino acids from hydrogen cyanide (HCN) under the action of ionizing radiation considered as an effective source of energy on the primitive earth. The irradiations were performed in a cobalt-60 source with a dose rate of 200,000 rad/hr. Seven naturally occurring amino acids are identified among the products formed by the hydrolysis of gamma-irradiated solutions of HCN: glycine, alanine, valine, serine, threonine, aspartic acid, and glutamic acid. The identity of these amino acids is established by gas chromatography and mass spectrometry. Control experiments provided evidence that the amino acids are not the result of contamination.

  13. Mars Life? - Microscopic Tube-like Structures

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This electron microscope image is a close-up of the center part of photo number S96-12301. While the exact nature of these tube-like structures is not known, one interpretation is that they may be microscopic fossils of primitive, bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. A two-year investigation by a NASA research team found organic molecules, mineral features characteristic of biological activity and possible microscopic fossils such as these inside of an ancient Martian rock that fell to Earth as a meteorite. The largest possible fossils are less than 1/100th the diameter of a human hair in size while most are ten times smaller.

  14. Space Observations for Global Change

    NASA Technical Reports Server (NTRS)

    Rasool, S. I.

    1991-01-01

    There is now compelling evidence that man's activities are changing both the composition of the atmospheric and the global landscape quite drastically. The consequences of these changes on the global climate of the 21st century is currently a hotly debated subject. Global models of a coupled Earth-ocean-atmosphere system are still very primitive and progress in this area appears largely data limited, specially over the global biosphere. A concerted effort on monitoring biospheric functions on scales from pixels to global and days to decades needs to be coordinated on an international scale in order to address the questions related to global change. An international program of space observations and ground research was described.

  15. Prebiotic synthesis of imidazole-4-acetaldehyde and histidine

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Yang, Lily; Miller, Stanley L.; Oró, J.

    1987-09-01

    The prebiotic synthesis of imidazole-4-acetaldehyde and imidazole-4-glycol from erythrose and formamidine has been demonstrated as well as the prebiotic synthesis of imidazole-4-ethanol and imidazole-4-glycol from erythrose, formaldehyde and ammonia. The products were identified by TLC, HPLC, and LC-MS by comparison with authentic samples. The maximum yields of imidazole-4-acetaldehyde, imidazole-4-ethanol, and imidazole-4-glycol obtained in these reactions are 1.6, 5.4, 6.8% respectively, based on the erythrose. Imidazole-4-acetaldehyde would have been converted to histidine on the primitive earth by a Strecker synthesis, and several prebiotic reactions would convert imidazole-4-glycol and imidazole-4-ethanol to imidazole-4-acetaldehyde.

  16. Ultraviolet-gas phase and -photocatalytic synthesis from CO and NH3. [photolysis products

    NASA Technical Reports Server (NTRS)

    Hubbard, J. S.; Voecks, G. E.; Hobby, G. L.; Ferris, J. P.; Williams, E. A.; Nicodem, D. E.

    1975-01-01

    Ammonium cyanate is identified as the major product of the photolysis of gaseous NH3-CO mixtures at 206.2 or 184.9 nm. Lesser amounts of urea, biurea, biuret semicarbazide, formamide and cyanide are observed. A series of 18 reactions underlying the formation of photolysis products is presented and discussed. Photocatalytic syntheses of C-14-urea, -formamide, and -formaldehyde are carried out through irradiation of (C-14)O and NH3 in the presence of Vycor, silica gel, or volcanic ash shale surfaces. The possible contributions of the relevant reactions to the abiotic synthesis of organic nitrogen compounds on Mars, the primitive earth, and in interstellar space are examined.

  17. Analysis of "Midnight" Tracks in the Stardust Interstellar Dust Collector: Possible Discovery of a Contemporary Interstellar Dust Grain

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajit, S.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; hide

    2010-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2) day. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques.

  18. Probabilistic Modeling of Ceramic Matrix Composite Strength

    NASA Technical Reports Server (NTRS)

    Shan, Ashwin R.; Murthy, Pappu L. N.; Mital, Subodh K.; Bhatt, Ramakrishna T.

    1998-01-01

    Uncertainties associated with the primitive random variables such as manufacturing process (processing temperature, fiber volume ratio, void volume ratio), constituent properties (fiber, matrix and interface), and geometric parameters (ply thickness, interphase thickness) have been simulated to quantify the scatter in the first matrix cracking strength (FMCS) and the ultimate tensile strength of SCS-6/RBSN (SiC fiber (SCS-6) reinforced reaction-bonded silicon nitride composite) ceramic matrix composite laminate at room temperature. Cumulative probability distribution function for the FMCS and ultimate tensile strength at room temperature (RT) of (0)(sub 8), (0(sub 2)/90(sub 2), and (+/-45(sub 2))(sub S) laminates have been simulated and the sensitivity of primitive variables to the respective strengths have been quantified. Computationally predicted scatter of the strengths for a uniaxial laminate have been compared with those from limited experimental data. Also the experimental procedure used in the tests has been described briefly. Results show a very good agreement between the computational simulation and the experimental data. Dominating failure modes in (0)(sub 8), (0/90)(sub s) and (+/-45)(sub S) laminates have been identified. Results indicate that the first matrix cracking strength for the (0)(sub S), and (0/90)(sub S) laminates is sensitive to the thermal properties, modulus and strengths of both the fiber and matrix whereas the ultimate tensile strength is sensitive to the fiber strength and the fiber volume ratio. In the case of a (+/-45)(sub S), laminate, both the FMCS and the ultimate tensile strengths have a small scatter range and are sensitive to the fiber tensile strength as well as the fiber volume ratio.

  19. Recovery Schemes for Primitive Variables in General-relativistic Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Siegel, Daniel M.; Mösta, Philipp; Desai, Dhruv; Wu, Samantha

    2018-05-01

    General-relativistic magnetohydrodynamic (GRMHD) simulations are an important tool to study a variety of astrophysical systems such as neutron star mergers, core-collapse supernovae, and accretion onto compact objects. A conservative GRMHD scheme numerically evolves a set of conservation equations for “conserved” quantities and requires the computation of certain primitive variables at every time step. This recovery procedure constitutes a core part of any conservative GRMHD scheme and it is closely tied to the equation of state (EOS) of the fluid. In the quest to include nuclear physics, weak interactions, and neutrino physics, state-of-the-art GRMHD simulations employ finite-temperature, composition-dependent EOSs. While different schemes have individually been proposed, the recovery problem still remains a major source of error, failure, and inefficiency in GRMHD simulations with advanced microphysics. The strengths and weaknesses of the different schemes when compared to each other remain unclear. Here we present the first systematic comparison of various recovery schemes used in different dynamical spacetime GRMHD codes for both analytic and tabulated microphysical EOSs. We assess the schemes in terms of (i) speed, (ii) accuracy, and (iii) robustness. We find large variations among the different schemes and that there is not a single ideal scheme. While the computationally most efficient schemes are less robust, the most robust schemes are computationally less efficient. More robust schemes may require an order of magnitude more calls to the EOS, which are computationally expensive. We propose an optimal strategy of an efficient three-dimensional Newton–Raphson scheme and a slower but more robust one-dimensional scheme as a fall-back.

  20. Use of Optical Storage Devices as Shared Resources in Local Area Networks

    DTIC Science & Technology

    1989-09-01

    13 3. SERVICE CALLS FOR MS-DOS CD-ROM EXTENSIONS . 14 4. MS-DOS PRIMITIVE GROUPS ....................... 15 5. RAM USAGE FOR VARIOUS LAN...17 2. Service Call Translation to DOS Primitives ............. 19 3. MS-DOS Device Drivers ............................. 21 4. MS-DOS/ROM...directed to I/O devices will be referred to as primitive instruction groups). These primitive instruction groups include keyboard, video, disk, serial

  1. Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney

    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further themore » similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.« less

  2. The early Earth -- A perspective on the Archean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, W.B.

    1993-04-01

    Dominant models of Archean tectonics and magmatism involve plate-tectonic mechanisms. Common tenets of geochemistry (e.g., model ages) and petrology visualize a cold-accreted Earth in which primitive mantle gradually fractionated to produce crust during and since Archean time. These popular assumptions appear to be incompatible with cosmologic and planetologic evidence and with Archean geology. All current quantitative and semiquantitative theories agree that the Earth was largely or entirely melted (likely superheated) by giant impacts, including the Mars-size impact which splashed out the Moon, and by separation of the core. The Earth at [approximately]4.5 Ga was a violently convecting anhydrous molten ball.more » Both this history and solar-system position indicate the bulk Earth to be more refractory than chondrite. The outer part of whatever sold shell developed was repeatedly recycled by impacts before 3.9 Ga. Water and CO[sub 2] were added by impactors after the Moon-forming event; the mantle is not a source of primordial volatiles, but rather is a sink that has depleted the hydrosphere. Voluminous liquidus ultramafic lava (komatiite) indicates that much Archean upper mantle was above its solidus. Only komatiitic and basaltic magma entered Archean crust from the mantle. Variably hydrous contamination, secondary melting, and fractionation in the crust produced intermediate and felsic melts. Magmatism was concurrent over vast tracts. Within at least the small sample of Archean crust that has not been recycled into the mantle, heat loss was primarily by voluminous, dispersed magmatism, not, as in the modern Earth, primarily through spreading windows through the crust. Only in Proterozoic time did plate-tectonic mechanisms become prevalent.« less

  3. Simulated Van Allen Belts Generated by Plasma Thruster in Tank 5

    NASA Image and Video Library

    1966-09-21

    The model of the Earth housed inside Vacuum Tank 5 contained a coil which produced a magnetic field simulating that of the Earth. It was bombarded with a stream of ionized particles simulating the solar wind which impinges on the Earth's magnetic field. The bands or belts of luminous plasma seen in this image were suggestive of the Van Allen belts found around the Earth. Scientists at Lewis probed the plasma around the model and studied scaling laws in an attempt to find an explanation for the actual formation of the Van Allen belt.

  4. Method for concurrent execution of primitive operations by dynamically assigning operations based upon computational marked graph and availability of data

    NASA Technical Reports Server (NTRS)

    Mielke, Roland V. (Inventor); Stoughton, John W. (Inventor)

    1990-01-01

    Computationally complex primitive operations of an algorithm are executed concurrently in a plurality of functional units under the control of an assignment manager. The algorithm is preferably defined as a computationally marked graph contianing data status edges (paths) corresponding to each of the data flow edges. The assignment manager assigns primitive operations to the functional units and monitors completion of the primitive operations to determine data availability using the computational marked graph of the algorithm. All data accessing of the primitive operations is performed by the functional units independently of the assignment manager.

  5. Focused Ion Beam Recovery of Hypervelocity Impact Residue in Experimental Craters on Metallic Foils

    NASA Technical Reports Server (NTRS)

    Graham, G. A.; Teslich, N.; Dai, Z. R.; Bradley, J. P.; Kearsley, A. T.; Horz, F.

    2006-01-01

    The Stardust sample return capsule will return to Earth in January 2006 with primitive debris collected from Comet 81P/Wild-2 during the fly-by encounter in 2004. In addition to the cometary particles embedded in low-density silica aerogel, there will be microcraters preserved in the Al foils (1100 series; 100 micrometers thick) that are wrapped around the sample tray assembly. Soda lime spheres (approximately 49 m in diameter) have been accelerated with a light-gas-gun into flight-grade Al foils at 6.35 km s(sup -1) to simulate the potential capture of cometary debris. The preserved crater penetrations have been analyzed using scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDX) to locate and characterize remnants of the projectile material remaining within the craters. In addition, ion beam induced secondary electron imaging has proven particularly useful in identifying areas within the craters that contain residue material. Finally, high-precision focused ion beam (FIB) milling has been used to isolate and then extract an individual melt residue droplet from the interior wall of an impact penetration. This enabled further detailed elemental characterization, free from the background contamination of the Al foil substrate. The ability to recover pure melt residues using FIB will significantly extend the interpretations of the residue chemistry preserved in the Al foils returned by Stardust.

  6. Scientific Objectives of Small Carry-on Impactor (SCI) and Deployable Camera 3 Digital (DCAM3-D): Observation of an Ejecta Curtain and a Crater Formed on the Surface of Ryugu by an Artificial High-Velocity Impact

    NASA Astrophysics Data System (ADS)

    Arakawa, M.; Wada, K.; Saiki, T.; Kadono, T.; Takagi, Y.; Shirai, K.; Okamoto, C.; Yano, H.; Hayakawa, M.; Nakazawa, S.; Hirata, N.; Kobayashi, M.; Michel, P.; Jutzi, M.; Imamura, H.; Ogawa, K.; Sakatani, N.; Iijima, Y.; Honda, R.; Ishibashi, K.; Hayakawa, H.; Sawada, H.

    2017-07-01

    The Small Carry-on Impactor (SCI) equipped on Hayabusa2 was developed to produce an artificial impact crater on the primitive Near-Earth Asteroid (NEA) 162173 Ryugu (Ryugu) in order to explore the asteroid subsurface material unaffected by space weathering and thermal alteration by solar radiation. An exposed fresh surface by the impactor and/or the ejecta deposit excavated from the crater will be observed by remote sensing instruments, and a subsurface fresh sample of the asteroid will be collected there. The SCI impact experiment will be observed by a Deployable CAMera 3-D (DCAM3-D) at a distance of ˜1 km from the impact point, and the time evolution of the ejecta curtain will be observed by this camera to confirm the impact point on the asteroid surface. As a result of the observation of the ejecta curtain by DCAM3-D and the crater morphology by onboard cameras, the subsurface structure and the physical properties of the constituting materials will be derived from crater scaling laws. Moreover, the SCI experiment on Ryugu gives us a precious opportunity to clarify effects of microgravity on the cratering process and to validate numerical simulations and models of the cratering process.

  7. Experimental Behavior of Sulfur Under Primitive Planetary Differentiation Processes, the Sulfide Formations in Enstatite Meteorites and Implications for Mercury.

    NASA Technical Reports Server (NTRS)

    Malavergne, V.; Brunet, F.; Righter, K.; Zanda, B.; Avril, C.; Borensztajn, S.; Berthet, S.

    2012-01-01

    Enstatite meteorites are the most reduced naturally-occuring materials of the solar system. The cubic monosulfide series with the general formula (Mg,Mn,Ca,Fe)S are common phases in these meteorite groups. The importance of such minerals, their formation, composition and textural relationships for understanding the genesis of enstatite chondrites (EC) and aubrites, has long been recognized (e.g. [1]). However, the mechanisms of formation of these sulfides is still not well constrained certainly because of possible multiple ways to produce them. We propose to simulate different models of formation in order to check their mineralogical, chemical and textural relevancies. The solubility of sulfur in silicate melts is of primary interest for planetary mantles, particularly for the Earth and Mercury. Indeed, these two planets could have formed, at least partly, from EC materials (e.g. [2, 3, 4]). The sulfur content in silicate melts depends on the melt composition but also on pressure (P), temperature (T) and oxygen fugacity fO2. Unfortunately, there is no model of general validity in a wide range of P-T-fO2-composition which describes precisely the evolution of sulfur content in silicate melts, even if the main trends are now known. The second goal of this study is to constrain the sulfur content in silicate melts under reducing conditions and different temperatures.

  8. How to Spot a Primitive Black Hole

    NASA Image and Video Library

    2010-03-17

    These two data plots from NASA Spitzer Space Telescope show a primitive supermassive black hole top compared to a typical one; usually, dust tori are missing and only gas disks are observed in primitive black holes.

  9. Primitive erythrocytes are generated from hemogenic endothelial cells.

    PubMed

    Stefanska, Monika; Batta, Kiran; Patel, Rahima; Florkowska, Magdalena; Kouskoff, Valerie; Lacaud, Georges

    2017-07-25

    Primitive erythroblasts are the first blood cells generated during embryonic hematopoiesis. Tracking their emergence both in vivo and in vitro has remained challenging due to the lack of specific cell surface markers. To selectively investigate primitive erythropoiesis, we have engineered a new transgenic embryonic stem (ES) cell line, where eGFP expression is driven by the regulatory sequences of the embryonic βH1 hemoglobin gene expressed specifically in primitive erythroid cells. Using this ES cell line, we observed that the first primitive erythroblasts are detected in vitro around day 1.5 of blast colony differentiation, within the cell population positive for the early hematopoietic progenitor marker CD41. Moreover, we establish that these eGFP + cells emerge from a hemogenic endothelial cell population similarly to their definitive hematopoietic counterparts. We further generated a corresponding βH1-eGFP transgenic mouse model and demonstrated the presence of a primitive erythroid primed hemogenic endothelial cell population in the developing embryo. Taken together, our findings demonstrate that both in vivo and in vitro primitive erythrocytes are generated from hemogenic endothelial cells.

  10. Dynamical sequestration of the Moon-forming impactor in co-orbital resonance with Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Hartmann, William K.

