Sample records for simulated pwr primary

  1. Effects of Thermo-Mechanical Treatments on Deformation Behavior and IGSCC Susceptibility of Stainless Steels in Pwr Primary Water Chemistry

    NASA Astrophysics Data System (ADS)

    Nouraei, S.; Tice, D. R.; Mottershead, K. J.; Wright, D. M.

    Field experience of 300 series stainless steels in the primary circuit of PWR plant has been good. Stress Corrosion Cracking of components has been infrequent and mainly associated with contamination by impurities/oxygen in occluded locations. However, some instances of failures have been observed which cannot necessarily be attributed to deviations in the water chemistry. These failures appear to be associated with the presence of cold-work produced by surface finishing and/or by welding-induced shrinkage. Recent data indicate that some heats of SS show an increased susceptibility to SCC; relatively high crack growth rates were observed even when the crack growth direction is orthogonal to the cold-work direction. SCC of cold-worked SS in PWR coolant is therefore determined by a complex interaction of material composition, microstructure, prior cold-work and heat treatment. This paper will focus on the interactions between these parameters on crack propagation in simulated PWR conditions.

  2. Simulation of German PKL refill/reflood experiment K9A using RELAP4/MOD7. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, M.T.; Davis, C.B.; Behling, S.R.

    This paper describes a RELAP4/MOD7 simulation of West Germany's Kraftwerk Union (KWU) Primary Coolant Loop (PKL) refill/reflood experiment K9A. RELAP4/MOD7, a best-estimate computer program for the calculation of thermal and hydraulic phenomena in a nuclear reactor or related system, is the latest version in the RELAP4 code development series. This study was the first major simulation using RELAP4/MOD7 since its release by the Idaho National Engineering Laboratory (INEL). The PKL facility is a reduced scale (1:134) representation of a typical West German four-loop 1300 MW pressurized water reactor (PWR). A prototypical scale of the total volume to power ratio wasmore » maintained. The test facility was designed specifically for an experiment simulating the refill/reflood phase of a Loss-of-Coolant Accident (LOCA).« less

  3. SCC Initiation Behavior of Alloy 182 in PWR Primary Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toloczko, Mychailo B.; Zhai, Ziqing; Bruemmer, Stephen M.

    SCC initiation behavior of 15% cold forged specimens cut from four different alloy 182 weldments was investigated in 360°C simulated PWR primary water under constant load at the yield stress using direct current potential drop to perform in-situ monitoring of SCC initiation time. Within each weldment, one or more specimens underwent SCC initiation within 24 hours of reaching full load while some specimens had much longer initiation times, in a few cases exceeding 2500 hours. Detailed examinations were conducted on these specimens with a focus on different microstructural features such as preexisting defects, grain orientation and second phases, highlighting anmore » important role of microstructure in crack initiation of alloy 182.« less

  4. Grain boundary damage evolution and SCC initiation of cold-worked alloy 690 in simulated PWR primary water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo B.; Kruska, Karen

    Long-term grain boundary (GB) damage evolution and stress corrosion crack initiation in alloy 690 are being investigated by constant load tensile testing in high-temperature, simulated PWR primary water. Six commercial alloy 690 heats are being tested in various cold work conditions loaded at their yield stress. This paper reviews the basic test approach and detailed characterizations performed on selected specimens after an exposure time of ~1 year. Intergranular crack nucleation was observed under constant stress in certain highly cold-worked (CW) alloy 690 heats and was found to be associated with the formation of GB cavities. Somewhat surprisingly, the heats mostmore » susceptible to cavity formation and crack nucleation were thermally treated materials with most uniform coverage of small GB carbides. Microstructure, % cold work and applied stress comparisons are made among the alloy 690 heats to better understand the factors influencing GB cavity formation and crack initiation.« less

  5. The increase in fatigue crack growth rates observed for Zircaloy-4 in a PWR environment

    NASA Astrophysics Data System (ADS)

    Cockeram, B. V.; Kammenzind, B. F.

    2018-02-01

    Cyclic stresses produced during the operation of nuclear reactors can result in the extension of cracks by processes of fatigue. Although fatigue crack growth rate (FCGR) data for Zircaloy-4 in air are available, little testing has been performed in a PWR primary water environment. Test programs have been performed by Gee et al., in 1989 and Picker and Pickles in 1984 by the UK Atomic Energy Authority, and by Wisner et al., in 1994, that have shown an enhancement in FCGR for Zircaloy-2 and Zircaloy-4 in high-temperature water. In this work, FCGR testing is performed on Zircaloy-4 in a PWR environment in the hydrided and non-hydrided condition over a range of stress-intensity. Measurements of crack extension are performed using a direct current potential drop (DCPD) method. The cyclic rate in the PWR primary water environment is varied between 1 cycle per minute to 0.1 cycle per minute. Faster FCGR rates are observed in water in comparison to FCGR testing performed in air for the hydrided material. Hydrided and non-hydrided materials had similar FCGR values in air, but the non-hydrided material exhibited much lower rates of FCGR in a PWR primary water environment than for hydrided material. Hydrides are shown to exhibit an increased tendency for cracking or decohesion in a PWR primary water environment that results in an enhancement in FCGR values. The FCGR in the PWR primary water only increased slightly with decreasing cycle frequency in the range of 1 cycle per minute to 0.1 cycle per minute. Comparisons between the FCGR in water and air show the enhancement from the PWR environment is affected by the applied stress intensity.

  6. Microstructural Effects on SCC Initiation PWR Primary Water Cold-Worked Alloy 600

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo B.; Bruemmer, Stephen M.

    SCC initiation behavior of one mill annealed alloy 600 plate heat was investigated in simulated PWR primary water under constant load at yield stress with in-situ direct current potential drop (DCPD) monitoring for crack initiation. Twelve specimens were tested at similar cold work levels among which three showed much shorter SCC initiation times (<400 hrs) than the others (>1200 hrs). Post-test examinations revealed that these three specimens all feature an inhomogeneous microstructure where the primary crack always nucleated along the boundary of large elongated grains protruding normally into the gauge. In contrast, such microstructure was either not observed or didmore » not extend deep enough into the gauge in the other specimens exhibiting ~3-6X longer initiation times. In order to better understand the role of this microstructural inhomogeneity in SCC initiation, high-resolution microscopy was performed to compare carbide morphology and strain distribution between the long grains and normal grains, and their potential effects on SCC initiation are discussed in this paper.« less

  7. Structural Integrity of Water Reactor Pressure Boundary Components.

    DTIC Science & Technology

    1981-02-20

    environment, and load waveform parameters . A theory of the influence of dissolved oxygen content on the fatigue crack growth results in simulated PWR ...simulated PWR coolant is - (Continues ) DD IJN7 1473 EDITION OF I NOV S ..OSL- -C 2 S/ 0102-LF-014-6601 S1ECURITY CLASSI1FICATION OF THIS PAGE (When...not seem to influence the data, which was produced for a load ratio of 0.2 and a simulated PWR coolant environment. Test results for A106 Grade C piping

  8. Effect of surface state on the oxidation behavior of welded 308L in simulated nominal primary water of PWR

    NASA Astrophysics Data System (ADS)

    Ming, Hongliang; Zhang, Zhiming; Wang, Jiazhen; Zhu, Ruolin; Ding, Jie; Wang, Jianqiu; Han, En-Hou; Ke, Wei

    2015-05-01

    The oxidation behavior of 308L weld metal (WM) with different surface state in the simulated nominal primary water of pressurized water reactor (PWR) was studied by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analyzer and X-ray photoelectron spectroscopy (XPS). After 480 h immersion, a duplex oxide film composed of a Fe-rich outer layer (Fe3O4, Fe2O3 and a small amount of NiFe2O4, Ni(OH)2, Cr(OH)3 and (Ni, Fe)Cr2O4) and a Cr-rich inner layer (FeCr2O4 and NiCr2O4) can be formed on the 308L WM samples with different surface state. The surface state has no influence on the phase composition of the oxide films but obviously affects the thickness of the oxide films and the morphology of the oxides (number & size). With increasing the density of dislocations and subgrain boundaries in the cold-worked superficial layer, the thickness of the oxide film, the number and size of the oxides decrease.

  9. Joining dissimilar stainless steels for pressure vessel components

    NASA Astrophysics Data System (ADS)

    Sun, Zheng; Han, Huai-Yue

    1994-03-01

    A series of studies was carried out to examine the weldability and properties of dissimilar steel joints between martensitic and austenitic stainless steels - F6NM (OCr13Ni4Mo) and AISI 347, respectively. Such joints are important parts in, e.g. the primary circuit of a pressurized water reactor (PWR). This kind of joint requires both good mechanical properties, corrosion resistance and a stable magnetic permeability besides good weldability. The weldability tests included weld thermal simulation of the martensitic steel for investigating the influence of weld thermal cycles and post-weld heat treatment (PWHT) on the mechanical properties of the heat-affected zone (HAZ); implant testing for examining the tendency for cold cracking of martensitic steel; rigid restraint testing for determining hot crack susceptibility of the multi-pass dissimilar steel joints. The joints were subjected to various mechanical tests including a tensile test, bending test and impact test at various temperatures, as well as slow strain-rate test for examining the stress corrosion cracking tendency in the simulated environment of a primary circuit of a PWR. The results of various tests indicated that the quality of the tube/tube joints is satisfactory for meeting all the design requirements.

  10. Uniaxial low cycle fatigue behavior for pre-corroded 16MND5 bainitic steel in simulated pressurized water reactor environment

    NASA Astrophysics Data System (ADS)

    Chen, Xu; Ren, Bin; Yu, Dunji; Xu, Bin; Zhang, Zhe; Chen, Gang

    2018-06-01

    The effects of uniaxial tension properties and low cycle fatigue behavior of 16MND5 bainitic steel cylinder pre-corroded in simulated pressurized water reactor (PWR) were investigated by fatigue at room temperature in air and immersion test system, scanning electron microscopy (SEM), energy disperse spectroscopy (EDS). The experimental results indicated that the corrosion fatigue lives of 16MND5 specimen were significantly affected by the strain amplitude and simulated PWR environments. The compositions of corrosion products were complexly formed in simulated PWR environments. The porous corrosion surface of pre-corroded materials tended to generate pits as a result of promoting contact area to the fresh metal, which promoted crack initiation. For original materials, the fatigue cracks initiated at inclusions imbedded in the micro-cracks. Moreover, the simulated PWR environments degraded the mechanical properties and low cycle fatigue behavior of 16MND5 specimens remarkably. Pre-corrosion of 16MND5 specimen mainly affected the plastic term of the Coffin-Manson equation.

  11. Electron Microscopy Characterizations and Atom Probe Tomography of Intergranular Attack in Alloy 600 Exposed to PWR Primary Water

    NASA Astrophysics Data System (ADS)

    Olszta, Matthew J.; Schreiber, Daniel K.; Thomas, Larry E.; Bruemmer, Stephen M.

    Detailed examinations of intergranular attack (IGA) in alloy 600 were performed after exposure to simulated PWR primary water at 325°C for 500 h. High-resolution analyses of IGA characteristics were conducted on specimens with either a 1 µm diamond or 1200-grit SiC surface finish using scanning electron microscopy, transmission electron microscopy and atom probe tomography techniques. The diamond-polish finish with very little preexisting subsurface damage revealed attack of high-energy grain boundaries that intersected the exposed surface to depths approaching 2 µm. In all cases, IGA from the surface is localized oxidation consisting of porous, nanocrystalline MO-structure and spinel particles along with regions of faceted wall oxidation. Surprisingly, this continuous IG oxidation transitions to discontinuous, discrete Cr-rich sulfide particles up to 50 nm in diameter. In the vicinity of the sulfides, the grain boundaries were severely Cr depleted (to <1 at%) and enriched in S. The 1200 grit SiC finish surface exhibited a preexisting highly strained recrystallized layer of elongated nanocrystalline matrix grains. Similar IG oxidation and leading sulfide particles were found, but the IGA depth was typically confined to the near-surface ( 400 nm) recrystallized region. Difference in IGA for the two surface finishes indicates that the formation of grain boundary sulfides occurs during the exposure to PWR primary water. The source of S remains unclear, however it is not present as sulfides in the bulk alloy nor is it segregated to bulk grain boundaries.

  12. Coupled Neutronics Thermal-Hydraulic Solution of a Full-Core PWR Using VERA-CS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarno, Kevin T; Palmtag, Scott; Davidson, Gregory G

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a core simulator called VERA-CS to model operating PWR reactors with high resolution. This paper describes how the development of VERA-CS is being driven by a set of progression benchmark problems that specify the delivery of useful capability in discrete steps. As part of this development, this paper will describe the current capability of VERA-CS to perform a multiphysics simulation of an operating PWR at Hot Full Power (HFP) conditions using a set of existing computer codes coupled together in a novel method. Results for several single-assembly casesmore » are shown that demonstrate coupling for different boron concentrations and power levels. Finally, high-resolution results are shown for a full-core PWR reactor modeled in quarter-symmetry.« less

  13. Effects of iron content in Ni-Cr-xFe alloys and immersion time on the oxide films formed in a simulated PWR water environment

    NASA Astrophysics Data System (ADS)

    Ru, Xiangkun; Lu, Zhanpeng; Chen, Junjie; Han, Guangdong; Zhang, Jinlong; Hu, Pengfei; Liang, Xue

    2017-12-01

    The iron content in Ni-Cr-xFe (x = 0-9 at.%) alloys strongly affected the properties of oxide films after 978 h of immersion in the simulated PWR primary water environment at 310 °C. Increasing the iron content in the alloys increased the amount of iron-bearing polyhedral spinel oxide particles in the outer oxide layer and increased the local oxidation penetrations into the alloy matrix from the chromium-rich inner oxide layer. The effects of iron content in the alloys on the oxide film properties after 500 h of immersion were less significant than those after 978 h. Iron content increased, and chromium content decreased, in the outer oxide layer with increasing iron content in the alloys. Increasing the immersion time facilitated the formation of the local oxidation penetrations along the matrix/film interface and the nickel-bearing spinel oxides in the outer oxide layer.

  14. Development of Hplc Techniques for the Analysis of Trace Metal Species in the Primary Coolant of a Pressurised Water Reactor.

    NASA Astrophysics Data System (ADS)

    Barron, Keiron Robert Philip

    Available from UMI in association with The British Library. The need to monitor corrosion products in the primary circuit of a pressurised water reactor (PWR), at a concentration of 10pg ml^{-1} is discussed. A review of trace and ultra-trace metal analysis, relevant to the specific requirements imposed by primary coolant chemistry, indicated that high performance liquid chromatography (HPLC), coupled with preconcentration of sample was an ideal technique. A HPLC system was developed to determine trace metal species in simulated PWR primary coolant. In order to achieve the desired detection limit an on-line preconcentration system had to be developed. Separations were performed on Aminex A9 and Benson BC-X10 analytical columns. Detection was by post column reaction with Eriochrome Black T and Calmagite Linear calibrations of 2.5-100ng of cobalt (the main species of interest), were achieved using up to 200ml samples. The detection limit for a 200ml sample was 10pg ml^{-1}. In order to achieve the desired aim of on-line collection of species at 300^circ C, the use of inorganic ion-exchangers is essential. A novel application, utilising the attractive features of the inorganic ion-exchangers titanium dioxide, zirconium dioxide, zirconium arsenophosphate and pore controlled glass beads, was developed for the preconcentration of trace metal species at temperature and pressure. The performance of these exchangers, at ambient and 300^ circC was assessed by their inclusion in the developed analytical system and by the use of radioisotopes. The particular emphasis during the development has been upon accuracy, reproducibility of recovery, stability of reagents and system contamination, studied by the use of radioisotopes and response to post column reagents. This study in conjunction with work carried out at Winfrith, resulted in a monitoring system that could follow changes in coolant chemistry, on deposition and release of metal species in simulated PWR water loops. On -line detection of cobalt at 11pg ml^{ -1} was recorded, something which previously could not be performed by other techniques.

  15. PWR-related integral safety experiments in the PKL 111 test facility SBLOCA under beyond-design-basis accident conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, P.; Umminger, K.J.; Schoen, B.

    1995-09-01

    The thermal hydraulic behavior of a PWR during beyond-design-basis accident scenarios is of vital interest for the verification and optimization of accident management procedures. Within the scope of the German reactor safety research program experiments were performed in the volumetrically scaled PKL 111 test facility by Siemens/KWU. This highly instrumented test rig simulates a KWU-design PWR (1300 MWe). In particular, the latest tests performed related to a SBLOCA with additional system failures, e.g. nitrogen entering the primary system. In the case of a SBLOCA, it is the goal of the operator to put the plant in a condition where themore » decay heat can be removed first using the low pressure emergency core cooling system and then the residual heat removal system. The experimental investigation presented assumed the following beyond-design-basis accident conditions: 0.5% break in a cold leg, 2 of 4 steam generators (SGs) isolated on the secondary side (feedwater- and steam line-valves closed), filled with steam on the primary side, cooldown of the primary system using the remaining two steam generators, high pressure injection system only in the two loops with intact steam generators, if possible no operator actions to reach the conditions for residual heat removal system activation. Furthermore, it was postulated that 2 of the 4 hot leg accumulators had a reduced initial water inventory (increased nitrogen inventory), allowing nitrogen to enter the primary system at a pressure of 15 bar and nearly preventing the heat transfer in the SGs ({open_quotes}passivating{close_quotes} U-tubes). Due to this the heat transfer regime in the intact steam generators changed remarkably. The primary system showed self-regulating system effects and heat transfer improved again (reflux-condenser mode in the U-tube inlet region).« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overman, Nicole R.; Toloczko, Mychailo B.; Olszta, Matthew J.

    High chromium, nickel-base Alloy 690 exhibits an increased resistance to stress corrosion cracking (SCC) in pressurized water reactor (PWR) primary water environments over lower chromium alloy 600. As a result, Alloy 690 has been used to replace Alloy 600 for steam generator tubing, reactor pressure vessel nozzles and other pressure boundary components. However, recent laboratory crack-growth testing has revealed that heavily cold-worked Alloy 690 materials can become susceptible to SCC. To evaluate reasons for this increased SCC susceptibility, detailed characterizations have been performed on as-received and cold-worked Alloy 690 materials using electron backscatter diffraction (EBSD) and Vickers hardness measurements. Examinationsmore » were performed on cross sections of compact tension specimens that were used for SCC crack growth rate testing in simulated PWR primary water. Hardness and the EBSD integrated misorientation density could both be related to the degree of cold work for materials of similar grain size. However, a microstructural dependence was observed for strain correlations using EBSD and hardness which should be considered if this technique is to be used for gaining insight on SCC growth rates« less

  17. Fabrication of simulated DUPIC fuel

    NASA Astrophysics Data System (ADS)

    Kang, Kweon Ho; Song, Ki Chan; Park, Hee Sung; Moon, Je Sun; Yang, Myung Seung

    2000-12-01

    Simulated DUPIC fuel provides a convenient way to investigate the DUPIC fuel properties and behavior such as thermal conductivity, thermal expansion, fission gas release, leaching, and so on without the complications of handling radioactive materials. Several pellets simulating the composition and microstructure of DUPIC fuel are fabricated by resintering the powder, which was treated through OREOX process of simulated spent PWR fuel pellets, which had been prepared from a mixture of UO2 and stable forms of constituent nuclides. The key issues for producing simulated pellets that replicate the phases and microstructure of irradiated fuel are to achieve a submicrometre dispersion during mixing and diffusional homogeneity during sintering. This study describes the powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using the simulated spent PWR fuel. The homogeneity of additives in the powder was observed after attrition milling. The microstructure of the simulated spent PWR fuel agrees well with the other studies. The leading structural features observed are as follows: rare earth and other oxides dissolved in the UO2 matrix, small metallic precipitates distributed throughout the matrix, and a perovskite phase finely dispersed on grain boundaries.

  18. In-situ Condition Monitoring of Components in Small Modular Reactors Using Process and Electrical Signature Analysis. Final report, volume 1. Development of experimental flow control loop, data analysis and plant monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyaya, Belle; Hines, J. Wesley; Damiano, Brian

    The research and development under this project was focused on the following three major objectives: Objective 1: Identification of critical in-vessel SMR components for remote monitoring and development of their low-order dynamic models, along with a simulation model of an integral pressurized water reactor (iPWR). Objective 2: Development of an experimental flow control loop with motor-driven valves and pumps, incorporating data acquisition and on-line monitoring interface. Objective 3: Development of stationary and transient signal processing methods for electrical signatures, machinery vibration, and for characterizing process variables for equipment monitoring. This objective includes the development of a data analysis toolbox. Themore » following is a summary of the technical accomplishments under this project: - A detailed literature review of various SMR types and electrical signature analysis of motor-driven systems was completed. A bibliography of literature is provided at the end of this report. Assistance was provided by ORNL in identifying some key references. - A review of literature on pump-motor modeling and digital signal processing methods was performed. - An existing flow control loop was upgraded with new instrumentation, data acquisition hardware and software. The upgrading of the experimental loop included the installation of a new submersible pump driven by a three-phase induction motor. All the sensors were calibrated before full-scale experimental runs were performed. - MATLAB-Simulink model of a three-phase induction motor and pump system was completed. The model was used to simulate normal operation and fault conditions in the motor-pump system, and to identify changes in the electrical signatures. - A simulation model of an integral PWR (iPWR) was updated and the MATLAB-Simulink model was validated for known transients. The pump-motor model was interfaced with the iPWR model for testing the impact of primary flow perturbations (upsets) on plant parameters and the pump electrical signatures. Additionally, the reactor simulation is being used to generate normal operation data and data with instrumentation faults and process anomalies. A frequency controller was interfaced with the motor power supply in order to vary the electrical supply frequency. The experimental flow control loop was used to generate operational data under varying motor performance characteristics. Coolant leakage events were simulated by varying the bypass loop flow rate. The accuracy of motor power calculation was improved by incorporating the power factor, computed from motor current and voltage in each phase of the induction motor.- A variety of experimental runs were made for steady-state and transient pump operating conditions. Process, vibration, and electrical signatures were measured using a submersible pump with variable supply frequency. High correlation was seen between motor current and pump discharge pressure signal; similar high correlation was exhibited between pump motor power and flow rate. Wide-band analysis indicated high coherence (in the frequency domain) between motor current and vibration signals. - Wide-band operational data from a PWR were acquired from AMS Corporation and used to develop time-series models, and to estimate signal spectrum and sensor time constant. All the data were from different pressure transmitters in the system, including primary and secondary loops. These signals were pre-processed using the wavelet transform for filtering both low-frequency and high-frequency bands. This technique of signal pre-processing provides minimum distortion of the data, and results in a more optimal estimation of time constants of plant sensors using time-series modeling techniques.« less

  19. Primary water chemistry improvement for radiation exposure reduction at Japanese PWR Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishizawa, Eiichi

    1995-03-01

    Radiation exposure during the refueling outages at Japanese Pressurized Water Reactor (PWR) Plants has been gradually decreased through continuous efforts keeping the radiation dose rates at relatively low level. The improvement of primary water chemistry in respect to reduction of the radiation sources appears as one of the most important contributions to the achieved results and can be classified by the plant operation conditions as follows

  20. VERA Core Simulator Methodology for PWR Cycle Depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochunas, Brendan; Collins, Benjamin S; Jabaay, Daniel

    2015-01-01

    This paper describes the methodology developed and implemented in MPACT for performing high-fidelity pressurized water reactor (PWR) multi-cycle core physics calculations. MPACT is being developed primarily for application within the Consortium for the Advanced Simulation of Light Water Reactors (CASL) as one of the main components of the VERA Core Simulator, the others being COBRA-TF and ORIGEN. The methods summarized in this paper include a methodology for performing resonance self-shielding and computing macroscopic cross sections, 2-D/1-D transport, nuclide depletion, thermal-hydraulic feedback, and other supporting methods. These methods represent a minimal set needed to simulate high-fidelity models of a realistic nuclearmore » reactor. Results demonstrating this are presented from the simulation of a realistic model of the first cycle of Watts Bar Unit 1. The simulation, which approximates the cycle operation, is observed to be within 50 ppm boron (ppmB) reactivity for all simulated points in the cycle and approximately 15 ppmB for a consistent statepoint. The verification and validation of the PWR cycle depletion capability in MPACT is the focus of two companion papers.« less

  1. Stress corrosion crack initiation of alloy 600 in PWR primary water

    DOE PAGES

    Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.; ...

    2017-04-27

    Stress corrosion crack (SCC) initiation of three mill-annealed alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and intergranular SCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Lastly, we discuss processes controlling the SCC initiation in mill-annealed alloy 600.

  2. Stress corrosion crack initiation of alloy 600 in PWR primary water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.

    Stress corrosion crack (SCC) initiation of three mill-annealed alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and intergranular SCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Lastly, we discuss processes controlling the SCC initiation in mill-annealed alloy 600.

  3. PRELIMINARY COUPLING OF THE MONTE CARLO CODE OPENMC AND THE MULTIPHYSICS OBJECT-ORIENTED SIMULATION ENVIRONMENT (MOOSE) FOR ANALYZING DOPPLER FEEDBACK IN MONTE CARLO SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Ellis; Derek Gaston; Benoit Forget

    In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes.more » An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.« less

  4. Surrogate fuel assembly multi-axis shaker tests to simulate normal conditions of rail and truck transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Paul E.; Koenig, Greg John; Uncapher, William Leonard

    2016-05-01

    This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.

  5. Surrogate fuel assembly multi-axis shaker tests to simulate normal conditions of rail and truck transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Paul E.; Koenig, Greg John; Uncapher, William Leonard

    2016-05-12

    This report describes the third set of tests (the “DCL a shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.

  6. Stress corrosion of low alloy steels used in external bolting on pressurised water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skeldon, P.; Hurst, P.; Smart, N.R.

    1992-12-31

    The stress corrosion cracking (SCC) susceptibility of AISI 4140 and AISI 4340 steels has been evaluated in five environments, three simulating a leaking aqueous boric acid environment and two simulating ambient external conditions ie moist air and salt spray. Both steels were found to be highly susceptible to SCC in all environments at hardnesses of 400 VPN and above. The susceptibility was greatly reduced at hardnesses below 330 VPN but in one environment, viz refluxing PWR primary water, SCC was observed at hardnesses as low as 260VPN. Threshold stress intensities for SCC were frequently lower than those in the literature.

  7. Design and implementation of a simple nuclear power plant simulator

    NASA Astrophysics Data System (ADS)

    Miller, William H.

    1983-02-01

    A simple PWR nuclear power plant simulator has been designed and implemented on a minicomputer system. The system is intended for students use in understanding the power operation of a nuclear power plant. A PDP-11 minicomputer calculates reactor parameters in real time, uses a graphics terminal to display the results and a keyboard and joystick for control functions. Plant parameters calculated by the model include the core reactivity (based upon control rod positions, soluble boron concentration and reactivity feedback effects), the total core power, the axial core power distribution, the temperature and pressure in the primary and secondary coolant loops, etc.

  8. Characterization of interfacial reactions and oxide films on 316L stainless steel in various simulated PWR primary water environments

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Xiao, Qian; Lu, Zhanpeng; Ru, Xiangkun; Peng, Hao; Xiong, Qi; Li, Hongjuan

    2017-06-01

    The effect of water chemistry on the electrochemical and oxidizing behaviors of 316L SS was investigated in hydrogenated, deaerated and oxygenated PWR primary water at 310 °C. Water chemistry significantly influenced the electrochemical impedance spectroscopy parameters. The highest charge-transfer resistance and oxide-film resistance occurred in oxygenated water. The highest electric double-layer capacitance and constant phase element of the oxide film were in hydrogenated water. The oxide films formed in deaerated and hydrogenated environments were similar in composition but different in morphology. An oxide film with spinel outer particles and a compact and Cr-rich inner layer was formed in both hydrogenated and deaerated water. Larger and more loosely distributed outer oxide particles were formed in deaerated water. In oxygenated water, an oxide film with hematite outer particles and a porous and Ni-rich inner layer was formed. The reaction kinetics parameters obtained by electrochemical impedance spectroscopy measurements and oxidation film properties relating to the steady or quasi-steady state conditions in the time-period of measurements could provide fundamental information for understanding stress corrosion cracking processes and controlling parameters.

  9. Evaluation and comparison of gross primary production estimates for the Northern Great Plains grasslands

    USGS Publications Warehouse

    Zhang, Li; Wylie, Bruce K.; Loveland, Thomas R.; Fosnight, Eugene A.; Tieszen, Larry L.; Ji, Lei; Gilmanov, Tagir

    2007-01-01

    Two spatially-explicit estimates of gross primary production (GPP) are available for the Northern Great Plains. An empirical piecewise regression (PWR) GPP model was developed from flux tower measurements to map carbon flux across the region. The Moderate Resolution Imaging Spectrometer (MODIS) GPP model is a process-based model that uses flux tower data to calibrate its parameters. Verification and comparison of the regional PWR GPP and the global MODIS GPP are important for the modeling of grassland carbon flux. This study compared GPP estimates from PWR and MODIS models with five towers in the grasslands. Among them, PWR GPP and MODIS GPP showed a good agreement with tower-based GPP at three towers. The global MODIS GPP, however, did not agree well with tower-based GPP at two other towers, probably because of the insensitivity of MODIS model to regional ecosystem and climate change and extreme soil moisture conditions. Cross-validation indicated that the PWR model is relatively robust for predicting regional grassland GPP. However, the PWR model should include a wide variety of flux tower data as the training data sets to obtain more accurate results.In addition, GPP maps based on the PWR and MODIS models were compared for the entire region. In the northwest and south, PWR GPP was much higher than MODIS GPP. These areas were characterized by the higher water holding capacity with a lower proportion of C4 grasses in the northwest and a higher proportion of C4 grasses in the south. In the central and southeastern regions, PWR GPP was much lower than MODIS GPP under complicated conditions with generally mixed C3/C4 grasses. The analysis indicated that the global MODIS GPP model has some limitations on detecting moisture stress, which may have been caused by the facts that C3 and C4 grasses are not distinguished, water stress is driven by vapor pressure deficit (VPD) from coarse meteorological data, and MODIS land cover data are unable to differentiate the sub-pixel cropland components.

  10. Multidimensional effects in the thermal response of fuel rod simulators. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabbs, R.D.; Ott, L.J.

    1980-01-01

    One of the primary objectives of the Oak Ridge National Laboratory Pressurized-Water Reactor Blowdown Heat Transfer Separate-Effects Program is the determination of the transient surface temperature and surface heat flux of fuel pin simulators (FPSs) from internal thermocouple signals obtained during a loss-of-coolant experiment (LOCE) in the Thermal-Hydraulics Test Facility. This analysis requires the solution of the classical inverse heat conduction problem. The assumptions that allow the governing differential equation to be reduced to one dimension can introduce significant errors in the computed surface heat flux and surface temperature. The degree to which these computed variables are perturbed is addressedmore » and quantified.« less

  11. Corrosion fatigue characterization of reactor pressure vessel steels. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Der Sluys, W.A.

    1982-12-01

    During routine operation, light water reactor (LWR) pressure vessels are subjected to a variety of transients that result in time-varying stresses. Consequently, fatigue and environmentally-assisted fatigue are mechanisms of growth relevant to flaws in these pressure vessels. To provide a better understanding of the resistance of nuclear pressure vessel steels to these flaw growth processes, fracture mechanics data were generated on the rates of fatigue crack growth for SA508-2 and SA533B-1 steels in both room temperature air and 288/sup 0/C water. Areas investigated were: the relationship of crack growth rate to prior loading history; the effects of loading frequency andmore » R ratio (K/sub min//K/sub max/) on crack growth rate as a function of the stress intensity factor range (..delta..K); transient aspects of the fatigue crack growth behavior; the effect of material chemistry (sulphur content) on fatigue crack; and growth rate; water chemistry effects (high-purity water versus simulated pressurized water reactotr (PWR) primary coolant).« less

  12. Human Factors and Technical Considerations for a Computerized Operator Support System Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulrich, Thomas Anthony; Lew, Roger Thomas; Medema, Heather Dawne

    2015-09-01

    A prototype computerized operator support system (COSS) has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Departmentmore » of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment. A COSS demonstration scenario has been developed for the prototype involving the Chemical & Volume Control System (CVCS) of the PWR simulator. It involves a primary coolant leak outside of containment that would require tripping the reactor if not mitigated in a very short timeframe. The COSS prototype presents a series of operator screens that provide the needed information and soft controls to successfully mitigate the event.« less

  13. Cyclic and SCC Behavior of Alloy 690 HAZ in a PWR Environment

    NASA Astrophysics Data System (ADS)

    Alexandreanu, Bogdan; Chen, Yiren; Natesan, Ken; Shack, Bill

    The objective of this work is to determine the cyclic and stress corrosion cracking (SCC) crack growth rates (CGRs) in a simulated PWR water environment for Alloy 690 heat affected zone (HAZ). In order to meet the objective, an Alloy 152 J-weld was produced on a piece of Alloy 690 tubing, and the test specimens were aligned with the HAZ. The environmental enhancement of cyclic CGRs for Alloy 690 HAZ was comparable to that measured for the same alloy in the as-received condition. The two Alloy 690 HAZ samples tested exhibited maximum SCC CGR rates of 10-11 m/s in the simulated PWR environment at 320°C, however, on average, these rates are similar or only slightly higher than those for the as-received alloy.

  14. Best estimate plus uncertainty analysis of departure from nucleate boiling limiting case with CASL core simulator VERA-CS in response to PWR main steam line break event

    DOE PAGES

    Brown, Cameron S.; Zhang, Hongbin; Kucukboyaci, Vefa; ...

    2016-09-07

    VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was used to simulate a typical pressurized water reactor (PWR) full core response with 17x17 fuel assemblies for a main steam line break (MSLB) accident scenario with the most reactive rod cluster control assembly stuck out of the core. The accident scenario was initiated at the hot zero power (HZP) at the end of the first fuel cycle with return to power state points that were determined by amore » system analysis code and the most limiting state point was chosen for core analysis. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks’ nonparametric statistical approach. In this way, 59 full core simulations were performed to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. The results show that this typical PWR core remains within MDNBR safety limits for the MSLB accident.« less

  15. Best estimate plus uncertainty analysis of departure from nucleate boiling limiting case with CASL core simulator VERA-CS in response to PWR main steam line break event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Cameron S.; Zhang, Hongbin; Kucukboyaci, Vefa

    VERA-CS (Virtual Environment for Reactor Applications, Core Simulator) is a coupled neutron transport and thermal-hydraulics subchannel code under development by the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS was used to simulate a typical pressurized water reactor (PWR) full core response with 17x17 fuel assemblies for a main steam line break (MSLB) accident scenario with the most reactive rod cluster control assembly stuck out of the core. The accident scenario was initiated at the hot zero power (HZP) at the end of the first fuel cycle with return to power state points that were determined by amore » system analysis code and the most limiting state point was chosen for core analysis. The best estimate plus uncertainty (BEPU) analysis method was applied using Wilks’ nonparametric statistical approach. In this way, 59 full core simulations were performed to provide the minimum departure from nucleate boiling ratio (MDNBR) at the 95/95 (95% probability with 95% confidence level) tolerance limit. The results show that this typical PWR core remains within MDNBR safety limits for the MSLB accident.« less

  16. Penetrative Internal Oxidation from Alloy 690 Surfaces and Stress Corrosion Crack Walls during Exposure to PWR Primary Water

    NASA Astrophysics Data System (ADS)

    Olszta, Matthew J.; Schreiber, Daniel K.; Thomas, Larry E.; Bruemmer, Stephen M.

    Analytical electron microscopy and three-dimensional atom probe tomography (ATP) examinations of surface and near-surface oxidation have been performed on Ni-30%Cr alloy 690 materials after exposure to high-temperature, simulated PWR primary water. The oxidation nanostructures have been characterized at crack walls after stress-corrosion crack growth tests and at polished surfaces of unstressed specimens for the same alloys. Localized oxidation was discovered for both crack walls and surfaces as continuous filaments (typically <10 nm in diameter) extending from the water interface into the alloy 690 matrix reaching depths of 500 nm. These filaments consisted of discrete, plate-shaped Cr2O3 particles surrounded by a distribution of nanocrystalline, rock-salt (Ni-Cr-Fe) oxide. The oxide-containing filament depth was found to increase with exposure time and, at longer times, the filaments became very dense at the surface leaving only isolated islands of metal. Individual dislocations were oxidized in non-deformed materials, while the oxidation path appeared to be along more complex dislocation substructures in heavily deformed materials. This paper will highlight the use of high resolution scanning and transmission electron microscopy in combination with APT to better elucidate the microstructure and microchemistry of the filamentary oxidation.

  17. Stress corrosion crack initiation of alloy 600 in PWR primary water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo B.; Olszta, Matthew J.

    Stress corrosion crack (SCC) initiation of three mill-annealed (MA) alloy 600 heats in simulated pressurized water reactor primary water has been investigated using constant load tests equipped with in-situ direct current potential drop (DCPD) measurement capabilities. SCC initiation times were greatly reduced by a small amount of cold work. Shallow intergranular (IG) attack and/or cracks were found on most high-energy grain boundaries intersecting the surface with only a small fraction evolving into larger cracks and IGSCC growth. Crack depth profiles were measured and related to DCPD-detected initiation response. Processes controlling the SCC initiation in MA alloy 600 are discussed. INmore » PRESS, CORRECTED PROOF, 05/02/2017 - mfl« less

  18. Grid-to-rod flow-induced impact study for PWR fuel in reactor

    DOE PAGES

    Jiang, Hao; Qu, Jun; Lu, Roger Y.; ...

    2016-06-10

    The source for grid-to-rod fretting in a pressurized water nuclear reactor (PWR) is the dynamic contact impact from hydraulic flow-induced fuel assembly vibration. In order to support grid-to-rod fretting wear mitigation research, finite element analysis (FEA) was used to evaluate the hydraulic flow-induced impact intensity between the fuel rods and the spacer grids. Three-dimensional FEA models, with detailed geometries of the dimple and spring of the actual spacer grids along with fuel rods, were developed for flow impact simulation. The grid-to-rod dynamic impact simulation provided insights of the contact phenomena at grid-rod interface. Finally, it is an essential and effectivemore » way to evaluate contact forces and provide guidance for simulative bench fretting-impact tests.« less

  19. Design, Construction and Testing of an In-Pile Loop for PWR (Pressurized Water Reactor) Simulation.

    DTIC Science & Technology

    1987-06-01

    computer modeling remains at best semiempirical (C-i), this large variation in scaling factor makes extrapolation of data impossible. The DIDO Water...in a full scale PWR are not practical. The reactor plant is not controlled to tolerances necessary for research, and utilities are reluctant to vary...MIT Reactor Safeguards Committee, in revision 1 to the PCCL Safety Evaluation Report (SER), for final approval to begin in-pile testing and

  20. MELCOR model for an experimental 17x17 spent fuel PWR assembly.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoni, Jeffrey

    2010-11-01

    A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.

  1. Simulation of a main steam line break with steam generator tube rupture using trace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallardo, S.; Querol, A.; Verdu, G.

    A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation ofmore » the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)« less

  2. Effects of crack tip plastic zone on corrosion fatigue cracking of alloy 690(TT) in pressurized water reactor environments

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Qiu, S. Y.; Chen, Y.; Fu, Z. H.; Lin, Z. X.; Xu, Q.

    2015-01-01

    Alloy 690(TT) is widely used for steam generator tubes in pressurized water reactor (PWR), where it is susceptible to corrosion fatigue. In this study, the corrosion fatigue behavior of Alloy 690(TT) in simulated PWR environments was investigated. The microstructure of the plastic zone near the crack tip was investigated and labyrinth structures were observed. The relationship between the crack tip plastic zone and fatigue crack growth rates and the environment factor Fen was illuminated.

  3. Modeling of a Flooding Induced Station Blackout for a Pressurized Water Reactor Using the RISMC Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandelli, Diego; Prescott, Steven R; Smith, Curtis L

    2011-07-01

    In the Risk Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stochastic simulation) and mechanistic (via physics models) approaches. This coupling takes place through the interchange of physical parameters and operational or accident scenarios. In this paper we apply the RISMC approach to evaluate the impact of amore » power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., system activation) and to perform statistical analyses (e.g., run multiple RELAP-7 simulations where sequencing/timing of events have been changed according to a set of stochastic distributions). By using the RISMC toolkit, we can evaluate how power uprate affects the system recovery measures needed to avoid core damage after the PWR lost all available AC power by a tsunami induced flooding. The simulation of the actual flooding is performed by using a smooth particle hydrodynamics code: NEUTRINO.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faidy, C.

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  5. PWR and BWR spent fuel assembly gamma spectra measurements

    NASA Astrophysics Data System (ADS)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  6. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  7. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE PAGES

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; ...

    2016-07-17

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  8. A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit

    DOE PAGES

    Mandelli, Diego; Prescott, Steven; Smith, Curtis; ...

    2015-05-17

    In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code calledmore » NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins.« less

  9. Identification of poor households for premium exemptions in Ghana's National Health Insurance Scheme: empirical analysis of three strategies.

    PubMed

    Aryeetey, Genevieve Cecilia; Jehu-Appiah, Caroline; Spaan, Ernst; D'Exelle, Ben; Agyepong, Irene; Baltussen, Rob

    2010-12-01

    To evaluate the effectiveness of three alternative strategies to identify poor households: means testing (MT), proxy means testing (PMT) and participatory wealth ranking (PWR) in urban, rural and semi-urban settings in Ghana. The primary motivation was to inform implementation of the National Health Insurance policy of premium exemptions for the poorest households. Survey of 145-147 households per setting to collect data on consumption expenditure to estimate MT measures and of household assets to estimate PMT measures. We organized focus group discussions to derive PWR measures. We compared errors of inclusion and exclusion of PMT and PWR relative to MT, the latter being considered the gold standard measure to identify poor households. Compared to MT, the errors of exclusion and inclusion of PMT ranged between 0.46-0.63 and 0.21-0.36, respectively, and of PWR between 0.03-0.73 and 0.17-0.60, respectively, depending on the setting. Proxy means testing and PWR have considerable errors of exclusion and inclusion in comparison with MT. PWR is a subjective measure of poverty and has appeal because it reflects community's perceptions on poverty. However, as its definition of the poor varies across settings, its acceptability as a uniform strategy to identify the poor in Ghana may be questionable. PMT and MT are potential strategies to identify the poor, and their relative societal attractiveness should be judged in a broader economic analysis. This study also holds relevance to other programmes that require identification of the poor in low-income countries. © 2010 Blackwell Publishing Ltd.

  10. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal,more » 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.« less

  11. Effects of the weld thermal cycle on the microstructure of alloy 690

    NASA Astrophysics Data System (ADS)

    Tuttle, James R.

    Alloy 690 has been introduced as a material for use as the heat exchanger tubes in the steam generators (SGs) of pressurised water reactor (PWR) nuclear power plant. Its immediate predecessor, alloy 600, suffered from a number of degradation modes and another alternative, alloy 800, has also had in-service problems. In laboratory tests, alloy 690 in both mill annealed (MA) and special thermally treated (STT) condition has shown a high degree of resistance to degradation in simulated PWR primary side environments and other test media.Limited research has previously been undertaken to investigate the effects of welding on alloy 690, when the material is used in SG applications. It was deemed important to increase knowledge in this area since fabrication of PWR SGs involves gas tungsten arc welding (GTAW) of the heat exchanger tubes to a clad tubeplate. For this research investigation welded samples of alloy 690 have been produced in the laboratory using a range of thermal cycles based around recommended weld parameters for SG fabrication. These samples have been compared with archive welds from PWR SG manufacturers. A number of welds incorporating alloy 600 and a number using alloy 800 tubing material have also been fabricated in the laboratory for comparative purposes. Two experimental melts have been produced to study the effects of Nb substitution for Ti in alloy 690 type materials.Welded and unwelded specimens have been studied, analysed and tested using a variety of methods and techniques. A method of metallographic sample preparation for transmission electron microscope (TEM) thin foil specimens has been developed and documented which ensures foil perforation in a specific region. The effects of Nb substitution for Ti have been discussed. Chemical balances and microstructures in the fusion zone of welds manufactured from alloy 690 tubing incorporating alloy 82 weld consumable have been shown to be non-ideal. Within the heat affected zone (HAZ) of both laboratory produced and archive welds the microstructures have been identified as detrimentally altered from the STT condition original tubing material(s). A number of conclusions have been drawn and recommendations have been made for future work.

  12. Investigation into the effect of water chemistry on corrosion product formation in areas of accelerated flow

    NASA Astrophysics Data System (ADS)

    McGrady, John; Scenini, Fabio; Duff, Jonathan; Stevens, Nicholas; Cassineri, Stefano; Curioni, Michele; Banks, Andrew

    2017-09-01

    The deposition of CRUD (Chalk River Unidentified Deposit) in the primary circuit of a Pressurised Water Reactor (PWR) is known to preferentially occur in regions of the circuit where flow acceleration of coolant occurs. A micro-fluidic flow cell was used to recreate accelerated flow under simulated PWR conditions, by flowing water through a disc with a central micro-orifice. CRUD deposition was reproduced on the disc, and CRUD Build-Up Rates (BUR) in various regions of the disc were analysed. The effect of the local environment on BUR was investigated. In particular, the effect of flow velocity, specimen material and Fe concentration were considered. The morphology and composition of the deposits were analysed with respect to experimental conditions. The BUR of CRUD was found to be sensitive to flow velocity and Fe concentration, suggesting that mass transfer is an important factor. The morphology of the deposit was affected by the specimen material indicating a dependence on surface/particle electrostatics meaning surface chemistry plays an important role in deposition. The preferential deposition of CRUD in accelerated flow regions due to electrokinetic effects was observed and it was shown that higher Fe concentrations in solution increased BURs within the orifice whereas increased flow velocity reduced BURs.

  13. Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons

    NASA Astrophysics Data System (ADS)

    Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E.

    2018-04-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization.

  14. 76 FR 66090 - Facility Operating License Amendment From Virginia Electric and Power Company, Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... operating pressures, leakage from primary water stress corrosion cracking below the proposed limited... discussed in Regulatory Guide (RG) 1.121, ``Bases for Plugging Degraded PWR [Pressurized-Water Reactor...

  15. Irradiation performance of (Th,Pu)O2 fuel under Pressurized Water Reactor conditions

    NASA Astrophysics Data System (ADS)

    Boer, B.; Lemehov, S.; Wéber, M.; Parthoens, Y.; Gysemans, M.; McGinley, J.; Somers, J.; Verwerft, M.

    2016-04-01

    This paper examines the in-pile safety performance of (Th,Pu)O2 fuel pins under simulated Pressurized Water Reactor (PWR) conditions. Both sol-gel and SOLMAS produced (Th,Pu)O2 fuels at enrichments of 7.9% and 12.8% in Pu/HM have been irradiated at SCK·CEN. The irradiation has been performed under PWR conditions (155 bar, 300 °C) in a dedicated loop of the BR-2 reactor. The loop is instrumented with flow and temperature monitors at inlet and outlet, which allow for an accurate measurement of the deposited enthalpy.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruska, Karen; Zhai, Ziqing; Bruemmer, Stephen M.

    Due to its superior resistance to corrosion and stress corrosion cracking (SCC), high Cr, Ni-base Alloy 690 is now commonly used in pressurized water reactors (PWRs). Even though highly cold-worked (CW) Alloy 690 has been shown to be susceptible to SCC crack growth in PWR primary water environments, an open question remains whether SCC initiation was possible for these materials under constant load test conditions. Testing has been performed on a series of CW alloy 690 CRDM tubing specimens at constant load for up to 9,220 hours in 360°C simulated PWR primary water. A companion paper will discuss the overallmore » testing approach and describe results on different alloy 690 heats and cold work levels. The focus of the current paper is to illustrate the use of focused ion beam (FIB), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for the high-resolution investigation of precursor damage and intergranular (IG) crack nucleation in these specimens. Three-dimensional (3D) FIB/SEM imaging has been conducted on a series of grain boundary (GB) damage precursors, such as IG small cavities, local corrosion and even shallow cracks observed at the specimen surface. Contrast variations and EDS mapping were used to distinguish oxides, carbides and cavities from the matrix material. Nanometer-sized cavities were observed associated with GB carbides in the highly CW specimens. Shallow IG cracks were present in the 30%CW specimens and exhibited oxidized crack flanks and a higher density of cavities ahead of the oxide front in all cases. The shape and distribution of carbides and cavities in the plane of the cracked GBs was analyzed in 3D to gain a mechanistic understanding of the processes that may be leading to crack initiation in highly CW alloy 690.« less

  17. Preliminary LOCA analysis of the westinghouse small modular reactor using the WCOBRA/TRAC-TF2 thermal-hydraulics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, J.; Kucukboyaci, V. N.; Nguyen, L.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using themore » WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)« less

  18. PWR FLECHT SEASET 163-Rod Bundle Flow Blockage Task data report. NRC/EPRI/Westinghouse report No. 13, August-October 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loftus, M J; Hochreiter, L E; McGuire, M F

    This report presents data from the 163-Rod Bundle Blow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Systems Effects and Separate Effects Test Program (FLECHT SEASET). The task consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. These tests were designed to determine effects of flow blockage and flow bypass on reflooding behavior and to aid in the assessment of computational models in predicting the reflooding behavior of flow blockage in rod bundle arrays.

  19. Fatigue crack growth rates in a pressure vessel steel under various conditions of loading and the environment

    NASA Astrophysics Data System (ADS)

    Hicks, P. D.; Robinson, F. P. A.

    1986-10-01

    Corrosion fatigue (CF) tests have been carried out on SA508 Cl 3 pressure vessel steel, in simulated P.W.R. environments. The test variables investigated included air and P.W.R. water environments, frequency variation over the range 1 Hz to 10 Hz, transverse and longitudinal crack growth directions, temperatures of 20 °C and 50 °C, and R-ratios of 0.2 and 0.7. It was found that decreasing the test frequency increased fatigue crack growth rates (FCGR) in P.W.R. environments, P.W.R. environment testing gave enhanced crack growth (vs air tests), FCGRs were greater for cracks growing in the longitudinal direction, slight increases in temperature gave noticeable accelerations in FCGR, and several air tests gave FCGR greater than those predicted by the existing ASME codes. Fractographic evidence indicates that FCGRs were accelerated by a hydrogen embrittlement mechanism. The presence of elongated MnS inclusions aided both mechanical fatigue and hydrogen embrittlement processes, thus producing synergistically fast FCGRs. Both anodic dissolution and hydrogen embrittlement mechanisms have been proposed for the environmental enhancement of crack growth rates. Electrochemical potential measurements and potentiostatic tests have shown that sample isolation of the test specimens from the clevises in the apparatus is not essential during low temperature corrosion fatigue testing.

  20. Estimating probable flaw distributions in PWR steam generator tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorman, J.A.; Turner, A.P.L.

    1997-02-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regardingmore » uncertainties and assumptions in the data and analyses.« less

  1. Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR)

    NASA Astrophysics Data System (ADS)

    Brovchenko, Mariya; Dechenaux, Benjamin; Burn, Kenneth W.; Console Camprini, Patrizio; Duhamel, Isabelle; Peron, Arthur

    2017-09-01

    The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR). The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.

  2. On-line detection of key radionuclides for fuel-rod failure in a pressurized water reactor.

    PubMed

    Qin, Guoxiu; Chen, Xilin; Guo, Xiaoqing; Ni, Ning

    2016-08-01

    For early on-line detection of fuel rod failure, the key radionuclides useful in monitoring must leak easily from failing rods. Yield, half-life, and mass share of fission products that enter the primary coolant also need to be considered in on-line analyses. From all the nuclides that enter the primary coolant during fuel-rod failure, (135)Xe and (88)Kr were ultimately chosen as crucial for on-line monitoring of fuel-rod failure. A monitoring system for fuel-rod failure detection for pressurized water reactor (PWR) based on the LaBr3(Ce) detector was assembled and tested. The samples of coolant from the PWR were measured using the system as well as a HPGe γ-ray spectrometer. A comparison showed the method was feasible. Finally, the γ-ray spectra of primary coolant were measured under normal operations and during fuel-rod failure. The two peaks of (135)Xe (249.8keV) and (88)Kr (2392.1keV) were visible, confirming that the method is capable of monitoring fuel-rod failure on-line. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. DEVELOPMENT OF WELDED SEAL FOR S3G REACTOR VESSEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, J.W.

    1958-01-01

    The development program consisted of preliminary design, welding accessibility and feasibility, pressure and displacement cycling, theoretical analysis and life computation, photoelastic analysis, and comparison of PWR straight sample cycling. Design ''C'' of the three primary designs considered proved more satisfactory from a fatigue life standpoint. (W.D. M.)

  4. 76 FR 21917 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... SGTR accident. At normal operating pressures, leakage from primary water stress corrosion cracking... PWR [pressurized- water reactor] Operability Requirements and Actions for RCS Leakage Instrumentation... water inventory can be obtained. Therefore, it is concluded that the proposed changes do not involve a...

  5. 76 FR 1644 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... tubesheet in that region. At normal operating pressures, leakage from primary water stress corrosion... cause failure. The EDG reliability will thereby be potentially increased by reducing the stresses on the..., ``Bases for Plugging Degraded PWR [pressurized-water reactor] Steam Generator Tubes,'' margins against...

  6. Application of the TEMPEST computer code for simulating hydrogen distribution in model containment structures. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trent, D.S.; Eyler, L.L.

    In this study several aspects of simulating hydrogen distribution in geometric configurations relevant to reactor containment structures were investigated using the TEMPEST computer code. Of particular interest was the performance of the TEMPEST turbulence model in a density-stratified environment. Computed results illustrated that the TEMPEST numerical procedures predicted the measured phenomena with good accuracy under a variety of conditions and that the turbulence model used is a viable approach in complex turbulent flow simulation.

  7. Analysis of the return to power scenario following a LBLOCA in a PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macian, R.; Tyler, T.N.; Mahaffy, J.H.

    1995-09-01

    The risk of reactivity accidents has been considered an important safety issue since the beginning of the nuclear power industry. In particular, several events leading to such scenarios for PWR`s have been recognized and studied to assess the potential risk of fuel damage. The present paper analyzes one such event: the possible return to power during the reflooding phase following a LBLOCA. TRAC-PF1/MOD2 coupled with a three-dimensional neutronic model of the core based on the Nodal Expansion Method (NEM) was used to perform the analysis. The system computer model contains a detailed representation of a complete typical 4-loop PWR. Thus,more » the simulation can follow complex system interactions during reflooding, which may influence the neutronics feedback in the core. Analyses were made with core models bases on cross sections generated by LEOPARD. A standard and a potentially more limiting case, with increased pressurizer and accumulator inventories, were run. In both simulations, the reactor reaches a stable state after the reflooding is completed. The lower core region, filled with cold water, generates enough power to boil part of the incoming liquid, thus preventing the core average liquid fraction from reaching a value high enough to cause a return to power. At the same time, the mass flow rate through the core is adequate to maintain the rod temperature well below the fuel damage limit.« less

  8. Physics of hydride fueled PWR

    NASA Astrophysics Data System (ADS)

    Ganda, Francesco

    The first part of the work presents the neutronic results of a detailed and comprehensive study of the feasibility of using hydride fuel in pressurized water reactors (PWR). The primary hydride fuel examined is U-ZrH1.6 having 45w/o uranium: two acceptable design approaches were identified: (1) use of erbium as a burnable poison; (2) replacement of a fraction of the ZrH1.6 by thorium hydride along with addition of some IFBA. The replacement of 25 v/o of ZrH 1.6 by ThH2 along with use of IFBA was identified as the preferred design approach as it gives a slight cycle length gain whereas use of erbium burnable poison results in a cycle length penalty. The feasibility of a single recycling plutonium in PWR in the form of U-PuH2-ZrH1.6 has also been assessed. This fuel was found superior to MOX in terms of the TRU fractional transmutation---53% for U-PuH2-ZrH1.6 versus 29% for MOX---and proliferation resistance. A thorough investigation of physics characteristics of hydride fuels has been performed to understand the reasons of the trends in the reactivity coefficients. The second part of this work assessed the feasibility of multi-recycling plutonium in PWR using hydride fuel. It was found that the fertile-free hydride fuel PuH2-ZrH1.6, enables multi-recycling of Pu in PWR an unlimited number of times. This unique feature of hydride fuels is due to the incorporation of a significant fraction of the hydrogen moderator in the fuel, thereby mitigating the effect of spectrum hardening due to coolant voiding accidents. An equivalent oxide fuel PuO2-ZrO2 was investigated as well and found to enable up to 10 recycles. The feasibility of recycling Pu and all the TRU using hydride fuels were investigated as well. It was found that hydride fuels allow recycling of Pu+Np at least 6 times. If it was desired to recycle all the TRU in PWR using hydrides, the number of possible recycles is limited to 3; the limit is imposed by positive large void reactivity feedback.

  9. CRACK GROWTH RESPONSE OF ALLOY 690 IN SIMULATED PWR PRIMARY WATER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toloczko, Mychailo B.; Bruemmer, Stephen M.

    2009-12-01

    The stress corrosion crack growth response of three extruded alloy 690 CRDM tube heats was investigated in several thermomechanical conditions. Extremely low propagation rates (< 1 x 10{sup -9} mm/s) were observed under constant stress intensity factor (K) loading at 325-350 C in the as-received, thermally treated (TT) materials despite using a variety of transitioning techniques. Post-test observation of the crack-growth surfaces revealed only isolated intergranular (IG) cracking. One-dimensional cold rolling to 17% reduction and testing in the S-L orientation did not promote enhanced stress corrosion rates. However, somewhat higher propagation rates were observed in a 30% cold-rolled alloy 690TTmore » specimen tested in the T-L orientation. Cracking of the cold-rolled material was promoted on grain boundaries oriented parallel to the rolling plane with the % IG increasing with the amount of cold rolling.« less

  10. 40 CFR 59.506 - How do I demonstrate compliance if I manufacture multi-component kits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... multi-component kits as defined in § 59.503, then the Kit PWR must not exceed the Total Reactivity Limit. (b) You must calculate the Kit PWR and the Total Reactivity Limit as follows: (1) KIT PWR = (PWR(1) × W1) + (PWR(2) × W2) +. ...+ (PWR(n) × Wn) (2) Total Reactivity Limit = (RL1 × W1) + (RL2 × W2...

  11. 40 CFR 59.506 - How do I demonstrate compliance if I manufacture multi-component kits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... multi-component kits as defined in § 59.503, then the Kit PWR must not exceed the Total Reactivity Limit. (b) You must calculate the Kit PWR and the Total Reactivity Limit as follows: (1) KIT PWR = (PWR(1) × W1) + (PWR(2) × W2) +. ...+ (PWR(n) × Wn) (2) Total Reactivity Limit = (RL1 × W1) + (RL2 × W2...

  12. 40 CFR 59.506 - How do I demonstrate compliance if I manufacture multi-component kits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... multi-component kits as defined in § 59.503, then the Kit PWR must not exceed the Total Reactivity Limit. (b) You must calculate the Kit PWR and the Total Reactivity Limit as follows: (1) KIT PWR = (PWR(1) × W1) + (PWR(2) × W2) +. ...+ (PWR(n) × Wn) (2) Total Reactivity Limit = (RL1 × W1) + (RL2 × W2...

  13. 40 CFR 59.506 - How do I demonstrate compliance if I manufacture multi-component kits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... multi-component kits as defined in § 59.503, then the Kit PWR must not exceed the Total Reactivity Limit. (b) You must calculate the Kit PWR and the Total Reactivity Limit as follows: (1) KIT PWR = (PWR(1) × W1) + (PWR(2) × W2) +. ...+ (PWR(n) × Wn) (2) Total Reactivity Limit = (RL1 × W1) + (RL2 × W2...

  14. Precursor Evolution and Stress Corrosion Cracking Initiation of Cold-Worked Alloy 690 in Simulated Pressurized Water Reactor Primary Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Toloczko, Mychailo; Kruska, Karen

    Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 (UNS N06690) materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for either the 21% or 31%CW CLT specimens loaded at their yield stress after ~9,220 hours, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showedmore » DCPD-indicated crack initiation after 10,400 hours of exposure at constant stress intensity, which was resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and discusses their effects on crack initiation in CW alloy 690.« less

  15. Linking Grain Boundary Microstructure to Stress Corrosion Cracking of Cold Rolled Alloy 690 in PWR Primary Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, Stephen M.; Olszta, Matthew J.; Toloczko, Mychailo B.

