Shiyuan Zhong; Xiuping Li; Xindi Bian; Warren E. Heilman; L. Ruby Leung; William I. Jr. Gustafson
2012-01-01
The performance of regional climate simulations is evaluated for the Great Lakes region. Three 10-year (1990-1999) current-climate simulations are performed using the MM5 regional climate model (RCM) with 36-km horizontal resolution. The simulations employed identical configuration and physical parameterizations, but different lateral boundary conditions and sea-...
Evaluation of regional climate simulations for air quality modelling purposes
NASA Astrophysics Data System (ADS)
Menut, Laurent; Tripathi, Om P.; Colette, Augustin; Vautard, Robert; Flaounas, Emmanouil; Bessagnet, Bertrand
2013-05-01
In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional "climate modeling" source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.
NASA Astrophysics Data System (ADS)
Zorita, E.
2009-12-01
One of the objectives when comparing simulations of past climates to proxy-based climate reconstructions is to asses the skill of climate models to simulate climate change. This comparison may accomplished at large spatial scales, for instance the evolution of simulated and reconstructed Northern Hemisphere annual temperature, or at regional or point scales. In both approaches a 'fair' comparison has to take into account different aspects that affect the inevitable uncertainties and biases in the simulations and in the reconstructions. These efforts face a trade-off: climate models are believed to be more skillful at large hemispheric scales, but climate reconstructions are these scales are burdened by the spatial distribution of available proxies and by methodological issues surrounding the statistical method used to translate the proxy information into large-spatial averages. Furthermore, the internal climatic noise at large hemispheric scales is low, so that the sampling uncertainty tends to be also low. On the other hand, the skill of climate models at regional scales is limited by the coarse spatial resolution, which hinders a faithful representation of aspects important for the regional climate. At small spatial scales, the reconstruction of past climate probably faces less methodological problems if information from different proxies is available. The internal climatic variability at regional scales is, however, high. In this contribution some examples of the different issues faced when comparing simulation and reconstructions at small spatial scales in the past millennium are discussed. These examples comprise reconstructions from dendrochronological data and from historical documentary data in Europe and climate simulations with global and regional models. These examples indicate that the centennial climate variations can offer a reasonable target to assess the skill of global climate models and of proxy-based reconstructions, even at small spatial scales. However, as the focus shifts towards higher frequency variability, decadal or multidecadal, the need for larger simulation ensembles becomes more evident. Nevertheless,the comparison at these time scales may expose some lines of research on the origin of multidecadal regional climate variability.
NASA Astrophysics Data System (ADS)
Nolte, C. G.; Otte, T. L.; Bowden, J. H.; Otte, M. J.
2010-12-01
There is disagreement in the regional climate modeling community as to the appropriateness of the use of internal nudging. Some investigators argue that the regional model should be minimally constrained and allowed to respond to regional-scale forcing, while others have noted that in the absence of interior nudging, significant large-scale discrepancies develop between the regional model solution and the driving coarse-scale fields. These discrepancies lead to reduced confidence in the ability of regional climate models to dynamically downscale global climate model simulations under climate change scenarios, and detract from the usability of the regional simulations for impact assessments. The advantages and limitations of interior nudging schemes for regional climate modeling are investigated in this study. Multi-year simulations using the WRF model driven by reanalysis data over the continental United States at 36km resolution are conducted using spectral nudging, grid point nudging, and for a base case without interior nudging. The means, distributions, and inter-annual variability of temperature and precipitation will be evaluated in comparison to regional analyses.
Lakes can play a significant role in regional climate, modulating inland extremes in temperature and enhancing precipitation. Representing these effects becomes more important as regional climate modeling (RCM) efforts focus on simulating smaller scales. When using the Weathe...
David E. Rupp,
2016-05-05
The 20th century climate for the Southeastern United States and surrounding areas as simulated by global climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) was evaluated. A suite of statistics that characterize various aspects of the regional climate was calculated from both model simulations and observation-based datasets. CMIP5 global climate models were ranked by their ability to reproduce the observed climate. Differences in the performance of the models between regions of the United States (the Southeastern and Northwestern United States) warrant a regional-scale assessment of CMIP5 models.
Sensitivity of WRF Regional Climate Simulations to Choice of Land Use Dataset
The goal of this study is to assess the sensitivity of regional climate simulations run with the Weather Research and Forecasting (WRF) model to the choice of datasets representing land use and land cover (LULC). Within a regional climate modeling application, an accurate repres...
NASA Astrophysics Data System (ADS)
Hawkins, L. R.; Rupp, D. E.; Li, S.; Sarah, S.; McNeall, D. J.; Mote, P.; Betts, R. A.; Wallom, D.
2017-12-01
Changing regional patterns of surface temperature, precipitation, and humidity may cause ecosystem-scale changes in vegetation, altering the distribution of trees, shrubs, and grasses. A changing vegetation distribution, in turn, alters the albedo, latent heat flux, and carbon exchanged with the atmosphere with resulting feedbacks onto the regional climate. However, a wide range of earth-system processes that affect the carbon, energy, and hydrologic cycles occur at sub grid scales in climate models and must be parameterized. The appropriate parameter values in such parameterizations are often poorly constrained, leading to uncertainty in predictions of how the ecosystem will respond to changes in forcing. To better understand the sensitivity of regional climate to parameter selection and to improve regional climate and vegetation simulations, we used a large perturbed physics ensemble and a suite of statistical emulators. We dynamically downscaled a super-ensemble (multiple parameter sets and multiple initial conditions) of global climate simulations using a 25-km resolution regional climate model HadRM3p with the land-surface scheme MOSES2 and dynamic vegetation module TRIFFID. We simultaneously perturbed land surface parameters relating to the exchange of carbon, water, and energy between the land surface and atmosphere in a large super-ensemble of regional climate simulations over the western US. Statistical emulation was used as a computationally cost-effective tool to explore uncertainties in interactions. Regions of parameter space that did not satisfy observational constraints were eliminated and an ensemble of parameter sets that reduce regional biases and span a range of plausible interactions among earth system processes were selected. This study demonstrated that by combining super-ensemble simulations with statistical emulation, simulations of regional climate could be improved while simultaneously accounting for a range of plausible land-atmosphere feedback strengths.
Changes in U.S. Regional-Scale Air Quality at 2030 Simulated Using RCP 6.0
NASA Astrophysics Data System (ADS)
Nolte, C. G.; Otte, T.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.
2012-12-01
Recent improvements in air quality in the United States have been due to significant reductions in emissions of ozone and particulate matter (PM) precursors, and these downward emissions trends are expected to continue in the next few decades. To ensure that planned air quality regulations are robust under a range of possible future climates and to consider possible policy actions to mitigate climate change, it is important to characterize and understand the effects of climate change on air quality. Recent work by several research groups using global and regional models has demonstrated that there is a "climate penalty," in which climate change leads to increases in surface ozone levels in polluted continental regions. One approach to simulating future air quality at the regional scale is via dynamical downscaling, in which fields from a global climate model are used as input for a regional climate model, and these regional climate data are subsequently used for chemical transport modeling. However, recent studies using this approach have encountered problems with the downscaled regional climate fields, including unrealistic surface temperatures and misrepresentation of synoptic pressure patterns such as the Bermuda High. We developed a downscaling methodology and showed that it now reasonably simulates regional climate by evaluating it against historical data. In this work, regional climate simulations created by downscaling the NASA/GISS Model E2 global climate model are used as input for the Community Multiscale Air Quality (CMAQ) model. CMAQ simulations over the continental United States are conducted for two 11-year time slices, one representing current climate (1995-2005) and one following Representative Concentration Pathway 6.0 from 2025-2035. Anthropogenic emissions of ozone and PM precursors are held constant at year 2006 levels for both the current and future periods. In our presentation, we will examine the changes in ozone and PM concentrations, with particular focus on exceedances of the current U.S. air quality standards, and attempt to relate the changes in air quality to the projected changes in regional climate.
A Coupled Regional Climate Simulator for the Gulf of St. Lawrence, Canada
NASA Astrophysics Data System (ADS)
Faucher, M.; Saucier, F.; Caya, D.
2003-12-01
The climate of Eastern Canada is characterized by atmosphere-ocean-ice interactions due to the closeness of the North Atlantic Ocean and the Labrador Sea. Also, there are three relatively large inner basins: the Gulf of St-Lawrence, the Hudson Bay / Hudson Strait / Foxe Basin system and the Great Lakes, influencing the evolution of weather systems and therefore the regional climate. These basins are characterized by irregular coastlines and variables sea-ice in winter, so that the interactions between the atmosphere and the ocean are more complex. There are coupled general circulation models (GCMs) that are available to study the climate of Eastern Canada, but their resolution (near 350km) is to low to resolve the details of the regional climate of this area and to provide valuable information for climate impact studies. The goal of this work is to develop a coupled regional climate simulator for Eastern Canada to study the climate and its variability, necessary to assess the future climate in a double CO2 situation. An off-line coupling strategy through the interacting fields is used to link the Canadian Regional Climate Model developed at the "Universite du Quebec a Montreal" (CRCM, Caya and Laprise 1999) to the Gulf of St. Lawrence ocean model developed at the "Institut Maurice-Lamontagne" (GOM, Saucier et al. 2002). This strategy involves running both simulators separately and alternatively, using variables from the other simulator to supply the needed forcing fields every day. We present the results of a first series of seasonal simulations performed with this system to show the ability of our climate simulator to reproduce the known characteristics of the regional circulation such as mesoscale oceanic features, fronts and sea-ice. The simulations were done for the period from December 1st, 1989 to March 31st, 1990. The results are compared with those of previous uncoupled runs (Faucher et al. 2003) and with observations.
Crop Yield Simulations Using Multiple Regional Climate Models in the Southwestern United States
NASA Astrophysics Data System (ADS)
Stack, D.; Kafatos, M.; Kim, S.; Kim, J.; Walko, R. L.
2013-12-01
Agricultural productivity (described by crop yield) is strongly dependent on climate conditions determined by meteorological parameters (e.g., temperature, rainfall, and solar radiation). California is the largest producer of agricultural products in the United States, but crops in associated arid and semi-arid regions live near their physiological limits (e.g., in hot summer conditions with little precipitation). Thus, accurate climate data are essential in assessing the impact of climate variability on agricultural productivity in the Southwestern United States and other arid regions. To address this issue, we produced simulated climate datasets and used them as input for the crop production model. For climate data, we employed two different regional climate models (WRF and OLAM) using a fine-resolution (8km) grid. Performances of the two different models are evaluated in a fine-resolution regional climate hindcast experiment for 10 years from 2001 to 2010 by comparing them to the North American Regional Reanalysis (NARR) dataset. Based on this comparison, multi-model ensembles with variable weighting are used to alleviate model bias and improve the accuracy of crop model productivity over large geographic regions (county and state). Finally, by using a specific crop-yield simulation model (APSIM) in conjunction with meteorological forcings from the multi-regional climate model ensemble, we demonstrate the degree to which maize yields are sensitive to the regional climate in the Southwestern United States.
Climate impacts on palm oil yields in the Nigerian Niger Delta
NASA Astrophysics Data System (ADS)
Okoro, Stanley U.; Schickhoff, Udo; Boehner, Juergen; Schneider, Uwe A.; Huth, Neil
2016-04-01
Palm oil production has increased in recent decades and is estimated to increase further. The optimal role of palm oil production, however, is controversial because of resource conflicts with alternative land uses. Local conditions and climate change affect resource competition and the desirability of palm oil production. Based on this, crop yield simulations using different climate model output under different climate scenarios could be important tool in addressing the problem of uncertainty quantification among different climate model outputs. Previous studies on this region have focused mostly on single experimental fields, not considering variations in Agro-Ecological Zones, climatic conditions, varieties and management practices and, in most cases not extending to various IPCC climate scenarios and were mostly based on single climate model output. Furthermore, the uncertainty quantification of the climate- impact model has rarely been investigated on this region. To this end we use the biophysical simulation model APSIM (Agricultural Production Systems Simulator) to simulate the regional climate impact on oil palm yield over the Nigerian Niger Delta. We also examine whether the use of crop yield model output ensemble reduces the uncertainty rather than the use of climate model output ensemble. The results could serve as a baseline for policy makers in this region in understanding the interaction between potentials of energy crop production of the region as well as its food security and other negative feedbacks that could be associated with bioenergy from oil palm. Keywords: Climate Change, Climate impacts, Land use and Crop yields.
This poster compares air quality modeling simulations under current climate and a future (approximately 2050) climate scenario. Differences in predicted ozone episodes and daily average PM2.5 concentrations are presented, along with vertical ozone profiles. Modeling ...
NASA Astrophysics Data System (ADS)
Berckmans, Julie; Hamdi, Rafiq; De Troch, Rozemien; Giot, Olivier
2015-04-01
At the Royal Meteorological Institute of Belgium (RMI), climate simulations are performed with the regional climate model (RCM) ALARO, a version of the ALADIN model with improved physical parameterizations. In order to obtain high-resolution information of the regional climate, lateral bounary conditions (LBC) are prescribed from the global climate model (GCM) ARPEGE. Dynamical downscaling is commonly done in a continuous long-term simulation, with the initialisation of the model at the start and driven by the regularly updated LBCs of the GCM. Recently, more interest exists in the dynamical downscaling approach of frequent reinitializations of the climate simulations. For these experiments, the model is initialised daily and driven for 24 hours by the GCM. However, the surface is either initialised daily together with the atmosphere or free to evolve continuously. The surface scheme implemented in ALARO is SURFEX, which can be either run in coupled mode or in stand-alone mode. The regional climate is simulated on different domains, on a 20km horizontal resolution over Western-Europe and a 4km horizontal resolution over Belgium. Besides, SURFEX allows to perform a stand-alone or offline simulation on 1km horizontal resolution over Belgium. This research is in the framework of the project MASC: "Modelling and Assessing Surface Change Impacts on Belgian and Western European Climate", a 4-year project funded by the Belgian Federal Government. The overall aim of the project is to study the feedbacks between climate changes and land surface changes in order to improve regional climate model projections at the decennial scale over Belgium and Western Europe and thus to provide better climate projections and climate change evaluation tools to policy makers, stakeholders and the scientific community.
A Variable Resolution Stretched Grid General Circulation Model: Regional Climate Simulation
NASA Technical Reports Server (NTRS)
Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.; Suarez, Max J.
2000-01-01
The development of and results obtained with a variable resolution stretched-grid GCM for the regional climate simulation mode, are presented. A global variable resolution stretched- grid used in the study has enhanced horizontal resolution over the U.S. as the area of interest The stretched-grid approach is an ideal tool for representing regional to global scale interaction& It is an alternative to the widely used nested grid approach introduced over a decade ago as a pioneering step in regional climate modeling. The major results of the study are presented for the successful stretched-grid GCM simulation of the anomalous climate event of the 1988 U.S. summer drought- The straightforward (with no updates) two month simulation is performed with 60 km regional resolution- The major drought fields, patterns and characteristics such as the time averaged 500 hPa heights precipitation and the low level jet over the drought area. appear to be close to the verifying analyses for the stretched-grid simulation- In other words, the stretched-grid GCM provides an efficient down-scaling over the area of interest with enhanced horizontal resolution. It is also shown that the GCM skill is sustained throughout the simulation extended to one year. The developed and tested in a simulation mode stretched-grid GCM is a viable tool for regional and subregional climate studies and applications.
NASA Astrophysics Data System (ADS)
Graham, L. Phil; Andersson, Lotta; Horan, Mark; Kunz, Richard; Lumsden, Trevor; Schulze, Roland; Warburton, Michele; Wilk, Julie; Yang, Wei
This study used climate change projections from different regional approaches to assess hydrological effects on the Thukela River Basin in KwaZulu-Natal, South Africa. Projecting impacts of future climate change onto hydrological systems can be undertaken in different ways and a variety of effects can be expected. Although simulation results from global climate models (GCMs) are typically used to project future climate, different outcomes from these projections may be obtained depending on the GCMs themselves and how they are applied, including different ways of downscaling from global to regional scales. Projections of climate change from different downscaling methods, different global climate models and different future emissions scenarios were used as input to simulations in a hydrological model to assess climate change impacts on hydrology. A total of 10 hydrological change simulations were made, resulting in a matrix of hydrological response results. This matrix included results from dynamically downscaled climate change projections from the same regional climate model (RCM) using an ensemble of three GCMs and three global emissions scenarios, and from statistically downscaled projections using results from five GCMs with the same emissions scenario. Although the matrix of results does not provide complete and consistent coverage of potential uncertainties from the different methods, some robust results were identified. In some regards, the results were in agreement and consistent for the different simulations. For others, particularly rainfall, the simulations showed divergence. For example, all of the statistically downscaled simulations showed an annual increase in precipitation and corresponding increase in river runoff, while the RCM downscaled simulations showed both increases and decreases in runoff. According to the two projections that best represent runoff for the observed climate, increased runoff would generally be expected for this basin in the future. Dealing with such variability in results is not atypical for assessing climate change impacts in Africa and practitioners are faced with how to interpret them. This work highlights the need for additional, well-coordinated regional climate downscaling for the region to further define the range of uncertainties involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Lai R.; Qian, Yun
This study examines an ensemble of climate change projections simulated by a global climate model (GCM) and downscaled with a region climate model (RCM) to 40 km spatial resolution for the western North America. One control and three ensemble future climate simulations were produced by the GCM following a business as usual scenario for greenhouse gases and aerosols emissions from 1995 to 2100. The RCM was used to downscale the GCM control simulation (1995-2015) and each ensemble future GCM climate (2040-2060) simulation. Analyses of the regional climate simulations for the Georgia Basin/Puget Sound showed a warming of 1.5-2oC and statisticallymore » insignificant changes in precipitation by the mid-century. Climate change has large impacts on snowpack (about 50% reduction) but relatively smaller impacts on the total runoff for the basin as a whole. However, climate change can strongly affect small watersheds such as those located in the transient snow zone, causing a higher likelihood of winter flooding as a higher percentage of precipitation falls in the form of rain rather than snow, and reduced streamflow in early summer. In addition, there are large changes in the monthly total runoff above the upper 1% threshold (or flood volume) from October through May, and the December flood volume of the future climate is 60% above the maximum monthly flood volume of the control climate. Uncertainty of the climate change projections, as characterized by the spread among the ensemble future climate simulations, is relatively small for the basin mean snowpack and runoff, but increases in smaller watersheds, especially in the transient snow zone, and associated with extreme events. This emphasizes the importance of characterizing uncertainty through ensemble simulations.« less
NASA Astrophysics Data System (ADS)
Lin, S. J.
2015-12-01
The NOAA/Geophysical Fluid Dynamics Laboratory has been developing a unified regional-global modeling system with variable resolution capabilities that can be used for severe weather predictions (e.g., tornado outbreak events and cat-5 hurricanes) and ultra-high-resolution (1-km) regional climate simulations within a consistent global modeling framework. The fundation of this flexible regional-global modeling system is the non-hydrostatic extension of the vertically Lagrangian dynamical core (Lin 2004, Monthly Weather Review) known in the community as FV3 (finite-volume on the cubed-sphere). Because of its flexability and computational efficiency, the FV3 is one of the final candidates of NOAA's Next Generation Global Prediction System (NGGPS). We have built into the modeling system a stretched (single) grid capability, a two-way (regional-global) multiple nested grid capability, and the combination of the stretched and two-way nests, so as to make convection-resolving regional climate simulation within a consistent global modeling system feasible using today's High Performance Computing System. One of our main scientific goals is to enable simulations of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously regarded as impossible. In this presentation I will demonstrate that it is computationally feasible to simulate not only super-cell thunderstorms, but also the subsequent genesis of tornadoes using a global model that was originally designed for century long climate simulations. As a unified weather-climate modeling system, we evaluated the performance of the model with horizontal resolution ranging from 1 km to as low as 200 km. In particular, for downscaling studies, we have developed various tests to ensure that the large-scale circulation within the global varaible resolution system is well simulated while at the same time the small-scale can be accurately captured within the targeted high resolution region.
NASA Astrophysics Data System (ADS)
Polade, Suraj D.; Gershunov, Alexander; Cayan, Daniel R.; Dettinger, Michael D.; Pierce, David W.
2013-05-01
climate variability will continue to be an important aspect of future regional climate even in the midst of long-term secular changes. Consequently, the ability of climate models to simulate major natural modes of variability and their teleconnections provides important context for the interpretation and use of climate change projections. Comparisons reported here indicate that the CMIP5 generation of global climate models shows significant improvements in simulations of key Pacific climate mode and their teleconnections to North America compared to earlier CMIP3 simulations. The performance of 14 models with simulations in both the CMIP3 and CMIP5 archives are assessed using singular value decomposition analysis of simulated and observed winter Pacific sea surface temperatures (SSTs) and concurrent precipitation over the contiguous United States and northwestern Mexico. Most of the models reproduce basic features of the key natural mode and their teleconnections, albeit with notable regional deviations from observations in both SST and precipitation. Increasing horizontal resolution in the CMIP5 simulations is an important, but not a necessary, factor in the improvement from CMIP3 to CMIP5.
Polade, Suraj D.; Gershunov, Alexander; Cayan, Daniel R.; Dettinger, Michael D.; Pierce, David W.
2013-01-01
Natural climate variability will continue to be an important aspect of future regional climate even in the midst of long-term secular changes. Consequently, the ability of climate models to simulate major natural modes of variability and their teleconnections provides important context for the interpretation and use of climate change projections. Comparisons reported here indicate that the CMIP5 generation of global climate models shows significant improvements in simulations of key Pacific climate mode and their teleconnections to North America compared to earlier CMIP3 simulations. The performance of 14 models with simulations in both the CMIP3 and CMIP5 archives are assessed using singular value decomposition analysis of simulated and observed winter Pacific sea surface temperatures (SSTs) and concurrent precipitation over the contiguous United States and northwestern Mexico. Most of the models reproduce basic features of the key natural mode and their teleconnections, albeit with notable regional deviations from observations in both SST and precipitation. Increasing horizontal resolution in the CMIP5 simulations is an important, but not a necessary, factor in the improvement from CMIP3 to CMIP5.
Causes of Cool-Season Precipitation Bias in the East South Central U.S.
NASA Astrophysics Data System (ADS)
Bukovsky, M. S.; McCrary, R. R.; Rendfrey, T. S.; Schroeder, A. D.; Mearns, L.