    2016-09-01

    Recent concerns about the giant impact hypothesis for the origin of the Moon, and an associated "isotope crisis" may be assuaged if the impactor was a local object that formed near Earth. We investigated a scenario that may meet this criterion, with protoplanets assumed to originate in 1:1 co-orbital resonance with Earth. Using N-body numerical simulations we explored the dynamical consequences of placing Mars-mass companions in various co-orbital configurations with a proto-Earth of 0.9 Earth-masses (M⊕). We modeled 162 different configurations, some with just the four terrestrial planets and others that included the four giant planets. In both the 4- and 8-planet models we found that a single Mars-mass companion typically remained a stable co-orbital of Earth for the entire 250 million year (Myr) duration of our simulations (59 of 68 unique simulations). In an effort to destabilize such a system we carried out an additional 94 simulations that included a second Mars-mass co-orbital companion. Even with two Mars-mass companions sharing Earth's orbit about two-thirds of these models (66) also remained stable for the entire 250 Myr duration of the simulations. Of the 28 2-companion models that eventually became unstable 24 impacts were observed between Earth and an escaping co-orbital companion. The average delay we observed for an impact of a Mars-mass companion with Earth was 102 Myr, and the longest delay was 221 Myr. In 40% of the 8-planet models that became unstable (10 out of 25) Earth collided with the nearly equal mass Venus to form a super-Earth (loosely defined here as mass ≥1.7 M⊕). These impacts were typically the final giant impact in the system and often occurred after Earth and/or Venus has accreted one or more of the other large objects. Several of the stable configurations involved unusual 3-planet hierarchical co-orbital systems.

  11. From Protoplanets to Protolife: The Emergence and Maintenance of Life

    NASA Astrophysics Data System (ADS)

    Gaidos, E.; Selsis, F.

    Despite great advances in our understanding of the formation of the solar system, the evolution of Earth, and the chemical basis for life, we are not much closer than the ancient Greeks to an answer of whether life has arisen and persisted on any other planet. The origin of life as a planetary phenomenon will probably resist successful explanation as long as we lack an early record of its evolution and additional examples. Plausible but meagerly investigated scenarios for the origin of important prebiotic molecules and their polymers on Earth involving atmospheric chemistry, meteorites, deep-sea hot springs, and tidal flat sediments have been developed. Our view of the diversity of extant life, from which properties of a last universal common ancestor (LUCA) can be inferred, has also improved in scope and resolution. It is widely thought that the geologic record shows that life emerged quickly after the end of prolonged bombardment of Earth. New data and simulations contradict that view and suggest that more than half a billion years of unrecorded Earth history may have elapsed between the origin of life and LUCA. The impact-driven exchange of material between the inner planets may have allowed earliest life to be more cosmopolitan. Indeed, terrestrial life may not have originated on Earth, or even on any planet. Smaller bodies, e.g., the parent bodies of primitive meteorites, in which organic carbon molecules and catalytic transition metals were abundant, and in which hydrothermal circulation persisted for millions of years, offer alternative environments for the origin of life in the solar system. However, only planet-sized bodies offer the stable physiochemical conditions necessary for the persistence of life. The search for past or present life on Mars is an obvious path to greater enlightenment. The absence of intense geologic activity on Mars, which contributes to its inhospitable state today, has also preserved its ancient history. If life did emerge on Mars or was transferred from Earth, the lack of sterilizing impacts (due to a low gravity and no oceans) means that a more diverse biota may have thrived than is represented by extant life on Earth. On the other hand, a habitable but still lifeless early Mars would be strong evidence against efficient transfer of life between planets. The subsurface oceans of some icy satellites of the outer planets represent the best locales to search for an independent origin of life in the solar system because of the high dynamical barriers for transfer, intense radiation at their surfaces, and thick ice crusts. These also present equally formidable barriers to our technology. The "ultimate" answer to the abundance of life in the cosmos will remain the domain of speculation until we develop observatories capable of detecting habitable planets - and signs of life - around the nearest million or so stars.

  12. What if we are alone?

    NASA Astrophysics Data System (ADS)

    Waltham, D.

    2013-09-01

    The huge number of planets in the observable Universe, and beyond, means that worlds with Earth-like levels of biodiversity are inevitable even if the probability of any give n planet being inhabited is tiny. The corollary of this is that the existence of one such world (the Earth)tells us almost nothing about how common such places are in the Universe. Hence, given the present state of astrobiological know ledge, it is possible that there are no other inhabited planets within the detection-range of any conceivable technology. This is not a popular view currently but the little evidence we have (e.g. the coincidence of stellar-evolution and intelligence-evolution time-scales on Earth [1,2]; indications that many of the Earth's properties may be fine-tuned for complex life [3,4]; the fact that life on Earth was, for most of its history, single-celled [5]) points towards complex life, at least, being rare in the Universe. The plausibility of this "gloomy" view will be tested further incoming decades as we explore Mars, Europa, Titan and other astrobiologically interesting worlds in the Solar System and as we, hopefully, develop ever more sophisticated remote-sensing methods for assessing the biological state of exoplanets. Much thought has been given to the political, social and psychological effects of a positive detection of alien life or even the receiving of a confirmed SETI signal. However, in my view, it is equally important and interesting to consider the impact of negative results. What if we are alone? What if the only other life we find is "primitive"?

  13. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells

    PubMed Central

    Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E.; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y.J.; Thomson, James; Slukvin, Igor

    2016-01-01

    A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin−CD34+ cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938

  14. Virtual Earth System Laboratory (VESL): A Virtual Research Environment for The Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Quinn, J. D.; Larour, E. Y.; Halkides, D. J.

    2017-12-01

    The Virtual Earth System Laboratory (VESL) is a Web application, under continued development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. As with any project of its size, we have encountered both successes and challenges during the course of development. Our principal point of success is the fact that VESL users can interact seamlessly with our earth science simulations within their own Web browser. Some of the challenges we have faced include retrofitting the VESL Web application to respond to touch gestures, reducing page load time (especially as the application has grown), and accounting for the differences between the various Web browsers and computing platforms.

  15. On Directional Measurement Representation in Orbit Determination

    DTIC Science & Technology

    2016-09-13

    representations. The three techniques are then compared experimentally for a geostationary and a low Earth orbit satellite using simulated data to evaluate their...Earth Orbit (LEO) and a Geostationary Earth Orbit (GEO) satellite. Section IV discusses the results from the numerical simulations and finally Section V... Geostationary Earth Orbit (GEO) satellite with the initial orbital parameters shown in Table 1. Different ground sites are used for the LEO and ahttps

  16. A mutli-technique search for the most primitive CO chondrites

    NASA Astrophysics Data System (ADS)

    Alexander, C. M. O'D.; Greenwood, R. C.; Bowden, R.; Gibson, J. M.; Howard, K. T.; Franchi, I. A.

    2018-01-01

    As part of a study to identify the most primitive COs and to look for weakly altered CMs amongst the COs, we have conducted a multi-technique study of 16 Antarctic meteorites that had been classified as primitive COs. For this study, we have determined: (1) the bulk H, C and N abundances and isotopes, (2) bulk O isotopic compositions, (3) bulk modal mineralogies, and (4) for some selected samples the abundances and compositions of their insoluble organic matter (IOM). Two of the 16 meteorites do appear to be CMs - BUC 10943 seems to be a fairly typical CM, while MIL 090073 has probably been heated. Of the COs, DOM 08006 appears to be the most primitive CO identified to date and is quite distinct from the other members of its pairing group. The other COs fall into two groups that are less primitive than DOM 08006 and ALH 77307, the previously most primitive CO. The first group is composed of members of the DOM 08004 pairing group, except DOM 08006. The second group is composed of meteorites belonging to the MIL 03377 and MIL 07099 pairing groups. These two pairing groups should probably be combined. There is a dichotomy in the bulk O isotopes between the primitive (all Antarctic finds) and the more metamorphosed COs (mostly falls). This dichotomy can only partly be explained by the terrestrial weathering experienced by the primitive Antarctic samples. It seems that the more equilibrated samples interacted to a greater extent with 16O-poor material, probably water, than the more primitive meteorites.

  17. Adaptation of a general circulation model to ocean dynamics

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Rees, T. H.; Woodbury, G. E.

    1976-01-01

    A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.

  18. Automated Interactive Simulation Model (AISIM) VAX Version 5.0 Training Manual.

    DTIC Science & Technology

    1987-05-29

    action, activity, decision , etc. that consumes time. The entity is automatically created by the system when an ACTION Primitive is placed. 1.3.2.4 The...MODELED SYSTEM 1.3.2.1 The Process Entity. A Process is used to represent the operations, decisions , actions or activities that can be decomposed and...is associated with the Action entity described below, is included in Process definitions to indicate the time a certain Action (or process, decision

  19. Development of an interpretive simulation tool for the proton radiography technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, M. C., E-mail: levymc@stanford.edu; Lawrence Livermore National Laboratory, Livermore, California 94551; Ryutov, D. D.

    2015-03-15

    Proton radiography is a useful diagnostic of high energy density (HED) plasmas under active theoretical and experimental development. In this paper, we describe a new simulation tool that interacts realistic laser-driven point-like proton sources with three dimensional electromagnetic fields of arbitrary strength and structure and synthesizes the associated high resolution proton radiograph. The present tool’s numerical approach captures all relevant physics effects, including effects related to the formation of caustics. Electromagnetic fields can be imported from particle-in-cell or hydrodynamic codes in a streamlined fashion, and a library of electromagnetic field “primitives” is also provided. This latter capability allows users tomore » add a primitive, modify the field strength, rotate a primitive, and so on, while quickly generating a high resolution radiograph at each step. In this way, our tool enables the user to deconstruct features in a radiograph and interpret them in connection to specific underlying electromagnetic field elements. We show an example application of the tool in connection to experimental observations of the Weibel instability in counterstreaming plasmas, using ∼10{sup 8} particles generated from a realistic laser-driven point-like proton source, imaging fields which cover volumes of ∼10 mm{sup 3}. Insights derived from this application show that the tool can support understanding of HED plasmas.« less

  20. Centralized Networks to Generate Human Body Motions

    PubMed Central

    Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan

    2017-01-01

    We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons’ states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers’ trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings. PMID:29240694

  1. Development and characteristics of Mechanical Porous Ambient Comet Simulants as comet surface analogs

    NASA Astrophysics Data System (ADS)

    Carey, Elizabeth M.; Peters, Gregory H.; Choukroun, Mathieu; Chu, Lauren; Carpenter, Emma; Cohen, Brooklin; Panossian, Lara; Zhou, Yu Meng; Sarkissian, Ani; Moreland, Scott; Shiraishi, Lori R.; Backes, Paul; Zacny, Kris; Green, Jacklyn R.; Raymond, Carol

    2017-11-01

    Comets are icy remnants of the Solar System formation, and as such contain some of the most primitive volatiles and organic materials. Sampling the surface of a comet is a high priority for the New Frontiers program. Planetary simulants are crucial to the development of adequate in situ instruments and sample acquisition systems. A high-fidelity comet surface simulant has been developed to support hardware design and development for one Comet Surface Sample Return tool, the BiBlade Comet Sampler. Mechanical Porous Ambient Comet Simulants (MPACS) can be manufactured to cover a wide range of desired physical properties, such as density and cone penetration resistance, and exhibit a brittle fracture mode. The structure of the MPACS materials is an aggregated composite structure of weakly-bonded grains of very small size (diameter ≤ 40 μm) that are most relevant to the structure of the surface of a comet nucleus.

  2. Centralized Networks to Generate Human Body Motions.

    PubMed

    Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan; Weber, Andres

    2017-12-14

    We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons' states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers' trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings.

  3. Data mining tools for Sentinel 1 and Sentinel 2 data exploitation

    NASA Astrophysics Data System (ADS)

    Espinoza Molina, Daniela; Datcu, Mihai

    2016-10-01

    With the new planned Sentinel missions, the availability of Earth Observation data is increasing everyday offering a larger number of applications that can be created using these data. Currently, three of the five missions were launched and they are delivering a wealth of data and imagery of the Earth's surface as, for example, the Sentinel-1 carries an advanced radar instrument to provide an all-weather, day-and-night supply of Earth imagery. The second mission, the Sentinel-2, carries an optical instrument payload that will sample 13 spectral bands at different resolutions. Even though, we count on tools for automated loading and visual exploration of the Sentinel data, we still face the problem of extracting relevant structures from the images, finding similar patterns in a scene, exploiting the data, and creating final user applications based on these processed data. In this paper, we present our approach for processing radar and multi-spectral Sentinel data. Our approach is mainly composed of three steps: 1) the generation of a data model that explains the information contained in a Sentinel product. The model is formed by primitive descriptors and metadata entries, 2) the storage of this model in a database system, 3) the semantic definition of the image content based on machine learning algorithms and relevance feedback methods.

  4. Non-chondritic iron isotope ratios in planetary mantles as a result of core formation

    NASA Astrophysics Data System (ADS)

    Elardo, Stephen M.; Shahar, Anat

    2017-02-01

    Information about the materials and conditions involved in planetary formation and differentiation in the early Solar System is recorded in iron isotope ratios. Samples from Earth, the Moon, Mars and the asteroid Vesta reveal significant variations in iron isotope ratios, but the sources of these variations remain uncertain. Here we present experiments that demonstrate that under the conditions of planetary core formation expected for the Moon, Mars and Vesta, iron isotopes fractionate between metal and silicate due to the presence of nickel, and enrich the bodies' mantles in isotopically light iron. However, the effect of nickel diminishes at higher temperatures: under conditions expected for Earth's core formation, we infer little fractionation of iron isotopes. From our experimental results and existing conceptual models of magma ocean crystallization and mantle partial melting, we find that nickel-induced fractionation can explain iron isotope variability found in planetary samples without invoking nebular or accretionary processes. We suggest that near-chondritic iron isotope ratios of basalts from Mars and Vesta, as well as the most primitive lunar basalts, were achieved by melting of isotopically light mantles, whereas the heavy iron isotope ratios of terrestrial ocean floor basalts are the result of melting of near-chondritic Earth mantle.

  5. Spectropolarimetry of Photosynthetic Pigments as Global Surface Biosignatures

    NASA Astrophysics Data System (ADS)

    Sparks, W. B.; Parenteau, M. N.; Blankenship, R. E.; Germer, T. A.; Meadows, V. S.; Telesco, C. M.

    2015-12-01

    Photosynthesis is an ancient metabolic process on the early Earth. The most primitive phototrophs used reductants such as H2, H2S, and Fe(II) and were widespread in marine, intertidal, and likely continental habitats. These anoxygenic phototrophs were the key primary producers for the first ~1 billion years before the evolution of oxygenic photosynthesis at 2.7 Ga. The potential clearly exists for this type of primitive photosynthesis to operate on habitable exoplanets. Anoxygenic phototrophs are not known to emit gases that are uniquely biogenic in origin, so we focus on surface pigments signatures as having the strongest promise to offer identifiable biosignatures for a pre-oxygenic habitable exoplanet. Following our earlier work that showed photosynthetic cyanobacteria yield a polarization signature potentially useful in remote sensing, here we seek to characterize the remotely detectable polarization biosignatures associated with anoxygenic phototrophs. The six major pigments of anoxygenic phototrophs (bacteriochlorophylls [Bchls]) absorb in the near-infrared (NIR) from ~705 - 1040 nm. The lower symmetry of the pigment structure relative to chlorophylls shifts the energy absorption bands to longer wavelengths. As a result, Bchls are well suited to absorbing the relatively higher flux of red and NIR radiation of M dwarf stars, the most abundant type of star in the Galaxy, as well as the plentiful flux of typical main sequence stars. Homochirality is a powerful biosignature, and because of the optical activity of biological molecules, it can, in principle, be remotely observed on macroscopic scales using circular polarization spectroscopy. Bchls and Chls are optically active molecules with several chiral centers, strongly interacting with the incident light. We measured the reflectance and transmission full Stokes polarization spectra of pure cultures of anoxygenic phototrophs and environmental samples of microbial mats, and found strong correlations between spectral and polarization features. This work characterizing polarization biosignatures associated with the pigments of anoxygenic phototrophs informs the search for life on exoplanets at a similar stage of evolution or biogeochemical state as the Archean Earth (i.e., pre-oxygenic photosynthesis).

  6. The divergent fates of primitive hydrospheric water on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Wade, Jon; Dyck, Brendan; Palin, Richard M.; Moore, James D. P.; Smye, Andrew J.

    2017-12-01

    Despite active transport into Earth’s mantle, water has been present on our planet’s surface for most of geological time. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet’s magnetic field, the widespread serpentinization of Martian crust suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet’s surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth’s mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained close to its surface, and thus creating conditions conducive for the evolution of complex multicellular life.

  7. Lipid Biomarkers and Carbon Isotope Ratios of Lipids Isolated from Acid Mine Drainage Biofilms: Dual Biosignatures for Eukaryotic Evolution and Oxygenation of Primitive Earth

    NASA Astrophysics Data System (ADS)

    Dasgupta, S.; Fang, J.; Zhang, L.; Li, J.