    2012-10-01

    Grain boundary microstructures and microchemistries are examined in cold-rolled alloy 690 tubing and plate materials and comparisons are made to intergranular stress corrosion cracking (IGSCC) behavior in PWR primary water. Chromium carbide precipitation is found to be a key aspect for materials in both the mill annealed and thermally treated conditions. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG carbide distribution. Formore » the same degree of cold rolling, alloys with few IG precipitates exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal that cracked carbides appeared to blunt propagation of IGSCC cracks in many cases. Preliminary results suggest that the localized grain boundary strains and stresses produced during cold rolling promote IGSCC susceptibility and not the cracked carbides and voids.« less

  16. Neutronics Studies of Uranium-bearing Fully Ceramic Micro-encapsulated Fuel for PWRs

    DOE PAGES

    George, Nathan M.; Maldonado, G. Ivan; Terrani, Kurt A.; ...

    2014-12-01

    Our study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resultingmore » operating cycle length. Moreover, to match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO 2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO 2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.« less

  17. Characterization of carbon-14 generated by the nuclear power industry. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eabry, S.; Vance, J.N.; Cline, J.E.

    1995-11-01

    This report describes an evaluation of C-14 production rates in light-water reactors (LWRs) and characterization of its chemical speciation and environmental behavior. The study estimated the total production rate of the nuclide in operating PWRs and BWRs along with the assessment of the C-14 content of solid radwaste. The major source of production of C-14 in both PWR`s and BWRs was the activation of 0-17 in the water molecule and of N-14 dissolved in reactor coolant. The production of C-14 was estimated to range from 7 Ci/GW(e)-year to 11 Ci/GW(e)-year. The estimated range of the quantity of C-14 in LLWmore » was 1-2 Ci/ reactor-year which compares favorably with data obtained from shipping manifests. The environmental behavior of C-14 associated with low-level waste (LLW) disposal is greatly dependent upon its chemical speciation. This scoping study was performed to help identify the occurrence of inorganic and organic forms of C-14 in reactor coolant water and in primary coolant demineralization resins. These represent the major source for C-14 in LLW from nuclear power stations. Also, the behavior of inorganic and two of the organic forms of C-14 on soil uptake was determined by measuring distribution coefficients (Kd`s) on two soil types and a cement, using two different groundwater types. This study confirms that C-14 concentrations are significantly higher in the primary coolant from PWR stations compared to BWR stations. The C-14 followed trends of Co-60 generation during primary coolant demineralization at all but one of the stations examined. However, the C-14/Co-60 activity ratios measured by this study in resin samples through which samples of coolant were drawn were about 8 to 42 times higher than those reported for waste samples in the industry data base for PWR stations, and 15 to 730 times lower for the BWR stations.« less

  18. Crack growth testing on Cold Worked Alloy 690 in Primary Water Environment

    NASA Astrophysics Data System (ADS)

    Tice, David R.; Medway, Stuart L.; Platts, Norman; Stairmand, John W.

    While plant experience so far has shown excellent resistance of Alloy 690 to stress corrosion cracking in PWR primary water environments, laboratory tests have reported that susceptibility may be enhanced substantially by non-uniform cold working, particularly when the plane of crack growth is in the plane of rolling or forging. The Alloy 690 program aims to further the understanding of the mechanisms behind this susceptibility and the heat-to-heat variability reported for different materials.

  19. Posttest analysis of international standard problem 10 using RELAP4/MOD7. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, M.; Davis, C.B.; Peterson, A.C. Jr.

    RELAP4/MOD7, a best estimate computer code for the calculation of thermal and hydraulic phenomena in a nuclear reactor or related system, is the latest version in the RELAP4 code development series. This paper evaluates the capability of RELAP4/MOD7 to calculate refill/reflood phenomena. This evaluation uses the data of International Standard Problem 10, which is based on West Germany's KWU PKL refill/reflood experiment K9A. The PKL test facility represents a typical West German four-loop, 1300 MW pressurized water reactor (PWR) in reduced scale while maintaining prototypical volume-to-power ratio. The PKL facility was designed to specifically simulate the refill/reflood phase of amore » hypothetical loss-of-coolant accident (LOCA).« less

  20. Development of on-line monitoring system for Nuclear Power Plant (NPP) using neuro-expert, noise analysis, and modified neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subekti, M.; Center for Development of Reactor Safety Technology, National Nuclear Energy Agency of Indonesia, Puspiptek Complex BO.80, Serpong-Tangerang, 15340; Ohno, T.

    2006-07-01

    The neuro-expert has been utilized in previous monitoring-system research of Pressure Water Reactor (PWR). The research improved the monitoring system by utilizing neuro-expert, conventional noise analysis and modified neural networks for capability extension. The parallel method applications required distributed architecture of computer-network for performing real-time tasks. The research aimed to improve the previous monitoring system, which could detect sensor degradation, and to perform the monitoring demonstration in High Temperature Engineering Tested Reactor (HTTR). The developing monitoring system based on some methods that have been tested using the data from online PWR simulator, as well as RSG-GAS (30 MW research reactormore » in Indonesia), will be applied in HTTR for more complex monitoring. (authors)« less

  1. Electrochemical study of pre- and post-transition corrosion of Zr alloys in PWR coolant

    NASA Astrophysics Data System (ADS)

    Macák, Jan; Novotný, Radek; Sajdl, Petr; Renčiuková, Veronika; Vrtílková, Věra

    Corrosion properties of Zr-Sn and Zr-Nb zirconium alloys were studied under simulated PWR conditions (or, more exactly, VVER conditions — boric acid, potassium hydroxide, lithium hydroxide) at temperatures up to 340°C and 15MPa using in-situ electrochemical impedance spectroscopy (EIS) and polarization measurements. EIS spectra were obtained in a wide range of frequencies (typically 100kHz — 100μHz). It enabled to gain information of both dielectric properties of oxide layers developing on the Zr-alloys surface and of the kinetics of the corrosion process and the associated charge and mass transfer phenomena. Experiments were run for more than 380 days; thus, the study of all the corrosion stages (pre-transition, transition, post-transition) was possible.

  2. EMERALD REV.1. PWR Accident Activity Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunot, W.K.; Fray, R.R.; Gillespie, S.G.

    1975-10-01

    The EMERALD program is designed for the calculation of radiation releases and exposures resulting from abnormal operation of a large pressurized water reactor (PWR). The approach used in EMERALD is similar to an analog simulation of a real system. Each component or volume in the plant which contains a radioactive material is represented by a subroutine which keeps track of the production, transfer, decay and absorption of radioactivity in that volume. During the course of the analysis of an accident, activity is transferred from subroutine to subroutine in the program as it would be transferred from place to place inmore » the plant. For example, in the calculation of the doses resulting from a loss-of-coolant accident the program first calculates the activity built up in the fuel before the accident, then releases some of this activity to the containment volume. Some of this activity is then released to the atmosphere. The rates of transfer, leakage, production, cleanup, decay, and release are read in as input to the program. Subroutines are also included which calculate the on-site and off-site radiation exposures at various distances for individual isotopes and sums of isotopes. The program contains a library of physical data for the twenty-five isotopes of most interest in licensing calculations, and other isotopes can be added or substituted. Because of the flexible nature of the simulation approach, the EMERALD program can be used for most calculations involving the production and release of radioactive materials during abnormal operation of a PWR. These include design, operational, and licensing studies.« less

  3. 77 FR 37795 - Airworthiness Directives; Dassault Aviation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... display of ELEC:LH ESS PWR LO or ELEC:LH ESS NO PWR (Abnormal procedure 3-190-40), land at nearest suitable airport Upon display of ELEC:RH ESS PWR LO and ELEC:RH ESS NO PWR (Abnormal procedure 3-190-45...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerard, R.; Malekian, C.; Meessen, O.

    The Leak Before Break (LBB) concept allows to eliminate from the design basis the double-ended guillotine break of the primary loop piping, provided it can be demonstrated by a fracture mechanics analysis that a through-wall flaw, of a size giving rise to a leakage still well detectable by the plant leak detection systems, remains stable even under accident conditions (including the Safe Shutdown Earthquake (SSE)). This concept was successfully applied to the primary loop piping of several Belgian Pressurized Water Reactor (PWR) units, operated by the Utility Electrabel. One of the main benefits is to permit justification of supports inmore » the primary loop and justification of the integrity of the reactor pressure vessel and internals in case of a Loss Of Coolant Accident (LOCA) in stretch-out conditions. For two of the Belgian PWR units, the LBB approach also made it possible to reduce the number of large hydraulic snubbers installed on the primary coolant pumps. Last but not least, the LBB concept also facilitates the steam generator replacement operations, by eliminating the need for some pipe whip restraints located close to the steam generator. In addition to the U.S. regulatory requirements, the Belgian safety authorities impose additional requirements which are described in details in a separate paper. An novel aspect of the studies performed in Belgium is the way in which residual loads in the primary loop are taken into account. Such loads may result from displacements imposed to close the primary loop in a steam generator replacement operation, especially when it is performed using the {open_quote}two cuts{close_quotes} technique. The influence of such residual loads on the LBB margins is discussed in details and typical results are presented.« less

  5. The influence of psychological factors on post-partum weight retention at 9 months.

    PubMed

    Phillips, Joanne; King, Ross; Skouteris, Helen

    2014-11-01

    Post-partum weight retention (PWR) has been identified as a critical pathway for long-term overweight and obesity. In recent years, psychological factors have been demonstrated to play a key role in contributing to and maintaining PWR. Therefore, the aim of this study was to explore the relationship between post-partum psychological distress and PWR at 9 months, after controlling for maternal weight factors, sleep quality, sociocontextual influences, and maternal behaviours. Pregnant women (N = 126) completed a series of questionnaires at multiple time points from early pregnancy until 9 months post-partum. Hierarchical regression indicated that gestational weight gain, shorter duration (6 months or less) of breastfeeding, and post-partum body dissatisfaction at 3 and 6 months are associated with higher PWR at 9 months; stress, depression, and anxiety had minimal influence. Interventions aimed at preventing excessive PWR should specifically target the prevention of body dissatisfaction and excessive weight gain during pregnancy. What is already known on this subject? Post-partum weight retention (PWR) is a critical pathway for long-term overweight and obesity. Causes of PWR are complex and multifactorial. There is increasing evidence that psychological factors play a key role in predicting high PWR. What does this study add? Post-partum body dissatisfaction at 3 and 6 months is associated with PWR at 9 months post-birth. Post-partum depression, stress and anxiety have less influence on PWR at 9 months. Interventions aimed at preventing excessive PWR should target body dissatisfaction. © 2013 The British Psychological Society.

  6. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MONTROSE 2 KANSAS CITY PWR & LT. MISSOURI MONTROSE 3 KANSAS CITY PWR & LT. NEW YORK DUNKIRK 3 NIAGARA MOHAWK PWR. NEW YORK DUNKIRK 4 NIAGARA MOHAWK PWR. NEW YORK GREENIDGE 6 NY STATE ELEC & GAS. NEW YORK...

  7. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MONTROSE 2 KANSAS CITY PWR & LT. MISSOURI MONTROSE 3 KANSAS CITY PWR & LT. NEW YORK DUNKIRK 3 NIAGARA MOHAWK PWR. NEW YORK DUNKIRK 4 NIAGARA MOHAWK PWR. NEW YORK GREENIDGE 6 NY STATE ELEC & GAS. NEW YORK...

  8. 40 CFR Appendix A to Part 76 - Phase I Affected Coal-Fired Utility Units With Group 1 or Cell Burner Boilers

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MONTROSE 2 KANSAS CITY PWR & LT. MISSOURI MONTROSE 3 KANSAS CITY PWR & LT. NEW YORK DUNKIRK 3 NIAGARA MOHAWK PWR. NEW YORK DUNKIRK 4 NIAGARA MOHAWK PWR. NEW YORK GREENIDGE 6 NY STATE ELEC & GAS. NEW YORK...

  9. Development of the V4.2m5 and V5.0m0 Multigroup Cross Section Libraries for MPACT for PWR and BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog; Clarno, Kevin T.; Gentry, Cole

    2017-03-01

    The MPACT neutronics module of the Consortium for Advanced Simulation of Light Water Reactors (CASL) core simulator is a 3-D whole core transport code being developed for the CASL toolset, Virtual Environment for Reactor Analysis (VERA). Key characteristics of the MPACT code include (1) a subgroup method for resonance selfshielding and (2) a whole-core transport solver with a 2-D/1-D synthesis method. The MPACT code requires a cross section library to support all the MPACT core simulation capabilities which would be the most influencing component for simulation accuracy.

  10. Hot zero power reactor calculations using the Insilico code

    DOE PAGES

    Hamilton, Steven P.; Evans, Thomas M.; Davidson, Gregory G.; ...

    2016-03-18

    In this paper we describe the reactor physics simulation capabilities of the insilico code. A description of the various capabilities of the code is provided, including detailed discussion of the geometry, meshing, cross section processing, and neutron transport options. Numerical results demonstrate that the insilico SP N solver with pin-homogenized cross section generation is capable of delivering highly accurate full-core simulation of various PWR problems. Comparison to both Monte Carlo calculations and measured plant data is provided.

  11. Experiment data report for Semiscale Mod-1 Test S-05-1 (alternate ECC injection test)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, E. M.; Patton, Jr., M. L.; Sackett, K. E.

    Recorded test data are presented for Test S-05-1 of the Semiscale Mod-1 alternate ECC injection test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Test S-05-1 was conducted from initial conditions of 2263 psia and 544/sup 0/F to investigate the response of the Semiscale Mod-1 system to a depressurization and reflood transient following a simulated double-ended offset shear of the cold leg broken loop piping. During the test, cooling water was injected into the vessel lower plenum to simulatemore » emergency core coolant injection in a PWR, with the flow rate based on system volume scaling.« less

  12. Development of cement solidification process for sodium borate waste generated from PWR plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirofumi Okabe; Tatsuaki Sato; Yuichi Shoji

    2013-07-01

    A cement solidification process for treating sodium borate waste produced in pressurized water reactor (PWR) plants was studied. To obtain high volume reduction and high mechanical strength of the waste, simulated concentrated borate liquid waste with a sodium / boron (Na/B) mole ratio of 0.27 was dehydrated and powdered by using a wiped film evaporator. To investigate the effect of the Na/B mole ratio on the solidification process, a sodium tetraborate decahydrate reagent with a Na/B mole ratio of 0.5 was also used. Ordinary portland cement (OPC) and some additives were used for the solidification. Solidified cement prepared from powderedmore » waste with a Na/B mole ratio 0.24 and having a high silica sand content (silica sand/cement>2) showed to improved uniaxial compressive strength. (authors)« less

  13. PWR Facility Dose Modeling Using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blakeman, Edward D; Peplow, Douglas E.; Wagner, John C

    2007-09-01

    The feasibility of modeling a pressurized-water-reactor (PWR) facility and calculating dose rates at all locations within the containment and adjoining structures using MCNP5 with mesh tallies is presented. Calculations of dose rates resulting from neutron and photon sources from the reactor (operating and shut down for various periods) and the spent fuel pool, as well as for the photon source from the primary coolant loop, were all of interest. Identification of the PWR facility, development of the MCNP-based model and automation of the run process, calculation of the various sources, and development of methods for visually examining mesh tally filesmore » and extracting dose rates were all a significant part of the project. Advanced variance reduction, which was required because of the size of the model and the large amount of shielding, was performed via the CADIS/ADVANTG approach. This methodology uses an automatically generated three-dimensional discrete ordinates model to calculate adjoint fluxes from which MCNP weight windows and source bias parameters are generated. Investigative calculations were performed using a simple block model and a simplified full-scale model of the PWR containment, in which the adjoint source was placed in various regions. In general, it was shown that placement of the adjoint source on the periphery of the model provided adequate results for regions reasonably close to the source (e.g., within the containment structure for the reactor source). A modification to the CADIS/ADVANTG methodology was also studied in which a global adjoint source is weighted by the reciprocal of the dose response calculated by an earlier forward discrete ordinates calculation. This method showed improved results over those using the standard CADIS/ADVANTG approach, and its further investigation is recommended for future efforts.« less

  14. Development of an extended-burnup Mark B design. First semi-annual progress report, July-December 1978. Report BAW-1532-1. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-10-01

    The primary objective of this program is to develop and demonstrate an improved PWR fuel assembly design capable of batch average burnups of 45,000-50,000 MWd/mtU. To accomplish this, a number of technical areas must be investigated to verify acceptable extended-burnup fuel performance. This report is the first semi-annual progress report for the program, and it describes work performed during the July-December 1978 time period. Efforts during this period included the definition of a preliminary design for a high-burnup fuel rod, physics analyses of extended-burnup fuel cycles, studies of the physics characteristics of changes in fuel assembly metal-to-water ratios, and developmentmore » of a design concept for post-irradiation examination equipment to be utilized in examining high-burnup lead-test assemblies.« less

  15. EMERALD REVISION 1; PWR accident activity release. [IBM360,370; FORTRAN IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T.B.; Tobias, M.L.; Fox, J.N.

    The EMERALD program is designed for the calculation of radiation releases and exposures resulting from abnormal operation of a large pressurized water reactor (PWR). The approach used in EMERALD is similar to an analog simulation of a real system. Each component or volume in the plant which contains a radioactive material is represented by a subroutine which keeps track of the production, transfer, decay and absorption of radioactivity in that volume. During the course of the analysis of an accident, activity is transferred from subroutine to subroutine in the program as it would be transferred from place to place inmore » the plant. For example, in the calculation of the doses resulting from a loss-of-coolant accident the program first calculates the activity built up in the fuel before the accident, then releases some of this activity to the containment volume. Some of this activity is then released to the atmosphere. The rates of transfer, leakage, production, cleanup, decay, and release are read in as input to the program. Subroutines are also included which calculate the on-site and off-site radiation exposures at various distances for individual isotopes and sums of isotopes. The program contains a library of physical data for the twenty-five isotopes of most interest in licensing calculations, and other isotopes can be added or substituted. Because of the flexible nature of the simulation approach, the EMERALD program can be used for most calculations involving the production and release of radioactive materials during abnormal operation of a PWR. These include design, operational, and licensing studies.IBM360,370; FORTRAN IV; OS/360,370 (IBM360,370); 520K bytes of memory are required..« less

  16. The fractalline properties of experimentally simulated PWR fuel crud

    NASA Astrophysics Data System (ADS)

    Dumnernchanvanit, I.; Mishra, V. K.; Zhang, N. Q.; Robertson, S.; Delmore, A.; Mota, G.; Hussey, D.; Wang, G.; Byers, W. A.; Short, M. P.

    2018-02-01

    The buildup of fouling deposits on nuclear fuel rods, known as crud, continues to challenge the worldwide fleet of light water reactors (LWRs). Crud may cause serious operational problems for LWRs, including axial power shifts, accelerated fuel clad corrosion, increased primary circuit radiation dose rates, and in some instances has led directly to fuel failure. Numerous studies continue to attempt to model and predict the effects of crud, but each makes critical assumptions regarding how to treat the complex, porous microstructure of crud and its resultant effects on temperature, pressure, and crud chemistry. In this study, we demonstrate that crud is indeed a fractalline porous medium using flowing loop experiments, validating the most recent models of its effects on LWR fuel cladding. This crud is shown to match that in other LWR-prototypical facilities through a porosity-fractal dimension scaling law. Implications of this result range from post-mortem analysis of the effects of crud on reactor fuel performance, to utilizing crud's fractalline dimensions to quantify the effectiveness of anti-fouling measures.

  17. Low Platelet to White Blood Cell Ratio Indicates Poor Prognosis for Acute-On-Chronic Liver Failure.

    PubMed

    Jie, Yusheng; Gong, Jiao; Xiao, Cuicui; Zhu, Shuguang; Zhou, Wenying; Luo, Juan; Chong, Yutian; Hu, Bo

    2018-01-01

    Background. Platelet to white blood cell ratio (PWR) was an independent prognostic predictor for outcomes in some diseases. However, the prognostic role of PWR is still unclear in patients with hepatitis B related acute-on-chronic liver failure (ACLF). In this study, we evaluated the clinical performances of PWR in predicting prognosis in HBV-related ACLF. Methods. A total of 530 subjects were recruited, including 97 healthy controls and 433 with HBV-related ACLF. Liver function, prothrombin time activity (PTA), international normalized ratio (INR), HBV DNA measurement, and routine hematological testing were performed at admission. Results . At baseline, PWR in patients with HBV-related ACLF (14.03 ± 7.17) was significantly decreased compared to those in healthy controls (39.16 ± 9.80). Reduced PWR values were clinically associated with the severity of liver disease and the increased mortality rate. Furthermore, PWR may be an inexpensive, easily accessible, and significant independent prognostic index for mortality on multivariate analysis (HR = 0.660, 95% CI: 0.438-0.996, p = 0.048) as well as model for end-stage liver disease (MELD) score. Conclusions . The PWR values were markedly decreased in ACLF patients compared with healthy controls and associated with severe liver disease. Moreover, PWR was an independent prognostic indicator for the mortality rate in patients with ACLF. This investigation highlights that PWR comprised a useful biomarker for prediction of liver severity.

  18. Multidimensional Mixing Behavior of Steam-Water Flow in a Downcomer Annulus During LBLOCA Reflood Phase with a Direct Vessel Injection Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Tae-Soon; Yun, Byong-Jo; Euh, Dong-Jin

    Multidimensional thermal-hydraulic behavior in the downcomer annulus of a pressurized water reactor (PWR) vessel with a direct vessel injection mode is presented based on the experimental observation in the MIDAS (multidimensional investigation in downcomer annulus simulation) steam-water test facility. From the steady-state test results to simulate the late reflood phase of a large-break loss-of-coolant accident (LBLOCA), isothermal lines show the multidimensional phenomena of a phasic interaction between steam and water in the downcomer annulus very well. MIDAS is a steam-water separate effect test facility, which is 1/4.93 linearly scaled down to a 1400-MW(electric) PWR type of a nuclear reactor, focusedmore » on understanding multidimensional thermal-hydraulic phenomena in a downcomer annulus with various types of safety injection during the refill or reflood phase of an LBLOCA. The initial and the boundary conditions are scaled from the pretest analysis based on the preliminary calculation using the TRAC code. The superheated steam with a superheating degree of 80 K at a given downcomer pressure of 180 kPa is injected equally through three intact cold legs into the downcomer.« less

  19. Annual progress report on the NSRR experiments, (21)

    NASA Astrophysics Data System (ADS)

    1992-05-01

    Fuel behavior studies under simulated reactivity-initiated accident (RIA) conditions have been performed in the Nuclear Safety Research Reactor (NSRR) since 1975. This report gives the results of experiments performed from April, 1989 through March, 1990 and discussions of them. A total of 41 tests were carried out during this period. The tests are distinguished into pre-irradiated fuel tests and fresh fuel tests; the former includes 2 JMTR pre-irradiated fuel tests, 2 PWR pre-irradiated fuel tests, and 2 BWR pre-irradiated fuel tests, and the latter includes 6 standard fuel tests (6 SP(center dot)CP scoping tests), 7 power and cooling condition parameter tests (4 flow shrouded fuel tests, 1 bundle simulation test, 1 fully water-filled vessel test, 1 high pressure/high temperature loop test), 12 special fuel tests (3 stainless steel clad fuel tests, 3 improved PWR fuel tests, 6 improved BWR fuel tests), 3 severe fuel damage tests (1 high temperature flooding test, 1 flooding behavior observation test, 1 debris coolability test), 3 fast breeder reactor fuel tests (2 moderator material characteristic measurement tests, 1 fuel behavior observation test), and 2 miscellaneous tests (2 preliminary tests for pre-irradiated fuel tests).

  20. Pretest analysis of natural circulation on the PWR model PACTEL with horizontal steam generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kervinen, T.; Riikonen, V.; Ritonummi, T.

    A new tests facility - parallel channel tests loop (PACTEL)- has been designed and built to simulate the major components and system behavior of pressurized water reactors (PWRs) during postulated small- and medium-break loss-of-coolant accidents. Pretest calculations have been performed for the first test series, and the results of these calculations are being used for planning experiments, for adjusting the data acquisition system, and for choosing the optimal position and type of instrumentation. PACTEL is a volumetrically scaled (1:305) model of the VVER-440 PWR. In all the calculated cases, the natural circulation was found to be effective in removing themore » heat from the core to the steam generator. The loop mass flow rate peaked at 60% mass inventory. The straightening of the loop seals increased the mass flow rate significantly.« less

  1. Posttest RELAP5 simulations of the Semiscale S-UT series experiments. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, M.T.

    The RELAP5/MOD1 computer code was used to perform posttest calculations, simulating six experiments, run in the Semiscale Mod-2A facility, investigating the effects of upper head injection on small break transient behavior. The results of these calculations and corresponding test data are presented in this report. An evaluation is made of the capability of RELAP5 to calculate the thermal-hydraulic response of the Mod-2A system over a spectrum of break sizes, with and without the use of upper head injection.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gougar, Hans

    This document outlines the development of a high fidelity, best estimate nuclear power plant severe transient simulation capability that will complement or enhance the integral system codes historically used for licensing and analysis of severe accidents. As with other tools in the Risk Informed Safety Margin Characterization (RISMC) Toolkit, the ultimate user of Enhanced Severe Transient Analysis and Prevention (ESTAP) capability is the plant decision-maker; the deliverable to that customer is a modern, simulation-based safety analysis capability, applicable to a much broader class of safety issues than is traditional Light Water Reactor (LWR) licensing analysis. Currently, the RISMC pathway’s majormore » emphasis is placed on developing RELAP-7, a next-generation safety analysis code, and on showing how to use RELAP-7 to analyze margin from a modern point of view: that is, by characterizing margin in terms of the probabilistic spectra of the “loads” applied to systems, structures, and components (SSCs), and the “capacity” of those SSCs to resist those loads without failing. The first objective of the ESTAP task, and the focus of one task of this effort, is to augment RELAP-7 analyses with user-selected multi-dimensional, multi-phase models of specific plant components to simulate complex phenomena that may lead to, or exacerbate, severe transients and core damage. Such phenomena include: coolant crossflow between PWR assemblies during a severe reactivity transient, stratified single or two-phase coolant flow in primary coolant piping, inhomogeneous mixing of emergency coolant water or boric acid with hot primary coolant, and water hammer. These are well-documented phenomena associated with plant transients but that are generally not captured in system codes. They are, however, generally limited to specific components, structures, and operating conditions. The second ESTAP task is to similarly augment a severe (post-core damage) accident integral analyses code with high fidelity simulations that would allow investigation of multi-dimensional, multi-phase containment phenomena that are only treated approximately in established codes.« less

  3. VERA Core Simulator methodology for pressurized water reactor cycle depletion

    DOE PAGES

    Kochunas, Brendan; Collins, Benjamin; Stimpson, Shane; ...

    2017-01-12

    This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclidemore » transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. Lastly, these results provide confidence in VERA-CS’s capability to perform high-fidelity calculations for practical PWR reactor problems.« less

  4. Plasmid partition system of the P1par family from the pWR100 virulence plasmid of Shigella flexneri.

    PubMed

    Sergueev, Kirill; Dabrazhynetskaya, Alena; Austin, Stuart

    2005-05-01

    P1par family members promote the active segregation of a variety of plasmids and plasmid prophages in gram-negative bacteria. Each has genes for ParA and ParB proteins, followed by a parS partition site. The large virulence plasmid pWR100 of Shigella flexneri contains a new P1par family member: pWR100par. Although typical parA and parB genes are present, the putative pWR100parS site is atypical in sequence and organization. However, pWR100parS promoted accurate plasmid partition in Escherichia coli when the pWR100 Par proteins were supplied. Unique BoxB hexamer motifs within parS define species specificities among previously described family members. Although substantially different from P1parS from the P1 plasmid prophage of E. coli, pWR100parS has the same BoxB sequence. As predicted, the species specificity of the two types proved identical. They also shared partition-mediated incompatibility, consistent with the proposed mechanistic link between incompatibility and species specificity. Among several informative sequence differences between pWR100parS and P1parS is the presence of a 21-bp insert at the center of the pWR100parS site. Deletion of this insert left much of the parS activity intact. Tolerance of central inserts with integral numbers of helical DNA turns reflects the critical topology of these sites, which are bent by binding the host IHF protein.

  5. PWR PRELIMINARY DESIGN FOR PL-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphries, G. E.

    1962-02-28

    The pressurized water reactor preliminary design, the preferred design developed under Phase I of the PL-3 contract, is presented. Plant design criteria, summary of plant selection, plant description, reactor and primary system description, thermal and hydraulic analysis, nuclear analysis, control and instrumentatlon description, shielding description, auxiliary systems, power plant equipment, waste dispusal, buildings and tunnels, services, operation and maintenance, logistics, erection, cost information, and a training program outline are given. (auth)

  6. Sub-Scale Testing and Development of the J-2X Fuel Turbopump Inducer

    NASA Technical Reports Server (NTRS)

    Sargent, Scott R.; Becht, David G.

    2011-01-01

    In the early stages of the J-2X upper stage engine program, various inducer configurations proposed for use in the fuel turbopump (FTP) were tested in water. The primary objectives of this test effort were twofold. First, to obtain a more comprehensive data set than that which existed in the Pratt & Whitney Rocketdyne (PWR) historical archives from the original J-2S program, and second, to supplement that data set with information regarding the cavitation induced vibrations for both the historical J-2S configuration as well as those tested for the J-2X program. The J-2X FTP inducer, which actually consists of an inducer stage mechanically attached to a kicker stage, underwent 4 primary iterations utilizing sub-scaled test articles manufactured and tested in PWR's Engineering Development Laboratory (EDL). The kicker remained unchanged throughout the test series. The four inducer configurations tested retained many of the basic design features of the J-2S inducer, but also included variations on leading edge blade thickness and blade angle distribution, primarily aimed at improving suction performance at higher flow coefficients. From these data sets, the effects of the tested design variables on hydrodynamic performance and cavitation instabilities were discerned. A limited comparison of impact to the inducer efficiency was determined as well.

  7. Influence of Localized Plasticity on IASCC Sensitivity of Austenitic Stainless Steels under PWR Primary Water

    NASA Astrophysics Data System (ADS)

    Cissé, Sarata; Tanguy, Benoit; Laffont, Lydia; Lafont, Marie-Christine; Guerre, Catherine; Andrieu, Eric

    The sensibility of precipitation-strengthened A286 austenitic stainless steel to Stress Corrosion Cracking (SCC) is studied by means of Slow Strain Rate Tests (SSRT). First, alloy cold working by Low Cycle Fatigue (LCF) is investigated. Fatigue tests under plastic strain control are performed at different strain levels (Δ ɛp/2=0.2%, 0.5% and 0.8%) in order to establish correlation between stress softening and deformation microstructure resulting from LCF tests. Deformed microstructures have been identified through TEM investigations. Three states of cyclic behaviour for precipitation-strengthened A286 have been identified: hardening, cyclic softening and finally saturation of softening. It is shown that the A286 alloy cyclic softening is due to microstructural features such as defects — free deformation bands resulting from dislocations motion along family plans <111>, that swept defects or γ' precipitates and lead to deformation localization. In order to quantify effects of plastic localized deformation on intergranular stress corrosion cracking (IGSCC) of the A286 alloy in PWR primary water, slow strain rate tests are conducted. For each cycling conditions, two specimens at a similar stress level are tested: the first containing free precipitate deformation bands, the other not significant of a localized deformation state. SSRT tests are still in progress.

  8. Influence of localized deformation on A-286 austenitic stainless steel stress corrosion cracking in PWR primary water

    NASA Astrophysics Data System (ADS)

    Fournier, L.; Savoie, M.; Delafosse, D.

    2007-06-01

    The low cycle fatigue (LCF) behaviour of precipitation-strengthened A-286 austenitic stainless steel was first investigated at room temperature under 0.2% plastic strain control. LCF led to hardening for the first 20 cycles and then to significant softening. LCF-induced dislocation microstructure was characterized using both bright and dark-field imaging techniques in transmission electron microscopy. Cycling softening was correlated with the formation of precipitate-free localized deformation bands. The effect of these precipitate-free localized deformation bands on A-286 stress corrosion cracking (SCC) behaviour in PWR primary water was then examined by means of constant extension rate tensile (CERT) tests at 320 °C and 360 °C. Comparative CERT tests were performed on companion specimens with similar yield stress but pre-fatigued to a few cycles (4-8) or between 125 and 200 cycles. Specimens pre-fatigued to a few cycles with no precipitate-free localized deformation bands exhibited little susceptibility to intergranular SCC (IGSCC). In contrast, the presence of precipitate-free localized deformation bands formed by pre-fatigue to between 125 and 200 cycles strongly promoted IGSCC. The interest of the approach used in this study is to provide insight into the role of localized deformation in irradiation assisted stress corrosion cracking.

  9. Validation of CESAR Thermal-hydraulic Module of ASTEC V1.2 Code on BETHSY Experiments

    NASA Astrophysics Data System (ADS)

    Tregoures, Nicolas; Bandini, Giacomino; Foucher, Laurent; Fleurot, Joëlle; Meloni, Paride

    The ASTEC V1 system code is being jointly developed by the French Institut de Radioprotection et Sûreté Nucléaire (IRSN) and the German Gesellschaft für Anlagen und ReaktorSicherheit (GRS) to address severe accident sequences in a nuclear power plant. Thermal-hydraulics in primary and secondary system is addressed by the CESAR module. The aim of this paper is to present the validation of the CESAR module, from the ASTEC V1.2 version, on the basis of well instrumented and qualified integral experiments carried out in the BETHSY facility (CEA, France), which simulates a French 900 MWe PWR reactor. Three tests have been thoroughly investigated with CESAR: the loss of coolant 9.1b test (OECD ISP N° 27), the loss of feedwater 5.2e test, and the multiple steam generator tube rupture 4.3b test. In the present paper, the results of the code for the three analyzed tests are presented in comparison with the experimental data. The thermal-hydraulic behavior of the BETHSY facility during the transient phase is well reproduced by CESAR: the occurrence of major events and the time evolution of main thermal-hydraulic parameters of both primary and secondary circuits are well predicted.

  10. 77 FR 15293 - Airworthiness Directives; Dassault Aviation Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ...-190-20), land at nearest suitable airport Upon display of ELEC:LH ESS PWR LO or ELEC:LH ESS NO PWR (Abnormal procedure 3-190-40), land at nearest suitable airport Upon display of ELEC:RH ESS PWR LO and ELEC...

  11. Advanced Pellet-Cladding Interaction Modeling using the US DOE CASL Fuel Performance Code: Peregrine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Robert O.; Capps, Nathan A.; Sunderland, Dion J.

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermo-mechanical-chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code thatmore » is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.« less

  12. Advanced Pellet Cladding Interaction Modeling Using the US DOE CASL Fuel Performance Code: Peregrine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason Hales; Various

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermomechanical- chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale codemore » that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochunas, Brendan; Collins, Benjamin; Stimpson, Shane

    This paper describes the methodology developed and implemented in the Virtual Environment for Reactor Applications Core Simulator (VERA-CS) to perform high-fidelity, pressurized water reactor (PWR), multicycle, core physics calculations. Depletion of the core with pin-resolved power and nuclide detail is a significant advance in the state of the art for reactor analysis, providing the level of detail necessary to address the problems of the U.S. Department of Energy Nuclear Reactor Simulation Hub, the Consortium for Advanced Simulation of Light Water Reactors (CASL). VERA-CS has three main components: the neutronics solver MPACT, the thermal-hydraulic (T-H) solver COBRA-TF (CTF), and the nuclidemore » transmutation solver ORIGEN. This paper focuses on MPACT and provides an overview of the resonance self-shielding methods, macroscopic-cross-section calculation, two-dimensional/one-dimensional (2-D/1-D) transport, nuclide depletion, T-H feedback, and other supporting methods representing a minimal set of the capabilities needed to simulate high-fidelity models of a commercial nuclear reactor. Results are presented from the simulation of a model of the first cycle of Watts Bar Unit 1. The simulation is within 16 parts per million boron (ppmB) reactivity for all state points compared to cycle measurements, with an average reactivity bias of <5 ppmB for the entire cycle. Comparisons to cycle 1 flux map data are also provided, and the average 2-D root-mean-square (rms) error during cycle 1 is 1.07%. To demonstrate the multicycle capability, a state point at beginning of cycle (BOC) 2 was also simulated and compared to plant data. The comparison of the cycle 2 BOC state has a reactivity difference of +3 ppmB from measurement, and the 2-D rms of the comparison in the flux maps is 1.77%. Lastly, these results provide confidence in VERA-CS’s capability to perform high-fidelity calculations for practical PWR reactor problems.« less

  14. Statistical evaluation of the metallurgical test data in the ORR-PSF-PVS irradiation experiment. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stallmann, F.W.

    1984-08-01

    A statistical analysis of Charpy test results of the two-year Pressure Vessel Simulation metallurgical irradiation experiment was performed. Determination of transition temperature and upper shelf energy derived from computer fits compare well with eyeball fits. Uncertainties for all results can be obtained with computer fits. The results were compared with predictions in Regulatory Guide 1.99 and other irradiation damage models.

  15. Hydrothermal synthesis of Ni 2FeBO 5 in near-supercritical PWR coolant and possible effects of neutron-induced 10B fission in fuel crud

    NASA Astrophysics Data System (ADS)

    Sawicki, Jerzy A.

    2011-08-01

    The hydrothermal synthesis of a nickel-iron oxyborate, Ni 2FeBO 5, known as bonaccordite, was investigated at pressures and temperatures that might occur at the surface of high-power fuel rods in PWR cores and in supercritical water reactors, especially during localized departures from nucleate boiling and dry-outs. The tests were performed using aqueous mixtures of nickel and iron oxides with boric acid or boron oxide, and as a function of lithium hydroxide addition, temperature and time of heating. At subcritical temperatures nickel ferrite NiFe 2O 4 was always the primary reaction product. High yield of Ni 2FeBO 5 synthesis started near critical water temperature and was strongly promoted by additions of LiOH up to Li/Fe and Li/B molar ratios in a range 0.1-1. The synthesis of bonaccordite was also promoted by other alkalis such as NaOH and KOH. The bonaccordite particles were likely formed by dissolution and re-crystallization by means of an intermediate nickel ferrite phase. It is postulated that the formation of Ni 2FeBO 5 in deposits of borated nickel and iron oxides on PWR fuel cladding can be accelerated by lithium produced in thermal neutron capture 10B(n,α) 7Li reactions. The process may also be aided in the reactor core by kinetic energy of α-particles and 7Li ions dissipated in the crud layer.

  16. Development code for sensitivity and uncertainty analysis of input on the MCNPX for neutronic calculation in PWR core

    NASA Astrophysics Data System (ADS)

    Hartini, Entin; Andiwijayakusuma, Dinan

    2014-09-01

    This research was carried out on the development of code for uncertainty analysis is based on a statistical approach for assessing the uncertainty input parameters. In the butn-up calculation of fuel, uncertainty analysis performed for input parameters fuel density, coolant density and fuel temperature. This calculation is performed during irradiation using Monte Carlo N-Particle Transport. The Uncertainty method based on the probabilities density function. Development code is made in python script to do coupling with MCNPX for criticality and burn-up calculations. Simulation is done by modeling the geometry of PWR terrace, with MCNPX on the power 54 MW with fuel type UO2 pellets. The calculation is done by using the data library continuous energy cross-sections ENDF / B-VI. MCNPX requires nuclear data in ACE format. Development of interfaces for obtaining nuclear data in the form of ACE format of ENDF through special process NJOY calculation to temperature changes in a certain range.

  17. Development code for sensitivity and uncertainty analysis of input on the MCNPX for neutronic calculation in PWR core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartini, Entin, E-mail: entin@batan.go.id; Andiwijayakusuma, Dinan, E-mail: entin@batan.go.id

    2014-09-30

    This research was carried out on the development of code for uncertainty analysis is based on a statistical approach for assessing the uncertainty input parameters. In the butn-up calculation of fuel, uncertainty analysis performed for input parameters fuel density, coolant density and fuel temperature. This calculation is performed during irradiation using Monte Carlo N-Particle Transport. The Uncertainty method based on the probabilities density function. Development code is made in python script to do coupling with MCNPX for criticality and burn-up calculations. Simulation is done by modeling the geometry of PWR terrace, with MCNPX on the power 54 MW with fuelmore » type UO2 pellets. The calculation is done by using the data library continuous energy cross-sections ENDF / B-VI. MCNPX requires nuclear data in ACE format. Development of interfaces for obtaining nuclear data in the form of ACE format of ENDF through special process NJOY calculation to temperature changes in a certain range.« less

  18. Improved Biomolecular Thin-Film Sensor based on Plasmon Waveguide Resonance

    NASA Astrophysics Data System (ADS)

    Byard, Courtney; Aslan, Mustafa; Mendes, Sergio

    2009-05-01

    The design, fabrication, and characterization of a plasmon waveguide resonance (PWR) sensor are presented. Glass substrates are coated with a 35 nm gold film using electron beam evaporation, and then covered with a 143 nm aluminum oxide waveguide using an atomic layer deposition process, creating a smooth, highly transparent dielectric film. When probed in the Kretschmann configuration, the structure allows for an efficient conversion of an incident optical beam into a surface wave, which is mainly confined in the dielectric layer and exhibits a deep and narrow angular resonance. The performance (reflectance vs. incidence angle in TE polarization) is modeled using a transfer-matrix approach implemented into a Mathematica code. Our simulations and experimental data are compared with that of surface plasmon resonance (SPR) sensor using the same criteria. We show that the resolution of PWR is approximately ten times better than SPR, opening opportunities for more sensitive studies in various applications including research in protein interactions, pharmaceutical drug development, and food analysis.

  19. Optimization of burnable poison design for Pu incineration in fully fertile free PWR core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fridman, E.; Shwageraus, E.; Galperin, A.

    2006-07-01

    The design challenges of the fertile-free based fuel (FFF) can be addressed by careful and elaborate use of burnable poisons (BP). Practical fully FFF core design for PWR reactor has been reported in the past [1]. However, the burnable poison option used in the design resulted in significant end of cycle reactivity penalty due to incomplete BP depletion. Consequently, excessive Pu loading were required to maintain the target fuel cycle length, which in turn decreased the Pu burning efficiency. A systematic evaluation of commercially available BP materials in all configurations currently used in PWRs is the main objective of thismore » work. The BP materials considered are Boron, Gd, Er, and Hf. The BP geometries were based on Wet Annular Burnable Absorber (WABA), Integral Fuel Burnable Absorber (IFBA), and Homogeneous poison/fuel mixtures. Several most promising combinations of BP designs were selected for the full core 3D simulation. All major core performance parameters for the analyzed cases are very close to those of a standard PWR with conventional UO{sub 2} fuel including possibility of reactivity control, power peaking factors, and cycle length. The MTC of all FFF cores was found at the full power conditions at all times and very close to that of the UO{sub 2} core. The Doppler coefficient of the FFF cores is also negative but somewhat lower in magnitude compared to UO{sub 2} core. The soluble boron worth of the FFF cores was calculated to be lower than that of the UO{sub 2} core by about a factor of two, which still allows the core reactivity control with acceptable soluble boron concentrations. The main conclusion of this work is that judicial application of burnable poisons for fertile free fuel has a potential to produce a core design with performance characteristics close to those of the reference PWR core with conventional UO{sub 2} fuel. (authors)« less

  20. One Dimensional Cold Rolling Effects on Stress Corrosion Crack Growth in Alloy 690 Tubing and Plate Materials

    NASA Astrophysics Data System (ADS)

    Toloczko, Mychailo B.; Olszta, Matthew J.; Bruemmer, Stephen M.

    Stress corrosion crack-growth experiments have been performed on cold-rolled alloy 690 materials in simulated PWR primary water at 360°C. Extruded alloy 690 CRDM tubing in two conditions, thermally treated (TT) and solution annealed (SA), was cold rolled (CR) in one direction to several reductions reaching a maximum of 31% and tested in the S-L orientation. High stress corrosion cracking (SCC) propagation rates ( 8x10-8 mm/s) were observed for the 31%CR alloy 690TT material, while the 31%CR alloy 690SA exhibited 10X lower rates. The difference in intergranular SCC susceptibility appears to be related to grain boundary carbide distribution before cold rolling. SCC growth rates were found to depend on test temperature and hydrogen concentration. Tests were also performed on two alloy 690 plate heats, one CR to a reduction of 26% and the other to 20%. SCC growth rates at 360°C were similar to that measured for the 31%CR alloy 690TT CRDM tubing. Comparisons will be made to other results on CR alloy 690 materials.

  1. The role of Hydrogen and Creep in Intergranular Stress Corrosion Cracking of Alloy 600 and Alloy 690 in PWR Primary Water Environments ? a Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebak, R B; Hua, F H

    2004-07-12

    Intergranular attack (IGA) and intergranular stress corrosion cracking (IGSCC) of Alloy 600 in PWR steam generator environment has been extensively studied for over 30 years without rendering a clear understanding of the essential mechanisms. The lack of understanding of the IGSCC mechanism is due to a complex interaction of numerous variables such as microstructure, thermomechanical processing, strain rate, water chemistry and electrochemical potential. Hydrogen plays an important role in all these variables. The complexity, however, significantly hinders a clearer and more fundamental understanding of the mechanism of hydrogen in enhancing intergranular cracking via whatever mechanism. In this work, an attemptmore » is made to review the role of hydrogen based on the current understanding of grain boundary structure and chemistry and intergranular fracture of nickel alloys, effect of hydrogen on electrochemical behavior of Alloy 600 and Alloy 690 (e.g. the passive film stability, polarization behavior and open-circuit potential) and effect of hydrogen on PWSCC behavior of Alloy 600 and Alloy 690. Mechanistic studies on the PWSCC are briefly reviewed. It is concluded that further studies on the role of hydrogen on intergranular cracking in both inert and primary side environments are needed. These studies should focus on the correlation of the results obtained at different laboratories by different methods on materials with different metallurgical and chemical parameters.« less

  2. The Effects of Metallurgical Factors on PWSCC Crack Growth Rates in TT Alloy 690 in Simulated PWR Primary Water

    NASA Astrophysics Data System (ADS)

    Yonezawa, Toshio; Watanabe, Masashi; Hashimoto, Atsushi

    2015-06-01

    Primary water stress corrosion cracking growth rates (PWSCCGRs) in highly cold-worked thermally treated (TT) Alloy 690 have been recently reported as exhibiting significant heat-to-heat variability. Authors hypothesized that these significant differences could be due to the metallurgical characteristics of each heat. In order to confirm this hypothesis, the effect of fundamental metallurgical characteristics on PWSCCGR measurements in cold-worked TT Alloy 690 has been investigated. The following new observations were made in this study: (1) Microcracks and voids were observed in or near eutectic crystals of grain boundary (GB) M23C6 carbides (primary carbides) after cold rolling, but were not observed before cold rolling. These primary carbides with microcracks and voids were observed in both lightly forged and as-cast and cold-rolled TT Alloy 690 (heat A) as well as in a cold-rolled TT Alloy 690 (heat Y) that simulated the chemical composition and carbide banded structure of the material previously tested by Paraventi and Moshier. However, this was not observed in precipitated (secondary) M23C6 GB carbides in heavily forged and cold-rolled TT Alloy 690 heat A and a cold-rolled commercial TT Alloy 690. (2) From microstructural analyses carried out on the various TT Alloy 690 test materials before and after cold rolling, the amount of eutectic crystals (primary carbides and nitrides) M23C6 and TiN depended on the chemical composition. In particular, the amount of M23C6 depended on the fabrication process. Microcracks and voids in or near the M23C6 and TiN precipitates were generated by the cold rolling process. (3) The PWSCCGRs observed in TT Alloy 690 were different for each heat and fabrication process. The PWSCCGR decreased with increasing Vickers hardness of each heat. However, for the same heats and fabrication processes, the PWSCCGR increased with increasing Vickers hardness due to cold work. Thus, the PWSCCGR must be affected not only by hardness (or equivalently the cold working ratio) but also by grain size, microcracks, and voids of primary M23C6 carbides, etc., which in turn depend on chemical composition and the fabrication process.

  3. Current and anticipated uses of thermal-hydraulic codes in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teschendorff, V.; Sommer, F.; Depisch, F.

    1997-07-01

    In Germany, one third of the electrical power is generated by nuclear plants. ATHLET and S-RELAP5 are successfully applied for safety analyses of the existing PWR and BWR reactors and possible future reactors, e.g. EPR. Continuous development and assessment of thermal-hydraulic codes are necessary in order to meet present and future needs of licensing organizations, utilities, and vendors. Desired improvements include thermal-hydraulic models, multi-dimensional simulation, computational speed, interfaces to coupled codes, and code architecture. Real-time capability will be essential for application in full-scope simulators. Comprehensive code validation and quantification of uncertainties are prerequisites for future best-estimate analyses.

  4. Emergy assessment of three home courtyard agriculture production systems in Tibet Autonomous Region, China*

    PubMed Central

    Guan, Fa-chun; Sha, Zhi-peng; Zhang, Yu-yang; Wang, Jun-feng; Wang, Chao

    2016-01-01

    Home courtyard agriculture is an important model of agricultural production on the Tibetan plateau. Because of the sensitive and fragile plateau environment, it needs to have optimal performance characteristics, including high sustainability, low environmental pressure, and high economic benefit. Emergy analysis is a promising tool for evaluation of the environmental-economic performance of these production systems. In this study, emergy analysis was used to evaluate three courtyard agricultural production models: Raising Geese in Corn Fields (RGICF), Conventional Corn Planting (CCP), and Pea-Wheat Rotation (PWR). The results showed that the RGICF model produced greater economic benefits, and had higher sustainability, lower environmental pressure, and higher product safety than the CCP and PWR models. The emergy yield ratio (EYR) and emergy self-support ratio (ESR) of RGICF were 0.66 and 0.11, respectively, lower than those of the CCP production model, and 0.99 and 0.08, respectively, lower than those of the PWR production model. The impact of RGICF (1.45) on the environment was lower than that of CCP (2.26) and PWR (2.46). The emergy sustainable indices (ESIs) of RGICF were 1.07 and 1.02 times higher than those of CCP and PWR, respectively. With regard to the emergy index of product safety (EIPS), RGICF had a higher safety index than those of CCP and PWR. Overall, our results suggest that the RGICF model is advantageous and provides higher environmental benefits than the CCP and PWR systems. PMID:27487808

  5. Emergy assessment of three home courtyard agriculture production systems in Tibet Autonomous Region, China.

    PubMed

    Guan, Fa-Chun; Sha, Zhi-Peng; Zhang, Yu-Yang; Wang, Jun-Feng; Wang, Chao

    2016-08-01

    Home courtyard agriculture is an important model of agricultural production on the Tibetan plateau. Because of the sensitive and fragile plateau environment, it needs to have optimal performance characteristics, including high sustainability, low environmental pressure, and high economic benefit. Emergy analysis is a promising tool for evaluation of the environmental-economic performance of these production systems. In this study, emergy analysis was used to evaluate three courtyard agricultural production models: Raising Geese in Corn Fields (RGICF), Conventional Corn Planting (CCP), and Pea-Wheat Rotation (PWR). The results showed that the RGICF model produced greater economic benefits, and had higher sustainability, lower environmental pressure, and higher product safety than the CCP and PWR models. The emergy yield ratio (EYR) and emergy self-support ratio (ESR) of RGICF were 0.66 and 0.11, respectively, lower than those of the CCP production model, and 0.99 and 0.08, respectively, lower than those of the PWR production model. The impact of RGICF (1.45) on the environment was lower than that of CCP (2.26) and PWR (2.46). The emergy sustainable indices (ESIs) of RGICF were 1.07 and 1.02 times higher than those of CCP and PWR, respectively. With regard to the emergy index of product safety (EIPS), RGICF had a higher safety index than those of CCP and PWR. Overall, our results suggest that the RGICF model is advantageous and provides higher environmental benefits than the CCP and PWR systems.

  6. Cyclic crack growth behavior of reactor pressure vessel steels in light water reactor environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Der Sluys, W.A.; Emanuelson, R.H.

    1986-01-01

    During normal operation light water reactor (LWR) pressure vessels are subjected to a variety of transients resulting in time varying stresses. Consequently, fatigue and environmentally assisted fatigue are growth mechanisms relevant to flaws in these pressure vessels. In order to provide a better understanding of the resistance of nuclear pressure vessel steels to flaw growth process, a series of fracture mechanics experiments were conducted to generate data on the rate of cyclic crack growth in SA508-2 and SA533b-1 steels in simulated 550/sup 0/F boiling water reactor (BWR) and 550/sup 0/F pressurized water reactor (PWR) environments. Areas investigated over the coursemore » of the test program included the effects of loading frequency and r ratio (Kmin-Kmax) on crack growth rate as a function of the stress intensity factor (deltaK) range. In addition, the effect of sulfur content of the test material on the cyclic crack growth rate was studied. Cyclic crack growth rates were found to be controlled by deltaK, R ratio, and loading frequency. The sulfur impurity content of the reactor pressure vessel steels studied had a significant effect on the cyclic crack growth rates. The higher growth rates were always associated with materials of higher sulfur content. For a given level of sulfur, growth rates were in a 550/sup 0/F simulated BWR environment than in a 550/sup 0/F simulated PWR environment. In both environments cyclic crack growth rates were a strong function of the loading frequency.« less

  7. Comparison of fresh fuel experimental measurements to MCNPX calculations using self-interrogation neutron resonance densitometry

    NASA Astrophysics Data System (ADS)

    LaFleur, Adrienne M.; Charlton, William S.; Menlove, Howard O.; Swinhoe, Martyn T.

    2012-07-01

    A new non-destructive assay technique called Self-Interrogation Neutron Resonance Densitometry (SINRD) is currently being developed at Los Alamos National Laboratory (LANL) to improve existing nuclear safeguards measurements for Light Water Reactor (LWR) fuel assemblies. SINRD consists of four 235U fission chambers (FCs): bare FC, boron carbide shielded FC, Gd covered FC, and Cd covered FC. Ratios of different FCs are used to determine the amount of resonance absorption from 235U in the fuel assembly. The sensitivity of this technique is based on using the same fissile materials in the FCs as are present in the fuel because the effect of resonance absorption lines in the transmitted flux is amplified by the corresponding (n,f) reaction peaks in the fission chamber. In this work, experimental measurements were performed in air with SINRD using a reference Pressurized Water Reactor (PWR) 15×15 low enriched uranium (LEU) fresh fuel assembly at LANL. The purpose of this experiment was to assess the following capabilities of SINRD: (1) ability to measure the effective 235U enrichment of the PWR fresh LEU fuel assembly and (2) sensitivity and penetrability to the removal of fuel pins from an assembly. These measurements were compared to Monte Carlo N-Particle eXtended transport code (MCNPX) simulations to verify the accuracy of the MCNPX model of SINRD. The reproducibility of experimental measurements via MCNPX simulations is essential to validating the results and conclusions obtained from the simulations of SINRD for LWR spent fuel assemblies.

  8. RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Andrs; Ray Berry; Derek Gaston

    The document contains the simulation results of a steady state model PWR problem with the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on INL's modern scientific software development framework - MOOSE (Multi-Physics Object-Oriented Simulation Environment). This report summarizes the initial results of simulating a model steady-state single phase PWR problem using the current version of the RELAP-7 code. The major purpose of this demonstration simulation is to show that RELAP-7 code can be rapidly developed to simulate single-phase reactor problems. RELAP-7more » is a new project started on October 1st, 2011. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) and the next generation tool in the RELAP reactor safety/systems analysis application series (the replacement for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement of physical models, numerical methods, and software design while maintaining a solid user perspective. Physical models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-7 will eventually utilize well posed governing equations for multiphase flow, which can be strictly verified. Closure models used in RELAP5 and newly developed models will be reviewed and selected to reflect the progress made during the past three decades. RELAP-7 uses modern numerical methods, which allow implicit time integration, higher order schemes in both time and space, and strongly coupled multi-physics simulations. RELAP-7 is written with object oriented programming language C++. Its development follows modern software design paradigms. The code is easy to read, develop, maintain, and couple with other codes. Most importantly, the modern software design allows the RELAP-7 code to evolve with time. RELAP-7 is a MOOSE-based application. MOOSE (Multiphysics Object-Oriented Simulation Environment) is a framework for solving computational engineering problems in a well-planned, managed, and coordinated way. By leveraging millions of lines of open source software packages, such as PETSC (a nonlinear solver developed at Argonne National Laboratory) and LibMesh (a Finite Element Analysis package developed at University of Texas), MOOSE significantly reduces the expense and time required to develop new applications. Numerical integration methods and mesh management for parallel computation are provided by MOOSE. Therefore RELAP-7 code developers only need to focus on physics and user experiences. By using the MOOSE development environment, RELAP-7 code is developed by following the same modern software design paradigms used for other MOOSE development efforts. There are currently over 20 different MOOSE based applications ranging from 3-D transient neutron transport, detailed 3-D transient fuel performance analysis, to long-term material aging. Multi-physics and multiple dimensional analyses capabilities can be obtained by coupling RELAP-7 and other MOOSE based applications and by leveraging with capabilities developed by other DOE programs. This allows restricting the focus of RELAP-7 to systems analysis-type simulations and gives priority to retain and significantly extend RELAP5's capabilities.« less

  9. A NIST Kinetic Data Base for PAH Reaction and Soot Particle Inception During Combusion

    DTIC Science & Technology

    2007-12-01

    in Computational Fluid Dynamics (CFD) codes hat have lead to the capability of describing complex reactive flow problems and thus simulating... parameters . However in the absence of data estimates must be made. Since the chemistry of combustion is extremely complex and for proper description...118:381-389 9. Babushok, V. and Tsang, W., J. Prop. and Pwr . 20 (2004) 403-414. 10. . Fournet, R., Warth, V., Glaude, P.A., Battin-Leclerc, F

  10. PRESSURIZED WATER REACTOR PROGRAM TECHNICAL PROGRESS REPORT FOR THE PERIOD MAY 5, 1955 TO JUNE 16, 1955

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The current PWR plant and core parameters are listed. Resign requirements are briefly summarized for a radiation monitoring system, a fuel handling water system, a coolant purification system, an electrical power distribution system, and component shielding. Results of studies on thermal bowing and stressing of UO/sub 2/ are reported. A graph is presented of reactor power vs. reactor flow for various hot channel conditions. Development of U-- Mo and U-Nb alloys has been stopped because of the recent selection of UO/sub 2/ fuel material for the PWR core and blanket. The fabrication characteristics of UO/sub 2/ powders are being studied.more » Seamless Zircaloy-2 tubing has been tested to determine elastic limits, bursting pressures, and corrosion resistance. Fabrication techniques and tests for corrosion and defects in Zircaloy-clad U-Mo and UO/sub 2/ fuel rods are described. The preparation of UO/sub 2/ by various methods is being studied to determine which method produces a material most suitable for PWR fuel elements. The stability of UO/sub 2/ compacts in high temperature water and steam is being determined. Surface area and density measurements have been performed on samples of UO/sub 2/ powder prepared by various methods. Revelopment work on U-- Mo and U--Nb alloys has included studies of the effect on corrosion behavior of additions to the test water, additions to the alloys, homogenization of the alloys, annealing times, cladding, and fabrication techniques. Data are presented on relaxation in spring materials after exposure to a corrosive environment. Results are reported from loop and autoclave tests on fission product and crud deposition. Results of irradiation and corrosion testing of clad and unclad U--Mo and U-Nh alloys are described. The UO/sub 2/ irradiation program has included studies of dimensional changes, release of fission gases, and activity in the water surrounding the samples. A review of the methods of calculating reactor physics parameters has been completed, and the established procedures have been applied to determination of PWR reference design parameters. Critical experiments and primary loop shielding analyses are described. (D.E.B.)« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, H.

    In the updating of the Guidelines for PWR`s of the {open_quotes}Reaktor-Sicherheitskommission{close_quotes} (RSK) in 1981 the requirements on the design have been changed with respect to the postulated leaks and breaks in the primary pressure boundary. The major change was a revision in the requirements for pipe whip protection. As a logical consequence of the {open_quotes}concept of basic safety{close_quotes} a guillotine type break or any other break type resulting in a large opening is not postulated any longer for the calculation of reaction and jet forces. As an upper limit for a leak an area of 0, 1 A (A =more » open cross section of the pipe) is postulated. This decision was based on a general assessment of the present PWR system design in Germany. Since then a number of piping systems have been requalified in the older nuclear power plants to comply with the break preclusion concept. Also a number of extensions of the concept have been developed to cover also leak-assumptions for branch pipes. Furthermore due considerations have been given to other aspects which could contribute to a leak development in the primary circuit, like vessel penetrations, manhole covers, flanges, etc. Now the break preclusion concept originally applied to the main piping has been developed into an integrated concept for the whole pressure boundary within the containment and will be applied also in the periodic safety review of present nuclear power plants.« less

  12. Assessment of PWR Steam Generator modelling in RELAP5/MOD2. International Agreement Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putney, J.M.; Preece, R.J.