2017-12-01
A climatological maximum in cool-season precipitation, secondary to that in the Pacific Northwest, exists in the East South Central U.S. region (ESC). Many regional climate simulations have difficulty reproducing this maximum, whether forced with a reanalysis or global climate model (GCM). This problem exists in some, but not all, of the simulations completed for the North American component of CORDEX (Coordinated Regional Downscaling Experiment) and NARCCAP (North American Regional Climate Change Assessment Program). We use both of these ensembles of regional climate model (RCM) simulations to examine precipitation and some of the factors that govern its climatology in this region to develop a better understanding of why some simulations perform better than others. The ESC roughly encompasses the Lower Mississippi, western South Atlantic, southern Ohio and Tennessee hydrologic regions. Cool-season precipitation (November-April) in the ESC is often convective in nature and strongly forced. In this presentation, we will examine some of the potential causes of the climatological precipitation bias for this region, including bias in: sea-surface temperature, moisture flux, El Nino-Southern Oscillation teleconnections, and the climatology of extratropical cyclones. We will also examine simulation configurations to identify any common threads between the simulations that perform better and those that perform worse.
NASA Astrophysics Data System (ADS)
Bonsal, Barrie R.; Prowse, Terry D.; Pietroniro, Alain
2003-12-01
Climate change is projected to significantly affect future hydrologic processes over many regions of the world. This is of particular importance for alpine systems that provide critical water supplies to lower-elevation regions. The western cordillera of Canada is a prime example where changes to temperature and precipitation could have profound hydro-climatic impacts not only for the cordillera itself, but also for downstream river systems and the drought-prone Canadian Prairies. At present, impact researchers primarily rely on global climate models (GCMs) for future climate projections. The main objective of this study is to assess several GCMs in their ability to simulate the magnitude and spatial variability of current (1961-90) temperature and precipitation over the western cordillera of Canada. In addition, several gridded data sets of observed climate for the study region are evaluated.Results reveal a close correspondence among the four gridded data sets of observed climate, particularly for temperature. There is, however, considerable variability regarding the various GCM simulations of this observed climate. The British, Canadian, German, Australian, and US GFDL models are superior at simulating the magnitude and spatial variability of mean temperature. The Japanese GCM is of intermediate ability, and the US NCAR model is least representative of temperature in this region. Nearly all the models substantially overestimate the magnitude of total precipitation, both annually and on a seasonal basis. An exception involves the British (Hadley) model, which best represents the observed magnitude and spatial variability of precipitation. This study improves our understanding regarding the accuracy of GCM climate simulations over the western cordillera of Canada. The findings may assist in producing more reliable future scenarios of hydro-climatic conditions over various regions of the country. Copyright
Impacts of Irrigation on Daily Extremes in the Coupled Climate System
NASA Technical Reports Server (NTRS)
Puma, Michael J.; Cook, Benjamin I.; Krakauer, Nir; Gentine, Pierre; Nazarenka, Larissa; Kelly, Maxwell; Wada, Yoshihide
2014-01-01
Widespread irrigation alters regional climate through changes to the energy and water budgets of the land surface. Within general circulation models, simulation studies have revealed significant changes in temperature, precipitation, and other climate variables. Here we investigate the feedbacks of irrigation with a focus on daily extremes at the global scale. We simulate global climate for the year 2000 with and without irrigation to understand irrigation-induced changes. Our simulations reveal shifts in key climate-extreme metrics. These findings indicate that land cover and land use change may be an important contributor to climate extremes both locally and in remote regions including the low-latitudes.
Incremental dynamical downscaling for probabilistic analysis based on multiple GCM projections
NASA Astrophysics Data System (ADS)
Wakazuki, Y.
2015-12-01
A dynamical downscaling method for probabilistic regional scale climate change projections was developed to cover an uncertainty of multiple general circulation model (GCM) climate simulations. The climatological increments (future minus present climate states) estimated by GCM simulation results were statistically analyzed using the singular vector decomposition. Both positive and negative perturbations from the ensemble mean with the magnitudes of their standard deviations were extracted and were added to the ensemble mean of the climatological increments. The analyzed multiple modal increments were utilized to create multiple modal lateral boundary conditions for the future climate regional climate model (RCM) simulations by adding to an objective analysis data. This data handling is regarded to be an advanced method of the pseudo-global-warming (PGW) method previously developed by Kimura and Kitoh (2007). The incremental handling for GCM simulations realized approximated probabilistic climate change projections with the smaller number of RCM simulations. Three values of a climatological variable simulated by RCMs for a mode were used to estimate the response to the perturbation of the mode. For the probabilistic analysis, climatological variables of RCMs were assumed to show linear response to the multiple modal perturbations, although the non-linearity was seen for local scale rainfall. Probability of temperature was able to be estimated within two modes perturbation simulations, where the number of RCM simulations for the future climate is five. On the other hand, local scale rainfalls needed four modes simulations, where the number of the RCM simulations is nine. The probabilistic method is expected to be used for regional scale climate change impact assessment in the future.
NASA Astrophysics Data System (ADS)
Ji, P.; Yuan, X.
2017-12-01
Located in the northern Tibetan Plateau, Sanjiangyuan is the headwater region of the Yellow River, Yangtze River and Mekong River. Besides climate change, natural and human-induced land cover change (e.g., Graze for Grass Project) is also influencing the regional hydro-climate and hydrological extremes significantly. To quantify their impacts, a land surface model (LSM) with consideration of soil moisture-lateral surface flow interaction and quasi-three-dimensional subsurface flow, is used to conduct long-term high resolution simulations driven by China Meteorological Administration Land Data Assimilation System forcing data and different land cover scenarios. In particular, the role of surface and subsurface lateral flows is also analyzed by comparing with typical one-dimensional models. Lateral flows help to simulate soil moisture variability caused by topography at hyper-resolution (e.g., 100m), which is also essential for simulating hydrological extremes including soil moisture dryness/wetness and high/low flows. The LSM will also be coupled with a regional climate model to simulate the effect of natural and anthropogenic land cover change on regional climate, with particular focus on the land-atmosphere coupling at different resolutions with different configurations in modeling land surface hydrology.
Simulated Climate Impacts of Mexico City's Historical Urban Expansion
NASA Astrophysics Data System (ADS)
Benson-Lira, Valeria
Urbanization, a direct consequence of land use and land cover change, is responsible for significant modification of local to regional scale climates. It is projected that the greatest urban growth of this century will occur in urban areas in the developing world. In addition, there is a significant research gap in emerging nations concerning this topic. Thus, this research focuses on the assessment of climate impacts related to urbanization on the largest metropolitan area in Latin America: Mexico City. Numerical simulations using a state-of-the-science regional climate model are utilized to address a trio of scientifically relevant questions with wide global applicability. The importance of an accurate representation of land use and land cover is first demonstrated through comparison of numerical simulations against observations. Second, the simulated effect of anthropogenic heating is quantified. Lastly, numerical simulations are performed using pre-historic scenarios of land use and land cover to examine and quantify the impact of Mexico City's urban expansion and changes in surface water features on its regional climate.
NASA Astrophysics Data System (ADS)
Karmalkar, A.
2017-12-01
Ensembles of dynamically downscaled climate change simulations are routinely used to capture uncertainty in projections at regional scales. I assess the reliability of two such ensembles for North America - NARCCAP and NA-CORDEX - by investigating the impact of model selection on representing uncertainty in regional projections, and the ability of the regional climate models (RCMs) to provide reliable information. These aspects - discussed for the six regions used in the US National Climate Assessment - provide an important perspective on the interpretation of downscaled results. I show that selecting general circulation models for downscaling based on their equilibrium climate sensitivities is a reasonable choice, but the six models chosen for NA-CORDEX do a poor job at representing uncertainty in winter temperature and precipitation projections in many parts of the eastern US, which lead to overconfident projections. The RCM performance is highly variable across models, regions, and seasons and the ability of the RCMs to provide improved seasonal mean performance relative to their parent GCMs seems limited in both RCM ensembles. Additionally, the ability of the RCMs to simulate historical climates is not strongly related to their ability to simulate climate change across the ensemble. This finding suggests limited use of models' historical performance to constrain their projections. Given these challenges in dynamical downscaling, the RCM results should not be used in isolation. Information on how well the RCM ensembles represent known uncertainties in regional climate change projections discussed here needs to be communicated clearly to inform maagement decisions.
NASA Astrophysics Data System (ADS)
Ghosh, Soumik; Bhatla, R.; Mall, R. K.; Srivastava, Prashant K.; Sahai, A. K.
2018-03-01
Climate model faces considerable difficulties in simulating the rainfall characteristics of southwest summer monsoon. In this study, the dynamical downscaling of European Centre for Medium-Range Weather Forecast's (ECMWF's) ERA-Interim (EIN15) has been utilized for the simulation of Indian summer monsoon (ISM) through the Regional Climate Model version 4.3 (RegCM-4.3) over the South Asia Co-Ordinated Regional Climate Downscaling EXperiment (CORDEX) domain. The complexities of model simulation over a particular terrain are generally influenced by factors such as complex topography, coastal boundary, and lack of unbiased initial and lateral boundary conditions. In order to overcome some of these limitations, the RegCM-4.3 is employed for simulating the rainfall characteristics over the complex topographical conditions. For reliable rainfall simulation, implementations of numerous lower boundary conditions are forced in the RegCM-4.3 with specific horizontal grid resolution of 50 km over South Asia CORDEX domain. The analysis is considered for 30 years of climatological simulation of rainfall, outgoing longwave radiation (OLR), mean sea level pressure (MSLP), and wind with different vertical levels over the specified region. The dependency of model simulation with the forcing of EIN15 initial and lateral boundary conditions is used to understand the impact of simulated rainfall characteristics during different phases of summer monsoon. The results obtained from this study are used to evaluate the activity of initial conditions of zonal wind circulation speed, which causes an increase in the uncertainty of regional model output over the region under investigation. Further, the results showed that the EIN15 zonal wind circulation lacks sufficient speed over the specified region in a particular time, which was carried forward by the RegCM output and leads to a disrupted regional simulation in the climate model.
Regional projections of North Indian climate for adaptation studies.
Mathison, Camilla; Wiltshire, Andrew; Dimri, A P; Falloon, Pete; Jacob, Daniela; Kumar, Pankaj; Moors, Eddy; Ridley, Jeff; Siderius, Christian; Stoffel, Markus; Yasunari, T
2013-12-01
Adaptation is increasingly important for regions around the world where large changes in climate could have an impact on populations and industry. The Brahmaputra-Ganges catchments have a large population, a main industry of agriculture and a growing hydro-power industry, making the region susceptible to changes in the Indian Summer Monsoon, annually the main water source. The HighNoon project has completed four regional climate model simulations for India and the Himalaya at high resolution (25km) from 1960 to 2100 to provide an ensemble of simulations for the region. In this paper we have assessed the ensemble for these catchments, comparing the simulations with observations, to give credence that the simulations provide a realistic representation of atmospheric processes and therefore future climate. We have illustrated how these simulations could be used to provide information on potential future climate impacts and therefore aid decision-making using climatology and threshold analysis. The ensemble analysis shows an increase in temperature between the baseline (1970-2000) and the 2050s (2040-2070) of between 2 and 4°C and an increase in the number of days with maximum temperatures above 28°C and 35°C. There is less certainty for precipitation and runoff which show considerable variability, even in this relatively small ensemble, spanning zero. The HighNoon ensemble is the most complete data for the region providing useful information on a wide range of variables for the regional climate of the Brahmaputra-Ganges region, however there are processes not yet included in the models that could have an impact on the simulations of future climate. We have discussed these processes and show that the range from the HighNoon ensemble is similar in magnitude to potential changes in projections where these processes are included. Therefore strategies for adaptation must be robust and flexible allowing for advances in the science and natural environmental changes. Copyright © 2012 Elsevier B.V. All rights reserved.
Evaluating climate models: Should we use weather or climate observations?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oglesby, Robert J; Erickson III, David J
2009-12-01
Calling the numerical models that we use for simulations of climate change 'climate models' is a bit of a misnomer. These 'general circulation models' (GCMs, AKA global climate models) and their cousins the 'regional climate models' (RCMs) are actually physically-based weather simulators. That is, these models simulate, either globally or locally, daily weather patterns in response to some change in forcing or boundary condition. These simulated weather patterns are then aggregated into climate statistics, very much as we aggregate observations into 'real climate statistics'. Traditionally, the output of GCMs has been evaluated using climate statistics, as opposed to their abilitymore » to simulate realistic daily weather observations. At the coarse global scale this may be a reasonable approach, however, as RCM's downscale to increasingly higher resolutions, the conjunction between weather and climate becomes more problematic. We present results from a series of present-day climate simulations using the WRF ARW for domains that cover North America, much of Latin America, and South Asia. The basic domains are at a 12 km resolution, but several inner domains at 4 km have also been simulated. These include regions of complex topography in Mexico, Colombia, Peru, and Sri Lanka, as well as a region of low topography and fairly homogeneous land surface type (the U.S. Great Plains). Model evaluations are performed using standard climate analyses (e.g., reanalyses; NCDC data) but also using time series of daily station observations. Preliminary results suggest little difference in the assessment of long-term mean quantities, but the variability on seasonal and interannual timescales is better described. Furthermore, the value-added by using daily weather observations as an evaluation tool increases with the model resolution.« less
Signal to noise quantification of regional climate projections
NASA Astrophysics Data System (ADS)
Li, S.; Rupp, D. E.; Mote, P.
2016-12-01
One of the biggest challenges in interpreting climate model outputs for impacts studies and adaptation planning is understanding the sources of disagreement among models (which is often used imperfectly as a stand-in for system uncertainty). Internal variability is a primary source of uncertainty in climate projections, especially for precipitation, for which models disagree about even the sign of changes in large areas like the continental US. Taking advantage of a large initial-condition ensemble of regional climate simulations, this study quantifies the magnitude of changes forced by increasing greenhouse gas concentrations relative to internal variability. Results come from a large initial-condition ensemble of regional climate model simulations generated by weather@home, a citizen science computing platform, where the western United States climate was simulated for the recent past (1985-2014) and future (2030-2059) using a 25-km horizontal resolution regional climate model (HadRM3P) nested in global atmospheric model (HadAM3P). We quantify grid point level signal-to-noise not just in temperature and precipitation responses, but also the energy and moisture flux terms that are related to temperature and precipitation responses, to provide important insights regarding uncertainty in climate change projections at local and regional scales. These results will aid modelers in determining appropriate ensemble sizes for different climate variables and help users of climate model output with interpreting climate model projections.
NASA Astrophysics Data System (ADS)
da Silva, Felipe das Neves Roque; Alves, José Luis Drummond; Cataldi, Marcio
2018-03-01
This paper aims to validate inflow simulations concerning the present-day climate at Água Vermelha Hydroelectric Plant (AVHP—located on the Grande River Basin) based on the Soil Moisture Accounting Procedure (SMAP) hydrological model. In order to provide rainfall data to the SMAP model, the RegCM regional climate model was also used working with boundary conditions from the MIROC model. Initially, present-day climate simulation performed by RegCM model was analyzed. It was found that, in terms of rainfall, the model was able to simulate the main patterns observed over South America. A bias correction technique was also used and it was essential to reduce mistakes related to rainfall simulation. Comparison between rainfall simulations from RegCM and MIROC showed improvements when the dynamical downscaling was performed. Then, SMAP, a rainfall-runoff hydrological model, was used to simulate inflows at Água Vermelha Hydroelectric Plant. After calibration with observed rainfall, SMAP simulations were evaluated in two different periods from the one used in calibration. During calibration, SMAP captures the inflow variability observed at AVHP. During validation periods, the hydrological model obtained better results and statistics with observed rainfall. However, in spite of some discrepancies, the use of simulated rainfall without bias correction captured the interannual flow variability. However, the use of bias removal in the simulated rainfall performed by RegCM brought significant improvements to the simulation of natural inflows performed by SMAP. Not only the curve of simulated inflow became more similar to the observed inflow, but also the statistics improved their values. Improvements were also noticed in the inflow simulation when the rainfall was provided by the regional climate model compared to the global model. In general, results obtained so far prove that there was an added value in rainfall when regional climate model was compared to global climate model and that data from regional models must be bias-corrected so as to improve their results.
NASA Astrophysics Data System (ADS)
Fu, A.; Xue, Y.
2017-12-01
Corn is one of most important agricultural production in China. Research on the simulation of corn yields and the impacts of climate change and agricultural management practices on corn yields is important in maintaining the stable corn production. After climatic data including daily temperature, precipitation, solar radiation, relative humidity, and wind speed from 1948 to 2010, soil properties, observed corn yields, and farmland management information were collected, corn yields grown in humidity and hot environment (Sichuang province) and cold and dry environment (Hebei province) in China in the past 63 years were simulated by Daycent, and the results was evaluated based on published yield record. The relationship between regional climate change, global warming and corn yield were analyzed, the uncertainties of simulation derived from agricultural management practices by changing fertilization levels, land fertilizer maintenance and tillage methods were reported. The results showed that: (1) Daycent model is capable to simulate corn yields under the different climatic background in China. (2) When studying the relationship between regional climate change and corn yields, it has been found that observed and simulated corn yields increased along with total regional climate change. (3) When studying the relationship between the global warming and corn yields, It was discovered that newly-simulated corn yields after removing the global warming trend of original temperature data were lower than before.
NASA Astrophysics Data System (ADS)
Russo, E.; Mauri, A.; Davis, B. A. S.; Cubasch, U.
2017-12-01
The evolution of the Mediterranean region's climate during the Holocene has been the subject of long-standing debate within the paleoclimate community. Conflicting hypotheses have emerged from the analysis of different climate reconstructions based on proxy records and climate models outputs.In particular, pollen-based reconstructions of cooler summer temperatures during the Holocene have been criticized based on a hypothesis that the Mediterranean vegetation is mainly limited by effective precipitation and not summer temperature. This criticism is important because climate models show warmer summer temperatures during the Holocene over the Mediterranean region, in direct contradiction of the pollen-based evidence. Here we investigate this problem using a high resolution model simulation of the climate of the Mediterranean region during the mid-to-late Holocene, which we compare against pollen-based reconstructions using two different approaches.In the first, we compare the simulated climate from the model directly with the climate derived from the pollen data. In the second, we compare the simulated vegetation from the model directly with the vegetation from the pollen data.Results show that the climate model is unable to simulate neither the climate nor the vegetation shown by the pollen-data. The pollen data indicates an expansion in cool temperate vegetation in the mid-Holocene while the model suggests an expansion in warm arid vegetation. This suggests that the data-model discrepancy is more likely the result of bias in climate models, and not bias in the pollen-climate calibration transfer-function.
NASA Astrophysics Data System (ADS)
Zsolt Torma, Csaba; Giorgi, Filippo
2014-05-01
A set of regional climate model (RCM) simulations applying dynamical downscaling of global climate model (GCM) simulations over the Mediterranean domain specified by the international initiative Coordinated Regional Downscaling Experiment (CORDEX) were completed with the Regional Climate Model RegCM, version RegCM4.3. Two GCMs were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields for the RegCM: HadGEM2-ES (HadGEM) and MPI-ESM-MR (MPI). The simulations consist of an ensemble including multiple physics configurations and different "Reference Concentration Pathways" (RCP4.5 and RCP8.5). In total 15 simulations were carried out with 7 model physics configurations with varying convection and land surface schemes. The horizontal grid spacing of the RCM simulations is 50 km and the simulated period in all cases is 1970-2100 (1970-2099 in case of HadGEM driven simulations). This ensemble includes a combination of experiments in which different model components are changed individually and in combination, and thus lends itself optimally to the application of the Factor Separation (FS) method. This study applies the FS method to investigate the contributions of different factors, along with their synergy, on a set of regional climate model (RCM) projections for the Mediterranean region. The FS method is applied to 6 projections for the period 1970-2100 performed with the regional model RegCM4.3 over the Med-CORDEX domain. Two different sets of factors are intercompared, namely the driving global climate model (HadGEM and MPI) boundary conditions against two model physics settings (convection scheme and irrigation). We find that both the GCM driving conditions and the model physics provide important contributions, depending on the variable analyzed (surface air temperature and precipitation), season (winter vs. summer) and time horizon into the future, while the synergy term mostly tends to counterbalance the contributions of the individual factors. We demonstrate the usefulness of the FS method to assess different sources of uncertainty in RCM-based regional climate projections.
Sensitivity of simulated maize crop yields to regional climate in the Southwestern United States
NASA Astrophysics Data System (ADS)
Kim, S.; Myoung, B.; Stack, D.; Kim, J.; Hatzopoulos, N.; Kafatos, M.
2013-12-01
The sensitivity of maize yield to the regional climate in the Southwestern United States (SW US) has been investigated by using a crop-yield simulation model (APSIM) in conjunction with meteorological forcings (daily minimum and maximum temperature, precipitation, and radiation) from the North American Regional Reanalysis (NARR) dataset. The primary focus of this study is to look at the effects of interannual variations of atmospheric components on the crop productivity in the SW US over the 21-year period (1991 to 2011). First of all, characteristics and performance of APSIM was examined by comparing simulated maize yields with observed yields from United States Department of Agriculture (USDA) and the leaf-area index (LAI) from MODIS satellite data. Comparisons of the simulated maize yield with the available observations show that the crop model can reasonably reproduce observed maize yields. Sensitivity tests were performed to assess the relative contribution of each climate driver to regional crop yield. Sensitivity experiments show that potential crop production responds nonlinearly to climate drivers and the yield sensitivity varied among geographical locations depending on their mean climates. Lastly, a detailed analysis of both the spatial and temporal variations of each climate driver in the regions where maize is actually grown in three states (CA, AZ, and NV) in the SW US was performed.