    2012-12-01

    Lipid analysis and carbon isotope ratios (δ13C) of lipids in biofilms in an acid mine drainage site (AMD) site in western Indiana revealed unique biogeochemical signatures of microeukaryotes, never recorded before. Dominance of photosynthetic microeukaryote Euglena was indicated by the detection of abundant phytadiene, phytol, phytanol, polyunsaturated n-alkenes, polyunsaturated fatty acids, short-chain (C25-32) wax esters (WE), ergosterol, and tocopherols. The WE were probably synthesized in mitochondria under anoxic conditions by the reverse β-oxidation pathway, whereas the sterols (ergosterol and ergosta-7,22-dien-3β-ol) were likely synthesized in the cytosol in the presence of molecular oxygen. The dual aerobic and anaerobic biosynthetic pathways of Euglena may be a response to survive the recurring anoxic and oxic conditions in primitive Earth, whereby microeukaryotes retained this mechanism of conserved compartmentalization within their physiology to evolve and diversify in extreme conditions. Hydrocarbons, including n-alkenes, phytadienes, and wax esters showed heavy δ13C values than usual. The primary cause for the 13C-enrichment can be attributed to a CO2-limiting system that exists in the AMD, which is further regulated by the pH of the AMD. Floating biofilms BF2, 4, and 6 showed more depleted δ13C values for phytadienes and n-alkenes (average of -23.6‰) as compared to benthic biofilm BF5 (average of -20.8‰), indicating that physiology plays an important role in isotopic discrimination. 13C-enriched values of the esters could result from kinetic isotope effects at two branch points (pyruvate and/or acetyl CoA) in the biosynthetic pathway. Our understanding of biogeochemical conditions in this AMD environment would allow us to identify unique sets of biosignatures that can act as a proxy in deciphering the links between eukaryotic evolutions, oxygenation of the early atmosphere, formation of BIF, and possibly iron-rich extraterrestrial environments.

  8. Dynamic primitives in the control of locomotion.

    PubMed

    Hogan, Neville; Sternad, Dagmar

    2013-01-01

    Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term "rhythmic" may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered.

  9. Fundamental physical theories: Mathematical structures grounded on a primitive ontology

    NASA Astrophysics Data System (ADS)

    Allori, Valia

    In my dissertation I analyze the structure of fundamental physical theories. I start with an analysis of what an adequate primitive ontology is, discussing the measurement problem in quantum mechanics and theirs solutions. It is commonly said that these theories have little in common. I argue instead that the moral of the measurement problem is that the wave function cannot represent physical objects and a common structure between these solutions can be recognized: each of them is about a clear three-dimensional primitive ontology that evolves according to a law determined by the wave function. The primitive ontology is what matter is made of while the wave function tells the matter how to move. One might think that what is important in the notion of primitive ontology is their three-dimensionality. If so, in a theory like classical electrodynamics electromagnetic fields would be part of the primitive ontology. I argue that, reflecting on what the purpose of a fundamental physical theory is, namely to explain the behavior of objects in three-dimensional space, one can recognize that a fundamental physical theory has a particular architecture. If so, electromagnetic fields play a different role in the theory than the particles and therefore should be considered, like the wave function, as part of the law. Therefore, we can characterize the general structure of a fundamental physical theory as a mathematical structure grounded on a primitive ontology. I explore this idea to better understand theories like classical mechanics and relativity, emphasizing that primitive ontology is crucial in the process of building new theories, being fundamental in identifying the symmetries. Finally, I analyze what it means to explain the word around us in terms of the notion of primitive ontology in the case of regularities of statistical character. Here is where the notion of typicality comes into play: we have explained a phenomenon if the typical histories of the primitive ontology give rise to the statistical regularities we observe.

  10. A novel class sensitive hashing technique for large-scale content-based remote sensing image retrieval

    NASA Astrophysics Data System (ADS)

    Reato, Thomas; Demir, Begüm; Bruzzone, Lorenzo

    2017-10-01

    This paper presents a novel class sensitive hashing technique in the framework of large-scale content-based remote sensing (RS) image retrieval. The proposed technique aims at representing each image with multi-hash codes, each of which corresponds to a primitive (i.e., land cover class) present in the image. To this end, the proposed method consists of a three-steps algorithm. The first step is devoted to characterize each image by primitive class descriptors. These descriptors are obtained through a supervised approach, which initially extracts the image regions and their descriptors that are then associated with primitives present in the images. This step requires a set of annotated training regions to define primitive classes. A correspondence between the regions of an image and the primitive classes is built based on the probability of each primitive class to be present at each region. All the regions belonging to the specific primitive class with a probability higher than a given threshold are highly representative of that class. Thus, the average value of the descriptors of these regions is used to characterize that primitive. In the second step, the descriptors of primitive classes are transformed into multi-hash codes to represent each image. This is achieved by adapting the kernel-based supervised locality sensitive hashing method to multi-code hashing problems. The first two steps of the proposed technique, unlike the standard hashing methods, allow one to represent each image by a set of primitive class sensitive descriptors and their hash codes. Then, in the last step, the images in the archive that are very similar to a query image are retrieved based on a multi-hash-code-matching scheme. Experimental results obtained on an archive of aerial images confirm the effectiveness of the proposed technique in terms of retrieval accuracy when compared to the standard hashing methods.

  11. Primordial domains in the depleted upper mantle identified by noble gases in MORBs

    NASA Astrophysics Data System (ADS)

    Tucker, J.; Mukhopadhyay, S.; Langmuir, C. H.; Hamelin, C.; Fuentes, J.

    2017-12-01

    The distribution of noble gas isotopic compositions in the mantle provides important constraints on the large-scale mantle evolution, as noble gases can trace the interaction between degassed, or processed, mantle domains and undegassed, or primitive, mantle domains. Data from the radiogenic He, Ne, Ar and Xe isotopic systems have shown that plume-related lavas sample relatively undegassed mantle domains, and the recent identification of isotopic anomalies in the short-lived I-Xe and Hf-W isotopic systems in plume-related lavas further suggests that these domains may be ancient, dating back to Earth's accretion. However, little is known about the potential variability of the heavy noble gas systems and the distribution of undegassed domains in the ambient upper mantle not influenced by plumes. Here, we present new high-precision He, Ne, Ar, and Xe isotopic data for a series of MORBs from a depleted section of the subtropical north Mid-Atlantic Ridge, distant from any known plume influence. Some samples have extremely low (unradiogenic) 4He/3He, 21Ne/22Ne, 40Ar/36Ar, and 129Xe/130Xe ratios, including some of the lowest values ever determined for MORBs. Such unradiogenic compositions are reminiscent of OIBs and plume-influenced E-MORBs, suggesting the presence of a relatively undegassed or primitive reservoir in the source of these depleted MORBs. The He, Ne, and Ar isotopic systems are sensitive to the long-term degassing history, suggesting that this domain in the MORB source is ancient. The 129Xe/130Xe ratio is sensitive to degassing only during the first 100 Ma of Earth history, suggesting that some of the isotopic character of these samples has been preserved since Earth's accretion. Together, these observations suggest that primordial or undegassed material is not only sampled in plumes-related lavas, but also normal, depleted MORBs. Along with data from E-MORBs in the southern EPR (Kurz et al., 2005), southern MAR (Sarda et al., 2000), and equatorial MAR (Tucker et al., 2012), our new data suggest that primordial material may be present throughout the MORB source. Such material could either have been stored for a long term in the upper mantle, or recently mixed into the upper mantle from a deeper reservoir.

  12. Learning multivariate distributions by competitive assembly of marginals.

    PubMed

    Sánchez-Vega, Francisco; Younes, Laurent; Geman, Donald

    2013-02-01

    We present a new framework for learning high-dimensional multivariate probability distributions from estimated marginals. The approach is motivated by compositional models and Bayesian networks, and designed to adapt to small sample sizes. We start with a large, overlapping set of elementary statistical building blocks, or "primitives," which are low-dimensional marginal distributions learned from data. Each variable may appear in many primitives. Subsets of primitives are combined in a Lego-like fashion to construct a probabilistic graphical model; only a small fraction of the primitives will participate in any valid construction. Since primitives can be precomputed, parameter estimation and structure search are separated. Model complexity is controlled by strong biases; we adapt the primitives to the amount of training data and impose rules which restrict the merging of them into allowable compositions. The likelihood of the data decomposes into a sum of local gains, one for each primitive in the final structure. We focus on a specific subclass of networks which are binary forests. Structure optimization corresponds to an integer linear program and the maximizing composition can be computed for reasonably large numbers of variables. Performance is evaluated using both synthetic data and real datasets from natural language processing and computational biology.

  13. Cometary dust: the diversity of primitive refractory grains

    PubMed Central

    Ishii, H. A.

    2017-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive cometary particles has expanded significantly through microscale investigations of cosmic dust samples (anhydrous interplanetary dust particles (IDPs), chondritic porous (CP) IDPs and UltraCarbonaceous Antarctic micrometeorites, Stardust and Rosetta), as well as through remote sensing (Spitzer IR spectroscopy). Comet dust are aggregate particles of materials unequilibrated at submicrometre scales. We discuss the properties and processes experienced by primitive matter in comets. Primitive particles exhibit a diverse range of: structure and typology; distribution of constituents; concentration and form of carbonaceous and refractory organic matter; Mg- and Fe-contents of the silicate minerals; sulfides; existence/abundance of type II chondrule fragments; high-temperature calcium–aluminium inclusions and ameboid-olivine aggregates; and rarely occurring Mg-carbonates and magnetite, whose explanation requires aqueous alteration on parent bodies. The properties of refractory materials imply there were disc processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disc present at the time and in the region where the comets formed. This article is part of the themed issue ‘Cometary science after Rosetta’. PMID:28554979

  14. Large-eddy simulation of a turbulent mixing layer

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.; Ferziger, J. H.; Reynolds, W. C.

    1978-01-01

    The three dimensional, time dependent (incompressible) vorticity equations were used to simulate numerically the decay of isotropic box turbulence and time developing mixing layers. The vorticity equations were spatially filtered to define the large scale turbulence field, and the subgrid scale turbulence was modeled. A general method was developed to show numerical conservation of momentum, vorticity, and energy. The terms that arise from filtering the equations were treated (for both periodic boundary conditions and no stress boundary conditions) in a fast and accurate way by using fast Fourier transforms. Use of vorticity as the principal variable is shown to produce results equivalent to those obtained by use of the primitive variable equations.

  15. A Monte Carlo (N,V,T) study of the stability of charged interfaces: A simulation on a hypersphere

    NASA Astrophysics Data System (ADS)

    Delville, A.; Pellenq, R. J.-M.; Caillol, J. M.

    1997-05-01

    We have used an exact expression of the Coulombic interactions derived on a hypersphere of an Euclidian space of dimension four to determine the swelling behavior of two infinite charged plates neutralized by exchangeable counterions. Monte Carlo simulations in the (N,V,T) ensemble allows for a derivation of short-ranged hard core repulsions and long-ranged electrostatic forces, which are the two components of the interionic forces in the context of the primitive model. Comparison with numerical results obtained by a classical Euclidian method illustrates the efficiency of the hyperspherical approach, especially at strong coupling between the charged particles, i.e., for divalent counterions and small plate separation.

  16. Probabilistic simulation of the human factor in structural reliability

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1993-01-01

    A formal approach is described in an attempt to computationally simulate the probable ranges of uncertainties of the human factor in structural probabilistic assessments. A multi-factor interaction equation (MFIE) model has been adopted for this purpose. Human factors such as marital status, professional status, home life, job satisfaction, work load and health, are considered to demonstrate the concept. Parametric studies in conjunction with judgment are used to select reasonable values for the participating factors (primitive variables). Suitability of the MFIE in the subsequently probabilistic sensitivity studies are performed to assess the validity of the whole approach. Results obtained show that the uncertainties for no error range from five to thirty percent for the most optimistic case.

  17. Probabilistic simulation of the human factor in structural reliability

    NASA Astrophysics Data System (ADS)

    Chamis, Christos C.; Singhal, Surendra N.

    1994-09-01

    The formal approach described herein computationally simulates the probable ranges of uncertainties for the human factor in probabilistic assessments of structural reliability. Human factors such as marital status, professional status, home life, job satisfaction, work load, and health are studied by using a multifactor interaction equation (MFIE) model to demonstrate the approach. Parametric studies in conjunction with judgment are used to select reasonable values for the participating factors (primitive variables). Subsequently performed probabilistic sensitivity studies assess the suitability of the MFIE as well as the validity of the whole approach. Results show that uncertainties range from 5 to 30 percent for the most optimistic case, assuming 100 percent for no error (perfect performance).

  18. Probabilistic Simulation of the Human Factor in Structural Reliability

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Singhal, Surendra N.

    1994-01-01

    The formal approach described herein computationally simulates the probable ranges of uncertainties for the human factor in probabilistic assessments of structural reliability. Human factors such as marital status, professional status, home life, job satisfaction, work load, and health are studied by using a multifactor interaction equation (MFIE) model to demonstrate the approach. Parametric studies in conjunction with judgment are used to select reasonable values for the participating factors (primitive variables). Subsequently performed probabilistic sensitivity studies assess the suitability of the MFIE as well as the validity of the whole approach. Results show that uncertainties range from 5 to 30 percent for the most optimistic case, assuming 100 percent for no error (perfect performance).

  19. Visible spectroscopy of the Polana-Eulalia family complex: Spectral homogeneity

    NASA Astrophysics Data System (ADS)

    de León, J.; Pinilla-Alonso, N.; Delbo, M.; Campins, H.; Cabrera-Lavers, A.; Tanga, P.; Cellino, A.; Bendjoya, P.; Gayon-Markt, J.; Licandro, J.; Lorenzi, V.; Morate, D.; Walsh, K. J.; DeMeo, F.; Landsman, Z.; Alí-Lagoa, V.

    2016-03-01

    The Polana-Eulalia family complex is located in the inner part of the asteroid belt, bounded by the ν6 and the 3:1 resonances, where we can find another three collisional families of primitive asteroids (Erigone, Clarissa, and Sulamitis), and a low-albedo population of background objects. This region of the belt is believed to be the most likely origin of the two primitive near-Earth asteroids that are the current targets of two sample return missions: NASA's OSIRIS-REx and JAXA's Hayabusa 2 to Asteroids (101955) Bennu and (162173) Ryugu (also known as 1999 JU3), respectively. Therefore, understanding these families will enhance the scientific return of these missions. We present the results of a spectroscopic survey of asteroids in the region of the Polana-Eulalia family complex, and also asteroids from the background population of low-albedo, low-inclination objects. We obtained visible spectra of a total of 65 asteroids, using the 10.4 m Gran Telescopio Canarias (GTC) and the 3.6 m Telescopio Nazionale Galileo (TNG), both located at the El Roque de Los Muchachos Observatory, in the island of La Palma (Spain), and the 3.6 m New Technology Telescope (NTT), located at the European Southern Observatory of La Silla, in Chile. From the spectral analysis of our sample we found that, in spite of the presence of distinct dynamical groups, the asteroids in this region present spectral homogeneity at visible wavelengths, showing a continuum of spectral slopes, from blue to moderately red, typical of primitive asteroids classified as B- and C-types. We conclude that visible spectra cannot be used to distinguish between members of the Polana and the Eulalia families, or members of the background population. The visible spectra of the two targets of sample return missions, Asteroids Bennu and Ryugu, are compatible with the spectra of the asteroids in this region, supporting previous studies that suggested either the Polana family or the background population as the most likely origins of these NEAs.

  20. Historical Development of Origins Research

    PubMed Central

    Lazcano, Antonio

    2010-01-01

    Following the publication of the Origin of Species in 1859, many naturalists adopted the idea that living organisms were the historical outcome of gradual transformation of lifeless matter. These views soon merged with the developments of biochemistry and cell biology and led to proposals in which the origin of protoplasm was equated with the origin of life. The heterotrophic origin of life proposed by Oparin and Haldane in the 1920s was part of this tradition, which Oparin enriched by transforming the discussion of the emergence of the first cells into a workable multidisciplinary research program. On the other hand, the scientific trend toward understanding biological phenomena at the molecular level led authors like Troland, Muller, and others to propose that single molecules or viruses represented primordial living systems. The contrast between these opposing views on the origin of life represents not only contrasting views of the nature of life itself, but also major ideological discussions that reached a surprising intensity in the years following Stanley Miller’s seminal result which showed the ease with which organic compounds of biochemical significance could be synthesized under putative primitive conditions. In fact, during the years following the Miller experiment, attempts to understand the origin of life were strongly influenced by research on DNA replication and protein biosynthesis, and, in socio-political terms, by the atmosphere created by Cold War tensions. The catalytic versatility of RNA molecules clearly merits a critical reappraisal of Muller’s viewpoint. However, the discovery of ribozymes does not imply that autocatalytic nucleic acid molecules ready to be used as primordial genes were floating in the primitive oceans, or that the RNA world emerged completely assembled from simple precursors present in the prebiotic soup. The evidence supporting the presence of a wide range of organic molecules on the primitive Earth, including membrane-forming compounds, suggests that the evolution of membrane-bounded molecular systems preceded cellular life on our planet, and that life is the evolutionary outcome of a process, not of a single, fortuitous event. PMID:20534710

  1. Basic primitives for molecular diagram sketching

    PubMed Central

    2010-01-01

    A collection of primitive operations for molecular diagram sketching has been developed. These primitives compose a concise set of operations which can be used to construct publication-quality 2 D coordinates for molecular structures using a bare minimum of input bandwidth. The input requirements for each primitive consist of a small number of discrete choices, which means that these primitives can be used to form the basis of a user interface which does not require an accurate pointing device. This is particularly relevant to software designed for contemporary mobile platforms. The reduction of input bandwidth is accomplished by using algorithmic methods for anticipating probable geometries during the sketching process, and by intelligent use of template grafting. The algorithms and their uses are described in detail. PMID:20923555

  2. Design of experiment for earth rotation and baseline parameter determination from very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Dermanis, A.