    1993-06-01

    An assessment of Steam Generator (SG) modelling in the PWR thermal-hydraulic code RELAP5/MOD2 is presented. The assessment is based on a review of code assessment calculations performed in the UK and elsewhere, detailed calculations against a series of commissioning tests carried out on the Wolf Creek PWR and analytical investigations of the phenomena involved in normal and abnormal SG operation. A number of modelling deficiencies are identified and their implications for PWR safety analysis are discussed -- including methods for compensating for the deficiencies through changes to the input deck. Consideration is also given as to whether the deficiencies willmore » still be present in the successor code RELAP5/MOD3.« less

  13. On the Solidification and Structure Formation during Casting of Large Inserts in Ferritic Nodular Cast Iron

    NASA Astrophysics Data System (ADS)

    Tadesse, Abel; Fredriksson, Hasse

    2018-06-01

    The graphite nodule count and size distributions for boiling water reactor (BWR) and pressurized water reactor (PWR) inserts were investigated by taking samples at heights of 2160 and 1150 mm, respectively. In each cross section, two locations were taken into consideration for both the microstructural and solidification modeling. The numerical solidification modeling was performed in a two-dimensional model by considering the nucleation and growth in eutectic ductile cast iron. The microstructural results reveal that the nodule size and count distribution along the cross sections are different in each location for both inserts. Finer graphite nodules appear in the thinner sections and close to the mold walls. The coarser nodules are distributed mostly in the last solidified location. The simulation result indicates that the finer nodules are related to a higher cooling rate and a lower degree of microsegregation, whereas the coarser nodules are related to a lower cooling rate and a higher degree of microsegregation. The solidification time interval and the last solidifying locations in the BWR and PWR are also different.

  14. Development and Application of Laser Peening System for PWR Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masaki Yoda; Itaru Chida; Satoshi Okada

    2006-07-01

    Laser peening is a process to improve residual stress from tensile to compressive in surface layer of materials by irradiating high-power laser pulses on the material in water. Toshiba has developed a laser peening system composed of Q-switched Nd:YAG laser oscillators, laser delivery equipment and underwater remote handling equipment. We have applied the system for Japanese operating BWR power plants as a preventive maintenance measure for stress corrosion cracking (SCC) on reactor internals like core shrouds or control rod drive (CRD) penetrations since 1999. As for PWRs, alloy 600 or 182 can be susceptible to primary water stress corrosion crackingmore » (PWSCC), and some cracks or leakages caused by the PWSCC have been discovered on penetrations of reactor vessel heads (RVHs), reactor bottom-mounted instrumentation (BMI) nozzles, and others. Taking measures to meet the unconformity of the RVH penetrations, RVHs themselves have been replaced in many PWRs. On the other hand, it's too time-consuming and expensive to replace BMI nozzles, therefore, any other convenient and less expensive measures are required instead of the replacement. In Toshiba, we carried out various tests for laser-peened nickel base alloys and confirmed the effectiveness of laser peening as a preventive maintenance measure for PWSCC. We have developed a laser peening system for PWRs as well after the one for BWRs, and applied it for BMI nozzles, core deluge line nozzles and primary water inlet nozzles of Ikata Unit 1 and 2 of Shikoku Electric Power Company since 2004, which are Japanese operating PWR power plants. In this system, laser oscillators and control devices were packed into two containers placed on the operating floor inside the reactor containment vessel. Laser pulses were delivered through twin optical fibers and irradiated on two portions in parallel to reduce operation time. For BMI nozzles, we developed a tiny irradiation head for small tubes and we peened the inner surface around J-groove welds after laser ultrasonic testing (LUT) as the remote inspection, and we peened the outer surface and the weld for Ikata Unit 2 supplementary. For core deluge line nozzles and primary water inlet nozzles, we peened the inner surface of the dissimilar metal welding, which is of nickel base alloy, joining a safe end and a low alloy metal nozzle. In this paper, the development and the actual application of the laser peening system for PWR power plants will be described. (authors)« less

  15. Validation Data and Model Development for Fuel Assembly Response to Seismic Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardet, Philippe; Ricciardi, Guillaume

    2016-01-31

    Vibrations are inherently present in nuclear reactors, especially in cores and steam generators of pressurized water reactors (PWR). They can have significant effects on local heat transfer and wear and tear in the reactor and often set safety margins. The simulation of these multiphysics phenomena from first principles requires the coupling of several codes, which is one the most challenging tasks in modern computer simulation. Here an ambitious multiphysics multidisciplinary validation campaign is conducted. It relied on an integrated team of experimentalists and code developers to acquire benchmark and validation data for fluid-structure interaction codes. Data are focused on PWRmore » fuel bundle behavior during seismic transients.« less

  16. Large-break LOCA, in-reactor fuel bundle Materials Test MT-6A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, C.L.; Hesson, G.M.; Pilger, J.P.

    1993-09-01

    This is a report on one of a series of experiments to simulates a loss-of-coolant accident (LOCA) using full-length fuel rods for pressurized water reactors (PWR). The experiments were conducted by Pacific Northwest Laboratory (PNL) under the LOCA simulation Program sponsored by the US Nuclear Regulatory Commission (NRC). The major objective of this program was causing the maximum possible expansion of the cladding on the fuel rods from a short-term adiabatic temperature transient to 1200 K (1700 F) leading to the rupture of the cladding; and second, by reflooding the fuel rods to determine the rate at which the fuelmore » bundle is cooled.« less

  17. Heuristic rules embedded genetic algorithm for in-core fuel management optimization

    NASA Astrophysics Data System (ADS)

    Alim, Fatih

    The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code used for VVER in this research is Moby-Dick, which was developed to analyze the VVER by SKODA Inc. The SIMULATE-3 code, which is an advanced two-group nodal code, is used to analyze the TMI-1.

  18. Assessment for advanced fuel cycle options in CANDU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a drivermore » fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.« less

  19. Noninvasive and Real-Time Plasmon Waveguide Resonance Thermometry

    PubMed Central

    Zhang, Pengfei; Liu, Le; He, Yonghong; Zhou, Yanfei; Ji, Yanhong; Ma, Hui

    2015-01-01

    In this paper, the noninvasive and real-time plasmon waveguide resonance (PWR) thermometry is reported theoretically and demonstrated experimentally. Owing to the enhanced evanescent field and thermal shield effect of its dielectric layer, a PWR thermometer permits accurate temperature sensing and has a wide dynamic range. A temperature measurement sensitivity of 9.4 × 10−3 °C is achieved and the thermo optic coefficient nonlinearity is measured in the experiment. The measurement of water cooling processes distributed in one dimension reveals that a PWR thermometer allows real-time temperature sensing and has potential to be applied for thermal gradient analysis. Apart from this, the PWR thermometer has the advantages of low cost and simple structure, since our transduction scheme can be constructed with conventional optical components and commercial coating techniques. PMID:25871718

  20. Integrated Systems Performance Assessment for the Evaluation of Space Nuclear Reactor Design Concepts (Phase 1: Demonstration of the Methodology).

    DTIC Science & Technology

    1992-11-01

    Incorporated. Each design is characterized by a moderated core, a NaK pumped loop primary coolant system, and a potassium heat pipe radiator as the...1 1 10 1 RelHX 1 2 10 2 nRel HX 3 3 RelSS nRelSS Irr 4 3 7 8 9 io 2 + 2 + 2 + 2 nRel Pwr nRel NaK nRel RC nRel HX 1 1 11 1 RelSS 1 2 11 2 nRel SS 3 3

  1. Use of artificial intelligence in severe accident diagnosis for PWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zheng; Okrent, D.; Kastenberg, W.E.

    1995-12-31

    A combination approach of an expert system and neural networks is used to implement a prototype severe accident diagnostic system which would monitor the progression of the severe accident and provide necessary plant status information to assist the plant staff in accident management during the accident. The station blackout accident in a pressurized water reactor (PWR) is used as the study case. The current phase of research focus is on distinguishing different primary system failure modes and following the accident transient before and up to vessel breach.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan bymore » means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.« less

  3. Coincident steam generator tube rupture and stuck-open safety relief valve carryover tests: MB-2 steam generator transient response test program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garbett, K; Mendler, O J; Gardner, G C

    In PWR steam generator tube rupture (SGTR) faults, a direct pathway for the release of radioactive fission products can exist if there is a coincident stuck-open safety relief valve (SORV) or if the safety relief valve is cycled. In addition to the release of fission products from the bulk steam generator water by moisture carryover, there exists the possibility that some primary coolant may be released without having first mixed with the bulk water - a process called primary coolant bypassing. The MB-2 Phase II test program was designed specifically to identify the processes for droplet carryover during SGTR faultsmore » and to provide data of sufficient accuracy for use in developing physical models and computer codes to describe activity release. The test program consisted of sixteen separate tests designed to cover a range of steady-state and transient fault conditions. These included a full SGTR/SORV transient simulation, two SGTR overfill tests, ten steady-state SGTR tests at water levels ranging from very low levels in the bundle up to those when the dryer was flooded, and three moisture carryover tests without SGTR. In these tests the influence of break location and the effect of bypassing the dryer were also studied. In a final test the behavior with respect to aerosol particles in a dry steam generator, appropriate to a severe accident fault, was investigated.« less

  4. Implementing a Nuclear Power Plant Model for Evaluating Load-Following Capability on a Small Grid

    NASA Astrophysics Data System (ADS)

    Arda, Samet Egemen

    A pressurized water reactor (PWR) nuclear power plant (NPP) model is introduced into Positive Sequence Load Flow (PSLF) software by General Electric in order to evaluate the load-following capability of NPPs. The nuclear steam supply system (NSSS) consists of a reactor core, hot and cold legs, plenums, and a U-tube steam generator. The physical systems listed above are represented by mathematical models utilizing a state variable lumped parameter approach. A steady-state control program for the reactor, and simple turbine and governor models are also developed. Adequacy of the isolated reactor core, the isolated steam generator, and the complete PWR models are tested in Matlab/Simulink and dynamic responses are compared with the test results obtained from the H. B. Robinson NPP. Test results illustrate that the developed models represents the dynamic features of real-physical systems and are capable of predicting responses due to small perturbations of external reactivity and steam valve opening. Subsequently, the NSSS representation is incorporated into PSLF and coupled with built-in excitation system and generator models. Different simulation cases are run when sudden loss of generation occurs in a small power system which includes hydroelectric and natural gas power plants besides the developed PWR NPP. The conclusion is that the NPP can respond to a disturbance in the power system without exceeding any design and safety limits if appropriate operational conditions, such as achieving the NPP turbine control by adjusting the speed of the steam valve, are met. In other words, the NPP can participate in the control of system frequency and improve the overall power system performance.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, D.L.; Simonen, F.A.; Strosnider, J. Jr.

    The VISA (Vessel Integrity Simulation Analysis) code was developed as part of the NRC staff evaluation of pressurized thermal shock. VISA uses Monte Carlo simulation to evaluate the failure probability of a pressurized water reactor (PWR) pressure vessel subjected to a pressure and thermal transient specified by the user. Linear elastic fracture mechanics are used to model crack initiation and propagation. parameters for initial crack size, copper content, initial RT/sub NDT/, fluence, crack-initiation fracture toughness, and arrest fracture toughness are treated as random variables. This report documents the version of VISA used in the NRC staff report (Policy Issue frommore » J.W. Dircks to NRC Commissioners, Enclosure A: NRC Staff Evaluation of Pressurized Thermal Shock, November 1982, SECY-82-465) and includes a user's guide for the code.« less

  6. Fundamental metallurgical aspects of axial splitting in zircaloy cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, H. M.

    Fundamental metallurgical aspects of axial splitting in irradiated Zircaloy cladding have been investigated by microstructural characterization and analytical modeling, with emphasis on application of the results to understand high-burnup fuel failure under RIA situations. Optical microscopy, SEM, and TEM were conducted on BWR and PWR fuel cladding tubes that were irradiated to fluence levels of 3.3 x 10{sup 21} n cm{sup {minus}2} to 5.9 x 10{sup 21} n cm{sup {minus}2} (E > 1 MeV) and tested in hot cell at 292--325 C in Ar. The morphology, distribution, and habit planes of macroscopic and microscopic hydrides in as-irradiated and posttest claddingmore » were determined by stereo-TEM. The type and magnitude of the residual stress produced in association with oxide-layer growth and dense hydride precipitation, and several synergistic factors that strongly influence axial-splitting behavior were analyzed. The results of the microstructural characterization and stress analyses were then correlated with axial-splitting behavior of high-burnup PWR cladding reported for simulated-RIA conditions. The effects of key test procedures and their implications for the interpretation of RIA test results are discussed.« less

  7. Main steam line break accident simulation of APR1400 using the model of ATLAS facility

    NASA Astrophysics Data System (ADS)

    Ekariansyah, A. S.; Deswandri; Sunaryo, Geni R.

    2018-02-01

    A main steam line break simulation for APR1400 as an advanced design of PWR has been performed using the RELAP5 code. The simulation was conducted in a model of thermal-hydraulic test facility called as ATLAS, which represents a scaled down facility of the APR1400 design. The main steam line break event is described in a open-access safety report document, in which initial conditions and assumptionsfor the analysis were utilized in performing the simulation and analysis of the selected parameter. The objective of this work was to conduct a benchmark activities by comparing the simulation results of the CESEC-III code as a conservative approach code with the results of RELAP5 as a best-estimate code. Based on the simulation results, a general similarity in the behavior of selected parameters was observed between the two codes. However the degree of accuracy still needs further research an analysis by comparing with the other best-estimate code. Uncertainties arising from the ATLAS model should be minimized by taking into account much more specific data in developing the APR1400 model.

  8. Laser anemometry measurements of natural circulation flow in a scale model PWR reactor system. [Pressurized Water Reactor

    NASA Technical Reports Server (NTRS)

    Kadambi, J. R.; Schneider, S. J.; Stewart, W. A.

    1986-01-01

    The natural circulation of a single phase fluid in a scale model of a pressurized water reactor system during a postulated grade core accident is analyzed. The fluids utilized were water and SF6. The design of the reactor model and the similitude requirements are described. Four LDA tests were conducted: water with 28 kW of heat in the simulated core, with and without the participation of simulated steam generators; water with 28 kW of heat in the simulated core, with the participation of simulated steam generators and with cold upflow of 12 lbm/min from the lower plenum; and SF6 with 0.9 kW of heat in the simulated core and without the participation of the simulated steam generators. For the water tests, the velocity of the water in the center of the core increases with vertical height and continues to increase in the upper plenum. For SF6, it is observed that the velocities are an order of magnitude higher than those of water; however, the velocity patterns are similar.

  9. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait

    PubMed Central

    2016-01-01

    Passive prosthetic feet lack active plantarflexion and push-off power resulting in gait deviations and compensations by individuals with transtibial amputation (TTA) during slope ascent. We sought to determine the effect of active ankle plantarflexion and push-off power provided by a powered prosthetic ankle-foot (PWR) on lower extremity compensations in individuals with unilateral TTA as they walked up a slope. We hypothesized that increased ankle plantarflexion and push-off power would reduce compensations commonly observed with a passive, energy-storing-returning prosthetic ankle-foot (ESR). We compared the temporal spatial, kinematic, and kinetic measures of ten individuals with TTA (age: 30.2 ± 5.3 yrs) to matched abled-bodied (AB) individuals during 5° slope ascent. The TTA group walked with an ESR and separately with a PWR. The PWR produced significantly greater prosthetic ankle plantarflexion and push-off power generation compared to an ESR and more closely matched AB values. The PWR functioned similar to a passive ESR device when transitioning onto the prosthetic limb due to limited prosthetic dorsiflexion, which resulted in similar deviations and compensations. In contrast, when transitioning off the prosthetic limb, increased ankle plantarflexion and push-off power provided by the PWR contributed to decreased intact limb knee extensor power production, lessening demand on the intact limb knee. PMID:27977681

  10. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.

    PubMed

    Rábago, Christopher A; Aldridge Whitehead, Jennifer; Wilken, Jason M

    2016-01-01

    Passive prosthetic feet lack active plantarflexion and push-off power resulting in gait deviations and compensations by individuals with transtibial amputation (TTA) during slope ascent. We sought to determine the effect of active ankle plantarflexion and push-off power provided by a powered prosthetic ankle-foot (PWR) on lower extremity compensations in individuals with unilateral TTA as they walked up a slope. We hypothesized that increased ankle plantarflexion and push-off power would reduce compensations commonly observed with a passive, energy-storing-returning prosthetic ankle-foot (ESR). We compared the temporal spatial, kinematic, and kinetic measures of ten individuals with TTA (age: 30.2 ± 5.3 yrs) to matched abled-bodied (AB) individuals during 5° slope ascent. The TTA group walked with an ESR and separately with a PWR. The PWR produced significantly greater prosthetic ankle plantarflexion and push-off power generation compared to an ESR and more closely matched AB values. The PWR functioned similar to a passive ESR device when transitioning onto the prosthetic limb due to limited prosthetic dorsiflexion, which resulted in similar deviations and compensations. In contrast, when transitioning off the prosthetic limb, increased ankle plantarflexion and push-off power provided by the PWR contributed to decreased intact limb knee extensor power production, lessening demand on the intact limb knee.

  11. Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonat Sen; Gilles Youinou

    2013-02-01

    It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this casemore » the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)« less

  12. Multivariate analysis of gamma spectra to characterize used nuclear fuel

    DOE PAGES

    Coble, Jamie; Orton, Christopher; Schwantes, Jon

    2017-01-17

    The Multi-Isotope Process (MIP) Monitor provides an efficient means to monitor the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of key stages in the reprocessing stream in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor; PWR and BWR, respectively), initial enrichment, burn up, and cooling time. Simulated gammamore » spectra were used in this paper to develop and test three fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type for the three PWR and three BWR reactor designs studied. Locally weighted PLS models were fitted on-the-fly to estimate the remaining fuel characteristics. For the simulated gamma spectra considered, burn up was predicted with 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment with approximately 2% RMSPE. Finally, this approach to automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and to inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters that may indicate issues with operational control or malicious activities.« less

  13. EMERALD REV. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunot, W.K.; Fray, R.R.; Gillespie, S.G.

    1974-03-01

    The EMERALD program is designed for the calculation of radiation releases and exposures resulting from abnormal operation of a large pressurized water reactor (PWR). The approach used in EMERALD is similar to an analog simulation of a real system. Each component or volume in the plant which contains a radioactive material is represented by a subroutine which keeps track of the production, transfer, decay and absorption of radioactivity in that volume. During the course of the analysis of an accident, activity is transferred from subroutine to subroutine in the program as it would be transferred from place to place inmore » the plant. For example, in the calculation of the doses resulting from a loss-of-coolant accident the program first calculates the activity built up in the fuel before the accident, then releases some of this activity to the containment volume. Some of this activity is then released to the atmosphere. The rates of transfer, leakage, production, cleanup, decay, and release are read in as input to the program. Subroutines are also included which calculate the on-site and off-site radiation exposures at various distances for individual isotopes and sums of isotopes. The program contains a library of physical data for the twenty-five isotopes of most interest in licensing calculations, and other isotopes can be added or substituted. Because of the flexible nature of the simulation approach, the EMERALD program can be used for most calculations involving the production and release of radioactive materials during abnormal operation of a PWR. These include design, operational, and licensing studies.« less

  14. Multivariate analysis of gamma spectra to characterize used nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie; Orton, Christopher; Schwantes, Jon

    The Multi-Isotope Process (MIP) Monitor provides an efficient means to monitor the process conditions in used nuclear fuel reprocessing facilities to support process verification and validation. The MIP Monitor applies multivariate analysis to gamma spectroscopy of key stages in the reprocessing stream in order to detect small changes in the gamma spectrum, which may indicate changes in process conditions. This research extends the MIP Monitor by characterizing a used fuel sample after initial dissolution according to the type of reactor of origin (pressurized or boiling water reactor; PWR and BWR, respectively), initial enrichment, burn up, and cooling time. Simulated gammamore » spectra were used in this paper to develop and test three fuel characterization algorithms. The classification and estimation models employed are based on the partial least squares regression (PLS) algorithm. A PLS discriminate analysis model was developed which perfectly classified reactor type for the three PWR and three BWR reactor designs studied. Locally weighted PLS models were fitted on-the-fly to estimate the remaining fuel characteristics. For the simulated gamma spectra considered, burn up was predicted with 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment with approximately 2% RMSPE. Finally, this approach to automated fuel characterization can be used to independently verify operator declarations of used fuel characteristics and to inform the MIP Monitor anomaly detection routines at later stages of the fuel reprocessing stream to improve sensitivity to changes in operational parameters that may indicate issues with operational control or malicious activities.« less

  15. Performance evaluation of two-stage fuel cycle from SFR to PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fei, T.; Hoffman, E.A.; Kim, T.K.

    2013-07-01

    One potential fuel cycle option being considered is a two-stage fuel cycle system involving the continuous recycle of transuranics in a fast reactor and the use of bred plutonium in a thermal reactor. The first stage is a Sodium-cooled Fast Reactor (SFR) fuel cycle with metallic U-TRU-Zr fuel. The SFRs need to have a breeding ratio greater than 1.0 in order to produce fissile material for use in the second stage. The second stage is a PWR fuel cycle with uranium and plutonium mixed oxide fuel based on the design and performance of the current state-of-the-art commercial PWRs with anmore » average discharge burnup of 50 MWd/kgHM. This paper evaluates the possibility of this fuel cycle option and discusses its fuel cycle performance characteristics. The study focuses on an equilibrium stage of the fuel cycle. Results indicate that, in order to avoid a positive coolant void reactivity feedback in the stage-2 PWR, the reactor requires high quality of plutonium from the first stage and minor actinides in the discharge fuel of the PWR needs to be separated and sent back to the stage-1 SFR. The electricity-sharing ratio between the 2 stages is 87.0% (SFR) to 13.0% (PWR) for a TRU inventory ratio (the mass of TRU in the discharge fuel divided by the mass of TRU in the fresh fuel) of 1.06. A sensitivity study indicated that by increasing the TRU inventory ratio to 1.13, The electricity generation fraction of stage-2 PWR is increased to 28.9%. The two-stage fuel cycle system considered in this study was found to provide a high uranium utilization (>80%). (authors)« less

  16. Association between gestational weight gain according to body mass index and postpartum weight in a large cohort of Danish women.

    PubMed

    Rode, Line; Kjærgaard, Hanne; Ottesen, Bent; Damm, Peter; Hegaard, Hanne K

    2012-02-01

    Our aim was to investigate the association between gestational weight gain (GWG) and postpartum weight retention (PWR) in pre-pregnancy underweight, normal weight, overweight or obese women, with emphasis on the American Institute of Medicine (IOM) recommendations. We performed secondary analyses on data based on questionnaires from 1,898 women from the "Smoke-free Newborn Study" conducted 1996-1999 at Hvidovre Hospital, Denmark. Relationship between GWG and PWR was examined according to BMI as a continuous variable and in four groups. Association between PWR and GWG according to IOM recommendations was tested by linear regression analysis and the association between PWR ≥ 5 kg (11 lbs) and GWG by logistic regression analysis. Mean GWG and mean PWR were constant for all BMI units until 26-27 kg/m(2). After this cut-off mean GWG and mean PWR decreased with increasing BMI. Nearly 40% of normal weight, 60% of overweight and 50% of obese women gained more than recommended during pregnancy. For normal weight and overweight women with GWG above recommendations the OR of gaining ≥ 5 kg (11 lbs) 1-year postpartum was 2.8 (95% CI 2.0-4.0) and 2.8 (95% CI 1.3-6.2, respectively) compared to women with GWG within recommendations. GWG above IOM recommendations significantly increases normal weight, overweight and obese women's risk of retaining weight 1 year after delivery. Health personnel face a challenge in prenatal counseling as 40-60% of these women gain more weight than recommended for their BMI. As GWG is potentially modifiable, our study should be followed by intervention studies focusing on GW.

  17. Recent operating experiences with steam generators in Japanese NPPs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashima, Seiji

    1997-02-01

    In 1994, the Genkai-3 of Kyushu Electric Power Co., Inc. and the Ikata-3 of Shikoku Electric Power Co., Inc. started commercial operation, and now 22 PWR plants are being operated in Japan. Since the first PWR plant now 22 PWR plants are being operated in was started to operate, Japanese PWR plants have had an operating experience of approx. 280 reactor-years. During that period, many tube degradations have been experienced in steam generators (SGs). And, in 1991, the steam generator tube rupture (SGTR) occurred in the Mihama-2 of Kansai Electric Power Co., Inc. However, the occurrence of tube degradation ofmore » SGs has been decreased by the instructions of the MITI as regulatory authorities, efforts of Electric Utilities, and technical support from the SG manufacturers. Here the author describes the recent SGs in Japan about the following points. (1) Recent Operating Experiences (2) Lessons learned from Mihama-2 SGTR (3) SG replacement (4) Safety Regulations on SG (5) Research and development on SG.« less

  18. Design study of long-life PWR using thorium cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul

    2012-06-06

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that {sup 231}Pa better than {sup 237}Np as burnable poisons in thorium fuel system. Thorium oxide system with 8%{sup 233}U enrichment and 7.6{approx} 8%{sup 231}Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1%{Delta}k/kmore » and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53%{Delta}k/k and reduced power peaking during its operation.« less

  19. Influence of localized plasticity on oxidation behaviour of austenitic stainless steels under primary water reactor

    NASA Astrophysics Data System (ADS)

    Cissé, Sarata; Laffont, Lydia; Lafont, Marie-Christine; Tanguy, Benoit; Andrieu, Eric

    2013-02-01

    The sensitivity of precipitation-strengthened A286 austenitic stainless steel to stress corrosion cracking was studied by means of slow-strain-rate tests. First, alloy cold working by low cycle fatigue (LCF) was investigated. Fatigue tests under plastic strain control were performed at different strain levels (Δɛp/2 = 0.2%, 0.5%, 0.8% and 2%) to establish correlations between stress softening and the deformation microstructure resulting from the LCF tests. Deformed microstructures were identified through TEM investigations. The interaction between oxidation and localized deformation bands was also studied and it resulted that localized deformation bands are not preferential oxide growth channels. The pre-cycling of the alloy did not modify its oxidation behaviour. However, intergranular oxidation in the subsurface under the oxide layer formed after exposure to PWR primary water was shown.

  20. Development of ECT/UT inspection system for bottom mounted instrumentation nozzle of PWR reactor vessels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, H.; Fukui, S.; Iwahashi, Y.

    1994-12-31

    The development of inspection technique and tool for Bottom Mounted Instrument (BMI) nozzle of PWR plant was performed for countermeasure of leakage accident at incore instrument nozzle of Hamaoka-1 (BWR). MHI achieved the following development, of which object was PWR Plant R/V: (1) development of ECT/UT Multi-sensored Probe; (2) development of Inspection System (3) development of Data Processing System. The Inspection System had been functionally tested using full scale mock-up. As the result of the functional test, this system was confirmed to be very effective, and assumed to be hopeful for the actual application on site.

  1. Plasmon waveguide resonance sensor using an Au-MgF2 structure.

    PubMed

    Zhou, Yanfei; Zhang, Pengfei; He, Yonghong; Xu, Zihao; Liu, Le; Ji, Yanhong; Ma, Hui

    2014-10-01

    We report an Au − MgF(2) plasmon waveguide resonance (PWR) sensor in this work. The characteristics of this sensing structure are compared with a surface plasmon resonance (SPR) structure theoretically and experimentally. The transverse-magnetic-polarized PWR sensor has a refractive index resolution of 9.3 × 10(-7) RIU, which is 6 times smaller than that of SPR at the incident light wavelength of 633 nm, and the transverse-electric-polarized PWR sensor has a refractive index resolution of 3.0 × 10(-6) RIU. This high-resolution sensor is easy to build and is less sensitive to film coating deviations.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonen, F.A.; Johnson, K.I.; Liebetrau, A.M.

    The VISA-II (Vessel Integrity Simulation Analysis code was originally developed as part of the NRC staff evaluation of pressurized thermal shock. VISA-II uses Monte Carlo simulation to evaluate the failure probability of a pressurized water reactor (PWR) pressure vessel subjected to a pressure and thermal transient specified by the user. Linear elastic fracture mechanics methods are used to model crack initiation and propagation. Parameters for initial crack size and location, copper content, initial reference temperature of the nil-ductility transition, fluence, crack-initiation fracture toughness, and arrest fracture toughness are treated as random variables. This report documents an upgraded version of themore » original VISA code as described in NUREG/CR-3384. Improvements include a treatment of cladding effects, a more general simulation of flaw size, shape and location, a simulation of inservice inspection, an updated simulation of the reference temperature of the nil-ductility transition, and treatment of vessels with multiple welds and initial flaws. The code has been extensively tested and verified and is written in FORTRAN for ease of installation on different computers. 38 refs., 25 figs.« less

  3. Suggestion on the safety classification of spent fuel dry storage in China’s pressurized water reactor nuclear power plant

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua

    2018-01-01

    China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.

  4. Annual report, FY 1979 Spent fuel and fuel pool component integrity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion.more » A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.« less

  5. Reflux cooling experiments on the NCSU scaled PWR facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doster, J.M.; Giavedoni, E.

    1993-01-01

    Under loss of forced circulation, coupled with the loss or reduction in primary side coolant inventory, horizontal stratified flows can develop in the hot and cold legs of pressurized water reactors (PWRs). Vapor produced in the reactor vessel is transported through the hot leg to the steam generator tubes where it condenses and flows back to the reactor vessel. Within the steam generator tubes, the flow regimes may range from countercurrent annular flow to single-phase convection. As a result, a number of heat transfer mechanisms are possible, depending on the loop configuration, total heat transfer rate, and the steam flowmore » rate within the tubes. These include (but are not limited to) two-phase natural circulation, where the condensate flows concurrent to the vapor stream and is transported to the cold leg so that the entire reactor coolant loop is active, and reflux cooling, where the condensate flows back down the interior of the coolant tubes countercurrent to the vapor stream and is returned to the reactor vessel through the hot leg. While operating in the reflux cooling mode, the cold leg can effectively be inactive. Heat transfer can be further influenced by noncondensables in the vapor stream, which accumulate within the upper regions of the steam generator tube bundle. In addition to reducing the steam generator's effective heat transfer area, under these conditions operation under natural circulation may not be possible, and reflux cooling may be the only viable heat transfer mechanism. The scaled PWR (SPWR) facility in the nuclear engineering department at North Carolina State Univ. (NCSU) is being used to study the effectiveness of two-phase natural circulation and reflux cooling under conditions associated with loss of forced circulation, midloop coolant levels, and noncondensables in the primary coolant system.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Ziqing; Kruska, Karen; Toloczko, Mychailo B.

    Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for the 21% and 31%CW CLT specimens loaded at their yield stress after ~9,220 h, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showed DCPD-indicated crack initiationmore » after 10,400h exposure at constant stress intensity, which resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Interestingly, post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and will discuss their effects on crack initiation in CW alloy 690.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohr, C.L.; Rausch, W.N.; Hesson, G.M.

    The LOCA Simulation Program in the NRU reactor is the first set of experiments to provide data on the behavior of full-length, nuclear-heated PWR fuel bundles during the heatup, reflood, and quench phases of a loss-of-coolant accident (LOCA). This paper compares the temperature time histories of 4 experimental test cases with 4 computer codes: CE-THERM, FRAP-T5, GT3-FLECHT, and TRUMP-FLECHT. The preliminary comparisons between prediction and experiment show that the state-of-the art fuel codes have large uncertainties and are not necessarily conservative in predicting peak temperatures, turn around times, and bundle quench times.

  8. RELAP5 Analyses of OECD/NEA ROSA-2 Project Experiments on Intermediate-Break LOCAs at Hot Leg or Cold Leg

    NASA Astrophysics Data System (ADS)

    Takeda, Takeshi; Maruyama, Yu; Watanabe, Tadashi; Nakamura, Hideo

    Experiments simulating PWR intermediate-break loss-of-coolant accidents (IBLOCAs) with 17% break at hot leg or cold leg were conducted in OECD/NEA ROSA-2 Project using the Large Scale Test Facility (LSTF). In the hot leg IBLOCA test, core uncovery started simultaneously with liquid level drop in crossover leg downflow-side before loop seal clearing (LSC) induced by steam condensation on accumulator coolant injected into cold leg. Water remained on upper core plate in upper plenum due to counter-current flow limiting (CCFL) because of significant upward steam flow from the core. In the cold leg IBLOCA test, core dryout took place due to rapid liquid level drop in the core before LSC. Liquid was accumulated in upper plenum, steam generator (SG) U-tube upflow-side and SG inlet plenum before the LSC due to CCFL by high velocity vapor flow, causing enhanced decrease in the core liquid level. The RELAP5/MOD3.2.1.2 post-test analyses of the two LSTF experiments were performed employing critical flow model in the code with a discharge coefficient of 1.0. In the hot leg IBLOCA case, cladding surface temperature of simulated fuel rods was underpredicted due to overprediction of core liquid level after the core uncovery. In the cold leg IBLOCA case, the cladding surface temperature was underpredicted too due to later core uncovery than in the experiment. These may suggest that the code has remaining problems in proper prediction of primary coolant distribution.

  9. Thermal modeling of a vertical dry storage cask for used nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Liu, Yung Y.

    2016-05-01

    Thermal modeling of temperature profiles of dry casks has been identified as a high-priority item in a U.S. Department of Energy gap analysis. In this work, a three-dimensional model of a vertical dry cask has been constructed for computer simulation by using the ANSYS/FLUENT code. The vertical storage cask contains a welded canister for 32 Pressurized Water Reactor (PWR) used-fuel assemblies with a total decay heat load of 34 kW. To simplify thermal calculations, an effective thermal conductivity model for a 17 x 17 PWR used (or spent)-fuel assembly was developed and used in the simulation of thermal performance. Themore » effects of canister fill gas (helium or nitrogen), internal pressure (1-6 atm), and basket material (stainless steel or aluminum alloy) were studied to determine the peak cladding temperature (PCT) and the canister surface temperatures (CSTs). The results showed that high thermal conductivity of the basket material greatly enhances heat transfer and reduces the PCT. The results also showed that natural convection affects both PCT and the CST profile, while the latter depends strongly on the type of fill gas and canister internal pressure. Of particular interest to condition and performance monitoring is the identification of canister locations where significant temperature change occurs after a canister is breached and the fill gas changes from high-pressure helium to ambient air. This study provided insight on the thermal performance of a vertical storage cask containing high-burnup fuel, and helped advance the concept of monitoring CSTs as a means to detect helium leakage from a welded canister. The effects of blockage of air inlet vents on the cask's thermal performance were studied. The simulation were validated by comparing the results against data obtained from the temperature measurements of a commercial cask.« less

  10. Optimization of small long-life PWR based on thorium fuel

    NASA Astrophysics Data System (ADS)

    Subkhi, Moh Nurul; Suud, Zaki; Waris, Abdul; Permana, Sidik

    2015-09-01

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% 233U & 2.8% 231Pa, 6% 233U & 2.8% 231Pa and 7% 233U & 6% 231Pa give low excess reactivity.

  11. 78 FR 56752 - Interim Staff Guidance Specific Environmental Guidance for Integral Pressurized Water Reactors...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... (iPWR). This guidance applies to environmental reviews associated with iPWR applications for limited... received on or before this date. ADDRESSES: You may submit comments by any of the following methods (unless... this document. You may access publicly-available information related to this document by any of the...

  12. Fretting wear behaviors of a dual-cooled nuclear fuel rod under a simulated rod vibration

    NASA Astrophysics Data System (ADS)

    Lee, Young-Ho; Kim, Hyung-Kyu; Kang, Heung-Seok; Yoon, Kyung-Ho; Kim, Jae-Yong; Lee, Kang-Hee

    2012-06-01

    Recently, a dual-cooled fuel (i.e., annular fuel) that is compatible with current operating PWR plants has been proposed in order to realize both a considerable amount of power uprating and an increase of safety margins. As the design concept should be compatible with current operating PWR plants, however, it shows a narrow gap between the fuel rods when compared with current solid nuclear fuel arrays and needs to modify the spacer grid shapes and their positions. In this study, fretting wear tests have been performed to evaluate the wear resistance of a dual-cooled fuel by using a proposed spring and dimple of spacer grids that have a cantilever type and hemispherical shape, respectively. As a result, the wear volume of the spring specimen gradually increases as the contact condition is changed from a certain gap, just contact to positive force. However, in the dimple specimen, just contact condition shows a large wear volume. In addition, a circular rod motion at upper region of contact surface is gradually increased and its diametric size depends on the wear depth increase. Based on the test results, the fretting wear resistance of the proposed spring and dimple is analyzed by comparing the wear measurement results and rod motion in detail.

  13. TRIGA MARK-II source term

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Usang, M. D., E-mail: mark-dennis@nuclearmalaysia.gov.my; Hamzah, N. S., E-mail: mark-dennis@nuclearmalaysia.gov.my; Abi, M. J. B., E-mail: mark-dennis@nuclearmalaysia.gov.my

    ORIGEN 2.2 are employed to obtain data regarding γ source term and the radio-activity of irradiated TRIGA fuel. The fuel composition are specified in grams for use as input data. Three types of fuel are irradiated in the reactor, each differs from the other in terms of the amount of Uranium compared to the total weight. Each fuel are irradiated for 365 days with 50 days time step. We obtain results on the total radioactivity of the fuel, the composition of activated materials, composition of fission products and the photon spectrum of the burned fuel. We investigate the differences ofmore » results using BWR and PWR library for ORIGEN. Finally, we compare the composition of major nuclides after 1 year irradiation of both ORIGEN library with results from WIMS. We found only minor disagreements between the yields of PWR and BWR libraries. In comparison with WIMS, the errors are a little bit more pronounced. To overcome this errors, the irradiation power used in ORIGEN could be increased a little, so that the differences in the yield of ORIGEN and WIMS could be reduced. A more permanent solution is to use a different code altogether to simulate burnup such as DRAGON and ORIGEN-S. The result of this study are essential for the design of radiation shielding from the fuel.« less

  14. ADVANCEMENTS IN TIME-SPECTRA ANALYSIS METHODS FOR LEAD SLOWING-DOWN SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leon E.; Anderson, Kevin K.; Gesh, Christopher J.

    2010-08-11

    Direct measurement of Pu in spent nuclear fuel remains a key challenge for safeguarding nuclear fuel cycles of today and tomorrow. Lead slowing-down spectroscopy (LSDS) is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic mass with an uncertainty lower than the approximately 10 percent typical of today’s confirmatory assay methods. Pacific Northwest National Laboratory’s (PNNL) previous work to assess the viability of LSDS for the assay of pressurized water reactor (PWR) assemblies indicated that the method could provide direct assay of Pu-239 and U-235 (and possibly Pu-240 and Pu-241)more » with uncertainties less than a few percent, assuming suitably efficient instrumentation, an intense pulsed neutron source, and improvements in the time-spectra analysis methods used to extract isotopic information from a complex LSDS signal. This previous simulation-based evaluation used relatively simple PWR fuel assembly definitions (e.g. constant burnup across the assembly) and a constant initial enrichment and cooling time. The time-spectra analysis method was founded on a preliminary analytical model of self-shielding intended to correct for assay-signal nonlinearities introduced by attenuation of the interrogating neutron flux within the assembly.« less

  15. Conceptual Core Analysis of Long Life PWR Utilizing Thorium-Uranium Fuel Cycle

    NASA Astrophysics Data System (ADS)

    Rouf; Su'ud, Zaki

    2016-08-01

    Conceptual core analysis of long life PWR utilizing thorium-uranium based fuel has conducted. The purpose of this study is to evaluate neutronic behavior of reactor core using combined thorium and enriched uranium fuel. Based on this fuel composition, reactor core have higher conversion ratio rather than conventional fuel which could give longer operation length. This simulation performed using SRAC Code System based on library SRACLIB-JDL32. The calculation carried out for (Th-U)O2 and (Th-U)C fuel with uranium composition 30 - 40% and gadolinium (Gd2O3) as burnable poison 0,0125%. The fuel composition adjusted to obtain burn up length 10 - 15 years under thermal power 600 - 1000 MWt. The key properties such as uranium enrichment, fuel volume fraction, percentage of uranium are evaluated. Core calculation on this study adopted R-Z geometry divided by 3 region, each region have different uranium enrichment. The result show multiplication factor every burn up step for 15 years operation length, power distribution behavior, power peaking factor, and conversion ratio. The optimum core design achieved when thermal power 600 MWt, percentage of uranium 35%, U-235 enrichment 11 - 13%, with 14 years operation length, axial and radial power peaking factor about 1.5 and 1.2 respectively.

  16. J-2X Turbopump Cavitation Diagnostics

    NASA Technical Reports Server (NTRS)

    Santi, I. Michael; Butas, John P.; Tyler, Thomas R., Jr.; Aguilar, Robert; Sowers, T. Shane

    2010-01-01

    The J-2X is the upper stage engine currently being designed by Pratt & Whitney Rocketdyne (PWR) for the Ares I Crew Launch Vehicle (CLV). Propellant supply requirements for the J-2X are defined by the Ares Upper Stage to J-2X Interface Control Document (ICD). Supply conditions outside ICD defined start or run boxes can induce turbopump cavitation leading to interruption of J-2X propellant flow during hot fire operation. In severe cases, cavitation can lead to uncontained engine failure with the potential to cause a vehicle catastrophic event. Turbopump and engine system performance models supported by system design information and test data are required to predict existence, severity, and consequences of a cavitation event. A cavitation model for each of the J-2X fuel and oxidizer turbopumps was developed using data from pump water flow test facilities at Pratt & Whitney Rocketdyne (PWR) and Marshall Space Flight Center (MSFC) together with data from Powerpack 1A testing at Stennis Space Center (SSC) and from heritage systems. These component models were implemented within the PWR J-2X Real Time Model (RTM) to provide a foundation for predicting system level effects following turbopump cavitation. The RTM serves as a general failure simulation platform supporting estimation of J-2X redline system effectiveness. A study to compare cavitation induced conditions with component level structural limit thresholds throughout the engine was performed using the RTM. Results provided insight into system level turbopump cavitation effects and redline system effectiveness in preventing structural limit violations. A need to better understand structural limits and redline system failure mitigation potential in the event of fuel side cavitation was indicated. This paper examines study results, efforts to mature J-2X turbopump cavitation models and structural limits, and issues with engine redline detection of cavitation and the use of vehicle-side abort triggers to augment the engine redline system.

  17. Estimating irradiated nuclear fuel characteristics by nonlinear multivariate regression of simulated gamma-ray emissions

    NASA Astrophysics Data System (ADS)

    Åberg Lindell, M.; Andersson, P.; Grape, S.; Håkansson, A.; Thulin, M.

    2018-07-01

    In addition to verifying operator declared parameters of spent nuclear fuel, the ability to experimentally infer such parameters with a minimum of intrusiveness is of great interest and has been long-sought after in the nuclear safeguards community. It can also be anticipated that such ability would be of interest for quality assurance in e.g. recycling facilities in future Generation IV nuclear fuel cycles. One way to obtain information regarding spent nuclear fuel is to measure various gamma-ray intensities using high-resolution gamma-ray spectroscopy. While intensities from a few isotopes obtained from such measurements have traditionally been used pairwise, the approach in this work is to simultaneously analyze correlations between all available isotopes, using multivariate analysis techniques. Based on this approach, a methodology for inferring burnup, cooling time, and initial fissile content of PWR fuels using passive gamma-ray spectroscopy data has been investigated. PWR nuclear fuels, of UOX and MOX type, and their gamma-ray emissions, were simulated using the Monte Carlo code Serpent. Data comprising relative isotope activities was analyzed with decision trees and support vector machines, for predicting fuel parameters and their associated uncertainties. From this work it may be concluded that up to a cooling time of twenty years, the 95% prediction intervals of burnup, cooling time and initial fissile content could be inferred to within approximately 7 MWd/kgHM, 8 months, and 1.4 percentage points, respectively. An attempt aiming to estimate the plutonium content in spent UOX fuel, using the developed multivariate analysis model, is also presented. The results for Pu mass estimation are promising and call for further studies.

  18. Corrosion behavior and oxide properties of Zr 1.1 wt%Nb 0.05 wt%Cu alloy

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Yong; Choi, Byung-Kwon; Yoo, Seung Jo; Jeong, Yong Hwan

    2006-12-01

    The corrosion behavior and oxide properties of Zr-1.1 wt%Nb-0.05 wt%Cu (ZrNbCu) and Zircaloy-4 have been investigated. The corrosion rate of the ZrNbCu alloy was much lower than that of the Zirclaoy-4 in the 360 °C water and 360 °C PWR-simulating loop condition without a neutron flux and it was increased with an increase of the final annealing temperature from 470 °C to 570 °C. TEM observations revealed that the precipitates in the ZrNbCu were β-Nb and ZrNbFe-precipitate with β-Nb being more frequently observed and that the precipitates were more finely distributed in the ZrNbCu alloy. It was also observed that the oxides of the ZrNbCu and Zircaloy-4 consisted of two and seven layers, respectively, after 1000 days in the PWR-simulating loop condition and that the thickness of a fully-developed layer was higher in the ZrNbCu than in the Zircaloy-4. It was also found that the β-Nb in ZrNbCu was oxidized more slowly when compared to the Zr(Fe, Cr) 2 in Zirclaoy-4 when the precipitates in the oxide were observed by TEM. Cracks were observed in the vicinity of the oxidized Zr(Fe, Cr) 2, while no cracks were formed near β-Nb which had retained a metallic state. From the results obtained, it is suggested that the oxide formed on the ZrNbCu has a more protective nature against a corrosion when compared to that of the Zircaloy-4.

  19. SINGLE PHASE ANALYTICAL MODELS FOR TERRY TURBINE NOZZLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Haihua; Zhang, Hongbin; Zou, Ling

    All BWR RCIC (Reactor Core Isolation Cooling) systems and PWR AFW (Auxiliary Feed Water) systems use Terry turbine, which is composed of the wheel with turbine buckets and several groups of fixed nozzles and reversing chambers inside the turbine casing. The inlet steam is accelerated through the turbine nozzle and impacts on the wheel buckets, generating work to drive the RCIC pump. As part of the efforts to understand the unexpected “self-regulating” mode of the RCIC systems in Fukushima accidents and extend BWR RCIC and PWR AFW operational range and flexibility, mechanistic models for the Terry turbine, based on Sandiamore » National Laboratories’ original work, has been developed and implemented in the RELAP-7 code to simulate the RCIC system. RELAP-7 is a new reactor system code currently under development with the funding support from U.S. Department of Energy. The RELAP-7 code is a fully implicit code and the preconditioned Jacobian-free Newton-Krylov (JFNK) method is used to solve the discretized nonlinear system. This paper presents a set of analytical models for simulating the flow through the Terry turbine nozzles when inlet fluid is pure steam. The implementation of the models into RELAP-7 will be briefly discussed. In the Sandia model, the turbine bucket inlet velocity is provided according to a reduced-order model, which was obtained from a large number of CFD simulations. In this work, we propose an alternative method, using an under-expanded jet model to obtain the velocity and thermodynamic conditions for the turbine bucket inlet. The models include both adiabatic expansion process inside the nozzle and free expansion process out of the nozzle to reach the ambient pressure. The combined models are able to predict the steam mass flow rate and supersonic velocity to the Terry turbine bucket entrance, which are the necessary input conditions for the Terry Turbine rotor model. The nozzle analytical models were validated with experimental data and benchmarked with CFD simulations. The analytical models generally agree well with the experimental data and CFD simulations. The analytical models are suitable for implementation into a reactor system analysis code or severe accident code as part of mechanistic and dynamical models to understand the RCIC behaviors. The cases with two-phase flow at the turbine inlet will be pursued in future work.« less

  20. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    DOE PAGES

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie; ...

    2015-03-04

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetricallymore » burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.« less

  1. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Benjamin, E-mail: collinsbs@ornl.gov; Stimpson, Shane, E-mail: stimpsonsg@ornl.gov; Kelley, Blake W., E-mail: kelleybl@umich.edu

    2016-12-01

    A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less

  2. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    DOE PAGES

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; ...

    2016-08-25

    We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less

  3. Simulation of differential die-away instrument’s response to asymmetrically burned spent nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinik, Tomas; Henzl, Vladimir; Grape, Sophie

    Here, previous simulation studies of Differential Die–Away (DDA) instrument’s response to active interrogation of spent nuclear fuel from a pressurized water reactor (PWR) yielded promising results in terms of its capability to accurately measure or estimate basic spent fuel assembly (SFA) characteristics, such as multiplication, initial enrichment (IE) and burn-up (BU) as well as the total plutonium content. These studies were however performed only for a subset of idealized SFAs with a symmetric BU with respect to its longitudinal axis. Therefore, to complement the previous results, additional simulations have been performed of the DDA instrument’s response to interrogation of asymmetricallymore » burned spent nuclear fuel in order to determine whether detailed assay of SFAs from all 4 sides will be necessary in real life applications or whether a cost and time saving single sided assay could be used to achieve results of similar quality as previously reported in case of symmetrically burned SFAs.« less

  4. Neutron Collar Evolution and Fresh PWR Assembly Measurements with a New Fast Neutron Passive Collar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menlove, Howard Olsen; Geist, William H.; Root, Margaret A.

    The passive neutron collar approach removes the effect of poison rods when using a 1mm Gd liner. This project sets out to solve the following challenges: BWR fuel assemblies have less mass and less neutron multiplication than PWR; and effective removal of cosmic ray spallation neutron bursts needed via QC tests.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastenberg, W.E.; Apostolakis, G.; Dhir, V.K.

    Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable ofmore » propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.« less

  6. MC21 analysis of the MIT PWR benchmark: Hot zero power results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly Iii, D. J.; Aviles, B. N.; Herman, B. R.

    2013-07-01

    MC21 Monte Carlo results have been compared with hot zero power measurements from an operating pressurized water reactor (PWR), as specified in a new full core PWR performance benchmark from the MIT Computational Reactor Physics Group. Included in the comparisons are axially integrated full core detector measurements, axial detector profiles, control rod bank worths, and temperature coefficients. Power depressions from grid spacers are seen clearly in the MC21 results. Application of Coarse Mesh Finite Difference (CMFD) acceleration within MC21 has been accomplished, resulting in a significant reduction of inactive batches necessary to converge the fission source. CMFD acceleration has alsomore » been shown to work seamlessly with the Uniform Fission Site (UFS) variance reduction method. (authors)« less

  7. Secondary Startup Neutron Sources as a Source of Tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaver, Mark W.; Lanning, Donald D.

    2010-02-01

    The hypothesis of this paper is that the Zircaloy clad fuel source is minimal and that secondary startup neutron sources are the significant contributors of the tritium in the RCS that was previously assigned to release from fuel. Currently there are large uncertainties in the attribution of tritium in a Pressurized Water Reactor (PWR) Reactor Coolant System (RCS). The measured amount of tritium in the coolant cannot be separated out empirically into its individual sources. Therefore, to quantify individual contributors, all sources of tritium in the RCS of a PWR must be understood theoretically and verified by the sum ofmore » the individual components equaling the measured values.« less

  8. Optimization of small long-life PWR based on thorium fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subkhi, Moh Nurul, E-mail: nsubkhi@students.itb.ac.id; Physics Dept., Faculty of Science and Technology, State Islamic University of Sunan Gunung Djati Bandung Jalan A.H Nasution 105 Bandung; Suud, Zaki, E-mail: szaki@fi.itb.ac.id

    2015-09-30

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% {sup 233}U & 2.8% {sup 231}Pa, 6% {sup 233}U & 2.8% {sup 231}Pa and 7% {sup 233}U & 6% {supmore » 231}Pa give low excess reactivity.« less

  9. Current and planned numerical development for improving computing performance for long duration and/or low pressure transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faydide, B.

    1997-07-01

    This paper presents the current and planned numerical development for improving computing performance in case of Cathare applications needing real time, like simulator applications. Cathare is a thermalhydraulic code developed by CEA (DRN), IPSN, EDF and FRAMATOME for PWR safety analysis. First, the general characteristics of the code are presented, dealing with physical models, numerical topics, and validation strategy. Then, the current and planned applications of Cathare in the field of simulators are discussed. Some of these applications were made in the past, using a simplified and fast-running version of Cathare (Cathare-Simu); the status of the numerical improvements obtained withmore » Cathare-Simu is presented. The planned developments concern mainly the Simulator Cathare Release (SCAR) project which deals with the use of the most recent version of Cathare inside simulators. In this frame, the numerical developments are related with the speed up of the calculation process, using parallel processing and improvement of code reliability on a large set of NPP transients.« less

  10. Development a computer codes to couple PWR-GALE output and PC-CREAM input

    NASA Astrophysics Data System (ADS)

    Kuntjoro, S.; Budi Setiawan, M.; Nursinta Adi, W.; Deswandri; Sunaryo, G. R.

    2018-02-01

    Radionuclide dispersion analysis is part of an important reactor safety analysis. From the analysis it can be obtained the amount of doses received by radiation workers and communities around nuclear reactor. The radionuclide dispersion analysis under normal operating conditions is carried out using the PC-CREAM code, and it requires input data such as source term and population distribution. Input data is derived from the output of another program that is PWR-GALE and written Population Distribution data in certain format. Compiling inputs for PC-CREAM programs manually requires high accuracy, as it involves large amounts of data in certain formats and often errors in compiling inputs manually. To minimize errors in input generation, than it is make coupling program for PWR-GALE and PC-CREAM programs and a program for writing population distribution according to the PC-CREAM input format. This work was conducted to create the coupling programming between PWR-GALE output and PC-CREAM input and programming to written population data in the required formats. Programming is done by using Python programming language which has advantages of multiplatform, object-oriented and interactive. The result of this work is software for coupling data of source term and written population distribution data. So that input to PC-CREAM program can be done easily and avoid formatting errors. Programming sourceterm coupling program PWR-GALE and PC-CREAM is completed, so that the creation of PC-CREAM inputs in souceterm and distribution data can be done easily and according to the desired format.

  11. Shuttle Engine Designs Revolutionize Solar Power

    NASA Technical Reports Server (NTRS)

    2014-01-01

    The Space Shuttle Main Engine was built under contract to Marshall Space Flight Center by Rocketdyne, now part of Pratt & Whitney Rocketdyne (PWR). PWR applied its NASA experience to solar power technology and licensed the technology to Santa Monica, California-based SolarReserve. The company now develops concentrating solar power projects, including a plant in Nevada that has created 4,300 jobs during construction.

  12. Fourier Transform-Plasmon Waveguide Spectroscopy: A Nondestructive Multifrequency Method for Simultaneously Determining Polymer Thickness and Apparent Index of Refraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobbitt, Jonathan M; Weibel, Stephen C; Elshobaki, Moneim

    2014-12-16

    Fourier transform (FT)-plasmon waveguide resonance (PWR) spectroscopy measures light reflectivity at a waveguide interface as the incident frequency and angle are scanned. Under conditions of total internal reflection, the reflected light intensity is attenuated when the incident frequency and angle satisfy conditions for exciting surface plasmon modes in the metal as well as guided modes within the waveguide. Expanding upon the concept of two-frequency surface plasmon resonance developed by Peterlinz and Georgiadis [ Opt. Commun. 1996, 130, 260], the apparent index of refraction and the thickness of a waveguide can be measured precisely and simultaneously by FT-PWR with an averagemore » percent relative error of 0.4%. Measuring reflectivity for a range of frequencies extends the analysis to a wide variety of sample compositions and thicknesses since frequencies with the maximum attenuation can be selected to optimize the analysis. Additionally, the ability to measure reflectivity curves with both p- and s-polarized light provides anisotropic indices of refraction. FT-PWR is demonstrated using polystyrene waveguides of varying thickness, and the validity of FT-PWR measurements are verified by comparing the results to data from profilometry and atomic force microscopy (AFM).« less

  13. Fourier transform-plasmon waveguide spectroscopy: a nondestructive multifrequency method for simultaneously determining polymer thickness and apparent index of refraction.

    PubMed

    Bobbitt, Jonathan M; Weibel, Stephen C; Elshobaki, Moneim; Chaudhary, Sumit; Smith, Emily A

    2014-12-16

    Fourier transform (FT)-plasmon waveguide resonance (PWR) spectroscopy measures light reflectivity at a waveguide interface as the incident frequency and angle are scanned. Under conditions of total internal reflection, the reflected light intensity is attenuated when the incident frequency and angle satisfy conditions for exciting surface plasmon modes in the metal as well as guided modes within the waveguide. Expanding upon the concept of two-frequency surface plasmon resonance developed by Peterlinz and Georgiadis [Opt. Commun. 1996, 130, 260], the apparent index of refraction and the thickness of a waveguide can be measured precisely and simultaneously by FT-PWR with an average percent relative error of 0.4%. Measuring reflectivity for a range of frequencies extends the analysis to a wide variety of sample compositions and thicknesses since frequencies with the maximum attenuation can be selected to optimize the analysis. Additionally, the ability to measure reflectivity curves with both p- and s-polarized light provides anisotropic indices of refraction. FT-PWR is demonstrated using polystyrene waveguides of varying thickness, and the validity of FT-PWR measurements are verified by comparing the results to data from profilometry and atomic force microscopy (AFM).

  14. Measurement and Analysis of Structural Integrity of Reactor Core Support Structure in Pressurized Water Reactor (PWR) Plant

    NASA Astrophysics Data System (ADS)

    Ansari, Saleem A.; Haroon, Muhammad; Rashid, Atif; Kazmi, Zafar

    2017-02-01

    Extensive calculation and measurements of flow-induced vibrations (FIV) of reactor internals were made in a PWR plant to assess the structural integrity of reactor core support structure against coolant flow. The work was done to meet the requirements of the Fukushima Response Action Plan (FRAP) for enhancement of reactor safety, and the regulatory guide RG-1.20. For the core surveillance measurements the Reactor Internals Vibration Monitoring System (IVMS) has been developed based on detailed neutron noise analysis of the flux signals from the four ex-core neutron detectors. The natural frequencies, displacement and mode shapes of the reactor core barrel (CB) motion were determined with the help of IVMS. The random pressure fluctuations in reactor coolant flow due to turbulence force have been identified as the predominant cause of beam-mode deflection of CB. The dynamic FIV calculations were also made to supplement the core surveillance measurements. The calculational package employed the computational fluid dynamics, mode shape analysis, calculation of power spectral densities of flow & pressure fields and the structural response to random flow excitation forces. The dynamic loads and stiffness of the Hold-Down Spring that keeps the core structure in position against upward coolant thrust were also determined by noise measurements. Also, the boron concentration in primary coolant at any time of the core cycle has been determined with the IVMS.

  15. The underwater coincidence counter (UWCC) for plutonium measurements in mixed oxide fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eccleston, G.W.; Menlove, H.O.; Abhold, M.

    1998-12-31

    The use of fresh uranium-plutonium mixed oxide (MOX) fuel in light-water reactors (LWR) is increasing in Europe and Japan and it is necessary to verify the plutonium content in the fuel for international safeguards purposes. The UWCC is a new instrument that has been designed to operate underwater and nondestructively measure the plutonium in unirradiated MOX fuel assemblies. The UWCC can be quickly configured to measure either boiling-water reactor (BWR) or pressurized-water reactor (PWR) fuel assemblies. The plutonium loading per unit length is measured using the UWCC to precisions of less than 1% in a measurement time of 2 tomore » 3 minutes. Initial calibrations of the UWCC were completed on measurements of MOX fuel in Mol, Belgium. The MCNP-REN Monte Carlo simulation code is being benchmarked to the calibration measurements to allow accurate simulations for extended calibrations of the UWCC.« less

  16. Efforts to reduce exposure at Japanese PWRs: CVCS improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terada, Ryosuke

    1995-03-01

    Many reports have been focused on the reduction of radiation sources and related occupational exposures. The radiation sources mainly consist of corrosion products. Radiation dose rate is determined by the amount of the activated corrosion products on the surface of the primary loop components of Pressurized Water Reactor (PWR) plants. Therefore, reducing the amount of the corrosion product will contribute to the reduction of occupational exposures. In order to reduce the corrosion products, Chemical and Volume Control System (CVCS) has been improved in Japanese PWRs as follows: (a) Cation Bed Demineralizer Flowrate Control; (b) Hydrogen Peroxide Injection System; (c) Purificationmore » Flowrate During Plant Shutdown; (d) Fine Mesh Filters Upstream of Mixed Bed Demineralizers.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry, Kenneth

    The Nuclear Energy Institute (NEI) Small Modular Reactor (SMR) Licensing Task Force (TF) has been evaluating licensing issues unique and important to iPWRs, ranking these issues, and developing NEI position papers for submittal to the U.S. Nuclear Regulatory Commission (NRC) during the past three years. Papers have been developed and submitted to the NRC in a range of areas including: Price-Anderson Act, NRC annual fees, security, modularity, and staffing. In December, 2012, NEI completed a draft position paper on SMR source terms and participated in an NRC public meeting presenting a summary of this paper, which was subsequently submitted tomore » the NRC. One important conclusion of the source term paper was the evaluation and selection of high importance areas where additional research would have a significant impact on source terms. The highest ranked research area was iPWR containment aerosol natural deposition. The NRC accepts the use of existing aerosol deposition correlations in Regulatory Guide 1.183, but these were developed for large light water reactor (LWR) containments. Application of these correlations to an iPWR design has resulted in greater than a ten-fold reduction of containment airborne aerosol inventory as compared to large LWRs. Development and experimental justification of containment aerosol natural deposition correlations specifically for the unique iPWR containments is expected to result in a large reduction of design basis and beyond-design-basis accident source terms with concomitantly smaller dose to workers and the public. Therefore, NRC acceptance of iPWR containment aerosol natural deposition correlations will directly support the industry’s goal of reducing the Emergency Planning Zone (EPZ) for SMRs. Based on the results in this work, it is clear that thermophoresis is relatively unimportant for iPWRs. Gravitational settling is well understood, and may be the dominant process for a dry environment. Diffusiophoresis and enhanced settling by particle growth are the dominant processes for determining DFs for expected conditions in an iPWR containment. These processes are dependent on the areato-volume (A/V) ratio, which should benefit iPWR designs because these reactors have higher A/Vs compared to existing LWRs.« less

  18. Nuclear Data Uncertainties for Typical LWR Fuel Assemblies and a Simple Reactor Core

    NASA Astrophysics Data System (ADS)

    Rochman, D.; Leray, O.; Hursin, M.; Ferroukhi, H.; Vasiliev, A.; Aures, A.; Bostelmann, F.; Zwermann, W.; Cabellos, O.; Diez, C. J.; Dyrda, J.; Garcia-Herranz, N.; Castro, E.; van der Marck, S.; Sjöstrand, H.; Hernandez, A.; Fleming, M.; Sublet, J.-Ch.; Fiorito, L.