The Impact of Different Absolute Solar Irradiance Values on Current Climate Model Simulations
NASA Technical Reports Server (NTRS)
Rind, David H.; Lean, Judith L.; Jonas, Jeffrey
2014-01-01
Simulations of the preindustrial and doubled CO2 climates are made with the GISS Global Climate Middle Atmosphere Model 3 using two different estimates of the absolute solar irradiance value: a higher value measured by solar radiometers in the 1990s and a lower value measured recently by the Solar Radiation and Climate Experiment. Each of the model simulations is adjusted to achieve global energy balance; without this adjustment the difference in irradiance produces a global temperature change of 0.48C, comparable to the cooling estimated for the Maunder Minimum. The results indicate that by altering cloud cover the model properly compensates for the different absolute solar irradiance values on a global level when simulating both preindustrial and doubled CO2 climates. On a regional level, the preindustrial climate simulations and the patterns of change with doubled CO2 concentrations are again remarkably similar, but there are some differences. Using a higher absolute solar irradiance value and the requisite cloud cover affects the model's depictions of high-latitude surface air temperature, sea level pressure, and stratospheric ozone, as well as tropical precipitation. In the climate change experiments it leads to an underestimation of North Atlantic warming, reduced precipitation in the tropical western Pacific, and smaller total ozone growth at high northern latitudes. Although significant, these differences are typically modest compared with the magnitude of the regional changes expected for doubled greenhouse gas concentrations. Nevertheless, the model simulations demonstrate that achieving the highest possible fidelity when simulating regional climate change requires that climate models use as input the most accurate (lower) solar irradiance value.
NASA Astrophysics Data System (ADS)
Wu, Chenglai; Liu, Xiaohong; Lin, Zhaohui; Rhoades, Alan M.; Ullrich, Paul A.; Zarzycki, Colin M.; Lu, Zheng; Rahimi-Esfarjani, Stefan R.
2017-10-01
The reliability of climate simulations and projections, particularly in the regions with complex terrains, is greatly limited by the model resolution. In this study we evaluate the variable-resolution Community Earth System Model (VR-CESM) with a high-resolution (0.125°) refinement over the Rocky Mountain region. The VR-CESM results are compared with observations, as well as CESM simulation at a quasi-uniform 1° resolution (UNIF) and Canadian Regional Climate Model version 5 (CRCM5) simulation at a 0.11° resolution. We find that VR-CESM is effective at capturing the observed spatial patterns of temperature, precipitation, and snowpack in the Rocky Mountains with the performance comparable to CRCM5, while UNIF is unable to do so. VR-CESM and CRCM5 simulate better the seasonal variations of precipitation than UNIF, although VR-CESM still overestimates winter precipitation whereas CRCM5 and UNIF underestimate it. All simulations distribute more winter precipitation along the windward (west) flanks of mountain ridges with the greatest overestimation in VR-CESM. VR-CESM simulates much greater snow water equivalent peaks than CRCM5 and UNIF, although the peaks are still 10-40% less than observations. Moreover, the frequency of heavy precipitation events (daily precipitation ≥ 25 mm) in VR-CESM and CRCM5 is comparable to observations, whereas the same events in UNIF are an order of magnitude less frequent. In addition, VR-CESM captures the observed occurrence frequency and seasonal variation of rain-on-snow days and performs better than UNIF and CRCM5. These results demonstrate the VR-CESM's capability in regional climate modeling over the mountainous regions and its promising applications for climate change studies.
Assessment of CMIP5 historical simulations of rainfall over Southeast Asia
NASA Astrophysics Data System (ADS)
Raghavan, Srivatsan V.; Liu, Jiandong; Nguyen, Ngoc Son; Vu, Minh Tue; Liong, Shie-Yui
2018-05-01
We present preliminary analyses of the historical (1986-2005) climate simulations of a ten-member subset of the Coupled Model Inter-comparison Project Phase 5 (CMIP5) global climate models over Southeast Asia. The objective of this study was to evaluate the general circulation models' performance in simulating the mean state of climate over this less-studied climate vulnerable region, with a focus on precipitation. Results indicate that most of the models are unable to reproduce the observed state of climate over Southeast Asia. Though the multi-model ensemble mean is a better representation of the observations, the uncertainties in the individual models are far high. There is no particular model that performed well in simulating the historical climate of Southeast Asia. There seems to be no significant influence of the spatial resolutions of the models on the quality of simulation, despite the view that higher resolution models fare better. The study results emphasize on careful consideration of models for impact studies and the need to improve the next generation of models in their ability to simulate regional climates better.
NASA Astrophysics Data System (ADS)
Mercogliano, Paola; Bucchignani, Edoardo; Montesarchio, Myriam; Zollo, Alessandra Lucia
2013-04-01
In the framework of the Work Package 4 (Developing integrated tools for environmental assessment) of PERSEUS Project, high resolution climate simulations have been performed, with the aim of furthering knowledge in the field of climate variability at regional scale, its causes and impacts. CMCC is a no profit centre whose aims are the promotion, research coordination and scientific activities in the field of climate changes. In this work, we show results of numerical simulation performed over a very wide area (13W-46E; 29-56N) at spatial resolution of 14 km, which includes the Mediterranean and Black Seas, using the regional climate model COSMO-CLM. It is a non-hydrostatic model for the simulation of atmospheric processes, developed by the DWD-Germany for weather forecast services; successively, the model has been updated by the CLM-Community, in order to develop climatic applications. It is the only documented numerical model system in Europe designed for spatial resolutions down to 1 km with a range of applicability encompassing operational numerical weather prediction, regional climate modelling the dispersion of trace gases and aerosol and idealised studies and applicable in all regions of the world for a wide range of available climate simulations from global climate and NWP models. Different reasons justify the development of a regional model: the first is the increasing number of works in literature asserting that regional models have also the features to provide more detailed description of the climate extremes, that are often more important then their mean values for natural and human systems. The second one is that high resolution modelling shows adequate features to provide information for impact assessment studies. At CMCC, regional climate modelling is a part of an integrated simulation system and it has been used in different European and African projects to provide qualitative and quantitative evaluation of the hydrogeological and public health risks. A simulation covering the period 1971-2000 and driven by ERA40 reanalysis has been performed, in order to assess the capability of the model to reproduce the present climate, with "perfect boundary conditions". A comparison, in terms of 2-metre temperature and precipitation, with EOBS dataset will be shown and discussed, in order to analyze the capabilities in simulating the main features of the observed climate over a wide area, at high spatial resolution. Then, a comparison between the results of COSMO-CLM driven by the global model CMCC-MED (whose atmospheric component is ECHAM5) and by ERA40 will be provided for a characterization of the errors induced by the global model. Finally, climate projections on the examined area for the XXI century, considering the RCP4.5 emission scenario for the future, will be provided. In this work a special emphasis will be issued to the analysis of the capability to reproduce not only the average climate trend but also extremes of the present and future climate, in terms of temperature, precipitation and wind.
NASA Astrophysics Data System (ADS)
Mercogliano, P.; Montesarchio, M.; Zollo, A.; Bucchignani, E.
2012-12-01
In the framework of the Italian GEMINA Project (program of expansion and development of the Euro-Mediterranean Center for Climate Change (CMCC), high resolution climate simulations have been performed, with the aim of furthering knowledge in the field of climate variability at regional scale, its causes and impacts. CMCC is a no profit centre whose aims are the promotion, research coordination and scientific activities in the field of climate changes. In this work, we show results of numerical simulation performed over a very wide area (13W-46E; 29-56N) at spatial resolution of 14 km, which includes all the Mediterranean Sea, using the regional climate model COSMO-CLM. It is a non-hydrostatic model for the simulation of atmospheric processes, developed by the DWD-Germany for weather forecast services; successively, the model has been updated by the CLM-Community, in order to develop climatic applications. It is the only documented numerical model system in Europe designed for spatial resolutions down to 1 km with a range of applicability encompassing operational numerical weather prediction, regional climate modelling the dispersion of trace gases and aerosol and idealised studies and applicable in all regions of the world for a wide range of available climate simulations from global climate and NWP models. Different reasons justify the development of a regional model: the first is the increasing number of works in literature asserting that regional models have also the features to provide more detailed description of the climate extremes, that are often more important then their mean values for natural and human systems. The second one is that high resolution modelling shows adequate features to provide information for impact assessment studies. At CMCC, regional climate modelling is a part of an integrated simulation system and it has been used in different European and African projects to provide qualitative and quantitative evaluation of the hydrogeological and public health risks. A simulation covering the period 1971-2000 and driven by ERA40 reanalysis has been performed, in order to assess the capability of the model to reproduce the present climate, with "perfect boundary conditions". A comparison, in terms of 2-metre temperature and precipitation, with EOBS dataset will be shown and discussed, in order to analyze the capabilities in simulating the main features of the observed climate over a wide area, at high spatial resolution. Then, a comparison between the results of COSMO-CLM driven by the global model CMCC-MED (whose atmospheric component is ECHAM5) and by ERA40 will be provided for a characterization of the errors induced by the global model. Finally, climate projections on the examined area for the XXI century, considering the RCP4.5 emission scenario for the future, will be provided. In this work a special emphasis will be issued to the analysis of the capability to reproduce not only the average climate patterns but also extremes of the present and future climate, in terms of temperature, precipitation and wind.
The North American Regional Climate Change Assessment Program (NARCCAP): Status and results
NASA Astrophysics Data System (ADS)
Gutowski, W. J.
2009-12-01
NARCCAP is a multi-institutional program that is investigating systematically the uncertainties in regional scale simulations of contemporary climate and projections of future climate. NARCCAP is supported by multiple federal agencies. NARCCAP is producing an ensemble of high-resolution climate-change scenarios by nesting multiple RCMs in reanalyses and multiple atmosphere-ocean GCM simulations of contemporary and future-scenario climates. The RCM domains cover the contiguous U.S., northern Mexico, and most of Canada. The simulation suite also includes time-slice, high resolution GCMs that use sea-surface temperatures from parent atmosphere-ocean GCMs. The baseline resolution of the RCMs and time-slice GCMs is 50 km. Simulations use three sources of boundary conditions: National Centers for Environmental Prediction (NCEP)/Department of Energy (DOE) AMIP-II Reanalysis, GCMs simulating contemporary climate and GCMs using the A2 SRES emission scenario for the twenty-first century. Simulations cover 1979-2004 and 2038-2060, with the first 3 years discarded for spin-up. The resulting RCM and time-slice simulations offer opportunity for extensive analysis of RCM simulations as well as a basis for multiple high-resolution climate scenarios for climate change impacts assessments. Geophysical statisticians are developing measures of uncertainty from the ensemble. To enable very high-resolution simulations of specific regions, both RCM and high-resolution time-slice simulations are saving output needed for further downscaling. All output is publically available to the climate analysis and the climate impacts assessment community, through an archiving and data-distribution plan. Some initial results show that the models closely reproduce ENSO-related precipitation variations in coastal California, where the correlation between the simulated and observed monthly time series exceeds 0.94 for all models. The strong El Nino events of 1982-83 and 1997-98 are well reproduced for the Pacific coastal region of the U.S. in all models. ENSO signals are less well reproduced in other regions. The models also produce well extreme monthly precipitation in coastal California and the Upper Midwest. Model performance tends to deteriorate from west to east across the domain, or roughly from the inflow boundary toward the outflow boundary. This deterioration with distance from the inflow boundary is ameliorated to some extent in models formulated such that large-scale information is included in the model solution, whether implemented by spectral nudging or by use of a perturbation form of the governing equations.
NASA Astrophysics Data System (ADS)
Wu, Minchao; Smith, Benjamin; Schurgers, Guy; Lindström, Joe; Rummukainen, Markku; Samuelsson, Patrick
2013-04-01
Terrestrial ecosystems have been demonstrated to play a significant role within the climate system, amplifying or dampening climate change via biogeophysical and biogeochemical exchange with the atmosphere and vice versa (Cox et al. 2000; Betts et al. 2004). Africa is particularly vulnerable to climate change and studies of vegetation-climate feedback mechanisms on Africa are still limited. Our study is the first application of A coupled Earth system model at regional scale and resolution over Africa. We applied a coupled regional climate-vegetation model, RCA-GUESS (Smith et al. 2011), over the CORDEX Africa domain, forced by boundary conditions from a CanESM2 CMIP5 simulation under the RCP8.5 future climate scenario. The simulations were from 1961 to 2100 and covered the African continent at a horizontal grid spacing of 0.44°. RCA-GUESS simulates changes in the phenology, productivity, relative cover and population structure of up to eight plant function types (PFTs) in response to forcing from the climate part of the model. These vegetation changes feedback to simulated climate through dynamic adjustments in surface energy fluxes and surface properties. Changes in the net ecosystem-atmosphere carbon flux and its components net primary production (NPP), heterotrophic respiration and emissions from biomass burning were also simulated but do not feedback to climate in our model. Constant land cover was assumed. We compared simulations with and without vegetation feedback switched "on" to assess the influence of vegetation-climate feedback on simulated climate, vegetation and ecosystem carbon cycling. Both positive and negative warming feedbacks were identified in different parts of Africa. In the Sahel savannah zone near 15°N, reduced vegetation cover and productivity, and mortality caused by a deterioration of soil water conditions led to a positive warming feedback mediated by decreased evapotranspiration and increased sensible heat flux between vegetation and the atmosphere. In the equatorial rainforest stronghold region of central Africa, a feedback syndrome characterised by reduced plant production and LAI, a dominance shift from tropical trees to grasses, reduced soil water and reduced rainfall was identified. The likely underlying mechanism was a decline in evaporative water recycling associated with sparser vegetation cover, reminiscent of Earth system model studies in which a similar feedback mechanism was simulated to force dieback of tropical rainforest and reduced precipitation over the Amazon Basin (Cox et al. 2000; Betts et al. 2004; Malhi et al. 2009). Opposite effects are seen in southern Senegal, southern Mali, northern Guinea and Guinea-Bissau, positive evapotranspiration feedback enhancing the cover of trees in forest and savannah, mitigating warming and promoting local moisture recycling as rainfall. We reveal that LAI-driven evapotranspiration feedback may reduced rainfall in parts of Africa, vegetation-climate feedbacks may significantly impact the magnitude and character of simulated changes in climate as well as vegetation and ecosystems in future scenario studies of this region. They should be accounted for in future studies of climate change and its impacts on Africa. Keywords: vegetation-climate feedback, regional climate model, evapotranspiration, CORDEX. References: Betts, R.A., Cox, P.M., Collins, M., Harris, P.P., Huntingford, C. & Jones, C.D. 2004. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology 78: 157-175. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A. & Totterdell, I.J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184-187. Samuelsson, P., Jones, C., Wilĺen, U., Gollvik, S., Hansson, U. and coauthors. 2011. The Rossby Centre Regional Climate Model RCA3:Model description and performance. Tellus 63A, 4-23. Smith, B., Prentice, I. C. and Sykes, M. T. 2001. Representation of vegetation dynamics in modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecol. Biogeog. 10, 621-637 Smith, B., Samuelsson, P., Wramneby, A. & Rummukainen, M. 2011. A model of the coupled dynamics of climate, vegetation and terrestrial ecosystem biogeochemistry for regional applications. Tellus 63A: 87-106.
NASA Astrophysics Data System (ADS)
Goodman, A.; Lee, H.; Waliser, D. E.; Guttowski, W.
2017-12-01
Observation-based evaluations of global climate models (GCMs) have been a key element for identifying systematic model biases that can be targeted for model improvements and for establishing uncertainty associated with projections of global climate change. However, GCMs are limited in their ability to represent physical phenomena which occur on smaller, regional scales, including many types of extreme weather events. In order to help facilitate projections in changes of such phenomena, simulations from regional climate models (RCMs) for 14 different domains around the world are being provided by the Coordinated Regional Climate Downscaling Experiment (CORDEX; www.cordex.org). However, although CORDEX specifies standard simulation and archiving protocols, these simulations are conducted independently by individual research and modeling groups representing each of these domains often with different output requirements and data archiving and exchange capabilities. Thus, with respect to similar efforts using GCMs (e.g., the Coupled Model Intercomparison Project, CMIP), it is more difficult to achieve a standardized, systematic evaluation of the RCMs for each domain and across all the CORDEX domains. Using the Regional Climate Model Evaluation System (RCMES; rcmes.jpl.nasa.gov) developed at JPL, we are developing easy to use templates for performing systematic evaluations of CORDEX simulations. Results from the application of a number of evaluation metrics (e.g., biases, centered RMS, and pattern correlations) will be shown for a variety of physical quantities and CORDEX domains. These evaluations are performed using products from obs4MIPs, an activity initiated by DOE and NASA, and now shepherded by the World Climate Research Program's Data Advisory Council.
NASA Astrophysics Data System (ADS)
Music, B.; Mailhot, E.; Nadeau, D.; Irambona, C.; Frigon, A.
2017-12-01
Over the last decades, there has been growing concern about the effects of climate change on the Great Lakes water supply. Most of the modelling studies focusing on the Laurentian Great Lakes do not allow two-way exchanges of water and energy between the atmosphere and the underlying surface, and therefore do not account for important feedback mechanisms. Moreover, energy budget constraint at the land surface is not usually taken into account. To address this issue, several recent climate change studies used high resolution Regional Climate Models (RCMs) for evaluating changes in the hydrological regime of the Great Lakes. As RCMs operate on the concept of water and energy conservation, an internal consistency of the simulated energy and water budget components is assured. In this study we explore several recently generated Regional Climate Model (RCM) simulations to investigate the Great Lakes' Net Basin Supply (NBS) in a changing climate. These include simulations of the Canadian Regional Climate Model (CRCM5) supplemented by simulations from several others RCMs participating to the North American CORDEX project (CORDEX-NA). The analysis focuses on the NBS extreme values under nonstationary conditions. The results are expected to provide useful information to the industries in the Great Lakes that all need to include accurate climate change information in their long-term strategy plans to better anticipate impacts of low and/or high water levels.
Ching-Teng Lee; Ming-Chin Wu; Shyh-Chin Chen
2005-01-01
The National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) version 97 was used to investigate the regional summertime climate over Taiwan and adjacent areas for June-July-August of 1990 through 2000. The simulated sea-level-pressure and wind fields of RSM1 with 50-km grid space are similar to the reanalysis, but the strength of the...
Projected changes in rainfall and temperature over homogeneous regions of India
NASA Astrophysics Data System (ADS)
Patwardhan, Savita; Kulkarni, Ashwini; Rao, K. Koteswara
2018-01-01
The impact of climate change on the characteristics of seasonal maximum and minimum temperature and seasonal summer monsoon rainfall is assessed over five homogeneous regions of India using a high-resolution regional climate model. Providing REgional Climate for Climate Studies (PRECIS) is developed at Hadley Centre for Climate Prediction and Research, UK. The model simulations are carried out over South Asian domain for the continuous period of 1961-2098 at 50-km horizontal resolution. Here, three simulations from a 17-member perturbed physics ensemble (PPE) produced using HadCM3 under the Quantifying Model Uncertainties in Model Predictions (QUMP) project of Hadley Centre, Met. Office, UK, have been used as lateral boundary conditions (LBCs) for the 138-year simulations of the regional climate model under Intergovernmental Panel on Climate Change (IPCC) A1B scenario. The projections indicate the increase in the summer monsoon (June through September) rainfall over all the homogeneous regions (15 to 19%) except peninsular India (around 5%). There may be marginal change in the frequency of medium and heavy rainfall events (>20 mm) towards the end of the present century. The analysis over five homogeneous regions indicates that the mean maximum surface air temperatures for the pre-monsoon season (March-April-May) as well as the mean minimum surface air temperature for winter season (January-February) may be warmer by around 4 °C towards the end of the twenty-first century.
Future Climate Change in the Baltic Sea Area
NASA Astrophysics Data System (ADS)
Bøssing Christensen, Ole; Kjellström, Erik; Zorita, Eduardo; Sonnenborg, Torben; Meier, Markus; Grinsted, Aslak
2015-04-01
Regional climate models have been used extensively since the first assessment of climate change in the Baltic Sea region published in 2008, not the least for studies of Europe (and including the Baltic Sea catchment area). Therefore, conclusions regarding climate model results have a better foundation than was the case for the first BACC report of 2008. This presentation will report model results regarding future climate. What is the state of understanding about future human-driven climate change? We will cover regional models, statistical downscaling, hydrological modelling, ocean modelling and sea-level change as it is projected for the Baltic Sea region. Collections of regional model simulations from the ENSEMBLES project for example, financed through the European 5th Framework Programme and the World Climate Research Programme Coordinated Regional Climate Downscaling Experiment, have made it possible to obtain an increasingly robust estimation of model uncertainty. While the first Baltic Sea assessment mainly used four simulations from the European 5th Framework Programme PRUDENCE project, an ensemble of 13 transient regional simulations with twice the horizontal resolution reaching the end of the 21st century has been available from the ENSEMBLES project; therefore it has been possible to obtain more quantitative assessments of model uncertainty. The literature about future climate change in the Baltic Sea region is largely built upon the ENSEMBLES project. Also within statistical downscaling, a considerable number of papers have been published, encompassing now the application of non-linear statistical models, projected changes in extremes and correction of climate model biases. The uncertainty of hydrological change has received increasing attention since the previous Baltic Sea assessment. Several studies on the propagation of uncertainties originating in GCMs, RCMs, and emission scenarios are presented. The number of studies on uncertainties related to downscaling and impact models is relatively small, but more are emerging. A large number of coupled climate-environmental scenario simulations for the Baltic Sea have been performed within the BONUS+ projects (ECOSUPPORT, INFLOW, AMBER and Baltic-C (2009-2011)), using various combinations of output from GCMs, RCMs, hydrological models and scenarios for load and emission of nutrients as forcing for Baltic Sea models. Such a large ensemble of scenario simulations for the Baltic Sea has never before been produced and enables for the first time an estimation of uncertainties.
Climate Change Impact on Air Quality in High Resolution Simulation for Central Europe
NASA Astrophysics Data System (ADS)
Halenka, T.; Huszar, P.; Belda, M.
2009-04-01
Recently the effects of climate change on air-quality and vice-versa are studied quite extensively. In fact, even at regional and local scale especially the impact of climate change on the atmospheric composition and photochemical smog formation conditions can be significant when expecting e.g. more frequent appearance of heat waves etc. For the purpose of qualifying and quantifying the magnitude of such effects and to study the potential of climate forcing due to atmospheric chemistry/aerosols on regional scale, chemistry-transport model was coupled to RegCM on the Department of Meteorology and Environmental Protection, Faculty of Mathematics and Physics, Charles University in Prague, for the simulations in framework of the EC FP6 Project CECILIA. Off-line one way coupling enables the simulation of distribution of pollutants over 1991-2001 in very high resolution of 10 km is compared to the EMEP observations for the area of Central Europe. Simulations driven by climate change boundary conditions for time slices 1991-2000, 2041-2050 and 2091-2100 are presented to show the effect of climate change on the air quality in the region.
NASA Astrophysics Data System (ADS)
Rosenthal, J. E.; Knowlton, K. M.; Kinney, P. L.