    1977-01-01

    The possibility of recovering earth rotation and network geometry (baseline) parameters are emphasized. The numerical simulated experiments performed are set up in an environment where station coordinates vary with respect to inertial space according to a simulated earth rotation model similar to the actual but unknown rotation of the earth. The basic technique of VLBI and its mathematical model are presented. The parametrization of earth rotation chosen is described and the resulting model is linearized. A simple analysis of the geometry of the observations leads to some useful hints on achieving maximum sensitivity of the observations with respect to the parameters considered. The basic philosophy for the simulation of data and their analysis through standard least squares adjustment techniques is presented. A number of characteristic network designs based on present and candidate station locations are chosen. The results of the simulations for each design are presented together with a summary of the conclusions.

  3. Multi-processor including data flow accelerator module

    DOEpatents

    Davidson, George S.; Pierce, Paul E.

    1990-01-01

    An accelerator module for a data flow computer includes an intelligent memory. The module is added to a multiprocessor arrangement and uses a shared tagged memory architecture in the data flow computer. The intelligent memory module assigns locations for holding data values in correspondence with arcs leading to a node in a data dependency graph. Each primitive computation is associated with a corresponding memory cell, including a number of slots for operands needed to execute a primitive computation, a primitive identifying pointer, and linking slots for distributing the result of the cell computation to other cells requiring that result as an operand. Circuitry is provided for utilizing tag bits to determine automatically when all operands required by a processor are available and for scheduling the primitive for execution in a queue. Each memory cell of the module may be associated with any of the primitives, and the particular primitive to be executed by the processor associated with the cell is identified by providing an index, such as the cell number for the primitive, to the primitive lookup table of starting addresses. The module thus serves to perform functions previously performed by a number of sections of data flow architectures and coexists with conventional shared memory therein. A multiprocessing system including the module operates in a hybrid mode, wherein the same processing modules are used to perform some processing in a sequential mode, under immediate control of an operating system, while performing other processing in a data flow mode.

  4. Dynamic primitives in the control of locomotion

    PubMed Central

    Hogan, Neville; Sternad, Dagmar

    2013-01-01

    Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors, and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: as discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term “rhythmic” may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered. PMID:23801959

  5. Model-Free Primitive-Based Iterative Learning Control Approach to Trajectory Tracking of MIMO Systems With Experimental Validation.

    PubMed

    Radac, Mircea-Bogdan; Precup, Radu-Emil; Petriu, Emil M

    2015-11-01

    This paper proposes a novel model-free trajectory tracking of multiple-input multiple-output (MIMO) systems by the combination of iterative learning control (ILC) and primitives. The optimal trajectory tracking solution is obtained in terms of previously learned solutions to simple tasks called primitives. The library of primitives that are stored in memory consists of pairs of reference input/controlled output signals. The reference input primitives are optimized in a model-free ILC framework without using knowledge of the controlled process. The guaranteed convergence of the learning scheme is built upon a model-free virtual reference feedback tuning design of the feedback decoupling controller. Each new complex trajectory to be tracked is decomposed into the output primitives regarded as basis functions. The optimal reference input for the control system to track the desired trajectory is next recomposed from the reference input primitives. This is advantageous because the optimal reference input is computed straightforward without the need to learn from repeated executions of the tracking task. In addition, the optimization problem specific to trajectory tracking of square MIMO systems is decomposed in a set of optimization problems assigned to each separate single-input single-output control channel that ensures a convenient model-free decoupling. The new model-free primitive-based ILC approach is capable of planning, reasoning, and learning. A case study dealing with the model-free control tuning for a nonlinear aerodynamic system is included to validate the new approach. The experimental results are given.

  6. Comparative Magma Oceanography

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    1999-01-01

    The question of whether the Earth ever passed through a magma ocean stage is of considerable interest. Geochemical evidence strongly suggests that the Moon had a magma ocean and the evidence is mounting that the same was true for Mars. Analyses of martian (SNC) meteorites have yielded insights into the differentiation history of Mars, and consequently, it is interesting to compare that planet to the Earth. Three primary features of Mars contrast strongly to those of the Earth: (i) the extremely ancient ages of the martian core, mantle, and crust (about 4.55 b.y.); (ii) the highly depleted nature of the martian mantle; and (iii) the extreme ranges of Nd isotopic compositions that arise within the crust and depleted mantle. The easiest way to explain the ages and diverse isotopic compositions of martian basalts is to postulate that Mars had an early magma ocean. Cumulates of this magma ocean were later remelted to form the SNC meteorite suite and some of these melts assimilated crustal materials enriched in incompatible elements. The REE pattern of the crust assimilated by these SNC magmas was LREE enriched. If this pattern is typical of the crust as a whole, the martian crust is probably similar in composition to melts generated by small degrees of partial melting (about 5%) of a primitive source. Higher degrees of partial melting would cause the crustal LREE pattern to be essentially flat. In the context of a magma ocean model, where large degrees of partial melting presumably prevailed, the crust would have to be dominated by late-stage, LREE-enriched residual liquids. Regardless of the exact physical setting, Nd and W isotopic evidence indicates that martian geochemical reservoirs must have formed early and that they have not been efficiently remixed since. The important point is that in both the Moon and Mars we see evidence of a magma ocean phase and that we recognize it as such. Several lines of theoretical inference point to an early Earth that was also hot and, perhaps, mostly molten. The Giant Impact hypothesis for the origin of the Moon offers a tremendous input of thermal energy and the same could be true for core formation. And current solar system models favor the formation of a limited number of large (about 1000 km) planetesimals that, upon accreting to Earth, would cause great heating, being lesser versions of the Giant Impact. Several lines of geochemical evidence do not favor this hot early Earth scenario. (i) Terrestrial man-tle xenoliths are sometimes nearly chondritic in their major element compositions, suggesting that these rocks have never been much molten. Large degrees of partial melting probably promote differentiation rather than homogenization. (ii) Unlike the case of Mars, the continental crust probably did not form as a highly fractionated residual liquid from a magma ocean (about 99% crystallization), but, rather, formed in multiple steps. [The simplest model for the formation of continental crust is complicated: (a) about 10% melting of a primitive mantle, making basalt; (b) hydrothermal alteration of that basalt, converting it to greenstone; and (c) 10% partial melting of that greenstone, producing tonalite.] This model is reinforced by the recent observation from old (about 4.1 b.y.) zircons that the early crust formed from an undepleted mantle having a chondritic Lu/Hf ratio. (iii) If the mantle were once differentiated by a magma ocean, the mantle xenolith suite requires that it subsequently be homogenized. The Os isotopic compositions of fertile spinel lherzolites place constraints on the timing of that homogenization. The Os isotopic composition of spinel lherzolites approaches that of chondrites and correlates with elements such as Lu and Al. As Lu and Al concentrations approach those of the primitive mantle, Os isotopic compositions approach chondritic. The Re and Os in these xenoliths were probably added as a late veneer. Thus, the mantle that received the late veneer must have been nearly chondritic in terms of its major elements (excluding Fe). If the mantle that the veneer was mixed into was not al-ready homogenized, then Os isotopes should not correlate with incompatible elements such as Al. Consequently, either early differentiation of the mantle did not occur or the homogenization of this differentiation must have occurred before the late veneer was added. The timing of the late veneer is itself uncertain but presumably postdated core formation at about 4.45 b.y. and did not postdate the 3.8-3.9 b.y. late bombardment of the Moon. This timing based on siderophile elements is consistent with the Hf isotopic evidence cited above. If the Earth, Moon and Mars had magma oceans, the Earth subsequently rehomogenized whereas the Moon and Mars did not. The simplest solution to this observation is that homogenization of igneous differentiates was never necessary on Earth, either because the hypothetical magma ocean never occurred or because this event did not produce mantle differentiation.

  7. Giant Impacts on Earth-Like Worlds

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Earth has experienced a large number of impacts, from the cratering events that may have caused mass extinctions to the enormous impact believed to have formed the Moon. A new study examines whether our planets impact history is typical for Earth-like worlds.N-Body ChallengesTimeline placing the authors simulations in context of the history of our solar system (click for a closer look). [Quintana et al. 2016]The final stages of terrestrial planet formation are thought to be dominated by giant impacts of bodies in the protoplanetary disk. During this stage, protoplanets smash into one another and accrete, greatly influencing the growth, composition, and habitability of the final planets.There are two major challenges when simulating this N-body planet formation. The first is fragmentation: since computational time scales as N^2, simulating lots of bodies that split into many more bodies is very computationally intensive. For this reason, fragmentation is usually ignored; simulations instead assume perfect accretion during collisions.Total number of bodies remaining within the authors simulations over time, with fragmentation included (grey) and ignored (red). Both simulations result in the same final number of bodies, but the ones that include fragmentation take more time to reach that final number. [Quintana et al. 2016]The second challengeis that many-body systems are chaotic, which means its necessary to do a large number of simulations to make statistical statements about outcomes.Adding FragmentationA team of scientists led by Elisa Quintana (NASA NPP Senior Fellow at the Ames Research Center) has recently pushed at these challenges by modeling inner-planet formation using a code that does include fragmentation. The team ran 140 simulations with and 140 without the effects of fragmentation using similar initial conditions to understand how including fragmentation affects the outcome.Quintana and collaborators then used the fragmentation-inclusive simulations to examine the collisional histories of Earth-like planets that form. Their goal is to understand if our solar systems formation and evolution is typical or unique.How Common Are Giant Impacts?Histogram of the total number of giant impacts received by the 164 Earth-like worlds produced in the authors fragmentation-inclusive simulations. [Quintana et al. 2016]The authors find that including fragmentation does not affect the final number of planets that are formed in the simulation (an average of 34 in each system, consistent with our solar systems terrestrial planet count). But when fragmentation is included, fewer collisions end in merger which results in typical accretion timescales roughly doubling. So the effects of fragmentation influence the collisional history of the system and the length of time needed for the final system to form.Examining the 164 Earth-analogs produced in the fragmentation-inclusive simulations, Quintana and collaborators find that impacts large enough to completely strip a planets atmosphere are rare; fewer than 1% of the Earth-like worlds experienced this.But giant impacts that are able to strip ~50% of an Earth-analogs atmosphere roughly the energy of the giant impact thought to have formed our Moon are more common. Almost all of the authors Earth-analogs experienced at least 1 giant impact of this size in the 2-Gyr simulation, and the average Earth-like world experienced ~3 such impacts.These results suggest that our planets impact history with the Moon-forming impact likely being the last giant impact Earth experienced is fairly typical for Earth-like worlds. The outcomes also indicate that smaller impacts that are still potentially life-threatening are much more common than bulk atmospheric removal. Higher-resolution simulations could be used to examine such smaller impacts.CitationElisa V. Quintana et al 2016 ApJ 821 126. doi:10.3847/0004-637X/821/2/126

  8. A study of the adequacy of quasi-geostrophic dynamics for modeling the effect of frontal cyclones on the larger scale flow

    NASA Technical Reports Server (NTRS)

    Mudrick, S.

    1985-01-01

    The validity of quasi-geostrophic (QG) dynamics were tested on compared to primitive equation (PE) dynamics, for modeling the effect of cyclone waves on the larger scale flow. The formation of frontal cyclones and the dynamics of occluded frontogenesis were studied. Surface friction runs with the PE model and the wavelength of maximum instability is described. Also fine resolution PE simulation of a polar low is described.

  9. Aerospace Medicine and Biology. A Continuing Bibliography with Indexes

    DTIC Science & Technology

    1987-12-01

    GLYCERALDEHYDE AS A SOURCE OF SIMULATION ABOUT THE ORIGIN OF LIFE ENERGY AND MONOMERS FOR PREBIOTIC CONDENSATION URSULA NIESERT (Freiburg, Universitaet, Freiburg...primitive prebiotic replication system. The adsorption of Poly-C, Poly-U, Poly-A, Poly-G, and 5’-AMP, 5’-GMP, 5’-CMP and 5’-UMP onto gypsum was studied. It...Cambridge University Press. 1986. 378 p. For individual titles see A87-49035 to A87-49049. Topics discussed include prebiotic systems and evolutionary

  10. 36 CFR 261.21 - National Forest primitive areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false National Forest primitive areas. 261.21 Section 261.21 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PROHIBITIONS General Prohibitions § 261.21 National Forest primitive areas. The following are...

  11. Spaceflight Activates Protein Kinase C Alpha Signaling and Modifies the Developmental Stage of Human Neonatal Cardiovascular Progenitor Cells.

    PubMed

    Baio, Jonathan; Martinez, Aida F; Bailey, Leonard; Hasaniya, Nahidh; Pecaut, Michael J; Kearns-Jonker, Mary

    2018-02-12

    Spaceflight impacts cardiovascular function in astronauts; however, its impact on cardiac development and the stem cells that form the basis for cardiac repair is unknown. Accordingly, further research is needed to uncover the potential relevance of such changes to human health. Using simulated microgravity (SMG) generated by two-dimensional clinorotation and culture aboard the International Space Station (ISS), we assessed the effects of mechanical unloading on human neonatal cardiovascular progenitor cell (CPC) developmental properties and signaling. Following 6-7 days of SMG and 12 days of ISS culture, we analyzed changes in gene expression. Both environments induced the expression of genes that are typically associated with an earlier state of cardiovascular development. To understand the mechanism by which such changes occurred, we assessed the expression of mechanosensitive small RhoGTPases in SMG-cultured CPCs and observed decreased levels of RHOA and CDC42. Given the effect of these molecules on intracellular calcium levels, we evaluated changes in noncanonical Wnt/calcium signaling. After 6-7 days under SMG, CPCs exhibited elevated levels of WNT5A and PRKCA. Similarly, ISS-cultured CPCs exhibited elevated levels of calcium handling and signaling genes, which corresponded to protein kinase C alpha (PKCα), a calcium-dependent protein kinase, activation after 30 days. Akt was activated, whereas phosphorylated extracellular signal-regulated kinase levels were unchanged. To explore the effect of calcium induction in neonatal CPCs, we activated PKCα using hWnt5a treatment on Earth. Subsequently, early cardiovascular developmental marker levels were elevated. Transcripts induced by SMG and hWnt5a-treatment are expressed within the sinoatrial node, which may represent embryonic myocardium maintained in its primitive state. Calcium signaling is sensitive to mechanical unloading and directs CPC developmental properties. Further research both in space and on Earth may help refine the use of CPCs in stem cell-based therapies and highlight the molecular events of development.

  12. Primitive Fine-Grained Matrix in the Unequilbrated Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Weisberg, M. K.; Zolensky, M. E.; Kimura, M.; Ebel, D. S.

    2014-01-01

    Enstatite chondrites (EC) have important implications for constraining conditions in the early solar system and for understanding the evolution of the Earth and other inner planets. They are among the most reduced solar system materials as reflected in their mineral compositions and assemblage. They are the only chondrites with oxygen as well as Cr, Ti, Ni and Zn stable isotope compositions similar to the earth and moon and most are completely dry, lacking any evidence of hydrous alteration; the only exception are EC clasts in the Kaidun breccia which have hydrous minerals. Thus, ECs likely formed within the snow line and are good candidates to be building blocks of the inner planets. Our goals are to provide a more detailed characterization the fine-grained matrix in E3 chondrites, understand its origin and relationship to chondrules, decipher the relationship between EH and EL chondrites and compare E3 matrix to matrices in C and O chondrites as well as other fine-grained solar system materials. Is E3 matrix the dust remaining from chondrule formation or a product of parent body processing or both?

  13. Putative fossil life in a hydrothermal system of the Dellen impact structure, Sweden

    NASA Astrophysics Data System (ADS)

    Lindgren, Paula; Ivarsson, Magnus; Neubeck, Anna; Broman, Curt; Henkel, Herbert; Holm, Nils G.

    2010-07-01

    Impact-generated hydrothermal systems are commonly proposed as good candidates for hosting primitive life on early Earth and Mars. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is rarely reported in the literature. Here we present the occurrence of putative fossil microorganisms in a hydrothermal system of the 89 Ma Dellen impact structure, Sweden. We found the putative fossilized microorganisms hosted in a fine-grained matrix of hydrothermal alteration minerals set in interlinked fractures of an impact breccia. The putative fossils appear as semi-straight to twirled filaments, with a thickness of 1-2 μm, and a length between 10 and 100 μm. They have an internal structure with segmentation, and branching of filaments occurs frequently. Their composition varies between an outer and an inner layer of a filament, where the inner layer is more iron rich. Our results indicate that hydrothermal systems in impact craters could potentially be capable of supporting microbial life. This could have played an important role for the evolution of life on early Earth and Mars.