    2017-01-01

    The impact of the current nuclear data library covariances such as in ENDF/B-VII.1, JEFF-3.2, JENDL-4.0, SCALE and TENDL, for relevant current reactors is presented in this work. The uncertainties due to nuclear data are calculated for existing PWR and BWR fuel assemblies (with burn-up up to 40 GWd/tHM, followed by 10 years of cooling time) and for a simplified PWR full core model (without burn-up) for quantities such as k∞, macroscopic cross sections, pin power or isotope inventory. In this work, the method of propagation of uncertainties is based on random sampling of nuclear data, either from covariance files or directly from basic parameters. Additionally, possible biases on calculated quantities are investigated such as the self-shielding treatment. Different calculation schemes are used, based on CASMO, SCALE, DRAGON, MCNP or FISPACT-II, thus simulating real-life assignments for technical-support organizations. The outcome of such a study is a comparison of uncertainties with two consequences. One: although this study is not expected to lead to similar results between the involved calculation schemes, it provides an insight on what can happen when calculating uncertainties and allows to give some perspectives on the range of validity on these uncertainties. Two: it allows to dress a picture of the state of the knowledge as of today, using existing nuclear data library covariances and current methods.

  19. Report on the PWR-radiation protection/ALARA Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, D.J.

    1995-03-01

    In 1992, representatives from several utilities with operational Pressurized Water Reactors (PWR) formed the PWR-Radiation Protection/ALARA Committee. The mission of the Committee is to facilitate open communications between member utilities relative to radiation protection and ALARA issues such that cost effective dose reduction and radiation protection measures may be instituted. While industry deregulation appears inevitable and inter-utility competition is on the rise, Committee members are fully committed to sharing both positive and negative experiences for the benefit of the health and safety of the radiation worker. Committee meetings provide current operational experiences through members providing Plant status reports, and informationmore » relative to programmatic improvements through member presentations and topic specific workshops. The most recent Committee workshop was facilitated to provide members with defined experiences that provide cost effective ALARA performance.« less

  20. Comparison of Measures of Vibration Affecting Occupants of Military Vehicles

    DTIC Science & Technology

    1986-12-01

    8217 ,, l I WES equipment 27. The WES equipment consisted of a battery operated absorbed power ( ABS -PW) meter with signal conditioning...West Germany. These will be referred to as the ISO ride meter and the ABS -PWR ridemeter, respectively. The first implemented the vibration measure...the ABS -PWR algorithms were used with each acceleration signal source (analog and digital) to provide a comprehensive basis for comparing the vibration

  1. Pretest mediction of Semiscale Test S-07-10 B. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobbe, C A

    A best estimate prediction of Semiscale Test S-07-10B was performed at INEL by EG and G Idaho as part of the RELAP4/MOD6 code assessment effort and as the Nuclear Regulatory Commission pretest calculation for the Small Break Experiment. The RELAP4/MOD6 Update 4 and the RELAP4/MOD7 computer codes were used to analyze Semiscale Test S-07-10B, a 10% communicative cold leg break experiment. The Semiscale Mod-3 system utilized an electrially heated simulated core operating at a power level of 1.94 MW. The initial system pressure and temperature in the upper plenum was 2276 psia and 604/sup 0/F, respectively.

  2. From Paper to Production to Test: An Update on NASA's J-2X Engine for Exploration

    NASA Technical Reports Server (NTRS)

    Kynard, Michael

    2011-01-01

    The NASA/industry team responsible for developing the J-2X upper stage engine for the Space Launch System (SLS) Program has made significant progress toward moving beyond the design phase and into production, assembly, and test of development hardware. The J-2X engine exemplifies the SLS Program goal of using proven technology and experience from more than 50 years of United States spaceflight experience combined with modern manufacturing processes and approaches. It will power the second stage of the fully evolved SLS Program launch vehicle that will enable a return to human exploration of space beyond low earth orbit. Pratt & Whitney Rocketdyne (PWR) is under contract to develop and produce the engine, leveraging its flight-proven LH2/LOX, gas generator cycle J-2 and RS-68 engine capabilities, recent experience with the X-33 aerospike XRS-2200 engine, and development knowledge of the J-2S tap-off cycle engine. The J- 2X employs a gas generator operating cycle designed to produce 294,000 pounds of vacuum thrust in primary operating mode with its full nozzle extension. With a truncated nozzle extension suitable to support engine clustering on the stage, the nominal vacuum thrust level in primary mode is 285,000 pounds. It also has a secondary mode, during which it operates at 80 percent thrust by altering its mixture ratio. The J-2X development philosophy is based on proven hardware, an aggressive development schedule, and early risk reduction. NASA Marshall Space Flight Center (MSFC) and PWR began development of the J-2X in June 2006. The government/industry team of more than 600 people within NASA and PWR successfully completed the Critical Design Review (CDR) in November 2008, following extensive risk mitigation testing. Assembly of the first development engine was completed in May 2011 and the first engine test was conducted at the NASA Stennis Space Center (SSC), test stand A2, on 14 July 2011. Testing of the first development engine will continue through the autumn of 2011, be paused for test stand modifications to the passive diffuser, and then restart in the spring of 2012. This testing will be followed by specialized powerpack testing intended to examine the design and operating margins of the engine turbomachinery. The development plan beyond this point leads through more system-level, engine testing of several samples, analytical model validation activities, functional and performance verification, and then ultimate certification to support human spaceflight. This paper will discuss the J-2X development background, provide top-level information on design and development planning, and will explore some of the development challenges and mitigation activities pursued to date.

  3. SAS2H Generated Isotopic Concentrations For B&W 15X15 PWR Assembly (SCPB:N/A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.W. Davis

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide pressurized water reactor (PWR) isotopic composition data as a function of time for use in criticality analyses. The objectives of this evaluation are to generate burnup and decay dependant isotopic inventories and to provide these inventories in a form which can easily be utilized in subsequent criticality calculations.

  4. Astronaut Robinson presents 2010 Silver Snoopy awards

    NASA Image and Video Library

    2010-06-23

    NASA's John C. Stennis Space Center Director Patrick Scheuermann and astronaut Steve Robinson stand with recipients of the 2010 Silver Snoopy awards following a June 23 ceremony. Sixteen Stennis employees received the astronauts' personal award, which is presented by a member of the astronaut corps representing its core principles for outstanding flight safety and mission success. This year's recipients and ceremony participants were: (front row, l to r): Cliff Arnold (NASA), Wendy Holladay (NASA), Kendra Moran (Pratt & Whitney Rocketdyne), Mary Johnson (Jacobs Technology Facility Operating Services Contract group), Cory Beckemeyer (PWR), Dean Bourlet (PWR), Cecile Saltzman (NASA), Marla Carpenter (Jacobs FOSC), David Alston (Jacobs FOSC); (back row, l to r) Scheuermann, Don Wilson (A2 Research), Tim White (NASA), Ira Lossett (Jacobs Technology NASA Test Operations Group), Kerry Gallagher (Jacobs NTOG); Rene LeFrere (PWR), Todd Ladner (ASRC Research and Technology Solutions) and Thomas Jacks (NASA).

  5. Corrosion and Corrosion Control in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Gordon, Barry M.

    2013-08-01

    Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.

  6. Integral Full Core Multi-Physics PWR Benchmark with Measured Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forget, Benoit; Smith, Kord; Kumar, Shikhar

    In recent years, the importance of modeling and simulation has been highlighted extensively in the DOE research portfolio with concrete examples in nuclear engineering with the CASL and NEAMS programs. These research efforts and similar efforts worldwide aim at the development of high-fidelity multi-physics analysis tools for the simulation of current and next-generation nuclear power reactors. Like all analysis tools, verification and validation is essential to guarantee proper functioning of the software and methods employed. The current approach relies mainly on the validation of single physic phenomena (e.g. critical experiment, flow loops, etc.) and there is a lack of relevantmore » multiphysics benchmark measurements that are necessary to validate high-fidelity methods being developed today. This work introduces a new multi-cycle full-core Pressurized Water Reactor (PWR) depletion benchmark based on two operational cycles of a commercial nuclear power plant that provides a detailed description of fuel assemblies, burnable absorbers, in-core fission detectors, core loading and re-loading patterns. This benchmark enables analysts to develop extremely detailed reactor core models that can be used for testing and validation of coupled neutron transport, thermal-hydraulics, and fuel isotopic depletion. The benchmark also provides measured reactor data for Hot Zero Power (HZP) physics tests, boron letdown curves, and three-dimensional in-core flux maps from 58 instrumented assemblies. The benchmark description is now available online and has been used by many groups. However, much work remains to be done on the quantification of uncertainties and modeling sensitivities. This work aims to address these deficiencies and make this benchmark a true non-proprietary international benchmark for the validation of high-fidelity tools. This report details the BEAVRS uncertainty quantification for the first two cycle of operations and serves as the final report of the project.« less

  7. Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEntee, Jarlath; Polagye, Brian; Fabien, Brian

    2016-03-31

    The Advanced Energy Harvesting Control Schemes for Marine Renewable Energy Devices (Project) investigated, analyzed and modeled advanced turbine control schemes with the objective of increasing the energy harvested by hydrokinetic turbines in turbulent flow. Ocean Renewable Power Company (ORPC) implemented and validated a feedforward controller to increase power capture; and applied and tested the controls on ORPC’s RivGen® Power Systems in Igiugig, Alaska. Assessments of performance improvements were made for the RivGen® in the Igiugig environment and for ORPC’s TidGen® Power System in a reference tidal environment. Annualized Energy Production (AEP) and Levelized Cost of Energy (LCOE) improvements associated withmore » implementation of the recommended control methodology were made for the TidGen® Power System in the DOE reference tidal environment. System Performance Advancement (SPA) goals were selected for the project. SPA targets were to improve Power to Weight Ratio (PWR) and system Availability, with the intention of reducing Levelized Cost of Electricity (LCOE). This project focused primarily reducing in PWR. Reductions in PWR of 25.5% were achieved. Reductions of 20.3% in LCOE were achieved. This project evaluated four types of controllers which were tested in simulation, emulation, a laboratory flume, and the field. The adaptive Kω2 controller performs similarly to the non-adaptive version of the same controller and may be useful in tidal channels where the mean velocity is continually evolving. Trends in simulation were largely verified through experiments, which also provided the opportunity to test assumptions about turbine responsiveness and control resilience to varying scales of turbulence. Laboratory experiments provided an essential stepping stone between simulation and implementation on a field-scale turbine. Experiments also demonstrated that using “energy loss” as a metric to differentiate between well-designed controllers operating at an optimal tip-speed ratio set-point is difficult, which anticipated the outcome from field experiments. The clear message is that the feedforward Kω2 controller out-performs the feedback controllers in almost all aspects and modes of evaluation. The controllers proved a substantial improvement over the baseline performance of the TidGen® turbine, in terms of energy capture. The effects of noise-contaminated angular velocity signals were investigated and validated by simulation as an explanation for the performance limitations observed for TidGen® turbine operations in Eastport, Maine. Measurements of loads performed as part of the laboratory testing indicate that there are limited differences in average axial thrust force between control architectures. This suggests that none of the control strategies are likely to substantially affect loads on the turbine support structure. Velocity measurements during the ORPC RivGen® turbine deployment at Igiugig, Alaska, in 2014 were used to assess the variability of the river flow. Results suggest that the river flow is approximately steady, in the mean sense, at any particular location in the river, with random turbulent fluctuations that are around 10% of the mean flow. The mean flow in the center channel of the river is 2.5 m/s, with reductions near the riverbanks and in the shallows. Spectral analysis and lagged correlation results indicate that temporal fluctuations at a given point are dominated by large scale fluctuations, such that measurements at the turbine location are just as useful for inflow control implementation as upstream measurements. At this site, and likely at many other river sites, flow is generally steady at a given location, but flow varies dramatically between locations, particularly laterally across the river. The primary result is that a lateral change in position of a few meters results in changes to flow speed that far exceed the turbulence fluctuations at any given location. The turbulence is dominated by long time scales. Following final system tests, the RivGen® device was submerged and each evaluated controller was tested across a range of gain/set point values and filter configurations for a minimum of 5 minutes, with longer runs attempted for well-performing cases. In addition to testing controllers during the 2015 deployment season, LGL Alaska Research Associates Inc. (LGL) performed a fish monitoring study in compliance with Alaska Department of Fish and Game fisheries habitat permit for the project. During the season, LGL reviewed 10% of 179 one-hour blocks of footage (6 minutes on the hour) and documented a total of over 1200 fish in the vicinity of the RivGen® device, including over 800 salmon smolt and over 350 adult salmon. No evidence of adverse effects including passage delay by upstream migrating salmon was noted. This is an important result for future deployments and has a direct impact on commercial system designs.« less

  8. Pretest analysis of Semiscale Mod-3 baseline test S-07-8 and S-07-9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fineman, C.P.; Steiner, J.L.; Snider, D.M.

    This document contains a pretest analysis of the Semiscale Mod-3 system thermal-hydraulic response for the second and third integral tests in Test Series 7 (Tests S-07-8 and S-07-9). Test Series 7 is the first test series to be conducted with the Semiscale Mod-3 system. The design of the Mod-3 system includes an improved representation of certain portions of a pressurized water reactor (PWR) when compared to the previously operated Semiscale Mod-1 system. The improvements include a new vessel which contains a full length (3.66 m) core, a full length upper plenum and upper head, and an external downcomer. An activemore » pump and active steam generator scaled to their pressurized water reactor (PWR) counterparts have been added to the broken loop. The upper head design includes the capability to simulate emergency core coolant (ECC) injection into this region. Test Series 7 is divided into three groups of tests that emphasize the evaluation of the Mod-3 system performance during different phases of the loss-of-coolant experiment (LOCE) transient. The last test group, which includes Tests S-07-8 and S-07-9, will be used to evaluate the integral behavior of the system. The previous two test groups were used to evaluate the blowdown behavior and the reflood behavior of the system. 3 refs., 35 figs., 12 tabs.« less

  9. Waterside corrosion of Zircaloy-clad fuel rods in a PWR environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzarolli, F.; Jorde, D.; Manzel, R.

    A data base of Zircaloy corrosion behavior under PWR operating conditions has been established from previously published reports as well as from new Kraftwerk Union (KWU) fuel examinations. The data show that the reactor environment increases the corrosion. ZrO/sub 2/ film thermal conductivity is another major factor that influences corrosion behavior. It was inferred from KWU film thickness data that the oxide film thermal conductivity may decrease once circumferential cracks develop in the layer. 57 refs.

  10. Chemical Agonists of the PML/Daxx Pathway for Prostate Cancer Therapy

    DTIC Science & Technology

    2011-04-01

    positive nuclei. These data suggest that the assay is highly specific and will not suffer from promiscuous reactivity with NIH library compounds...Figure 16B). Strikingly, when we compared Daxx levels in PCa cell lines to a nontumorigenic human prostatic epithelial line, PWR -1E, they were...Lysates from six different cell types ( PWR -1E, ALVA-31 Daxx K/D, ALVA-31 WT, DU145, LNCaP, and PC3) were normalized for total protein content (60 μg

  11. Pretest and posttest calculations of Semiscale Test S-07-10D with the TRAC computer program. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duerre, K.H.; Cort, G.E.; Knight, T.D.

    The Transient Reactor Analysis Code (TRAC) developed at the Los Alamos National Laboratory was used to predict the behavior of the small-break experiment designated Semiscale S-07-10D. This test simulates a 10 per cent communicative cold-leg break with delayed Emergency Core Coolant injection and blowdown of the broken-loop steam generator secondary. Both pretest calculations that incorporated measured initial conditions and posttest calculations that incorporated measured initial conditions and measured transient boundary conditions were completed. The posttest calculated parameters were generally between those obtained from pretest calculations and those from the test data. The results are strongly dependent on depressurization rate and,more » hence, on break flow.« less

  12. Characterization and corrosion behavior of F6NM stainless steel treated in high temperature water

    NASA Astrophysics Data System (ADS)

    Li, Zheng-yang; Cai, Zhen-bing; Yang, Wen-jin; Shen, Xiao-yao; Xue, Guo-hong; Zhu, Min-hao

    2018-03-01

    F6NM martensitic stainless steel was exposed to 350 °C water condition for 500, 1500, and 2500 h to simulate pressurized water reactor (PWR) condition. The characterization and corrosion behavior of the oxide film were investigated. Results indicate that the exposed steel surface formed a double-layer oxide film. The outer oxide film is Fe-rich and contains two type oxide particles. However, the inner oxide film is Cr-rich, and two oxide films, whose thicknesses increase with increasing exposure time. The oxide film reduces the corrosion behavior because the outer oxide film has many crack and pores. Finally, the mechanism and factors affecting the formation of the oxide film were investigated.

  13. Industry Application ECCS / LOCA Integrated Cladding/Emergency Core Cooling System Performance: Demonstration of LOTUS-Baseline Coupled Analysis of the South Texas Plant Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongbin; Szilard, Ronaldo; Epiney, Aaron

    Under the auspices of the DOE LWRS Program RISMC Industry Application ECCS/LOCA, INL has engaged staff from both South Texas Project (STP) and the Texas A&M University (TAMU) to produce a generic pressurized water reactor (PWR) model including reactor core, clad/fuel design and systems thermal hydraulics based on the South Texas Project (STP) nuclear power plant, a 4-Loop Westinghouse PWR. A RISMC toolkit, named LOCA Toolkit for the U.S. (LOTUS), has been developed for use in this generic PWR plant model to assess safety margins for the proposed NRC 10 CFR 50.46c rule, Emergency Core Cooling System (ECCS) performance duringmore » LOCA. This demonstration includes coupled analysis of core design, fuel design, thermalhydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results. Within this context, a multi-physics best estimate plus uncertainty (MPBEPU) methodology framework is proposed.« less

  14. High-temperature Gas Reactor (HTGR)

    NASA Astrophysics Data System (ADS)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  15. Review of PWR fuel rod waterside corrosion behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzarolli, F.; Jorde, D.; Manzel, R.

    Waterside corrosion of Zircaloy has generally not been a problem under normal PWR operating conditions, although some instances of accelerated corrosion have been reported. However, an incentive exists to extend the average fuel rod discharge burnups to about 50,000 MWd/MTU. To minimize corrosion at these extended burnups, the factors which influence Zircaloy corrosion need to be better understood. A data base of Zircaloy corrosion behavior under PWR operating conditions has been established. The data are compiled previously published reports as well as from new Kraftwerk Union examinations. A non-destructive eddy-current technique is used to measure the oxide layer thickness onmore » fuel rods. Comparisons of measuremnts made using this eddy-current technique with those made by usual metallographic methods indicate good agreement. The data were evaluated by defining a fitting factor F which describes the increase in corrosion rate observed in-reactor over that observed from measurements of ex-reactor corrosion coupons.« less

  16. Effect of lifestyle interventions of pregnant women on their dietary habits, lifestyle behaviors, and weight gain: a randomized controlled trial.

    PubMed

    Aşcı, Özlem; Rathfisch, Gülay

    2016-02-24

    Although it is known that lifestyle behaviors of pregnant women are closely related to maternal and fetal health, number of data concerning efficacy of intervention on lifestyle during pregnancy is limited. The purpose of this study is to determine the effect of lifestyle interventions on improving dietary habits and lifestyle behaviors, ensuring gestational weight gain (GWG) within recommended levels and limiting postpartum weight retention (PWR). The study was conducted as a randomized controlled trial in a family health center located in Istanbul, Turkey, between June 2011 and July 2012. The primary outcomes were GWG, and the proportion of pregnant women whose GWG was within the Institute of Medicine (IOM) guidelines. One hundred two pregnant women with gestation ≤12 weeks, age ≥18 years, gravidity ≤2, and who did not intend to lose weight in prepregnancy period were randomly included in this study as intervention (n = 51) and control (n = 51) groups. The study was completed with 45 women for each group. The control group received routine antenatal care. The intervention group was received an individualized lifestyle intervention focusing on healthy lifestyle, diet, exercise, and weight monitoring as four sessions at 12-15, 16-18, 20-24, and 37 weeks gestation. Lifestyle behaviors were evaluated with Health-Promoting Lifestyle Profile-II. Dietary habits were assessed by 3-day dietary recalls, and weight was followed from pregnancy until 6 weeks postpartum. The lifestyle interventions had a significant effect on improving lifestyle behaviors, protein intake, percentage of energy from protein, calcium, magnesium, iron, zinc, and vegetable intakes when adjusted for confounders (p < 0.05). The proportion of women who were within the IOM recommendations was higher in the intervention group (51.1 %) than in the control group (28.9 %) The odds ratio for GWG within IOM was statistically significant between the groups (OR = 0.59, 95 % CI, 0.45-0.72). There were no difference between groups in terms of the other dietary intakes, total GWG, and PWR (p > 0.05). Lifestyle intervention improves the lifestyle behaviors during pregnancy and increases the appropriate GWG for prepregnancy body mass index (BMI), but it has a limited effect in terms of improving dietary habits and has no effect on PWR.

  17. Planar Monolithic Schottky Varactor Diode Millimeter-Wave Frequency Multipliers

    DTIC Science & Technology

    1992-06-01

    wave applications", IEEE Trans on Microwave Theory and Tech., vol. 39, no. 12, Dec. 1991 , pp. 1964-1971. A copy of this paper is 35 included in...Watts to Bulky 1991 spectral HV DC Power line Pwr Very Inguscio varies Massive 1986 with Vac.:um line Very low Gas noise Supply Ledatron Up to 1 W at...PULSED Band up to 1985 HV DC 10 GHz Massive Pwr Magnetic V?4MA > 100 GHz > 1 Watt Wide Cooling Research Quasi- McGruer Theory Theory Band Planar 1991

  18. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billone, M. C.; Burtseva, T. A.

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  19. Assessment of RELAP5/MOD2 against a pressurizer spray valve inadverted fully opening transient and recovery by natural circulation in Jose Cabrera Nuclear Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arroyo, R.; Rebollo, L.

    1993-06-01

    This document presents the comparison between the simulation results and the plant measurements of a real event that took place in JOSE CABRERA nuclear power plant in August 30th, 1984. The event was originated by the total, continuous and inadverted opening of the pressurizer spray valve PCV-400A. JOSE CABRERA power plant is a single loop Westinghouse PWR belonging to UNION ELECTRICA FENOSA, S.A. (UNION FENOSA), an Spanish utility which participates in the International Code Assessment and Applications Program (ICAP) as a member of UNIDAD ELECTRICA, S.A. (UNESA). This is the second of its two contributions to the Program: the firstmore » one was an application case and this is an assessment one. The simulation has been performed using the RELAP5/MOD2 cycle 36.04 code, running on a CDC CYBER 180/830 computer under NOS 2.5 operating system. The main phenomena have been calculated correctly and some conclusions about the 3D characteristics of the condensation due to the spray and its simulation with a 1D tool have been got.« less

  20. ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2013-11-01

    1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These may be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69more » rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section, similar in all respects except that it contained a partial blockage formed by attaching sleeves (or "balloons") to some of the rods. 6. SOURCE AND SCOPE OF DATA Phenomena Tested - Heat transfer in the core of a PWR during a re-flood phase of postulated large break LOCA. Test Designation - Achilles Rig. The programme includes the following types of experiments: - on an unballooned cluster: -- single phase air flow -- low pressure level swell -- low flooding rate re-flood -- high flooding rate re-flood - on a ballooned cluster containing 80% blockage formed by 16 balloon sleeves -- single phase air flow -- low flooding rate re-flood 7. DISCUSSION OF THE DATA RETRIEVAL PROGRAM N/A 8. DATA FORMAT AND COMPUTER Many Computers (M00019MNYCP00). 9. TYPICAL RUNNING TIME N/A 11. CONTENTS OF LIBRARY The ACHILLES package contains test data and associated data processing software as well as the documentation listed above. 12. DATE OF ABSTRACT November 2013. KEYWORDS: DATABASES, BENCHMARKS, HEAT TRANSFER, LOSS-OF-COLLANT ACCIDENT, PWR REACTORS, REFLOODING« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salko, Robert K; Sung, Yixing; Kucukboyaci, Vefa

    The Virtual Environment for Reactor Applications core simulator (VERA-CS) being developed by the Consortium for the Advanced Simulation of Light Water Reactors (CASL) includes coupled neutronics, thermal-hydraulics, and fuel temperature components with an isotopic depletion capability. The neutronics capability employed is based on MPACT, a three-dimensional (3-D) whole core transport code. The thermal-hydraulics and fuel temperature models are provided by the COBRA-TF (CTF) subchannel code. As part of the CASL development program, the VERA-CS (MPACT/CTF) code system was applied to model and simulate reactor core response with respect to departure from nucleate boiling ratio (DNBR) at the limiting time stepmore » of a postulated pressurized water reactor (PWR) main steamline break (MSLB) event initiated at the hot zero power (HZP), either with offsite power available and the reactor coolant pumps in operation (high-flow case) or without offsite power where the reactor core is cooled through natural circulation (low-flow case). The VERA-CS simulation was based on core boundary conditions from the RETRAN-02 system transient calculations and STAR-CCM+ computational fluid dynamics (CFD) core inlet distribution calculations. The evaluation indicated that the VERA-CS code system is capable of modeling and simulating quasi-steady state reactor core response under the steamline break (SLB) accident condition, the results are insensitive to uncertainties in the inlet flow distributions from the CFD simulations, and the high-flow case is more DNB limiting than the low-flow case.« less

  2. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    NASA Astrophysics Data System (ADS)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  3. Preliminary Stratigraphic Basis for Geologic Mapping of Venus

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. T.; Head, J. W.

    1993-01-01

    The age relations between geologic formations have been studied at 36 1000x1000 km areas centered at the dark paraboloid craters. The geologic setting in all these sites could be characterized using only 16 types of features and terrains (units). These units form a basic stratigraphic sequence (from older to younger: (1) Tessera (Tt); (2-3) Densely fractured terrains associated with coronae (COdf) and in the form of remnants among plains (Pdf); (4) Fractured and ridged plains (Pfr); (5) Plains with wrinkle ridges (Pwr); (6-7) Smooth and lobate plains (Ps/Pl); and (8) Rift-associated fractures (Fra). The stratigraphic position of the other units is determined by their relation with the units of the basic sequence: (9) Ridge bells (RB), contemporary with Pfr; (10-11) Ridges of coronae and arachnoids annuli (COar/Aar), contemporary with wrinkle ridges of Pwr; (12) Fractures of coronae annuli (COaf) disrupt Pwr and Ps/Pl; (13) Fractures (F) disrupt Pwr or younger units; (14) Craters with associated dark paraboloids (Cdp), which are on top of all volcanic and tectonic units except the youngest episodes of rift-associated fracturing and volcanism; (15-16) Surficial streaks (Ss) and surficial patches (Sp) are approximately contemporary with Cdp. These units may be used as a tentative basis for the geologic mapping of Venus including VMAP. This mapping should test the stratigraphy and answer the question of whether this stratigraphic sequence corresponds to geologic events which were generally synchronous all around the planet or whether the sequence is simply a typical sequence of events which occurred in different places at diffferent times.

  4. Multi-pack Disposal Concepts for Spent Fuel (Rev. 0)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadgu, Teklu; Hardin, Ernest; Matteo, Edward N.

    2015-12-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media (Hardin et al., 2012). Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are keptmore » open after emplacement for extended ventilation) have been limited to the Yucca Mountain License Application Design (CRWMS M&O, 1999). Thermal analysis showed that, if “enclosed” concepts are constrained by peak package/buffer temperature, waste package capacity is limited to 4 PWR assemblies (or 9-BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems (EnergySolution, 2015). This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).« less

  5. Multi-Pack Disposal Concepts for Spent Fuel (Revision 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest; Matteo, Edward N.; Hadgu, Teklu

    2016-01-01

    At the initiation of the Used Fuel Disposition (UFD) R&D campaign, international geologic disposal programs and past work in the U.S. were surveyed to identify viable disposal concepts for crystalline, clay/shale, and salt host media. Concepts for disposal of commercial spent nuclear fuel (SNF) and high-level waste (HLW) from reprocessing are relatively advanced in countries such as Finland, France, and Sweden. The UFD work quickly showed that these international concepts are all “enclosed,” whereby waste packages are emplaced in direct or close contact with natural or engineered materials . Alternative “open” modes (emplacement tunnels are kept open after emplacement formore » extended ventilation) have been limited to the Yucca Mountain License Application Design. Thermal analysis showed that if “enclosed” concepts are constrained by peak package/buffer temperature, that waste package capacity is limited to 4 PWR assemblies (or 9 BWR) in all media except salt. This information motivated separate studies: 1) extend the peak temperature tolerance of backfill materials, which is ongoing; and 2) develop small canisters (up to 4-PWR size) that can be grouped in larger multi-pack units for convenience of storage, transportation, and possibly disposal (should the disposal concept permit larger packages). A recent result from the second line of investigation is the Task Order 18 report: Generic Design for Small Standardized Transportation, Aging and Disposal Canister Systems. This report identifies disposal concepts for the small canisters (4-PWR size) drawing heavily on previous work, and for the multi-pack (16-PWR or 36-BWR).« less

  6. Coexistence of insulin resistance and increased glucose tolerance in pregnant rats: a physiological mechanism for glucose maintenance.

    PubMed

    Carrara, Marcia Aparecida; Batista, Márcia Regina; Saruhashi, Tiago Ribeiro; Felisberto, Antonio Machado; Guilhermetti, Marcio; Bazotte, Roberto Barbosa

    2012-06-06

    The contribution of insulin resistance (IR) and glucose tolerance to the maintenance of blood glucose levels in non diabetic pregnant Wistar rats (PWR) was investigated. PWR were submitted to conventional insulin tolerance test (ITT) and glucose tolerance test (GTT) using blood sample collected 0, 10 and 60 min after intraperitoneal insulin (1 U/kg) or oral (gavage) glucose (1g/kg) administration. Moreover, ITT, GTT and the kinetics of glucose concentration changes in the fed and fasted states were evaluated with a real-time continuous glucose monitoring system (RT-CGMS) technique. Furthermore, the contribution of the liver glucose production was investigated. Conventional ITT and GTT at 0, 7, 14 and 20 days of pregnancy revealed increased IR and glucose tolerance after 20 days of pregnancy. Thus, this period of pregnancy was used to investigate the kinetics of glucose changes with the RT-CGMS technique. PWR (day 20) exhibited a lower (p<0.05) glucose concentration in the fed state. In addition, we observed IR and increased glucose tolerance in the fed state (PWR-day 20 vs. day 0). Furthermore, our data from glycogenolysis and gluconeogenesis suggested that the liver glucose production did not contribute to these changes in insulin sensitivity and/or glucose tolerance during late pregnancy. In contrast to the general view that IR is a pathological process associated with gestational diabetes, a certain degree of IR may represent an important physiological mechanism for blood glucose maintenance during fasting. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. The pluralistic water research concept - a new human-water system research approach

    NASA Astrophysics Data System (ADS)

    Evers, Mariele; Höllermann, Britta; Almoradie, Adrian; Taft, Linda; Garcia-Santos, Glenda

    2017-04-01

    Sustainable water resources management has been and still is a main challenge for decision makers even though for the past number of decades integrative approaches and concepts (e.g. Integrated Water Resources Management - IWRM) have been developed to address problems on floods, droughts, water quality, water quantity, environment and ecology. Although somehow these approaches are aiming to address water related problems in an integrative approach and to some extent include or involve society in the planning and management, they still lack some of the vital components in including the social dimensions and their interaction with water. Understanding these dynamics in a holistic way and how they are shaped by time and space may tackle these shortcomings and provide more effective and sustainable management solutions with respect to a set of potential present social actions and values as well as possible futures. This paper aims to discuss challenges to coherently and comprehensively integrate the social dimensions of different human-water concepts like IWRM, socio-hydrology and waterscape. Against this background it will develop criteria for an integrative approach and present a newly developed concept termed pluralistic water research (PWR) concept. PWR is not only a pluralistic but also an integrative and interdisciplinary approach to acknowledge the social and water dimensions and their interaction and dynamics by considering more than one perspective of a water-related issue, hereby providing a set of multiple (future) developments. Our PWR concept will be illustrated by a case study application of the Canary island La Gomera. Furthermore an outlook on further possible developments of the PWR concept will be presented and discussed.

  8. Development of a new lattice physics code robin for PWR application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.; Chen, G.

    2013-07-01

    This paper presents a description of methodologies and preliminary verification results of a new lattice physics code ROBIN, being developed for PWR application at Shanghai NuStar Nuclear Power Technology Co., Ltd. The methods used in ROBIN to fulfill various tasks of lattice physics analysis are an integration of historical methods and new methods that came into being very recently. Not only these methods like equivalence theory for resonance treatment and method of characteristics for neutron transport calculation are adopted, as they are applied in many of today's production-level LWR lattice codes, but also very useful new methods like the enhancedmore » neutron current method for Dancoff correction in large and complicated geometry and the log linear rate constant power depletion method for Gd-bearing fuel are implemented in the code. A small sample of verification results are provided to illustrate the type of accuracy achievable using ROBIN. It is demonstrated that ROBIN is capable of satisfying most of the needs for PWR lattice analysis and has the potential to become a production quality code in the future. (authors)« less

  9. Logistics Modeling of Emplacement Rate and Duration of Operations for Generic Geologic Repository Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, Elena Arkadievna; Hardin, Ernest

    This study identified potential geologic repository concepts for disposal of spent nuclear fuel (SNF) and (2) evaluated the achievable repository waste emplacement rate and the time required to complete the disposal for these concepts. Total repository capacity is assumed to be approximately 140,000 MT of spent fuel. The results of this study provide an important input for the rough-order-of-magnitude (ROM) disposal cost analysis. The disposal concepts cover three major categories of host geologic media: crystalline or hard rock, salt, and argillaceous rock. Four waste package sizes are considered: 4PWR/9BWR; 12PWR/21BWR; 21PWR/44BWR, and dual purpose canisters (DPCs). The DPC concepts assumemore » that the existing canisters will be sealed into disposal overpacks for direct disposal. Each concept assumes one of the following emplacement power limits for either emplacement or repository closure: 1.7 kW; 2.2 kW; 5.5 kW; 10 kW; 11.5 kW, and 18 kW.« less

  10. Regeneratively Cooled Liquid Oxygen/Methane Technology Development Between NASA MSFC and PWR

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey B.

    2012-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.

  11. Thermal treatment, grain boundary composition and intergranular attack resistance of Alloy 690

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.J.; Stratton, R.P.

    1992-12-31

    Commercial Alloy 690 PWR steam generator tubes and experimentally produced alloys with varying amounts of carbon, aluminium and titanium have been examined. After simulated mill annealing and thermal treatment, the microstructure and corrosion behaviour in corrosion tests have been investigated. Stress corrosion resistance of selected alloy 690 tubes and experimental alloys has been examined with environments based on pure water, sodium hydroxide and sodium hydroxide + sodium sulphate solutions. Effects of aluminium content and the thermal treatments on the susceptibility to intergranular attack have been examined, although they appear not to be very significant to the amounts of IGA. Samplesmore » used in thermal treatments have been further examined with a dedicated scanning transmission electron microscope to show compositional changes at grain boundaries.« less

  12. TREAT Neutronics Analysis and Design Support, Part II: Multi-SERTTA-CAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.; Woolstenhulme, Nicolas E.; Hill, Connie M.

    2016-08-01

    Experiment vehicle design is necessary in preparation for Transient Reactor Test (TREAT) facility restart and the resumption of transient testing to support Accident Tolerant Fuel (ATF) characterization and other future fuels testing requirements. Currently the most mature vehicle design is the Multi-SERTTA (Static Environments Rodlet Transient Test Apparatuses), which can accommodate up to four concurrent rodlet-sized specimens under separate environmental conditions. Robust test vehicle design requires neutronics analyses to support design development, optimization of the power coupling factor (PCF) to efficiently maximize energy generation in the test fuel rodlets, and experiment safety analyses. In integral aspect of prior TREAT transientmore » testing was the incorporation of calibration experiments to experimentally evaluate and validate test conditions in preparation of the actual fuel testing. The calibration experiment package established the test parameter conditions to support fine-tuning of the computational models to deliver the required energy deposition to the fuel samples. The calibration vehicle was designed to be as near neutronically equivalent to the experiment vehicle as possible to minimize errors between the calibration and final tests. The Multi-SERTTA-CAL vehicle was designed to serve as the calibration vehicle supporting Multi-SERTTA experimentation. Models of the Multi-SERTTA-CAL vehicle containing typical PWR-fuel rodlets were prepared and neutronics calculations were performed using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries; these results were then compared against those performed for Multi-SERTTA to determine the similarity and possible design modification necessary prior to construction of these experiment vehicles. The estimated reactivity insertion worth into the TREAT core is very similar between the two vehicle designs, with the primary physical difference being a hollow Inconel tube running down the length of the calibration vehicle. Calculations of PCF indicate that on average there is a reduction of approximately 6.3 and 12.6%, respectively, for PWR fuel rodlets irradiated under wet and dry conditions. Changes to the primary or secondary vessel structure in the calibration vehicle can be performed to offset this discrepancy and maintain neutronic equivalency. Current possible modifications to the calibration vehicle include reduction of the primary vessel wall thickness, swapping Zircaloy-4 for stainless steel 316 in the secondary containment, or slight modification to the temperature and pressure of the water environment within the primary vessel. Removal of some of the instrumentation within the calibration vehicle can also serve to slightly increase the PCF. Future efforts include further modification and optimization of the Multi-SERTTA and Multi-SERTTA-CAL designs in preparation of actual TREAT transient testing. Experimental results from both test vehicles will be compared against calculational results and methods to provide validation and support additional neutronics analyses.« less

  13. Evaluation of the Susceptibility to SCC Initiation of Alloy 690 in Simulated PWR Primary Water

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Kazuya; Couvant, Thierry

    Alloy 690 has been widely used in fabricating components of LWR plants as an alternative material to Alloy 600 which has exhibited a significant susceptibility to PWSCC. However, some authors have reported that Alloy 690 can suffer a significant susceptibility to SCC crack growth when highly cold worked. While most of the recent studies emphasize SCC propagation phase, EDF and its partners are focusing on the material's resistance to SCC initiation. This paper summarizes the current work carried out at EDF MAI on the SCC initiation. By means of constant elongation rate tests (CERTs) and constant displacement tests, experimental investigation of the susceptibility to PWSCC were performed. No SCC was observed on either an extruded bar or on two plates, even after 24%-1D cold rolling, confirming the superior PWSCC resistance of Alloy 690 independent of a amount of intergranular precipitation of carbides, and also revealing that such cold rolling does not necessarily decrease the resistance to SCC. On the other hand, a experimental steam generator tube that has a degraded microstructure due to specific heat-treatment revealed its susceptibility to SCC, probably because of the interactive effect of microstructure with heavy intragranular carbide precipitations and the cold worked superficial layer. This phenomenon is in good agreement with results previously published. In this study, the maximal crack depth slightly increased when DH increased from 5 to 60 cc.kg-1H2O. No significant prior ageing effect on the crack depth was observed, even when ageing was combined with high DH.

  14. TREAT Neutronics Analysis and Design Support, Part I: Multi-SERTTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bess, John D.; Woolstenhulme, Nicolas E.; Hill, Connie M.

    2016-08-01

    Experiment vehicle design is necessary in preparation for Transient Reactor Test (TREAT) facility restart and the resumption of transient testing to support Accident Tolerant Fuel (ATF) characterization and other future fuels testing requirements. Currently the most mature vehicle design is the Multi-SERTTA (Static Environments Rodlet Transient Test Apparatuses), which can accommodate up to four concurrent rodlet-sized specimens under separate environmental conditions. Robust test vehicle design requires neutronics analyses to support design development, optimization of the power coupling factor (PCF) to efficiently maximize energy generation in the test fuel rodlets, and experiment safety analyses. Calculations were performed to support analysis ofmore » a near-final design of the Multi-SERTTA vehicle, the design process for future TREAT test vehicles, and establish analytical practices for upcoming transient test experiments. Models of the Multi-SERTTA vehicle containing typical PWR-fuel rodlets were prepared and neutronics calculations were performed using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries. Calculation of the PCF for reference conditions of a PWR fuel rodlet in clean water at operational temperature and pressure provided results between 1.10 and 1.74 W/g-MW depending on the location of the four Multi-SERTTA units with the stack. Basic changes to the Multi-SERTTA secondary vessel containment and support have minimal impact on PCF; using materials with less neutron absorption can improve expected PCF values, especially in the primary containment. An optimized balance is needed between structural integrity, experiment safety, and energy deposition in the experiment. Type of medium and environmental conditions within the primary vessel surrounding the fuel rodlet can also have a significant impact on resultant PCF values. The estimated reactivity insertion worth into the TREAT core is impacted more by the primary and secondary Multi-SERTTA vehicle structure with the experiment content and contained environment having a near negligible impact on overall system reactivity. Additional calculations were performed to evaluate the peak-to-average assembly powers throughout the TREAT core, as well as the nuclear heat generation for the various structural components of the Multi-SERTTA assembly. Future efforts include the evaluation of flux collars to shape the PCF for individual Multi-SERTTA units during an experiment such as to achieve uniformity in test unit environmental conditions impacted by the non-uniform axial flux/power profile of TREAT. Upon resumption of transient testing, experimental results from both the Multi-SERTTA and Multi-SERTTA-CAL will be compared against calculational results and methods for further optimization and design strategies.« less

  15. Trends in Global Vegetation Activity and Climatic Drivers Indicate a Decoupled Response to Climate Change.

    PubMed

    Schut, Antonius G T; Ivits, Eva; Conijn, Jacob G; Ten Brink, Ben; Fensholt, Rasmus

    2015-01-01

    Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982-2010) derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty in trend estimates. Annual total biomass weight (TBW) was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR) with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS-NPP) and TBW per biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land, and for 5% a negative trend. A decoupled trend, indicating positive TBW trends and monotonic negative or segmented and negative NDVI trends, was observed for 17-36% of all productive areas depending on the NDVI metric used. For only 1-2% of all pixels in productive areas, a diverging and greening trend was found despite a strong negative trend in TBW. The choice of NDVI metric used strongly affected outcomes on regional scales and differences in the fraction of explained variation in MODIS-NPP between biomes were large, and a combination of NDVI metrics is recommended for global studies. We have found an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration capacity.

  16. 75 FR 13 - Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ...The Nuclear Regulatory Commission (NRC) is amending its regulations to provide alternate fracture toughness requirements for protection against pressurized thermal shock (PTS) events for pressurized water reactor (PWR) pressure vessels. This final rule provides alternate PTS requirements based on updated analysis methods. This action is desirable because the existing requirements are based on unnecessarily conservative probabilistic fracture mechanics analyses. This action reduces regulatory burden for those PWR licensees who expect to exceed the existing requirements before the expiration of their licenses, while maintaining adequate safety, and may choose to comply with the final rule as an alternative to complying with the existing requirements.

  17. Performance testing and analyses of the VSC-17 ventilated concrete cask. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinnon, M.A.; Dodge, R.E.; Schmitt, R.C.

    1992-05-01

    This document details performance test which was conducted on a Pacific Sierra Nuclear VSC-17 ventilated concrete storage cask configured for pressurized-water reactor (PWR) spent fuel. The performance test consisted of loading the VSC-17 cask with 17 canisters of consolidated PWR spent fuel from Virginia Power`s Surry and Florida Power & Light Turkey Point reactors. Cask surface, concrete, air channel surfaces, and fuel canister guide tube temperatures were measured, as were cask surface gamma and neutron dose rates. Testing was performed with vacuum, nitrogen, and helium backfill environments in a vertical cask orientation. Data on spent fuel integrity were also obtained.

  18. Validation of the new code package APOLLO2.8 for accurate PWR neutronics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamarina, A.; Bernard, D.; Blaise, P.

    2013-07-01

    This paper summarizes the Qualification work performed to demonstrate the accuracy of the new APOLLO2.S/SHEM-MOC package based on JEFF3.1.1 nuclear data file for the prediction of PWR neutronics parameters. This experimental validation is based on PWR mock-up critical experiments performed in the EOLE/MINERVE zero-power reactors and on P.I. Es on spent fuel assemblies from the French PWRs. The Calculation-Experiment comparison for the main design parameters is presented: reactivity of UOX and MOX lattices, depletion calculation and fuel inventory, reactivity loss with burnup, pin-by-pin power maps, Doppler coefficient, Moderator Temperature Coefficient, Void coefficient, UO{sub 2}-Gd{sub 2}O{sub 3} poisoning worth, Efficiency ofmore » Ag-In-Cd and B4C control rods, Reflector Saving for both standard 2-cm baffle and GEN3 advanced thick SS reflector. From this qualification process, calculation biases and associated uncertainties are derived. This code package APOLLO2.8 is already implemented in the ARCADIA new AREVA calculation chain for core physics and is currently under implementation in the future neutronics package of the French utility Electricite de France. (authors)« less

  19. OLIGOCELLULA1/HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 Promotes Cell Proliferation With HISTONE DEACETYLASE9 and POWERDRESS During Leaf Development in Arabidopsis thaliana

    PubMed Central

    Suzuki, Marina; Shinozuka, Nanae; Hirakata, Tomohiro; Nakata, Miyuki T.; Demura, Taku; Tsukaya, Hirokazu; Horiguchi, Gorou

    2018-01-01

    Organ size regulation is dependent on the precise spatial and temporal regulation of cell proliferation and cell expansion. A number of transcription factors have been identified that play a key role in the determination of aerial lateral organ size, but their functional relationship to various chromatin modifiers has not been well understood. To understand how leaf size is regulated, we previously isolated the oligocellula1 (oli1) mutant of Arabidopsis thaliana that develops smaller first leaves than the wild type (WT) mainly due to a reduction in the cell number. In this study, we further characterized oli1 leaf phenotypes and identified the OLI1 gene as well as interaction partners of OLI1. Detailed characterizations of leaf development suggested that the cell proliferation rate in oli1 leaf primordia is lower than that in the WT. In addition, oli1 was associated with a slight delay of the progression from the juvenile to adult phases of leaf traits. A classical map-based approach demonstrated that OLI1 is identical to HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 (HOS15). HOS15/OLI1 encodes a homolog of human transducin β-like protein1 (TBL1). TBL1 forms a transcriptional repression complex with the histone deacetylase (HDAC) HDAC3 and either nuclear receptor co-repressor (N-CoR) or silencing mediator for retinoic acid and thyroid receptor (SMRT). We found that mutations in HISTONE DEACETYLASE9 (HDA9) and a switching-defective protein 3, adaptor 2, N-CoR, and transcription factor IIIB-domain protein gene, POWERDRESS (PWR), showed a small-leaf phenotype similar to oli1. In addition, hda9 and pwr did not further enhance the oli1 small-leaf phenotype, suggesting that these three genes act in the same pathway. Yeast two-hybrid assays suggested physical interactions, wherein PWR probably bridges HOS15/OLI1 and HDA9. Earlier studies suggested the roles of HOS15, HDA9, and PWR in transcriptional repression. Consistently, transcriptome analyses showed several genes commonly upregulated in the three mutants. From these findings, we propose a possibility that HOS15/OLI1, PWR, and HDA9 form an evolutionary conserved transcription repression complex that plays a positive role in the regulation of final leaf size. PMID:29774040

  20. Coexistence of WiFi and WiMAX systems based on PS-request protocols.

    PubMed

    Kim, Jongwoo; Park, Suwon; Rhee, Seung Hyong; Choi, Yong-Hoon; Chung, Young-uk; Hwang, Ho Young

    2011-01-01

    We introduce both the coexistence zone within the WiMAX frame structure and a PS-Request protocol for the coexistence of WiFi and WiMAX systems sharing a frequency band. Because we know that the PS-Request protocol has drawbacks, we propose a revised PS-Request protocol to improve the performance. Two PS-Request protocols are based on the time division operation (TDO) of WiFi system and WiMAX system to avoid the mutual interference, and use the vestigial power management (PwrMgt) bit within the Frame Control field of the frames transmitted by a WiFi AP. The performance of the revised PS-Request protocol is evaluated by computer simulation, and compared to those of the cases without a coexistence protocol and to the original PS-Request protocol.

  1. Nuclear safety. Technical progress journal, October 1996--December 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The five papers in this issue address various issues associated with the behavior of high burnup fuels, especially under reactivity initiated accident (RIA) conditions. The mechanisms and parameters that have an effect on the fuel behavior are detailed, based on tests and analyses. The ultimate goal of the research reported is the development of new regulatory criteria for high burnup fuel under design basis accident conditions. Specific topics of the papers, which are abstracted individually in the database, are: (1) regulatory assessment of test data for RIAs, (2) high burnup fuel transient behavior under RIA conditions, (3) NSRR/RIA experiments withmore » high burnup PWR fuels, (4) the Russian RIA research program, and (5) RIA simulation experiments on the intermediate and high burnup test rods. The papers are contributed from the United States, France, Japan, and Russia.« less

  2. Characterization of LWRS Hybrid SiC-CMC-Zircaloy-4 Fuel Cladding after Gamma Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isabella J van Rooyen

    2012-09-01

    The purpose of the gamma irradiation tests conducted at the Idaho National Laboratory (INL) was to obtain a better understanding of chemical interactions and potential changes in microstructural properties of a mock-up hybrid nuclear fuel cladding rodlet design (unfueled) in a simulated PWR water environment under irradiation conditions. The hybrid fuel rodlet design is being investigated under the Light Water Reactor Sustainability (LWRS) program for further development and testing of one of the possible advanced LWR nuclear fuel cladding designs. The gamma irradiation tests were performed in preparation for neutron irradiation tests planned for a silicon carbide (SiC) ceramic matrixmore » composite (CMC) zircaloy-4 (Zr-4) hybrid fuel rodlet that may be tested in the INL Advanced Test Reactor (ATR) if the design is selected for further development and testing« less

  3. Coexistence of WiFi and WiMAX Systems Based on PS-Request Protocols†

    PubMed Central

    Kim, Jongwoo; Park, Suwon; Rhee, Seung Hyong; Choi, Yong-Hoon; Chung, Young-uk; Hwang, Ho Young

    2011-01-01

    We introduce both the coexistence zone within the WiMAX frame structure and a PS-Request protocol for the coexistence of WiFi and WiMAX systems sharing a frequency band. Because we know that the PS-Request protocol has drawbacks, we propose a revised PS-Request protocol to improve the performance. Two PS-Request protocols are based on the time division operation (TDO) of WiFi system and WiMAX system to avoid the mutual interference, and use the vestigial power management (PwrMgt) bit within the Frame Control field of the frames transmitted by a WiFi AP. The performance of the revised PS-Request protocol is evaluated by computer simulation, and compared to those of the cases without a coexistence protocol and to the original PS-Request protocol. PMID:22163721

  4. Analysis of radiation safety for Small Modular Reactor (SMR) on PWR-100 MWe type

    NASA Astrophysics Data System (ADS)

    Udiyani, P. M.; Husnayani, I.; Deswandri; Sunaryo, G. R.

    2018-02-01

    Indonesia as an archipelago country, including big, medium and small islands is suitable to construction of Small Medium/Modular reactors. Preliminary technology assessment on various SMR has been started, indeed the SMR is grouped into Light Water Reactor, Gas Cooled Reactor, and Solid Cooled Reactor and from its site it is group into Land Based reactor and Water Based Reactor. Fukushima accident made people doubt about the safety of Nuclear Power Plant (NPP), which impact on the public perception of the safety of nuclear power plants. The paper will describe the assessment of safety and radiation consequences on site for normal operation and Design Basis Accident postulation of SMR based on PWR-100 MWe in Bangka Island. Consequences of radiation for normal operation simulated for 3 units SMR. The source term was generated from an inventory by using ORIGEN-2 software and the consequence of routine calculated by PC-Cream and accident by PC Cosyma. The adopted methodology used was based on site-specific meteorological and spatial data. According to calculation by PC-CREAM 08 computer code, the highest individual dose in site area for adults is 5.34E-02 mSv/y in ESE direction within 1 km distance from stack. The result of calculation is that doses on public for normal operation below 1mSv/y. The calculation result from PC Cosyma, the highest individual dose is 1.92.E+00 mSv in ESE direction within 1km distance from stack. The total collective dose (all pathway) is 3.39E-01 manSv, with dominant supporting from cloud pathway. Results show that there are no evacuation countermeasure will be taken based on the regulation of emergency.

  5. Thorium-based mixed oxide fuel in a pressurized water reactor: A feasibility analysis with MCNP

    NASA Astrophysics Data System (ADS)

    Tucker, Lucas Powelson

    This dissertation investigates techniques for spent fuel monitoring, and assesses the feasibility of using a thorium-based mixed oxide fuel in a conventional pressurized water reactor for plutonium disposition. Both non-paralyzing and paralyzing dead-time calculations were performed for the Portable Spectroscopic Fast Neutron Probe (N-Probe), which can be used for spent fuel interrogation. Also, a Canberra 3He neutron detector's dead-time was estimated using a combination of subcritical assembly measurements and MCNP simulations. Next, a multitude of fission products were identified as candidates for burnup and spent fuel analysis of irradiated mixed oxide fuel. The best isotopes for these applications were identified by investigating half-life, photon energy, fission yield, branching ratios, production modes, thermal neutron absorption cross section and fuel matrix diffusivity. 132I and 97Nb were identified as good candidates for MOX fuel on-line burnup analysis. In the second, and most important, part of this work, the feasibility of utilizing ThMOX fuel in a pressurized water reactor (PWR) was first examined under steady-state, beginning of life conditions. Using a three-dimensional MCNP model of a Westinghouse-type 17x17 PWR, several fuel compositions and configurations of a one-third ThMOX core were compared to a 100% UO2 core. A blanket-type arrangement of 5.5 wt% PuO2 was determined to be the best candidate for further analysis. Next, the safety of the ThMOX configuration was evaluated through three cycles of burnup at several using the following metrics: axial and radial nuclear hot channel factors, moderator and fuel temperature coefficients, delayed neutron fraction, and shutdown margin. Additionally, the performance of the ThMOX configuration was assessed by tracking cycle length, plutonium destroyed, and fission product poison concentration.

  6. Development and Testing of Neutron Cross Section Covariance Data for SCALE 6.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, William BJ J; Williams, Mark L; Wiarda, Dorothea

    2015-01-01

    Neutron cross-section covariance data are essential for many sensitivity/uncertainty and uncertainty quantification assessments performed both within the TSUNAMI suite and more broadly throughout the SCALE code system. The release of ENDF/B-VII.1 included a more complete set of neutron cross-section covariance data: these data form the basis for a new cross-section covariance library to be released in SCALE 6.2. A range of testing is conducted to investigate the properties of these covariance data and ensure that the data are reasonable. These tests include examination of the uncertainty in critical experiment benchmark model k eff values due to nuclear data uncertainties, asmore » well as similarity assessments of irradiated pressurized water reactor (PWR) and boiling water reactor (BWR) fuel with suites of critical experiments. The contents of the new covariance library, the testing performed, and the behavior of the new covariance data are described in this paper. The neutron cross-section covariances can be combined with a sensitivity data file generated using the TSUNAMI suite of codes within SCALE to determine the uncertainty in system k eff caused by nuclear data uncertainties. The Verified, Archived Library of Inputs and Data (VALID) maintained at Oak Ridge National Laboratory (ORNL) contains over 400 critical experiment benchmark models, and sensitivity data are generated for each of these models. The nuclear data uncertainty in k eff is generated for each experiment, and the resulting uncertainties are tabulated and compared to the differences in measured and calculated results. The magnitude of the uncertainty for categories of nuclides (such as actinides, fission products, and structural materials) is calculated for irradiated PWR and BWR fuel to quantify the effect of covariance library changes between the SCALE 6.1 and 6.2 libraries. One of the primary applications of sensitivity/uncertainty methods within SCALE is the assessment of similarities between benchmark experiments and safety applications. This is described by a c k value for each experiment with each application. Several studies have analyzed typical c k values for a range of critical experiments compared with hypothetical irradiated fuel applications. The c k value is sensitive to the cross-section covariance data because the contribution of each nuclide is influenced by its uncertainty; large uncertainties indicate more likely bias sources and are thus given more weight. Changes in c k values resulting from different covariance data can be used to examine and assess underlying data changes. These comparisons are performed for PWR and BWR fuel in storage and transportation systems.« less

  7. Application of MELCOR Code to a French PWR 900 MWe Severe Accident Sequence and Evaluation of Models Performance Focusing on In-Vessel Thermal Hydraulic Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Rosa, Felice

    2006-07-01

    In the ambit of the Severe Accident Network of Excellence Project (SARNET), funded by the European Union, 6. FISA (Fission Safety) Programme, one of the main tasks is the development and validation of the European Accident Source Term Evaluation Code (ASTEC Code). One of the reference codes used to compare ASTEC results, coming from experimental and Reactor Plant applications, is MELCOR. ENEA is a SARNET member and also an ASTEC and MELCOR user. During the first 18 months of this project, we performed a series of MELCOR and ASTEC calculations referring to a French PWR 900 MWe and to themore » accident sequence of 'Loss of Steam Generator (SG) Feedwater' (known as H2 sequence in the French classification). H2 is an accident sequence substantially equivalent to a Station Blackout scenario, like a TMLB accident, with the only difference that in H2 sequence the scram is forced to occur with a delay of 28 seconds. The main events during the accident sequence are a loss of normal and auxiliary SG feedwater (0 s), followed by a scram when the water level in SG is equal or less than 0.7 m (after 28 seconds). There is also a main coolant pumps trip when {delta}Tsat < 10 deg. C, a total opening of the three relief valves when Tric (core maximal outlet temperature) is above 603 K (330 deg. C) and accumulators isolation when primary pressure goes below 1.5 MPa (15 bar). Among many other points, it is worth noting that this was the first time that a MELCOR 1.8.5 input deck was available for a French PWR 900. The main ENEA effort in this period was devoted to prepare the MELCOR input deck using the code version v.1.8.5 (build QZ Oct 2000 with the latest patch 185003 Oct 2001). The input deck, completely new, was prepared taking into account structure, data and same conditions as those found inside ASTEC input decks. The main goal of the work presented in this paper is to put in evidence where and when MELCOR provides good enough results and why, in some cases mainly referring to its specific models (candling, corium pool behaviour, etc.) they were less good. A future work will be the preparation of an input deck for the new MELCOR 1.8.6. and to perform a code-to-code comparison with ASTEC v1.2 rev. 1. (author)« less

  8. Pressurized-water reactor internals aging degradation study. Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luk, K.H.