2002-12-01
There is an imminent need to downscale the global climate models used by international consortiums like the IPCC (Intergovernmental Panel on Climate Change) to predict the future regional impacts of climate change. To meet this need, a "place-based" climate model that makes specific regional projections about future environmental conditions local inhabitants could face is being created by the Mailman School of Public Health at Columbia University, in collaboration with other researchers and universities, for New York City and the 31 surrounding counties. This presentation describes the design and initial results of this modeling study, aimed at simulating the effects of global climate change and regional land use change on climate and air quality over the northeastern United States in order to project the associated public health impacts in the region. Heat waves and elevated concentrations of ozone and fine particles are significant current public health stressors in the New York metropolitan area. The New York Climate and Health Project is linking human dimension and natural sciences models to assess the potential for future public health impacts from heat stress and air quality, and yield improved tools for assessing climate change impacts. The model will be applied to the NY metropolitan east coast region. The following questions will be addressed: 1. What changes in the frequency and severity of extreme heat events are likely to occur over the next 80 years due to a range of possible scenarios of land use and land cover (LU/LC) and climate change in the region? 2. How might the frequency and severity of episodic concentrations of ozone (O3) and airborne particulate matter smaller than 2.5 æm in diameter (PM2.5) change over the next 80 years due to a range of possible scenarios of land use and climate change in the metropolitan region? 3. What is the range of possible human health impacts of these changes in the region? 4. How might projected future human exposures and responses to heat stress and air quality differ as a function of socio-economic status and race/ethnicity across the region? The model systems used for this study are the Goddard Institute for Space Studies (GISS) Global Atmosphere-Ocean Model; the Regional Atmospheric Modeling System (RAMS) and PennState/NCAR MM5 mesoscale meteorological models; the SLEUTH land use model; the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE); the Community Multiscale Air Quality (CMAQ) and Comprehensive Air Quality Model with Extensions (CAMx) models for simulating regional air quality; and exposure-risk coefficients for assessing population health impacts based on exposure to extreme heat, fine particulates (PM2.5) and ozone. Two different IPCC global emission scenarios and two different regional land use growth scenarios are considered in the simulations, spanning a range of possible futures. In addition to base simulations for selected time periods in the decade 1990 - 2000, the integrated model is used to simulate future scenarios in the 2020s, 2050s, and 2080s. Predictions from both the meteorological models and the air quality models are compared against available observations for the simulations in the 1990s to establish baseline model performance. A series of sensitivity tests will address whether changes in meteorology due to global climate change, changes in regional land use, or changes in emissions have the largest impact on predicted ozone and particulate matter concentrations.
NASA Astrophysics Data System (ADS)
Prein, A. F.; Langhans, W.; Fosser, G.; Ferrone, A.; Ban, N.; Goergen, K.; Keller, M.; Tölle, M.; Gutjahr, O.; Feser, F.; Brisson, E.; Kollet, S. J.; Schmidli, J.; Van Lipzig, N. P. M.; Leung, L. R.
2015-12-01
Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. We aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.
Prein, Andreas F; Langhans, Wolfgang; Fosser, Giorgia; Ferrone, Andrew; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tölle, Merja; Gutjahr, Oliver; Feser, Frauke; Brisson, Erwan; Kollet, Stefan; Schmidli, Juerg; van Lipzig, Nicole P M; Leung, Ruby
2015-06-01
Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. In this study, we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.
NASA Astrophysics Data System (ADS)
Prein, Andreas F.; Langhans, Wolfgang; Fosser, Giorgia; Ferrone, Andrew; Ban, Nikolina; Goergen, Klaus; Keller, Michael; Tölle, Merja; Gutjahr, Oliver; Feser, Frauke; Brisson, Erwan; Kollet, Stefan; Schmidli, Juerg; van Lipzig, Nicole P. M.; Leung, Ruby
2015-06-01
Regional climate modeling using convection-permitting models (CPMs; horizontal grid spacing <4 km) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs; horizontal grid spacing >10 km). CPMs no longer rely on convection parameterization schemes, which had been identified as a major source of errors and uncertainties in LSMs. Moreover, CPMs allow for a more accurate representation of surface and orography fields. The drawback of CPMs is the high demand on computational resources. For this reason, first CPM climate simulations only appeared a decade ago. In this study, we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic. The most important components in CPMs such as physical parameterizations and dynamical formulations are discussed critically. An overview of weaknesses and an outlook on required future developments is provided. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Improvements are evident mostly for climate statistics related to deep convection, mountainous regions, or extreme events. The climate change signals of CPM simulations suggest an increase in flash floods, changes in hail storm characteristics, and reductions in the snowpack over mountains. In conclusion, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to advance parameterizations of unresolved physics and to assess the full potential of CPMs.
NASA Astrophysics Data System (ADS)
MU, J.; Antle, J. M.; Zhang, H.; Capalbo, S. M.; Eigenbrode, S.; Kruger, C.; Stockle, C.; Wolfhorst, J. D.
2013-12-01
Representative Agricultural Pathways (RAPs) are projections of plausible future biophysical and socio-economic conditions used to carry out climate impact assessments for agriculture. The development of RAPs iss motivated by the fact that the various global and regional models used for agricultural climate change impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation or public availability. These practices have hampered attempts at model inter-comparison, improvement, and synthesis of model results across studies. This paper aims to (1) present RAPs developed for the principal wheat-producing region of the Pacific Northwest, and to (2) combine these RAPs with downscaled climate data, crop model simulations and economic model simulations to assess climate change impacts on winter wheat production and farm income. This research was carried out as part of a project funded by the USDA known as the Regional Approaches to Climate Change in the Pacific Northwest (REACCH). The REACCH study region encompasses the major winter wheat production area in Pacific Northwest and preliminary research shows that farmers producing winter wheat could benefit from future climate change. However, the future world is uncertain in many dimensions, including commodity and input prices, production technology, and policies, as well as increased probability of disturbances (pests and diseases) associated with a changing climate. Many of these factors cannot be modeled, so they are represented in the regional RAPS. The regional RAPS are linked to global agricultural and shared social-economic pathways, and used along with climate change projections to simulate future outcomes for the wheat-based farms in the REACCH region.
NASA Astrophysics Data System (ADS)
Zou, Liwei; Zhou, Tianjun; Peng, Dongdong
2016-02-01
The FROALS (flexible regional ocean-atmosphere-land system) model, a regional ocean-atmosphere coupled model, has been applied to the Coordinated Regional Downscaling Experiment (CORDEX) East Asia domain. Driven by historical simulations from a global climate system model, dynamical downscaling for the period from 1980 to 2005 has been conducted at a uniform horizontal resolution of 50 km. The impacts of regional air-sea couplings on the simulations of East Asian summer monsoon rainfall have been investigated, and comparisons have been made to corresponding simulations performed using a stand-alone regional climate model (RCM). The added value of the FROALS model with respect to the driving global climate model was evident in terms of both climatology and the interannual variability of summer rainfall over East China by the contributions of both the high horizontal resolution and the reasonably simulated convergence of the moisture fluxes. Compared with the stand-alone RCM simulations, the spatial pattern of the simulated low-level monsoon flow over East Asia and the western North Pacific was improved in the FROALS model due to its inclusion of regional air-sea coupling. The results indicated that the simulated sea surface temperature (SSTs) resulting from the regional air-sea coupling were lower than those derived directly from the driving global model over the western North Pacific north of 15°N. These colder SSTs had both positive and negative effects. On the one hand, they strengthened the western Pacific subtropical high, which improved the simulation of the summer monsoon circulation over East Asia. On the other hand, the colder SSTs suppressed surface evaporation and favored weaker local interannual variability in the SST, which led to less summer rainfall and weaker interannual rainfall variability over the Korean Peninsula and Japan. Overall, the reference simulation performed using the FROALS model is reasonable in terms of rainfall over the land area of East Asia and will become the basis for the generation of climate change scenarios for the CORDEX East Asia domain that will be described in future reports.
Results from the VALUE perfect predictor experiment: process-based evaluation
NASA Astrophysics Data System (ADS)
Maraun, Douglas; Soares, Pedro; Hertig, Elke; Brands, Swen; Huth, Radan; Cardoso, Rita; Kotlarski, Sven; Casado, Maria; Pongracz, Rita; Bartholy, Judit
2016-04-01
Until recently, the evaluation of downscaled climate model simulations has typically been limited to surface climatologies, including long term means, spatial variability and extremes. But these aspects are often, at least partly, tuned in regional climate models to match observed climate. The tuning issue is of course particularly relevant for bias corrected regional climate models. In general, a good performance of a model for these aspects in present climate does therefore not imply a good performance in simulating climate change. It is now widely accepted that, to increase our condidence in climate change simulations, it is necessary to evaluate how climate models simulate relevant underlying processes. In other words, it is important to assess whether downscaling does the right for the right reason. Therefore, VALUE has carried out a broad process-based evaluation study based on its perfect predictor experiment simulations: the downscaling methods are driven by ERA-Interim data over the period 1979-2008, reference observations are given by a network of 85 meteorological stations covering all European climates. More than 30 methods participated in the evaluation. In order to compare statistical and dynamical methods, only variables provided by both types of approaches could be considered. This limited the analysis to conditioning local surface variables on variables from driving processes that are simulated by ERA-Interim. We considered the following types of processes: at the continental scale, we evaluated the performance of downscaling methods for positive and negative North Atlantic Oscillation, Atlantic ridge and blocking situations. At synoptic scales, we considered Lamb weather types for selected European regions such as Scandinavia, the United Kingdom, the Iberian Pensinsula or the Alps. At regional scales we considered phenomena such as the Mistral, the Bora or the Iberian coastal jet. Such process-based evaluation helps to attribute biases in surface variables to underlying processes and ultimately to improve climate models.
Simulations of the Montréal urban heat island
NASA Astrophysics Data System (ADS)
Roberge, François; Sushama, Laxmi; Fanta, Gemechu
2017-04-01
The current population of Montreal is around 3.8 million and this number is projected to go up in the coming years to decades, which will lead to vast expansion of urban areas. It is well known that urban morphology impacts weather and climate, and therefore should be taken into consideration in urban planning. This is particularly important in the context of a changing climate, as the intensity and frequency of temperature extremes such as hot spells are projected to increase in future climate, and Urban Heat Island (UHI) can potentially raise already stressful temperatures during such events, which can have significant effects on human health and energy consumption. High-resolution regional climate model simulations can be utilized to understand better urban-weather/climate interactions in current and future climates, particularly the spatio-temporal characteristics of the Urban Heat Island and its impact on other weather/climate characteristics such as urban flows, precipitation etc. This paper will focus on two high-resolution (250 m) simulations performed with (1) the Canadian Land Surface Scheme (CLASS) and (2) CLASS and TEB (Town Energy Balance) model; TEB is a single layer urban canopy model and is used to model the urban fractions. The two simulations are performed over a domain covering Montreal for the 1960-2015 period, driven by atmospheric forcing data coming from a high-resolution Canadian Regional Climate Model (CRCM5) simulation, driven by ERA-Interim. The two simulations are compared to assess the impact of urban regions on selected surface fields and the simulation with both CLASS and TEB is then used to study the spatio-temporal characteristics of the UHI over the study domain. Some preliminary results from a coupled simulation, i.e. CRCM5+CLASS+TEB, for selected years, including extreme warm years, will also be presented.
High-resolution regional climate model evaluation using variable-resolution CESM over California
NASA Astrophysics Data System (ADS)
Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.
2015-12-01
Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine-scale processes. This assessment is also relevant for addressing the scale limitation of current RCMs or VRGCMs when next-generation model resolution increases to ~10km and beyond.
Eum, Hyung-Il; Gachon, Philippe; Laprise, René
2016-01-01
This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affectedmore » by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. Finally, these results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eum, Hyung-Il; Gachon, Philippe; Laprise, René
This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affectedmore » by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. Finally, these results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.« less
NASA Astrophysics Data System (ADS)
Bowden, Jared H.; Nolte, Christopher G.; Otte, Tanya L.
2013-04-01
The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscaling of global climate model (GCM) output for air quality applications under a changing climate. In this study we downscale the NCEP-Department of Energy Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis using three continuous 20-year WRF simulations: one simulation without interior grid nudging and two using different interior grid nudging methods. The biases in 2-m temperature and precipitation for the simulation without interior grid nudging are unreasonably large with respect to the North American Regional Reanalysis (NARR) over the eastern half of the contiguous United States (CONUS) during the summer when air quality concerns are most relevant. This study examines how these differences arise from errors in predicting the large-scale atmospheric circulation. It is demonstrated that the Bermuda high, which strongly influences the regional climate for much of the eastern half of the CONUS during the summer, is poorly simulated without interior grid nudging. In particular, two summers when the Bermuda high was west (1993) and east (2003) of its climatological position are chosen to illustrate problems in the large-scale atmospheric circulation anomalies. For both summers, WRF without interior grid nudging fails to simulate the placement of the upper-level anticyclonic (1993) and cyclonic (2003) circulation anomalies. The displacement of the large-scale circulation impacts the lower atmosphere moisture transport and precipitable water, affecting the convective environment and precipitation. Using interior grid nudging improves the large-scale circulation aloft and moisture transport/precipitable water anomalies, thereby improving the simulated 2-m temperature and precipitation. The results demonstrate that constraining the RCM to the large-scale features in the driving fields improves the overall accuracy of the simulated regional climate, and suggest that in the absence of such a constraint, the RCM will likely misrepresent important large-scale shifts in the atmospheric circulation under a future climate.
The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscal...
Change of ocean circulation in the East Asian Marginal Seas under different climate conditions
NASA Astrophysics Data System (ADS)
Min, Hong Sik; Kim, Cheol-Ho; Kim, Young Ho
2010-05-01
Global climate models do not properly resolve an ocean environment in the East Asian Marginal Seas (EAMS), which is mainly due to a poor representation of the topography in continental shelf region and a coarse spatial resolution. To examine a possible change of ocean environment under global warming in the EAMS, therefore we used North Pacific Regional Ocean Model. The regional model was forced by atmospheric conditions extracted from the simulation results of the global climate models for the 21st century projected by the IPCC SRES A1B scenario as well as the 20th century. The North Pacific Regional Ocean model simulated a detailed pattern of temperature change in the EAMS showing locally different rising or falling trend under the future climate condition, while the global climate models simulated a simple pattern like an overall increase. Changes of circulation pattern in the EAMS such as an intrusion of warm water into the Yellow Sea as well as the Kuroshio were also well resolved. Annual variations in volume transports through the Taiwan Strait and the Korea Strait under the future condition were simulated to be different from those under present condition. Relative ratio of volume transport through the Soya Strait to the Tsugaru Strait also responded to the climate condition.
Vautard, Robert; Thais, Françoise; Tobin, Isabelle; Bréon, François-Marie; Devezeaux de Lavergne, Jean-Guy; Colette, Augustin; Yiou, Pascal; Ruti, Paolo Michele
2014-01-01
The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.
Impact of lakes and wetlands on present and future boreal climate
NASA Astrophysics Data System (ADS)
Poutou, E.; Krinner, G.; Genthon, C.
2002-12-01
Impact of lakes and wetlands on present and future boreal climate The role of lakes and wetlands in present-day high latitude climate is quantified using a general circulation model of the atmosphere. The atmospheric model includes a lake module which is presented and validated. Seasonal and spatial wetland distribution is calculated as a function of the hydrological budget of the wetlands themselves and of continental soil whose runoff feeds them. Wetland extent is simulated and discussed both in simulations forced by observed climate and in general circulation model simulations. In off-line simulations, forced by ECMWF reanalyses, the lake model simulates correctly observed lake ice durations, while the wetland extent is somewhat underestimated in the boreal regions. Coupled to the general circulation model, the lake model yields satisfying ice durations, although the climate model biases have impacts on the modeled lake ice conditions. Boreal wetland extents are overestimated in the general circulation model as simulated precipitation is too high. The impact of inundated surfaces on the simulated climate is strongest in summer when these surfaces are ice-free. Wetlands seem to play a more important role than lakes in cooling the boreal regions in summer and in humidifying the atmosphere. The role of lakes and wetlands in future climate change is evaluated by analyzing simulations of present and future climate with and without prescribed inland water bodies.
Developing quantitative criteria to evaluate AOGCMs for application to regional climate assessments
NASA Astrophysics Data System (ADS)
Hayhoe, K.; Wake, C.; Bradbury, J.; Degaetano, A.; Hertel, A.
2006-12-01
Climate projections are the foundation for regional assessments of potential climate impacts. However, the soundness of regional assessments depends on the ability of global climate models to reproduce key processes responsible for regional climate trends. Here, we develop a systematic method to compare observed climate with historical atmosphere-ocean general circulation model (AOGCM) simulations, to assess the degree to which AOGCMs are able to reproduce regional circulation patterns. Applying this methodology to the U.S. Northeast (NE), we find that nearly all AOGCMs simulate a reasonable winter NAO pattern and seasonal positions of the Jet Stream and the East Coast Trough. However, not all models capture observed correlations between these circulation patterns and seasonal climate anomalies in the NE. Using only those AOGCMs that meet the criteria in each of these areas, we then develop projections of future climate change in the NE. The primary changes projected to occur over the next century - slightly greater temperature increases in summer than winter, and increases in winter precipitation - are consistent with projected trends in regional climate processes and are relatively independent of model or scale. These suggest confidence in the direction and potential range of the most notable regional climate trends, with the absolute magnitude of change depending on both the sensitivity of the climate system to human forcing as well as on human emissions over coming decades.
Avise, Jeremy; Abraham, Rodrigo Gonzalez; Chung, Serena H; Chen, Jack; Lamb, Brian; Salathé, Eric P; Zhang, Yongxin; Nolte, Christopher G; Loughlin, Daniel H; Guenther, Alex; Wiedinmyer, Christine; Duhl, Tiffany
2012-09-01
The impact of climate change on surface-level ozone is examined through a multiscale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the relative response factor (RRF(E)), which estimates the relative change in peak ozone concentration for a given change in pollutant emissions (the subscript E is added to RRF to remind the reader that the RRF is due to emission changes only). A matrix of model simulations was conducted to examine the individual and combined effects offuture anthropogenic emissions, biogenic emissions, and climate on the RRF(E). For each member in the matrix of simulations the warmest and coolest summers were modeled for the present-day (1995-2004) and future (2045-2054) decades. A climate adjustment factor (CAF(C) or CAF(CB) when biogenic emissions are allowed to change with the future climate) was defined as the ratio of the average daily maximum 8-hr ozone simulated under a future climate to that simulated under the present-day climate, and a climate-adjusted RRF(EC) was calculated (RRF(EC) = RRF(E) x CAF(C)). In general, RRF(EC) > RRF(E), which suggests additional emission controls will be required to achieve the same reduction in ozone that would have been achieved in the absence of climate change. Changes in biogenic emissions generally have a smaller impact on the RRF(E) than does future climate change itself The direction of the biogenic effect appears closely linked to organic-nitrate chemistry and whether ozone formation is limited by volatile organic compounds (VOC) or oxides of nitrogen (NO(x) = NO + NO2). Regions that are generally NO(x) limited show a decrease in ozone and RRF(EC), while VOC-limited regions show an increase in ozone and RRF(EC). Comparing results to a previous study using different climate assumptions and models showed large variability in the CAF(CB). We present a methodology for adjusting the RRF to account for the influence of climate change on ozone. The findings of this work suggest that in some geographic regions, climate change has the potential to negate decreases in surface ozone concentrations that would otherwise be achieved through ozone mitigation strategies. In regions of high biogenic VOC emissions relative to anthropogenic NO(x) emissions, the impact of climate change is somewhat reduced, while the opposite is true in regions of high anthropogenic NO(x) emissions relative to biogenic VOC emissions. Further, different future climate realizations are shown to impact ozone in different ways.
NASA Astrophysics Data System (ADS)
Wu, M.; Smith, B.; Samuelsson, P.; Rummukainen, M.; Schurgers, G.
2012-12-01
We applied a coupled regional climate-vegetation model, RCA-GUESS (Smith et al. 2011), over the CORDEX Africa domain, forced by boundary conditions from a CanESM2 CMIP5 simulation under the RCP8.5 future climate scenario. The simulations were from 1961 to 2100 and covered the African continent at a horizontal grid spacing of 0.44°. RCA-GUESS simulates changes in the phenology, productivity, relative cover and population structure of up to eight plant function types (PFTs) in response to forcing from the climate part of the model. These vegetation changes feed back to simulated climate through dynamic adjustments in surface energy fluxes and surface properties. Changes in the net ecosystem-atmosphere carbon flux and its components net primary production (NPP), heterotrophic respiration and emissions from biomass burning were also simulated but do not feed back to climate in our model. Constant land cover was assumed. We compared simulations with and without vegetation feedback switched "on" to assess the influence of vegetation-climate feedback on simulated climate, vegetation and ecosystem carbon cycling. Both positive and negative warming feedbacks were identified in different parts of Africa. In the Sahel savannah zone near 15°N, reduced vegetation cover and productivity, and mortality caused by a deterioration of soil water conditions led to a positive warming feedback mediated by decreased evapotranspiration and increased sensible heat flux between vegetation and the atmosphere. In the equatorial rainforest stronghold region of central Africa, a feedback syndrome characterised by reduced plant production and LAI, a dominance shift from tropical trees to grasses, reduced soil water and reduced rainfall was identified. The likely underlying mechanism was a decline in evaporative water recycling associated with sparser vegetation cover, reminiscent of Earth system model studies in which a similar feedback mechanism was simulated to force dieback of tropical rainforest and reduced precipitation over the Amazon Basin (Cox et al. 2000; Betts et al. 2004; Malhi et al. 2009). Opposite effects are seen in southern Senegal, southern Mali, northern Guinea and Guinea-Bissau, positive evapotranspiration feedback enhancing the cover of trees in forest and savannah, mitigating warming and promoting local moisture recycling as rainfall. Our study, the first application of a coupled Earth system model at regional scale and resolution over Africa, reveals that vegetation-climate feedbacks may significantly impact the magnitude and character of simulated changes in climate as well as vegetation and ecosystems in future scenario studies of this region. They should be accounted for in future studies of climate change and its impacts on Africa.
Linking Global and Regional Models to Simulate U.S. Air Quality in the Year 2050
The potential impact of global climate change on future air quality in the United States is investigated with global and regional-scale models. Regional climate model scenarios are developed by dynamically downscaling the outputs from a global chemistry and climate model and are...