  14. Prebiotic chemicals-amino acid and phosphorus-in the coma of comet 67P/Churyumov-Gerasimenko.

    PubMed

    Altwegg, Kathrin; Balsiger, Hans; Bar-Nun, Akiva; Berthelier, Jean-Jacques; Bieler, Andre; Bochsler, Peter; Briois, Christelle; Calmonte, Ursina; Combi, Michael R; Cottin, Hervé; De Keyser, Johan; Dhooghe, Frederik; Fiethe, Bjorn; Fuselier, Stephen A; Gasc, Sébastien; Gombosi, Tamas I; Hansen, Kenneth C; Haessig, Myrtha; Jäckel, Annette; Kopp, Ernest; Korth, Axel; Le Roy, Lena; Mall, Urs; Marty, Bernard; Mousis, Olivier; Owen, Tobias; Rème, Henri; Rubin, Martin; Sémon, Thierry; Tzou, Chia-Yu; Hunter Waite, James; Wurz, Peter

    2016-05-01

    The importance of comets for the origin of life on Earth has been advocated for many decades. Amino acids are key ingredients in chemistry, leading to life as we know it. Many primitive meteorites contain amino acids, and it is generally believed that these are formed by aqueous alterations. In the collector aerogel and foil samples of the Stardust mission after the flyby at comet Wild 2, the simplest form of amino acids, glycine, has been found together with precursor molecules methylamine and ethylamine. Because of contamination issues of the samples, a cometary origin was deduced from the (13)C isotopic signature. We report the presence of volatile glycine accompanied by methylamine and ethylamine in the coma of 67P/Churyumov-Gerasimenko measured by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) mass spectrometer, confirming the Stardust results. Together with the detection of phosphorus and a multitude of organic molecules, this result demonstrates that comets could have played a crucial role in the emergence of life on Earth.

  15. Prebiotic chemicals—amino acid and phosphorus—in the coma of comet 67P/Churyumov-Gerasimenko

    PubMed Central

    Altwegg, Kathrin; Balsiger, Hans; Bar-Nun, Akiva; Berthelier, Jean-Jacques; Bieler, Andre; Bochsler, Peter; Briois, Christelle; Calmonte, Ursina; Combi, Michael R.; Cottin, Hervé; De Keyser, Johan; Dhooghe, Frederik; Fiethe, Bjorn; Fuselier, Stephen A.; Gasc, Sébastien; Gombosi, Tamas I.; Hansen, Kenneth C.; Haessig, Myrtha; Jäckel, Annette; Kopp, Ernest; Korth, Axel; Le Roy, Lena; Mall, Urs; Marty, Bernard; Mousis, Olivier; Owen, Tobias; Rème, Henri; Rubin, Martin; Sémon, Thierry; Tzou, Chia-Yu; Hunter Waite, James; Wurz, Peter

    2016-01-01

    The importance of comets for the origin of life on Earth has been advocated for many decades. Amino acids are key ingredients in chemistry, leading to life as we know it. Many primitive meteorites contain amino acids, and it is generally believed that these are formed by aqueous alterations. In the collector aerogel and foil samples of the Stardust mission after the flyby at comet Wild 2, the simplest form of amino acids, glycine, has been found together with precursor molecules methylamine and ethylamine. Because of contamination issues of the samples, a cometary origin was deduced from the 13C isotopic signature. We report the presence of volatile glycine accompanied by methylamine and ethylamine in the coma of 67P/Churyumov-Gerasimenko measured by the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) mass spectrometer, confirming the Stardust results. Together with the detection of phosphorus and a multitude of organic molecules, this result demonstrates that comets could have played a crucial role in the emergence of life on Earth. PMID:27386550

  16. Origin and early evolution of photosynthesis

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.

    1992-01-01

    Photosynthesis was well-established on the earth at least 3.5 thousand million years ago, and it is widely believed that these ancient organisms had similar metabolic capabilities to modern cyanobacteria. This requires that development of two photosystems and the oxygen evolution capability occurred very early in the earth's history, and that a presumed phase of evolution involving non-oxygen evolving photosynthetic organisms took place even earlier. The evolutionary relationships of the reaction center complexes found in all the classes of currently existing organisms have been analyzed using sequence analysis and biophysical measurements. The results indicate that all reaction centers fall into two basic groups, those with pheophytin and a pair of quinones as early acceptors, and those with iron sulfur clusters as early acceptors. No simple linear branching evolutionary scheme can account for the distribution patterns of reaction centers in existing photosynthetic organisms, and lateral transfer of genetic information is considered as a likely possibility. Possible scenarios for the development of primitive reaction centers into the heterodimeric protein structures found in existing reaction centers and for the development of organisms with two linked photosystems are presented.

  17. Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage.

    PubMed

    Saal, Alberto E; Hauri, Erik H; Van Orman, James A; Rutherford, Malcolm J

    2013-06-14

    Water is perhaps the most important molecule in the solar system, and determining its origin and distribution in planetary interiors has important implications for understanding the evolution of planetary bodies. Here we report in situ measurements of the isotopic composition of hydrogen dissolved in primitive volcanic glass and olivine-hosted melt inclusions recovered from the Moon by the Apollo 15 and 17 missions. After consideration of cosmic-ray spallation and degassing processes, our results demonstrate that lunar magmatic water has an isotopic composition that is indistinguishable from that of the bulk water in carbonaceous chondrites and similar to that of terrestrial water, implying a common origin for the water contained in the interiors of Earth and the Moon.

  18. Prebiotic synthesis of 5-substituted uracils: a bridge between the RNA world and the DNA-protein world.

    PubMed

    Robertson, M P; Miller, S L

    1995-05-05

    Under prebiotic conditions, formaldehyde adds to uracil at the C-5 position to produce 5-hydroxymethyluracil with favorable rates and equilibria. Hydroxymethyluracil adds a variety of nucleophiles, such as ammonia, glycine, guanidine, hydrogen sulfide, hydrogen cyanide, imidazole, indole, and phenol, to give 5-substituted uracils with the side chains of most of the 20 amino acids in proteins. These reactions are sufficiently robust that, if uracil had been present on the primitive Earth, then these substituted uracils would also have been present. The ribozymes of the RNA world would have included many of the functional groups found in proteins today, and their catalytic activities may have been considerably greater than presently assumed.

  19. Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; hide

    2011-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.

  20. METEORITE - ASTRONOMY

    NASA Image and Video Library

    1985-08-28

    S85-39565 (For release August 1996) --- According to scientists, this 4.5 billion year old rock, labeled meteorite ALH84001, is believed to have once been a part of Mars and to contain fossil evidence that primitive life may have existed on Mars more than 3.6 billion years ago. The rock is a portion of a meteorite that was dislodged from Mars by a huge impact about 16 million years ago and that fell to Earth in Antarctica 13,000 years ago. The meteorite was found in Allan Hills ice field, Antarctica, by an annual expedition of the National Science Foundation?s Antarctic Meteorite Program in 1984. It is preserved for study at the Johnson Space Center?s (JSC) Meteorite Processing Laboratory in Houston, Texas.

  1. Stability of ammonia in the primitive terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1982-01-01

    The rate at which ammonia would have been destroyed in the earth's atmosphere under assumed NH3 mixing ratio conditions of 10 to the -8th to 0.0001 is calculated by a one-dimensional photochemical model, and the destruction rates are compared with possible biotic and abiotic ammonia sources. It is found that, while the mixing ratio of 10 to the -8th needed for the evolution of life could have been maintained by abiotic sources, the value of 0.00001 needed for the production of significant greenhouse warming could not have been sustained abiotically. The increase of atmospheric ammonia due to biological activities during the Archean is also considered lower than the level required for the generation of measurable thermal effects.

  2. An Achondritic Micrometeorite from Antarctica: Expanding the Solar System Inventory of Basaltic Asteroids

    NASA Technical Reports Server (NTRS)

    Gounelle, M.; Engrand, C.; Chaussidon, M.; Zolensky, M. E.; Maurette, M.

    2005-01-01

    Micrometeorites with sizes below 1 mm are collected in a diversity of environments such as deep-sea sediments and polar caps. Chemical, mineralogical and isotopic studies indicate that micrometeorites are closely related to primitive carbonaceous chondrites that amount to only approximately 2% of meteorite falls. While thousands of micrometeorites have been studied in detail, no micrometeorite has been found so far with an unambiguous achondritic composition and texture. One melted cosmic spherule has a low Fe/Mn ratio similar to that of eucrites, the most common basaltic meteorite group. Here we report on the texture, mineralogy, Rare Earth Elements (REEs) abundance and oxygen isotopic composition of the unmelted Antarctic micrometeorite 99-21-40 that has an unambiguous basaltic origin.

  3. Prebiotic synthesis of 5-substituted uracils: a bridge between the RNA world and the DNA-protein world

    NASA Technical Reports Server (NTRS)

    Robertson, M. P.; Miller, S. L.

    1995-01-01

    Under prebiotic conditions, formaldehyde adds to uracil at the C-5 position to produce 5-hydroxymethyluracil with favorable rates and equilibria. Hydroxymethyluracil adds a variety of nucleophiles, such as ammonia, glycine, guanidine, hydrogen sulfide, hydrogen cyanide, imidazole, indole, and phenol, to give 5-substituted uracils with the side chains of most of the 20 amino acids in proteins. These reactions are sufficiently robust that, if uracil had been present on the primitive Earth, then these substituted uracils would also have been present. The ribozymes of the RNA world would have included many of the functional groups found in proteins today, and their catalytic activities may have been considerably greater than presently assumed.

  4. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  5. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE PAGES

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin; ...

    2017-01-01

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  6. Prebiotic Synthesis of Autocatalytic Products From Formaldehyde-Derived Sugars as the Carbon and Energy Source

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    2003-01-01

    Our research objective is to understand and model the chemical processes on the primitive Earth that generated the first autocatalytic molecules and microstructures involved in the origin of life. Our approach involves: (a) investigation of a model origin-of-life process named the Sugar Model that is based on the reaction of formaldehyde- derived sugars (trioses and tetroses) with ammonia, and (b) elucidation of the constraints imposed on the chemistry of the origin of life by the fixed energies and rates of C,H,O-organic reactions under mild aqueous conditions. Recently, we demonstrated that under mild aqueous conditions the Sugar Model process yields autocatalytic products, and generates organic micropherules (2-20 micron dia.) that exhibit budding, size uniformity, and chain formation. We also discovered that the sugar substrates of the Sugar Model are capable of reducing nitrite to ammonia under mild aqueous conditions. In addition studies done in collaboration with Sandra Pizzarrello (Arizona State University) revealed that chiral amino acids (including meteoritic isovaline) catalyze both the synthesis and specific handedness of chiral sugars. Our systematic survey of the energies and rates of reactions of C,H,O-organic substrates under mild aqueous conditions revealed several general principles (rules) that govern the direction and rate of organic reactions. These reactivity principles constrain the structure of chemical pathways used in the origin of life, and in modern and primitive metabolism.

  7. Evidence for OH or H2O on the surface of 433 Eros and 1036 Ganymed

    NASA Astrophysics Data System (ADS)

    Rivkin, Andrew S.; Howell, Ellen S.; Emery, Joshua P.; Sunshine, Jessica

    2018-04-01

    Water and hydroxyl, once thought to be found only in the primitive airless bodies that formed beyond roughly 2.5-3 AU, have recently been detected on the Moon and Vesta, which both have surfaces dominated by evolved, non-primitive compositions. In both these cases, the water/OH is thought to be exogenic, either brought in via impacts with comets or hydrated asteroids or created via solar wind interactions with silicates in the regolith or both. Such exogenic processes should also be occurring on other airless body surfaces. To test this hypothesis, we used the NASA Infrared Telescope Facility (IRTF) to measure reflectance spectra (2.0-4.1 μm) of two large near-Earth asteroids (NEAs) with compositions generally interpreted as anhydrous: 433 Eros and 1036 Ganymed. OH is detected on both of these bodies in the form of absorption features near 3 μm. The spectra contain a component of thermal emission at longer wavelengths, from which we estimate thermal inertias of 167 ± 98 J m-2s-1/2K-1 for Eros (consistent with previous estimates) and 214 ± 80 J m-2s-1/2K-1 for Ganymed, the first reported measurement of thermal inertia for this object. These observations demonstrate that processes responsible for water/OH creation on large airless bodies also act on much smaller bodies.

  8. Chemical compositions of primitive solar system particles

    NASA Technical Reports Server (NTRS)

    Sutton, Steve R.; Bajt, S.

    1994-01-01

    Chemical studies of micrometeorites are of fundamental importance primarily because atmospheric entry selection effects (such as destruction of friable objects) are less significant than those for conventional meteorites. As a result, particles that have experienced very little postaccretional processing have a significant chance of surviving the Earth encounter and subsequent collection. Thus, chemical analyses of these relatively unaltered micrometeorites may lead to a better understanding of the compositions of the most primitive materials in the solar system and thereby constrain the conditions (physical and chemical) that existed in the early solar nebula. Micrometeorites have been collected from the stratosphere, polar ices, and ocean sediments, but the stratospheric collection is the best source for the most unaltered material because they are small and are not heated to their melting points. Despite the fact that the stratospheric micrometeorites have masses in the nanogram range, a variety of microanalytical techniques have been applied to bulk chemical analyses with part-per-million sensitivity. In some cases, multi-disciplinary studies (e.g., chemistry and mineralogy) have been performed on individual particles. The first-order conclusion is that the chondrite-like particles are chemically similar to carbonaceous chondrites but in detail are distinct from members of the conventional meteorite collection. The purpose of this paper is to provide an overview of the results to date and identify important areas for further study.

  9. On the design of turbo codes

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Pollara, F.

    1995-01-01

    In this article, we design new turbo codes that can achieve near-Shannon-limit performance. The design criterion for random interleavers is based on maximizing the effective free distance of the turbo code, i.e., the minimum output weight of codewords due to weight-2 input sequences. An upper bound on the effective free distance of a turbo code is derived. This upper bound can be achieved if the feedback connection of convolutional codes uses primitive polynomials. We review multiple turbo codes (parallel concatenation of q convolutional codes), which increase the so-called 'interleaving gain' as q and the interleaver size increase, and a suitable decoder structure derived from an approximation to the maximum a posteriori probability decision rule. We develop new rate 1/3, 2/3, 3/4, and 4/5 constituent codes to be used in the turbo encoder structure. These codes, for from 2 to 32 states, are designed by using primitive polynomials. The resulting turbo codes have rates b/n (b = 1, 2, 3, 4 and n = 2, 3, 4, 5, 6), and include random interleavers for better asymptotic performance. These codes are suitable for deep-space communications with low throughput and for near-Earth communications where high throughput is desirable. The performance of these codes is within 1 dB of the Shannon limit at a bit-error rate of 10(exp -6) for throughputs from 1/15 up to 4 bits/s/Hz.

  10. Dynamical Sequestration of the Moon-Forming Impactor in Co-Orbital Resonance with Earth

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.; Hartmann, William J.

    2015-11-01

    Recent concerns about the giant impact hypothesis for the origin of the moon, and an associated “isotope crisis” are assuaged if the impactor was a local object that formed near Earth and the impact occurred relatively late. We investigated a scenario that may meet these criteria, with the moon-forming impactor originating in 1:1 co-orbital resonance with Earth. Using N-body numerical simulations we explored the dynamical consequences of placing Mars-mass companions in various co-orbital configurations with a proto-Earth having 90% of its current mass. We modeled configurations that include the four terrestrial planets as well as configurations that also include the four giant planets. In both the 4- and 8-planet models we found that a single additional Mars-mass companion typically remains a stable co-orbital of Earth for the entire 250 million year (Myr) duration of our simulations (33 of 34 simulations). In an effort to destabilize such a system we carried out an additional 45 simulations that included a second Mars-mass co-orbital companion. Even with two Mars-mass companions sharing Earth’s orbit most of these models (28) also remained stable for the entire 250 Myr duration of the simulations. Of the 17 two-companion models that eventually became unstable 12 impacts were observed between Earth and an escaping co-orbital companion. The average delay we observed for an impact of a Mars-mass companion with Earth was 101 Myr, and the longest delay was 221 Myr. Several of the stable simulations involved unusual 3-planet co-orbital configurations that could exhibit interesting observational signatures in plantetary transit surveys.

  11. The Distributed Memory Computing Conference (5th) Held in Charleston, South Carolina on April 8-12, 1990. Volume 1. Applications

    DTIC Science & Technology

    1991-03-31

    nodes, directional arrows show the parent and child rela- and the graphics driver runs on the CP, i.e., the tionship of processes. Although there is a...about ODB plus some number of transitory primitives, whether or not its child primitives are resident. Transitory primitives are discarded as needed...true if this Hnode’s child primitives approached. are not resident. This method of ODB decomposition has the ability to distribute a very large number of

  12. Simulation of the low earth orbital atomic oxygen interaction with materials by means of an oxygen ion beam

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Paulsen, Phillip E.; Steuber, Thomas J.

    1989-01-01

    Atomic oxygen is the predominant species in low-Earth orbit between the altitudes of 180 and 650 km. These highly reactive atoms are a result of photodissociation of diatomic oxygen molecules from solar photons having a wavelength less than or equal to 2430A. Spacecraft in low-Earth orbit collide with atomic oxygen in the 3P ground state at impact energies of approximately 4.2 to 4.5 eV. As a consequence, organic materials previously used for high altitude geosynchronous spacecraft are severely oxidized in the low-Earth orbital environment. The evaluation of materials durability to atomic oxygen requires ground simulation of this environment to cost effectively screen materials for durability. Directed broad beam oxygen sources are necessary to evaluate potential spacecraft materials performance before and after exposure to the simulated low-Earth orbital environment. This paper presents a description of a low energy, broad oxygen ion beam source used to simulate the low-Earth orbital atomic oxygen environment. The results of materials interaction with this beam and comparison with actual in-space tests of the same meterials will be discussed. Resulting surface morphologies appear to closely replicate those observed in space tests.