    1993-09-01

    This report documents the results of a Phase I study on the effects of aging degradations on pr internals. Primary stressers for internals an generated by the primary coolant flow in the they include unsteady hydrodynamic forces and pump-generated pressure pulsations. Other stressors are applied loads, manufacturing processes, impurities in the coolant and exposures to fast neutron fluxes. A survey of reported aging-related failure information indicates that fatigue, stress corrosion cracking (SCC) and mechanical wear are the three major aging-related degradation mechanisms for PWR internals. Significant reported failures include thermal shield flow-induced vibration problems, SCC in guide tube support pinsmore » and core support structure bolts, fatigue-induced core baffle water-jet impingement problems and excess wear in flux thimbles. Many of the reported problems have been resolved by accepted engineering practices. Uncertainties remain in the assessment of long-term neutron irradiation effects and environmental factors in high-cycle fatigue failures. Reactor internals are examined by visual inspections and the technique is access limited. Improved inspection methods, especially one with an early failure detection capability, can enhance the safety and efficiency of reactor operations.« less

  9. Full reactor coolant system chemical decontamination qualification programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, P.E.

    1995-03-01

    Corrosion and wear products are found throughout the reactor coolant system (RCS), or primary loop, of a PWR power plant. These products circulate with the primary coolant through the reactor where they may become activated. An oxide layer including these activated products forms on the surfaces of the RCS (including the fuel elements). The amount of radioactivity deposited on the different surface varies and depends primarily on the corrosion rate of the materials concerned, the amount of cobalt in the coolant and the chemistry of the coolant. The oxide layer, commonly called crud, on the surfaces of nuclear plant systemsmore » leads to personnel radiation exposure. The level of the radiation fields from the crud increases with time from initial plant startup and typically levels off after 4 to 6 cycles of plant operation. Thereafter, significant personnel radiation exposure may be incurred whenever major maintenance is performed. Personnel exposure is highest during refueling outages when routine maintenance on major plant components, such as steam generators and reactor coolant pumps, is performed. Administrative controls are established at nuclear plants to minimize the exposure incurred by an individual and the plant workers as a whole.« less

  10. ORNL rod-bundle heat-transfer test data. Volume 2. Thermal-Hydraulic Test Facility experimental data report for test 3. 03. 6AR - transient film boiling in upflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, C. B.; Felde, D. K.; Sutton, A. G.

    1982-04-01

    Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) Test 3.03.6AR. This test was conducted by members of the ORNL Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on May 21, 1980. Objective was to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.03.6AR was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.03.6AR available. Included in the report are uncertainties in the instrument responses,more » calculated mass flows, and calculated rod powers.« less

  11. Zebra: An advanced PWR lattice code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L.; Wu, H.; Zheng, Y.

    2012-07-01

    This paper presents an overview of an advanced PWR lattice code ZEBRA developed at NECP laboratory in Xi'an Jiaotong Univ.. The multi-group cross-section library is generated from the ENDF/B-VII library by NJOY and the 361-group SHEM structure is employed. The resonance calculation module is developed based on sub-group method. The transport solver is Auto-MOC code, which is a self-developed code based on the Method of Characteristic and the customization of AutoCAD software. The whole code is well organized in a modular software structure. Some numerical results during the validation of the code demonstrate that this code has a good precisionmore » and a high efficiency. (authors)« less

  12. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.

    Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent researchmore » progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling Zou; Hongbin Zhang; Jess Gehin

    A coupled TH/Neutronics/CRUD framework, which is able to simulate the CRUD deposits impact on CIPS phenomenon, was described in this paper. This framework includes the coupling among three essential physics, thermal-hydraulics, CRUD and neutronics. The overall framework was implemented by using the CFD software STAR-CCM+, developing CRUD codes, and using the neutronics code DeCART. The coupling was implemented by exchanging data between softwares using intermediate exchange files. A typical 3 by 3 PWR fuel pin problem was solved under this framework. The problem was solved in a 12 months length period of time. Time-dependent solutions were provided, including CRUD depositsmore » inventory and their distributions on fuels, boron hideout amount inside CRUD deposits, as well as power shape changing over time. The results clearly showed the power shape suppression in regions where CRUD deposits exist, which is a strong indication of CIPS phenomenon.« less

  14. Aging of electronics with application to nuclear power plant instrumentation. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jr, R T; Thome, F V; Craft, C M

    1983-01-01

    A survey to identify areas of needed research to understand aging mechanisms for electronics in nuclear power plant instrumentation has been completed. The emphasis was on electronic components such as semiconductors, capacitors, and resistors used in safety-related instrumentation in the reactor containment area. The environmental and operational stress factors which may produce degradation during long-term operation were identified. Some attention was also given to humidity effects as related to seals and encapsulants, and failures in printed circuit boards and bonds and solder joints. Results suggest that neutron as well as gamma irradiations should be considered in simulating the aging environmentmore » for electronic components. Radiation dose-rate effects in semiconductor devices and organic capacitors need to be further investigated, as well as radiation-voltage bias synergistic effects in semiconductor devices and leakage and permeation of moisture through seals in electronics packages.« less

  15. Differential Die-Away Instrument: Report on Fuel Assembly Mock-up Measurements with Neutron Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir

    2014-09-18

    Fresh fuel experiments for the differential die-away (DDA) project were performed using a DT neutron generator, a 15x15 PWR fuel assembly, and nine 3He detectors in a water tank inside of a shielded cell at Los Alamos National Laboratory (LANL). Eight different fuel enrichments were created using low enriched (LEU) and depleted uranium (DU) dioxide fuel rods. A list-mode data acquisition system recorded the time-dependent signal and analysis of the DDA signal die-away time was performed. The die-away time depended on the amount of fissile material in the fuel assembly and the position of the detector. These experiments were performedmore » in support of the spent nuclear fuel Next Generation Safeguards Initiative DDA project. Lessons learned from the fresh fuel DDA instrument experiments and simulations will provide useful information to the spent fuel project.« less

  16. Heat, Mass and Aerosol Transfers in Spray Conditions for Containment Application

    NASA Astrophysics Data System (ADS)

    Porcheron, Emmanuel; Lemaitre, Pascal; Nuboer, Amandine; Vendel, Jacques

    TOSQAN is an experimental program undertaken by the Institut de Radioprotection et de Surété Nucleaire (IRSN) in order to perform thermal hydraulic containment studies. The TOSQAN facility is a large enclosure devoted to simulating typical accidental thermal hydraulic flow conditions in nuclear Pressurized Water Reactor (PWR) containment. The TOSQAN facility, which is highly instrumented with non-intrusive optical diagnostics, is particularly adapted to nuclear safety CFD code validation. The present work is devoted to studying the interaction of a water spray injection used as a mitigation means in order to reduce the gas pressure and temperature in the containment, to produce gases mixing and washout of fission products. In order to have a better understanding of heat and mass transfers between spray droplets and the gas mixture, and to analyze mixing effects due to spray activation, we performed detailed characterization of the two-phase flow.

  17. Computed tomography of radioactive objects and materials

    NASA Astrophysics Data System (ADS)

    Sawicka, B. D.; Murphy, R. V.; Tosello, G.; Reynolds, P. W.; Romaniszyn, T.

    1990-12-01

    Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uraniun: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly.

  18. Shared Memory Parallelism for 3D Cartesian Discrete Ordinates Solver

    NASA Astrophysics Data System (ADS)

    Moustafa, Salli; Dutka-Malen, Ivan; Plagne, Laurent; Ponçot, Angélique; Ramet, Pierre

    2014-06-01

    This paper describes the design and the performance of DOMINO, a 3D Cartesian SN solver that implements two nested levels of parallelism (multicore+SIMD) on shared memory computation nodes. DOMINO is written in C++, a multi-paradigm programming language that enables the use of powerful and generic parallel programming tools such as Intel TBB and Eigen. These two libraries allow us to combine multi-thread parallelism with vector operations in an efficient and yet portable way. As a result, DOMINO can exploit the full power of modern multi-core processors and is able to tackle very large simulations, that usually require large HPC clusters, using a single computing node. For example, DOMINO solves a 3D full core PWR eigenvalue problem involving 26 energy groups, 288 angular directions (S16), 46 × 106 spatial cells and 1 × 1012 DoFs within 11 hours on a single 32-core SMP node. This represents a sustained performance of 235 GFlops and 40:74% of the SMP node peak performance for the DOMINO sweep implementation. The very high Flops/Watt ratio of DOMINO makes it a very interesting building block for a future many-nodes nuclear simulation tool.

  19. Development of burnup dependent fuel rod model in COBRA-TF

    NASA Astrophysics Data System (ADS)

    Yilmaz, Mine Ozdemir

    The purpose of this research was to develop a burnup dependent fuel thermal conductivity model within Pennsylvania State University, Reactor Dynamics and Fuel Management Group (RDFMG) version of the subchannel thermal-hydraulics code COBRA-TF (CTF). The model takes into account first, the degradation of fuel thermal conductivity with high burnup; and second, the fuel thermal conductivity dependence on the Gadolinium content for both UO2 and MOX fuel rods. The modified Nuclear Fuel Industries (NFI) model for UO2 fuel rods and Duriez/Modified NFI Model for MOX fuel rods were incorporated into CTF and fuel centerline predictions were compared against Halden experimental test data and FRAPCON-3.4 predictions to validate the burnup dependent fuel thermal conductivity model in CTF. Experimental test cases from Halden reactor fuel rods for UO2 fuel rods at Beginning of Life (BOL), through lifetime without Gd2O3 and through lifetime with Gd 2O3 and a MOX fuel rod were simulated with CTF. Since test fuel rod and FRAPCON-3.4 results were based on single rod measurements, CTF was run for a single fuel rod surrounded with a single channel configuration. Input decks for CTF were developed for one fuel rod located at the center of a subchannel (rod-centered subchannel approach). Fuel centerline temperatures predicted by CTF were compared against the measurements from Halden experimental test data and the predictions from FRAPCON-3.4. After implementing the new fuel thermal conductivity model in CTF and validating the model with experimental data, CTF model was applied to steady state and transient calculations. 4x4 PWR fuel bundle configuration from Purdue MOX benchmark was used to apply the new model for steady state and transient calculations. First, one of each high burnup UO2 and MOX fuel rods from 4x4 matrix were selected to carry out single fuel rod calculations and fuel centerline temperatures predicted by CTF/TORT-TD were compared against CTF /TORT-TD /FRAPTRAN predictions. After confirming that the new fuel thermal conductivity model in CTF worked and provided consistent results with FRAPTRAN predictions for a single fuel rod configuration, the same type of analysis was carried out for a bigger system which is the 4x4 PWR bundle consisting of 15 fuel pins and one control guide tube. Steady- state calculations at Hot Full Power (HFP) conditions for control guide tube out (unrodded) were performed using the 4x4 PWR array with CTF/TORT-TD coupled code system. Fuel centerline, surface and average temperatures predicted by CTF/TORT-TD with and without the new fuel thermal conductivity model were compared against CTF/TORT-TD/FRAPTRAN predictions to demonstrate the improvement in fuel centerline predictions when new model was used. In addition to that constant and CTF dynamic gap conductance model were used with the new thermal conductivity model to show the performance of the CTF dynamic gap conductance model and its impact on fuel centerline and surface temperatures. Finally, a Rod Ejection Accident (REA) scenario using the same 4x4 PWR array was run both at Hot Zero Power (HZP) and Hot Full Power (HFP) condition, starting at a position where half of the control rod is inserted. This scenario was run using CTF/TORT-TD coupled code system with and without the new fuel thermal conductivity model. The purpose of this transient analysis was to show the impact of thermal conductivity degradation (TCD) on feedback effects, specifically Doppler Reactivity Coefficient (DRC) and, eventually, total core reactivity.

  20. Analysis of steam generator tube rupture transients with single failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trambauer, K.

    The Gesellschaft fuer Reaktorsicherheit is engaged in the collection and evaluation of light water reactor operating experience as well as analyses for the risk study of the pressurized water reactor (PWR). Within these activities, thermohydraulic calculations have been performed to show the influence of different boundary conditions and disturbances on the steam generator tube rupture (SGTR) transients. The analyses of these calculations have focused on the measures and systems needed to cope with an SGTR. The reference plant for this analysis is a 1300-MW(e) PWR of Kraftwerk Union design with four loops, each containing a U-tube steam generator (SG) andmore » a reactor cooling pump (RCP). The thermal-hydraulic code DRUFAN-02 was used for the transient calculations.« less

  1. 76 FR 41783 - Combined Notice of Filings #2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... Commodities Group, Constellation Pwr Source Generation LLC, Constellation NewEnergy, Inc., CER Generation II..., CER Generation, LLC, Constellation Energy Commodities Group M, Constellation Mystic Power, LLC...

  2. Coupled calculation of the radiological release and the thermal-hydraulic behavior of a 3-loop PWR after a SGTR by means of the code RELAP5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hove, W.; Van Laeken, K.; Bartsoen, L.

    1995-09-01

    To enable a more realistic and accurate calculation of the radiological consequences of a SGTR, a fission product transport model was developed. As the radiological releases strongly depend on the thermal-hydraulic transient, the model was included in the RELAP5 input decks of the Belgian NPPs. This enables the coupled calculation of the thermal-hydraulic transient and the radiological release. The fission product transport model tracks the concentration of the fission products in the primary circuit, in each of the SGs as well as in the condenser. This leads to a system of 6 coupled, first order ordinary differential equations with timemore » dependent coefficients. Flashing, scrubbing, atomisation and dry out of the break flow are accounted for. Coupling with the thermal-hydraulic calculation and correct modelling of the break position enables an accurate calculation of the mixture level above the break. Pre- and post-accident spiking in the primary circuit are introduced. The transport times in the FW-system and the SG blowdown system are also taken into account, as is the decontaminating effect of the primary make-up system and of the SG blowdown system. Physical input parameters such as the partition coefficients, half life times and spiking coefficients are explicitly introduced so that the same model can be used for iodine, caesium and noble gases.« less

  3. Efforts to control radiation build-up in Ringhals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egner, K.; Aronsson, P.O.; Erixon, O.

    1995-03-01

    It is well known that good control of the primary chemistry in a PWR is essential in order to minimize material problems and fuel damages. It has also been well established that the water chemistry has a great influence on accumulation of corrosion products on the fuel and the radiation build-up on primary system surfaces. Ringhals was one of the pioneers to increase operating pH in order to reduce radiation build-up and has now been operating for ten years with pH at 7.4 or (in later years) 7.2. Our experience is favourable and includes low radiation levels in the newmore » (1989) steam generators of Ringhals 2. Ringhals 4 has operated almost its whole life at pH 7.2 or higher and it remains one of the cleanest PWRs of its vintage. In addition to strict adherence to a stable operating chemistry, Ringhals is now working on a program with the aim to find optimum shut-down and start-up chemistry to reduce activity levels in the primary systems. A particular goal is to use the shut-down and start-up chemistry at the 1994 outage in Ringhals 3 in order to reduce doserates in preparation for the planned steam generator replacement in 1995. The paper summarizes the experience to date of the established operating chemistry, on-going tests with modified shut-down and start-up chemistry and other measures to limit or reduce the activity build-up.« less

  4. Experimental validation of the DARWIN2.3 package for fuel cycle applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    San-Felice, L.; Eschbach, R.; Bourdot, P.

    2012-07-01

    The DARWIN package, developed by the CEA and its French partners (AREVA and EDF) provides the required parameters for fuel cycle applications: fuel inventory, decay heat, activity, neutron, {gamma}, {alpha}, {beta} sources and spectrum, radiotoxicity. This paper presents the DARWIN2.3 experimental validation for fuel inventory and decay heat calculations on Pressurized Water Reactor (PWR). In order to validate this code system for spent fuel inventory a large program has been undertaken, based on spent fuel chemical assays. This paper deals with the experimental validation of DARWIN2.3 for the Pressurized Water Reactor (PWR) Uranium Oxide (UOX) and Mixed Oxide (MOX) fuelmore » inventory calculation, focused on the isotopes involved in Burn-Up Credit (BUC) applications and decay heat computations. The calculation - experiment (C/E-1) discrepancies are calculated with the latest European evaluation file JEFF-3.1.1 associated with the SHEM energy mesh. An overview of the tendencies is obtained on a complete range of burn-up from 10 to 85 GWd/t (10 to 60 GWcVt for MOX fuel). The experimental validation of the DARWIN2.3 package for decay heat calculation is performed using calorimetric measurements carried out at the Swedish Interim Spent Fuel Storage Facility for Pressurized Water Reactor (PWR) assemblies, covering a large burn-up (20 to 50 GWd/t) and cooling time range (10 to 30 years). (authors)« less

  5. Fuel cycle cost, reactor physics and fuel manufacturing considerations for Erbia-bearing PWR fuel with > 5 wt% U-235 content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franceschini, F.; Lahoda, E. J.; Kucukboyaci, V. N.

    2012-07-01

    The efforts to reduce fuel cycle cost have driven LWR fuel close to the licensed limit in fuel fissile content, 5.0 wt% U-235 enrichment, and the acceptable duty on current Zr-based cladding. An increase in the fuel enrichment beyond the 5 wt% limit, while certainly possible, entails costly investment in infrastructure and licensing. As a possible way to offset some of these costs, the addition of small amounts of Erbia to the UO{sub 2} powder with >5 wt% U-235 has been proposed, so that its initial reactivity is reduced to that of licensed fuel and most modifications to the existingmore » facilities and equipment could be avoided. This paper discusses the potentialities of such a fuel on the US market from a vendor's perspective. An analysis of the in-core behavior and fuel cycle performance of a typical 4-loop PWR with 18 and 24-month operating cycles has been conducted, with the aim of quantifying the potential economic advantage and other operational benefits of this concept. Subsequently, the implications on fuel manufacturing and storage are discussed. While this concept has certainly good potential, a compelling case for its short-term introduction as PWR fuel for the US market could not be determined. (authors)« less

  6. Status of zinc injection in PWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, C.A.

    1995-03-01

    Based on laboratory and other studies, it was concluded that zinc addition in a PWR primary coolant should result in reduced Alloy 600 PWSCC and general corrosion rates of the materials of construction. Because of these positive results, a Westinghouse Owner`s Subgroup, EPRI, and Westinghouse provided funds to continue the development and application of zinc in an operating plant. As part of the program, Southern Operating Nuclear Company agreed to operate the Farley 2 plant with zinc addition as a demonstration test of the effectiveness of zinc. Since zinc is incorporated in the corrosion oxide film on the primary systemmore » surfaces and Farley 2 is a mature plant, it was estimated that about 10 kgs of zinc would be needed to condition the plant before an equilibrium value in the coolant would be reached. The engineered aspects of a Zinc Addition and Monitoring System (ZAMS) considered such items as the constitutents, location, sizing and water supply of the ZAMS. Baseline data such as the PWSCC history of the Alloy 600 steam generator tubing, fuel oxide thickness, fuel crud deposits, radiation levels, and RCP seal leak-off rates were obtained before zinc addition is initiated. This presentation summarizes some of the work performed under the program, and the status of zinc injection in the Farley 2 plant.« less

  7. Ratchetting in pressurized pipes

    NASA Astrophysics Data System (ADS)

    Rider, R. J.; Harvey, S. J.; Charles, I. D.

    1994-04-01

    The plastic deformation of thin-walled cylinders has been experimentally examined for the loading conditions of +/- 1% axial strain with hoop stresses of approximately 0, 1/4, 1/2 and 3/4 of the initial uniaxial yield stress. Two materials similar to those used in the pipework of PWR nuclear plant in the U.K. have been tested, namely 304S11 stainless steel and En6 low-carbon steel. The results of the tests were to be compared with the allowable stresses and deformations specified in the ASME Boiler and Pressure Vessel Code, Section III. The code specifies that a prescribed combination of primary stresses must not exceed 1.5S(sub m), where S(sub m) is a stress value defined for each material. The results indicate that the limit of 1.5S(sub m) is excessively low for both materials and that in particular, the stainless steel could tolerate 5S(sub m). Although the En6 steel is more prone to ratchetting than the stainless steel, the results suggest that it too could tolerate a higher primary stress than the code allows. Both materials are shown to satisfy the proposed ASME ratchet strain limit of 5% hoop strain after 10 cycles of +/- 1% axial strain range, for any value of internal pressure.

  8. Trends in Global Vegetation Activity and Climatic Drivers Indicate a Decoupled Response to Climate Change

    PubMed Central

    Schut, Antonius G. T.; Ivits, Eva; Conijn, Jacob G.; ten Brink, Ben; Fensholt, Rasmus

    2015-01-01

    Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982–2010) derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty in trend estimates. Annual total biomass weight (TBW) was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR) with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS-NPP) and TBW per biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land, and for 5% a negative trend. A decoupled trend, indicating positive TBW trends and monotonic negative or segmented and negative NDVI trends, was observed for 17–36% of all productive areas depending on the NDVI metric used. For only 1–2% of all pixels in productive areas, a diverging and greening trend was found despite a strong negative trend in TBW. The choice of NDVI metric used strongly affected outcomes on regional scales and differences in the fraction of explained variation in MODIS-NPP between biomes were large, and a combination of NDVI metrics is recommended for global studies. We have found an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration capacity. PMID:26466347

  9. PWR design for low doses in the United Kingdom: The present and the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zodiates, A.M.; Willcock, A.

    1995-03-01

    The Pressurizer Water Reactor (PWR) design chosen for adoption by Nuclear Electric plc was based on the Westinghouse Standard Nuclear Unit Power Plant System (SNUPPS). This design was developed to meet the United Kingdom (UK) requirements and those improvements are embodied in the Sizewell B plant. Nuclear Electric plc is now looking to the design of the future PWRs to be built in the UK. These PWRs will be based as replicas of the Sizewell B design, but attention will be given to reducing operator doses further. This paper details the approach in operator protection improvements incorporated at Sizewall B,more » presents the estimated annual collective dose, and identifies the approach being adopted to reduce further operator doses in future plants.« less

  10. Conceptual design study of small long-life PWR based on thorium cycle fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul

    2014-09-30

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of {sup 233}U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWRmore » result small excess reactivity and reduced power peaking during its operation.« less

  11. Generation of the V4.2m5 and AMPX and MPACT 51 and 252-Group Libraries with ENDF/B-VII.0 and VII.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog

    The evaluated nuclear data file (ENDF)/B-7.0 v4.1m3 MPACT 47-group library has been used as a main library for the Consortium for Advanced Simulation of Light Water Reactors (CASL) neutronics simulator in simulating pressurized water reactor (PWR) problems. Recent analysis for the high void boiling water reactor (BWR) fuels and burnt fuels indicates that the 47-group library introduces relatively large reactivity bias. Since the 47- group structure does not match with the SCALE 6.2 252-group boundaries, the CASL Virtual Environment for Reactor Applications Core Simulator (VERA-CS) MPACT library must be maintained independently, which causes quality assurance concerns. In order to addressmore » this issue, a new 51-group structure has been proposed based on the MPACT 47- g and SCALE 252-g structures. In addition, the new CASL library will include a 19-group structure for gamma production and interaction cross section data based on the SCALE 19- group structure. New AMPX and MPACT 51-group libraries have been developed with the ENDF/B-7.0 and 7.1 evaluated nuclear data. The 19-group gamma data also have been generated for future use, but they are only available on the AMPX 51-g library. In addition, ENDF/B-7.0 and 7.1 MPACT 252-g libraries have been generated for verification purposes. Various benchmark calculations have been performed to verify and validate the newly developed libraries.« less

  12. Qualification of CASMO5 / SIMULATE-3K against the SPERT-III E-core cold start-up experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandi, G.; Moberg, L.

    SIMULATE-3K is a three-dimensional kinetic code applicable to LWR Reactivity Initiated Accidents. S3K has been used to calculate several international recognized benchmarks. However, the feedback models in the benchmark exercises are different from the feedback models that SIMULATE-3K uses for LWR reactors. For this reason, it is worth comparing the SIMULATE-3K capabilities for Reactivity Initiated Accidents against kinetic experiments. The Special Power Excursion Reactor Test III was a pressurized-water, nuclear-research facility constructed to analyze the reactor kinetic behavior under initial conditions similar to those of commercial LWRs. The SPERT III E-core resembles a PWR in terms of fuel type, moderator,more » coolant flow rate, and system pressure. The initial test conditions (power, core flow, system pressure, core inlet temperature) are representative of cold start-up, hot start-up, hot standby, and hot full power. The qualification of S3K against the SPERT III E-core measurements is an ongoing work at Studsvik. In this paper, the results for the 30 cold start-up tests are presented. The results show good agreement with the experiments for the reactivity initiated accident main parameters: peak power, energy release and compensated reactivity. Predicted and measured peak powers differ at most by 13%. Measured and predicted reactivity compensations at the time of the peak power differ less than 0.01 $. Predicted and measured energy release differ at most by 13%. All differences are within the experimental uncertainty. (authors)« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetsch, D.; Bieniussa, K.; Schulz, H.

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branchingmore » pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.« less

  14. Advanced Testing Techniques to Measure the PWSCC Resistance of Alloy 690 and its Weld Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.Andreson

    2004-10-01

    Wrought Alloy 600 and its weld metals (Alloy 182 and Alloy 82) were originally used in pressurized water reactors (PWRs) due to the material's inherent resistance to general corrosion in a number of aggressive environments and because of a coefficient of thermal expansion that is very close to that of low alloy and carbon steel. Over the last thirty years, stress corrosion cracking in PWR primary water (PWSCC) has been observed in numerous Alloy 600 component items and associated welds, sometimes after relatively long incubation times. The occurrence of PWSCC has been responsible for significant downtime and replacement power costs.more » As part of an ongoing, comprehensive program involving utilities, reactor vendors and engineering/research organizations, this report will help to ensure that corrosion degradation of nickel-base alloys does not limit service life and that full benefit can be obtained from improved designs for both replacement components and new reactors.« less

  15. The application of in situ analytical transmission electron microscopy to the study of preferential intergranular oxidation in Alloy 600.

    PubMed

    Burke, M G; Bertali, G; Prestat, E; Scenini, F; Haigh, S J

    2017-05-01

    In situ analytical transmission electron microscopy (TEM) can provide a unique perspective on dynamic reactions in a variety of environments, including liquids and gases. In this study, in situ analytical TEM techniques have been applied to examine the localised oxidation reactions that occur in a Ni-Cr-Fe alloy, Alloy 600, using a gas environmental cell at elevated temperatures. The initial stages of preferential intergranular oxidation, shown to be an important precursor phenomenon for intergranular stress corrosion cracking in pressurized water reactors (PWRs), have been successfully identified using the in situ approach. Furthermore, the detailed observations correspond to the ex situ results obtained from bulk specimens tested in hydrogenated steam and in high temperature PWR primary water. The excellent agreement between the in situ and ex situ oxidation studies demonstrates that this approach can be used to investigate the initial stages of preferential intergranular oxidation relevant to nuclear power systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Performance of a two-leaf light use efficiency model for mapping gross primary productivity against remotely sensed sun-induced chlorophyll fluorescence data.

    PubMed

    Zan, Mei; Zhou, Yanlian; Ju, Weimin; Zhang, Yongguang; Zhang, Leiming; Liu, Yibo

    2018-02-01

    Estimating terrestrial gross primary production is an important task when studying the carbon cycle. In this study, the ability of a two-leaf light use efficiency model to simulate regional gross primary production in China was validated using satellite Global Ozone Monitoring Instrument - 2 sun-induced chlorophyll fluorescence data. The two-leaf light use efficiency model was used to estimate daily gross primary production in China's terrestrial ecosystems with 500-m resolution for the period from 2007 to 2014. Gross primary production simulated with the two-leaf light use efficiency model was resampled to a spatial resolution of 0.5° and then compared with sun-induced chlorophyll fluorescence. During the study period, sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model exhibited similar spatial and temporal patterns in China. The correlation coefficient between sun-induced chlorophyll fluorescence and monthly gross primary production simulated by the two-leaf light use efficiency model was significant (p<0.05, n=96) in 88.9% of vegetated areas in China (average value 0.78) and varied among vegetation types. The interannual variations in monthly sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model were similar in spring and autumn in most vegetated regions, but dissimilar in winter and summer. The spatial variability of sun-induced chlorophyll fluorescence and gross primary production simulated by the two-leaf light use efficiency model was similar in spring, summer, and autumn. The proportion of spatial variations of sun-induced chlorophyll fluorescence and annual gross primary production simulated by the two-leaf light use efficiency model explained by ranged from 0.76 (2011) to 0.80 (2013) during the study period. Overall, the two-leaf light use efficiency model was capable of capturing spatial and temporal variations in gross primary production in China. However, the model needs further improvement to better simulate gross primary production in summer. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. ADDITIONAL STRESS AND FRACTURE MECHANICS ANALYSES OF PRESSURIZED WATER REACTOR PRESSURE VESSEL NOZZLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, Matthew; Yin, Shengjun; Stevens, Gary

    2012-01-01

    In past years, the authors have undertaken various studies of nozzles in both boiling water reactors (BWRs) and pressurized water reactors (PWRs) located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Those studies described stress and fracture mechanics analyses performed to assess various RPV nozzle geometries, which were selected based on their proximity to the core beltline region, i.e., those nozzle configurations that are located close enough to the core region such that they may receive sufficient fluence prior to end-of-life (EOL) to require evaluation of embrittlement as part of the RPV analyses associated with pressure-temperaturemore » (P-T) limits. In this paper, additional stress and fracture analyses are summarized that were performed for additional PWR nozzles with the following objectives: To expand the population of PWR nozzle configurations evaluated, which was limited in the previous work to just two nozzles (one inlet and one outlet nozzle). To model and understand differences in stress results obtained for an internal pressure load case using a two-dimensional (2-D) axi-symmetric finite element model (FEM) vs. a three-dimensional (3-D) FEM for these PWR nozzles. In particular, the ovalization (stress concentration) effect of two intersecting cylinders, which is typical of RPV nozzle configurations, was investigated. To investigate the applicability of previously recommended linear elastic fracture mechanics (LEFM) hand solutions for calculating the Mode I stress intensity factor for a postulated nozzle corner crack for pressure loading for these PWR nozzles. These analyses were performed to further expand earlier work completed to support potential revision and refinement of Title 10 to the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G, Fracture Toughness Requirements, and are intended to supplement similar evaluation of nozzles presented at the 2008, 2009, and 2011 Pressure Vessels and Piping (PVP) Conferences. This work is also relevant to the ongoing efforts of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, Section XI, Working Group on Operating Plant Criteria (WGOPC) efforts to incorporate nozzle fracture mechanics solutions into a revision to ASME B&PV Code, Section XI, Nonmandatory Appendix G.« less

  18. Postpartum weight trajectories in overweight and lean women.

    PubMed

    Bogaerts, Annick; De Baetselier, Elyne; Ameye, Lieveke; Dilles, Tinne; Van Rompaey, Bart; Devlieger, Roland

    2017-06-01

    overweight and obesity in women of reproductive age are increasing and are often linked with excessive weight gain in pregnancy and weight retention after birth. Studies on spontaneous maternal weight trajectory after childbirth are scarce. we describe women's spontaneous weight trajectory during the first six weeks of the postpartum period and its relationship between Body Mass Index and socio-demographical, behavioural and psychological variables. data from 212 women who gave birth in three regional hospitals were collected prospectively between December 2015 and February 2016. Potential determinants were examined during pregnancy and the postpartum period at four and six weeks after childbirth. Descriptive statistics and a linear multivariate regression model were used. Early postnatal weight retention (PWR) was defined as the difference between the maternal weight six weeks after childbirth and the pre-pregnancy weight (kg). mean PWR at six weeks after childbirth was 3.3kg (SD 4.1), with a range between -7 and +16.2kg; 81% reported some weight retention (PWR>0kg), and 36% showed a high weight retention (PWR≥5kg). Women with a BMI <25kg/m 2 showed a significantly higher mean PWR six weeks after childbirth compared to women with a BMI ≥25kg/m 2 (4.0kg versus 1.6kg, p=0.002). There was a significant correlation between maternal weight retention and gestational weight gain (GWG) (B=0.65, p<0.001) and pre-pregnancy body mass index <25kg/m 2 (B=1.12, p=0.017), six weeks after childbirth. weight retention six weeks after childbirth is associated with pre-pregnancy BMI and GWG, but contrary to expectations, lean women with excessive GWG tended to retain most weight after childbirth. No significant associations with several socio-demographical, behavioural and psychological variables were found. weight management strategies around pregnancy should not be limited to overweight and obese mothers. Women with pre-pregnancy BMI <25kg/m 2 require equal attention to prevent postnatal weight retention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Reactor Physics Assessment of Thick Silicon Carbide Clad PWR Fuels

    DTIC Science & Technology

    2013-06-01

    Densities ............................................................................................................ 21 2.3 Fuel Mass (Core Total...70 7.1 Geometry, Material Density, and Mass Summary for All Cores...21 Table 3: Fuel Rod Masses for Different Clads

  20. Self-referenced directional enhanced Raman scattering using plasmon waveguide resonance for surface and bulk sensing

    NASA Astrophysics Data System (ADS)

    Wan, Xiu-mei; Gao, Ran; Lu, Dan-feng; Qi, Zhi-mei

    2018-01-01

    Surface plasmon-coupled emission has been widely used in fluorescence imaging, biochemical sensing, and enhanced Raman spectroscopy. A self-referenced directional enhanced Raman scattering for simultaneous detection of surface and bulk effects by using plasmon waveguide resonance (PWR) based surface plasmon-coupled emission has been proposed and experimentally demonstrated. Raman scattering was captured on the prism side in Kretschmann-surface plasmon-coupled emission. The distinct penetration depths (δ) of the evanescent field for the transverse electric (TE) and transverse magnetic (TM) modes result in different detected distances of the Raman signal. The experimental results demonstrate that the self-referenced directional enhanced Raman scattering of the TE and TM modes based on the PWR can detect and distinguish the surface and bulk effects simultaneously, which appears to have potential applications in researches of chemistry, medicine, and biology.

  1. Full-scale 3-D finite element modeling of a two-loop pressurized water reactor for heat transfer, thermal–mechanical cyclic stress analysis, and environmental fatigue life estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath

    This paper discusses a system-level finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent sequentially coupled thermal-mechanical stress analysis were performed for typical thermal-mechanical fatigue cycles. The in-air fatigue lives of example components, such as the hot and cold legs, were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described inmore » US-NRC report: NUREG-6909.« less

  2. IMPACT OF FISSION PRODUCTS IMPURITY ON THE PLUTONIUM CONTENT IN PWR MOX FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilles Youinou; Andrea Alfonsi

    2012-03-01

    This report presents the results of a neutronics analysis done in response to the charter IFCA-SAT-2 entitled 'Fuel impurity physics calculations'. This charter specifies that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies (UOX SNF) is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate PWR MOX fuel assemblies. Only non-gaseous FP have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1). This mixture of Pu and FP is called PuFP. Note that, in this preliminary analysis,more » the FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.« less

  3. The Impact of Operating Parameters and Correlated Parameters for Extended BWR Burnup Credit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian J.; Marshall, William B. J.; Ilas, Germina

    Applicants for certificates of compliance for spent nuclear fuel (SNF) transportation and dry storage systems perform analyses to demonstrate that these systems are adequately subcritical per the requirements of Title 10 of the Code of Federal Regulations (10 CFR) Parts 71 and 72. For pressurized water reactor (PWR) SNF, these analyses may credit the reduction in assembly reactivity caused by depletion of fissile nuclides and buildup of neutron-absorbing nuclides during power operation. This credit for reactivity reduction during depletion is commonly referred to as burnup credit (BUC). US Nuclear Regulatory Commission (NRC) staff review BUC analyses according to the guidancemore » in the Division of Spent Fuel Storage and Transportation Interim Staff Guidance (ISG) 8, Revision 3, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks.« less

  4. Community concepts of poverty: an application to premium exemptions in Ghana’s National Health Insurance Scheme

    PubMed Central

    2013-01-01

    Background Poverty is multi dimensional. Beyond the quantitative and tangible issues related to inadequate income it also has equally important social, more intangible and difficult if not impossible to quantify dimensions. In 2009, we explored these social and relativist dimension of poverty in five communities in the South of Ghana with differing socio economic characteristics to inform the development and implementation of policies and programs to identify and target the poor for premium exemptions under Ghana’s National Health Insurance Scheme. Methods We employed participatory wealth ranking (PWR) a qualitative tool for the exploration of community concepts, identification and ranking of households into socioeconomic groups. Key informants within the community ranked households into wealth categories after discussing in detail concepts and indicators of poverty. Results Community defined indicators of poverty covered themes related to type of employment, educational attainment of children, food availability, physical appearance, housing conditions, asset ownership, health seeking behavior, social exclusion and marginalization. The poverty indicators discussed shared commonalities but contrasted in the patterns of ranking per community. Conclusion The in-depth nature of the PWR process precludes it from being used for identification of the poor on a large national scale in a program such as the NHIS. However, PWR can provide valuable qualitative input to enrich discussions, development and implementation of policies, programs and tools for large scale interventions and targeting of the poor for social welfare programs such as premium exemption for health care. PMID:23497484

  5. Community concepts of poverty: an application to premium exemptions in Ghana's National Health Insurance Scheme.

    PubMed

    Aryeetey, Genevieve C; Jehu-Appiah, Caroline; Kotoh, Agnes M; Spaan, Ernst; Arhinful, Daniel K; Baltussen, Rob; van der Geest, Sjaak; Agyepong, Irene A

    2013-03-14

    Poverty is multi dimensional. Beyond the quantitative and tangible issues related to inadequate income it also has equally important social, more intangible and difficult if not impossible to quantify dimensions. In 2009, we explored these social and relativist dimension of poverty in five communities in the South of Ghana with differing socio economic characteristics to inform the development and implementation of policies and programs to identify and target the poor for premium exemptions under Ghana's National Health Insurance Scheme. We employed participatory wealth ranking (PWR) a qualitative tool for the exploration of community concepts, identification and ranking of households into socioeconomic groups. Key informants within the community ranked households into wealth categories after discussing in detail concepts and indicators of poverty. Community defined indicators of poverty covered themes related to type of employment, educational attainment of children, food availability, physical appearance, housing conditions, asset ownership, health seeking behavior, social exclusion and marginalization. The poverty indicators discussed shared commonalities but contrasted in the patterns of ranking per community. The in-depth nature of the PWR process precludes it from being used for identification of the poor on a large national scale in a program such as the NHIS. However, PWR can provide valuable qualitative input to enrich discussions, development and implementation of policies, programs and tools for large scale interventions and targeting of the poor for social welfare programs such as premium exemption for health care.

  6. Analysis and Implementation of Accident Tolerant Nuclear Fuels

    NASA Astrophysics Data System (ADS)

    Prewitt, Benjamin Joseph

    To improve the reliability and robustness of LWR, accident tolerant nuclear fuels and cladding materials are being developed to possibly replace the current UO2/zirconium system. This research highlights UN and U3Si 2, two of the most favorable accident tolerant fuels being developed. To evaluate the commercial feasiblilty of these fuels, two areas of research were conducted. Chemical fabrication routes for both fuels were investigated in detail, considering UO2 and UF6 as potential starting materials. Potential pathways for industrial scale fabrication using these methods were discussed. Neutronic performance of 70%UN-30%U3Si2 composite was evaluated in MNCP using PWR assembly and core models. The results showed comparable performance to an identical UO2 fueled simulation with the same configuration. The parameters simulated for composite and oxide fuel include the following: fuel to moderator ratio curves; energy dependent flux spectra; temperature coefficients for fuel and moderator; delayed neutron fractions; power peaking factors; axial and radial flux profiles in 2D and 3D; burnup; critical boron concentration; and shutdown margin. Overall, the neutronic parameters suggest that the transition from UO2 to composite in existing nuclear systems will not require significant changes in operating procedures or modifications to standards and regulations.

  7. Assessment and Management of Aging in Phenix Nuclear Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumarcher, V.; Bourrier, J.L.; Chaucheprat, P.

    2006-07-01

    The combination of one or several processes of ruins can involve the materials failure of a nuclear power plant. These processes arise from the external agents action such as the pressure, the mechanical efforts, the heat flows and the radiations constitute the whole of the 'actions' of the surrounding medium. The prolongation and the repetition of these effects can involve a deterioration of the machine. In accordance with the decree of February 26, 1974, the PWR operator must be firstly, sure that the system is controlled according to the situations considered in the file of dimensioning and secondly, be ablemore » to know anytime the life of the equipment. The physical phenomena which cause the structures ruin are less complex in the PWR than in the SFR. In the SFR, the high temperatures imposed on components for long periods can involve a significant creep. In the course of time, this deformations accelerate the release of fatigue cracks. To consider the creep, the reactor lifespan is correlated at the numbers of thermals transients envisaged initially. To realize the management of aging in Phenix power plant, it is necessary to carry out an individualized monitoring of the structures and not only on the vessel. We must ensure the good state and/or the correct operation of the significant stations for safety which are the control of the reactivity, the movement of control rods, the primary sodium containment and the decay heat removal. For that, we monitor the main vessel, the conical skirt, the IHX and the Core Cover Plug. A profound knowledge of the thermal transients of the past is necessary to carry out an effective assessment. In order to guarantee that any harmful situation is well taken into the management of aging, we monitor permanently certain measurements (primary and secondary pump speed, hot and cold pool temperatures, IHX-main vessel and reactor roof temperatures). We present in the article the scientific method used in the Physics Section. A logical diagram specific to the type of situation and the structure allows to associate the harmful transient at a identical situation which has been happened in the past. During the last two cycles, the nuclear power plant has sustained 34 startup (20 during the 51. cycle and 14 during the 52. cycle). After two cycles of operation, there is approximately 70 to 80% of occurrences authorized for the whole of the structures. For the last 4 cycles, the number of transients to come will remain quite lower than the number dimensioned initially. (authors)« less

  8. Recent improvements of reactor physics codes in MHI

    NASA Astrophysics Data System (ADS)

    Kosaka, Shinya; Yamaji, Kazuya; Kirimura, Kazuki; Kamiyama, Yohei; Matsumoto, Hideki

    2015-12-01

    This paper introduces recent improvements for reactor physics codes in Mitsubishi Heavy Industries, Ltd(MHI). MHI has developed a new neutronics design code system Galaxy/Cosmo-S(GCS) for PWR core analysis. After TEPCO's Fukushima Daiichi accident, it is required to consider design extended condition which has not been covered explicitly by the former safety licensing analyses. Under these circumstances, MHI made some improvements for GCS code system. A new resonance calculation model of lattice physics code and homogeneous cross section representative model for core simulator have been developed to apply more wide range core conditions corresponding to severe accident status such like anticipated transient without scram (ATWS) analysis and criticality evaluation of dried-up spent fuel pit. As a result of these improvements, GCS code system has very wide calculation applicability with good accuracy for any core conditions as far as fuel is not damaged. In this paper, the outline of GCS code system is described briefly and recent relevant development activities are presented.

  9. Consistent criticality and radiation studies of Swiss spent nuclear fuel: The CS2M approach.

    PubMed

    Rochman, D; Vasiliev, A; Ferroukhi, H; Pecchia, M

    2018-06-15

    In this paper, a new method is proposed to systematically calculate at the same time canister loading curves and radiation sources, based on the inventory information from an in-core fuel management system. As a demonstration, the isotopic contents of the assemblies come from a Swiss PWR, considering more than 6000 cases from 34 reactor cycles. The CS 2 M approach consists in combining four codes: CASMO and SIMULATE to extract the assembly characteristics (based on validated models), the SNF code for source emission and MCNP for criticality calculations for specific canister loadings. The considered cases cover enrichments from 1.9 to 5.0% for the UO 2 assemblies and 4.8% for the MOX, with assembly burnup values from 7 to 74 MWd/kgU. Because such a study is based on the individual fuel assembly history, it opens the possibility to optimize canister loadings from the point-of-view of criticality, decay heat and emission sources. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Sensitivity Analysis of OECD Benchmark Tests in BISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swiler, Laura Painton; Gamble, Kyle; Schmidt, Rodney C.

    2015-09-01

    This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on sensitivity analysis of a fuels performance benchmark problem. The benchmark problem was defined by the Uncertainty Analysis in Modeling working group of the Nuclear Science Committee, part of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD ). The benchmark problem involv ed steady - state behavior of a fuel pin in a Pressurized Water Reactor (PWR). The problem was created in the BISON Fuels Performance code. Dakota was used to generate and analyze 300 samples of 17 input parameters defining coremore » boundary conditions, manuf acturing tolerances , and fuel properties. There were 24 responses of interest, including fuel centerline temperatures at a variety of locations and burnup levels, fission gas released, axial elongation of the fuel pin, etc. Pearson and Spearman correlatio n coefficients and Sobol' variance - based indices were used to perform the sensitivity analysis. This report summarizes the process and presents results from this study.« less

  11. Recent improvements of reactor physics codes in MHI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosaka, Shinya, E-mail: shinya-kosaka@mhi.co.jp; Yamaji, Kazuya; Kirimura, Kazuki

    2015-12-31

    This paper introduces recent improvements for reactor physics codes in Mitsubishi Heavy Industries, Ltd(MHI). MHI has developed a new neutronics design code system Galaxy/Cosmo-S(GCS) for PWR core analysis. After TEPCO’s Fukushima Daiichi accident, it is required to consider design extended condition which has not been covered explicitly by the former safety licensing analyses. Under these circumstances, MHI made some improvements for GCS code system. A new resonance calculation model of lattice physics code and homogeneous cross section representative model for core simulator have been developed to apply more wide range core conditions corresponding to severe accident status such like anticipatedmore » transient without scram (ATWS) analysis and criticality evaluation of dried-up spent fuel pit. As a result of these improvements, GCS code system has very wide calculation applicability with good accuracy for any core conditions as far as fuel is not damaged. In this paper, the outline of GCS code system is described briefly and recent relevant development activities are presented.« less

  12. Reference Computational Meshing Strategy for Computational Fluid Dynamics Simulation of Departure from Nucleate BoilingReference Computational Meshing Strategy for Computational Fluid Dynamics Simulation of Departure from Nucleate Boiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pointer, William David

    The objective of this effort is to establish a strategy and process for generation of suitable computational mesh for computational fluid dynamics simulations of departure from nucleate boiling in a 5 by 5 fuel rod assembly held in place by PWR mixing vane spacer grids. This mesh generation process will support ongoing efforts to develop, demonstrate and validate advanced multi-phase computational fluid dynamics methods that enable more robust identification of dryout conditions and DNB occurrence.Building upon prior efforts and experience, multiple computational meshes were developed using the native mesh generation capabilities of the commercial CFD code STAR-CCM+. These meshes weremore » used to simulate two test cases from the Westinghouse 5 by 5 rod bundle facility. The sensitivity of predicted quantities of interest to the mesh resolution was then established using two evaluation methods, the Grid Convergence Index method and the Least Squares method. This evaluation suggests that the Least Squares method can reliably establish the uncertainty associated with local parameters such as vector velocity components at a point in the domain or surface averaged quantities such as outlet velocity magnitude. However, neither method is suitable for characterization of uncertainty in global extrema such as peak fuel surface temperature, primarily because such parameters are not necessarily associated with a fixed point in space. This shortcoming is significant because the current generation algorithm for identification of DNB event conditions relies on identification of such global extrema. Ongoing efforts to identify DNB based on local surface conditions will address this challenge« less

  13. Verification of bubble tracking method and DNS examinations of single- and two-phase turbulent channel flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tryggvason, Gretar; Bolotnov, Igor; Fang, Jun

    2017-03-30

    Direct numerical simulation (DNS) has been regarded as a reliable data source for the development and validation of turbulence models along with experiments. The realization of DNS usually involves a very fine mesh that should be able to resolve all relevant turbulence scales down to Kolmogorov scale [1]. As the most computationally expensive approach compared to other CFD techniques, DNS applications used to be limited to flow studies at very low Reynolds numbers. Thanks to the tremendous growth of computing power over the past decades, the simulation capability of DNS has now started overlapping with some of the most challengingmore » engineering problems. One of those examples in nuclear engineering is the turbulent coolant flow inside reactor cores. Coupled with interface tracking methods (ITM), the simulation capability of DNS can be extended to more complicated two-phase flow regimes. Departure from nucleate boiling (DNB) is the limiting critical heat flux phenomena for the majority of accidents that are postulated to occur in pressurized water reactors (PWR) [2]. As one of the major modeling and simulation (M&S) challenges pursued by CASL, the prediction capability is being developed for the onset of DNB utilizing multiphase-CFD (M-CFD) approach. DNS (coupled with ITM) can be employed to provide closure law information for the multiphase flow modeling at CFD scale. In the presented work, research groups at NCSU and UND will focus on applying different ITM to different geometries. Higher void fraction flow analysis at reactor prototypical conditions will be performed, and novel analysis methods will be developed, implemented and verified for the challenging flow conditions.« less

  14. A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herer, C.; Souyri, A.; Garnier, J.

    1995-09-01

    Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to themore » annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.« less

  15. International Space Station United States Orbital Segment Oxygen Generation System On-Orbit Operational Experience

    NASA Technical Reports Server (NTRS)

    Erickson, Robert J.; Howe, John, Jr.; Kulp, Galen W.; VanKeuren, Steven P.

    2008-01-01

    The International Space Station (ISS) United States Orbital Segment (USOS) Oxygen Generation System (OGS) was originally intended to be installed in ISS Node 3. The OGS rack delivery was accelerated, and it was launched to ISS in July of 2006 and installed in the US Laboratory Module. Various modification kits were installed to provide its interfaces, and the OGS was first activated in July of 2007 for 15 hours, In October of 2007 it was again activated for 76 hours with varied production rates and day/night cycling. Operational time in each instance was limited by the quantity of feedwater in a Payload Water Reservoir (PWR) bag. Feedwater will be provided by PWR bag until the USOS Water Recovery System (WRS) is delivered to SS in fall of 2008. This paper will discuss operating experience and characteristics of the OGS, as well as operational issues and their resolution.

  16. Bio-knowledge based filters improve residue-residue contact prediction accuracy.

    PubMed

    Wozniak, P P; Pelc, J; Skrzypecki, M; Vriend, G; Kotulska, M

    2018-05-29

    Residue-residue contact prediction through direct coupling analysis has reached impressive accuracy, but yet higher accuracy will be needed to allow for routine modelling of protein structures. One way to improve the prediction accuracy is to filter predicted contacts using knowledge about the particular protein of interest or knowledge about protein structures in general. We focus on the latter and discuss a set of filters that can be used to remove false positive contact predictions. Each filter depends on one or a few cut-off parameters for which the filter performance was investigated. Combining all filters while using default parameters resulted for a test-set of 851 protein domains in the removal of 29% of the predictions of which 92% were indeed false positives. All data and scripts are available from http://comprec-lin.iiar.pwr.edu.pl/FPfilter/. malgorzata.kotulska@pwr.edu.pl. Supplementary data are available at Bioinformatics online.

  17. PWR steam generator chemical cleaning, Phase I. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothstein, S.

    1978-07-01

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the searchmore » sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI.« less

  18. Modeling local chemistry in PWR steam generator crevices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millett, P.J.

    1997-02-01

    Over the past two decades steam generator corrosion damage has been a major cost impact to PWR owners. Crevices and occluded regions create thermal-hydraulic conditions where aggressive impurities can become highly concentrated, promoting localized corrosion of the tubing and support structure materials. The type of corrosion varies depending on the local conditions, with stress corrosion cracking being the phenomenon of most current concern. A major goal of the EPRI research in this area has been to develop models of the concentration process and resulting crevice chemistry conditions. These models may then be used to predict crevice chemistry based on knowledgemore » of bulk chemistry, thereby allowing the operator to control corrosion damage. Rigorous deterministic models have not yet been developed; however, empirical approaches have shown promise and are reflected in current versions of the industry-developed secondary water chemistry guidelines.« less

  19. Progress in understanding fission-product behaviour in coated uranium-dioxide fuel particles

    NASA Astrophysics Data System (ADS)

    Barrachin, M.; Dubourg, R.; Kissane, M. P.; Ozrin, V.

    2009-03-01

    Supported by results of calculations performed with two analytical tools (MFPR, which takes account of physical and chemical mechanisms in calculating the chemical forms and physical locations of fission products in UO2, and MEPHISTA, a thermodynamic database), this paper presents an investigation of some important aspects of the fuel microstructure and chemical evolutions of irradiated TRISO particles. The following main conclusions can be identified with respect to irradiated TRISO fuel: first, the relatively low oxygen potential within the fuel particles with respect to PWR fuel leads to chemical speciation that is not typical of PWR fuels, e.g., the relatively volatile behaviour of barium; secondly, the safety-critical fission-product caesium is released from the urania kernel but the buffer and pyrolytic-carbon coatings could form an important chemical barrier to further migration (i.e., formation of carbides). Finally, significant releases of fission gases from the urania kernel are expected even in nominal conditions.

  20. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management

    PubMed Central

    Horikoshi, Renato J.; Bernardi, Daniel; Bernardi, Oderlei; Malaquias, José B.; Okuma, Daniela M.; Miraldo, Leonardo L.; Amaral, Fernando S. de A. e; Omoto, Celso

    2016-01-01

    The resistance of fall armyworm (FAW), Spodoptera frugiperda, has been characterized to some Cry and Vip3A proteins of Bacillus thuringiensis (Bt) expressed in transgenic maize in Brazil. Here we evaluated the effective dominance of resistance based on the survival of neonates from selected Bt-resistant, heterozygous, and susceptible (Sus) strains of FAW on different Bt maize and cotton varieties. High survival of strains resistant to the Cry1F (HX-R), Cry1A.105/Cry2Ab (VT-R) and Cry1A.105/Cry2Ab/Cry1F (PW-R) proteins was detected on Herculex, YieldGard VT PRO and PowerCore maize. Our Vip3A-resistant strain (Vip-R) exhibited high survival on Herculex, Agrisure Viptera and Agrisure Viptera 3 maize. However, the heterozygous from HX-R × Sus, VT-R × Sus, PW-R × Sus and Vip-R × Sus had complete mortality on YieldGard VT PRO, PowerCore, Agrisure Viptera, and Agrisure Viptera 3, whereas the HX-R × Sus and Vip-R × Sus strains survived on Herculex maize. On Bt cotton, the HX-R, VT-R and PW-R strains exhibited high survival on Bollgard II. All resistant strains survived on WideStrike, but only PW-R and Vip-R × Sus survived on TwinLink. Our study provides useful data to aid in the understanding of the effectiveness of the refuge strategy for Insect Resistance Management of Bt plants. PMID:27721425

  1. Spelling Well Despite Developmental Language Disorder: What Makes it Possible?

    PubMed Central

    Rakhlin, Natalia; Cardoso-Martins, Cláudia; Kornilov, Sergey A.; Grigorenko, Elena L.

    2013-01-01

    The goal of the study was to investigate the overlap between Developmental Language Disorder (DLD) and Developmental Dyslexia, identified through spelling difficulties (SD), in Russian-speaking children. In particular, we studied the role of phoneme awareness (PA), rapid automatized naming (RAN), pseudoword repetition (PWR), morphological (MA) and orthographic awareness (OA) in differentiating between children with DLD who have SD from children with DLD who are average spellers by comparing the two groups to each other, to typically developing children as well as children with SD but without spoken language deficits. One hundred forty nine children, aged 10.40 to 14.00, participated in the study. The results indicated that the SD, DLD, and DLD/SD groups did not differ from each other on PA and RAN Letters and underperformed in comparison to the control groups. However, whereas the children with written language deficits (SD and DLD/SD groups) underperformed on RAN Objects and Digits, PWR, OA and MA, the children with DLD and no SD performed similarly to the children from the control groups on these measures. In contrast, the two groups with spoken language deficits (DLD and DLD/SD) underperformed on RAN Colors in comparison to the control groups and the group of children with SD only. The results support the notion that those children with DLD who have unimpaired PWR and RAN skills are able to overcome their weaknesses in spoken language and PA and acquire basic literacy on a par with their age peers with typical language. We also argue that our findings support a multifactorial model of developmental language disorders (DLD). PMID:23860907

  2. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management

    NASA Astrophysics Data System (ADS)

    Horikoshi, Renato J.; Bernardi, Daniel; Bernardi, Oderlei; Malaquias, José B.; Okuma, Daniela M.; Miraldo, Leonardo L.; Amaral, Fernando S. De A. E.; Omoto, Celso

    2016-10-01

    The resistance of fall armyworm (FAW), Spodoptera frugiperda, has been characterized to some Cry and Vip3A proteins of Bacillus thuringiensis (Bt) expressed in transgenic maize in Brazil. Here we evaluated the effective dominance of resistance based on the survival of neonates from selected Bt-resistant, heterozygous, and susceptible (Sus) strains of FAW on different Bt maize and cotton varieties. High survival of strains resistant to the Cry1F (HX-R), Cry1A.105/Cry2Ab (VT-R) and Cry1A.105/Cry2Ab/Cry1F (PW-R) proteins was detected on Herculex, YieldGard VT PRO and PowerCore maize. Our Vip3A-resistant strain (Vip-R) exhibited high survival on Herculex, Agrisure Viptera and Agrisure Viptera 3 maize. However, the heterozygous from HX-R × Sus, VT-R × Sus, PW-R × Sus and Vip-R × Sus had complete mortality on YieldGard VT PRO, PowerCore, Agrisure Viptera, and Agrisure Viptera 3, whereas the HX-R × Sus and Vip-R × Sus strains survived on Herculex maize. On Bt cotton, the HX-R, VT-R and PW-R strains exhibited high survival on Bollgard II. All resistant strains survived on WideStrike, but only PW-R and Vip-R × Sus survived on TwinLink. Our study provides useful data to aid in the understanding of the effectiveness of the refuge strategy for Insect Resistance Management of Bt plants.

  3. Hopkins during ITCS PWR Retrieval

    NASA Image and Video Library

    2014-01-31

    ISS038-E-040140 (31 Jan. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, uses the Fluid Servicing System (FSS) to refill Internal Thermal Control System (ITCS) loops with fresh coolant in the Destiny laboratory of the International Space Station.

  4. Hopkins during ITCS PWR Retrieval

    NASA Image and Video Library

    2014-01-31

    ISS038-E-040139 (31 Jan. 2014) --- NASA astronaut Mike Hopkins, Expedition 38 flight engineer, uses the Fluid Servicing System (FSS) to refill Internal Thermal Control System (ITCS) loops with fresh coolant in the Destiny laboratory of the International Space Station.

  5. A model-data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis

    Treesearch

    Kevin Schaefer; Christopher R. Schwalm; Chris Williams; M. Altaf Arain; Alan Barr; Jing M. Chen; Kenneth J. Davis; Dimitre Dimitrov; Timothy W. Hilton; David Y. Hollinger; Elyn Humphreys; Benjamin Poulter; Brett M. Raczka; Andrew D. Richardson; Alok Sahoo; Peter Thornton; Rodrigo Vargas; Hans Verbeeck; Ryan Anderson; Ian Baker; T. Andrew Black; Paul Bolstad; Jiquan Chen; Peter S. Curtis; Ankur R. Desai; Michael Dietze; Danilo Dragoni; Christopher Gough; Robert F. Grant; Lianhong Gu; Atul Jain; Chris Kucharik; Beverly Law; Shuguang Liu; Erandathie Lokipitiya; Hank A. Margolis; Roser Matamala; J. Harry McCaughey; Russ Monson; J. William Munger; Walter Oechel; Changhui Peng; David T. Price; Dan Ricciuto; William J. Riley; Nigel Roulet; Hanqin Tian; Christina Tonitto; Margaret Torn; Ensheng Weng; Xiaolu Zhou

    2012-01-01

    Accurately simulating gross primary productivity (GPP) in terrestrial ecosystem models is critical because errors in simulated GPP propagate through the model to introduce additional errors in simulated biomass and other fluxes. We evaluated simulated, daily average GPP from 26 models against estimated GPP at 39 eddy covariance flux tower sites across the United States...

  6. Thermal ageing and short-range ordering of Alloy 690 between 350 and 550 °C

    NASA Astrophysics Data System (ADS)

    Mouginot, Roman; Sarikka, Teemu; Heikkilä, Mikko; Ivanchenko, Mykola; Ehrnstén, Ulla; Kim, Young Suk; Kim, Sung Soo; Hänninen, Hannu

    2017-03-01

    Thermal ageing of Alloy 690 triggers an intergranular (IG) carbide precipitation and is known to promote an ordering reaction causing lattice contraction. It may affect the long-term primary water stress corrosion cracking (PWSCC) resistance of pressurized water reactor (PWR) components. Four conditions of Alloy 690 (solution annealed, cold-rolled and/or heat-treated) were aged between 350 and 550 °C for 10 000 h and characterized. Although no direct observation of ordering was made, variations in hardness and lattice parameter were attributed to the formation of short-range ordering (SRO) in all conditions with a peak level at 420 °C, consistent with the literature. Prior heat treatment induced ordering before thermal ageing. At higher temperatures, stress relaxation, recrystallization and α-Cr precipitation were observed in the cold-worked samples, while a disordering reaction was inferred in all samples based on a decrease in hardness. IG precipitation of M23C6 carbides increased with increasing ageing temperature in all conditions, as well as diffusion-induced grain boundary migration (DIGM).