Prein, Andreas; Langhans, Wolfgang; Fosser, Giorgia; ...
2015-05-27
Regional climate modeling using convection permitting models (CPMs) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs). CPMs do not use convection parameterization schemes, known as a major source of errors and uncertainties, and have more accurate surface and orography elds. The drawback of CPMs is their high demand on computational resources. For this reason, the CPM climate simulations only appeared a decade ago. In this study we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic.more » The most important components in CPM, such as physical parameterizations and dynamical formulations are discussed, and an outlook on required future developments and computer architectures that would support the application of CPMs is given. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Most improvements are found for processes related to deep convection (e.g., precipitation during summer), for mountainous regions, and for the soil-vegetation-atmosphere interactions. The climate change signals of CPM simulations reveal increases in short and extreme rainfall events and an increased ratio of liquid precipitation at the surface (a decrease of hail) potentially leading to more frequent ash oods. Concluding, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to assess their full potential and support their development.« less
Koeppen Bioclimatic Metrics for Evaluating CMIP5 Simulations of Historical Climate
NASA Astrophysics Data System (ADS)
Phillips, T. J.; Bonfils, C.
2012-12-01
The classic Koeppen bioclimatic classification scheme associates generic vegetation types (e.g. grassland, tundra, broadleaf or evergreen forests, etc.) with regional climate zones defined by the observed amplitude and phase of the annual cycles of continental temperature (T) and precipitation (P). Koeppen classification thus can provide concise, multivariate metrics for evaluating climate model performance in simulating the regional magnitudes and seasonalities of climate variables that are of critical importance for living organisms. In this study, 14 Koeppen vegetation types are derived from annual-cycle climatologies of T and P in some 3 dozen CMIP5 simulations of 1980-1999 climate, a period when observational data provides a reliable global validation standard. Metrics for evaluating the ability of the CMIP5 models to simulate the correct locations and areas of the vegetation types, as well as measures of overall model performance, also are developed. It is found that the CMIP5 models are most deficient in simulating 1) the climates of the drier zones (e.g. desert, savanna, grassland, steppe vegetation types) that are located in the Southwestern U.S. and Mexico, Eastern Europe, Southern Africa, and Central Australia, as well as 2) the climate of regions such as Central Asia and Western South America where topography plays a central role. (Detailed analysis of regional biases in the annual cycles of T and P of selected simulations exemplifying general model performance problems also are to be presented.) The more encouraging results include evidence for a general improvement in CMIP5 performance relative to that of older CMIP3 models. Within CMIP5 also, the more complex Earth Systems Models (ESMs) with prognostic biogeochemistry perform comparably to the corresponding global models that simulate only the "physical" climate. Acknowledgments This work was funded by the U.S. Department of Energy Office of Science and was performed at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Detection and Attribution of Regional Climate Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, G; Mirin, A
2007-01-19
We developed a high resolution global coupled modeling capability to perform breakthrough studies of the regional climate change. The atmospheric component in our simulation uses a 1{sup o} latitude x 1.25{sup o} longitude grid which is the finest resolution ever used for the NCAR coupled climate model CCSM3. Substantial testing and slight retuning was required to get an acceptable control simulation. The major accomplishment is the validation of this new high resolution configuration of CCSM3. There are major improvements in our simulation of the surface wind stress and sea ice thickness distribution in the Arctic. Surface wind stress and oceanmore » circulation in the Antarctic Circumpolar Current are also improved. Our results demonstrate that the FV version of the CCSM coupled model is a state of the art climate model whose simulation capabilities are in the class of those used for IPCC assessments. We have also provided 1000 years of model data to Scripps Institution of Oceanography to estimate the natural variability of stream flow in California. In the future, our global model simulations will provide boundary data to high-resolution mesoscale model that will be used at LLNL. The mesoscale model would dynamically downscale the GCM climate to regional scale on climate time scales.« less
John B Kim; Erwan Monier; Brent Sohngen; G Stephen Pitts; Ray Drapek; James McFarland; Sara Ohrel; Jefferson Cole
2016-01-01
We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a...
Regional model simulations of New Zealand climate
NASA Astrophysics Data System (ADS)
Renwick, James A.; Katzfey, Jack J.; Nguyen, Kim C.; McGregor, John L.
1998-03-01
Simulation of New Zealand climate is examined through the use of a regional climate model nested within the output of the Commonwealth Scientific and Industrial Research Organisation nine-level general circulation model (GCM). R21 resolution GCM output is used to drive a regional model run at 125 km grid spacing over the Australasian region. The 125 km run is used in turn to drive a simulation at 50 km resolution over New Zealand. Simulations with a full seasonal cycle are performed for 10 model years. The focus is on the quality of the simulation of present-day climate, but results of a doubled-CO2 run are discussed briefly. Spatial patterns of mean simulated precipitation and surface temperatures improve markedly as horizontal resolution is increased, through the better resolution of the country's orography. However, increased horizontal resolution leads to a positive bias in precipitation. At 50 km resolution, simulated frequency distributions of daily maximum/minimum temperatures are statistically similar to those of observations at many stations, while frequency distributions of daily precipitation appear to be statistically different to those of observations at most stations. Modeled daily precipitation variability at 125 km resolution is considerably less than observed, but is comparable to, or exceeds, observed variability at 50 km resolution. The sensitivity of the simulated climate to changes in the specification of the land surface is discussed briefly. Spatial patterns of the frequency of extreme temperatures and precipitation are generally well modeled. Under a doubling of CO2, the frequency of precipitation extremes changes only slightly at most locations, while air frosts become virtually unknown except at high-elevation sites.
Non-stationary Return Levels of CMIP5 Multi-model Temperature Extremes
Cheng, L.; Phillips, T. J.; AghaKouchak, A.
2015-05-01
The objective of this study is to evaluate to what extent the CMIP5 climate model simulations of the climate of the twentieth century can represent observed warm monthly temperature extremes under a changing environment. The biases and spatial patterns of 2-, 10-, 25-, 50- and 100-year return levels of the annual maxima of monthly mean temperature (hereafter, annual temperature maxima) from CMIP5 simulations are compared with those of Climatic Research Unit (CRU) observational data considered under a non-stationary assumption. The results show that CMIP5 climate models collectively underestimate the mean annual maxima over arid and semi-arid regions that are mostmore » subject to severe heat waves and droughts. Furthermore, the results indicate that most climate models tend to underestimate the historical annual temperature maxima over the United States and Greenland, while generally disagreeing in their simulations over cold regions. Return level analysis shows that with respect to the spatial patterns of the annual temperature maxima, there are good agreements between the CRU observations and most CMIP5 simulations. However, the magnitudes of the simulated annual temperature maxima differ substantially across individual models. Discrepancies are generally larger over higher latitudes and cold regions.« less
Local control on precipitation in a fully coupled climate-hydrology model.
Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C
2016-03-10
The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.
Local control on precipitation in a fully coupled climate-hydrology model
Larsen, Morten A. D.; Christensen, Jens H.; Drews, Martin; Butts, Michael B.; Refsgaard, Jens C.
2016-01-01
The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies. PMID:26960564
Impacts of climate change on paddy rice yield in a temperate climate.
Kim, Han-Yong; Ko, Jonghan; Kang, Suchel; Tenhunen, John
2013-02-01
The crop simulation model is a suitable tool for evaluating the potential impacts of climate change on crop production and on the environment. This study investigates the effects of climate change on paddy rice production in the temperate climate regions under the East Asian monsoon system using the CERES-Rice 4.0 crop simulation model. This model was first calibrated and validated for crop production under elevated CO2 and various temperature conditions. Data were obtained from experiments performed using a temperature gradient field chamber (TGFC) with a CO2 enrichment system installed at Chonnam National University in Gwangju, Korea in 2009 and 2010. Based on the empirical calibration and validation, the model was applied to deliver a simulated forecast of paddy rice production for the region, as well as for the other Japonica rice growing regions in East Asia, projecting for years 2050 and 2100. In these climate change projection simulations in Gwangju, Korea, the yield increases (+12.6 and + 22.0%) due to CO2 elevation were adjusted according to temperature increases showing variation dependent upon the cultivars, which resulted in significant yield decreases (-22.1% and -35.0%). The projected yields were determined to increase as latitude increases due to reduced temperature effects, showing the highest increase for any of the study locations (+24%) in Harbin, China. It appears that the potential negative impact on crop production may be mediated by appropriate cultivar selection and cultivation changes such as alteration of the planting date. Results reported in this study using the CERES-Rice 4.0 model demonstrate the promising potential for its further application in simulating the impacts of climate change on rice production from a local to a regional scale under the monsoon climate system. © 2012 Blackwell Publishing Ltd.
The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and Pilot Studies
NASA Technical Reports Server (NTRS)
Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.; Antle, J. M.; Nelson, G. C.; Porter, C.; Janssen, S.;
2012-01-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregón, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with rising temperatures. Wheat model simulations with midcentury climate scenarios project a slight decline in absolute yields that is more sensitive to selection of crop model than to global climate model, emissions scenario, or climate scenario downscaling method. A comparison of regional and national-scale economic simulations finds a large sensitivity of projected yield changes to the simulations' resolved scales. Finally, a global economic model intercomparison example demonstrates that improvements in the understanding of agriculture futures arise from integration of the range of uncertainty in crop, climate, and economic modeling results in multi-model assessments.
Rachel Loehman
2009-01-01
Climate changes in the Prairie Potholes and Grasslands bioregion include increased seasonal, annual, minimum, and maximum temperature and changing precipitation patterns. Because the region is relatively dry with a strong seasonal climate, it is sensitive to climatic changes and vulnerable to changes in climatic regime. For example, model simulations show that regional...
NASA Astrophysics Data System (ADS)
Oglesby, R. J.; Erickson, D. J.; Hernandez, J. L.; Irwin, D.
2005-12-01
Central America covers a relatively small area, but is topographically very complex, has long coast-lines, large inland bodies of water, and very diverse land cover which is both natural and human-induced. As a result, Central America is plagued by hydrologic extremes, especially major flooding and drought events, in a region where many people still barely manage to eke out a living through subsistence. Therefore, considerable concern exists about whether these extreme events will change, either in magnitude or in number, as climate changes in the future. To address this concern, we have used global climate model simulations of future climate change to drive a regional climate model centered on Central America. We use the IPCC `business as usual' scenario 21st century run made with the NCAR CCSM3 global model to drive the regional model MM5 at 12 km resolution. We chose the `business as usual' scenario to focus on the largest possible changes that are likely to occur. Because we are most interested in near-term changes, our simulations are for the years 2010, 2015, and 2025. A long `present-day run (for 2005) allows us to distinguish between climate variability and any signal due to climate change. Furthermore, a multi-year run with MM5 forced by NCEP reanalyses allows an assessment of how well the coupled global-regional model performs over Central America. Our analyses suggest that the coupled model does a credible job simulating the current climate and hydrologic regime, though lack of sufficient observations strongly complicates this comparison. The suite of model runs for the future years is currently nearing completion, and key results will be presented at the meeting.
NASA Astrophysics Data System (ADS)
Horowitz, H.; Garland, R. M.; Thatcher, M. J.; Naidoo, M.; van der Merwe, J.; Landman, W.; Engelbrecht, F.
2015-12-01
An accurate representation of African aerosols in climate models is needed to understand the regional and global radiative forcing and climate impacts of aerosols, at present and under future climate change. However, aerosol simulations in regional climate models for Africa have not been well-tested. Africa contains the largest single source of biomass-burning smoke aerosols and dust globally. Although aerosols are short-lived relative to greenhouse gases, black carbon in particular is estimated to be second only to carbon dioxide in contributing to warming on a global scale. Moreover, Saharan dust is exported great distances over the Atlantic Ocean, affecting nutrient transport to regions like the Amazon rainforest, which can further impact climate. Biomass burning aerosols are also exported from Africa, westward from Angola over the Atlantic Ocean and off the southeastern coast of South Africa to the Indian Ocean. Here, we perform the first extensive quantitative evaluation of the Conformal-Cubic Atmospheric Model (CCAM) aerosol simulation against monitored data, focusing on aerosol optical depth (AOD) observations over Africa. We analyze historical regional simulations for 1999 - 2012 from CCAM consistent with the experimental design of CORDEX at 50 km global horizontal resolution, through the dynamical downscaling of ERA-Interim data reanalysis data, with the CMIP5 emissions inventory (RCP8.5 scenario). CCAM has a prognostic aerosol scheme for organic carbon, black carbon, sulfate, and dust, and non-prognostic sea salt. The CCAM AOD at 550nm was compared to AOD (observed at 440nm, adjusted to 550nm with the Ångström exponent) from long-term AERONET stations across Africa. Sites strongly impacted by dust and biomass burning and with long continuous records were prioritized. In general, the model captures the monthly trends of the AERONET data. This presentation provides a basis for understanding how well aerosol particles are represented over Africa in regional climate modeling and the potential impact on climate predictions, and is the first large scale climate model-measurement verification of aerosols over Africa that we are aware of. CCAM is widely used for regional climate modeling applications, and we also discuss further improvements to the aerosol parameterizations based on our results.
Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF
NASA Astrophysics Data System (ADS)
Tang, Jianping; Wang, Shuyu; Niu, Xiaorui; Hui, Pinhong; Zong, Peishu; Wang, Xueyuan
2017-04-01
In this study, the impact of the spectral nudging method on regional climate simulation over the Coordinated Regional Climate Downscaling Experiment East Asia (CORDEX-EA) region is investigated using the Weather Research and Forecasting model (WRF). Driven by the ERA-Interim reanalysis, five continuous simulations covering 1989-2007 are conducted by the WRF model, in which four runs adopt the interior spectral nudging with different wavenumbers, nudging variables and nudging coefficients. Model validation shows that WRF has the ability to simulate spatial distributions and temporal variations of the surface climate (air temperature and precipitation) over CORDEX-EA domain. Comparably the spectral nudging technique is effective in improving the model's skill in the following aspects: (1), the simulated biases and root mean square errors of annual mean temperature and precipitation are obviously reduced. The SN3-UVT (spectral nudging with wavenumber 3 in both zonal and meridional directions applied to U, V and T) and SN6 (spectral nudging with wavenumber 6 in both zonal and meridional directions applied to U and V) experiments give the best simulations for temperature and precipitation respectively. The inter-annual and seasonal variances produced by the SN experiments are also closer to the ERA-Interim observation. (2), the application of spectral nudging in WRF is helpful for simulating the extreme temperature and precipitation, and the SN3-UVT simulation shows a clear advantage over the other simulations in depicting both the spatial distributions and inter-annual variances of temperature and precipitation extremes. With the spectral nudging, WRF is able to preserve the variability in the large scale climate information, and therefore adjust the temperature and precipitation variabilities toward the observation.
Prehistoric land use and Neolithisation in Europe in the context of regional climate events
NASA Astrophysics Data System (ADS)
Lemmen, C.; Wirtz, K. W.; Gronenborn, D.
2009-04-01
We present a simple, adaptation-driven, spatially explicit model of pre-Bronze age socio-technological change, called the Global Land Use and Technological Evolution Simulator (GLUES). The socio-technological realm is described by three characteristic traits: available technology, subsistence style ratio, and economic diversity. Human population and culture develop in the context of global paleoclimate and regional paleoclimate events. Global paleoclimate is derived from CLIMBER-2 Earth System Model anomalies superimposed on the IIASA temperature and precipitation database. Regional a forcing is provided by abrupt climate deteriorations from a compilation of 138 long-term high-resolution climate proxy time series from mostly terrestrial and near-shore archives. The GLUES simulator provides for a novel way to explore the interplay between climate, climate change, and cultural evolution both on the Holocene timescale as well as for short-term extreme event periods. We sucessfully simulate the migration of people and the diffusion of Neolithic technology from the Near East into Europe in the period 12000-4000 a BP. We find good agreement with recent archeological compilations of Western Eurasian Neolithic sites. No causal relationship between climate events and cultural evolution could be identified, but the speed of cultural development is found to be modulated by the frequency of climate events. From the demographic evolution and regional ressource consumption, we estimate regional land use change and prehistoric greenhouse gas emissions.
Application of regional climate models to the Indian winter monsoon over the western Himalayas.
Dimri, A P; Yasunari, T; Wiltshire, A; Kumar, P; Mathison, C; Ridley, J; Jacob, D
2013-12-01
The Himalayan region is characterized by pronounced topographic heterogeneity and land use variability from west to east, with a large variation in regional climate patterns. Over the western part of the region, almost one-third of the annual precipitation is received in winter during cyclonic storms embedded in westerlies, known locally as the western disturbance. In the present paper, the regional winter climate over the western Himalayas is analyzed from simulations produced by two regional climate models (RCMs) forced with large-scale fields from ERA-Interim. The analysis was conducted by the composition of contrasting (wet and dry) winter precipitation years. The findings showed that RCMs could simulate the regional climate of the western Himalayas and represent the atmospheric circulation during extreme precipitation years in accordance with observations. The results suggest the important role of topography in moisture fluxes, transport and vertical flows. Dynamical downscaling with RCMs represented regional climates at the mountain or even event scale. However, uncertainties of precipitation scale and liquid-solid precipitation ratios within RCMs are still large for the purposes of hydrological and glaciological studies. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
van Walsum, P. E. V.; Supit, I.
2012-06-01
Hydrologic climate change modelling is hampered by climate-dependent model parameterizations. To reduce this dependency, we extended the regional hydrologic modelling framework SIMGRO to host a two-way coupling between the soil moisture model MetaSWAP and the crop growth simulation model WOFOST, accounting for ecohydrologic feedbacks in terms of radiation fraction that reaches the soil, crop coefficient, interception fraction of rainfall, interception storage capacity, and root zone depth. Except for the last, these feedbacks are dependent on the leaf area index (LAI). The influence of regional groundwater on crop growth is included via a coupling to MODFLOW. Two versions of the MetaSWAP-WOFOST coupling were set up: one with exogenous vegetation parameters, the "static" model, and one with endogenous crop growth simulation, the "dynamic" model. Parameterization of the static and dynamic models ensured that for the current climate the simulated long-term averages of actual evapotranspiration are the same for both models. Simulations were made for two climate scenarios and two crops: grass and potato. In the dynamic model, higher temperatures in a warm year under the current climate resulted in accelerated crop development, and in the case of potato a shorter growing season, thus partly avoiding the late summer heat. The static model has a higher potential transpiration; depending on the available soil moisture, this translates to a higher actual transpiration. This difference between static and dynamic models is enlarged by climate change in combination with higher CO2 concentrations. Including the dynamic crop simulation gives for potato (and other annual arable land crops) systematically higher effects on the predicted recharge change due to climate change. Crop yields from soils with poor water retention capacities strongly depend on capillary rise if moisture supply from other sources is limited. Thus, including a crop simulation model in an integrated hydrologic simulation provides a valuable addition for hydrologic modelling as well as for crop modelling.
NASA Astrophysics Data System (ADS)
Li, Y.; Kurkute, S.; Chen, L.
2017-12-01
Results from the General Circulation Models (GCMs) suggest more frequent and more severe extreme rain events in a climate warmer than the present. However, current GCMs cannot accurately simulate extreme rainfall events of short duration due to their coarse model resolutions and parameterizations. This limitation makes it difficult to provide the detailed quantitative information for the development of regional adaptation and mitigation strategies. Dynamical downscaling using nested Regional Climate Models (RCMs) are able to capture key regional and local climate processes with an affordable computational cost. Recent studies have demonstrated that the downscaling of GCM results with weather-permitting mesoscale models, such as the pseudo-global warming (PGW) technique, could be a viable and economical approach of obtaining valuable climate change information on regional scales. We have conducted a regional climate 4-km Weather Research and Forecast Model (WRF) simulation with one domain covering the whole western Canada, for a historic run (2000-2015) and a 15-year future run to 2100 and beyond with the PGW forcing. The 4-km resolution allows direct use of microphysics and resolves the convection explicitly, thus providing very convincing spatial detail. With this high-resolution simulation, we are able to study the convective mechanisms, specifically the control of convections over the Prairies, the projected changes of rainfall regimes, and the shift of the convective mechanisms in a warming climate, which has never been examined before numerically at such large scale with such high resolution.
Climate Change Signals in the EURO-CORDEX Simulations
NASA Astrophysics Data System (ADS)
Jacob, Daniela; Preuschmann, Swantje
2014-05-01
A new high-resolution regional climate change ensemble has been established for Europe within the World Climate Research Program Coordinated Regional Downscaling Experiment (EURO-CORDEX) initiative. Within this presentation, the first results on climate change signals based on simulations with a horizontal resolution of 12.5 km for the new emission scenarios RCP4.5 and RCP8.5 will be presented. The new EURO-CORDEX ensemble results have been compared to the SRES A1B simulation results achieved within the ENSEMBLES project. The presentation is based on the results of the Paper JACOB et al. (2013). We concentrated on the statistical analysis of robustness and significance of the climate change signals for mean annual and seasonal temperature, total annual and seasonal precipitation, heavy precipitation, heat waves and dry spells, by using daily data for three time periods: 1971-2000, 2021-2050 and 2071-2100. The analysis of impact indices shows that for RCP8.5, there is a substantially larger change projected for temperature-based indices than for RCP4.5. The difference is less pronounced for precipitation-based indices. Two effects of the increased resolution can be regarded as an added value of regional climate simulations. Regional climate model simulations provide higher daily precipitation intensities, which are completely missing in the global climate model simulations, and they provide a significantly different climate change of daily precipitation intensities resulting in a smoother shift from weak to moderate and high intensities. The analysis of projected changes in the 95th percentile of the mean length of dry spells shows similar patterns for all scenarios. The climate projections from the new ensemble indicate a reduced northwards shift of Mediterranean drying evolution and slightly stronger mean precipitation increases over most of Europe. Within the high-resolution simulations in the EURO-CORDEX changes of the pattern for heavy precipitation events are clearly visible. (Jacob2013) Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O. B.; Bouwer, L.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; Georgopoulou, E.; Gobiet, A.; Menut, L.; Nikulin, G.; Haensler, A.; Hempelmann, N.; Jones, C.; Keuler, K.; Kovats, S.; Kröner, N.; Kotlarski, S.; Kriegsmann, A.; Martin, E.; Meijgaard, E.; Moseley, C.; Pfeifer, S.; Preuschmann, S.; Radermacher, C.; Radtke, K.; Rechid, D.; Rounsevell, M.; Samuelsson, P.; Somot, S.; Soussana, J.-F.; Teichmann, C.; Valentini, R.; Vautard, R.; Weber, B. & Yiou, P.( 2013): EURO-CORDEX: new high-resolution climate change projections for European impact research Regional Environmental Change, Springer Berlin Heidelberg, 2013, 1-16.