  13. An earth imaging camera simulation using wide-scale construction of reflectance surfaces

    NASA Astrophysics Data System (ADS)

    Murthy, Kiran; Chau, Alexandra H.; Amin, Minesh B.; Robinson, M. Dirk

    2013-10-01

    Developing and testing advanced ground-based image processing systems for earth-observing remote sensing applications presents a unique challenge that requires advanced imagery simulation capabilities. This paper presents an earth-imaging multispectral framing camera simulation system called PayloadSim (PaySim) capable of generating terabytes of photorealistic simulated imagery. PaySim leverages previous work in 3-D scene-based image simulation, adding a novel method for automatically and efficiently constructing 3-D reflectance scenes by draping tiled orthorectified imagery over a geo-registered Digital Elevation Map (DEM). PaySim's modeling chain is presented in detail, with emphasis given to the techniques used to achieve computational efficiency. These techniques as well as cluster deployment of the simulator have enabled tuning and robust testing of image processing algorithms, and production of realistic sample data for customer-driven image product development. Examples of simulated imagery of Skybox's first imaging satellite are shown.

  14. In search of the Earth-forming reservoir: Mineralogical, chemical, and isotopic characterizations of the ungrouped achondrite NWA 5363/NWA 5400 and selected chondrites

    NASA Astrophysics Data System (ADS)

    Burkhardt, Christoph; Dauphas, Nicolas; Tang, Haolan; Fischer-GöDde, Mario; Qin, Liping; Chen, James H.; Rout, Surya S.; Pack, Andreas; Heck, Philipp R.; Papanastassiou, Dimitri A.

    2017-05-01

    High-precision isotope data of meteorites show that the long-standing notion of a "chondritic uniform reservoir" is not always applicable for describing the isotopic composition of the bulk Earth and other planetary bodies. To mitigate the effects of this "isotopic crisis" and to better understand the genetic relations of meteorites and the Earth-forming reservoir, we performed a comprehensive petrographic, elemental, and multi-isotopic (O, Ca, Ti, Cr, Ni, Mo, Ru, and W) study of the ungrouped achondrites NWA 5363 and NWA 5400, for both of which terrestrial O isotope signatures were previously reported. Also, we obtained isotope data for the chondrites Pillistfer (EL6), Allegan (H6), and Allende (CV3), and compiled available anomaly data for undifferentiated and differentiated meteorites. The chemical compositions of NWA 5363 and NWA 5400 are strikingly similar, except for fluid mobile elements tracing desert weathering. We show that NWA 5363 and NWA 5400 are paired samples from a primitive achondrite parent-body and interpret these rocks as restite assemblages after silicate melt extraction and siderophile element addition. Hafnium-tungsten chronology yields a model age of 2.2 ± 0.8 Myr after CAI, which probably dates both of these events within uncertainty. We confirm the terrestrial O isotope signature of NWA 5363/NWA 5400; however, the discovery of nucleosynthetic anomalies in Ca, Ti, Cr, Mo, and Ru reveals that the NWA5363/NWA 5400 parent-body is not the "missing link" that could explain the composition of the Earth by the mixing of known meteorites. Until this "missing link" or a direct sample of the terrestrial reservoir is identified, guidelines are provided of how to use chondrites for estimating the isotopic composition of the bulk Earth.

  15. Solar UV Radiation and the Origin of Life on Earth

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Hubeny, Ivan; Lanz, Thierry; Gaidos, Eric; Kasting, James; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    We have started a comprehensive, interdisciplinary study of the influence of solar ultraviolet radiation on the atmosphere of of the early Earth. We plan to model the chemistry of the Earth atmosphere during its evolution, using observed UV flux distributions of early solar analogs as boundary conditions in photochemical models of the Earth's atmosphere. The study has four distinct but interlinked parts: (1) Establishing the radiation of the early Sun; (2) Determining the photochemistry of the early Earth's atmosphere; (3) Estimating the rates of H2 loss from the atmosphere; and (4) Ascertaining how sensitive is the photochemistry to the metallicity of the Sun. We are currently using STIS and EUVE to obtain high-quality far-UV and extreme-UV observations of three early-solar analogs. We will perform a detailed non-LTE study of each stars, and construct theoretical model photosphere, and an empirical model chromospheres, which can be used to extrapolate the continuum to the Lyman continuum region. Given a realistic flux distribution of the early Sun, we will perform photochemical modeling of weakly reducing primitive atmospheres to determine the lifetime and photochemistry of CH4. In particular, we will make estimates of the amount of CH4 present in the prebiotic atmosphere, and estimate the atmospheric CH4 concentration during the Late Archean (2.5-3.0 b.y. ago) and determine whether it would have been sufficiently abundant to help offset reduced solar luminosity at that time. Having obtained a photochemical model, we will solve for the concentrations of greenhouse gasses and important pre-biotic molecules, and perform a detailed radiative transfer calculations to compute the UV flux reaching the surface.

  16. Evaluation of Big Data Containers for Popular Storage, Retrieval, and Computation Primitives in Earth Science Analysis

    NASA Astrophysics Data System (ADS)

    Das, K.; Clune, T.; Kuo, K. S.; Mattmann, C. A.; Huang, T.; Duffy, D.; Yang, C. P.; Habermann, T.

    2015-12-01

    Data containers are infrastructures that facilitate storage, retrieval, and analysis of data sets. Big data applications in Earth Science require a mix of processing techniques, data sources and storage formats that are supported by different data containers. Some of the most popular data containers used in Earth Science studies are Hadoop, Spark, SciDB, AsterixDB, and RasDaMan. These containers optimize different aspects of the data processing pipeline and are, therefore, suitable for different types of applications. These containers are expected to undergo rapid evolution and the ability to re-test, as they evolve, is very important to ensure the containers are up to date and ready to be deployed to handle large volumes of observational data and model output. Our goal is to develop an evaluation plan for these containers to assess their suitability for Earth Science data processing needs. We have identified a selection of test cases that are relevant to most data processing exercises in Earth Science applications and we aim to evaluate these systems for optimal performance against each of these test cases. The use cases identified as part of this study are (i) data fetching, (ii) data preparation for multivariate analysis, (iii) data normalization, (iv) distance (kernel) computation, and (v) optimization. In this study we develop a set of metrics for performance evaluation, define the specifics of governance, and test the plan on current versions of the data containers. The test plan and the design mechanism are expandable to allow repeated testing with both new containers and upgraded versions of the ones mentioned above, so that we can gauge their utility as they evolve.

  17. Physical characterization of the near-Earth object population

    NASA Astrophysics Data System (ADS)

    Ieva, S.; Dotto, E.; Mazzotta Epifani, E.; Perna, D.; Perozzi, E.; Micheli, M.

    2017-08-01

    The Near-Earth Object (NEO) population, being the remnants of the building blocks that originally formed our solar system, allows us to understand the initial conditions that were present in the protosolar nebula. Its investigation can provide crucial information on the origin and early evolution of the solar system, and shed light on the delivery of water and organic-rich material to the early Earth. Furthermore, the possible impact of NEOs poses a serious hazard to our planet. There is an urgent need to undertake a comprehensive physical characterization of the NEO population, particularly for the ones with the higher likelihood of catastrophic impact with the Earth. One of the main aims of the NEOShield-2 project (2015-2017), financed by the European Commission in the framework of the HORIZON 2020 program, is to undertake an extensive observational campaign and provide a physical and compositional characterization for a large number of NEOs in the < 300 m size range, retrieving in particular their mitigation-relevant properties (size, shape, albedo, diameter, composition, internal structure, ...) in order to design impact mitigation missions and assess the consequences of an impact on Earth. We carried out visible photometric measurements for a sample of 158 uncharacterized NEOs. We also made use of visible and near-infrared spectroscopy to assess NEO composition and perform a mineralogical analysis. We found that carbonaceous C-complex asteroids deserve a special attention, since their physical structure ( e.g., primitive nature, porosity) and their orbital parameters (mainly the inclination) make at the moment challenging the design of a successful mitigation strategy. Indeed, the most advanced mitigation technique (the kinetic impactor) is less effective on these bodies, and the high inclination of some possible impactors require a launch vehicle capability beyond the one currently available.

  18. Delivery of micrometeoritic greenhouse gases and "smoke" particles during the post-lunar "late heavy bombardment" of the Earth

    NASA Astrophysics Data System (ADS)

    Maurette, M.; Brack, A.; Duprat, J.; Engrand, C.

    (1) Processed micrometeorites in Astrobiology. In previous studies, we considered the contribution of unmelted micrometeorites in astrobiology. We now argue that even processed micrometeorites that are destroyed upon atmospheric entry could have participated in the birth of life on Earth. Unweathered micrometeorites from our new "Concordia-collection" show high sulfur contents of about 5%. With the simple assumption that all sulfur from volatilized micrometeorites is initially oxidized during atmospheric entry, like organic carbon, our model predicts an enormous initial input rate of SO2 in the thermosphere (˜ 1016 g/yr) that lasted for, at least, 100 Myr after the Moon forming impact (this impact blew off the primitive atmosphere). This post-lunar SO2 input was probably quickly transformed into stratospheric sulfate aerosols that were finally deposited in the early oceans. A plausible reaction pathway to eliminate such an excess of sulfates requires the likely existence of abundant early hydrothermal sources, converting sulfates dissolved in water into huge deposits of iron sulfides and exhalations of H2S, as in contemporary sources. In the "sulfide world" promoted by Wächtershäuser, sulfides, FeS and H2S, can reduce CO2 to organic sulfides in the form of thiols, as demonstrated in laboratory simulation experiments. Thiols can lead to thioesters, which probably behaved as activating agents in prebiotic chemistry, according to de Duve; (2) Post-lunar greenhouse effects. It is likely that the greenhouse gases CO2 and H2O released from the Earth's interior counterbalanced the "faint" early Sun luminosity. But these gases were blown off by the Moon forming impact. However, during the first ˜ 100 Myr of the post-lunar period, we predict enormous input rates of three powerful micrometeoritic greenhouse gases (SO2, H2O, CO2). They should have produced a marked heating of the Earth's surface, which had to be counterbalanced by a strong cooling. Hunten and collaborators proposed that over the last ˜ 10 Myr, climatic variations might have been triggered by variable input of "meteoritic" smoke particles. This concept can be extended to "micrometeoritic" smoke particles injected into the thermosphere by about 50% of the incoming flux of micrometeorites. We predict that the equilibrium optical thickness of this upper smoky cloud was about ≈ 120 μ m. Consequently, it should have reflected sunlight, thus contributing to counterbalance the heating effect of micrometeoritic greenhouse gases.

  19. Sustainability of a Compartmentalized Host-Parasite Replicator System under Periodic Washout-Mixing Cycles

    PubMed Central

    Furubayashi, Taro

    2018-01-01

    The emergence and dominance of parasitic replicators are among the major hurdles for the proliferation of primitive replicators. Compartmentalization of replicators is proposed to relieve the parasite dominance; however, it remains unclear under what conditions simple compartmentalization uncoupled with internal reaction secures the long-term survival of a population of primitive replicators against incessant parasite emergence. Here, we investigate the sustainability of a compartmentalized host-parasite replicator (CHPR) system undergoing periodic washout-mixing cycles, by constructing a mathematical model and performing extensive simulations. We describe sustainable landscapes of the CHPR system in the parameter space and elucidate the mechanism of phase transitions between sustainable and extinct regions. Our findings revealed that a large population size of compartments, a high mixing intensity, and a modest amount of nutrients are important factors for the robust survival of replicators. We also found two distinctive sustainable phases with different mixing intensities. These results suggest that a population of simple host–parasite replicators assumed before the origin of life can be sustained by a simple compartmentalization with periodic washout-mixing processes. PMID:29373536

  20. Combined Molecular Algorithms for the Generation, Equilibration and Topological Analysis of Entangled Polymers: Methodology and Performance

    PubMed Central

    Karayiannis, Nikos Ch.; Kröger, Martin

    2009-01-01

    We review the methodology, algorithmic implementation and performance characteristics of a hierarchical modeling scheme for the generation, equilibration and topological analysis of polymer systems at various levels of molecular description: from atomistic polyethylene samples to random packings of freely-jointed chains of tangent hard spheres of uniform size. Our analysis focuses on hitherto less discussed algorithmic details of the implementation of both, the Monte Carlo (MC) procedure for the system generation and equilibration, and a postprocessing step, where we identify the underlying topological structure of the simulated systems in the form of primitive paths. In order to demonstrate our arguments, we study how molecular length and packing density (volume fraction) affect the performance of the MC scheme built around chain-connectivity altering moves. In parallel, we quantify the effect of finite system size, of polydispersity, and of the definition of the number of entanglements (and related entanglement molecular weight) on the results about the primitive path network. Along these lines we approve main concepts which had been previously proposed in the literature. PMID:20087477

  1. Global synchronization algorithms for the Intel iPSC/860

    NASA Technical Reports Server (NTRS)

    Seidel, Steven R.; Davis, Mark A.

    1992-01-01

    In a distributed memory multicomputer that has no global clock, global processor synchronization can only be achieved through software. Global synchronization algorithms are used in tridiagonal systems solvers, CFD codes, sequence comparison algorithms, and sorting algorithms. They are also useful for event simulation, debugging, and for solving mutual exclusion problems. For the Intel iPSC/860 in particular, global synchronization can be used to ensure the most effective use of the communication network for operations such as the shift, where each processor in a one-dimensional array or ring concurrently sends a message to its right (or left) neighbor. Three global synchronization algorithms are considered for the iPSC/860: the gysnc() primitive provided by Intel, the PICL primitive sync0(), and a new recursive doubling synchronization (RDS) algorithm. The performance of these algorithms is compared to the performance predicted by communication models of both the long and forced message protocols. Measurements of the cost of shift operations preceded by global synchronization show that the RDS algorithm always synchronizes the nodes more precisely and costs only slightly more than the other two algorithms.

  2. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    ERIC Educational Resources Information Center

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  3. Forming a Moon with an Earth-like composition via a giant impact.

    PubMed

    Canup, Robin M

    2012-11-23

    In the giant impact theory, the Moon formed from debris ejected into an Earth-orbiting disk by the collision of a large planet with the early Earth. Prior impact simulations predict that much of the disk material originates from the colliding planet. However, Earth and the Moon have essentially identical oxygen isotope compositions. This has been a challenge for the impact theory, because the impactor's composition would have likely differed from that of Earth. We simulated impacts involving larger impactors than previously considered. We show that these can produce a disk with the same composition as the planet's mantle, consistent with Earth-Moon compositional similarities. Such impacts require subsequent removal of angular momentum from the Earth-Moon system through a resonance with the Sun as recently proposed.

  4. Habitability and Life - an Overview

    NASA Astrophysics Data System (ADS)

    Bredehöft, J. H.

    2008-09-01

    Abstract The search for habitable planets has seen a significant boost, since much effort was invested into development of newer and more powerful techniques of detecting such planetary bodies. This search is fuelled by the interest that is sparked by its help in answering the bigger question of the origin of life on Earth and its abundance in the universe. Traditionally a planetary body has been deemed habitable when it provides conditions under which water is liquid. This led to the formulation of a habitable zone across stars, in which liquid water can exist. [1] Liquid water remains to this day the single most important feature in the search for life. There have been various suggestions of life being present in waterless environments like liquid hydrocarbons or even liquid ammonia, but how exactly a living system under such conditions might work, no one can satisfactorily explain. [2] A very important point in this context that is not often raised is that while water might be a favourable medium in which to live and certainly a major constituent of all living organism we know of, water alone is not alive and it will not spontaneously evolve into life. It would thus seem that apart from the presence of liquid water there a number of other, minor, necessary ingredients to life that determine whether a planet is habitable (meaning capable of sustaining life) or whether it is also capable of providing the starting grounds for the evolution of living systems. These other ingredients are determined by the minimum requirements of life itself. They include the molecular components of the most primitive encasing of an organism, the most primitive molecules needed for something like a metabolism and the most primitive way of storing information. [3] In addition to these molecular components, life must be able to utilise a source of energy to drive chemical reactions. Observations of various extremophiles on Earth utilising all kinds disequilibria suggest that these can be very diverse. The exact nature of these other ingredients, their possible presence and history of formation and their impact for the formation and evolution of life will be discussed for several different types of habitats all across the regime in which liquid water can be found, such as very dry and cold bodies like Mars, hot bodies like Venus, bodies covered completely in water or bodies with subsurface oceans. References [1] Kasting J.F., Whitmire D.P., Reynolds R.T., (1993) Icarus 101(1), 108-128 [2] Benner S.A., Ricardo A., Carrigan M.A. (2004) Curr Opin Chem Biol 8(6), 672-689 [3] Ruiz-Mirazo K., Peretó J., Moreno A., (2004) OLEB 34(3), 323-346 EPSC Abstracts, Vol. 3, EPSC2008-A-00039, 2008 European Planetary Science Congress, Author(s) 2008

  5. HABEBEE: habitability of eyeball-exo-Earths.

    PubMed

    Angerhausen, Daniel; Sapers, Haley; Citron, Robert; Bergantini, Alexandre; Lutz, Stefanie; Queiroz, Luciano Lopes; da Rosa Alexandre, Marcelo; Araujo, Ana Carolina Vieira

    2013-03-01

    Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms.