  7. SCC of Alloy 690 and its Weld Metals

    NASA Astrophysics Data System (ADS)

    Andresen, Peter L.; Morra, Martin M.; Ahluwalia, Kawaljit

    Alloy 690 base metal, HAZ and weld metal were tested in representative PWR primary water at 290 to 360°C. Intergranular cracking was observed in all materials. Growth rates as high as 1.2 × 10-6 mm/s were observed in the S-L orientation with micro structural banded material after cold rolling or forging to align the planes of banding, rolling and cracking. However, not all banded material has exhibited such high growth rates. Growth rates on homogeneous Alloy 690, including extruded CRDM tubing, often showed growth rates in the range of 2 - 8 × 10-8 mm/s in cold worked condition and an S-L orientation. Crack growth rates in some Alloy 690 tests were in the range of 1 to 10 × 10-9 mm/s, primarily in orientations other than S-L. For cracks aligned along the HAZ, growth rates as high as 1.2 × 10-8 mm/s were observed. Alloy 152/52/52i weld metals always exhibited low growth rates, apart from a weld that was further cold worked by 20%, which grew at 7 × 10-9 mm/s.

  8. EMERALD-NORMAL; PWR activity release and dose. [IBM360,370; FORTRAN IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillespie, S.G.; Brunot, W.K.

    EMERALD-NORMAL is designed for the calculation of radiation releases and exposures resulting from normal operation of a large pressurized water reactor. The approach used is similar to an analog simulation of a real system. Each component or volume in the plant which contains a radioactive material is represented by a subroutine which keeps track of the production, transfer, decay, and absorption of radioactivity in that volume. During the course of the analysis, activity is transferred from subroutine to subroutine in the program as it would be transferred from place to place in the plant. Some of this activity is thenmore » released to the atmosphere and to the discharge canal. The rates of transfer, leakage, production, cleanup, decay, and release are read as input to the program. Subroutines are also included which calculate the off-site radiation exposures at various distances for individual isotopes and sums of isotopes. The program contains a library of physical data for the forty isotopes of most interest in licensing calculations, and other isotopes can be added or substituted. Because of the flexible nature of the simulation approach, the EMERALD-NORMAL program can be used for most calculations involving the production and release of radioactive material. These include design, operation, and licensing studies.IBM360,370; FORTRAN IV; OS/360,370; 576K bytes of memory.« less

  9. Monte Carlo characterization of PWR spent fuel assemblies to determine the detectability of pin diversion

    NASA Astrophysics Data System (ADS)

    Burdo, James S.

    This research is based on the concept that the diversion of nuclear fuel pins from Light Water Reactor (LWR) spent fuel assemblies is feasible by a careful comparison of spontaneous fission neutron and gamma levels in the guide tube locations of the fuel assemblies. The goal is to be able to determine whether some of the assembly fuel pins are either missing or have been replaced with dummy or fresh fuel pins. It is known that for typical commercial power spent fuel assemblies, the dominant spontaneous neutron emissions come from Cm-242 and Cm-244. Because of the shorter half-life of Cm-242 (0.45 yr) relative to that of Cm-244 (18.1 yr), Cm-244 is practically the only neutron source contributing to the neutron source term after the spent fuel assemblies are more than two years old. Initially, this research focused upon developing MCNP5 models of PWR fuel assemblies, modeling their depletion using the MONTEBURNS code, and by carrying out a preliminary depletion of a ¼ model 17x17 assembly from the TAKAHAMA-3 PWR. Later, the depletion and more accurate isotopic distribution in the pins at discharge was modeled using the TRITON depletion module of the SCALE computer code. Benchmarking comparisons were performed with the MONTEBURNS and TRITON results. Subsequently, the neutron flux in each of the guide tubes of the TAKAHAMA-3 PWR assembly at two years after discharge as calculated by the MCNP5 computer code was determined for various scenarios. Cases were considered for all spent fuel pins present and for replacement of a single pin at a position near the center of the assembly (10,9) and at the corner (17,1). Some scenarios were duplicated with a gamma flux calculation for high energies associated with Cm-244. For each case, the difference between the flux (neutron or gamma) for all spent fuel pins and with a pin removed or replaced is calculated for each guide tube. Different detection criteria were established. The first was whether the relative error of the difference was less than 1.00, allowing for the existence of the difference within the margin of error. The second was whether the difference between the two values was big enough to prevent their error bars from overlapping. Error analysis was performed both using a one second count and pseudo-Maxwell statistics for a projected 60 second count, giving four criteria for detection. The number of guide tubes meeting these criteria was compared and graphed for each case. Further analysis at extremes of high and low enrichment and long and short burnup times was done using data from assemblies at the Beaver Valley 1 and 2 PWR. In all neutron flux cases, at least two guide tube locations meet all the criteria for detection of pin diversion. At least one location in almost all of the gamma flux cases does. These results show that placing detectors in the empty guide tubes of spent fuel bundles to identify possible pin diversion is feasible.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tendera, P.

    At present there are two NPPs equipped with PWR units in Czech Republic. The Dukovany NPP is about ten years in operation (four units 440 MW - WWER model 213) and Temelin NPP is under construction (two units 1000 MW-WWER model 320). Both NPPs were built to Soviet design and according to Soviet regulations and standards but most of equipment for primary circuits was supplied by home manufactures. The objective for the Czech LBB programme is to prove the LBB status of the primary piping systems of these NPPs and the LBB concept is a part of strategy to meetmore » western style safety standards. The reason for the Czech LBB project is a lack of some standard safety facilities, too. For both Dukovany and Temolin NPPs a full LBB analysis should be carried out. The application of LBB to the piping system should be also a cost effective means to avoid installations of pipe whip restraints and jet shields. The Czech regulatory body issued non-mandatory requirement {open_quotes}Leak Before Break{close_quotes} which is in compliance with national legal documents and which is based on the US NRC Regulatory Procedures and US standards (ASME, CODE, ANSI). The requirement has been published in the document {open_quotes}Safety of Nuclear Facilities{close_quotes} No. 1/1991 as {open_quotes}Requirements on the Content and Format of Safety Reports and their Supplements{close_quotes} and consists of two parts (1) procedure for obtaining proof of evidence {open_quotes}Leak Before Break{close_quotes} (2) leak detection systems for the pressurized reactor primary circuit. At present some changes concerning both parts of the above document will be introduced. The reasons for this modifications will be presented.« less

  11. Effects of materials and design on the criticality and shielding assessment of canister concepts for the disposal of spent nuclear fuel.

    PubMed

    Gutiérrez, Miguel Morales; Caruso, Stefano; Diomidis, Nikitas

    2018-05-19

    According to the Swiss disposal concept, the safety of a deep geological repository for spent nuclear fuel (SNF) is based on a multi-barrier system. The disposal canister is an important component of the engineered barrier system, aiming to provide containment of the SNF for thousands of years. This study evaluates the criticality safety and shielding of candidate disposal canister concepts, focusing on the fulfilment of the sub-criticality criterion and on limiting radiolysis processes at the outer surface of the canister which can enhance corrosion mechanisms. The effective neutron multiplication factor (k-eff) and the surface dose rates are calculated for three different canister designs and material combinations for boiling water reactor (BWR) canisters, containing 12 spent fuel assemblies (SFA), and pressurized water reactor (PWR) canisters, with 4 SFAs. For each configuration, individual criticality and shielding calculations were carried out. The results show that k-eff falls below the defined upper safety limit (USL) of 0.95 for all BWR configurations, while staying above USL for the PWR ones. Therefore, the application of a burnup credit methodology for the PWR case is required, being currently under development. Relevant is also the influence of canister material and internal geometry on criticality, enabling the identification of safer fuel arrangements. For a final burnup of 55MWd/kgHM and 30y cooling time, the combined photon-neutron surface dose rate is well below the threshold of 1 Gy/h defined to limit radiation-induced corrosion of the canister in all cases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Probabilistic analysis on the failure of reactivity control for the PWR

    NASA Astrophysics Data System (ADS)

    Sony Tjahyani, D. T.; Deswandri; Sunaryo, G. R.

    2018-02-01

    The fundamental safety function of the power reactor is to control reactivity, to remove heat from the reactor, and to confine radioactive material. The safety analysis is used to ensure that each parameter is fulfilled during the design and is done by deterministic and probabilistic method. The analysis of reactivity control is important to be done because it will affect the other of fundamental safety functions. The purpose of this research is to determine the failure probability of the reactivity control and its failure contribution on a PWR design. The analysis is carried out by determining intermediate events, which cause the failure of reactivity control. Furthermore, the basic event is determined by deductive method using the fault tree analysis. The AP1000 is used as the object of research. The probability data of component failure or human error, which is used in the analysis, is collected from IAEA, Westinghouse, NRC and other published documents. The results show that there are six intermediate events, which can cause the failure of the reactivity control. These intermediate events are uncontrolled rod bank withdrawal at low power or full power, malfunction of boron dilution, misalignment of control rod withdrawal, malfunction of improper position of fuel assembly and ejection of control rod. The failure probability of reactivity control is 1.49E-03 per year. The causes of failures which are affected by human factor are boron dilution, misalignment of control rod withdrawal and malfunction of improper position for fuel assembly. Based on the assessment, it is concluded that the failure probability of reactivity control on the PWR is still within the IAEA criteria.

  13. 78 FR 35960 - Minor Boundary Revision at Mojave National Preserve

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-14

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-PWR-MOJA-12321; PS.SMOJA0003] Minor Boundary Revision at Mojave National Preserve AGENCY: National Park Service, Interior. ACTION: Notification of... following locations: National Park Service, Land Resources Program Center, Pacific West Region, 333 Bush...

  14. Reactor antineutrino detector iDREAM.

    NASA Astrophysics Data System (ADS)

    Gromov, M. B.; Lukyanchenko, G. A.; Novikova, G. J.; Obinyakov, B. A.; Oralbaev, A. Y.; Skorokhvatov, M. D.; Sukhotin, S. V.; Chepurnov, A. S.; Etenko, A. V.

    2017-09-01

    Industrial Detector for Reactor Antineutrino Monitoring (iDREAM) is a compact (≈ 3.5m 2) industrial electron antineutrino spectrometer. It is dedicated for remote monitoring of PWR reactor operational modes by neutrino method in real-time. Measurements of antineutrino flux from PWR allow to estimate a fuel mixture in active zone and to check the status of the reactor campaign for non-proliferation purposes. LAB-based gadolinium doped scintillator is exploited as a target. Multizone architecture of the detector with gamma-catcher surrounding fiducial volume and plastic muon veto above and below ensure high efficiency of IBD detection and background suppression. DAQ is based on Flash ADC with PSD discrimination algorithms while digital trigger is programmable and flexible due to FPGA. The prototype detector was started up in 2014. Preliminary works on registration Cerenkov radiation produced by cosmic muons were established with distilled water inside the detector in order to test electronic and slow control systems. Also in parallel a long-term measurements with different scintillator samples were conducted.

  15. Regeneratively Cooled Liquid Oxygen/Methane Technology Development

    NASA Technical Reports Server (NTRS)

    Robinson, Joel W.; Greene, Christopher B.; Stout, Jeffrey

    2012-01-01

    The National Aeronautics & Space Administration (NASA) has identified Liquid Oxygen (LOX)/Liquid Methane (LCH4) as a potential propellant combination for future space vehicles based upon exploration studies. The technology is estimated to have higher performance and lower overall systems mass compared to existing hypergolic propulsion systems. NASA-Marshall Space Flight Center (MSFC) in concert with industry partner Pratt & Whitney Rocketdyne (PWR) utilized a Space Act Agreement to test an oxygen/methane engine system in the Summer of 2010. PWR provided a 5,500 lbf (24,465 N) LOX/LCH4 regenerative cycle engine to demonstrate advanced thrust chamber assembly hardware and to evaluate the performance characteristics of the system. The chamber designs offered alternatives to traditional regenerative engine designs with improvements in cost and/or performance. MSFC provided the test stand, consumables and test personnel. The hot fire testing explored the effective cooling of one of the thrust chamber designs along with determining the combustion efficiency with variations of pressure and mixture ratio. The paper will summarize the status of these efforts.

  16. On the condition of UO2 nuclear fuel irradiated in a PWR to a burn-up in excess of 110 MWd/kgHM

    NASA Astrophysics Data System (ADS)

    Restani, R.; Horvath, M.; Goll, W.; Bertsch, J.; Gavillet, D.; Hermann, A.; Martin, M.; Walker, C. T.

    2016-12-01

    Post-irradiation examination results are presented for UO2 fuel from a PWR fuel rod that had been irradiated to an average burn-up of 105 MWd/kgHM and showed high fission gas release of 42%. The radial distribution of xenon and the partitioning of fission gas between bubbles and the fuel matrix was investigated using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and electron probe microanalysis. It is concluded that release from the fuel at intermediate radial positions was mainly responsible for the high fission gas release. In this region thermal release had occurred from the high burn-up structure (HBS) at some point after the sixth irradiation cycle. The LA-ICP-MS results indicate that gas release had also occurred from the HBS in the vicinity of the pellet periphery. It is shown that the gas pressure in the HBS pores is well below the pressure that the fuel can sustain.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Yong-Hoon, E-mail: chaotics@snu.ac.kr; Park, Sangrok; Kim, Byong Sup

    Since the first nuclear power was engaged in Korean electricity grid in 1978, intensive research and development has been focused on localization and standardization of large pressurized water reactors (PWRs) aiming at providing Korean peninsula and beyond with economical and safe power source. With increased priority placed on the safety since Chernobyl accident, Korean nuclear power R and D activity has been diversified into advanced PWR, small modular PWR and generation IV reactors. After the outbreak of Fukushima accident, inherently safe small modular reactor (SMR) receives growing interest in Korea and Europe. In this paper, we will describe recent statusmore » of evolving designs of SMR, their advantages and challenges. In particular, the conceptual design of lead-bismuth cooled SMR in Korea, URANUS with 40∼70 MWe is examined in detail. This paper will cover a framework of the program and a strategy for the successful deployment of small modular reactor how the goals would entail and the approach to collaboration with other entities.« less

  18. Test prediction for the German PKL Test K5A using RELAP4/MOD6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.S.; Haigh, W.S.; Sullivan, L.H.

    RELAP4/MOD6 is the most recent modification in the series of RELAP4 computer programs developed to describe the thermal-hydraulic conditions attendant to postulated transients in light water reactor systems. The major new features in RELAP4/MOD6 include best-estimate pressurized water reactor (PWR) reflood transient analytical models for core heat transfer, local entrainment, and core vapor superheat, and a new set of heat transfer correlations for PWR blowdown and reflood. These new features were used for a test prediction of the Kraftwerk Union three-loop PRIMAR KREISLAUF (PKL) Reflood Test K5A. The results of the prediction were in good agreement with the experimental thermalmore » and hydraulic system data. Comparisons include heater rod surface temperature, system pressure, mass flow rates, and core mixture level. It is concluded that RELAP4/MOD6 is capable of accurately predicting transient reflood phenomena in the 200% cold-leg break test configuration of the PKL reflood facility.« less

  19. Application of a Simple Model to Predict Environmental Radionuclide Levels and Consequential Dose Rates on the South Welsh Coast, U.K.

    NASA Astrophysics Data System (ADS)

    Halliwell, C. M.; McKay, W. A.

    1994-02-01

    The impact of liquid effluent discharges, from both existing nuclear power stations and from a possible future pressurized water reactor (PWR), on the levels of radioactivity in Welsh Severn coastal waters has been addressed in this study through the use of a simple box model. If a PWR was in operation at Hinkley Point, and assuming that the existing discharges into the estuary remained the same as in 1989, the levels of the most radiologically significant radionuclide, 137Cs, in seawater along the Welsh shoreline are predicted to increase by 7% (inner estuary), 7% (Welsh outer estuary) and 5% (inner channel) and in sediment by 0·3, 1·3 and 2% respectively. The radiation dose rate from 137Cs to members of the coastal population alone would show only a marginal increase due to these changes, and would remain less than 1% of the internationally recognized limit.

  20. Common cause evaluations in applied risk analysis of nuclear power plants. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taniguchi, T.; Ligon, D.; Stamatelatos, M.

    1983-04-01

    Qualitative and quantitative approaches were developed for the evaluation of common cause failures (CCFs) in nuclear power plants and were applied to the analysis of the auxiliary feedwater systems of several pressurized water reactors (PWRs). Key CCF variables were identified through a survey of experts in the field and a review of failure experience in operating PWRs. These variables were classified into categories of high, medium, and low defense against a CCF. Based on the results, a checklist was developed for analyzing CCFs of systems. Several known techniques for quantifying CCFs were also reviewed. The information provided valuable insights inmore » the development of a new model for estimating CCF probabilities, which is an extension of and improvement over the Beta Factor method. As applied to the analysis of the PWR auxiliary feedwater systems, the method yielded much more realistic values than the original Beta Factor method for a one-out-of-three system.« less

  1. Investigation of Natural Circulation Instability and Transients in Passively Safe Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, Mamoru

    The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup power density on the flow instability. The experimental startup transient results showed the existence of three different flow instability mechanisms, i.e., flashing instability, condensation induced flow instability, and density wave oscillations. In addition, the void-reactivity feedback did not have significant effects on the flow instability during the startup transients for NMR-50. ii Several initial startup procedures with different power ramp rates were experimentally investigated to eliminate the flow instabilities observed from the startup transients. Particularly, the very slow startup transient and pressurized startup transient tests were performed and compared. It was found that the very slow startup transients by applying very small power density can eliminate the flashing oscillations in the single-phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. The initially pressurized startup procedure was tested to eliminate the flashing instability during the startup transients as well. The pressurized startup procedure included the initial pressurization, heat-up, and venting process. The startup transient tests showed that the pressurized startup procedure could eliminate the flow instability during the transition from single-phase flow to two-phase flow at low pressure conditions. The experimental results indicated that both startup procedures were applicable to the initial startup of NMR. However, the pressurized startup procedures might be preferred due to short operating hours required. In order to have a deeper understanding of natural circulation flow instability, the quasi-steady tests were performed using the test facility installed with preheater and subcooler. The effect of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback were investigated in the quasi-steady state tests. The experimental stability boundaries were determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. To predict the stability boundary theoretically, linear stability analysis in the frequency domain was performed at four sections of the natural circulation test loop. The flashing phenomena in the chimney section was considered as an axially uniform heat source. And the dimensionless characteristic equation of the pressure drop perturbation was obtained by considering the void fraction effect and outlet flow resistance in the core section. The theoretical flashing boundary showed some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium was recommended to improve the accuracy of flashing instability boundary. As another part of the funded research, flow instabilities of a PWR-type SMR under low pressure and low power conditions were investigated experimentally as well. The NuScale reactor design was selected as the prototype for the PWR-type SMR. In order to experimentally study the natural circulation behavior of NuScale iii reactor during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. The three-level scaling method is used as well to obtain the scaling ratios derived from various non-dimensional numbers. The design of the ideally scaled facility (ISF) was initially accomplished based on these scaling ratios. Then the engineering scaled facility (ESF) was designed and constructed based on the ISF by considering engineering limitations including laboratory space, pipe size, and pipe connections etc. PWR-type SMR experiments were performed in this well-scaled test facility to investigate the potential thermal hydraulic flow instability during the blowdown events, which might occur during the loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) of the prototype PWR-type SMR. Two kinds of experiments, normal blowdown event and cold blowdown event, were experimentally investigated and compared with code predictions. The normal blowdown event was experimentally simulated since an initial condition where the pressure was lower than the designed pressure of the experiment facility, while the code prediction of blowdown started from the normal operation condition. Important thermal hydraulic parameters including reactor pressure vessel (RPV) pressure, containment pressure, local void fraction and temperature, pressure drop and natural circulation flow rate were measured and analyzed during the blowdown event. The pressure and water level transients are similar to the experimental results published by NuScale [51], which proves the capability of current loop in simulating the thermal hydraulic transient of real PWR-type SMR. During the 20000s blowdown experiment, water level in the core was always above the active fuel assemble during the experiment and proved the safety of natural circulation cooling and water recycling design of PWR-type SMR. Besides, pressure, temperature, and water level transient can be accurately predicted by RELAP5 code. However, the oscillations of natural circulation flow rate, water level and pressure drops were observed during the blowdown transients. This kind of flow oscillations are related to the water level and the location upper plenum, which is a path for coolant flow from chimney to steam generator and down comer. In order to investigate the transients start from the opening of ADS valve in both experimental and numerical way, the cold blow-down experiment is conducted. For the cold blowdown event, different from setting both reactor iv pressure vessel (RPV) and containment at high temperature and pressure, only RPV was heated close to the highest designed pressure and then open the ADS valve, same process was predicted using RELAP5 code. By doing cold blowdown experiment, the entire transients from the opening of ADS can be investigated by code and benchmarked with experimental data. Similar flow instability observed in the cold blowdown experiment. The comparison between code prediction and experiment data showed that the RELAP5 code can successfully predict the pressure void fraction and temperature transient during the cold blowdown event with limited error, but numerical instability exists in predicting natural circulation flow rate. Besides, the code is lack of capability in predicting the water level related flow instability observed in experiments.« less

  2. Development of a new bench for puncturing of irradiated fuel rods in STAR hot laboratory

    NASA Astrophysics Data System (ADS)

    Petitprez, B.; Silvestre, P.; Valenza, P.; Boulore, A.; David, T.

    2018-01-01

    A new device for puncturing of irradiated fuel rods in commercial power plants has been designed by Fuel Research Department of CEA Cadarache in order to provide experimental data of high precision on fuel pins with various designs. It will replace the current set-up that has been used since 1998 in hot cell 2 of STAR facility with more than 200 rod puncturing experiments. Based on this consistent experimental feedback, the heavy-duty technique of rod perforation by clad punching has been preserved for the new bench. The method of double expansion of rod gases is also retained since it allows upgrading the confidence interval of volumetric results obtained from rod puncturing. Furthermore, many evolutions have been introduced in the new design in order to improve its reliability, to make the maintenance easier by remote handling and to reduce experimental uncertainties. Tightness components have been studied with Sealing Laboratory Maestral at Pierrelatte so as to make them able to work under mixed pressure conditions (from vacuum at 10-5 mbar up to pressure at 50 bars) and to lengthen their lifetime under permanent gamma irradiation in hot cell. Bench ergonomics has been optimized to make its operating by remote handling easier and to secure the critical phases of a puncturing experiment. A high pressure gas line equipped with high precision pressure sensors out of cell can be connected to the bench in cell for calibration purposes. Uncertainty analyses using Monte Carlo calculations have been performed in order to optimize capacity of the different volumes of the apparatus according to volumetric characteristics of the rod to be punctured. At last this device is composed of independent modules which allow puncturing fuel pins out of different geometries (PWR, BWR, VVER). After leak tests of the device and remote handling simulation in a mock-up cell, several punctures of calibrated specimens have been performed in 2016. The bench will be implemented soon in hot cell 2 of STAR facility for final qualification tests. PWR rod punctures are already planned for 2018.

  3. System Simulation of Nuclear Power Plant by Coupling RELAP5 and Matlab/Simulink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng Lin; Dong Hou; Zhihong Xu

    2006-07-01

    Since RELAP5 code has general and advanced features in thermal-hydraulic computation, it has been widely used in transient and accident safety analysis, experiment planning analysis, and system simulation, etc. So we wish to design, analyze, verify a new Instrumentation And Control (I and C) system of Nuclear Power Plant (NPP) based on the best-estimated code, and even develop our engineering simulator. But because of limited function of simulating control and protection system in RELAP5, it is necessary to expand the function for high efficient, accurate, flexible design and simulation of I and C system. Matlab/Simulink, a scientific computation software, justmore » can compensate the limitation, which is a powerful tool in research and simulation of plant process control. The software is selected as I and C part to be coupled with RELAP5 code to realize system simulation of NPPs. There are two key techniques to be solved. One is the dynamic data exchange, by which Matlab/Simulink receives plant parameters and returns control results. Database is used to communicate the two codes. Accordingly, Dynamic Link Library (DLL) is applied to link database in RELAP5, while DLL and S-Function is applied in Matlab/Simulink. The other problem is synchronization between the two codes for ensuring consistency in global simulation time. Because Matlab/Simulink always computes faster than RELAP5, the simulation time is sent by RELAP5 and received by Matlab/Simulink. A time control subroutine is added into the simulation procedure of Matlab/Simulink to control its simulation advancement. Through these ways, Matlab/Simulink is dynamically coupled with RELAP5. Thus, in Matlab/Simulink, we can freely design control and protection logic of NPPs and test it with best-estimated plant model feedback. A test will be shown to illuminate that results of coupling calculation are nearly the same with one of single RELAP5 with control logic. In practice, a real Pressurized Water Reactor (PWR) is modeled by RELAP5 code, and its main control and protection system is duplicated by Matlab/Simulink. Some steady states and transients are calculated under control of these I and C systems, and the results are compared with the plant test curves. The application showed that it can do exact system simulation of NPPs by coupling RELAP5 and Matlab/Simulink. This paper will mainly focus on the coupling method, plant thermal-hydraulic model, main control logics, test and application results. (authors)« less

  4. Impact of nuclear data uncertainty on safety calculations for spent nuclear fuel geological disposal

    NASA Astrophysics Data System (ADS)

    Herrero, J. J.; Rochman, D.; Leray, O.; Vasiliev, A.; Pecchia, M.; Ferroukhi, H.; Caruso, S.

    2017-09-01

    In the design of a spent nuclear fuel disposal system, one necessary condition is to show that the configuration remains subcritical at time of emplacement but also during long periods covering up to 1,000,000 years. In the context of criticality safety applying burn-up credit, k-eff eigenvalue calculations are affected by nuclear data uncertainty mainly in the burnup calculations simulating reactor operation and in the criticality calculation for the disposal canister loaded with the spent fuel assemblies. The impact of nuclear data uncertainty should be included in the k-eff value estimation to enforce safety. Estimations of the uncertainty in the discharge compositions from the CASMO5 burn-up calculation phase are employed in the final MCNP6 criticality computations for the intact canister configuration; in between, SERPENT2 is employed to get the spent fuel composition along the decay periods. In this paper, nuclear data uncertainty was propagated by Monte Carlo sampling in the burn-up, decay and criticality calculation phases and representative values for fuel operated in a Swiss PWR plant will be presented as an estimation of its impact.

  5. Analysis of boron dilution in a four-loop PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, J.G.; Sha, W.T.

    1995-12-31

    Thermal mixing and boron dilution in a pressurized water reactor were analyzed with COMMIX codes. The reactor system was the four loop Zion reactor. Two boron dilution scenarios were analyzed. In the first scenario, the plant is in cold shutdown and the reactor coolant system has just been filled after maintenance on the steam generators. To flush the air out of the steam generator tubes, a reactor coolant pump (RCP) is started, with the water in the pump suction line devoid of boron and at the same temperature as the coolant in the system. In the second scenario, the plantmore » is at hot standby and the reactor coolant system has been heated up to operating temperature after a long outage. It is assumed that an RCP is started, with the pump suction line filled with cold unborated water, forcing a slug of diluted coolant down the downcomer and subsequently through the reactor core. The subsequent transient thermal mixing and boron dilution that would occur in the reactor system is simulated for these two scenarios. The reactivity insertion rate and the total reactivity are evaluated.« less

  6. Validation of the BUGJEFF311.BOLIB, BUGENDF70.BOLIB and BUGLE-B7 broad-group libraries on the PCA-Replica (H2O/Fe) neutron shielding benchmark experiment

    NASA Astrophysics Data System (ADS)

    Pescarini, Massimo; Orsi, Roberto; Frisoni, Manuela

    2016-03-01

    The PCA-Replica 12/13 (H2O/Fe) neutron shielding benchmark experiment was analysed using the TORT-3.2 3D SN code. PCA-Replica reproduces a PWR ex-core radial geometry with alternate layers of water and steel including a pressure vessel simulator. Three broad-group coupled neutron/photon working cross section libraries in FIDO-ANISN format with the same energy group structure (47 n + 20 γ) and based on different nuclear data were alternatively used: the ENEA BUGJEFF311.BOLIB (JEFF-3.1.1) and UGENDF70.BOLIB (ENDF/B-VII.0) libraries and the ORNL BUGLE-B7 (ENDF/B-VII.0) library. Dosimeter cross sections derived from the IAEA IRDF-2002 dosimetry file were employed. The calculated reaction rates for the Rh-103(n,n')Rh-103m, In-115(n,n')In-115m and S-32(n,p)P-32 threshold activation dosimeters and the calculated neutron spectra are compared with the corresponding experimental results.

  7. STRESS CORROSION CRACK GROWTH RESPONSE FOR ALLOY 152/52 DISSIMILAR METAL WELDS IN PWR PRIMARY WATER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toloczko, Mychailo B.; Olszta, Matthew J.; Overman, Nicole R.

    2015-08-15

    As part of ongoing research into primary water stress corrosion cracking (PWSCC) susceptibility of alloy 690 and its welds, SCC tests have been conducted on alloy 152/52 dissimilar metal (DM) welds with cracks positioned with the goal to assess weld dilution and fusion line effects on SCC susceptibility. No increased crack growth rate was found when evaluating a 20% Cr dilution zone in alloy 152M joined to carbon steel (CS) that had not undergone a post-weld heat treatment (PWHT). However, high SCC crack growth rates were observed when the crack reached the fusion line of that material where it propagatedmore » both on the fusion line and in the heat affected zone (HAZ) of the carbon steel. Crack surface and crack profile examinations of the specimen revealed that cracking in the weld region was transgranular (TG) with weld grain boundaries not aligned with the geometric crack growth plane of the specimen. The application of a typical pressure vessel PWHT on a second set of alloy 152/52 – carbon steel DM weld specimens was found to eliminate the high SCC susceptibility in the fusion line and carbon steel HAZ regions. PWSCC tests were also performed on alloy 152-304SS DM weld specimens. Constant K crack growth rates did not exceed 5x10-9 mm/s in this material with post-test examinations revealing cracking primarily on the fusion line and slightly into the 304SS HAZ.« less

  8. Monte Carlo evaluation of accuracy and noise properties of two scatter correction methods for /sup 201/Tl cardiac SPECT

    NASA Astrophysics Data System (ADS)

    Narita, Y.; Iida, H.; Ebert, S.; Nakamura, T.

    1997-12-01

    Two independent scatter correction techniques, transmission dependent convolution subtraction (TDCS) and triple-energy window (TEW) method, were evaluated in terms of quantitative accuracy and noise properties using Monte Carlo simulation (EGS4). Emission projections (primary, scatter and scatter plus primary) were simulated for three numerical phantoms for /sup 201/Tl. Data were reconstructed with ordered-subset EM algorithm including noise-less transmission data based attenuation correction. Accuracy of TDCS and TEW scatter corrections were assessed by comparison with simulated true primary data. The uniform cylindrical phantom simulation demonstrated better quantitative accuracy with TDCS than with TEW (-2.0% vs. 16.7%) and better S/N (6.48 vs. 5.05). A uniform ring myocardial phantom simulation demonstrated better homogeneity with TDCS than TEW in the myocardium; i.e., anterior-to-posterior wall count ratios were 0.99 and 0.76 with TDCS and TEW, respectively. For the MCAT phantom, TDCS provided good visual and quantitative agreement with simulated true primary image without noticeably increasing the noise after scatter correction. Overall TDCS proved to be more accurate and less noisy than TEW, facilitating quantitative assessment of physiological functions with SPECT.

  9. 77 FR 16270 - Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0070] Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft..., ``Updated Aging Management Criteria for PWR Reactor Vessel Internal Components.'' This draft LR-ISG revises...

  10. 77 FR 23513 - Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0070] Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Draft...-ISG), LR-ISG-2011-04, ``Updated Aging Management Criteria for PWR Reactor Vessel Internal Components...

  11. Proceedings: 2002 Workshop on Pressurized Water Reactor Elevated Feedwater Iron Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2002-11-01

    Some pressurized water reactor (PWR) stations have experienced difficulty with maintaining feedwater (FW) iron concentrations below recommended concentration on a regular basis. A workshop held on September 17-18 in Dana Point, California, addressed the challenge of elevated feedwater iron transport in PWRs.

  12. 75 FR 15752 - Sunshine Act Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...)--191, Assessment of Debris Accumulation on Pressurized Water Reactor (PWR) Sump Performance (Public... Fuel Cycle Oversight Process Revisions (Public Meeting). (Contact: Michael Raddatz, 301-492-3108.) This..., Employee/Labor Relations and Work Life Branch, at 301-492-2230, TDD: 301-415-2100, or by e-mail at angela...

  13. 75 FR 18907 - Sunshine Federal Register Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ...)-191, Assessment of Debris Accumulation on Pressurized Water Reactor (PWR) Sump Performance (Public... Fuel Cycle Oversight Process Revisions (Public Meeting). (Contact: Michael Raddatz, 301-492-3108.) This... Bolduc, Chief, Employee/Labor Relations and Work Life Branch, at 301-492-2230, TDD: 301-415-2100, or by e...

  14. Final Prep on SSME

    NASA Image and Video Library

    2005-10-25

    Alvin Pittman Sr., lead electronics technician with Pratt & Whitney Rocketdyne, and Janine Cuevas, a mechanical technician with PWR, perform final preparations on the space shuttle main engine tested Oct. 25, 2005, at NASA's Stennis Space Center. It was the first main engine test since Hurricane Katrina hit the Gulf Coast on Aug. 29.

  15. Final Prep on SSME

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Alvin Pittman Sr., lead electronics technician with Pratt & Whitney Rocketdyne, and Janine Cuevas, a mechanical technician with PWR, perform final preparations on the space shuttle main engine tested Oct. 25, 2005, at NASA's Stennis Space Center. It was the first main engine test since Hurricane Katrina hit the Gulf Coast on Aug. 29.

  16. 76 FR 40937 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... Generator Water Level High-High'' instrument setpoint and associated allowable value. The proposed change is... [Pressurized-Water Reactor] PWR Operability Requirements and Actions for RCS Leakage Instrumentation''. Basis... monitor is the containment atmospheric gaseous radiation monitor. The monitoring of RCS leakage is not a...

  17. Spelling well Despite Developmental Language Disorder: What Makes It Possible?

    ERIC Educational Resources Information Center

    Rakhlin, Natalia; Cardoso-Martins, Cláudia; Kornilov, Sergey A.; Grigorenko, Elena L.

    2013-01-01

    The goal of the study was to investigate the overlap between developmental language disorder (DLD) and developmental dyslexia, identified through spelling difficulties (SD), in Russian-speaking children. In particular, we studied the role of phoneme awareness (PA), rapid automatized naming (RAN), pseudoword repetition (PWR), morphological (MA),…

  18. Liquid level, void fraction, and superheated steam sensor for nuclear-reactor cores. [PWR; BWR

    DOEpatents

    Tokarz, R.D.

    1981-10-27

    This disclosure relates to an apparatus for monitoring the presence of coolant in liquid or mixed liquid and vapor, and superheated gaseous phases at one or more locations within an operating nuclear reactor core, such as pressurized water reactor or a boiling water reactor.

  19. 78 FR 44596 - Minor Boundary Revision at Yosemite National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-PWR-YOSE-13178; PS.SPWLA0028.00.1] Minor Boundary Revision at Yosemite National Park AGENCY: National Park Service, Interior. ACTION: Notification of Boundary Revision. SUMMARY: The boundary of Yosemite National Park is modified to include 80 acres...

  20. 78 FR 4477 - Review of Safety Analysis Reports for Nuclear Power Plants, Introduction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0268] Review of Safety Analysis Reports for Nuclear Power... Analysis Reports for Nuclear Power Plants: LWR Edition.'' The new subsection is the Standard Review Plan... Nuclear Power Plants: Integral Pressurized Water Reactor (iPWR) Edition.'' DATES: Comments must be filed...

  1. 77 FR 63343 - Biweekly Notice: Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... PWR [Pressurized-Water Reactor] Steam Generator Tubes'' (Reference 32) and [Nuclear Energy Institute... maintains the required structural margins of the SG tubes for both normal and accident conditions. Nuclear Energy Institute 97-06, ``Steam Generator Program Guidelines'' (Reference 8), and NRC Regulatory Guide 1...

  2. Counterfeit Parts Prevention Strategy Guide Product Overview

    DTIC Science & Technology

    2014-05-08

    pwr.utc.com Mark King Micopac markking@micropac.com Andrew King Boeing andrew.m.king@boeing.com Byron Knight NRO knightby@nro.mil Hans Koenigsmann SpaceX ...Marvin VanderWeg SpaceX marvin.vanderwag@spacex.com Gerrit VanOmmering SSL gerrit.vanommering@sslmda.com Michael Verzuh Ball mverzuh@ball.com John Vilja

  3. Models and numerical methods for the simulation of loss-of-coolant accidents in nuclear reactors

    NASA Astrophysics Data System (ADS)

    Seguin, Nicolas

    2014-05-01

    In view of the simulation of the water flows in pressurized water reactors (PWR), many models are available in the literature and their complexity deeply depends on the required accuracy, see for instance [1]. The loss-of-coolant accident (LOCA) may appear when a pipe is broken through. The coolant is composed by light water in its liquid form at very high temperature and pressure (around 300 °C and 155 bar), it then flashes and becomes instantaneously vapor in case of LOCA. A front of liquid/vapor phase transition appears in the pipes and may propagate towards the critical parts of the PWR. It is crucial to propose accurate models for the whole phenomenon, but also sufficiently robust to obtain relevant numerical results. Due to the application we have in mind, a complete description of the two-phase flow (with all the bubbles, droplets, interfaces…) is out of reach and irrelevant. We investigate averaged models, based on the use of void fractions for each phase, which represent the probability of presence of a phase at a given position and at a given time. The most accurate averaged model, based on the so-called Baer-Nunziato model, describes separately each phase by its own density, velocity and pressure. The two phases are coupled by non-conservative terms due to gradients of the void fractions and by source terms for mechanical relaxation, drag force and mass transfer. With appropriate closure laws, it has been proved [2] that this model complies with all the expected physical requirements: positivity of densities and temperatures, maximum principle for the void fraction, conservation of the mixture quantities, decrease of the global entropy… On the basis of this model, it is possible to derive simpler models, which can be used where the flow is still, see [3]. From the numerical point of view, we develop new Finite Volume schemes in [4], which also satisfy the requirements mentioned above. Since they are based on a partial linearization of the physical model, this numerical scheme is also efficient in terms of CPU time. Eventually, simpler models can locally replace the more complex model in order to simplify the overall computation, using some appropriate local error indicators developed in [5], without reducing the accuracy. References 1. Ishii, M., Hibiki, T., Thermo-fluid dynamics of two-phase flow, Springer, New-York, 2006. 2. Gallouët, T. and Hérard, J.-M., Seguin, N., Numerical modeling of two-phase flows using the two-fluid two-pressure approach, Math. Models Methods Appl. Sci., Vol. 14, 2004. 3. Seguin, N., Étude d'équations aux dérivées partielles hyperboliques en mécanique des fluides, Habilitation à diriger des recherches, UPMC-Paris 6, 2011. 4. Coquel, F., Hérard, J-M., Saleh, K., Seguin, N., A Robust Entropy-Satisfying Finite Volume Scheme for the Isentropic Baer-Nunziato Model, ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 48, 2013. 5. Mathis, H., Cancès, C., Godlewski, E., Seguin, N., Dynamic model adaptation for multiscale simulation of hyperbolic systems with relaxation, preprint, 2013.

  4. Games Children Don't Play--Simulation and Gaming in the Primary School.

    ERIC Educational Resources Information Center

    Brown, Margot

    1982-01-01

    Summarizes conditions in the primary schools that suggest the appropriateness of using simulation games and describes the People GRID and Living Together Series for developing learning about the real world and the skills necessary for effective participation in it. (EAO)

  5. Lunar Regolith Simulant User's Guide

    NASA Technical Reports Server (NTRS)

    Schrader, C. M.; Rickman, D. L.; McLemore, C. A.; Fikes, J. C.

    2010-01-01

    Based on primary characteristics, currently or recently available lunar regolith simulants are discussed from the perspective of potential experimental uses. The characteristics used are inherent properties of the material rather than their responses to behavioral (geomechanical, physiochemical, etc.) tests. We define these inherent or primary properties to be particle composition, particle size distribution, particle shape distribution, and bulk density. Comparable information about lunar materials is also provided. It is strongly emphasized that anyone considering either choosing or using a simulant should contact one of the members of the simulant program listed at the end of this document.

  6. [Study on the application of value of digital medical technology in the operation on primary liver cancer].

    PubMed

    Fang, Chi-hua; Lu, Chao-min; Huang, Yan-peng; Li, Xiao-feng; Fan, Ying-fang; Yang, Jian; Xiang, Nan; Pan, Jia-hui

    2009-04-01

    To study the clinical application of digital medical in the operation on primary liver cancer. The patients (n=11) with primary hepatic carcinoma treated between February and July 2008, including 9 cases of hepatocellular carcinoma, 2 cases of cholangiocellular carcinoma, were scanned using 64 slices helicon computerized tomography (CT) and the datasets was collected. Segment and three-dimensional (3D) reconstruction of the CT image was carried out by the medical image processing system which was developed. And the 3D moulds were imported to the FreeForm Modeling System for smoothing. Then the hepatectomy in treatment of hepatoma and implanting of catheter were simulated with the force-feedback equipment (PHANToM). Finally, 3D models and results of simulation surgery were used for choosing mode of operation and comparing with the findings during the operation. The reconstructed models were true to life, and their spatial disposition and correlation were shown clearly; Blood supply of primary liver cancer could be seen easily. In the simulation surgery system, the process of virtual partial hepatectomy and implanting of catheter using simulation scalpel and catheter on 3D moulds with PHANToM was consistent with the clinical course of surgery. Life-like could be felt and power feeling can be touched during simulation operation. Digital medical benefited knowing the relationship between primary liver cancer and the intrahepatic pipe. It gave an advantage to complete primary liver cancer resection with more liver volume remained. It can improve the surgical effect and decrease the surgical risk and reduce the complication through demonstrating visualized operation before surgery.

  7. 77 FR 60479 - Burnup Credit in the Criticality Safety Analyses of Pressurized Water Reactor Spent Fuel in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Pressurized Water Reactor Spent Fuel in Transportation and Storage Casks AGENCY: Nuclear Regulatory Commission... 3, entitled, ``Burnup Credit in the Criticality Safety Analyses of PWR [Pressurized Water Reactor... water reactor spent nuclear fuel (SNF) in transportation packages and storage casks. SFST-ISG-8...

  8. 76 FR 79708 - Draft Environmental Impact Statement/General Management Plan, Golden Gate National Recreation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-22

    ...). The Plan/DEIS evaluates four alternatives for updating the current approach to management in Golden.... In recognition of the complexity of the proposed plan alternatives, and with deference to interest... DEPARTMENT OF THE INTERIOR National Park Service [NPS-PWR-PWRO-1108-8862; 2031-A038-409] Draft...

  9. 78 FR 33120 - Final Interim Staff Guidance LR-ISG-2011-04; Updated Aging Management Criteria for Reactor Vessel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ..., ``Generic Aging Lessons Learned Report'' (GALL Report), for the aging management of Pressurized Water... communicate insights and lessons learned and to address emergent issues not covered in license renewal... ensure that PWR license renewal applicants will adequately address age-related degradation and aging...

  10. LOFT. Reactor arrives at containment building (TAN650), now being pushed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOFT. Reactor arrives at containment building (TAN-650), now being pushed by locomotive. Camera facing northerly. Note "Hello Dolly" and "PWR MTA No. 1" (pressurized water reactor mobile test assembly) signs. Date: 1973. INEEL negative no. 73-3710 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. 40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.505 How..., 2B, or 2C. WFi = weight fraction of component i in the product, (2) Calculate the PWR of each product...

  12. 40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.505 How..., 2B, or 2C. WFi = weight fraction of component i in the product, (2) Calculate the PWR of each product...

  13. 40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.505 How..., 2B, or 2C. WFi = weight fraction of component i in the product, (2) Calculate the PWR of each product...

  14. 75 FR 13800 - Sunshine Federal Register Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ..., Assessment of Debris Accumulation on Pressurized Water Reactor (PWR) Sump Performance (Public Meeting..., 2010. Week of April 26, 2010--Tentative Thursday, April 29, 2010 9:30 a.m. Briefing on the Fuel Cycle... and Work Life Branch, at 301-492-2230, TDD: 301-415-2100, or by e-mail at [email protected

  15. 77 FR 65906 - Minor Boundary Revision at Minidoka National Historic Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-PWR-MIIN-11234; 9360-726] Minor Boundary Revision at Minidoka National Historic Site AGENCY: National Park Service, Interior. ACTION: Notification of boundary revision. SUMMARY: Notice is hereby given that, pursuant to 16 U.S.C. 460l- 9(c)(1)(ii...

  16. 78 FR 64027 - Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to regulatory guide (RG), 1.79, ``Preoperational Testing of Emergency Core Cooling Systems for Pressurized-Water Reactors.'' This RG is being revised to incorporate guidance for preoperational testing of new pressurized water reactor (PWR) designs.

  17. 76 FR 24514 - Honouliuli Special Resource Study, Honolulu, Maui, Hawaii, and Kauai Counties, HI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-PWR-PWRO-0308-6923;9082-HONO-420] Honouliuli.... Background: As authorized by the Department of the Interior, Environment, and Related Agencies Appropriations... State of Hawaii with respect to (1) Their significance as components of World War II; (2) significance...

  18. 76 FR 22917 - Dog Management Plan/Draft Environmental Impact Statement, Golden Gate National Recreation Area...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-PWR-PWRO--0315-696; 8145-8B90-SZM] Dog... Impact Statement/Dog Management Plan, Golden Gate National Recreation Area. SUMMARY: The National Park Service has prepared a Draft Dog Management Plan and Environmental Impact Statement (Plan/DEIS). The Plan...

  19. Amorphous and Nanocrystalline High Temperature Magnetic Material for PWR

    DTIC Science & Technology

    2006-03-01

    FOR PUBLICATION. //Signature// //Signature// ______________________________________ __________________________________ JOHN C ...times that of conventional ferrites at room temperature); 2) Frequency: 200 kHz to 1 MHz; 3) Temperature: 200 ° C and above. The goals of the DUST...NAME OF RESPONSIBLE PERSON (Monitor) a. REPORT Unclassified b. ABSTRACT Unclassified c . THIS PAGE Unclassified 17. LIMITATION OF ABSTRACT

  20. Simulating multiprimary LCDs on standard tri-stimulus LC displays

    NASA Astrophysics Data System (ADS)

    Lebowsky, Fritz; Vonneilich, Katrin; Bonse, Thomas

    2008-01-01

    Large-scale, direct view TV screens, in particular those based on liquid crystal technology, are beginning to use subpixel structures with more than three subpixels to implement a multi-primary display with up to six primaries. Since their input color space is likely to remain tri-stimulus RGB we first focus on some fundamental constraints. Among them, we elaborate simplified gamut mapping architectures as well as color filter geometry, transparency, and chromaticity coordinates in color space. Based on a 'display centric' RGB color space tetrahedrization combined with linear interpolation we describe a simulation framework which enables optimization for up to 7 primaries. We evaluated the performance through mapping the multi-primary design back onto a RGB LC display gamut without building a prototype multi-primary display. As long as we kept the RGB equivalent output signal within the display gamut we could analyze all desirable multi-primary configurations with regard to colorimetric variance and visually perceived quality. Not only does our simulation tool enable us to verify a novel concept it also demonstrates how carefully one needs to design a multiprimary display for LCD TV applications.

  1. Mixed Legendre moments and discrete scattering cross sections for anisotropy representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calloo, A.; Vidal, J. F.; Le Tellier, R.

    2012-07-01

    This paper deals with the resolution of the integro-differential form of the Boltzmann transport equation for neutron transport in nuclear reactors. In multigroup theory, deterministic codes use transfer cross sections which are expanded on Legendre polynomials. This modelling leads to negative values of the transfer cross section for certain scattering angles, and hence, the multigroup scattering source term is wrongly computed. The first part compares the convergence of 'Legendre-expanded' cross sections with respect to the order used with the method of characteristics (MOC) for Pressurised Water Reactor (PWR) type cells. Furthermore, the cross section is developed using piecewise-constant functions, whichmore » better models the multigroup transfer cross section and prevents the occurrence of any negative value for it. The second part focuses on the method of solving the transport equation with the above-mentioned piecewise-constant cross sections for lattice calculations for PWR cells. This expansion thereby constitutes a 'reference' method to compare the conventional Legendre expansion to, and to determine its pertinence when applied to reactor physics calculations. (authors)« less

  2. Management of thermal peaking factors in CONFU-B PWR assemblies using neutron poisons and tailored enrichment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visosky, M.; Hejzlar, P.; Kazimi, M.

    2006-07-01

    CONFU-B assemblies are PWR assemblies containing standard Uranium fuel rods and TRU bearing inert material fuel rods and are designed to achieve net TRU destruction over a 4.5-year irradiation. These highly heterogeneous assemblies tend to exhibit large intra-assembly power peaking factors (IAPPF). Neutronic strategies to reduce IAPPF are developed. The IAPPF are calculated at the assembly level using CASMO4, and these are used to calculate the most restrictive thermal margin (the Minimum Departure from Nucleate Boiling Ratio, MDNBR) using a whole-core VIPRE-01 model. This paper examines two strategies to manage the thermal margin of a CONFU-B assembly while retaining themore » TRU destruction performance: use of neutron poisons and tailored enrichment schemes. Burnable poisons can be used to suppress BOL reactivity of fresh CONFU-B assemblies with only minor impact on MDNBR and TRU destruction performance. Tailored enrichment, along with the use of soluble boron, can achieve significant improvements in MDNBR, but at some cost to TRU destruction performance. (authors)« less

  3. Risk-Informed External Hazards Analysis for Seismic and Flooding Phenomena for a Generic PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisi, Carlo; Prescott, Steve; Ma, Zhegang

    This report describes the activities performed during the FY2017 for the US-DOE Light Water Reactor Sustainability Risk-Informed Safety Margin Characterization (LWRS-RISMC), Industry Application #2. The scope of Industry Application #2 is to deliver a risk-informed external hazards safety analysis for a representative nuclear power plant. Following the advancements occurred during the previous FYs (toolkits identification, models development), FY2017 focused on: increasing the level of realism of the analysis; improving the tools and the coupling methodologies. In particular the following objectives were achieved: calculation of buildings pounding and their effects on components seismic fragility; development of a SAPHIRE code PRA modelsmore » for 3-loops Westinghouse PWR; set-up of a methodology for performing static-dynamic PRA coupling between SAPHIRE and EMRALD codes; coupling RELAP5-3D/RAVEN for performing Best-Estimate Plus Uncertainty analysis and automatic limit surface search; and execute sample calculations for demonstrating the capabilities of the toolkit in performing a risk-informed external hazards safety analyses.« less

  4. Probability of in-vessel steam explosion-induced containment failure for a KWU PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esmaili, H.; Khatib-Rahbar, M.; Zuchuat, O.

    During postulated core meltdown accidents in light water reactors, there is a likelihood for an in-vessel steam explosion when the melt contacts the coolant in the lower plenum. The objective of the work described in this paper is to determine the conditional probability of in-vessel steam explosion-induced containment failure for a Kraftwerk Union (KWU) pressurized water reactor (PWR). The energetics of the explosion depends on the mass of the molten fuel that mixes with the coolant and participates in the explosion and on the conversion of fuel thermal energy into mechanical work. The work can result in the generation ofmore » dynamic pressures that affect the lower head (and possibly lead to its failure), and it can cause acceleration of a slug (fuel and coolant material) upward that can affect the upper internal structures and vessel head and ultimately cause the failure of the upper head. If the upper head missile has sufficient energy, it can reach the containment shell and penetrate it. The analysis, must therefore, take into account all possible dissipation mechanisms.« less

  5. Analysis of crack initiation and growth in the high level vibration test at Tadotsu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassir, M.K.; Park, Y.J.; Hofmayer, C.H.

    1993-08-01

    The High Level Vibration Test data are used to assess the accuracy and usefulness of current engineering methodologies for predicting crack initiation and growth in a cast stainless steel pipe elbow under complex, large amplitude loading. The data were obtained by testing at room temperature a large scale modified model of one loop of a PWR primary coolant system at the Tadotsu Engineering Laboratory in Japan. Fatigue crack initiation time is reasonably predicted by applying a modified local strain approach (Coffin-Mason-Goodman equation) in conjunction with Miner`s rule of cumulative damage. Three fracture mechanics methodologies are applied to investigate the crackmore » growth behavior observed in the hot leg of the model. These are: the {Delta}K methodology (Paris law), {Delta}J concepts and a recently developed limit load stress-range criterion. The report includes a discussion on the pros and cons of the analysis involved in each of the methods, the role played by the key parameters influencing the formulation and a comparison of the results with the actual crack growth behavior observed in the vibration test program. Some conclusions and recommendations for improvement of the methodologies are also provided.« less

  6. High-Resolution Characterizations of Grain Boundary Damage and Stress Corrosion Cracks in Cold-Rolled Alloy 690

    NASA Astrophysics Data System (ADS)

    Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; Thomas, L. E.

    Unidirectional cold rolling has been shown to promote intergranular stress corrosion cracking (IGSCC) in alloy 690 tested in PWR primary water. High-resolution scanning (SEM) and transmission electron microscopy (TEM) have been employed to investigate the microstructural reasons for this enhanced susceptibility in two stages, first examining grain boundary damage produced by cold rolling and second by characterization of stress corrosion crack tips. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG precipitate distribution. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. For the same degree of cold rolling, alloys with few IG carbides exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal no interaction between the preexisting voids and cracked carbides with the propagation. In many cases, these features appeared to blunt propagation of IGSCC cracks. High-resolution characterizations are described for cold-rolled alloy 690 CRDM tubing and plate materials to gain insights into IGSCC mechanisms.

  7. Current forgings and their properties for steam generator of nuclear plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukada, Hisashi; Suzuki, Komei; Kusuhashi, Mikio

    1997-12-31

    Current steel forgings for steam generator (SG) of PWR plant are reviewed in the aspect of design and material improvement. The following three items are introduced. The use of integral type steel forgings for the fabrication of steam generator enhances the structural integrity and makes easier fabrication and inspection including in-service inspection. The following examples of current integral type forgings developed by the Japan Steel Works, Ltd. (JSW) are introduced: (1) primary head integrated with nozzles, manways and supports; (2) steam drum head integrated with nozzle and handhole; (3) conical shell integrated with cylindrical sections and handholes. In order tomore » decrease the weight of steam generator, the high strength materials such as SA508, Cl.3a steel have been adopted in some cases. The properties of this steel are introduced and the chemistry and heat treatment condition are discussed. As one of the methods to minimize the macro- and micro-segregations, the use of vacuum carbon deoxidation (VCD), i.e. deoxidization of steel by gaseous CO reaction, with addition of Al for grain refining was investigated. The properties of SA508, Cl.3 steels with Low Si content are compared with those of conventional one.« less

  8. First non-OEM steam-generator replacement in US a success

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendsbee, P.M.; Lees, M.D.; Smith, J.C.

    1994-04-01

    In selecting replacements for major powerplant components, a fresh approach can be advantageous--even when complex nuclear components are involved. This was the experience at Unit 2 of Millstone nuclear station, which features an 870-MW pressurized-water reactor (PWR) with two nuclear recirculating steam generators. The unit began operation in 1975. In the early 1980s, pitting problems surfaced in the steam generator tubing; by the mid eighties, tube corrosion had reached an unacceptable level. Virtually all of the 17,000 tubes in the two units were deteriorating, with 2500 plugged and 5000 sleeved. Several new problems also were identified, including secondary-side circumferential crackingmore » of the Alloy 600 tubing near the tubesheet face, and deterioration of the carbon steel egg-crate tube supports. Despite improvements to primary and secondary steam-generator water chemistry, including almost complete copper removal from the condensate and feedwater loops, Northeast Utilities (NU) was unable to completely control degradation of the tube bundles. The utility decided in 1987 that full replacement was the most viable alternative. NU made a bold move, selecting a supplier other than the original equipment manufacturer (OEM).« less

  9. The effect of binding energy and resolution in simulations of the common envelope binary interaction

    NASA Astrophysics Data System (ADS)

    Iaconi, Roberto; De Marco, Orsola; Passy, Jean-Claude; Staff, Jan

    2018-06-01

    The common envelope binary interaction remains one of the least understood phases in the evolution of compact binaries, including those that result in Type Ia supernovae and in mergers that emit detectable gravitational waves. In this work, we continue the detailed and systematic analysis of 3D hydrodynamic simulations of the common envelope interaction aimed at understanding the reliability of the results. Our first set of simulations replicate the five simulations of Passy et al. (a 0.88 M⊙, 90 R⊙ red giant branch (RGB) primary with companions in the range 0.1-0.9 M⊙) using a new adaptive mesh refinement gravity solver implemented on our modified version of the hydrodynamic code ENZO. Despite smaller final separations obtained, these more resolved simulations do not alter the nature of the conclusions that are drawn. We also carry out five identical simulations but with a 2.0 M⊙ primary RGB star with the same core mass as the Passy et al. simulations, isolating the effect of the envelope binding energy. With a more bound envelope, all the companions in-spiral faster and deeper, though relatively less gas is unbound. Even at the highest resolution, the final separation attained by simulations with a heavier primary is similar to the size of the smoothed potential even if we account for the loss of some angular momentum by the simulation. As a result, we suggest that an ˜2.0 M⊙ RGB primary may possibly end in a merger with companions as massive as 0.6 M⊙, something that would not be deduced using analytical arguments based on energy conservation.

  10. Primary proton and helium spectra around the knee observed by the Tibet air-shower experiment

    NASA Astrophysics Data System (ADS)

    Jing, Huang; Tibet ASγ Collaboration

    A hybrid experiment was carried out to study the cosmic-ray primary composition in the 'knee' energy region. The experimental set-up consists of the Tibet-II air shower array( AS ), the emulsion chamber ( EC ) and the burst detector ( BD ) which are operated simulteneously and provides us information on the primary species. The experiment was carried out at Yangbajing (4,300 m a.s.l., 606 g/cm2) in Tibet during the period from 1996 through 1999. We have already reported the primary proton flux around the knee region based on the simulation code COSMOS. In this paper, we present the primary proton and helium spectra around the knee region. We also extensively examine the simulation codes COSMOS ad-hoc and CORSIKA with interaction models of QGSJET01, DPMJET 2.55, SIBYLL 2.1, VENUS 4.125, HDPM, and NEXUS 2. Based on these calculations, we briefly discuss on the systematic errors involved in our experimental results due to the Monte Carlo simulation.

  11. An Improved Maintenance Model for the Simulation of Strategic Airlift Capability.

    DTIC Science & Technology

    1982-03-01

    developed using SLAM as the primary simulation language. Maintenance manning is modeled at the Air Force Specialty Code level, to allow the possibility of...Atlantic Treaty Organization (NATO) allies is one of our primary national objectives, but recent increases in Soviet ground and air forces (Ref 5:100) have...arrive from the United States. Consequently, the primary objective of the United States Air Force mobility program is to be able, by 1982, to double the

  12. Bias estimates used in lieu of validation of fission products and minor actinides in MCNP K eff calculations for PWR burnup credit casks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Don E.; Marshall, William J.; Wagner, John C.

    The U.S. Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation recently issued Interim Staff Guidance (ISG) 8, Revision 3. This ISG provides guidance for burnup credit (BUC) analyses supporting transport and storage of PWR pressurized water reactor (PWR) fuel in casks. Revision 3 includes guidance for addressing validation of criticality (k eff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MA). Based on previous work documented in NUREG/CR-7109, recommendation 4 of ISG-8, Rev. 3, includes a recommendation to use 1.5 or 3% of the FP&MA worth to conservatively cover the biasmore » due to the specified FP&MAs. This bias is supplementary to the bias and bias uncertainty resulting from validation of k eff calculations for the major actinides in SNF and does not address extension to actinides and fission products beyond those identified herein. The work described in this report involves comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII based nuclear data and supports use of the 1.5% FP&MA worth bias when either SCALE or MCNP codes are used for criticality calculations, provided the other conditions of the recommendation 4 are met. The method used in this report may also be applied to demonstrate the applicability of the 1.5% FP&MA worth bias to other codes using ENDF/B V, VI or VII based nuclear data. The method involves use of the applicant s computational method to generate FP&MA worths for a reference SNF cask model using specified spent fuel compositions. The applicant s FP&MA worths are then compared to reference values provided in this report. The applicants FP&MA worths should not exceed the reference results by more than 1.5% of the reference FP&MA worths.« less

  13. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, J C; Haut, R; Jahn, G

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations.more » Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.« less

  14. New core-reflector boundary conditions for transient nodal reactor calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, E.K.; Kim, C.H.; Joo, H.K.