Carbonaceous aerosols and Impacts on regional climate over South Asia
NASA Astrophysics Data System (ADS)
Pathak, B.; Parottil, A.
2017-12-01
A comprehensive assessment on the effects of carbonaceous aerosols over regional climate of South Asia CORDEX Domain is carried out using the ICTP developed Regional climate model version 4 (RegCM 4.4). Five different simulations considering (a) Carbonaceous aerosols with feedback to meteorological field (EXP1), (b) Carbonaceous aerosols without feedback to meteorological field (c) only Black Carbon with feed back to meteorological field (EXP3) and (d) only Black Carbon without feed back to meteorological field (EXP4) and only meteorology simulation (CNTL) are performed. All the five experiments are integrated from 01 January 2008 to 01 January 2012 continuously with a horizontal resolution of 50 km with first one year as spin up time. The simulated meteorology for all the simulations is validated by comparing with observations. The influence of carbonaceous aerosols on Direct Radiative Forcing (DRF) at the top of the atmosphere (TOA) and within the atmosphere (ATM) over the South Asian region with focus on Indian subcontinent is carried out. The contribution of black carbon to the total DRF and its significance is analyzed. Modulation in precipitation and temperature with the aerosol-climate feedback is studied by comparing the meteorological parameters in CNTL with CARB/BC with and without feedback simulations. In general, black carbon is found to reduce the precipitation, wind over the region more strongly than total carbonaceous aerosols. Role of black carbon in warming the surface is investigated by comparing the RegCM simulation considering both biomass burning and anthropogenic emissions with simulations considering only anthropogenic simulations.
NASA Astrophysics Data System (ADS)
Bliss Singer, Michael; Michaelides, Katerina
2017-10-01
In drylands, convective rainstorms typically control runoff, streamflow, water supply and flood risk to human populations, and ecological water availability at multiple spatial scales. Since drainage basin water balance is sensitive to climate, it is important to improve characterization of convective rainstorms in a manner that enables statistical assessment of rainfall at high spatial and temporal resolution, and the prediction of plausible manifestations of climate change. Here we present a simple rainstorm generator, STORM, for convective storm simulation. It was created using data from a rain gauge network in one dryland drainage basin, but is applicable anywhere. We employ STORM to assess watershed rainfall under climate change simulations that reflect differences in wetness/storminess, and thus provide insight into observed or projected regional hydrologic trends. Our analysis documents historical, regional climate change manifesting as a multidecadal decline in rainfall intensity, which we suggest has negatively impacted ephemeral runoff in the Lower Colorado River basin, but has not contributed substantially to regional negative streamflow trends.
Mid-Century Ensemble Regional Climate Change Scenarios for the Western United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Lai R.; Qian, Yun; Bian, Xindi
To study the impacts of climate change on water resources in the western U.S., global climate simulations were produced using the National Center for Atmospheric Research/Department of Energy (NCAR/DOE) Parallel Climate Model (PCM). The Penn State/NCAR Mesoscale Model (MM5) was used to downscale the PCM control (1995-2015) and three future (2040-2060) climate simulations to yield ensemble regional climate simulations at 40 km spatial resolution for the western U.S. This paper focuses on analyses of regional simulations in the Columbia River and Sacramento-San Joaquin River Basins. Results based on the regional simulations show that by mid-century, the average regional warming ofmore » 1-2.5oC strongly affects snowpack in the western U.S. Along coastal mountains, reduction in annual snowpack is about 70%. Besides changes in mean temperature, precipitation, and snowpack, cold season extreme daily precipitation is found to increase by 5 to 15 mm/day (15-20%) along the Cascades and the Sierra. The warming results in increased rainfall over snowfall and reduced snow accumulation (or earlier snowmelt) during the cold season. In the Columbia River Basin, these changes are accompanied by more frequent rain-on-snow events. Overall, they induce higher likelihood of wintertime flooding and reduced runoff and soil moisture in the summer. Such changes could have serious impacts on water resources and agriculture in the western U.S. Changes in surface water and energy budgets in the Columbia River and Sacramento-San Joaquin basins are driven mainly by changes in surface temperature, which are statistically significant at the 0.95 confidence level. Changes in precipitation, however, are spatially incoherent and not statistically significant except for the drying trend during summer.« less
NASA Technical Reports Server (NTRS)
Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.;
2017-01-01
Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.
Characterizing the "Time of Emergence" of Air Quality Climate Penalties
NASA Astrophysics Data System (ADS)
Rothenberg, D. A.; Garcia-Menendez, F.; Monier, E.; Solomon, S.; Selin, N. E.
2017-12-01
By driving not only local changes in temperature, but also precipitation and regional-scale changes in seasonal circulation patterns, climate change can directly and indirectly influence changes in air quality and its extremes. These changes - often referred to as "climate penalties" - can have important implications for human health, which is often targeted when assessing the potential co-benefits of climate policy. But because climate penalties are driven by slow, spatially-varying, temporal changes in the climate system, their emergence in the real world should also have a spatio-temporal component following regional variability in background air quality. In this work, we attempt to estimate the spatially-varying "time of emergence" of climate penalty signals by using an ensemble modeling framework based on the MIT Integrated Global System Model (MIT IGSM). With this framework we assess three climate policy scenarios assuming three different underlying climate sensitivities, and conduct a 5-member ensemble for each case to capture internal variability within the model. These simulations are used to drive offline chemical transport modeling (using CAM-Chem and GEOS-Chem). In these simulations, we find that the air quality response to climate change can vary dramatically across different regions of the globe. To analyze these regionally-varying climate signals, we employ a hierarchical clustering technique to identify regions with similar seasonal patterns of air quality change. Our simulations suggest that the earliest emergence of ozone climate penalties would occur in Southern Europe (by 2035), should the world neglect climate change and rely on a "business-as-usual" emissions policy. However, even modest climate policy dramatically pushes back the time of emergence of these penalties - to beyond 2100 - across most of the globe. The emergence of climate-forced changes in PM2.5 are much more difficult to detect, partially owing to the large role that changes in the frequency and spatial distribution of precipitation play in limiting the accumulation and duration of particulate pollution episodes.
Reliability of regional climate simulations
NASA Astrophysics Data System (ADS)
Ahrens, W.; Block, A.; Böhm, U.; Hauffe, D.; Keuler, K.; Kücken, M.; Nocke, Th.
2003-04-01
Quantification of uncertainty becomes more and more a key issue for assessing the trustability of future climate scenarios. In addition to the mean conditions, climate impact modelers focus in particular on extremes. Before generating such scenarios using e.g. dynamic regional climate models, a careful validation of present-day simulations should be performed to determine the range of errors for the quantities of interest under recent conditions as a raw estimate of their uncertainty in the future. Often, multiple aspects shall be covered together, and the required simulation accuracy depends on the user's demand. In our approach, a massive parallel regional climate model shall be used on the one hand to generate "long-term" high-resolution climate scenarios for several decades, and on the other hand to provide very high-resolution ensemble simulations of future dry spells or heavy rainfall events. To diagnosis the model's performance for present-day simulations, we have recently developed and tested a first version of a validation and visualization chain for this model. It is, however, applicable in a much more general sense and could be used as a common test bed for any regional climate model aiming at this type of simulations. Depending on the user's interest, integrated quality measures can be derived for near-surface parameters using multivariate techniques and multidimensional distance measures in a first step. At this point, advanced visualization techniques have been developed and included to allow for visual data mining and to qualitatively identify dominating aspects and regularities. Univariate techniques that are especially designed to assess climatic aspects in terms of statistical properties can then be used to quantitatively diagnose the error contributions of the individual used parameters. Finally, a comprehensive in-depth diagnosis tool allows to investigate, why the model produces the obtained near-surface results to answer the question if the model performs well from the modeler's point of view. Examples will be presented for results obtained using this approach for assessing the risk of potential total agricultural yield loss under drought conditions in Northeast Brazil and for evaluating simulation results for a 10-year period for Europe. To support multi-run simulations and result evaluation, the model will be embedded into an already existing simulation environment that provides further postprocessing tools for sensitivity studies, behavioral analysis and Monte-Carlo simulations, but also for ensemble scenario analysis in one of the next steps.
Implication of Agricultural Land Use Change on Regional Climate Projection
NASA Astrophysics Data System (ADS)
Wang, G.; Ahmed, K. F.; You, L.
2015-12-01
Agricultural land use plays an important role in land-atmosphere interaction. Agricultural activity is one of the most important processes driving human-induced land use land cover change (LULCC) in a region. In addition to future socioeconomic changes, climate-induced changes in crop yield represent another important factor shaping agricultural land use. In feedback, the resulting LULCC influences the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. Therefore, assessment of climate change impact on future agricultural land use and its feedback is of great importance in climate change study. In this study, to evaluate the feedback of projected land use changes to the regional climate in West Africa, we employed an asynchronous coupling between a regional climate model (RegCM) and a prototype land use projection model (LandPro). The LandPro model, which was developed to project the future change in agricultural land use and the resulting shift in natural vegetation in West Africa, is a spatially explicit model that can account for both climate and socioeconomic changes in projecting future land use changes. In the asynchronously coupled modeling framework, LandPro was run for every five years during the period of 2005-2050 accounting for climate-induced change in crop yield and socioeconomic changes to project the land use pattern by the mid-21st century. Climate data at 0.5˚ was derived from RegCM to drive the crop model DSSAT for each of the five-year periods to simulate crop yields, which was then provided as input data to LandPro. Subsequently, the land use land cover map required to run RegCM was updated every five years using the outputs from the LandPro simulations. Results from the coupled model simulations improve the understanding of climate change impact on future land use and the resulting feedback to regional climate.
Climate variability in China during the last millennium based on reconstructions and simulations
NASA Astrophysics Data System (ADS)
García-Bustamante, E.; Luterbacher, J.; Xoplaki, E.; Werner, J. P.; Jungclaus, J.; Zorita, E.; González-Rouco, J. F.; Fernández-Donado, L.; Hegerl, G.; Ge, Q.; Hao, Z.; Wagner, S.
2012-04-01
Multi-decadal to centennial climate variability in China during the last millennium is analysed. We compare the low frequency temperature and precipitation variations from proxy-based reconstructions and palaeo-simulations from climate models. Focusing on the regional responses to the global climate evolution is of high relevance due to the complexity of the interactions between physical mechanisms at different spatio-temporal scales and the potential severity of the derived multiple socio-economic impacts. China stands out as a particularly interesting region, not only due to its complex climatic features, ranging from the semiarid northwestern Tibetan Plateau to the tropical monsoon southeastern climates, but also because of its wealth of proxy data. However, comprehensive assessments of proxy- and model-based information about palaeo-climatic variations in China are, to our knowledge, still lacking. In addition, existing studies depict a general lack of agreement between reconstructions and model simulations with respect to the amplitude and/or occurrence of warmer/colder and wetter/drier periods during the last millennium and the magnitude of the 20th century warming trend. Furthermore, these works are mainly focused on eastern China regions that show a denser proxy data coverage. We investigate how last millennium palaeo-runs compare to independent evidences from an unusual large number of proxy reconstructions over the study area by employing state-of-the-art palaeo-simulations with multi-member ensembles from the CMIP5/PMIP3 project. This shapes an ideal frame for the evaluation of the uncertainties associated to internal and intermodel model variability. Preliminary results indicate that despite the strong regional and seasonal dependencies, temperature reconstructions in China evidence coherent variations among all regions at centennial scale, especially during the last 500 years. The spatial consistency of low frequency temperature changes is an interesting aspect and of relevance for the assessment of forced climatic responses in China. The comparison between reconstructions and simulations from climate models show that, apart from the 20th century warming trend, the variance of the reconstructed mean China temperature lies in the envelope (uncertainty range) spanned by the temperature simulations. The uncertainty arises from the internal (multi-member ensembles) and the inter-model variability. Centennial variations tend to be broadly synchronous in the reconstructions and the simulations. However, the simulations show a delay of the warm period 1000-1300 AD. This warm medieval period both in the simulations and the reconstructions is followed by cooling till 1800 AD. Based on the simulations, the recent warming is not unprecedented and is comparable to the medieval warming. Further steps of this study will address the individual contribution of anthropogenic and natural forcings on climate variability and change during the last millennium in China. We will make use of of models that provide runs including single forcings (fingerprints) for the attribution of climate variations from decadal to multi-centennial time scales. With this aim, we will implement statistical techniques for the detection of optimal signal-to-noise-ratio between external forcings and internal variability of reconstructed temperatures and precipitation. To apply these approaches the uncertainties associated with both reconstructions and simulations will be estimated. The latter will shed some light into the mechanisms behind current climate evolution and will help to constrain uncertainties in the sensitivity of model simulations to increasing CO2 scenarios of future climate change. This work will also contribute to the overall aims of the PAGES 2k initiative in Asia (http://www.pages.unibe.ch/workinggroups/2k-network)
Evaluating synoptic systems in the CMIP5 climate models over the Australian region
NASA Astrophysics Data System (ADS)
Gibson, Peter B.; Uotila, Petteri; Perkins-Kirkpatrick, Sarah E.; Alexander, Lisa V.; Pitman, Andrew J.
2016-10-01
Climate models are our principal tool for generating the projections used to inform climate change policy. Our confidence in projections depends, in part, on how realistically they simulate present day climate and associated variability over a range of time scales. Traditionally, climate models are less commonly assessed at time scales relevant to daily weather systems. Here we explore the utility of a self-organizing maps (SOMs) procedure for evaluating the frequency, persistence and transitions of daily synoptic systems in the Australian region simulated by state-of-the-art global climate models. In terms of skill in simulating the climatological frequency of synoptic systems, large spread was observed between models. A positive association between all metrics was found, implying that relative skill in simulating the persistence and transitions of systems is related to skill in simulating the climatological frequency. Considering all models and metrics collectively, model performance was found to be related to model horizontal resolution but unrelated to vertical resolution or representation of the stratosphere. In terms of the SOM procedure, the timespan over which evaluation was performed had some influence on model performance skill measures, as did the number of circulation types examined. These findings have implications for selecting models most useful for future projections over the Australian region, particularly for projections related to synoptic scale processes and phenomena. More broadly, this study has demonstrated the utility of the SOMs procedure in providing a process-based evaluation of climate models.
NASA Astrophysics Data System (ADS)
Diaconescu, Emilia Paula; Mailhot, Alain; Brown, Ross; Chaumont, Diane
2018-03-01
This study focuses on the evaluation of daily precipitation and temperature climate indices and extremes simulated by an ensemble of 12 Regional Climate Model (RCM) simulations from the ARCTIC-CORDEX experiment with surface observations in the Canadian Arctic from the Adjusted Historical Canadian Climate Dataset. Five global reanalyses products (ERA-Interim, JRA55, MERRA, CFSR and GMFD) are also included in the evaluation to assess their potential for RCM evaluation in data sparse regions. The study evaluated the means and annual anomaly distributions of indices over the 1980-2004 dataset overlap period. The results showed that RCM and reanalysis performance varied with the climate variables being evaluated. Most RCMs and reanalyses were able to simulate well climate indices related to mean air temperature and hot extremes over most of the Canadian Arctic, with the exception of the Yukon region where models displayed the largest biases related to topographic effects. Overall performance was generally poor for indices related to cold extremes. Likewise, only a few RCM simulations and reanalyses were able to provide realistic simulations of precipitation extreme indicators. The multi-reanalysis ensemble provided superior results to individual datasets for climate indicators related to mean air temperature and hot extremes, but not for other indicators. These results support the use of reanalyses as reference datasets for the evaluation of RCM mean air temperature and hot extremes over northern Canada, but not for cold extremes and precipitation indices.
NASA Astrophysics Data System (ADS)
Kawazoe, S.; Gutowski, W. J., Jr.
2015-12-01
We analyze the ability of regional climate models (RCMs) to simulate very heavy daily precipitation and supporting processes for both contemporary and future-scenario simulations during summer (JJA). RCM output comes from North American Regional Climate Change Assessment Program (NARCCAP) simulations, which are all run at a spatial resolution of 50 km. Analysis focuses on the upper Mississippi basin for summer, between 1982-1998 for the contemporary climate, and 2052-2068 during the scenario climate. We also compare simulated precipitation and supporting processes with those obtained from observed precipitation and reanalysis atmospheric states. Precipitation observations are from the University of Washington (UW) and the Climate Prediction Center (CPC) gridded dataset. Utilizing two observational datasets helps determine if any uncertainties arise from differences in precipitation gridding schemes. Reanalysis fields come from the North American Regional Reanalysis. The NARCCAP models generally reproduce well the precipitation-vs.-intensity spectrum seen in observations, while producing overly strong precipitation at high intensity thresholds. In the future-scenario climate, there is a decrease in frequency for light to moderate precipitation intensities, while an increase in frequency is seen for the higher intensity events. Further analysis focuses on precipitation events exceeding the 99.5 percentile that occur simultaneously at several points in the region, yielding so-called "widespread events". For widespread events, we analyze local and large scale environmental parameters, such as 2-m temperature and specific humidity, 500-hPa geopotential heights, Convective Available Potential Energy (CAPE), vertically integrated moisture flux convergence, among others, to compare atmospheric states and processes leading to such events in the models and observations. The results suggest that an analysis of atmospheric states supporting very heavy precipitation events is a more fruitful path for understanding and detecting changes than simply looking at precipitation itself.
Global climate models (GCMs) are currently used to obtain information about future changes in the large-scale climate. However, such simulations are typically done at coarse spatial resolutions, with model grid boxes on the order of 100 km on a horizontal side. Therefore, techniq...
NASA Astrophysics Data System (ADS)
Hamann, Ilse; Arnault, Joel; Bliefernicht, Jan; Klein, Cornelia; Heinzeller, Dominikus; Kunstmann, Harald
2014-05-01
Changing climate and hydro-meteorological boundary conditions are among the most severe challenges to Africa in the 21st century. In particular West Africa faces an urgent need to develop effective adaptation and mitigation strategies to cope with negative impacts on humans and environment due to climate change, increased hydro-meteorological variability and land use changes. To help meet these challenges, the German Federal Ministry of Education and Research (BMBF) started an initiative with institutions in Germany and West African countries to establish together a West African Science Service Center on Climate Change and Adapted Land Use (WASCAL). This activity is accompanied by an establishment of trans-boundary observation networks, an interdisciplinary core research program and graduate research programs on climate change and related issues for strengthening the analytical capabilities of the Science Service Center. A key research activity of the WASCAL Competence Center is the provision of regional climate simulations in a fine spatio-temporal resolution for the core research sites of WASCAL for the present and the near future. The climate information is needed for subsequent local climate impact studies in agriculture, water resources and further socio-economic sectors. The simulation experiments are performed using regional climate models such as COSMO-CLM, RegCM and WRF and statistical techniques for a further refinement of the projections. The core research sites of WASCAL are located in the Sudanian Savannah belt in Northern Ghana, Southern Burkina Faso and Northern Benin. The climate in this region is semi-arid with six rainy months. Due to the strong population growth in West Africa, many areas of the Sudanian Savannah have been already converted to farmland since the majority of the people are living directly or indirectly from the income produced in agriculture. The simulation experiments of the Competence Center and the Core Research Program are accompanied by the WASCAL Graduate Research Program on the West African Climate System. The GRP-WACS provides ten scholarships per year for West African PhD students with a duration of three years. Present and future WASCAL PhD students will constitute one important user group of the Linux cluster that will be installed at the Competence Center in Ouagadougou, Burkina Faso. Regional Land-Atmosphere Simulations A key research activity of the WASCAL Core Research Program is the analysis of interactions between the land surface and the atmosphere to investigate how land surface changes affect hydro-meteorological surface fluxes such as evapotranspiration. Since current land surface models of global and regional climate models neglect dominant lateral hydrological processes such as surface runoff, a novel land surface model is used, the NCAR Distributed Hydrological Modeling System (NDHMS). This model can be coupled to WRF (WRF-Hydro) to perform two-way coupled atmospheric-hydrological simulations for the watershed of interest. Hardware and network prerequisites include a HPC cluster, network switches, internal storage media, Internet connectivity of sufficient bandwidth. Competences needed are HPC, storage, and visualization systems optimized for climate research, parallelization and optimization of climate models and workflows, efficient management of highest data volumes.
NASA Astrophysics Data System (ADS)
Lyra, Andre; Tavares, Priscila; Chou, Sin Chan; Sueiro, Gustavo; Dereczynski, Claudine; Sondermann, Marcely; Silva, Adan; Marengo, José; Giarolla, Angélica
2018-04-01
The objective of this work is to assess changes in three metropolitan regions of Southeast Brazil (Rio de Janeiro, São Paulo, and Santos) based on the projections produced by the Eta Regional Climate Model (RCM) at very high spatial resolution, 5 km. The region, which is densely populated and extremely active economically, is frequently affected by intense rainfall events that trigger floods and landslides during the austral summer. The analyses are carried out for the period between 1961 and 2100. The 5-km simulations are results from a second downscaling nesting in the HadGEM2-ES RCP4.5 and RCP8.5 simulations. Prior to the assessment of the projections, the higher resolution simulations were evaluated for the historical period (1961-1990). The comparison between the 5-km and the coarser driver model simulations shows that the spatial patterns of precipitation and temperature of the 5-km Eta simulations are in good agreement with the observations. The simulated frequency distribution of the precipitation and temperature extremes from the 5-km Eta RCM is consistent with the observed structure and extreme values. Projections of future climate change using the 5-km Eta runs show stronger warming in the region, primarily during the summer season, while precipitation is strongly reduced. Projected temperature extremes show widespread heating with maximum temperatures increasing by approximately 9 °C in the three metropolitan regions by the end of the century in the RCP8.5 scenario. A trend of drier climate is also projected using indices based on daily precipitation, which reaches annual rainfall reductions of more than 50 % in the state of Rio de Janeiro and between 40 and 45 % in São Paulo and Santos. The magnitude of these changes has negative implications to the population health conditions, energy security, and economy.