  6. Generalized compliant motion primitive

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor)

    1994-01-01

    This invention relates to a general primitive for controlling a telerobot with a set of input parameters. The primitive includes a trajectory generator; a teleoperation sensor; a joint limit generator; a force setpoint generator; a dither function generator, which produces telerobot motion inputs in a common coordinate frame for simultaneous combination in sensor summers. Virtual return spring motion input is provided by a restoration spring subsystem. The novel features of this invention include use of a single general motion primitive at a remote site to permit the shared and supervisory control of the robot manipulator to perform tasks via a remotely transferred input parameter set.

  7. Primitive neuroectodermal tumors of the central nervous system.

    PubMed

    Becker, L E; Hinton, D

    1983-06-01

    Primitive neuroectodermal tumors are morphologically similar malignant tumors arising in intracranial and peripheral sites of the nervous system, showing varying degrees of cellular differentiation with a tendency to disseminate along cerebrospinal fluid pathways. They occur primarily in children and young adults. Under the designation primitive neuroectodermal tumors are included medulloblastomas and tumors that may differentiate in other directions, such as medulloepithelioma, neuroblastoma, polar spongioblastoma, pineoblastoma, ependymoblastoma, retinoblastoma, and olfactory neuroblastoma. From a practical, histologic point of view, these tumors are often indistinguishable from one another and are best thought of as primitive neuroectodermal tumors with or without differentiating features.

  8. Complex Organics from Laboratory Simulated Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Dworkin, J. P.

    2003-01-01

    Many of the volatiles in interstellar dense clouds exist in ices surrounding dust grains. The low temperatures of these ices (T < 50 K) preclude most chemical reactions, but photolysis can drive reactions that produce a suite of new species, many of which are complex organics. We study the UV and proton radiation processing of interstellar ice analogs to explore links between interstellar chemistry, the organics in comets and meteorites, and the origin of life on Earth. The high D/H ratios in some interstellar species, and the knowledge that many of the organics in primitive meteorites are D-enriched, suggest that such links are plausible. Once identified, these species may serve as markers of interstellar heritage of cometary dust and meteorites. Of particular interest are our findings that UV photolysis of interstellar ice analogs produce molecules of importance in current living organisms, including quinones, amphiphiles, and amino acids. Quinones are essential in vital metabolic roles such as electron transport. Studies show that quinones should be made wherever polycyclic aromatic hydrocarbons are photolyzed in interstellar ices. In the case of anthracene-containing ices, we have observed the production of 9-anthrone and 9,10 anthraquinone, both of which have been observed in the Murchison meteorite. Amphiphiles are also made when mixed molecular ices are photolyzed. These amphiphiles self-assemble into fluorescent vesicles when placed in liquid water, as do Murchison extracts. Both have the ability to trap an ionic dye. Photolysis of plausible ices can also produce alanine, serine, and glycine as well as a number of small alcohols and amines. Flash heating of the room temperature residue generated by such experiments generates mass spectral distributions similar to those of IDPs. The detection of high D/H ratios in some interstellar molecular species, and the knowledge that many of the organics, such as hydroxy and amino acids, in primitive meteorites are D-enriched provides evidence for a connection between intact organic material in the interstellar medium and in meteorites. Thus, some of the oxidized aromatics, amphiphiles, amino acids, hydroxy acids, and other compounds found in meteorites may have had an interstellar ancestry and not solely a product of parent body aqueous alteration. Such compounds should also be targeted for searches of organics in cometary dust.

  9. Autonomous celestial navigation based on Earth ultraviolet radiance and fast gradient statistic feature extraction

    NASA Astrophysics Data System (ADS)

    Lu, Shan; Zhang, Hanmo

    2016-01-01

    To meet the requirement of autonomous orbit determination, this paper proposes a fast curve fitting method based on earth ultraviolet features to obtain accurate earth vector direction, in order to achieve the high precision autonomous navigation. Firstly, combining the stable characters of earth ultraviolet radiance and the use of transmission model software of atmospheric radiation, the paper simulates earth ultraviolet radiation model on different time and chooses the proper observation band. Then the fast improved edge extracting method combined Sobel operator and local binary pattern (LBP) is utilized, which can both eliminate noises efficiently and extract earth ultraviolet limb features accurately. And earth's centroid locations on simulated images are estimated via the least square fitting method using part of the limb edges. Taken advantage of the estimated earth vector direction and earth distance, Extended Kalman Filter (EKF) is applied to realize the autonomous navigation finally. Experiment results indicate the proposed method can achieve a sub-pixel earth centroid location estimation and extremely enhance autonomous celestial navigation precision.

  10. Synthesis of hydrogen cyanide under simulated hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Pinedo-González, Paulina

    Nitrogen is a fundamental element for life, where is present in structural (e.g., proteins), catalytic (e.g., enzymes and ribozymes), energy transfer (e.g., ATP) and information storage (RNA and DNA) biomolecules. Atmospheric and planetary models suggest that nitrogen was abundant in the early atmospheres of Earth as dinitrogen (N2 ), an inert gas under normal atmospheric conditions. To be available for prebiotic synthesis it must be converted into hydrogen cyanide (HCN), ammonia (NH3 ) and/or nitric oxide (NO), in a process referred to as nitrogen fixation. Due to the strength of the triple bond in N2 , nitrogen fixation, while thermodynamically favored is kinetically restricted. In a reducing atmosphere dominated by CH4 -N2 , thunderstorm lightning efficiently produces HCN and NH3 (Stribling and Miller, 1987). Nevertheless, photochemical and geochemical constraints strongly suggest that the early atmosphere was weakly reducing, dominated by CO2 and N2 with traces of CH4 , CO, and H2 (Kasting, 1993). Under these conditions, HCN is no longer synthesized in the lightning channel and instead NO is formed (Navarro-Gonźlez, et al., 2001). In volcanic plumes, where magmatic gases a were more reducing than in the atmosphere, NO can also be formed by the lava heat (Mather et al., 2004) or volcanic lightning (Navarro-Gonźlez et al., 1998). Surprisingly, dinitrogen can be a reduced to NH3 in hydrothermal systems (Brandes et al., 1998), but the formation of HCN and its derivates were not investigated. The present work explores the possibility of the formation of HCN as well as other nitrile derivatives catalyzed by mineral surfaces in hydrothermal vents. To simulate a hydrothermal atmosphere, the experiments were carried out in a stainless steel Parr R minireactor with a 0.1 M NH4 HCO3 solution (200 ml) with or without a mineral surface exposed at 1 bar at temperatures ranging from 100 to 375° C. Different mineral matrices are been investigated. Our preliminary results have been conducted with pyrite and quantified by headspace-gas chromatography-mass spectrometry. These results indicate that catalysis induced by the mineral surface under hydrothermal conditions does not stop with the production of HCN, but the reaction continues leading to more complex nitriles. The experiments also reveal a clear trend between time and the production of more complex molecules, which are measurable by the chromatographic method. Brandes, J.A., Boctor, N.Z., Cody, G.D., Cooper, B. A., Hazen, R. M. and Yoder Jr, H.S. (1998). Abiotic nitrogen reduction on the early Earth. Nature 395, 365-367. Kasting J.F. (1993) Earth's early atmosphere. Science 259, 920-926. Mather, T.A., Pyle, D.M., and Allen, A.G. (2004) Volcanic source of fixed nitrogen in the early Earth's atmosphere. Geology 32, 905-908. Navarro-Gonźlez, R., Molina, M.J. and. Molina, L.T. (1998) Nitrogen fixation by volcanic a lightning in the early Earth. Geophys. Res. Lett. 25, 3123-3126. Navarro-Gonźlez, R., McKay, C.P. and Nna Mvondo, D. ( 2001) A possible nitrogen crisis for a Archean life due to reduced nitrogen fixation by lightning. Nature 412, 61-64. Stribling, R., and Miller, S.L. (1987) Energy yields for the hydrogen cyanide and formaldehyde synthesis: the HCN and amino acid concentrations in the primitive ocean. Origins Life 17, 261-273.

  11. Effect of the surface charge discretization on electric double layers: a Monte Carlo simulation study.

    PubMed

    Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel

    2007-06-21

    The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.

  12. Density of Primitive Pythagorean Triples

    ERIC Educational Resources Information Center

    Killen, Duncan A.

    2004-01-01

    Based on the properties of a Primitive Pythagorean Triple (PPT), a computer program was written to generate, print, and count all PPTs greater than or equal to I[subscript x], where I[subscript x] is an arbitrarily chosen integer. The Density of Primitive Pythagorean Triples may be defined as the ratio of the number of PPTs whose hypotenuse is…

  13. A Discussion on the Substitution Method for Trigonometric Rational Functions

    ERIC Educational Resources Information Center

    Ponce-Campuzano, Juan Carlos; Rivera-Figueroa, Antonio

    2011-01-01

    It is common to see, in the books on calculus, primitives of functions (some authors use the word "antiderivative" instead of primitive). However, the majority of authors pay scant attention to the domains over which the primitives are valid, which could lead to errors in the evaluation of definite integrals. In the teaching of calculus, in…

  14. Scientific Terminology and Minimum Terms in Speech Communication: Some Philosophical Ramblings.

    ERIC Educational Resources Information Center

    Krivonos, Paul D.; Sussman, Lyle.

    Philosophers of science have emphasized the need for primitive terms, or "givens," in the construction of theory for any discipline. While there are inherent dangers regarding the use of primitive terms, they can have great value in serving as the basis for minimum terms, which are primitive terms unique to a discipline. (Borrowed terms are those…

  15. A manual for PARTI runtime primitives

    NASA Technical Reports Server (NTRS)

    Berryman, Harry; Saltz, Joel

    1990-01-01

    Primitives are presented that are designed to help users efficiently program irregular problems (e.g., unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differential equations solvers) on distributed memory machines. These primitives are also designed for use in compilers for distributed memory multiprocessors. Communications patterns are captured at runtime, and the appropriate send and receive messages are automatically generated.

  16. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.

    2014-01-01

    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i.e. propellant consumption) and transit times.

  17. Prebiotic replicase evolution in a surface-bound metabolic system: parasites as a source of adaptive evolution

    PubMed Central

    2008-01-01

    Background The remarkable potential of recent forms of life for reliably passing on genetic information through many generations now depends on the coordinated action of thousands of specialized biochemical "machines" (enzymes) that were obviously absent in prebiotic times. Thus the question how a complicated system like the living cell could have assembled on Earth seems puzzling. In seeking for a scientific explanation one has to search for step-by-step evolutionary changes from prebiotic chemistry to the emergence of the first proto-cell. Results We try to sketch a plausible scenario for the first steps of prebiotic evolution by exploring the ecological feasibility of a mineral surface-bound replicator system that facilitates a primitive metabolism. Metabolism is a hypothetical network of simple chemical reactions producing monomers for the template-copying of RNA-like replicators, which in turn catalyse metabolic reactions. Using stochastic cellular automata (SCA) simulations we show that the surface-bound metabolic replicator system is viable despite internal competition among the genes and that it also maintains a set of mild "parasitic" sequences which occasionally evolve functions such as that of a replicase. Conclusion Replicase activity is shown to increase even at the expense of slowing down the replication of the evolving ribozyme itself, due to indirect mutualistic benefits in a diffuse form of group selection among neighbouring replicators. We suggest possible paths for further evolutionary changes in the metabolic replicator system leading to increased metabolic efficiency, improved replicase functionality, and membrane production. PMID:18826645

  18. The Lunar Magma Ocean: Sharpening the Focus on Process and Composition

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Draper, D. S.

    2014-01-01

    The currently accepted model for the formation of the lunar anorthositic crust is by flotation from a crystallizing lunar magma ocean (LMO) shortly following lunar accretion. Anorthositic crust is globally distributed and old, whereas the mare basalts are younger and derived from a source region that has experienced plagioclase extraction. Several attempts at modelling such a crystallization sequence have been made [e.g. 1, 2], but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. This abstract presents results from our ongoing ex-periments simulating LMO crystallization and address-ing a range of variables. We investigate two bulk com-positions, which span most of the range of suggested lunar bulk compositions, from the refractory element enriched Taylor Whole Moon (TWM) [3] to the more Earth-like Lunar Primitive Upper Mantle (LPUM) [4]. We also investigate two potential crystallization mod-els: Fully fractional, where crystallizing phases are separated from the magma as they form and sink (or float in the case of plagioclase) throughout magma ocean solidification; and a two-step process suggested by [1, 5] with an initial stage of equilibrium crystalliza-tion, where crystals remain entrained in the magma before the crystal burden increases viscosity enough that convection slows and the crystals settle, followed by fractional crystallization. Here we consider the frac-tional crystallization part of this process; the equilibri-um cumulates having been determined by [6].

  19. The relative influence of H2O and CO2 on the primitive surface conditions of Venus

    NASA Astrophysics Data System (ADS)

    Salvador, A.; Massol, H.; Davaille, A.; Marcq, E.; Sarda, P.; Chassefiere, E.

    2017-12-01

    How the volatile content influences the primordial surface conditions of terrestrial planets and, thus, their future geodynamic evolution is an important question to answer. We simulate the secular convective cooling of a 1-D magma ocean (MO) in interaction with its outgassed atmosphere. A first rapid cooling stage, where efficient MO cooling and degassing take place, producing the atmosphere, is followed by a second quasi steady state where the heat flux balance is dominated by the solar flux. The end ofthe rapid cooling stage (ERCS) is reached when the mantle heat flux becomes negligible compared tothe absorbed solar flux. Varying the initial CO2 and H2O contents and the solar distance, we showed that the resulting surface conditions at ERCS strongly depend on these parameters and that water ocean's formation obeys simple scaling laws.Although today's Venus is located beyond the inner edge of the habitable zone due to its high albedo, its high CO2/H2O ratio prevents any water ocean formation.We already showed that depending on the formation time of its cloudcover and resulting albedo, only 0.3 Earth ocean mass might be sufficient to form a water ocean onearly Venus. Here we investigate more precisely these results by taking into account the effect of shortwave radiation on the radiative budget by computing the feedbacks between atmospheric composition and incident stellar flux instead of using a prescribed albedo value.

  20. Emergence of Functional Hierarchy in a Multiple Timescale Neural Network Model: A Humanoid Robot Experiment

    PubMed Central

    Yamashita, Yuichi; Tani, Jun

    2008-01-01

    It is generally thought that skilled behavior in human beings results from a functional hierarchy of the motor control system, within which reusable motor primitives are flexibly integrated into various sensori-motor sequence patterns. The underlying neural mechanisms governing the way in which continuous sensori-motor flows are segmented into primitives and the way in which series of primitives are integrated into various behavior sequences have, however, not yet been clarified. In earlier studies, this functional hierarchy has been realized through the use of explicit hierarchical structure, with local modules representing motor primitives in the lower level and a higher module representing sequences of primitives switched via additional mechanisms such as gate-selecting. When sequences contain similarities and overlap, however, a conflict arises in such earlier models between generalization and segmentation, induced by this separated modular structure. To address this issue, we propose a different type of neural network model. The current model neither makes use of separate local modules to represent primitives nor introduces explicit hierarchical structure. Rather than forcing architectural hierarchy onto the system, functional hierarchy emerges through a form of self-organization that is based on two distinct types of neurons, each with different time properties (“multiple timescales”). Through the introduction of multiple timescales, continuous sequences of behavior are segmented into reusable primitives, and the primitives, in turn, are flexibly integrated into novel sequences. In experiments, the proposed network model, coordinating the physical body of a humanoid robot through high-dimensional sensori-motor control, also successfully situated itself within a physical environment. Our results suggest that it is not only the spatial connections between neurons but also the timescales of neural activity that act as important mechanisms leading to functional hierarchy in neural systems. PMID:18989398

  1. Comet Dust: The Diversity of "Primitive" Particles and Implications

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Ishii, Hope A.; Bradley, John P.; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples ( IDP's(Interplanetary Dust Particles) and AMM's (Antarctic Micrometeorites)) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contents of the silicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The uniformity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properties of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  2. Comet Dust: The Diversity of Primitive Particles and Implications

    NASA Technical Reports Server (NTRS)

    John Bradley; Zolensky, Michael E.

    2016-01-01

    Comet dust is primitive and shows significant diversity. Our knowledge of the properties of primitive particles has expanded significantly through microscale investigations of cosmic dust samples (IDPs and AMMs) and of comet dust samples (Stardust and Rosetta's COSIMA), as well as through remote sensing (spectroscopy and imaging) via Spitzer and via spacecraft encounters with 103P/Hartley 2 and 67P/Churyumov-Gerasimenko. Microscale investigations show that comet dust and cosmic dust are particles of unequilibrated materials, including aggregates of materials unequilibrated at submicron scales. We call unequilibrated materials "primitive" and we deduce they were incorporated into ice-­-rich (H2O-, CO2-, and CO-ice) parent bodies that remained cold, i.e., into comets, because of the lack of aqueous or thermal alteration since particle aggregation; yet some Stardust olivines suggest mild thermal metamorphism. Primitive particles exhibit a diverse range of: structure and typology; size and size distribution of constituents; concentration and form of carbonaceous and organic matter; D-, N-, and O- isotopic enhancements over solar; Mg-, Fe-contentsof thesilicate minerals; the compositions and concentrations of sulfides, and of less abundant mineral species such as chondrules, CAIs and carbonates. The unifomity within a group of samples points to: aerodynamic sorting of particles and/or particle constituents; the inclusion of a limited range of oxygen fugacities; the inclusion or exclusion of chondrules; a selection of organics. The properites of primitive particles imply there were disk processes that resulted in different comets having particular selections of primitive materials. The diversity of primitive particles has implications for the diversity of materials in the protoplanetary disk present at the time and in the region where the comets formed.