    1995-09-01

    New core-reflector boundary conditions designed for the exclusion of the reflector region in transient nodal reactor calculations are formulated. Spatially flat frequency approximations for the temporal neutron behavior and two types of transverse leakage approximations in the reflector region are introduced to solve the transverse-integrated time-dependent one-dimensional diffusion equation and then to obtain relationships between net current and flux at the core-reflector interfaces. To examine the effectiveness of new core-reflector boundary conditions in transient nodal reactor computations, nodal expansion method (NEM) computations with and without explicit representation of the reflector are performed for Laboratorium fuer Reaktorregelung und Anlagen (LRA) boilingmore » water reactor (BWR) and Nuclear Energy Agency Committee on Reactor Physics (NEACRP) pressurized water reactor (PWR) rod ejection kinetics benchmark problems. Good agreement between two NEM computations is demonstrated in all the important transient parameters of two benchmark problems. A significant amount of CPU time saving is also demonstrated with the boundary condition model with transverse leakage (BCMTL) approximations in the reflector region. In the three-dimensional LRA BWR, the BCMTL and the explicit reflector model computations differ by {approximately}4% in transient peak power density while the BCMTL results in >40% of CPU time saving by excluding both the axial and the radial reflector regions from explicit computational nodes. In the NEACRP PWR problem, which includes six different transient cases, the largest difference is 24.4% in the transient maximum power in the one-node-per-assembly B1 transient results. This difference in the transient maximum power of the B1 case is shown to reduce to 11.7% in the four-node-per-assembly computations. As for the computing time, BCMTL is shown to reduce the CPU time >20% in all six transient cases of the NEACRP PWR.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downar, Thomas

    This report summarizes the current status of VERA-CS Verification and Validation for PWR Core Follow operation and proposes a multi-phase plan for continuing VERA-CS V&V in FY17 and FY18. The proposed plan recognizes the hierarchical nature of a multi-physics code system such as VERA-CS and the importance of first achieving an acceptable level of V&V on each of the single physics codes before focusing on the V&V of the coupled physics solution. The report summarizes the V&V of each of the single physics codes systems currently used for core follow analysis (ie MPACT, CTF, Multigroup Cross Section Generation, and BISONmore » / Fuel Temperature Tables) and proposes specific actions to achieve a uniformly acceptable level of V&V in FY17. The report also recognizes the ongoing development of other codes important for PWR Core Follow (e.g. TIAMAT, MAMBA3D) and proposes Phase II (FY18) VERA-CS V&V activities in which those codes will also reach an acceptable level of V&V. The report then summarizes the current status of VERA-CS multi-physics V&V for PWR Core Follow and the ongoing PWR Core Follow V&V activities for FY17. An automated procedure and output data format is proposed for standardizing the output for core follow calculations and automatically generating tables and figures for the VERA-CS Latex file. A set of acceptance metrics is also proposed for the evaluation and assessment of core follow results that would be used within the script to automatically flag any results which require further analysis or more detailed explanation prior to being added to the VERA-CS validation base. After the Automation Scripts have been completed and tested using BEAVRS, the VERA-CS plan proposes the Watts Bar cycle depletion cases should be performed with the new cross section library and be included in the first draft of the new VERA-CS manual for release at the end of PoR15. Also, within the constraints imposed by the proprietary nature of plant data, as many as possible of the FY17 AMA Plant Core Follow cases should also be included in the VERA-CS manual at the end of PoR15. After completion of the ongoing development of TIAMAT for fully coupled, full core calculations with VERA-CS / BISON 1.5D, and after the completion of the refactoring of MAMBA3D for CIPS analysis in FY17, selected cases from the VERA-CS validation based should be performed, beginning with the legacy cases of Watts Bar and BEAVRS in PoR16. Finally, as potential Phase III future work some additional considerations are identified for extending the VERA-CS V&V to other reactor types such as the BWR.« less

  16. Primary Connections: Simulating the Classroom in Initial Teacher Education

    ERIC Educational Resources Information Center

    Hume, Anne Christine

    2012-01-01

    The challenge of preparing novice primary teachers for teaching in an educational environment, where science education has low status and many teachers have limited science content knowledge and lack the confidence to teach science, is great. This paper reports on an innovation involving a sustained simulation in an undergraduate science education…

  17. Analysis, modeling, and simulation (AMS) testbed development and evaluation to support dynamic mobility applications (DMA) and active transportation and demand management (ATDM) programs - Pasadena calibration report : draft report.

    DOT National Transportation Integrated Search

    2017-03-01

    The primary objective of this project is to develop multiple simulation testbeds/transportation models to evaluate the impacts of DMA connected vehicle applications and the active transportation and demand management (ATDM) strategies. The primary pu...

  18. Morphologies of Primary Silicon in Hypereutectic Al-Si Alloys: Phase-Field Simulation Supported by Key Experiments

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Wei, Ming; Zhang, Lijun; Du, Yong

    2016-04-01

    We realized a three-dimensional visualization of the morphology evolution and the growth behavior of the octahedral primary silicon in hypereutectic Al-20wtpctSi alloy during solidification in a real length scale by utilizing the phase-field simulation coupled with CALPHAD databases, and supported by key experiments. Moreover, through two-dimensional cut of the octahedral primary silicon at random angles, different morphologies observed in experiments, including triangle, square, trapezoid, rhombic, pentagon, and hexagon, were well reproduced.

  19. Simulating Macrosegregation in Var Ingots of Titanium Alloy During Solidification

    DTIC Science & Technology

    2006-06-01

    spacings in Ti- 6Al - 4V were estimated. A summary-status of the use of software by VAR titanium -ingot producers in the USA is also given. In its...Ti- 6Al - 4V with a melting condition provided by RMI Titanium Company (Proposed Case 11). Two ingots are simulated; one is simulated assuming a...revealed a more intense band. Since primary arm spacings in titanium alloys are not available, primary dendrite arm spacings in Ti-6A1- 4V were

  20. User Data Package - Energy-Efficient Windows and Window Coverings for Naval Housing

    DTIC Science & Technology

    1990-07-01

    1765 33 Savannah 1819 32 Tucson 1800 32 Winslow 4782 35 Idaho Yuma 974 33 Boise 5809 44 Lewiston 5542 46 Arkansas Pocatello 7033 43 Fort Smith 3292 35...Alexandria, VA DODDS Pac, FAC, Okinawa, Japan DOE Fed Energy Mgt Program, Wash, DC: INEL Tech Lib Reports Sta. Idaho Falls. ID; Knolls Atomic Pwr Lab

  1. 77 FR 9960 - Final Environmental Impact Statement for Extension of F-Line Streetcar Service to Fort Mason...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-PWR-PWRO-1103-8840; 2051-P580-579] Final... AGENCY: National Park Service, Department of the Interior. ACTION: Notice of Availability of the Final... resources. Many also suggested various design ideas and other measures to help reduce these impacts. In...

  2. 78 FR 38359 - Approval of Record of Decision for Relocation of Cattle Point Road, San Juan Island National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... DEPARTMENT OF THE INTERIOR National Park Service [NPS-PWR-PWRO-12863; PPPWSAJHA0 PPMPSAS1Z.Y00000... Park, San Juan County, Washington AGENCY: National Park Service, Interior. ACTION: Notice of Record of....2), the Department of the Interior, National Park Service has prepared and approved a Record of...

  3. 77 FR 31655 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-29

    ... controverted. In addition, the requestor/petitioner shall provide a brief explanation of the bases for the... against burst, as discussed in Regulatory Guide (RG) 1.121, ``Bases for Plugging Degraded PWR [Pressurized... Institute] 97-06, Revision 3, ``Steam Generator Program Guidelines'' (Reference 1) and RG 1.121, ``Bases for...

  4. Manufacturing Methods and Technology Measure for Fabrication of Silicon Transcalent Rectifier.

    DTIC Science & Technology

    1980-09-01

    Prod Test/Eval’, z HA Kotler a Patent- Power & E 1 RM Roderick Env. Eng. & Test 1 JB Grosh Iron Mouptain - .l TUBE PARTS MFG. 5 RL SPALDING...AFAL/PODI ATTN: Working Group on Pwr. Devices (Mr. Philip Herron) 201 Varick Street Wright Patterson AFB, OH 45433 New York, NY 10014 Commander Mr

  5. Technical Letter Report on the Cracking of Irradiated Cast Stainless Steels with Low Ferrite Content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.; Alexandreanu, B.; Natesan, K.

    2014-11-01

    Crack growth rate and fracture toughness J-R curve tests were performed on CF-3 and CF-8 cast austenite stainless steels (CASS) with 13-14% of ferrite. The tests were conducted at ~320°C in either high-purity water with low dissolved oxygen or in simulated PWR water. The cyclic crack growth rates of CF-8 were higher than that of CF-3, and the differences between the aged and unaged specimens were small. No elevated SCC susceptibility was observed among these samples, and the SCC CGRs of these materials were comparable to those of CASS alloys with >23% ferrite. The fracture toughness values of unirradiated CF-3more » were similar between unaged and aged specimens, and neutron irradiation decreased the fracture toughness significantly. The fracture toughness of CF-8 was reduced after thermal aging, and declined further after irradiation. It appears that while lowering ferrite content may help reduce the tendency of thermal aging embrittlement, it is not very effective to mitigate irradiation-induced embrittlement. Under a combined condition of thermal aging and irradiation, neutron irradiation plays a dominant role in causing embrittlement in CASS alloys.« less

  6. CASL L1 Milestone report : CASL.P4.01, sensitivity and uncertainty analysis for CIPS with VIPRE-W and BOA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Yixing; Adams, Brian M.; Secker, Jeffrey R.

    2011-12-01

    The CASL Level 1 Milestone CASL.P4.01, successfully completed in December 2011, aimed to 'conduct, using methodologies integrated into VERA, a detailed sensitivity analysis and uncertainty quantification of a crud-relevant problem with baseline VERA capabilities (ANC/VIPRE-W/BOA).' The VUQ focus area led this effort, in partnership with AMA, and with support from VRI. DAKOTA was coupled to existing VIPRE-W thermal-hydraulics and BOA crud/boron deposit simulations representing a pressurized water reactor (PWR) that previously experienced crud-induced power shift (CIPS). This work supports understanding of CIPS by exploring the sensitivity and uncertainty in BOA outputs with respect to uncertain operating and model parameters. Thismore » report summarizes work coupling the software tools, characterizing uncertainties, and analyzing the results of iterative sensitivity and uncertainty studies. These studies focused on sensitivity and uncertainty of CIPS indicators calculated by the current version of the BOA code used in the industry. Challenges with this kind of analysis are identified to inform follow-on research goals and VERA development targeting crud-related challenge problems.« less

  7. Determine Operating Reactor to Use for the 2016 PCI Level 1 Milestone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarno, Kevin T.

    2016-01-30

    The Consortium for Advanced Simulation of Light Water Reactors (LWRs) (CASL) Level 1 milestone to “Assess the analysis capability for core-wide [pressurized water reactor] PWR Pellet- Clad Interaction (PCI) screening and demonstrate detailed 3-D analysis on selected sub-region” (L1:CASL.P13.03) requires a particular type of nuclear power plant for the assessment. This report documents the operating reactor and cycles chosen for this assessment in completion of the physics integration (PHI) milestone to “Determine Operating Reactor to use for PCI L1 Milestone” (L3:PHI.CMD.P12.02). Watts Bar Unit 1 experienced (at least) one fuel rod failure in each of cycles 6 and 7, andmore » at least one was deemed to be duty related rather than being primarily related to a manufacturing defect or grid effects. This brief report documents that the data required to model cycles 1–12 of Watts Bar Unit 1 using VERA-CS contains sufficient data to model the PHI portion of the PCI challenge problem. A list of additional data needs is also provided that will be important for verification and validation of the BISON results.« less

  8. Visualization of Flow in Pressurizer Spray Line Piping and Estimation of Thermal Stress Fluctuation Caused by Swaying of Water Surface

    NASA Astrophysics Data System (ADS)

    Oumaya, Toru; Nakamura, Akira; Onojima, Daisuke; Takenaka, Nobuyuki

    The pressurizer spray line of PWR plants cools reactor coolant by injecting water into pressurizer. Since the continuous spray flow rate during commercial operation of the plant is considered insufficient to fill the pipe completely, there is a concern that a water surface exists in the pipe and may periodically sway. In order to identify the flow regimes in spray line piping and assess their impact on pipe structure, a flow visualization experiment was conducted. In the experiment, air was used substituted for steam to simulate the gas phase of the pressurizer, and the flow instability causing swaying without condensation was investigated. With a full-scale mock-up made of acrylic, flow under room temperature and atmospheric pressure conditions was visualized, and possible flow regimes were identified based on the results of the experiment. Three representative patterns of swaying of water surface were assumed, and the range of thermal stress fluctuation, when the surface swayed instantaneously, was calculated. With the three patterns of swaying assumed based on the visualization experiment, it was confirmed that the thermal stress amplitude would not exceed the fatigue endurance limit prescribed in the Japanese Design and Construction Code.

  9. Heat-transfer analysis of double-pipe heat exchangers for indirect-cycle SCW NPP

    NASA Astrophysics Data System (ADS)

    Thind, Harwinder

    SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. SuperCritical Water (SCW) Nuclear Power Plants (NPPs) are expected to have much higher operating parameters compared to current NPPs, i.e., pressure of about 25 MPa and outlet temperature up to 625 °C. This study presents the heat transfer analysis of an intermediate Heat exchanger (HX) design for indirect-cycle concepts of Pressure-Tube (PT) and Pressure-Vessel (PV) SCWRs. Thermodynamic configurations with an intermediate HX gives a possibility to have a single-reheat option for PT and PV SCWRs without introducing steam-reheat channels into a reactor. Similar to the current CANDU and Pressurized Water Reactor (PWR) NPPs, steam generators separate the primary loop from the secondary loop. In this way, the primary loop can be completely enclosed in a reactor containment building. This study analyzes the heat transfer from a SCW primary (reactor) loop to a SCW and Super-Heated Steam (SHS) secondary (turbine) loop using a double-pipe intermediate HX. The numerical model is developed with MATLAB and NIST REFPROP software. Water from the primary loop flows through the inner pipe, and water from the secondary loop flows through the annulus in the counter direction of the double-pipe HX. The analysis on the double-pipe HX shows temperature and profiles of thermophysical properties along the heated length of the HX. It was found that the pseudocritical region has a significant effect on the temperature profiles and heat-transfer area of the HX. An analysis shows the effect of variation in pressure, temperature, mass flow rate, and pipe size on the pseudocritical region and the heat-transfer area of the HX. The results from the numerical model can be used to optimize the heat-transfer area of the HX. The higher pressure difference on the hot side and higher temperature difference between the hot and cold sides reduces the pseudocritical-region length, thus decreases the heat-transfer surface area of the HX.

  10. The development of a simulation model of primary prevention strategies for coronary heart disease.

    PubMed

    Babad, Hannah; Sanderson, Colin; Naidoo, Bhash; White, Ian; Wang, Duolao

    2002-11-01

    This paper describes the present state of development of a discrete-event micro-simulation model for coronary heart disease prevention. The model is intended to support health policy makers in assessing the impacts on health care resources of different primary prevention strategies. For each person, a set of times to disease events, conditional on the individual's risk factor profile, is sampled from a set of probability distributions that are derived from a new analysis of the Framingham cohort study on coronary heart disease. Methods used to model changes in behavioural and physiological risk factors are discussed and a description of the simulation logic is given. The model incorporates POST (Patient Oriented Simulation Technique) simulation routines.

  11. Asymmetric Responses of Primary Productivity to Altered Precipitation Simulated by Land Surface Models across Three Long-term Grassland Sites

    NASA Astrophysics Data System (ADS)

    Wu, D.; Ciais, P.; Viovy, N.; Knapp, A.; Wilcox, K.; Bahn, M.; Smith, M. D.; Ito, A.; Arneth, A.; Harper, A. B.; Ukkola, A.; Paschalis, A.; Poulter, B.; Peng, C.; Reick, C. H.; Hayes, D. J.; Ricciuto, D. M.; Reinthaler, D.; Chen, G.; Tian, H.; Helene, G.; Zscheischler, J.; Mao, J.; Ingrisch, J.; Nabel, J.; Pongratz, J.; Boysen, L.; Kautz, M.; Schmitt, M.; Krohn, M.; Zeng, N.; Meir, P.; Zhang, Q.; Zhu, Q.; Hasibeder, R.; Vicca, S.; Sippel, S.; Dangal, S. R. S.; Fatichi, S.; Sitch, S.; Shi, X.; Wang, Y.; Luo, Y.; Liu, Y.; Piao, S.

    2017-12-01

    Changes in precipitation variability including the occurrence of extreme events strongly influence plant growth in grasslands. Field measurements of aboveground net primary production (ANPP) in temperate grasslands suggest a positive asymmetric response with wet years resulting in ANPP gains larger than ANPP declines in dry years. Whether land surface models used for historical simulations and future projections of the coupled carbon-water system in grasslands are capable to simulate such non-symmetrical ANPP responses remains an important open research question. In this study, we evaluate the simulated responses of grassland primary productivity to altered precipitation with fourteen land surface models at the three sites of Colorado Shortgrass Steppe (SGS), Konza prairie (KNZ) and Stubai Valley meadow (STU) along a rainfall gradient from dry to wet. Our results suggest that: (i) Gross primary production (GPP), NPP, ANPP and belowground NPP (BNPP) show nonlinear response curves (concave-down) in all the models, but with different curvatures and mean values. In contrast across the sites, primary production increases and then saturates along increasing precipitation with a flattening at the wetter site. (ii) Slopes of spatial relationships between modeled primary production and precipitation are steeper than the temporal slopes (obtained from inter-annual variations). (iii) Asymmetric responses under nominal precipitation range with modeled inter-annual primary production show large uncertainties, and model-ensemble median generally suggests negative asymmetry (greater declines in dry years than increases in wet years) across the three sites. (iv) Primary production at the drier site is predicted to more sensitive to precipitation compared to wetter site, and median sensitivity consistently indicates greater negative impacts of reduced precipitation than positive effects of increased precipitation under extreme conditions. This study implies that most models overemphasize the drought effects or underestimate the watering impacts on primary production in the normal-state, with the direct consequence that carbon-water interactions need to be improved in future model generations with improved mechanistic representations.

  12. Accident analysis of heavy water cooled thorium breeder reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki

    2015-04-16

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k,more » and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition. The analysis showed that temperatures of fuel and claddings during accident are still below limitations which are in secure condition.« less

  13. Accident analysis of heavy water cooled thorium breeder reactor

    NASA Astrophysics Data System (ADS)

    Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki

    2015-04-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The power reactor has a peak value before reactor has new balance condition. The analysis showed that temperatures of fuel and claddings during accident are still below limitations which are in secure condition.

  14. Satellite Galaxies in the Illustris-1 Simulation: Poor Tracers of the Underlying Mass Distribution

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa G.

    2018-06-01

    The 3-d spatial distribution of luminous satellite galaxies in the z=0 snapshot of the Illustris-1 simulation is compared to the 3-d spatial distribution of the mass surrounding the primary galaxies about which the satellites orbit. The primary-satellite sample is selected in such a way that it matches the selection criteria used in a previous study of luminous satellite galaxies in the Millennium Run simulation. A key difference between the two simulations is that luminous galaxies in the Millennium Run are the result of a semi-analytic galaxy formation model, while in Illustris-1 the luminous galaxies are the result of numerical hydrodynamics, star formation and feedback models. The sample consists of 1,025 primary galaxies with absolute magnitudes Mr < -20.5, and there are a total of 4,546 satellites with absolute magnitudes Mr < -14.5 within the virial radii of the primary galaxies. The mass distribution surrounding the primary galaxies is well fitted by an NFW profile with a concentration parameter c = 11.9. Contrary to a previous study using satellite galaxies in the Millennium Run, the number density profile of the full satellite sample from Illustris-1 is not at all well-fitted by an NFW profile. In the case of the faintest satellites (Mr > -17), the satellite number density profile is well-fitted by an NFW profile, but the concentration parameter is exceptionally low (c = 1.8) compared to the concentration parameter of the mass surrounding the primary galaxies. The conclusion from this work is that luminous satellite galaxies in Illustris-1 are poor tracers of the mass distribution surrounding their primary galaxies.

  15. 76 FR 23577 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... Interconnection, L.L.C. submits tariff filing per 35.13(a)(2)(iii: Queue No. W3-124--Original Service Agreement No... Transmission Agreement with Auburndale Pwr Partners to be effective 5/1/2011. Filed Date: 04/21/2011. Accession... tariff filing per 35.13(a)(1): 04--21--11 Paris Rate Schedule 407 Settlement to be effective 3/31/2011...

  16. Steam generators regulatory practices and issues in Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendoza, C.; Castelao, C.; Ruiz-Colino, J.

    1997-02-01

    This paper presents the actual status of Spanish Steam Generator tubes, actions developed by PWR plant owners and submitted to CSN, and regulatory activities related to tube degradation mechanisms analysis; NDT tube inspection techniques; tube, tubesheet and TSPs integrity studies; tube plugging/repair criteria; preventive and corrective measures including whole SGs replacement; tube leak measurement methods and other operational aspects.

  17. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-1: Pressurized Water Reactors.

    ERIC Educational Resources Information Center

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical pressurized water reactor (PWR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module is the PWR…

  18. Organometallics in High Energy Chemistry.

    DTIC Science & Technology

    1983-10-31

    Luines Physeical ftaenc Chemistry DepatneWu. SJI International. Menlo PWr *. CaiOwrnia M10 Rceived Nouvber 8. 1IM The otslytic formation of6nw carbon...support the idea that the metalloazocyclopropane intermediate is the reactive intermediate that leads to transalkylation. A discussion of the...exceptionally good correlation between the catalytic reactivity patterns of palladium black in its reactions with tertiary amines and those of homogeneous

  19. Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis

    NASA Astrophysics Data System (ADS)

    Hoogenboom, J. Eduard; Sjenitzer, Bart L.

    2014-06-01

    To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.

  20. Processing and microstructural characterisation of a UO2-based ceramic for disposal studies on spent AGR fuel

    NASA Astrophysics Data System (ADS)

    Hiezl, Z.; Hambley, D. I.; Padovani, C.; Lee, W. E.

    2015-01-01

    Preparation and characterisation of a Simulated Spent Nuclear Fuel (SIMFuel), which replicates the chemical state and microstructure of Spent Nuclear Fuel (SNF) discharged from a UK Advanced Gas-cooled Reactor (AGR) after a cooling time of 100 years is described. Given the relatively small differences in radionuclide inventory expected over longer time periods, the SIMFuel studied in this work is expected to be also representative of spent fuel after significantly longer periods (e.g. 1000 years). Thirteen stable elements were added to depleted UO2 and sintered to simulate the composition of fuel pellets after burn-ups of 25 and 43 GWd/tU and, as a reference, pure UO2 pellets were also investigated. The fission product distribution was calculated using the FISPIN code provided by the UK National Nuclear Laboratory. SIMFuel pellets were up to 92% dense and during the sintering process in H2 atmosphere Mo-Ru-Rh-Pd metallic precipitates and grey-phase ((Ba, Sr)(Zr, RE) O3 oxide precipitates) formed within the UO2 matrix. These secondary phases are present in real PWR and AGR SNF. Metallic precipitates are generally spherical and have submicron particle size (0.8 ± 0.7 μm). Spherical oxide precipitates in SIMFuel measured up to 30 μm in diameter, but no data were available in the public domain to compare this to AGR SNF. The grain size of actual AGR SNF (∼ 3-30 μm) is larger than that measured in AGR SIMFuel (∼ 2-5 μm).

  1. Feasibility of recycling thorium in a fusion-fission hybrid/PWR symbiotic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephs, J.M.

    1980-12-31

    A study was made of the economic impact of high levels of radioactivity in the thorium fuel cycle. The sources of this radioactivity and means of calculating the radioactive levels at various stages in the fuel cycle are discussed and estimates of expected levels are given. The feasibility of various methods of recycling thorium is discussed. These methods include direct recycle, recycle after storage for 14 years to allow radioactivity to decrease, shortening irradiation times to limit radioactivity build up, and the use of the window in time immediately after reprocessing where radioactivity levels are diminished. An economic comparison ismore » made for the first two methods together with the throwaway option where thorium is not recycled using a mass energy flow model developed for a CTHR (Commercial Tokamak Hybrid Reactor), a fusion fission hybrid reactor which serves as fuel producer for several PWR reactors. The storage option is found to be most favorable; however, even this option represents a significant economic impact due to radioactivity of 0.074 mills/kW-h which amounts to $4 x 10/sup 9/ over a 30 year period assuming a 200 gigawatt supply of electrical power.« less

  2. CHF considerations for highly moderated 100% MOX fuels PWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saphier, D.; Raymond, P.

    1995-09-01

    A feasibility study on using 100% MOX fuel in a PWR with increased moderating ratio, RMA, was initiated. In the proposed design all the parameters were chosen identical to the French 1450MW PWR, except the fuel pin diameter which was reduced to achieve higher moderating ratios, V{sub M}/V{sub F}, where V{sub M} and V{sub F} are the moderator and fuel volume respectively. Moderating ratios from 2 to 4 were considered. In the present study the thermal-hydraulic feasibility of using fuel assemblies with smaller diameter fuel pins was investigated. The major design constrain in this study was the critical heat fluxmore » (CHF). In order to maintain the fuel pin integrity under nominal operating and transient conditions, the minimum DNBR, (Departure from Nucleate Boiling Ratio given by CHF/q{close_quotes}{sub local}, where q{close_quotes}{sub local} is the local heat flux), has to be above a given value. The limitations of the existing CHF correlations for the present study are outlined. Two designs based on the conventional 17x17 fuel assembly and on the advanced 19x19 assembly meeting the MDNBR criteria and satisfying the control margin requirements, are proposed.« less

  3. Development of new UV-I. I. Cerenkov Viewing Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuribara, Masayuki; Nemoto, Koshichi

    1994-02-01

    The Cerenkov glow images from boiling-water reactors (BWR) and pressurized-water reactors (PWR) irradiated fuel assemblies are generally used for inspections. However, sometimes it is difficult or impossible to identify the image by the conventional Cerenkov Viewing Device (CVD), because of the long cooling time and/or low burnup. Now a new UV-I.I. (Ultra-Violet light Image Intensifier) CVD has been developed, which can detect the very weak Cerenkov glow from spent fuel assemblies. As this new device uses the newly developed proximity focused type UV-I.I., Cerenkov photons are used efficiently, producing better quality Cerenkov glow images. Moreover, since the image is convertedmore » to a video signal, it is easy to improve the signal to noise ratio (S/N) by an image processor. The new CVD was tested at BWR and PWR power plants in Japan, with fuel burnups ranging from 6,200--33,000 MWD/MTU (megawatt days per metric ton of uranium) and cooling times ranging from 370 to 6,200 d. The tests showed that the new CVD is superior to the conventional STA/CRIEPI CVD, and could detect very feeble Cerenkov glow images using an image processor.« less

  4. Crack opening area estimates in pressurized through-wall cracked elbows under bending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, C.; Gilles, P.; Pignol, M.

    1997-04-01

    One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area ismore » described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment.« less

  5. Determination of uncertainties of PWR spent fuel radionuclide inventory based on real operational history data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, Ivan; Bosbach, Dirk; Aksyutina, Yuliya

    A requisite for the official approval of the safe final disposal of SNF is a comprehensive specification and declaration of the nuclear inventory in SNF by the waste supplier. In the verification process both the values of the radionuclide (RN) activities and their uncertainties are required. Burn-up (BU) calculations based on typical and generic reactor operational parameters do not encompass any possible uncertainties observed in real reactor operations. At the same time, the details of the irradiation history are often not well known, which complicates the assessment of declared RN inventories. Here, we have compiled a set of burnup calculationsmore » accounting for the operational history of 339 published or anonymized real PWR fuel assemblies (FA). These histories were used as a basis for a 'SRP analysis', to provide information about the range of the values of the associated secondary reactor parameters (SRP's). Hence, we can calculate the realistic variation or spectrum of RN inventories. SCALE 6.1 has been employed for the burn-up calculations. The results have been validated using experimental data from the online database - SFCOMPO-1 and -2. (authors)« less

  6. PRESSURIZED WATER REACTOR (PWR) PROJECT TECHNICAL PROGRESS REPORT FOR THE PERIOD DECEMBER 24, 1959 TO FEBRUARY 23, 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    < 9 A < 2 6 < 7 4 8 9 6 2 6 equalizing vent valves on air locks 2, 4, and 5 was completed. An evaluation of the failed main coolant pump No. 1-80-F-737 was completed. The design for installing combination ball check and manual stop valves on the boiler water level sight glasses, to prevent the escape of steam should a defective sight glass develop, was completed. The main coolant pumps No. 80 and No. 79 were modified by increasing the radial clearance of the impeller wear ring and by removing the upper labyrinth ring. A designmore » for relocating the cooling water flow orifice 17-J4-17 was completed. Metallurgy: Preliminary data from the Bett 69-1 in-pile thermal conductivity capsules indicate that the thermal conductivity of as-sintered ZrO/sub 2/ 34 wt.% UO/sub 2/ appears to decrease from an initial value of about 1.6 Btu/hr-ft- deg F to about 0.7 Btu/hr-ft- deg F after 17 days irradiation in an estimated perturbed flux of 4 x 10/sup 13/. The thermal conductivities of UO/sub 2/ and BeO 51 wt.% UO/sub 2/ fuel remained unchanged during this time. Examination of the two failed X-3-1 fuel plates and the two failed CR-V-m fuel plates showed that a definite burnup limitation exists for bulk UO/sub 2/i of about 16 x 10/sup 20/ to 21.5 x 10/sup 20/ fissions/cc at which point the fuel increases in volume about 4- -5%. Irradiation of both fine and coarse dis-persions of 28 wt.% UO/sub 2/in BeO to exposures of about 11 x 10/sup 20/ fissions/cc shows this material has very poor dimensional stabllity and poor fission gas retention ability. The fine particles dispersion showed approximately 4.8 times the thickness increase as did the coarse particles. Interim examination of a bulk B/sub 4/ burnable poison plate irradiated in the HB-1 loop to about 60 at.% B/sup 10/ burnup showed a 17% increase in plate thickness. The technical feasibility of fabricating blanket receptacles with full length fuel channels and an integral cover plate by form rolling was established. Hack-pressure-bonding appears to be a suitable means of incorporating void volume in fuel compartments of oxide plates. High density (99% T.D.) and improved microstructure of B/sub 4/C-SiC burnable poisons are achieved when small (2 micron) B/sub 4/C particle size powder is used ia hot pressing compacts. Measurements of the self-diffusion coefficients of uranium in UO/sub 2/ by the method of surface activity decrease were completed. Experiments on the diffusion of Xe/sup 133/ in Core 2--type UO/sup 2/ fuel platelets were completed. Diffusion anaeals carried out at 1000 deg C on samples from the X-3-1 and the 14-28 irradiation tests show that the apparent diffusion coefficient for Kr/sup 85/ incresses considerably with burnup. An average activation energy for thoron emanation in UO/sub 2/ was estimated to be 44 kcal/mole. An initial experiment on the release of helium from slightly irradiated B/sub 4/C at 900 deg C resulted in a diffusion coefficient for helium of 3.5 x 10/sup -8/ Physics: Calculatad values for seed-blanket power sharing as a function of PWR-1 Seed 1 life were compared with measured data obtained from thermal instrumentation at Shippingport. Two-dimensional depletion studies in the PWR-2 "composite cell" geometry were completed for seed assembly configurations having different radial fuel zoning. An eighth core representation is being employed for a two- dimensional depletion calculation of PWR-2. An analysis of the effect on the axial power distribution of the nonuniform temperature distribution in an 8 ft PWR-2 core loaded with 295 kg of U/sup 235/ indicated that local variations in power density of as much as 15% may occur, relative to the distribution that would exist if the axial temperature distribution were uniform. A technique was developed which makes possible an approximately correct description of the neutron capture rate within small rectangular boron wafers in diffusion theory calculations. Seed peaking factors measured in a five-cluster slab of PWR-2 mock- up materials were measured and compared with calculated peaking factors obtained using the nuclear« less

  7. Self-cutting blades and their influence on primary stability of tapered dental implants in a simulated low-density bone model: a laboratory study.

    PubMed

    Kim, Duck-Rae; Lim, Young-Jun; Kim, Myung-Joo; Kwon, Ho-Beom; Kim, Sung-Hun

    2011-11-01

    This study tested the hypothesis that there would be differences in primary stability due to the presence of self cutting blades. We investigated the effect of a self-cutting blade implant design on the primary stability of tapered dental implants in a simulated low-density bone model. Implant fixtures with 2 different designs, one with self-cutting blades and the other without self-cutting blades, were fabricated in the same implant system. Insertion torque, resonance frequency analysis, reverse torque, and pull-out and push-in tests were evaluated in grade no. 10 solid rigid polyurethane foam. All 5 assessments of the group without self-cutting blades were significantly higher than those of the self-cutting group (P < .001). The implants without self-cutting blades create a lateral compression with increased contact surface area and consequently improve the primary stability in a simulated low-density bone model. Copyright © 2011 Mosby, Inc. All rights reserved.

  8. Hydro turbine governor’s power control of hydroelectric unit with sloping ceiling tailrace tunnel

    NASA Astrophysics Data System (ADS)

    Fu, Liang; Wu, Changli; Tang, Weiping

    2018-02-01

    The primary frequency regulation and load regulation transient process when the hydro turbine governor is under the power mode of hydropower unit with sloping ceiling tailrace are analysed by field test and numerical simulation in this paper. A simulation method based on “three-zone model” to simulate small fluctuation transient process of the sloping ceiling tailrace is proposed. The simulation model of hydraulic turbine governor power mode is established by governor’s PLC program identification and parameter measurement, and the simulation model is verified by the test. The slow-fast-slow “three-stage regulation” method which can improve the dynamic quality of hydro turbine governor power mode is proposed. The power regulation strategy and parameters are optimized by numerical simulation, the performance of primary frequency regulation and load regulation transient process when the hydro turbine governor is under power mode are improved significantly.

  9. Acceptability and usability of a telepresence robot for geriatric primary care: A pilot.

    PubMed

    Vermeersch, Patricia; Sampsel, Debi D; Kleman, Carolyn

    2015-01-01

    The dual challenge of increasing numbers of older adults and overall increases in those with some form of insurance is driving the need to develop and evaluate novel methods of primary care delivery such as telehealth. The goal of this study was to explore the acceptability and usability of a remote presence robot (RPR) in a simulated primary care wellness encounter for older adults. A descriptive exploratory study was used to determine the acceptability and usability of the RPR operated by an APRN 250 miles from 13 older adults residing in a high rise during a simulated primary care visit. The results support previous research that technology such as the RPR can be both acceptable and useful for an older adult and primary care provider but only in certain circumstances. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Introducing a laparoscopic simulation training and credentialing program in gynaecology: an observational study.

    PubMed

    Janssens, Sarah; Beckmann, Michael; Bonney, Donna

    2015-08-01

    Simulation training in laparoscopic surgery has been shown to improve surgical performance. To describe the implementation of a laparoscopic simulation training and credentialing program for gynaecology registrars. A pilot program consisting of protected, supervised laparoscopic simulation time, a tailored curriculum and a credentialing process, was developed and implemented. Quantitative measures assessing simulated surgical performance were measured over the simulation training period. Laparoscopic procedures requiring credentialing were assessed for both the frequency of a registrar being the primary operator and the duration of surgery and compared to a presimulation cohort. Qualitative measures regarding quality of surgical training were assessed pre- and postsimulation. Improvements were seen in simulated surgical performance in efficiency domains. Operative time for procedures requiring credentialing was reduced by 12%. Primary operator status in the operating theatre for registrars was unchanged. Registrar assessment of training quality improved. The introduction of a laparoscopic simulation training and credentialing program resulted in improvements in simulated performance, reduced operative time and improved registrar assessment of the quality of training. © 2015 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  11. The effects of self-interstitial clusters on cascade defect evolution beyond the primary damage state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinisch, H.L.

    1997-04-01

    The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparentmore » only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies.« less

  12. M3FT-16OR0203052-Test Design for FeCrAl Alloy Tube Irradiation in HFIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrani, Kurt A.; Petrie, Christian M.

    2016-05-01

    This calculation summarizes thermal analyses of a flexible rabbit design for irradiating a variety of pressurized water reactor (PWR) cladding materials (stainless steel, iron-chromium aluminum [FeCrAl], Zircaloy, and Inconel) with variable dimensions at a temperature of 350 °C in the flux trap of the High Flux Isotope Reactor (HFIR). The design can accommodate standard cladding for outer diameters (ODs) of approximately 9.50 mm with thickness ranging from 0.30 mm to 0.70 mm. The length is generally between 10 and 50 mm. The specimens contain moly inserts with a variable OD that provides the heat flux necessary to achieve the designmore » temperature with such a small fixed gas gap. The primary outer containment is an Al-6061 housing with a slightly enlarged inner diameter (ID) of 9.60 mm. The specimen temperature is controlled by determining a helium/argon gas mixture specific to the as-built specimen and housing. Variables that affect the required gas mixture are the cladding material (thermal expansion, density, heat generation rate), cladding OD, housing ID, and cladding ID. This calculation documents the analyses performed to determine required gas mixtures for a variety of scenarios.« less

  13. Morphology of uranium electrodeposits on cathode in electrorefining process: A phase-field simulation

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Sato, Takumi; Suzuki, Toshio; Ohta, Hirokazu; Kurata, Masaki

    2013-05-01

    Morphology of uranium electrodeposits on cathode with respect to applied voltage, zirconium concentration in the molten salt and the size of primary deposit during pyroprocessing is systematically investigated by the phase-field simulation. It is found that there is a threshold zirconium concentration in the molten salt demarcating planar and cellular/needle-like electrodeposits, which agrees with experimental results. In addition, the effect of size of primary deposits on the morphology of electrodeposits is examined. It is then confirmed that cellular/needle-like electrodeposits are formed from large primary deposits at all applied voltages considered, whereas both the planar and cellular/needle-like electrodeposits are formed from the primary deposits of 10 μm and less.

  14. Transient Simulation of the Multi-SERTTA Experiment with MAMMOTH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortensi, Javier; Baker, Benjamin; Wang, Yaqi

    This work details the MAMMOTH reactor physics simulations of the Static Environment Rodlet Transient Test Apparatus (SERTTA) conducted at Idaho National Laboratory in FY-2017. TREAT static-environment experiment vehicles are being developed to enable transient testing of Pressurized Water Reactor (PWR) type fuel specimens, including fuel concepts with enhanced accident tolerance (Accident Tolerant Fuels, ATF). The MAMMOTH simulations include point reactor kinetics as well as spatial dynamics for a temperature-limited transient. The strongly coupled multi-physics solutions of the neutron flux and temperature fields are second order accurate both in the spatial and temporal domains. MAMMOTH produces pellet stack powers that are within 1.5% of the Monte Carlo reference solutions. Some discrepancies between the MCNP model used in the design of the flux collars and the Serpent/MAMMOTH models lead to higher power and energy deposition values in Multi-SERTTA unit 1. The TREAT core results compare well with the safety case computed with point reactor kinetics in RELAP5-3D. The reactor period is 44 msec, which corresponds to a reactivity insertion of 2.685% delta k/kmore » $. The peak core power in the spatial dynamics simulation is 431 MW, which the point kinetics model over-predicts by 12%. The pulse width at half the maximum power is 0.177 sec. Subtle transient effects are apparent at the beginning insertion in the experimental samples due to the control rod removal. Additional difference due to transient effects are observed in the sample powers and enthalpy. The time dependence of the power coupling factor (PCF) is calculated for the various fuel stacks of the Multi-SERTTA vehicle. Sample temperatures in excess of 3100 K, the melting point UO$$_2$$, are computed with the adiabatic heat transfer model. The planned shaped-transient might introduce additional effects that cannot be predicted with PRK models. Future modeling will be focused on the shaped-transient by improving the control rod models in MAMMOTH and adding the BISON thermo-elastic models and thermal-fluids heat transfer.« less

  15. 10 CFR 50.75 - Reporting and recordkeeping for decommissioning planning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... investing or otherwise, that a prudent investor would use in the same circumstances. The term “prudent... than or equal to 3400 MWt $105 between 1200 MWt and 3400 MWt (For a PWR of less than 1200 MWt, use P... 3400 MWt (For a BWR of less than 1200 MWt, use P=1200 MWt) $(104+0.009P) (2) An adjustment factor at...

  16. Experimental and Analytical Development of the Application of a Transit Laser Velocimeter

    DTIC Science & Technology

    1980-11-01

    from 0.005" brass shim stock with carefully finished edges and chemically blackened surface and is slightly adjustable in position to compensate for...personnel by Mr. T. V. C i e l , ETF . Mr. V i r g i l Cline, PWr, and t h e f a c i l i t y technic ians . A 1" diameter underexpanded unheated

  17. 40 CFR 59.507 - What are the labeling requirements for aerosol coatings?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in Table 1 of this subpart or a company-specific code, if that code is explained as required by § 59.511(a); (2) The applicable PWR limit for the product specified in Table 1 of this subpart; (3) The day... this subpart. (b) The label on the product must be displayed in such a manner that it is readily...

  18. Analysis of Coolant Options for Advanced Metal Cooled Nuclear Reactors

    DTIC Science & Technology

    2006-12-01

    24 Table 3.3 Hazards of Sodium Reaction Products, Hydride And Oxide...........................26 Table 3.4 Chemical Reactivity Of Selected...Liquid Metal Fast Breeder Reactor ORIGEN Oak Ridge Isotope Generator ORIGENARP Oak Ridge Isotope Generator Automated Rapid Processing PWR ...nuclear reactors, both because of the possibility of increased reactivity due to boiling and the potential loss of effectiveness of coolant heat transfer

  19. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive

    NASA Astrophysics Data System (ADS)

    Shan, Tzu-Ray; Wixom, Ryan R.; Thompson, Aidan P.

    2016-08-01

    In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed by coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. The formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.

  20. Analysis of the effects of simulated synergistic LEO environment on solar panels

    NASA Astrophysics Data System (ADS)

    Allegri, G.; Corradi, S.; Marchetti, M.; Scaglione, S.

    2007-02-01

    The effects due to the LEO environment exposure of a solar array primary structure are here presented and discussed in detail. The synergistic damaging components featuring LEO environment are high vacuum, thermal cycling, neutral gas, ultraviolet (UV) radiation and cold plasma. The synergistic effects due to these environmental elements are simulated by "on ground" tests, performed in the Space Environment Simulator (SAS) at the University of Rome "La Sapienza"; numerical simulations are performed by the Space Environment Information System (SPENVIS), developed by the European Space Agency (ESA). A "safe life" design for a solar array primary structure is developed, taking into consideration the combined damaging action of the LEO environment components; therefore results from both numerical and experimental simulations are coupled within the framework of a standard finite element method (FEM) based design. The expected durability of the solar array primary structure, made of laminated sandwich composite, is evaluated assuming that the loads exerted on the structure itself are essentially dependent on thermo-elastic stresses. The optical degradation of surface materials and the stiffness and strength degradation of structural elements are taken into account to assess the global structural durability of the solar array under characteristic operative conditions in LEO environment.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal, Jean-Marc; Eschbach, Romain; Launay, Agnes

    CEA and AREVA-NC have developed and used a depletion code named CESAR for 30 years. This user-friendly industrial tool provides fast characterizations for all types of nuclear fuel (PWR / UOX or MOX or reprocess Uranium, BWR / UOX or MOX, MTR and SFR) and the wastes associated. CESAR can evaluate 100 heavy nuclides, 200 fission products and 150 activation products (with Helium and Tritium formation). It can also characterize the structural material of the fuel (Zircalloy, stainless steel, M5 alloy). CESAR provides depletion calculations for any reactor irradiation history and from 3 months to 1 million years of coolingmore » time. CESAR5.3 is based on the latest calculation schemes recommended by the CEA and on an international nuclear data base (JEFF-3.1.1). It is constantly checked against the CEA referenced and qualified depletion code DARWIN. CESAR incorporates the CEA qualification based on the dissolution analyses of fuel rod samples and the 'La Hague' reprocessing plant feedback experience. AREVA-NC uses CESAR intensively at 'La Hague' plant, not only for prospective studies but also for characterizations at different industrial facilities all along the reprocessing process and waste conditioning (near 150 000 calculations per year). CESAR is the reference code for AREVA-NC. CESAR is used directly or indirectly with other software, data bank or special equipment in many parts of the La Hague plants. The great flexibility of CESAR has rapidly interested other projects. CESAR became a 'tool' directly integrated in some other softwares. Finally, coupled with a Graphical User Interface, it can be easily used independently, responding to many needs for prospective studies as a support for nuclear facilities or transport. An English version is available. For the principal isotopes of U and Pu, CESAR5 benefits from the CEA experimental validation for the PWR UOX fuels, up to a burnup of 60 GWd/t and for PWR MOX fuels, up to 45 GWd/t. CESAR version 5.3 uses the CEA reference calculation codes for neutron physics with the JEFF-3.1.1 nuclear data set. (authors)« less

  2. The benefits of a fast reactor closed fuel cycle in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregg, R.; Hesketh, K.

    2013-07-01

    The work has shown that starting a fast reactor closed fuel cycle in the UK, requires virtually all of Britain's existing and future PWR spent fuel to be reprocessed, in order to obtain the plutonium needed. The existing UK Pu stockpile is sufficient to initially support only a modest SFR 'closed' fleet assuming spent fuel can be reprocessed shortly after discharge (i.e. after two years cooling). For a substantial fast reactor fleet, most Pu will have to originate from reprocessing future spent PWR fuel. Therefore, the maximum fast reactor fleet size will be limited by the preceding PWR fleet size,more » so scenarios involving fast reactors still require significant quantities of uranium ore indirectly. However, once a fast reactor fuel cycle has been established, the very substantial quantities of uranium tails in the UK would ensure there is sufficient material for several centuries. Both the short and long term impacts on a repository have been considered in this work. Over the short term, the decay heat emanating from the HLW and spent fuel will limit the density of waste within a repository. For scenarios involving fast reactors, the only significant heat bearing actinide content will be present in the final cores, resulting in a 50% overall reduction in decay energy deposited within the repository when compared with an equivalent open fuel cycle. Over the longer term, radiological dose becomes more important. Total radiotoxicity (normalised by electricity generated) is lower for scenarios with Pu recycle after 2000 years. Scenarios involving fast reactors have the lowest radiotoxicity since the quantities of certain actinides (Np, Pu and Am) eventually stabilise. However, total radiotoxicity as a measure of radiological risk does not account for differences in radionuclide mobility once in repository. Radiological dose is dominated by a small number of fission products so is therefore not affected significantly by reactor type or recycling strategy (since the fission product will primarily be a function of nuclear energy generated). However, by reprocessing spent fuel, it is possible to immobilise the fission product in a more suitable waste form that has far more superior in-repository performance. (authors)« less

  3. High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single Component Reference Fuels

    DTIC Science & Technology

    2015-09-01

    NC. 14. ABSTRACT A high-resolution numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at diesel engine... diesel fuel injector at diesel engine type conditions has been performed. A full understanding of the primary atomization process in diesel fuel... diesel liquid sprays the complexity is further compounded by the physical attributes present including nozzle turbulence, large density ratios

  4. Aircraft Engine Systems

    NASA Technical Reports Server (NTRS)

    Veres, Joseph

    2001-01-01

    This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.

  5. Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana shelf

    NASA Astrophysics Data System (ADS)

    Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.

    2015-04-01

    The Louisiana shelf, in the northern Gulf of Mexico, receives large amounts of freshwater and nutrients from the Mississippi-Atchafalaya river system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year, except near the mouths of the Mississippi and Atchafalaya rivers, where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e., primary production and water column respiration). With this experiment we show that below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes (advection and vertical diffusion) and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.

  6. Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana Shelf

    NASA Astrophysics Data System (ADS)

    Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.

    2014-10-01

    The Louisiana shelf in the northern Gulf of Mexico receives large amounts of freshwater and nutrients from the Mississippi/Atchafalaya River system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year except near the mouths of the Mississippi and Atchafalaya Rivers where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink while the well-developed pycnocline isolates autotrophic surface waters from the heterotrophic and hypoxic waters below. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e. primary production and water column respiration). In this experiment below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.

  7. Renal calyceal anatomy characterization with 3-dimensional in vivo computerized tomography imaging.

    PubMed

    Miller, Joe; Durack, Jeremy C; Sorensen, Mathew D; Wang, James H; Stoller, Marshall L

    2013-02-01

    Calyceal selection for percutaneous renal access is critical for safe, effective performance of percutaneous nephrolithotomy. Available anatomical evidence is contradictory and incomplete. We present detailed renal calyceal anatomy obtained from in vivo 3-dimentional computerized tomography renderings. A total of 60 computerized tomography urograms were randomly selected. The renal collecting system was isolated and 3-dimensional renderings were constructed. The primary plane of each calyceal group of 100 kidneys was determined. A coronal maximum intensity projection was used for simulated percutaneous access. The most inferior calyx was designated calyx 1. Moving superiorly, the subsequent calyces were designated calyx 2 and, when present, calyx 3. The surface rendering was rotated to assess the primary plane of the calyceal group and the orientation of the select calyx. The primary plane of the upper pole calyceal group was mediolateral in 95% of kidneys and the primary plane of the lower pole calyceal group was anteroposterior in 95%. Calyx 2 was chosen in 90 of 97 simulations and it was appropriate in 92%. Calyx 3 was chosen in 7 simulations but it was appropriate in only 57%. Calyx 1 was not selected in any simulation and it was anteriorly oriented in 75% of kidneys. Appropriate lower pole calyceal access can be reliably accomplished with an understanding of the anatomical relationship between individual calyceal orientation and the primary plane of the calyceal group. Calyx 2 is most often appropriate for accessing the anteroposterior primary plane of the lower pole. Calyx 1 is most commonly oriented anterior. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. Multiscale Modeling of Primary Cilium Deformations Under Local Forces and Shear Flows

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Feng, Zhe; Resnick, Andrew; Young, Yuan-Nan

    2017-11-01

    We study the detailed deformations of a primary cilium under local forces and shear flows by developing a multiscale model based on the state-of-the-art understanding of its molecular structure. Most eukaryotic cells are ciliated with primary cilia. Primary cilia play important roles in chemosensation, thermosensation, and mechanosensation, but the detailed mechanism for mechanosensation is not well understood. We apply the dissipative particle dynamics (DPD) to model an entire well with a primary cilium and consider its different components, including the basal body, microtubule doublets, actin cortex, and lipid bilayer. We calibrate the mechanical properties of individual components and their interactions from experimental measurements and molecular dynamics simulations. We validate the simulations by comparing the deformation profile of the cilium and the rotation of the basal body with optical trapping experiments. After validations, we investigate the deformation of the primary cilium under shear flows. Furthermore, we calculate the membrane tensions and cytoskeleton stresses, and use them to predict the activation of mechanosensitive channels.

  9. Using discrete event simulation to compare the performance of family health unit and primary health care centre organizational models in Portugal.

    PubMed

    Fialho, André S; Oliveira, Mónica D; Sá, Armando B

    2011-10-15

    Recent reforms in Portugal aimed at strengthening the role of the primary care system, in order to improve the quality of the health care system. Since 2006 new policies aiming to change the organization, incentive structures and funding of the primary health care sector were designed, promoting the evolution of traditional primary health care centres (PHCCs) into a new type of organizational unit--family health units (FHUs). This study aimed to compare performances of PHCC and FHU organizational models and to assess the potential gains from converting PHCCs into FHUs. Stochastic discrete event simulation models for the two types of organizational models were designed and implemented using Simul8 software. These models were applied to data from nineteen primary care units in three municipalities of the Greater Lisbon area. The conversion of PHCCs into FHUs seems to have the potential to generate substantial improvements in productivity and accessibility, while not having a significant impact on costs. This conversion might entail a 45% reduction in the average number of days required to obtain a medical appointment and a 7% and 9% increase in the average number of medical and nursing consultations, respectively. Reorganization of PHCC into FHUs might increase accessibility of patients to services and efficiency in the provision of primary care services.

  10. Comparison of simulation modeling and satellite techniques for monitoring ecological processes

    NASA Technical Reports Server (NTRS)

    Box, Elgene O.

    1988-01-01

    In 1985 improvements were made in the world climatic data base for modeling and predictive mapping; in individual process models and the overall carbon-balance models; and in the interface software for mapping the simulation results. Statistical analysis of the data base was begun. In 1986 mapping was shifted to NASA-Goddard. The initial approach involving pattern comparisons was modified to a more statistical approach. A major accomplishment was the expansion and improvement of a global data base of measurements of biomass and primary production, to complement the simulation data. The main accomplishments during 1987 included: production of a master tape with all environmental and satellite data and model results for the 1600 sites; development of a complete mapping system used for the initial color maps comparing annual and monthly patterns of Normalized Difference Vegetation Index (NDVI), actual evapotranspiration, net primary productivity, gross primary productivity, and net ecosystem production; collection of more biosphere measurements for eventual improvement of the biological models; and development of some initial monthly models for primary productivity, based on satellite data.

  11. Test of high-energy hadronic interaction models with high-altitude cosmic-ray data

    NASA Astrophysics Data System (ADS)

    Haungs, A.; Kempa, J.

    2003-09-01

    Emulsion experiments placed at high mountain altitudes register hadrons and high-energy γ-rays with an energy threshold in the TeV region. These secondary shower particles are produced in the forward direction of interactions of mainly primary protons and alpha-particles in the Earth's atmosphere. Single γ's and hadrons are mainly produced by the interactions of the primary cosmic-ray nuclei of primary energy below 1015eV. Therefore the measurements are sensitive to the physics of high-energy hadronic interaction models, e.g., as implemented in the Monte Carlo air shower simulation program CORSIKA. By use of detailed simulations invoking various different models for the hadronic interactions we compare the predictions for the single-particle spectra with data of the Pamir experiment. For higher primary energies characteristics of so-called gamma-ray families are used for the comparisons. Including detailed simulations for the Pamir detector we found that the data are incompatible with the HDPM and SIBYLL 1.6 models, but are in agreement with QGSJET, NEXUS, and VENUS.

  12. Improved simulation of poorly drained forests using Biome-BGC.

    PubMed

    Bond-Lamberty, Ben; Gower, Stith T; Ahl, Douglas E

    2007-05-01

    Forested wetlands and peatlands are important in boreal and terrestrial biogeochemical cycling, but most general-purpose forest process models are designed and parameterized for upland systems. We describe changes made to Biome-BGC, an ecophysiological process model, that improve its ability to simulate poorly drained forests. Model changes allowed for: (1) lateral water inflow from a surrounding watershed, and variable surface and subsurface drainage; (2) adverse effects of anoxic soil on decomposition and nutrient mineralization; (3) closure of leaf stomata in flooded soils; and (4) growth of nonvascular plants (i.e., bryophytes). Bryophytes were treated as ectohydric broadleaf evergreen plants with zero stomatal conductance, whose cuticular conductance to CO(2) was dependent on plant water content. Individual model changes were parameterized with published data, and ecosystem-level model performance was assessed by comparing simulated output to field data from the northern BOREAS site in Manitoba, Canada. The simulation of the poorly drained forest model exhibited reduced decomposition and vascular plant growth (-90%) compared with that of the well-drained forest model; the integrated bryophyte photosynthetic response accorded well with published data. Simulated net primary production, biomass and soil carbon accumulation broadly agreed with field measurements, although simulated net primary production was higher than observed data in well-drained stands. Simulated net primary production in the poorly drained forest was most sensitive to oxygen restriction on soil processes, and secondarily to stomatal closure in flooded conditions. The modified Biome-BGC remains unable to simulate true wetlands that are subject to prolonged flooding, because it does not track organic soil formation, water table changes, soil redox potential or anaerobic processes.

  13. Improved assessment of gross and net primary productivity of Canada's landmass

    NASA Astrophysics Data System (ADS)

    Gonsamo, Alemu; Chen, Jing M.; Price, David T.; Kurz, Werner A.; Liu, Jane; Boisvenue, Céline; Hember, Robbie A.; Wu, Chaoyang; Chang, Kuo-Hsien

    2013-12-01

    assess Canada's gross primary productivity (GPP) and net primary productivity (NPP) using boreal ecosystem productivity simulator (BEPS) at 250 m spatial resolution with improved input parameter and driver fields and phenology and nutrient release parameterization schemes. BEPS is a process-based two-leaf enzyme kinetic terrestrial ecosystem model designed to simulate energy, water, and carbon (C) fluxes using spatial data sets of meteorology, remotely sensed land surface variables, soil properties, and photosynthesis and respiration rate parameters. Two improved key land surface variables, leaf area index (LAI) and land cover type, are derived at 250 m from Moderate Resolution Imaging Spectroradiometer sensor. For diagnostic error assessment, we use nine forest flux tower sites where all measured C flux, meteorology, and ancillary data sets are available. The errors due to input drivers and parameters are then independently corrected for Canada-wide GPP and NPP simulations. The optimized LAI use, for example, reduced the absolute bias in GPP from 20.7% to 1.1% for hourly BEPS simulations. Following the error diagnostics and corrections, daily GPP and NPP are simulated over Canada at 250 m spatial resolution, the highest resolution simulation yet for the country or any other comparable region. Total NPP (GPP) for Canada's land area was 1.27 (2.68) Pg C for 2008, with forests contributing 1.02 (2.2) Pg C. The annual comparisons between measured and simulated GPP show that the mean differences are not statistically significant (p > 0.05, paired t test). The main BEPS simulation error sources are from the driver fields.

  14. On the primary spacing and microsegregation of cellular dendrites in laser deposited Ni-Nb alloys

    NASA Astrophysics Data System (ADS)

    Ghosh, Supriyo; Ma, Li; Ofori-Opoku, Nana; Guyer, Jonathan E.

    2017-09-01

    In this study, an alloy phase-field model is used to simulate solidification microstructures at different locations within a solidified molten pool. The temperature gradient G and the solidification velocity V are obtained from a macroscopic heat transfer finite element simulation and provided as input to the phase-field model. The effects of laser beam speed and the location within the melt pool on the primary arm spacing and on the extent of Nb partitioning at the cell tips are investigated. Simulated steady-state primary spacings are compared with power law and geometrical models. Cell tip compositions are compared to a dendrite growth model. The extent of non-equilibrium interface partitioning of the phase-field model is investigated. Although the phase-field model has an anti-trapping solute flux term meant to maintain local interface equilibrium, we have found that during simulations it was insufficient at maintaining equilibrium. This is due to the fact that the additive manufacturing solidification conditions fall well outside the allowed limits of this flux term.

  15. Computer simulation of the metastatic progression.

    PubMed

    Wedemann, Gero; Bethge, Anja; Haustein, Volker; Schumacher, Udo

    2014-01-01

    A novel computer model based on a discrete event simulation procedure describes quantitatively the processes underlying the metastatic cascade. Analytical functions describe the size of the primary tumor and the metastases, while a rate function models the intravasation events of the primary tumor and metastases. Events describe the behavior of the malignant cells until the formation of new metastases. The results of the computer simulations are in quantitative agreement with clinical data determined from a patient with hepatocellular carcinoma in the liver. The model provides a more detailed view on the process than a conventional mathematical model. In particular, the implications of interventions on metastasis formation can be calculated.

  16. Posttest analysis of LOFT LOCE L2-3 using the ESA RELAP4 blowdown model. [PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perryman, J.L.; Samuels, T.K.; Cooper, C.H.

    A posttest analysis of the blowdown portion of Loss-of-Coolant Experiment (LOCE) L2-3, which was conducted in the Loss-of-Fluid Test (LOFT) facility, was performed using the experiment safety analysis (ESA) RELAP4/MOD5 computer model. Measured experimental parameters were compared with the calculations in order to assess the conservatisms in the ESA RELAP4/MOD5 model.