NASA Astrophysics Data System (ADS)
Peishu, Zong; Jianping, Tang; Shuyu, Wang; Lingyun, Xie; Jianwei, Yu; Yunqian, Zhu; Xiaorui, Niu; Chao, Li
2017-08-01
The parameterization of physical processes is one of the critical elements to properly simulate the regional climate over eastern China. It is essential to conduct detailed analyses on the effect of physical parameterization schemes on regional climate simulation, to provide more reliable regional climate change information. In this paper, we evaluate the 25-year (1983-2007) summer monsoon climate characteristics of precipitation and surface air temperature by using the regional spectral model (RSM) with different physical schemes. The ensemble results using the reliability ensemble averaging (REA) method are also assessed. The result shows that the RSM model has the capacity to reproduce the spatial patterns, the variations, and the temporal tendency of surface air temperature and precipitation over eastern China. And it tends to predict better climatology characteristics over the Yangtze River basin and the South China. The impact of different physical schemes on RSM simulations is also investigated. Generally, the CLD3 cloud water prediction scheme tends to produce larger precipitation because of its overestimation of the low-level moisture. The systematic biases derived from the KF2 cumulus scheme are larger than those from the RAS scheme. The scale-selective bias correction (SSBC) method improves the simulation of the temporal and spatial characteristics of surface air temperature and precipitation and advances the circulation simulation capacity. The REA ensemble results show significant improvement in simulating temperature and precipitation distribution, which have much higher correlation coefficient and lower root mean square error. The REA result of selected experiments is better than that of nonselected experiments, indicating the necessity of choosing better ensemble samples for ensemble.
Evaluating CMIP5 Simulations of Historical Continental Climate with Koeppen Bioclimatic Metrics
NASA Astrophysics Data System (ADS)
Phillips, T. J.; Bonfils, C.
2013-12-01
The classic Koeppen bioclimatic classification scheme associates generic vegetation types (e.g. grassland, tundra, broadleaf or evergreen forests, etc.) with regional climate zones defined by their annual cycles of continental temperature (T) and precipitation (P), considered together. The locations or areas of Koeppen vegetation types derived from observational data thus can provide concise metrical standards for simultaneously evaluating climate simulations of T and P in naturally defined regions. The CMIP5 models' collective ability to correctly represent two variables that are critically important for living organisms at regional scales is therefore central to this evaluation. For this study, 14 Koeppen vegetation types are derived from annual-cycle climatologies of T and P in some 3 dozen CMIP5 simulations of the 1980-1999 period. Metrics for evaluating the ability of the CMIP5 models to simulate the correct locations and areas of each vegetation type, as well as measures of overall model performance, also are developed. It is found that the CMIP5 models are generally most deficient in simulating: 1) climates of drier Koeppen zones (e.g. desert, savanna, grassland, steppe vegetation types) located in the southwestern U.S. and Mexico, eastern Europe, southern Africa, and central Australia; 2) climates of regions such as central Asia and western South America where topography plays a key role. Details of regional T or P biases in selected simulations that exemplify general model performance problems also will be presented. Acknowledgments: This work was funded by the U.S. Department of Energy Office of Science and was performed at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Map of Koeppen vegetation types derived from observed T and P.
NASA Astrophysics Data System (ADS)
Wang, Enli; Xu, J.; Jiang, Q.; Austin, J.
2009-03-01
Quantification of the spatial impact of climate on crop productivity and the potential value of seasonal climate forecasts can effectively assist the strategic planning of crop layout and help to understand to what extent climate risk can be managed through responsive management strategies at a regional level. A simulation study was carried out to assess the climate impact on the performance of a dryland wheat-fallow system and the potential value of seasonal climate forecasts in nitrogen management in the Murray-Darling Basin (MDB) of Australia. Daily climate data (1889-2002) from 57 stations were used with the agricultural systems simulator (APSIM) to simulate wheat productivity and nitrogen requirement as affected by climate. On a good soil, simulated grain yield ranged from <2 t/ha in west inland to >7 t/ha in the east border regions. Optimal nitrogen rates ranged from <60 kgN/ha/yr to >200 kgN/ha/yr. Simulated gross margin was in the range of -20/ha to 700/ha, increasing eastwards. Wheat yield was closely related to rainfall in the growing season and the stored soil moisture at sowing time. The impact of stored soil moisture increased from southwest to northeast. Simulated annual deep drainage ranged from zero in western inland to >200 mm in the east. Nitrogen management, optimised based on ‘perfect’ knowledge of daily weather in the coming season, could add value of 26˜79/ha compared to management optimised based on historical climate, with the maximum occurring in central to western part of MDB. It would also reduce the nitrogen application by 5˜25 kgN/ha in the main cropping areas. Comparison of simulation results with the current land use mapping in MDB revealed that the western boundary of the current cropping zone approximated the isolines of 160 mm of growing season rainfall, 2.5t/ha of wheat grain yield, and 150/ha of gross margin in QLD and NSW. In VIC and SA, the 160-mm isohyets corresponded relatively lower simulated yield due to less stored soil water. Impacts of other factors like soil types were also discussed.
High-resolution, regional-scale crop yield simulations for the Southwestern United States
NASA Astrophysics Data System (ADS)
Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.
2012-12-01
Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and maximum temperature), beyond which the yields were negatively affected. These results are now being used for further regional-scale yield analysis as the aforementioned framework is adaptable to multiple geographic regions and crop types.
A review on vegetation models and applicability to climate simulations at regional scale
NASA Astrophysics Data System (ADS)
Myoung, Boksoon; Choi, Yong-Sang; Park, Seon Ki
2011-11-01
The lack of accurate representations of biospheric components and their biophysical and biogeochemical processes is a great source of uncertainty in current climate models. The interactions between terrestrial ecosystems and the climate include exchanges not only of energy, water and momentum, but also of carbon and nitrogen. Reliable simulations of these interactions are crucial for predicting the potential impacts of future climate change and anthropogenic intervention on terrestrial ecosystems. In this paper, two biogeographical (Neilson's rule-based model and BIOME), two biogeochemical (BIOME-BGC and PnET-BGC), and three dynamic global vegetation models (Hybrid, LPJ, and MC1) were reviewed and compared in terms of their biophysical and physiological processes. The advantages and limitations of the models were also addressed. Lastly, the applications of the dynamic global vegetation models to regional climate simulations have been discussed.
Regional-Scale Climate Change: Observations and Model Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, Raymond S; Diaz, Henry F
2010-12-14
This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, andmore » we conducted studies of changes in phonological indicators based on various climatic thresholds.« less
NASA Astrophysics Data System (ADS)
Nicholls, S.; Mohr, K. I.
2014-12-01
The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. Global climate models, although capable of resolving synoptic-scale South American climate features, are inadequate for fully-resolving the strong gradients between climate regimes and the complex orography which define the Tropical Andes given their low spatial and temporal resolution. Recent computational advances now make practical regional climate modeling with prognostic mesoscale atmosphere-ocean coupled models, such as the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, to climate research. Previous work has shown COAWST to reasonably simulate the both the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data. More recently, COAWST simulations have also been shown to sensibly reproduce the entire annual cycle of rainfall (Oct 2003 - Oct 2004) with historical climate model input. Using future global climate model input for COAWST, the present work involves year-long cycle spanning October to October for the years 2031, 2059, and 2087 assuming the most likely regional climate pathway (RCP): RCP 6.0. COAWST output is used to investigate how global climate change impacts the spatial distribution, precipitation rates, and diurnal cycle of precipitation patterns in the Central Andes vary in these yearly "snapshots". Initial results show little change to precipitation coverage or its diurnal cycle, however precipitation amounts did tend drier over the Brazilian Plateau and wetter over the Western Amazon and Central Andes. These results suggest potential adjustments to large-scale climate features (such as the Bolivian High).
Realism of the Indian Ocean Dipole in CMIP5 models, and the Implication for Climate Projections
NASA Astrophysics Data System (ADS)
Weller, E.; Cai, W.; Cowan, T.
2012-12-01
An assessment of how well climate models simulate the Indian Ocean Dipole (IOD) is undertaken using coupled models that have partaken in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Compared to CMIP3 models, no substantial improvement is evident in the simulation of the IOD pattern and/or amplitude during its peak season in austral spring (September-October-November, or SON). The majority of CMIP5 models generate a larger variance of sea surface temperature (SST) in the Sumatra-Java upwelling region and an IOD amplitude that is far greater than what is observed. Although the relationship between precipitation and the tropical Indian Ocean SST is well simulated, future projections of SON rainfall changes over IOD-influenced regions are intrinsically linked to the IOD-rainfall teleconnection and IOD amplitude in the model present-day climate. The diversity of the simulated IOD amplitudes in CMIP5 (and CMIP3) models which tend to be overly large, results in a wide range of future modelled SON rainfall trends over IOD-influenced regions. Our results highlight the importance of realistically simulating the present-day IOD properties and the caveat that needs to be exercised in interpreting climate projections in the IOD-affected regions.
Simulated climate effects of land degradation near Urumqi, China
NASA Astrophysics Data System (ADS)
Moore, N. J.; Qi, J.
2009-12-01
Western China's drylands, particularly around Urumqi city in Xinjiang Autonomous Region are changing due to increased grazing pressures, urban growth, and increasing population. These changes, driven by national policies of openness and economic development, are expected to continue for the foreseeable future. The continued degradation of rangelands surrounding Urumqi can impact not only socioeconomic characteristics but also regional climate patterns. Here we show results from high-resolution regional climate simulations of the Urumqi area using the RAMS regional climate model. Under differing levels of rangeland degradation, from no degradation in vegetative cover and leaf area index (LAI) to 75% reduction a variety of impacts are found in the region. We examined the impacts of these changes in land cover properties via current rangeland management practices, including influences on summertime rainfall (important for grassland production) and year-round wind patterns, which are two major natural factors related to the air pollution and water scarcity of the city.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, Koichi; Leung, Lai-Yung R.; Zhao, Chun
This study presents a diagnosis of a multi-resolution approach using the Model for Prediction Across Scales - Atmosphere (MPAS-A) for simulating regional climate. Four AMIP experiments are conducted for 1999-2009. In the first two experiments, MPAS-A is configured using global quasi-uniform grids at 120 km and 30 km grid spacing. In the other two experiments, MPAS-A is configured using variable-resolution (VR) mesh with local refinement at 30 km over North America and South America embedded inside a quasi-uniform domain at 120 km elsewhere. Precipitation and related fields in the four simulations are examined to determine how well the VR simulationsmore » reproduce the features simulated by the globally high-resolution model in the refined domain. In previous analyses of idealized aqua-planet simulations, the characteristics of the global high-resolution simulation in moist processes only developed near the boundary of the refined region. In contrast, the AMIP simulations with VR grids are able to reproduce the high-resolution characteristics across the refined domain, particularly in South America. This indicates the importance of finely resolved lower-boundary forcing such as topography and surface heterogeneity for the regional climate, and demonstrates the ability of the MPAS-A VR to replicate the large-scale moisture transport as simulated in the quasi-uniform high-resolution model. Outside of the refined domain, some upscale effects are detected through large-scale circulation but the overall climatic signals are not significant at regional scales. Our results provide support for the multi-resolution approach as a computationally efficient and physically consistent method for modeling regional climate.« less
Investigating NARCCAP Precipitation Extremes via Bivariate Extreme Value Theory (Invited)
NASA Astrophysics Data System (ADS)
Weller, G. B.; Cooley, D. S.; Sain, S. R.; Bukovsky, M. S.; Mearns, L. O.
2013-12-01
We introduce methodology from statistical extreme value theory to examine the ability of reanalysis-drive regional climate models to simulate past daily precipitation extremes. Going beyond a comparison of summary statistics such as 20-year return values, we study whether the most extreme precipitation events produced by climate model simulations exhibit correspondence to the most extreme events seen in observational records. The extent of this correspondence is formulated via the statistical concept of tail dependence. We examine several case studies of extreme precipitation events simulated by the six models of the North American Regional Climate Change Assessment Program (NARCCAP) driven by NCEP reanalysis. It is found that the NARCCAP models generally reproduce daily winter precipitation extremes along the Pacific coast quite well; in contrast, simulation of past daily summer precipitation extremes in a central US region is poor. Some differences in the strength of extremal correspondence are seen in the central region between models which employ spectral nudging and those which do not. We demonstrate how these techniques may be used to draw a link between extreme precipitation events and large-scale atmospheric drivers, as well as to downscale extreme precipitation simulated by a future run of a regional climate model. Specifically, we examine potential future changes in the nature of extreme precipitation along the Pacific coast produced by the pineapple express (PE) phenomenon. A link between extreme precipitation events and a "PE Index" derived from North Pacific sea-surface pressure fields is found. This link is used to study PE-influenced extreme precipitation produced by a future-scenario climate model run.
NASA Astrophysics Data System (ADS)
Erfanian, A.; Fomenko, L.; Wang, G.
2016-12-01
Multi-model ensemble (MME) average is considered the most reliable for simulating both present-day and future climates. It has been a primary reference for making conclusions in major coordinated studies i.e. IPCC Assessment Reports and CORDEX. The biases of individual models cancel out each other in MME average, enabling the ensemble mean to outperform individual members in simulating the mean climate. This enhancement however comes with tremendous computational cost, which is especially inhibiting for regional climate modeling as model uncertainties can originate from both RCMs and the driving GCMs. Here we propose the Ensemble-based Reconstructed Forcings (ERF) approach to regional climate modeling that achieves a similar level of bias reduction at a fraction of cost compared with the conventional MME approach. The new method constructs a single set of initial and boundary conditions (IBCs) by averaging the IBCs of multiple GCMs, and drives the RCM with this ensemble average of IBCs to conduct a single run. Using a regional climate model (RegCM4.3.4-CLM4.5), we tested the method over West Africa for multiple combination of (up to six) GCMs. Our results indicate that the performance of the ERF method is comparable to that of the MME average in simulating the mean climate. The bias reduction seen in ERF simulations is achieved by using more realistic IBCs in solving the system of equations underlying the RCM physics and dynamics. This endows the new method with a theoretical advantage in addition to reducing computational cost. The ERF output is an unaltered solution of the RCM as opposed to a climate state that might not be physically plausible due to the averaging of multiple solutions with the conventional MME approach. The ERF approach should be considered for use in major international efforts such as CORDEX. Key words: Multi-model ensemble, ensemble analysis, ERF, regional climate modeling
NASA Astrophysics Data System (ADS)
Tariku, Tebikachew Betru; Gan, Thian Yew
2018-06-01
Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional climate of NRB over 1980-2001 which include a combination of wet and dry years of the NRB.
NASA Astrophysics Data System (ADS)
Tariku, Tebikachew Betru; Gan, Thian Yew
2017-08-01
Regional climate models (RCMs) have been used to simulate rainfall at relatively high spatial and temporal resolutions useful for sustainable water resources planning, design and management. In this study, the sensitivity of the RCM, weather research and forecasting (WRF), in modeling the regional climate of the Nile River Basin (NRB) was investigated using 31 combinations of different physical parameterization schemes which include cumulus (Cu), microphysics (MP), planetary boundary layer (PBL), land-surface model (LSM) and radiation (Ra) schemes. Using the European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data as initial and lateral boundary conditions, WRF was configured to model the climate of NRB at a resolution of 36 km with 30 vertical levels. The 1999-2001 simulations using WRF were compared with satellite data combined with ground observation and the NCEP reanalysis data for 2 m surface air temperature (T2), rainfall, short- and longwave downward radiation at the surface (SWRAD, LWRAD). Overall, WRF simulated more accurate T2 and LWRAD (with correlation coefficients >0.8 and low root-mean-square error) than SWRAD and rainfall for the NRB. Further, the simulation of rainfall is more sensitive to PBL, Cu and MP schemes than other schemes of WRF. For example, WRF simulated less biased rainfall with Kain-Fritsch combined with MYJ than with YSU as the PBL scheme. The simulation of T2 is more sensitive to LSM and Ra than to Cu, PBL and MP schemes selected, SWRAD is more sensitive to MP and Ra than to Cu, LSM and PBL schemes, and LWRAD is more sensitive to LSM, Ra and PBL than Cu, and MP schemes. In summary, the following combination of schemes simulated the most representative regional climate of NRB: WSM3 microphysics, KF cumulus, MYJ PBL, RRTM longwave radiation and Dudhia shortwave radiation schemes, and Noah LSM. The above configuration of WRF coupled to the Noah LSM has also been shown to simulate representative regional climate of NRB over 1980-2001 which include a combination of wet and dry years of the NRB.
The Challenge of Simulating the Regional Climate over Florida
NASA Astrophysics Data System (ADS)
Misra, V.; Mishra, A. K.
2015-12-01
In this study we show that the unique geography of the peninsular Florida with close proximity to strong mesoscale surface ocean currents among other factors warrants the use of relatively high resolution climate models to project Florida's hydroclimate. In the absence of such high resolution climate models we highlight the deficiencies of two relatively coarse spatial resolution CMIP5 models with respect to the warm western boundary current of the Gulf Stream. As a consequence it affects the coastal SST and the land-ocean contrast, affecting the rainy summer seasonal precipitation accumulation over peninsular Florida. We also show this through two sensitivity studies conducted with a regional coupled ocean atmosphere model with different bathymetries that dislocate and modulate the strength of the Gulf Stream that locally affects the SST in the two simulations. These studies show that a stronger and more easterly displaced Gulf Stream produces warmer coastal SST's along the Atlantic coast of Florida that enhances the precipitation over peninsular Florida relative to the other regional climate model simulation. However the regional model simulations indicate that variability of wet season rainfall variability in peninsular Florida becomes less dependent on the land-ocean contrast with a stronger Gulf Stream current.
A Dynamical Downscaling Approach with GCM Bias Corrections and Spectral Nudging
NASA Astrophysics Data System (ADS)
Xu, Z.; Yang, Z.
2013-12-01
To reduce the biases in the regional climate downscaling simulations, a dynamical downscaling approach with GCM bias corrections and spectral nudging is developed and assessed over North America. Regional climate simulations are performed with the Weather Research and Forecasting (WRF) model embedded in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). To reduce the GCM biases, the GCM climatological means and the variances of interannual variations are adjusted based on the National Centers for Environmental Prediction-NCAR global reanalysis products (NNRP) before using them to drive WRF which is the same as our previous method. In this study, we further introduce spectral nudging to reduce the RCM-based biases. Two sets of WRF experiments are performed with and without spectral nudging. All WRF experiments are identical except that the initial and lateral boundary conditions are derived from the NNRP, the original GCM output, and the bias corrected GCM output, respectively. The GCM-driven RCM simulations with bias corrections and spectral nudging (IDDng) are compared with those without spectral nudging (IDD) and North American Regional Reanalysis (NARR) data to assess the additional reduction in RCM biases relative to the IDD approach. The results show that the spectral nudging introduces the effect of GCM bias correction into the RCM domain, thereby minimizing the climate drift resulting from the RCM biases. The GCM bias corrections and spectral nudging significantly improve the downscaled mean climate and extreme temperature simulations. Our results suggest that both GCM bias corrections or spectral nudging are necessary to reduce the error of downscaled climate. Only one of them does not guarantee better downscaling simulation. The new dynamical downscaling method can be applied to regional projection of future climate or downscaling of GCM sensitivity simulations. Annual mean RMSEs. The RMSEs are computed over the verification region by monthly mean data over 1981-2010. Experimental design
A Regional Climate Model Evaluation System based on Satellite and other Observations
NASA Astrophysics Data System (ADS)
Lean, P.; Kim, J.; Waliser, D. E.; Hall, A. D.; Mattmann, C. A.; Granger, S. L.; Case, K.; Goodale, C.; Hart, A.; Zimdars, P.; Guan, B.; Molotch, N. P.; Kaki, S.
2010-12-01
Regional climate models are a fundamental tool needed for downscaling global climate simulations and projections, such as those contributing to the Coupled Model Intercomparison Projects (CMIPs) that form the basis of the IPCC Assessment Reports. The regional modeling process provides the means to accommodate higher resolution and a greater complexity of Earth System processes. Evaluation of both the global and regional climate models against observations is essential to identify model weaknesses and to direct future model development efforts focused on reducing the uncertainty associated with climate projections. However, the lack of reliable observational data and the lack of formal tools are among the serious limitations to addressing these objectives. Recent satellite observations are particularly useful as they provide a wealth of information on many different aspects of the climate system, but due to their large volume and the difficulties associated with accessing and using the data, these datasets have been generally underutilized in model evaluation studies. Recognizing this problem, NASA JPL / UCLA is developing a model evaluation system to help make satellite observations, in conjunction with in-situ, assimilated, and reanalysis datasets, more readily accessible to the modeling community. The system includes a central database to store multiple datasets in a common format and codes for calculating predefined statistical metrics to assess model performance. This allows the time taken to compare model simulations with satellite observations to be reduced from weeks to days. Early results from the use this new model evaluation system for evaluating regional climate simulations over California/western US regions will be presented.
NASA Astrophysics Data System (ADS)
di Luca, Alejandro; de Elía, Ramón; Laprise, René
2012-03-01
Regional Climate Models (RCMs) constitute the most often used method to perform affordable high-resolution regional climate simulations. The key issue in the evaluation of nested regional models is to determine whether RCM simulations improve the representation of climatic statistics compared to the driving data, that is, whether RCMs add value. In this study we examine a necessary condition that some climate statistics derived from the precipitation field must satisfy in order that the RCM technique can generate some added value: we focus on whether the climate statistics of interest contain some fine spatial-scale variability that would be absent on a coarser grid. The presence and magnitude of fine-scale precipitation variance required to adequately describe a given climate statistics will then be used to quantify the potential added value (PAV) of RCMs. Our results show that the PAV of RCMs is much higher for short temporal scales (e.g., 3-hourly data) than for long temporal scales (16-day average data) due to the filtering resulting from the time-averaging process. PAV is higher in warm season compared to cold season due to the higher proportion of precipitation falling from small-scale weather systems in the warm season. In regions of complex topography, the orographic forcing induces an extra component of PAV, no matter the season or the temporal scale considered. The PAV is also estimated using high-resolution datasets based on observations allowing the evaluation of the sensitivity of changing resolution in the real climate system. The results show that RCMs tend to reproduce relatively well the PAV compared to observations although showing an overestimation of the PAV in warm season and mountainous regions.
NASA Astrophysics Data System (ADS)
Oglesby, R. J.; Rowe, C. M.; Munoz-Arriola, F.