  3. ROUND TRIP FROM SPACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Melvin

    1958-10-29

    Whence came life on the surface of the earth? Whether or not a complete answer to this question may be found within the context, and content, of modern science, may be a moot question. It is our purpose to see how far we can devise an answer, and how satisfactory it may be, within that context. We trace a path from the primitive molecules of the primeval earth's atmosphere condensed from space through the random formation of more or less complex organic molecules, using the available energy sources of ultraviolet light, ionizing radiation or atmospheric electrical discharge, through the selectivemore » formation of complex organic molecules via autocatalysis, finally, to the informatiion-transmitting molecule which is capable of self-reproduction and variation. In addition, somewhere, either during the course of this Chemical Evolution, or perhaps succeeding it, a system has been evolved in which the concentration of the reaction materials was retained in a relatively small volume of space, leading to the formation of cellular structures. Man is about to send back into space some bits of the dust from whence it originally came, It is thus not only timely but more significant than ever before to ask again the question: What are the probabilities that cellular life as we know it may exist at other sites in the universe than the surface of the earth?« less

  4. Where should one look for traces of life on Venus?

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.

    2018-05-01

    Now Venus is not very similar to a suitable place for living. It surface temperature exceeds 730 K, the pressure is 90 atmospheres, the cloud layer consists of sulfur dioxide, and the fog above cloud is a solution of sulfuric acid. But about 3 billion years ago, this planet among the Earth-type planets within the Solar System was perhaps the most suitable place for the existence of some form of life there. Measurements of the ratio of hydrogen isotopes in the atmosphere also showed that the planet once had much more water, and perhaps it was enough even for the oceans. In early years on Venus was similar to the earth's climate, have a satisfactory temperature and oceans of liquid water. That is, under the above conditions with moderate temperature, sufficient heat and liquid water, Venus would be quite suitable for the emergence of certain microorganisms and for the existence of primitive life there, especially in the oceans. One way to check whether the ancient Venus was once covered by the oceans is the study of the tremolite found on Earth. It is necessary to hope to find the tremolite at some depth below the surface of Venus. Also necessary to search for some biosignals in the form of petrified remains, of possibly simple thermophilic microorganisms. We believe that such an experiment can be prepared and technically carried out during the next decades.

  5. Retention of primitive reflexes and delayed motor development in very low birth weight infants.

    PubMed

    Marquis, P J; Ruiz, N A; Lundy, M S; Dillard, R G

    1984-06-01

    Primitive reflexes and motor development were evaluated in 127 very low birth weight (VLBW) infants (birth weight less than 1501 grams) at four months corrected age. The asymmetrical tonic neck reflex, tonic labyrinth reflex, and Moro reflex were assessed for each child. The ability of each child to reach (obtain a red ring) and roll were observed. The child's performance on the gross motor scale of the Denver Development Screening Test was recorded. Thirty-seven term infants were administered identical evaluations at four months of age. The VLBW infants retained stronger primitive reflexes and exhibited a significantly higher incidence of motor delays than term infants. Significant correlations existed between the strength of the primitive reflexes and early motor development for VLBW infants. This study confirms a high incidence of motor delays among VLBW infants and demonstrates a clear association between retained primitive reflexes and delayed motor development in VLBW infants.

  6. RIPE integrity primitives, part 2 (RACE Integrity Primitives Evaluation)

    NASA Astrophysics Data System (ADS)

    Denboer, B.; Boly, J. P.; Bosselaers, A.; Brandt, J.; Chaum, D.; Damgaard, I.; Dichtl, M.; Fumy, W.; Vanderham, M.; Jansen, C. J. A.

    1993-04-01

    A manual intended for those seeking to secure information systems by applying modern cryptography is presented. It represents the successful attainment of goals by RIPE (RACE (Research and development of Advanced Communications technology in Europe) Integrity Primitives Evaluation). The recommended portfolio of integrity primitives, which is the main product of the project, forms the heart of the manual. By integrity, is meant the kinds of security that can be achieved through cryptography, apart from keeping messages secret. Thus included are ways to ensure that stored or communicated data is not illicitly modified, that parties exchanging messages are actually present, and that 'signed' electronic messages can be recognized as authentic by anyone. Of particular concern to the project were the high speed requirements of broadband communication. The project also aimed for completeness in its recommendations. As a result, the portfolio contains primitives, that is building blocks, that can meet most of today's perceived needs for integrity.

  7. RIPE integrity primitives, part 1 (RACE Integrity Primitives Evaluation)

    NASA Astrophysics Data System (ADS)

    Denboer, B.; Boly, J. P.; Bosselaers, A.; Brandt, J.; Chaum, D.; Damgaard, I.; Dichtl, M.; Fumy, W.; Vanderham, M.; Jansen, C. J. A.

    1993-04-01

    A manual intended for those seeking to secure information systems by applying modern cryptography is presented. It represents the successful attainment of goals by RIPE (RACE (Research and development of Advanced Communication technology in Europe) Integrity Primitives Evaluation). The recommended portfolio of integrity primitives, which is the main product of the project, forms the heart of the manual. By integrity, is meant the kinds of security that can be achieved through cryptography, apart from keeping messages secret. Thus included are ways to ensure that stored or communicated data is not illicitly modified, that parties exchanging messages are actually present, and that 'signed' electronic messages can be recognized as authentic by anyone. Of particular concern to the project were the high speed requirements of broadband communication. The project also aimed for completeness in its recommendations. As a result, the portfolio contains primitives, that is building blocks, that can meet most of today's perceived needs for integrity.

  8. Sulfide in the core and the composition of the silicate Earth

    NASA Astrophysics Data System (ADS)

    Burton, K. W.

    2015-12-01

    The chemical composition of the Earth is traditionally explained in terms of evolution from a solar-like composition, similar to that found in primitive 'chondritic' meteorites. It now appears, however, that the silicate Earth is not 'chondritic', but depleted in incompatible elements, including refractory lithophile and heat-producing elements. Either Earth lost material during planet-building due to collisional erosion or else internal differentiation processes produced a hidden reservoir deep in the early Earth. Sulfide in the core may provide a reservoir capable of balancing the composition of the silicate Earth. Recent experimental work suggests that the core contains a significant proportion of sulfide, added during the final stages of accretion and new data suggests that at high pressures sulfide can incorporate a substantial amount of refractory lithophile and heat-producing elements [1]. Pioneering work using the short-lived 146Sm-142Nd system strongly suggests that Earth's silicate mantle is non-chondritic [e.g. 2]. The drawback of such radiogenic isotope systems is that it is not possible to distinguish the fractionation of Sm/Nd that occurs during silicate melting from that occurring during the segregation of a sulfide-melt to form the core. Neodymium stable isotopes have the potential to provide just such a tracer of sulfide segregation, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Preliminary data indicate that mantle rocks do indeed possess heavier 146Nd/144Nd values than chondritic meteorites, consistent with the removal of light Nd into sulfide in the core, driving the residual mantle to heavy values. Overall, our isotope and elemental data indicate that the rare earths and other incompatible elements are substantially incorporated into sulfide. While Nd Stable isotope data for chondritic meteorites and mantle rocks, are consistent with the segregation of sulfide to the core. [1] Wohlers &Wood, Nature 520, 337 (2015) [2] Boyet & Carlson, Science 309, 576 (2005)

  9. Simulations of the general circulation of the Martian atmosphere. I - Polar processes

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Haberle, Robert M.; Schaeffer, James; Lee, Hilda

    1990-01-01

    Numerical simulations of the Martian atmosphere general circulation are carried out for 50 simulated days, using a three-dimensional model, based on the primitive equations of meteorology, which incorporated the radiative effects of atmospheric dust on solar and thermal radiation. A large number of numerical experiments were conducted for alternative choices of seasonal date and dust optical depth. It was found that, as the dust content of the winter polar region increased, the rate of atmospheric CO2 condensation increased sharply. It is shown that the strong seasonal variation in the atmospheric dust content observed might cause a number of hemispheric asymmetries. These asymmetries include the greater prevalence of polar hoods in the northern polar region during winter, the lower albedo of the northern polar cap during spring, and the total dissipation of the northern CO2 ice cap during the warmer seasons.

  10. Large eddy simulation of incompressible turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Moin, P.; Reynolds, W. C.; Ferziger, J. H.

    1978-01-01

    The three-dimensional, time-dependent primitive equations of motion were numerically integrated for the case of turbulent channel flow. A partially implicit numerical method was developed. An important feature of this scheme is that the equation of continuity is solved directly. The residual field motions were simulated through an eddy viscosity model, while the large-scale field was obtained directly from the solution of the governing equations. An important portion of the initial velocity field was obtained from the solution of the linearized Navier-Stokes equations. The pseudospectral method was used for numerical differentiation in the horizontal directions, and second-order finite-difference schemes were used in the direction normal to the walls. The large eddy simulation technique is capable of reproducing some of the important features of wall-bounded turbulent flows. The resolvable portions of the root-mean square wall pressure fluctuations, pressure velocity-gradient correlations, and velocity pressure-gradient correlations are documented.

  11. Petascale Kinetic Simulations in Space Sciences: New Simulations and Data Discovery Techniques and Physics Results

    NASA Astrophysics Data System (ADS)

    Karimabadi, Homa

    2012-03-01

    Recent advances in simulation technology and hardware are enabling breakthrough science where many longstanding problems can now be addressed for the first time. In this talk, we focus on kinetic simulations of the Earth's magnetosphere and magnetic reconnection process which is the key mechanism that breaks the protective shield of the Earth's dipole field, allowing the solar wind to enter the Earth's magnetosphere. This leads to the so-called space weather where storms on the Sun can affect space-borne and ground-based technological systems on Earth. The talk will consist of three parts: (a) overview of a new multi-scale simulation technique where each computational grid is updated based on its own unique timestep, (b) Presentation of a new approach to data analysis that we refer to as Physics Mining which entails combining data mining and computer vision algorithms with scientific visualization to extract physics from the resulting massive data sets. (c) Presentation of several recent discoveries in studies of space plasmas including the role of vortex formation and resulting turbulence in magnetized plasmas.

  12. Atmospheric Prebiotic Chemistry and Organic Hazes.

    PubMed

    Trainer, Melissa G

    2013-08-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  13. Atmospheric Prebiotic Chemistry and Organic Hazes

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  14. Partial gravity simulation using a pneumatic actuator with closed loop mechanical amplification

    NASA Technical Reports Server (NTRS)

    Ray, David M.

    1994-01-01

    To support future manned missions to the surface of the Moon and Mars or missions requiring manipulation of payloads and locomotion in space, a training device is required to simulate the conditions of both partial and microgravity as compared to the gravity on Earth. The focus of this paper is to present the development, construction, and testing of a partial gravity simulator which uses a pneumatic actuator with closed loop mechanical amplification. Results of the testing show that this type of simulator maintains a constant partial gravity simulation with a variation of the simulated body force between 2.2 percent and 10 percent, depending on the type of locomotion inputs. The data collected using the simulator show that mean stride frequencies at running speeds at lunar and Martian gravity levels are 12 percent less than those at Earth gravity. The data also show that foot/ground reaction forces at lunar and Martian gravity are, respectively, 62 percent and 51 percent less than those on Earth.

  15. Chemical evolution on planetary surfaces: from simple gases to organic macrocycles

    NASA Astrophysics Data System (ADS)

    Fox, Stefan; Strasdeit, Henry

    It is generally accepted that α-amino acids existed in the primordial ocean on the Hadean / early Archean Earth. They had been abiotically synthesized from smaller molecules such as H2 , CH4 , H2 O, NH3 , HCN, aldehydes, ketones, and alcohols [1-3]. Once the amino acids had been formed, they probably reacted to more complex molecules. One possibility is the thermal transformation at hot volcanic coasts. In a first step, amino acid-containing seawater evaporated in the vicinity of lava streams. A salt crust remained in which amino acids were embedded. In a second step, these embedded amino acids were thermally transformed to new compounds. In order to simulate this hot-volcanic-coast scenario artificial salt crusts with embedded amino acids were prepared and heated to 300-800 ° C in a slow stream of nitrogen gas. We found that in the salt crusts glycine, DL-alanine and -aminoisobutyric acid were chemically bonded to calcium or magnesium ions. This metal coordination prevents the sublimation of the amino acids and permits the thermal formation of pyridines, piperazine-2,5-diones, polycyclic aromatic hydrocarbons, and especially several alkylated pyrroles. Thus an abiotic source of pyrroles on young Earth-like planets may exist. Amino acids and pyrroles are building blocks of important biomolecules. It might seem plausible that amino acids formed peptides on the early Earth. However, in aqueous solution the condensation reaction is unfavorable, and even if short peptides would have formed they would have tended to hydrolyze. This argument is equally true for nucleic acid components [4]. In contrast to that, it is known that pyrrole, in aqueous HCl solutions, reacts with formaldehyde to form oligopyrroles [5]. Prebiotic oligopyrroles and their metal complexes may have been utilized by primitive metabolizing systems and later modified into porphyrin-like macrocycles such as chlorophyll. [1] Miller, S. L. (1953) Science, 117, 528. [2] Johnson, A. P., Cleaves, H. J., Dworkin, J. P., Glavin, D. P., Lazcano, A., Bada, J. L. (2008), Science, 322, 404. [3] Cronin, J. R., Pizzarello, S. (1983), Adv. Space Res., 3, 5. [4] Shapiro, R. (1984), Orig. Life, 14, 565. [5] Sobral, A. J. F. N., Rebanda, N. G. C. L., da Silva, M., Lampreia, S. H., Ramos Silva, M., Matos Beja, A., Paixão, J. A., and d'A. Rocha Gonsalves, A. M. (2003), Tetrahedron Lett., 44, 3971. a

  16. Games and Simulations for Climate, Weather and Earth Science Education

    NASA Astrophysics Data System (ADS)

    Russell, R. M.

    2014-12-01

    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by the UCAR Center for Science Education. These materials have been disseminated via our web site (SciEd.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility in Boulder, Colorado. Our group has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory. More info available at: scied.ucar.edu/events/agu-2014-games-simulations-sessions

  17. Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51

    NASA Astrophysics Data System (ADS)

    Jöckel, Patrick; Tost, Holger; Pozzer, Andrea; Kunze, Markus; Kirner, Oliver; Brenninkmeijer, Carl A. M.; Brinkop, Sabine; Cai, Duy S.; Dyroff, Christoph; Eckstein, Johannes; Frank, Franziska; Garny, Hella; Gottschaldt, Klaus-Dirk; Graf, Phoebe; Grewe, Volker; Kerkweg, Astrid; Kern, Bastian; Matthes, Sigrun; Mertens, Mariano; Meul, Stefanie; Neumaier, Marco; Nützel, Matthias; Oberländer-Hayn, Sophie; Ruhnke, Roland; Runde, Theresa; Sander, Rolf; Scharffe, Dieter; Zahn, Andreas

    2016-03-01

    Three types of reference simulations, as recommended by the Chemistry-Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts - Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast simulations (1950-2011), hindcast simulations with specified dynamics (1979-2013), i.e. nudged towards ERA-Interim reanalysis data, and combined hindcast and projection simulations (1950-2100). The manuscript summarizes the updates of the model system and details the different model set-ups used, including the on-line calculated diagnostics. Simulations have been performed with two different nudging set-ups, with and without interactive tropospheric aerosol, and with and without a coupled ocean model. Two different vertical resolutions have been applied. The on-line calculated sources and sinks of reactive species are quantified and a first evaluation of the simulation results from a global perspective is provided as a quality check of the data. The focus is on the intercomparison of the different model set-ups. The simulation data will become publicly available via CCMI and the Climate and Environmental Retrieval and Archive (CERA) database of the German Climate Computing Centre (DKRZ). This manuscript is intended to serve as an extensive reference for further analyses of the Earth System Chemistry integrated Modelling (ESCiMo) simulations.

  18. Using Abstraction in Explicity Parallel Programs.

    DTIC Science & Technology

    1991-07-01

    However, we only rely on sequential consistency of memory operations. includ- ing reads. writes and any synchronization primitives provided by the...explicit synchronization primitives . This demonstrates the practical power of sequentially consistent memory, as opposed to weaker models of memory that...a small set of synchronization primitives , all pro- cedures have non-waiting specifications. This is in contrast to richer process-oriented

  19. Semantically-Sensitive Macroprocessing

    DTIC Science & Technology

    1989-12-15

    constr uct for protecting critical regions. Given the synchronization primitives P and V, we might implement the following transformation, where...By this we mean that the semantic model for the base language provides a primitive set of concepts, represented by data types and operations...the gener- ation of a (dynamic-) semantically equivalent program fragment ultimately expressible in terms of built-in primitives . Note that static

  20. A manual for PARTI runtime primitives, revision 1

    NASA Technical Reports Server (NTRS)

    Das, Raja; Saltz, Joel; Berryman, Harry

    1991-01-01

    Primitives are presented that are designed to help users efficiently program irregular problems (e.g., unstructured mesh sweeps, sparse matrix codes, adaptive mesh partial differential equations solvers) on distributed memory machines. These primitives are also designed for use in compilers for distributed memory multiprocessors. Communications patterns are captured at runtime, and the appropriate send and receive messages are automatically generated.

Top