  17. Fusion Helmet: Electronic Analysis

    DTIC Science & Technology

    2014-04-01

    Table 1: LYR203-101B Board Feature P1 (SEC MODULE) DM648 GPIO PORn Video Ports (2) Bootmode SPI/UART I2C CLKIN MDIO DDR2 128MB/16bit SPI Flash 16...McASP EMAC-SGMII /2 MDIO I2C GPIO DDR2 128MB/16bit JTAG Memory CLKGEN I2C PGoodPGood PORn Pwr LED Power DSP SPI/UART DSP SPI/UARTSPI/UART Video Display

  18. Solar Photovoltaic and Liquid Natural Gas Opportunities for Command Naval Region Hawaii

    DTIC Science & Technology

    2014-12-01

    Utilities Commission xii PV Photovoltaic Pwr Power RE Renewable Energy Re-gas Regasification RFP Request For Proposal RMI Rocky... forecasted LS diesel price and the forecasted LNG delivered-to-the- power -plant cost. The forecast for LS diesel by FGE from year 2020–2030 is seen...annual/html/epa_08_01.html Electric Power Research Institute. (July, 2010). Addressing solar photovoltaic operations and maintenance challenges: A

  19. Two-phase Fluid Selection for High-temperature Automotive Platforms

    DTIC Science & Technology

    2012-09-01

    cases, extra work by researchers can be done to uprate the device, either by parameter conformance, parameter re-characterization, or stress balancing...chemical reactivity , noble metal oxidization, intermetallic growth, CTE mismatch and other failure mechanisms are an issue with wide bandgap...21005-1852 1 US ARMY TARDEC ATTN AMSRD TAR E/ PWR C SPANGLER 6501 E 11 MILE RD, BLDG 212 WARREN MI 48397-5000 1 UNIV OF MARYLAND

  20. CH-47C Vulnerability Reduction Modification Program - Fly-by-Wire Backup Demonstration

    DTIC Science & Technology

    1976-08-01

    Actuator Position for Combined Axis Input ............................. 91 4 Systems Assessment Summary................... 95 C-1 Instrumentation Parameters ...SERVO CARD jEETO FROM MIXERS SUfEV __________ HYLIC AMPL AMPLVLE SHUT-O- DOWN DC PWR LOGIC REA MIONITOR SUMMER *O:EO SWITCH- BUFFER OVER 1 NETWORK...and ranels (Figures 12 and 13). The existing DELS preflight test set, which provides access to the system parameters , was installed along with the

  1. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    NASA Astrophysics Data System (ADS)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  2. Hybrid parallel code acceleration methods in full-core reactor physics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courau, T.; Plagne, L.; Ponicot, A.

    2012-07-01

    When dealing with nuclear reactor calculation schemes, the need for three dimensional (3D) transport-based reference solutions is essential for both validation and optimization purposes. Considering a benchmark problem, this work investigates the potential of discrete ordinates (Sn) transport methods applied to 3D pressurized water reactor (PWR) full-core calculations. First, the benchmark problem is described. It involves a pin-by-pin description of a 3D PWR first core, and uses a 8-group cross-section library prepared with the DRAGON cell code. Then, a convergence analysis is performed using the PENTRAN parallel Sn Cartesian code. It discusses the spatial refinement and the associated angular quadraturemore » required to properly describe the problem physics. It also shows that initializing the Sn solution with the EDF SPN solver COCAGNE reduces the number of iterations required to converge by nearly a factor of 6. Using a best estimate model, PENTRAN results are then compared to multigroup Monte Carlo results obtained with the MCNP5 code. Good consistency is observed between the two methods (Sn and Monte Carlo), with discrepancies that are less than 25 pcm for the k{sub eff}, and less than 2.1% and 1.6% for the flux at the pin-cell level and for the pin-power distribution, respectively. (authors)« less

  3. Current training initiatives at Nuclear Electric plc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, C.D.

    1993-01-01

    Nuclear Electric, one of the three generating companies to emerge from the demise of the U.K.'s Central Electricity Generating Board (CEGB), owns and operates the commercial nuclear power stations in England and Wales. The U.K. government proscribed further construction beyond Sizewell B, the United Kingdom's first pressurized water reactor (PWR) station, pending the outcome of a review of the future of nuclear power to be held in 1994. The major challenges facing Nuclear Electric at its formation in 1990 were therefore to demonstrate that nuclear power is safe, economical, and environmentally acceptable and to complete the PWR station under constructionmore » on time and within budget. A significant number of activities were started that were designed to increase output, reduce costs, and ensure that the previous excellent safety standards were maintained. A major activity was to reduce the numbers of staff employed, with a recognition from the outset that this reduction could only be achieved with a significant human resource development program. Future company staff would have to be competent in more areas and more productive. This paper summarizes some of the initiatives currently being pursued throughout the company and the progress toward ensuring that staff with the required competences are available to commission and operate the Sizewell B program in 1994.« less

  4. System Engineering for J-2X Development: The Simpler, the Better

    NASA Technical Reports Server (NTRS)

    Kelly, William M.; Greasley, Paul; Greene, William D.; Ackerman, Peter

    2008-01-01

    The Ares I and Ares V Vehicles will utilize the J-2X rocket engine developed for NASA by the Pratt and Whitney Rocketdyne Company (PWR) as the upper stage engine (USE). The J-2X is an improved higher power version of the original J-2 engine used for Apollo. System Engineering (SE) facilitates direct and open discussions of issues and problems. This simple idea is often overlooked in large, complex engineering development programs. Definition and distribution of requirements from the engine level to the component level is controlled by Allocation Reports which breaks down numerical design objectives (weight, reliability, etc.) into quanta goals for each component area. Linked databases of design and verification requirements help eliminate redundancy and potential mistakes inherent in separated systems. Another tool, the Architecture Design Description (ADD), is used to control J-2X system architecture and effectively communicate configuration changes to those involved in the design process. But the proof of an effective process is in successful program accomplishment. SE is the methodology being used to meet the challenge of completing J-2X engine certification 2 years ahead of any engine program ever developed at PWR. This paper describes the simple, better SE tools and techniques used to achieve this success.

  5. Development Status of the CECE Cryogenic Deep Throttling Demonstrator Engine

    NASA Technical Reports Server (NTRS)

    2008-01-01

    As one of the first technology development programs awarded by NASA under the U.S. Space Exploration Policy (USSEP), the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA's Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RLI0, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in a high-energy, cryogenic engine. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Two series of demonstrator engine tests, the first in April-May 2006 and the second in March-April 2007, have demonstrated in excess of 10:1 throttling of the hydrogen/oxygen expander cycle engine. Both test series have explored a combustion instability ("chug") environment at low throttled power levels. These tests have provided an early demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data acquisition toward design and development risk mitigation for future CECE Demonstrator engine tests.

  6. Nuclear fuel performance: Trends, remedies and challenges

    NASA Astrophysics Data System (ADS)

    Rusch, C. A.

    2008-12-01

    It is unacceptable to have nuclear power plants unavailable or power restricted due to fuel reliability issues. 'Fuel reliability' has a much broader definition than just maintaining mechanical integrity and being leaker free - fuel must fully meet the specifications, impose no adverse impacts on plant operation and safety, and maintain quantifiable margins within design and operational envelopes. The fuel performance trends over the last decade are discussed and the significant contributors to reduced reliability experienced with commercial PWR and BWR designs are identified and discussed including grid-to-rod fretting and debris fretting in PWR designs and accelerated corrosion, debris fretting and pellet-cladding interaction in BWR designs. In many of these cases, the impacts have included not only fuel failures but also plant operating restrictions, forced shutdowns, and/or enhanced licensing authority oversight. Design and operational remedies are noted. The more demanding operating regimes and the constant quest to improve fuel performance require enhancements to current designs and/or new design features. Fuel users must continue to and enhance interaction with fuel suppliers in such areas as oversight of supplier design functions, lead test assembly irradiation programs and quality assurance oversight and surveillance. With the implementation of new designs and/or features, such fuel user initiatives can help to minimize the potential for performance problems.

  7. Probabilistic pipe fracture evaluations for leak-rate-detection applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, S.; Ghadiali, N.; Paul, D.

    1995-04-01

    Regulatory Guide 1.45, {open_quotes}Reactor Coolant Pressure Boundary Leakage Detection Systems,{close_quotes} was published by the U.S. Nuclear Regulatory Commission (NRC) in May 1973, and provides guidance on leak detection methods and system requirements for Light Water Reactors. Additionally, leak detection limits are specified in plant Technical Specifications and are different for Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). These leak detection limits are also used in leak-before-break evaluations performed in accordance with Draft Standard Review Plan, Section 3.6.3, {open_quotes}Leak Before Break Evaluation Procedures{close_quotes} where a margin of 10 on the leak detection limit is used in determining the crackmore » size considered in subsequent fracture analyses. This study was requested by the NRC to: (1) evaluate the conditional failure probability for BWR and PWR piping for pipes that were leaking at the allowable leak detection limit, and (2) evaluate the margin of 10 to determine if it was unnecessarily large. A probabilistic approach was undertaken to conduct fracture evaluations of circumferentially cracked pipes for leak-rate-detection applications. Sixteen nuclear piping systems in BWR and PWR plants were analyzed to evaluate conditional failure probability and effects of crack-morphology variability on the current margins used in leak rate detection for leak-before-break.« less

  8. Fatigue limit and Hysteresis Behavior of Type 304L Stainless Steel in Air and PWR Water, at 150°C and 300°C

    NASA Astrophysics Data System (ADS)

    Solomon, H. D.; Amzallag, C.; Vallee, A. J.; DeLair, R. E.

    This is a study of the 107 cycle fatigue limit of Type 304L Stainless Steel, as measured in fully reversed (R=-1) load-controlled tests, at 150°C and 300°C, in air and PWR water. The staircase method was used to determine the fatigue limit. The tests run here utilized a cycle frequency of 1.818Hz and are compared to other tests from the literature that were run at 30Hz. The fatigue limit measured in the tests run at the high frequency was higher than that measured here. This is explained by measurements of the strain developed during cycling, using the different cycle frequencies. The tests run at the higher frequencies yielded lower strains for a given stress and, as expected, this resulted in higher fatigue limits. Using 107 cycles to define a run-out also led to a lower fatigue limit. These results are important as most previous fatigue limit measurements utilized 106 cycles or less to define a run-out, and when lives as long as 107 cycles are used the tests are generally run at high cycle frequencies, thus leading to higher fatigue limits than those measured here.

  9. Extension of the Bgl Broad Group Cross Section Library

    NASA Astrophysics Data System (ADS)

    Kirilova, Desislava; Belousov, Sergey; Ilieva, Krassimira

    2009-08-01

    The broad group cross-section libraries BUGLE and BGL are applied for reactor shielding calculation using the DOORS package based on discrete ordinates method and multigroup approximation of the neutron cross-sections. BUGLE and BGL libraries are problem oriented for PWR or VVER type of reactors respectively. They had been generated by collapsing the problem independent fine group library VITAMIN-B6 applying PWR and VVER one-dimensional radial model of the reactor middle plane using the SCALE software package. The surveillance assemblies (SA) of VVER-1000/320 are located on the baffle above the reactor core upper edge in a region where geometry and materials differ from those of the middle plane and the neutron field gradient is very high which would result in a different neutron spectrum. That is why the application of the fore-mentioned libraries for the neutron fluence calculation in the region of SA could lead to an additional inaccuracy. This was the main reason to study the necessity for an extension of the BGL library with cross-sections appropriate for the SA region. Comparative analysis of the neutron spectra of the SA region calculated by the VITAMIN-B6 and BGL libraries using the two-dimensional code DORT have been done with purpose to evaluate the BGL applicability for SA calculation.

  10. LWR pressure vessel surveillance dosimetry improvement program: LWR power reactor surveillance physics-dosimetry data base compendium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McElroy, W.N.

    1985-08-01

    This NRC physics-dosimetry compendium is a collation of information and data developed from available research and commercial light water reactor vessel surveillance program (RVSP) documents and related surveillance capsule reports. The data represents the results of the HEDL least-squares FERRET-SAND II Code re-evaluation of exposure units and values for 47 PWR and BWR surveillance capsules for W, B and W, CE, and GE power plants. Using a consistent set of auxiliary data and dosimetry-adjusted reactor physics results, the revised fluence values for E > 1 MeV averaged 25% higher than the originally reported values. The range of fluence values (new/old)more » was from a low of 0.80 to a high of 2.38. These HEDL-derived FERRET-SAND II exposure parameter values are being used for NRC-supported HEDL and other PWR and BWR trend curve data development and testing studies. These studies are providing results to support Revision 2 of Regulatory Guide 1.99. As stated by Randall (Ra84), the Guide is being updated to reflect recent studies of the physical basis for neutron radiation damage and efforts to correlate damage to chemical composition and fluence.« less

  11. Plasmon Spectroscopy Applied to Biomolecular Interactions in Membranes

    NASA Astrophysics Data System (ADS)

    Tollin, Gordon

    2010-03-01

    Plasmon-waveguide resonance (PWR) is an optical spectroscopy method that can provide information about materials immobilized on the surface of a plasmon resonator consisting of a right angle prism coated with thin layers of a metal (approx. 50 nm; usually silver) and a dielectric (approx. 500 nm; usually silica). The technique has been developed in our laboratory and is an extension of the more commonly used surface plasmon resonance (SPR) method, having higher sensitivity (20-50 fold) and resolution (10-20 fold). The dielectric layer allows plasmon excitation by light whose electric vector is polarized both perpendicular and parallel to the sensor surface, in contrast to SPR that can only utilize perpendicular polarized excitation. This allows both mass density and mass distribution to be characterized in uniaxially oriented deposited materials, such as biomembranes. We have utilized this technique to investigate binding interactions between membrane-incorporated protein receptors and their ligands (both proteins and small molecules), using both purified receptors inserted into lipid bilayers and membranes derived from cells expressing these receptors. Such studies have provided many new insights into biological signaling events. Inasmuch as many of these receptors are targets for approximately 50 percent of ethical drugs, PWR can be a useful methodology for drug discovery in the pharmaceutical industry. Examples of these experiments will be presented.

  12. Data summary report for fission product release test VI-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborne, M.F.; Collins, J.L.; Lorenz, R.A.

    The first in a series of high-temperature fission product release test in a new vertical test apparatus was conducted in flowing steam. The test specimen was a 15.2-cm-long section of a fuel rod from the Oconee 1 PWR; it had been irradiated to a burnup of /approximately/42 MWd/kg. Using an induction furnace, it was heated under simulated LWR accident conditions -- 20 min at 2000 K and 20 min at 2300 K -- in a hot cell-mounted test apparatus. Posttest inspection showed severe oxidation but only minimal fragmentation of the fuel specimen; cladding melting was apparent only near the topmore » end. Based on fission product measured in the fuel and/or calculated by ORIGEN, analyses of test components showed total releases from the fuel of 47% for /sup 85/Kr, 33% for /sup 125/Sb, 37% for /sup 129/I, 84% for /sup 110m/Ag, and 63% for /sup 137/Cs. Large fractions (36% and 30%, respectively) of the released /sup 110m/Ag and /sup 125/Sb were retained in the furnace above the fuel. Pretest and posttest analysis of the fuel specimen indicated a /sup 134/Cs release of 65%, which is very good agreement with the /sup 137/Cs value. 21 refs., 24 figs., 16 tabs.« less

  13. On-line measurements of RuO{sub 4} during a PWR severe accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reymond-Laruinaz, S.; Doizi, D.; Manceron, L.

    After the Fukushima accident, it became essential to have a way to monitor in real time the evolution of a nuclear reactor during a severe accident, in order to react efficiently and minimize the industrial, ecological and health consequences of the accident. Among gaseous fission products, the tetroxide of ruthenium RuO{sub 4} is of prime importance since it has a significant radiological impact. Ruthenium is a low volatile fission product but in case of the rupture of the vessel lower head by the molten corium, the air entering into the vessel oxidizes Ru into gaseous RuO{sub 4}, which is notmore » trapped by the Filtered Containment Venting Systems. To monitor the presence of RuO{sub 4} allows making a diagnosis of the core degradation and quantifying the release into the atmosphere. To determine the presence of RuO{sub 4}, FTIR spectrometry was selected. To study the feasibility of the monitoring, high-resolution IR measurements were realized at the French synchrotron facility SOLEIL on the infrared beam line AILES. Thereafter, theoretical calculations were done to simulate the FTIR spectrum to describe the specific IR fingerprint of the molecule for each isotope and based on its partial pressure in the air. (authors)« less

  14. The effects of stainless steel radial reflector on core reactivity for small modular reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Jung Kil, E-mail: jkkang@email.kings.ac.kr; Hah, Chang Joo, E-mail: changhah@kings.ac.kr; Cho, Sung Ju, E-mail: sungju@knfc.co.kr

    Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4∼5 years, rated power of 180 MWth and enrichment less than 5more » w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO{sub 2} fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.« less

  15. Uncertainties for Swiss LWR spent nuclear fuels due to nuclear data

    NASA Astrophysics Data System (ADS)

    Rochman, Dimitri A.; Vasiliev, Alexander; Dokhane, Abdelhamid; Ferroukhi, Hakim

    2018-05-01

    This paper presents a study of the impact of the nuclear data (cross sections, neutron emission and spectra) on different quantities for spent nuclear fuels (SNF) from Swiss power plants: activities, decay heat, neutron and gamma sources and isotopic vectors. Realistic irradiation histories are considered using validated core follow-up models based on CASMO and SIMULATE. Two Pressurized and one Boiling Water Reactors (PWR and BWR) are considered over a large number of operated cycles. All the assemblies at the end of the cycles are studied, being reloaded or finally discharged, allowing spanning over a large range of exposure (from 4 to 60 MWd/kgU for ≃9200 assembly-cycles). Both UO2 and MOX fuels were used during the reactor cycles, with enrichments from 1.9 to 4.7% for the UO2 and 2.2 to 5.8% Pu for the MOX. The SNF characteristics presented in this paper are calculated with the SNF code. The calculated uncertainties, based on the ENDF/B-VII.1 library are obtained using a simple Monte Carlo sampling method. It is demonstrated that the impact of nuclear data is relatively important (e.g. up to 17% for the decay heat), showing the necessity to consider them for safety analysis of the SNF handling and disposal.

  16. Development of 3D pseudo pin-by-pin calculation methodology in ANC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B.; Mayhue, L.; Huria, H.

    2012-07-01

    Advanced cores and fuel assembly designs have been developed to improve operational flexibility, economic performance and further enhance safety features of nuclear power plants. The simulation of these new designs, along with strong heterogeneous fuel loading, have brought new challenges to the reactor physics methodologies currently employed in the industrial codes for core analyses. Control rod insertion during normal operation is one operational feature in the AP1000{sup R} plant of Westinghouse next generation Pressurized Water Reactor (PWR) design. This design improves its operational flexibility and efficiency but significantly challenges the conventional reactor physics methods, especially in pin power calculations. Themore » mixture loading of fuel assemblies with significant neutron spectrums causes a strong interaction between different fuel assembly types that is not fully captured with the current core design codes. To overcome the weaknesses of the conventional methods, Westinghouse has developed a state-of-the-art 3D Pin-by-Pin Calculation Methodology (P3C) and successfully implemented in the Westinghouse core design code ANC. The new methodology has been qualified and licensed for pin power prediction. The 3D P3C methodology along with its application and validation will be discussed in the paper. (authors)« less

  17. A preliminary assessment of the effects of heat flux distribution and penetration on the creep rupture of a reactor vessel lower head

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Bentz, J.; Simpson, R.

    1997-02-01

    The objective of the Lower Head Failure (LHF) Experiment Program is to experimentally investigate and characterize the failure of the reactor vessel lower head due to thermal and pressure loads under severe accident conditions. The experiment is performed using 1/5-scale models of a typical PWR pressure vessel. Experiments are performed for various internal pressure and imposed heat flux distributions with and without instrumentation guide tube penetrations. The experimental program is complemented by a modest modeling program based on the application of vessel creep rupture codes developed in the TMI Vessel Investigation Project. The first three experiments under the LHF programmore » investigated the creep rupture of simulated reactor pressure vessels without penetrations. The heat flux distributions for the three experiments are uniform (LHF-1), center-peaked (LHF-2), and side-peaked (LHF-3), respectively. For all the experiments, appreciable vessel deformation was observed to initiate at vessel wall temperatures above 900K and the vessel typically failed at approximately 1000K. The size of failure was always observed to be smaller than the heated region. For experiments with non-uniform heat flux distributions, failure typically occurs in the region of peak temperature. A brief discussion of the effect of penetration is also presented.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basher, A.M.H.

    Poor control of steam generator water level of a nuclear power plant may lead to frequent nuclear reactor shutdowns. These shutdowns are more common at low power where the plant exhibits strong non-minimum phase characteristics and flow measurements at low power are unreliable in many instances. There is need to investigate this problem and systematically design a controller for water level regulation. This work is concerned with the study and the design of a suitable controller for a U-Tube Steam Generator (UTSG) of a Pressurized Water Reactor (PWR) which has time varying dynamics. The controller should be suitable for themore » water level control of UTSG without manual operation from start-up to full load transient condition. Some preliminary simulation results are presented that demonstrate the effectiveness of the proposed controller. The development of the complete control algorithm includes components such as robust output tracking, and adaptively estimating both the system parameters and state variables simultaneously. At the present time all these components are not completed due to time constraints. A robust tracking component of the controller for water level control is developed and its effectiveness on the parameter variations is demonstrated in this study. The results appear encouraging and they are only preliminary. Additional work is warranted to resolve other issues such as robust adaptive estimation.« less

  19. Analysis of boron dilution in a four-loop PWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, J.G.; Sha, W.T.

    1995-03-01

    Thermal mixing and boron dilution in a pressurized water reactor were analyzed with COMMIX codes. The reactor system was the four-loop Zion reactor. Two boron dilution scenarios were analyzed. In the first scenario, the plant is in cold shutdown and the reactor coolant system has just been filled after maintenance on the steam generators. To flush the air out of the steam generator tubes, a reactor coolant pump (RCP) is started, with the water in the pump suction line devoid of boron and at the same temperature as the coolant in the system. In the second scenario, the plant ismore » at hot standby and the reactor coolant system has been heated to operating temperature after a long outage. It is assumed that an RCP is started, with the pump suction line filled with cold unborated water, forcing a slug of diluted coolant down the downcomer and subsequently through the reactor core. The subsequent transient thermal mixing and boron dilution that would occur in the reactor system is simulated for these two scenarios. The reactivity insertion rate and the total reactivity are evaluated and a sensitivity study is performed to assess the accuracy of the numerical modeling of the geometry of the reactor coolant system.« less

  20. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag

    2012-04-01

    The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather thanmore » graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water Reactor (PWR) assemblies. In addition to consideration of this 'naive' use of TRISO fuel in LWRs, several refined options are briefly examined and others are identified for further consideration including the use of advanced, high density fuel forms and larger kernel diameters and TRISO packing fractions. The combination of 800 {micro}m diameter kernels of 20% enriched UN and 50% TRISO packing fraction yielded reactivity sufficient to achieve comparable burnup to present-day PWR fuel.« less

  1. Low-Cost High-Speed Techniques for Real-Time Simulation of Power Electronic Systems

    DTIC Science & Technology

    2007-06-01

    first implemented on the RT-Lab using Simulink S- fuctions . An effort was then initiated to code at least part of the simulation on the available FPGA. It...time simulation, and the use of simulation packages such as Matlab and Spice. The primary purpose of these calculations was to confirm that the

  2. Three-Dimension Visualization for Primary Wheat Diseases Based on Simulation Model

    NASA Astrophysics Data System (ADS)

    Shijuan, Li; Yeping, Zhu

    Crop simulation model has been becoming the core of agricultural production management and resource optimization management. Displaying crop growth process makes user observe the crop growth and development intuitionisticly. On the basis of understanding and grasping the occurrence condition, popularity season, key impact factors for main wheat diseases of stripe rust, leaf rust, stem rust, head blight and powdery mildew from research material and literature, we designed 3D visualization model for wheat growth and diseases occurrence. The model system will help farmer, technician and decision-maker to use crop growth simulation model better and provide decision-making support. Now 3D visualization model for wheat growth on the basis of simulation model has been developed, and the visualization model for primary wheat diseases is in the process of development.

  3. Dynamical simulation of E-ELT segmented primary mirror

    NASA Astrophysics Data System (ADS)

    Sedghi, B.; Muller, M.; Bauvir, B.

    2011-09-01

    The dynamical behavior of the primary mirror (M1) has an important impact on the control of the segments and the performance of the telescope. Control of large segmented mirrors with a large number of actuators and sensors and multiple control loops in real life is a challenging problem. In virtual life, modeling, simulation and analysis of the M1 bears similar difficulties and challenges. In order to capture the dynamics of the segment subunits (high frequency modes) and the telescope back structure (low frequency modes), high order dynamical models with a very large number of inputs and outputs need to be simulated. In this paper, different approaches for dynamical modeling and simulation of the M1 segmented mirror subject to various perturbations, e.g. sensor noise, wind load, vibrations, earthquake are presented.

  4. Cluster-cluster aggregation kinetics and primary particle growth of soot nanoparticles in flame by light scattering and numerical simulations.

    PubMed

    di Stasio, Stefano; Konstandopoulos, Athanasios G; Kostoglou, Margaritis

    2002-03-01

    The agglomeration kinetics of growing soot generated in a diffusion atmospheric flame are here studied in situ by light scattering technique to infer cluster morphology and size (fractal dimension D(f) and radius of gyration R(g)). SEM analysis is used as a standard reference to obtain primary particle size D(P) at different residence times. The number N(P) of primary particles per aggregate and the number concentration n(A) of clusters are evaluated on the basis of the measured angular patterns of the scattered light intensity. The major finding is that the kinetics of the coagulation process that yields to the formation of chain-like aggregates by soot primary particles (size 10 to 40 nm) can be described with a constant coagulation kernel beta(c,exp)=2.37x10(-9) cm3/s (coagulation constant tau(c) approximately = 0.28 ms). This result is in nice accord with the Smoluchowski coagulation equation in the free molecular regime, and, vice versa, it is in contrast with previous studies conducted by invasive (ex situ) techniques, which claimed the evidence in flames of coagulation rates much larger than the kinetic theory predictions. Thereafter, a number of numerical simulations is implemented to compare with the experimental results on primary particle growth rate and on the process of aggregate reshaping that is observed by light scattering at later residence times. The restructuring process is conjectured to occur, for not well understood reasons, as a direct consequence of the atomic rearrangement in the solid phase carbon due to the prolonged residence time within the flame. Thus, on one side, it is shown that the numerical simulations of primary size history compare well with the values of primary size from SEM experiment with a growth rate constant of primary diameter about 1 nm/s. On the other side, the evolution of aggregate morphology is found to be predictable by the numerical simulations when the onset of a first-order "thermal" restructuring mechanism is assumed to occur in the flame at about 20 ms residence time leading to aggregates with an asymptotic fractal dimension D(f,infinity) approximately = 2.5.

  5. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive

    DOE PAGES

    Shan, Tzu -Ray; Wixom, Ryan R.; Thompson, Aidan P.

    2016-08-01

    In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed bymore » coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. Furthermore, the formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.« less

  6. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Tzu -Ray; Wixom, Ryan R.; Thompson, Aidan P.

    In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed bymore » coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. Furthermore, the formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.« less

  7. New developments and prospects on COSI, the simulation software for fuel cycle analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eschbach, R.; Meyer, M.; Coquelet-Pascal, C.

    2013-07-01

    COSI, software developed by the Nuclear Energy Direction of the CEA, is a code simulating a pool of nuclear power plants with its associated fuel cycle facilities. This code has been designed to study various short, medium and long term options for the introduction of various types of nuclear reactors and for the use of associated nuclear materials. In the frame of the French Act for waste management, scenario studies are carried out with COSI, to compare different options of evolution of the French reactor fleet and options of partitioning and transmutation of plutonium and minor actinides. Those studies aimmore » in particular at evaluating the sustainability of Sodium cooled Fast Reactors (SFR) deployment and the possibility to transmute minor actinides. The COSI6 version is a completely renewed software released in 2006. COSI6 is now coupled with the last version of CESAR (CESAR5.3 based on JEFF3.1.1 nuclear data) allowing the calculations on irradiated fuel with 200 fission products and 100 heavy nuclides. A new release is planned in 2013, including in particular the coupling with a recommended database of reactors. An exercise of validation of COSI6, carried out on the French PWR historic nuclear fleet, has been performed. During this exercise quantities like cumulative natural uranium consumption, or cumulative depleted uranium, or UOX/MOX spent fuel storage, or stocks of reprocessed uranium, or plutonium content in fresh MOX fuel, or the annual production of high level waste, have been computed by COSI6 and compared to industrial data. The results have allowed us to validate the essential phases of the fuel cycle computation, and reinforces the credibility of the results provided by the code.« less

  8. The microstructure and precipitation effects in Inconel alloy 690

    NASA Astrophysics Data System (ADS)

    Smith, Alan J.

    Failure of Alloy 600 steam generator tubing in Pressurised Water Reactors (PWRs) has prompted the investigation of alloy 690 as an alternative material. Six commercially produced tubes and ten experimentally produced alloys have been examined with varying amounts of carbon, aluminium and titanium. Alloy compositions have been selected to investigate the individual and combined effects of these elements on the microstructure and corrosion behaviour in the environments of corrosion tests and simulated PWR conditions. Alloys were subjected to simulated mill annealing treatments at varied temperatures. Microstructural characterisation using optical and electron microscopy has demonstrated the effects of composition and thermal treatment in controlling grain size and carbide precipitation together with the interdependence between these structural details. Stress corrosion resistance of selected alloy 690 tubes has been examined with samples in an autoclave at fixed temperatures with environments based on pure water, sodium hydroxide and sodium hydroxide + sodium sulphate solutions. Susceptibility to intergranular attack has been related to aluminium contents of the alloy and to thermal treatments given. Results suggest a decreased resistance to IGA when aluminium is increased. Thermal treatments given to the samples appear not to be very significant to the amounts of IGA. The compositions and heat treatments used in the corrosion study were further examined on a dedicated scanning transmission electron microscope in order to correlate the effects of, chromium depletion, nickel enrichment and impurity segregation at grain boundaries, with corrosion characteristics. These results have shown the effect of varying the special thermal treatment temperature and time on the degree of enrichment / depletion / segregation and the corrosion resistance of the alloy. The mechanism of protection afforded by the special thermal treatment can thus be elucidated.

  9. Transfer of training and simulator qualification or myth and folklore in helicopter simulation

    NASA Technical Reports Server (NTRS)

    Dohme, Jack

    1992-01-01

    Transfer of training studies at Fort Rucker using the backward-transfer paradigm have shown that existing flight simulators are not entirely adequate for meeting training requirements. Using an ab initio training research simulator, a simulation of the UH-1, training effectiveness ratios were developed. The data demonstrate it to be a cost-effective primary trainer. A simulator qualification method was suggested in which a combination of these transfer-of-training paradigms is used to determine overall simulator fidelity and training effectiveness.

  10. Model-free simulations of turbulent reactive flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1989-01-01

    The current computational methods for solving transport equations of turbulent reacting single-phase flows are critically reviewed, with primary attention given to those methods that lead to model-free simulations. In particular, consideration is given to direct numerical simulations using spectral (Galerkin) and pseudospectral (collocation) methods, spectral element methods, and Lagrangian methods. The discussion also covers large eddy simulations and turbulence modeling.

  11. Aircraft Simulators and Pilot Training.

    ERIC Educational Resources Information Center

    Caro, Paul W.

    Flight simulators are built as realistically as possible, presumably to enhance their training value. Yet, their training value is determined by the way they are used. Traditionally, simulators have been less important for training than have aircraft, but they are currently emerging as primary pilot training vehicles. This new emphasis is an…

  12. The Design, Development, and Evaluation of an Evaluative Computer Simulation.

    ERIC Educational Resources Information Center

    Ehrlich, Lisa R.

    This paper discusses evaluation design considerations for a computer based evaluation simulation developed at the University of Iowa College of Medicine in Cardiology to assess the diagnostic skills of primary care physicians and medical students. The simulation developed allows for the assessment of diagnostic skills of physicians in the…

  13. Preservice Teachers' TPACK Beliefs and Attitudes toward Simulations

    ERIC Educational Resources Information Center

    Lehtinen, Antti; Nieminen, Pasi; Viiri, Jouni

    2016-01-01

    This study investigated the effect of an intervention regarding the use of simulations in science teaching on primary school preservice science teachers' (n = 36) self-assessed technological, pedagogical, and content knowledge (TPACK). The connection of their self-assessed TPACK on their views on the usefulness of simulations in science teaching…

  14. Poster — Thur Eve — 47: Monte Carlo Simulation of Scp, Sc and Sp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Lixin; Jiang, Runqing; Osei, Ernest K.

    The in-water output ratio (Scp), in-air output ratio (Sc), and phantom scattering factor (Sp) are important parameters for radiotherapy dose calculation. Experimentally, Scp is obtained by measuring the dose rate ratio in water phantom, and Sc the water Kerma rate ratio in air. There is no method that allows direct measurement of Sp. Monte Carlo (MC) method has been used to simulate Scp and Sc in literatures, similar to experimental setup, but no MC direct simulation of Sp available yet to the best of our knowledge. We propose in this report a method of performing direct MC simulation of Sp.more » Starting from the definition, we derived that Sp of a clinical photon beam can be approximated by the ratio of the dose rates contributed from the primary beam for a given field size to the reference field size. Since only the primary beam is used, any Linac head scattering should be excluded from the simulation, which can be realized by using the incident electron as a scoring parameter for MU. We performed MC simulations for Scp, Sc and Sp. Scp matches well with golden beam data. Sp obtained by the proposed method agrees well with what is obtained using the traditional method, Sp=Scp/Sc. Since the smaller the field size, the more the primary beam dominates, our Sp simulation method is accurate for small field. By analyzing the calculated data, we found that this method can be used with no problem for large fields. The difference it introduced is clinically insignificant.« less

  15. Monte Carlo simulation of EAS generated by 10(14) - 10(16) eV protons

    NASA Technical Reports Server (NTRS)

    Fenyves, E. J.; Yunn, B. C.; Stanev, T.

    1985-01-01

    Detailed Monte Carlo simulations of extensive air showers to be detected by the Homestake Surface Underground Telescope and other similar detectors located at sea level and mountain altitudes have been performed for 10 to the 14th power to 10 to the 16th power eV primary energies. The results of these Monte Carlo calculations will provide an opportunity to compare the experimental data with different models for the composition and spectra of primaries and for the development of air showers. The results obtained for extensive air showers generated by 10 to the 14th power to 10 to the 16th power eV primary protons are reported.

  16. GPU accelerated Monte-Carlo simulation of SEM images for metrology

    NASA Astrophysics Data System (ADS)

    Verduin, T.; Lokhorst, S. R.; Hagen, C. W.

    2016-03-01

    In this work we address the computation times of numerical studies in dimensional metrology. In particular, full Monte-Carlo simulation programs for scanning electron microscopy (SEM) image acquisition are known to be notoriously slow. Our quest in reducing the computation time of SEM image simulation has led us to investigate the use of graphics processing units (GPUs) for metrology. We have succeeded in creating a full Monte-Carlo simulation program for SEM images, which runs entirely on a GPU. The physical scattering models of this GPU simulator are identical to a previous CPU-based simulator, which includes the dielectric function model for inelastic scattering and also refinements for low-voltage SEM applications. As a case study for the performance, we considered the simulated exposure of a complex feature: an isolated silicon line with rough sidewalls located on a at silicon substrate. The surface of the rough feature is decomposed into 408 012 triangles. We have used an exposure dose of 6 mC/cm2, which corresponds to 6 553 600 primary electrons on average (Poisson distributed). We repeat the simulation for various primary electron energies, 300 eV, 500 eV, 800 eV, 1 keV, 3 keV and 5 keV. At first we run the simulation on a GeForce GTX480 from NVIDIA. The very same simulation is duplicated on our CPU-based program, for which we have used an Intel Xeon X5650. Apart from statistics in the simulation, no difference is found between the CPU and GPU simulated results. The GTX480 generates the images (depending on the primary electron energy) 350 to 425 times faster than a single threaded Intel X5650 CPU. Although this is a tremendous speedup, we actually have not reached the maximum throughput because of the limited amount of available memory on the GTX480. Nevertheless, the speedup enables the fast acquisition of simulated SEM images for metrology. We now have the potential to investigate case studies in CD-SEM metrology, which otherwise would take unreasonable amounts of computation time.

  17. The Primary Care Computer Simulation: Optimal Primary Care Manager Empanelment.

    DTIC Science & Technology

    1997-05-01

    explored in which a team consisted of two providers, two nurses, and a nurse aide . Each team had a specific exam room assigned to them. Additionally, a...team consisting of one provider, one nurse, and one nurse aide was simulated. The model also examined the effects of adding two exam rooms. The study...minutes. The optimal solution, which reduced patient time to below 90 minutes, was the mix of one provider, a nurse, and a nurse aide in which each

  18. a System Dynamics Model to Study the Importance of Infrastructure Facilities on Quality of Primary Education System in Developing Countries

    NASA Astrophysics Data System (ADS)

    Pedamallu, Chandra Sekhar; Ozdamar, Linet; Weber, Gerhard-Wilhelm; Kropat, Erik

    2010-06-01

    The system dynamics approach is a holistic way of solving problems in real-time scenarios. This is a powerful methodology and computer simulation modeling technique for framing, analyzing, and discussing complex issues and problems. System dynamics modeling and simulation is often the background of a systemic thinking approach and has become a management and organizational development paradigm. This paper proposes a system dynamics approach for study the importance of infrastructure facilities on quality of primary education system in developing nations. The model is proposed to be built using the Cross Impact Analysis (CIA) method of relating entities and attributes relevant to the primary education system in any given community. We offer a survey to build the cross-impact correlation matrix and, hence, to better understand the primary education system and importance of infrastructural facilities on quality of primary education. The resulting model enables us to predict the effects of infrastructural facilities on the access of primary education by the community. This may support policy makers to take more effective actions in campaigns.

  19. Conclusions and Recommendations Regarding the Deep Sea Hybrid Power Systems Initial Study

    DTIC Science & Technology

    2010-06-01

    proton-exchange membrane fuel cells ( PEMFC ) powered with hydrogen and oxygen, similar to that used on proven subsurface vessels; (2) fuel-cells...AND STORAGE OPTIONS CONSIDERED FOR INITIAL STUDY NO. NOMENCLATURE DESCRIPTION 1 PWR Nuclear Reactor + Battery 2 FC1 PEMFC + Line for surface O2...Wellhead Gas + Reformer + Battery 3 FC2 PEMFC + Stored O2 + Wellhead Gas + Reformer + Battery 4 SV1 PEMFC + Submersible Vehicle for O2 Transport

  20. Modern Scientific Visualization is more than Just Pretty Pictures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, E Wes; Rubel, Oliver; Wu, Kesheng

    2008-12-05

    While the primary product of scientific visualization is images and movies, its primary objective is really scientific insight. Too often, the focus of visualization research is on the product, not the mission. This paper presents two case studies, both that appear in previous publications, that focus on using visualization technology to produce insight. The first applies"Query-Driven Visualization" concepts to laser wakefield simulation data to help identify and analyze the process of beam formation. The second uses topological analysis to provide a quantitative basis for (i) understanding the mixing process in hydrodynamic simulations, and (ii) performing comparative analysis of data frommore » two different types of simulations that model hydrodynamic instability.« less

  1. FY2012 summary of tasks completed on PROTEUS-thermal work.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.H.; Smith, M.A.

    2012-06-06

    PROTEUS is a suite of the neutronics codes, both old and new, that can be used within the SHARP codes being developed under the NEAMS program. Discussion here is focused on updates and verification and validation activities of the SHARP neutronics code, DeCART, for application to thermal reactor analysis. As part of the development of SHARP tools, the different versions of the DeCART code created for PWR, BWR, and VHTR analysis were integrated. Verification and validation tests for the integrated version were started, and the generation of cross section libraries based on the subgroup method was revisited for the targetedmore » reactor types. The DeCART code has been reorganized in preparation for an efficient integration of the different versions for PWR, BWR, and VHTR analysis. In DeCART, the old-fashioned common blocks and header files have been replaced by advanced memory structures. However, the changing of variable names was minimized in order to limit problems with the code integration. Since the remaining stability problems of DeCART were mostly caused by the CMFD methodology and modules, significant work was performed to determine whether they could be replaced by more stable methods and routines. The cross section library is a key element to obtain accurate solutions. Thus, the procedure for generating cross section libraries was revisited to provide libraries tailored for the targeted reactor types. To improve accuracy in the cross section library, an attempt was made to replace the CENTRM code by the MCNP Monte Carlo code as a tool obtaining reference resonance integrals. The use of the Monte Carlo code allows us to minimize problems or approximations that CENTRM introduces since the accuracy of the subgroup data is limited by that of the reference solutions. The use of MCNP requires an additional set of libraries without resonance cross sections so that reference calculations can be performed for a unit cell in which only one isotope of interest includes resonance cross sections, among the isotopes in the composition. The OECD MHTGR-350 benchmark core was simulated using DeCART as initial focus of the verification/validation efforts. Among the benchmark problems, Exercise 1 of Phase 1 is a steady-state benchmark case for the neutronics calculation for which block-wise cross sections were provided in 26 energy groups. This type of problem was designed for a homogenized geometry solver like DIF3D rather than the high-fidelity code DeCART. Instead of the homogenized block cross sections given in the benchmark, the VHTR-specific 238-group ENDF/B-VII.0 library of DeCART was directly used for preliminary calculations. Initial results showed that the multiplication factors of a fuel pin and a fuel block with or without a control rod hole were off by 6, -362, and -183 pcm Dk from comparable MCNP solutions, respectively. The 2-D and 3-D one-third core calculations were also conducted for the all-rods-out (ARO) and all-rods-in (ARI) configurations, producing reasonable results. Figure 1 illustrates the intermediate (1.5 eV - 17 keV) and thermal (below 1.5 eV) group flux distributions. As seen from VHTR cores with annular fuels, the intermediate group fluxes are relatively high in the fuel region, but the thermal group fluxes are higher in the inner and outer graphite reflector regions than in the fuel region. To support the current project, a new three-year I-NERI collaboration involving ANL and KAERI was started in November 2011, focused on performing in-depth verification and validation of high-fidelity multi-physics simulation codes for LWR and VHTR. The work scope includes generating improved cross section libraries for the targeted reactor types, developing benchmark models for verification and validation of the neutronics code with or without thermo-fluid feedback, and performing detailed comparisons of predicted reactor parameters against both Monte Carlo solutions and experimental measurements. The following list summarizes the work conducted so far for PROTEUS-Thermal Tasks: Unification of different versions of DeCART was initiated, and at the same time code modernization was conducted to make code unification efficient; (2) Regeneration of cross section libraries was attempted for the targeted reactor types, and the procedure for generating cross section libraries was updated by replacing CENTRM with MCNP for reference resonance integrals; (3) The MHTGR-350 benchmark core was simulated using DeCART with VHTR-specific 238-group ENDF/B-VII.0 library, and MCNP calculations were performed for comparison; and (4) Benchmark problems for PWR and BWR analysis were prepared for the DeCART verification/validation effort. In the coming months, the work listed above will be completed. Cross section libraries will be generated with optimized group structures for specific reactor types.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingchen; Tan, Jin; Krad, Ibrahim

    Power system frequency needs to be maintained close to its nominal value at all times to successfully balance load and generation and maintain system reliability. Adequate primary frequency response and secondary frequency response are the primary forces to correct an energy imbalance at the second-to-minute level. As wind energy becomes a larger portion of the world's energy portfolio, there is an increased need for wind to provide frequency response. This paper addresses one of the major concerns about using wind for frequency regulation: the unknown factor of the interaction between primary and secondary reserves. The lack of a commercially availablemore » tool to model this has limited the energy industry's understanding of when the depletion of primary reserves will impact the performance of secondary response or vice versa. This paper investigates the issue by developing a multi-area frequency response integration tool with combined primary and secondary capabilities. The simulation is conducted in close coordination with economical energy scheduling scenarios to ensure credible simulation results.« less

  3. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    NASA Astrophysics Data System (ADS)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  4. Evaluation of protective shielding thickness for diagnostic radiology rooms: theory and computer simulation.

    PubMed

    Costa, Paulo R; Caldas, Linda V E

    2002-01-01

    This work presents the development and evaluation using modern techniques to calculate radiation protection barriers in clinical radiographic facilities. Our methodology uses realistic primary and scattered spectra. The primary spectra were computer simulated using a waveform generalization and a semiempirical model (the Tucker-Barnes-Chakraborty model). The scattered spectra were obtained from published data. An analytical function was used to produce attenuation curves from polychromatic radiation for specified kVp, waveform, and filtration. The results of this analytical function are given in ambient dose equivalent units. The attenuation curves were obtained by application of Archer's model to computer simulation data. The parameters for the best fit to the model using primary and secondary radiation data from different radiographic procedures were determined. They resulted in an optimized model for shielding calculation for any radiographic room. The shielding costs were about 50% lower than those calculated using the traditional method based on Report No. 49 of the National Council on Radiation Protection and Measurements.

  5. Eco-Logic: Logic-Based Approaches to Ecological Modelling

    Treesearch

    Daniel L. Schmoldt

    1991-01-01

    This paper summarizes the simulation research carried out during 1984-1989 at the University of Edinburgh. Two primary objectives of their research are 1) to provide tools for manipulating simulation models (i.e., implementation tools) and 2) to provide advice on conceptualizing real-world phenomena into an idealized representation for simulation (i.e., model design...

  6. An Integrated Design and Development System for Graphics Simulation.

    ERIC Educational Resources Information Center

    Richardson, J. Jeffrey

    In the training of maintenance and operations technicians, three enhancements to a basic, straightforward, fixed-sequence simulation system can be useful. The primary advantage of the resultant system is that the principal object of simulation is the task to be performed, which includes both the planning knowledge and the equipment actions…

  7. Combining Simulation and Optimization Models for Hardwood Lumber Production

    Treesearch

    G.A. Mendoza; R.J. Meimban; W.G. Luppold; Philip A. Araman

    1991-01-01

    Published literature contains a number of optimization and simulation models dealing with the primary processing of hardwood and softwood logs. Simulation models have been developed primarily as descriptive models for characterizing the general operations and performance of a sawmill. Optimization models, on the other hand, were developed mainly as analytical tools for...

  8. Further developments in cloud statistics for computer simulations

    NASA Technical Reports Server (NTRS)

    Chang, D. T.; Willand, J. H.

    1972-01-01

    This study is a part of NASA's continued program to provide global statistics of cloud parameters for computer simulation. The primary emphasis was on the development of the data bank of the global statistical distributions of cloud types and cloud layers and their applications in the simulation of the vertical distributions of in-cloud parameters such as liquid water content. These statistics were compiled from actual surface observations as recorded in Standard WBAN forms. Data for a total of 19 stations were obtained and reduced. These stations were selected to be representative of the 19 primary cloud climatological regions defined in previous studies of cloud statistics. Using the data compiled in this study, a limited study was conducted of the hemogeneity of cloud regions, the latitudinal dependence of cloud-type distributions, the dependence of these statistics on sample size, and other factors in the statistics which are of significance to the problem of simulation. The application of the statistics in cloud simulation was investigated. In particular, the inclusion of the new statistics in an expanded multi-step Monte Carlo simulation scheme is suggested and briefly outlined.

  9. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWATmore » model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT’s performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests.« less

  10. Hybrid deterministic-stochastic modeling of x-ray beam bowtie filter scatter on a CT system.

    PubMed

    Liu, Xin; Hsieh, Jiang

    2015-01-01

    Knowledge of scatter generated by bowtie filter (i.e. x-ray beam compensator) is crucial for providing artifact free images on the CT scanners. Our approach is to use a hybrid deterministic-stochastic simulation to estimate the scatter level generated by a bowtie filter made of a material with low atomic number. First, major components of CT systems, such as source, flat filter, bowtie filter, body phantom, are built into a 3D model. The scattered photon fluence and the primary transmitted photon fluence are simulated by MCNP - a Monte Carlo simulation toolkit. The rejection of scattered photon by the post patient collimator (anti-scatter grid) is simulated with an analytical formula. The biased sinogram is created by superimposing scatter signal generated by the simulation onto the primary x-ray beam signal. Finally, images with artifacts are reconstructed with the biased signal. The effect of anti-scatter grid height on scatter rejection are also discussed and demonstrated.

  11. SU-E-T-90: Concrete Forward-Scatter Fractions for Radiotherapy Shielding Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanny, S; Parsai, E

    2014-06-01

    Purpose: There is little instruction within the primary shielding guidance document NCRP 151 for vault designs where the primary beam intercepts the maze. We have conducted a Monte-Carlo study to characterize forward-scattered radiation from concrete barriers with the intent of quantifying what amount of additional shielding outside the primary beam is needed in this situation. Methods: We reproduced our vault in MCNP 5 and simulated spectra obtained from the literature and from our treatment planning system for 10 and 18 MV beams. Neutron and gamma-capture contributions were not simulated. Energy deposited was scored at isocenter in a water phantom, withinmore » various cells that comprised the maze, and within cells that comprised the vault door. Tracks were flagged that scattered from within the maze to the door and their contributions were tallied separately. Three different concrete mixtures found in the literature were simulated. An empirically derived analytic equation was used for comparison, utilizing patient scatter fractions to approximate the scatter from concrete. Results: Our simulated data confirms that maze-scattered radiation is a significant contribution to total photon dose at the door. It contributes between 20-35% of the photon shielding workload. Forward-scatter fractions for concrete were somewhat dependent on concrete composition and the relative abundance of higher-Z elements. Scatter fractions were relatively insensitive to changes in the primary photon spectrum. Analytic results were of the same magnitude as simulated results. Conclusions: Forward-scattered radiation from the maze barrier needs to be included in the photon workload for shielding calculations in non-standard vault designs. Scatter fractions will vary with concrete composition, but should be insensitive to spectral changes between machine manufacturers. Further plans for investigation include refined scatter fractions for various concrete compositions, scatter fraction measurement, and simulation of photo-nuclear interaction within the maze barrier for high-energy beams.« less

  12. Comparison of simulation results with sea-level experimental data on 10(14) - 10(16) air shower cores

    NASA Technical Reports Server (NTRS)

    Ash, A. G.

    1985-01-01

    Simulation predictions for the Leeds 35 sq m horizontal discharge chamber array for proton primaries with a approx. E sup 2.7 spectrum extrapolated from balloon data to 10 to the 16th power eV give power law rho (r)-spectra with constant slope approx. -2 consistent with the experimental data up to the point at which they steepen but overshooting them at higher densities, and at high shower sizes predicted cores which are significantly steeper than those observed. Further comparisons with results for heavy nuclei primaries (up to A = 56) point to the inadequacy of changes in primary composition to account for the observed density spectra and core flattening, and the shower size spectrum together, and point, therefore, to the failure of the scaling interaction model at approx. 10 to the 15th power eV primary energy.

  13. Influence of Drilling Speed on Stability of Tapered Dental Implants: An Ex Vivo Experimental Study.

    PubMed

    Almeida, Karen P; Delgado-Ruiz, Rafael; Carneiro, Leandro G; Leiva, Alberto Bordonaba; Calvo-Guirado, Jose Luis; Gómez-Moreno, Gerardo; Malmström, Hans; Romanos, Georgios E

    2016-01-01

    The aim of this study was to evaluate whether the drilling speed used during implant site preparation influences primary stability. Eighty tapered designed implants (3.8 × 10 mm) were inserted following osteotomies created in solid rigid polyurethane foam (simulating bone type II) and cellular rigid polyurethane foam (simulating bone type IV). Half were prepared using drilling speeds of 800 rpm (low speed), and the other half were prepared using speeds of 1,500 rpm (high speed). Following insertion, implant primary stability was measured using Periotest and Osstell (resonance frequency analysis [RFA]) devices. Two-way analysis of variance (ANOVA) used for this study found that the drilling speed used to create the osteotomies appeared to have no significant impact on primary stability. The bone quality and not the osteotomy drilling speed seems to influence the implant primary stability.

  14. Flow of GE90 Turbofan Engine Simulated

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1999-01-01

    The objective of this task was to create and validate a three-dimensional model of the GE90 turbofan engine (General Electric) using the APNASA (average passage) flow code. This was a joint effort between GE Aircraft Engines and the NASA Lewis Research Center. The goal was to perform an aerodynamic analysis of the engine primary flow path, in under 24 hours of CPU time, on a parallel distributed workstation system. Enhancements were made to the APNASA Navier-Stokes code to make it faster and more robust and to allow for the analysis of more arbitrary geometry. The resulting simulation exploited the use of parallel computations by using two levels of parallelism, with extremely high efficiency.The primary flow path of the GE90 turbofan consists of a nacelle and inlet, 49 blade rows of turbomachinery, and an exhaust nozzle. Secondary flows entering and exiting the primary flow path-such as bleed, purge, and cooling flows-were modeled macroscopically as source terms to accurately simulate the engine. The information on these source terms came from detailed descriptions of the cooling flow and from thermodynamic cycle system simulations. These provided boundary condition data to the three-dimensional analysis. A simplified combustor was used to feed boundary conditions to the turbomachinery. Flow simulations of the fan, high-pressure compressor, and high- and low-pressure turbines were completed with the APNASA code.

  15. Perspectives: Using Results from HRSA's Health Workforce Simulation Model to Examine the Geography of Primary Care.

    PubMed

    Streeter, Robin A; Zangaro, George A; Chattopadhyay, Arpita

    2017-02-01

    Inform health planning and policy discussions by describing Health Resources and Services Administration's (HRSA's) Health Workforce Simulation Model (HWSM) and examining the HWSM's 2025 supply and demand projections for primary care physicians, nurse practitioners (NPs), and physician assistants (PAs). HRSA's recently published projections for primary care providers derive from an integrated microsimulation model that estimates health workforce supply and demand at national, regional, and state levels. Thirty-seven states are projected to have shortages of primary care physicians in 2025, and nine states are projected to have shortages of both primary care physicians and PAs. While no state is projected to have a 2025 shortage of primary care NPs, many states are expected to have only a small surplus. Primary care physician shortages are projected for all parts of the United States, while primary care PA shortages are generally confined to Midwestern and Southern states. No state is projected to have shortages of all three provider types. Projected shortages must be considered in the context of baseline assumptions regarding current supply, demand, provider-service ratios, and other factors. Still, these findings suggest geographies with possible primary care workforce shortages in 2025 and offer opportunities for targeting efforts to enhance workforce flexibility. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  16. Xenon-induced power oscillations in a generic small modular reactor

    NASA Astrophysics Data System (ADS)

    Kitcher, Evans Damenortey

    As world demand for energy continues to grow at unprecedented rates, the world energy portfolio of the future will inevitably include a nuclear energy contribution. It has been suggested that the Small Modular Reactor (SMR) could play a significant role in the spread of civilian nuclear technology to nations previously without nuclear energy. As part of the design process, the SMR design must be assessed for the threat to operations posed by xenon-induced power oscillations. In this research, a generic SMR design was analyzed with respect to just such a threat. In order to do so, a multi-physics coupling routine was developed with MCNP/MCNPX as the neutronics solver. Thermal hydraulic assessments were performed using a single channel analysis tool developed in Python. Fuel and coolant temperature profiles were implemented in the form of temperature dependent fuel cross sections generated using the SIGACE code and reactor core coolant densities. The Power Axial Offset (PAO) and Xenon Axial Offset (XAO) parameters were chosen to quantify any oscillatory behavior observed. The methodology was benchmarked against results from literature of startup tests performed at a four-loop PWR in Korea. The developed benchmark model replicated the pertinent features of the reactor within ten percent of the literature values. The results of the benchmark demonstrated that the developed methodology captured the desired phenomena accurately. Subsequently, a high fidelity SMR core model was developed and assessed. Results of the analysis revealed an inherently stable SMR design at beginning of core life and end of core life under full-power and half-power conditions. The effect of axial discretization, stochastic noise and convergence of the Monte Carlo tallies in the calculations of the PAO and XAO parameters was investigated. All were found to be quite small and the inherently stable nature of the core design with respect to xenon-induced power oscillations was confirmed. Finally, a preliminary investigation into excess reactivity control options for the SMR design was conducted confirming the generally held notion that existing PWR control mechanisms can be used in iPWR SMRs with similar effectiveness. With the desire to operate the SMR under the boron free coolant condition, erbium oxide fuel integral burnable absorber rods were identified as a possible means to retain the dispersed absorber effect of soluble boron in the reactor coolant in replacement.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swamy, S.A.; Bhowmick, D.C.; Prager, D.E.

    The regulatory requirements for postulated pipe ruptures have changed significantly since the first nuclear plants were designed. The Leak-Before-Break (LBB) methodology is now accepted as a technically justifiable approach for eliminating postulation of double-ended guillotine breaks (DEGB) in high energy piping systems. The previous pipe rupture design requirements for nuclear power plant applications are responsible for all the numerous and massive pipe whip restraints and jet shields installed for each plant. This results in significant plant congestion, increased labor costs and radiation dosage for normal maintenance and inspection. Also the restraints increase the probability of interference between the piping andmore » supporting structures during plant heatup, thereby potentially impacting overall plant reliability. The LBB approach to eliminate postulating ruptures in high energy piping systems is a significant improvement to former regulatory methodologies, and therefore, the LBB approach to design is gaining worldwide acceptance. However, the methods and criteria for LBB evaluation depend upon the policy of individual country and significant effort continues towards accomplishing uniformity on a global basis. In this paper the historical development of the U.S. LBB criteria will be traced and the results of an LBB evaluation for a typical Japanese PWR primary loop applying U.S. NRC approved methods will be presented. In addition, another approach using the Japanese LBB criteria will be shown and compared with the U.S. criteria. The comparison will be highlighted in this paper with detailed discussion.« less

  18. Epp: A C++ EGSnrc user code for x-ray imaging and scattering simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippuner, Jonas; Elbakri, Idris A.; Cui Congwu

    2011-03-15

    Purpose: Easy particle propagation (Epp) is a user code for the EGSnrc code package based on the C++ class library egspp. A main feature of egspp (and Epp) is the ability to use analytical objects to construct simulation geometries. The authors developed Epp to facilitate the simulation of x-ray imaging geometries, especially in the case of scatter studies. While direct use of egspp requires knowledge of C++, Epp requires no programming experience. Methods: Epp's features include calculation of dose deposited in a voxelized phantom and photon propagation to a user-defined imaging plane. Projection images of primary, single Rayleigh scattered, singlemore » Compton scattered, and multiple scattered photons may be generated. Epp input files can be nested, allowing for the construction of complex simulation geometries from more basic components. To demonstrate the imaging features of Epp, the authors simulate 38 keV x rays from a point source propagating through a water cylinder 12 cm in diameter, using both analytical and voxelized representations of the cylinder. The simulation generates projection images of primary and scattered photons at a user-defined imaging plane. The authors also simulate dose scoring in the voxelized version of the phantom in both Epp and DOSXYZnrc and examine the accuracy of Epp using the Kawrakow-Fippel test. Results: The results of the imaging simulations with Epp using voxelized and analytical descriptions of the water cylinder agree within 1%. The results of the Kawrakow-Fippel test suggest good agreement between Epp and DOSXYZnrc. Conclusions: Epp provides the user with useful features, including the ability to build complex geometries from simpler ones and the ability to generate images of scattered and primary photons. There is no inherent computational time saving arising from Epp, except for those arising from egspp's ability to use analytical representations of simulation geometries. Epp agrees with DOSXYZnrc in dose calculation, since they are both based on the well-validated standard EGSnrc radiation transport physics model.« less

  19. Description and validation of the Simple, Efficient, Dynamic, Global, Ecological Simulator (SEDGES v.1.0)

    NASA Astrophysics Data System (ADS)

    Paiewonsky, Pablo; Elison Timm, Oliver

    2018-03-01

    In this paper, we present a simple dynamic global vegetation model whose primary intended use is auxiliary to the land-atmosphere coupling scheme of a climate model, particularly one of intermediate complexity. The model simulates and provides important ecological-only variables but also some hydrological and surface energy variables that are typically either simulated by land surface schemes or else used as boundary data input for these schemes. The model formulations and their derivations are presented here, in detail. The model includes some realistic and useful features for its level of complexity, including a photosynthetic dependency on light, full coupling of photosynthesis and transpiration through an interactive canopy resistance, and a soil organic carbon dependence for bare-soil albedo. We evaluate the model's performance by running it as part of a simple land surface scheme that is driven by reanalysis data. The evaluation against observational data includes net primary productivity, leaf area index, surface albedo, and diagnosed variables relevant for the closure of the hydrological cycle. In this setup, we find that the model gives an adequate to good simulation of basic large-scale ecological and hydrological variables. Of the variables analyzed in this paper, gross primary productivity is particularly well simulated. The results also reveal the current limitations of the model. The most significant deficiency is the excessive simulation of evapotranspiration in mid- to high northern latitudes during their winter to spring transition. The model has a relative advantage in situations that require some combination of computational efficiency, model transparency and tractability, and the simulation of the large-scale vegetation and land surface characteristics under non-present-day conditions.

  20. Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo Simulation of Tungsten Cascade Aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.

    2015-07-01

    The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibitsmore » an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.« less

Top