2013-12-01
Mesoamerica is a region that is potentially at severe risk due to future climate change. This is especially true for the water resources required for agriculture, human consumption, and hydroelectric power generation. Yet global climate models cannot properly resolve surface climate in the region, due to it's complex topography and nearness to oceans. Precipitation in particular is poorly handled. Further, Mesoamerica is hardly the only region worldwide for which these issues exist. To address this deficiency, a series of high-resolution (4-12 km) dynamical downscaling simulations of future climate change between now and 2060 have been made for Mesoamerica and the Caribbean. We used the Weather Research and Forecasting (WRF) regional climate model to downscale results from the NCAR CCSM4 CMIP5 RCP8.5 global simulation. The entire region is covered at 12 km horizontal spatial resolution, with as much as possible (especially in mountainous regions) at 4 km. We compare a control period (2006-2010) with 50 years into the future (2056-2060). Basic results for surface climate will be presented, as well as a developing strategy for explicitly employing these results in projecting the implications for water resources in the region. Connections will also be made to other regions around the globe that could benefit from this type of integrated modeling and analysis.
NASA Astrophysics Data System (ADS)
Ring, Christoph; Pollinger, Felix; Kaspar-Ott, Irena; Hertig, Elke; Jacobeit, Jucundus; Paeth, Heiko
2018-03-01
A major task of climate science are reliable projections of climate change for the future. To enable more solid statements and to decrease the range of uncertainty, global general circulation models and regional climate models are evaluated based on a 2 × 2 contingency table approach to generate model weights. These weights are compared among different methodologies and their impact on probabilistic projections of temperature and precipitation changes is investigated. Simulated seasonal precipitation and temperature for both 50-year trends and climatological means are assessed at two spatial scales: in seven study regions around the globe and in eight sub-regions of the Mediterranean area. Overall, 24 models of phase 3 and 38 models of phase 5 of the Coupled Model Intercomparison Project altogether 159 transient simulations of precipitation and 119 of temperature from four emissions scenarios are evaluated against the ERA-20C reanalysis over the 20th century. The results show high conformity with previous model evaluation studies. The metrics reveal that mean of precipitation and both temperature mean and trend agree well with the reference dataset and indicate improvement for the more recent ensemble mean, especially for temperature. The method is highly transferrable to a variety of further applications in climate science. Overall, there are regional differences of simulation quality, however, these are less pronounced than those between the results for 50-year mean and trend. The trend results are suitable for assigning weighting factors to climate models. Yet, the implications for probabilistic climate projections is strictly dependent on the region and season.
NASA Astrophysics Data System (ADS)
Minder, J. R.; Letcher, T.; Liu, C.
2016-12-01
Numerous observational and modeling studies have suggested that over mountainous terrain certain elevations can experience systematically enhanced rates of near-surface climate warming relative to the surrounding region, a phenomenon referred to as elevation-dependent warming (EDW). In many of these studies high-elevation locations were found to experience the fastest warming rates. A variety of physical mechanisms for EDW have been proposed but there is no consensus as to the dominant cause. We examine EDW in regional climate model (RCM) simulations with very high horizontal resolution (4-km horizontal grid). The simulation domain centers on the Rocky Mountains and intermountain west of the United States. Climate change simulations are conducted using the "pseudo global warming" framework to focus on the regional response to large-scale thermodynamic and radiative climate changes representative of mid-century anthropogenic global climate change. Substantial EDW is found in these simulations. Warming varies with elevation by up to 1°C depending on the season considered. The structure of EDW is only weakly sensitive to variations in horizontal grid spacing ranging from 4 to 36 km. The snow-albedo feedback (SAF) plays a major role in causing the simulated EDW. The elevation band of maximum warming varies seasonally, mostly following the margin of the seasonal snowpack where snow cover and albedo reductions are maximized under climate warming. Additional simulations where the SAF is artificially suppressed demonstrate that EDW variations of up to 0.6°C can be attributed to the SAF. Simulations with a suppressed SAF still exhibit EDW variations up to 0.8°C that must be explained by other mechanisms. This remaining EDW shows a near linear increase in warming with elevation in most months and does not appear to be inherited from the profile of large-scale free-tropospheric warming. Simple theoretical calculations suggest that the non-linear dependence of surface emission on temperature offers one promising mechanism. The role of water vapor and cloud feedbacks are also considered as alternative mechanisms.
NASA Astrophysics Data System (ADS)
Zarzycki, C. M.; Gettelman, A.; Callaghan, P.
2017-12-01
Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.
A Pilot Study Assesing Climate Change Impacts on Cereals
NASA Astrophysics Data System (ADS)
Topcu, Sevilay; Sen, Burak; Turkes, Murat
2010-05-01
The spatial and temporal impacts of climate change on the growth and yield of major cereals (first and second-crop corn) as well as wheat grown in Cukurova Region in the southern Turkey have been assessed, by combining the outputs from a regional climate model with a crop growth simulation model. With its 1.1 million ha of agricultural land, the Cukurova Region is one of the major agricultural production regions in Turkey. Wheat dominates in rain-fed areas while corn crops are grown in more than 50 % of the irrigated land in the region. Thus, the Region is providing half of the country's total cereal production. Since the region has a typical Mediterranean climate with almost no rain and high temperatures during the summer months, agricultural production is vulnerable to changes in climate in terms of decreasing rainfall and increasing temperatures and consequently shortage of water resources. To predict the future climate for the period 2070-2100, the regional climate model RegCM3 conditions was performed using IPCC's SRESS-A2 scenario, and climatic parameter such as daily mean, maximum and minimum temperatures, radiation as well as total annual precipitation were selected for the simulation study. Data for the period 1961 to 1990 were used as historical reference. The WOFOST model was used to simulate cereal growths and yields for two different water availability senarios: 1) potential production and 2) water-limited production conditions. Potential growth represents the conditions where no limiting factor such as water and nutrients is present, however due to the water-limited production situation, water for irrigation is limited as a consequence of water shortage. The detailed results of previous field experiments carried out with three cereal crops in different locations with different regional soil and climate conditions were used for the verification of the WOFOST model. According to the verification results, the model simulated the yield with less than 5% deviation for all three cereal crops. According to projections of the regional climate model RegCM3, the annual average temperature will likely increase by 3.4 to 4.8 °C, while approximately a 25% decrease in rainfall amounts is expected in the Cukurova Region during the period 2071-2100. Similar results for temperatures were estimated for entire country, however predicted changes in rainfall varies in a wide range for the country. The study showed that with climate change, wheat yield could decrease drastically in rainfed areas, however supplemental irrigation could help to sustain the yield on the current level. Yields of first and second-crop corn are expected to decrease by 58% and 43.4%, respectively, compared to the reference value under water shortages.
NASA Astrophysics Data System (ADS)
Kawase, H.; Sasaki, H.; Murata, A.; Nosaka, M.; Ito, R.; Dairaku, K.; Sasai, T.; Yamazaki, T.; Sugimoto, S.; Watanabe, S.; Fujita, M.; Kawazoe, S.; Okada, Y.; Ishii, M.; Mizuta, R.; Takayabu, I.
2017-12-01
We performed large ensemble climate experiments to investigate future changes in extreme weather events using Meteorological Research Institute-Atmospheric General Circulation Model (MRI-AGCM) with about 60 km grid spacing and Non-Hydrostatic Regional Climate Model with 20 km grid spacing (NHRCM20). The global climate simulations are prescribed by the past and future sea surface temperature (SST). Two future climate simulations are conducted so that the global-mean surface air temperature rise 2 K and 4 K from the pre-industrial period. The non-warming simulations are also conducted by MRI-AGCM and NHRCM20. We focus on the future changes in snowfall in Japan. In winter, the Sea of Japan coast experiences heavy snowfall due to East Asian winter monsoon. The cold and dry air from the continent obtains abundant moisture from the warm Sea of Japan, causing enormous amount of snowfall especially in the mountainous area. The NHRCM20 showed winter total snowfall decreases in the most parts of Japan. In contrast, extremely heavy daily snowfall could increase at mountainous areas in the Central Japan and Northern parts of Japan when strong cold air outbreak occurs and the convergence zone appears over the Sea of Japan. The warmer Sea of Japan in the future climate could supply more moisture than that in the present climate, indicating that the cumulus convections could be enhanced around the convergence zone in the Sea of Japan. However, the horizontal resolution of 20 km is not enough to resolve Japan`s complex topography. Therefore, dynamical downscaling with 5 km grid spacing (NHRCM05) is also conducted using NHRCM20. The NHRCM05 does a better job simulating the regional boundary of snowfall and shows more detailed changes in future snowfall characteristics. The future changes in total and extremely heavy snowfall depend on the regions, elevations, and synoptic conditions around Japan.
NASA Astrophysics Data System (ADS)
Spero, Tanya L.; Otte, Martin J.; Bowden, Jared H.; Nolte, Christopher G.
2014-10-01
Spectral nudging—a scale-selective interior constraint technique—is commonly used in regional climate models to maintain consistency with large-scale forcing while permitting mesoscale features to develop in the downscaled simulations. Several studies have demonstrated that spectral nudging improves the representation of regional climate in reanalysis-forced simulations compared with not using nudging in the interior of the domain. However, in the Weather Research and Forecasting (WRF) model, spectral nudging tends to produce degraded precipitation simulations when compared to analysis nudging—an interior constraint technique that is scale indiscriminate but also operates on moisture fields which until now could not be altered directly by spectral nudging. Since analysis nudging is less desirable for regional climate modeling because it dampens fine-scale variability, changes are proposed to the spectral nudging methodology to capitalize on differences between the nudging techniques and aim to improve the representation of clouds, radiation, and precipitation without compromising other fields. These changes include adding spectral nudging toward moisture, limiting nudging to below the tropopause, and increasing the nudging time scale for potential temperature, all of which collectively improve the representation of mean and extreme precipitation, 2 m temperature, clouds, and radiation, as demonstrated using a model-simulated 20 year historical period. Such improvements to WRF may increase the fidelity of regional climate data used to assess the potential impacts of climate change on human health and the environment and aid in climate change mitigation and adaptation studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yang; Leung, Lai-Yung R.; Lu, Jian
2014-03-16
This study compares climate simulations over the United States produced by a regional climate model with the driving global climate simulations as well as a large multi-model ensemble of global climate simulations to investigate robust changes in water availability (precipitation (P) – evapotranspiration (E)). A robust spring dry signal across multiple models is identified in the Southwest that results from a decrease in P and an increase in E in the future. In the boreal winter and summer, the prominent changes in P – E are associated with a north – south dipole pattern, while in spring, the prominent changesmore » in P – E appear as an east – west dipole pattern. The progression of the north – south and east – west dipole patterns through the seasons manifests clearly as a seasonal “clockwise” migration of wet/dry patterns, which is shown to be a robust feature of water availability changes in the US consistent across regional and global climate simulations.« less
2015-03-30
marine monitoring for environment and security, using satellite Earth observation technologies), the WCRP/CliC Project (an international cooperative...BIOME4) to simulate the responses of biome distribution to future climate change in China. The simulation results suggest that regional climate
Impacts of land use/cover classification accuracy on regional climate simulations
NASA Astrophysics Data System (ADS)
Ge, Jianjun; Qi, Jiaguo; Lofgren, Brent M.; Moore, Nathan; Torbick, Nathan; Olson, Jennifer M.
2007-03-01
Land use/cover change has been recognized as a key component in global change. Various land cover data sets, including historically reconstructed, recently observed, and future projected, have been used in numerous climate modeling studies at regional to global scales. However, little attention has been paid to the effect of land cover classification accuracy on climate simulations, though accuracy assessment has become a routine procedure in land cover production community. In this study, we analyzed the behavior of simulated precipitation in the Regional Atmospheric Modeling System (RAMS) over a range of simulated classification accuracies over a 3 month period. This study found that land cover accuracy under 80% had a strong effect on precipitation especially when the land surface had a greater control of the atmosphere. This effect became stronger as the accuracy decreased. As shown in three follow-on experiments, the effect was further influenced by model parameterizations such as convection schemes and interior nudging, which can mitigate the strength of surface boundary forcings. In reality, land cover accuracy rarely obtains the commonly recommended 85% target. Its effect on climate simulations should therefore be considered, especially when historically reconstructed and future projected land covers are employed.
Climate change streamflow scenarios designed for critical period water resources planning studies
NASA Astrophysics Data System (ADS)
Hamlet, A. F.; Snover, A. K.; Lettenmaier, D. P.
2003-04-01
Long-range water planning in the United States is usually conducted by individual water management agencies using a critical period planning exercise based on a particular period of the observed streamflow record and a suite of internally-developed simulation tools representing the water system. In the context of planning for climate change, such an approach is flawed in that it assumes that the future climate will be like the historic record. Although more sophisticated planning methods will probably be required as time goes on, a short term strategy for incorporating climate uncertainty into long-range water planning as soon as possible is to create alternate inputs to existing planning methods that account for climate uncertainty as it affects both supply and demand. We describe a straight-forward technique for constructing streamflow scenarios based on the historic record that include the broad-based effects of changed regional climate simulated by several global climate models (GCMs). The streamflow scenarios are based on hydrologic simulations driven by historic climate data perturbed according to regional climate signals from four GCMs using the simple "delta" method. Further data processing then removes systematic hydrologic model bias using a quantile-based bias correction scheme, and lastly, the effects of random errors in the raw hydrologic simulations are removed. These techniques produce streamflow scenarios that are consistent in time and space with the historic streamflow record while incorporating fundamental changes in temperature and precipitation from the GCM scenarios. Planning model simulations based on these climate change streamflow scenarios can therefore be compared directly to planning model simulations based on the historic record of streamflows to help planners understand the potential impacts of climate uncertainty. The methods are currently being tested and refined in two large-scale planning exercises currently being conducted in the Pacific Northwest (PNW) region of the US, and the resulting streamflow scenarios will be made freely available on the internet for a large number of sites in the PNW to help defray the costs of including climate change information in other studies.
Projected changes in climate extremes over Qatar and the Arabian Gulf region
NASA Astrophysics Data System (ADS)
Kundeti, K.; Kanikicharla, K. K.; Al sulaiti, M.; Khulaifi, M.; Alboinin, N.; Kito, A.
2015-12-01
The climate of the State of Qatar and the adjacent region is dominated by subtropical dry, hot desert climate with low annual rainfall, very high temperatures in summer and a big difference between maximum and minimum temperatures, especially in the inland areas. The coastal areas are influenced by the Arabian Gulf, and have lower maximum, but higher minimum temperatures and a higher moisture percentage in the air. The global warming can have profound impact on the mean climate as well as extreme weather events over the Arabian Peninsula that may affect both natural and human systems significantly. Therefore, it is important to assess the future changes in the seasonal/annual mean of temperature and precipitation and also the extremes in temperature and wind events for a country like Qatar. This study assesses the performance of the Coupled Model Inter comparison Project Phase 5 (CMIP5) simulations in present and develops future climate scenarios. The changes in climate extremes are assessed for three future periods 2016-2035, 2046-2065 and 2080-2099 with respect to 1986-2005 (base line) under two RCPs (Representative Concentrate Pathways) - RCP4.5 and RCP8.5. We analyzed the projected changes in temperature and precipitation extremes using several indices including those that capture heat stress. The observations show an increase in warm extremes over many parts in this region that are generally well captured by the models. The results indicate a significant change in frequency and intensity of both temperature and precipitation extremes over many parts of this region which may have serious implications on human health, water resources and the onshore/offshore infrastructure in this region. Data from a high-resolution (20km) AGCM simulation from Meteorological Research Institute of Japan Meteorological Agency for the present (1979-2003) and a future time slice (2075-2099) corresponding to RCP8.5 have also been utilized to assess the impact of climate change on regional climate extremes as well. The scenarios generated with the high-resolution model simulation were compared with the coarse resolution CMIP5 model scenarios to identify region specific features that might be better resolved in the former simulation.
Winterhalter, Wade E.
2011-09-01
Global climate change is expected to impact biological populations through a variety of mechanisms including increases in the length of their growing season. Climate models are useful tools for predicting how season length might change in the future. However, the accuracy of these models tends to be rather low at regional geographic scales. Here, I determined the ability of several atmosphere and ocean general circulating models (AOGCMs) to accurately simulate historical season lengths for a temperate ectotherm across the continental United States. I also evaluated the effectiveness of regional-scale correction factors to improve the accuracy of these models. I foundmore » that both the accuracy of simulated season lengths and the effectiveness of the correction factors to improve the model's accuracy varied geographically and across models. These results suggest that regional specific correction factors do not always adequately remove potential discrepancies between simulated and historically observed environmental parameters. As such, an explicit evaluation of the correction factors' effectiveness should be included in future studies of global climate change's impact on biological populations.« less
NASA Astrophysics Data System (ADS)
Choudhary, A.; Dimri, A. P.
2018-04-01
Precipitation is one of the important climatic indicators in the global climate system. Probable changes in monsoonal (June, July, August and September; hereafter JJAS) mean precipitation in the Himalayan region for three different greenhouse gas emission scenarios (i.e. representative concentration pathways or RCPs) and two future time slices (near and far) are estimated from a set of regional climate simulations performed under Coordinated Regional Climate Downscaling Experiment-South Asia (CORDEX-SA) project. For each of the CORDEX-SA simulations and their ensemble, projections of near future (2020-2049) and far future (2070-2099) precipitation climatology with respect to corresponding present climate (1970-2005) over Himalayan region are presented. The variability existing over each of the future time slices is compared with the present climate variability to determine the future changes in inter annual fluctuations of monsoonal mean precipitation. The long-term (1970-2099) trend (mm/day/year) of monsoonal mean precipitation spatially distributed as well as averaged over Himalayan region is analyzed to detect any change across twenty-first century as well as to assess model uncertainty in simulating the precipitation changes over this period. The altitudinal distribution of difference in trend of future precipitation from present climate existing over each of the time slices is also studied to understand any elevation dependency of change in precipitation pattern. Except for a part of the Hindu-Kush area in western Himalayan region which shows drier condition, the CORDEX-SA experiments project in general wetter/drier conditions in near future for western/eastern Himalayan region, a scenario which gets further intensified in far future. Although, a gradually increasing precipitation trend is seen throughout the twenty-first century in carbon intensive scenarios, the distribution of trend with elevation presents a very complex picture with lower elevations showing a greater trend in far-future under RCP8.5 when compared with higher elevations.
NASA Astrophysics Data System (ADS)
Cabot, Vincent; Vizcaino, Miren; Mikolajewicz, Uwe
2016-04-01
Long-term ice sheet and climate coupled simulations are of great interest since they assess how the Greenland Ice Sheet (GrIS) will respond to global warming and how GrIS changes will impact on the climate system. We have run the Max-Plank-Institute Earth System Model coupled with an Ice Sheet Model (SICOPOLIS) over a time period of 10500 years under two times CO2 forcing. This is a coupled atmosphere (ECHAM5T31), ocean (MPI-OM), dynamic vegetation (LPJ), and ice sheet (SICOPOLIS, 10 km horizontal resolution) model. Given the multi-millennia simulation, the horizontal spatial resolution of the atmospheric component is relatively coarse (3.75°). A time-saving technique (asynchronous coupling) is used once the global climate reaches quasi-equilibrium. In our doubling-CO2 simulation, the GrIS is expected to break up into two pieces (one ice cap in the far north on one ice sheet in the south and east) after 3000 years. During the first 500 simulation years, the GrIS climate and surface mass balance (SMB) are mainly affected by the greenhouse effect-forced climate change. After the simulated year 500, the global climate reaches quasi-equilibrium. Henceforth Greenland climate change is mainly due to ice sheet decay. GrIS albedo reduction enhances melt and acts as a powerful feedback for deglaciation. Due to increased cloudiness in the Arctic region as a result of global climate change, summer incoming shortwave radiation is substantially reduced over Greenland, reducing deglaciation rates. At the end of the simulation, Greenland becomes green with forest growing over the newly deglaciated regions. References: Helsen, M. M., van de Berg, W. J., van de Wal, R. S. W., van den Broeke, M. R., and Oerlemans, J. (2013), Coupled regional climate-ice-sheet simulation shows limited Greenland ice loss during the Eemian, Climate of the Past, 9, 1773-1788, doi: 10.5194/cp-9-1773-2013 Helsen, M. M., van de Wal, R. S. W., van den Broeke, M. R., van de Berg, W. J., and Oerlemans, J. (2015), Coupling of climate models and ice sheet models by the surface mass balance gradients: application to the Greenland Ice Sheet, The Cryosphere, 6, 255-272, doi: 10.5194/tc-6-255-2012 Robinson, A., Calov, R., and Ganopolski, A. (2011), Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial, Climate of the Past, 7, 381-396, doi: 10.5194/cp-7-381-2011 Vizcaino, M., Mikolajewicz, U., Ziemen, F., Rodehacke, C. B., Greve, R., and van den Broeke, M. R. (2015), Coupled simulations of Greenland Ice Sheet and climate change up to A.D. 2300, Geophysical Research Letters, 42, doi: 10.1002/2014GL061142
Regional Climate Change across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations
NASA Astrophysics Data System (ADS)
Otte, T. L.; Nolte, C. G.; Otte, M. J.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.
2011-12-01
Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. Preliminary results from downscaling NASA/GISS ModelE simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model will be used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0.
Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe
2013-01-01
The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems’ response to global climate change. China’s ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund–Potsdam–Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China’s terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change. PMID:23593325
Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe
2013-01-01
The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems' response to global climate change. China's ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund-Potsdam-Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China's terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change.
Does temperature nudging overwhelm aerosol radiative effects in regional integrated climate models?
For over two decades, data assimilation (popularly known as nudging) methods have been used for improving regional weather and climate simulations by reducing model biases in meteorological parameters and processes. Similar practice is also popular in many regional integrated met...
Steffens, Karin; Jarvis, Nicholas; Lewan, Elisabet; Lindström, Bodil; Kreuger, Jenny; Kjellström, Erik; Moeys, Julien
2015-05-01
Climate change is not only likely to improve conditions for crop production in Sweden, but also to increase weed pressure and the need for herbicides. This study aimed at assessing and contrasting the direct and indirect effects of climate change on herbicide leaching to groundwater in a major crop production region in south-west Sweden with the help of the regional pesticide fate and transport model MACRO-SE. We simulated 37 out of the 41 herbicides that are currently approved for use in Sweden on eight major crop types for the 24 most common soil types in the region. The results were aggregated accounting for the fractional coverage of the crop and the area sprayed with a particular herbicide. For simulations of the future, we used projections of five different climate models as model driving data and assessed three different future scenarios: (A) only changes in climate, (B) changes in climate and land-use (altered crop distribution), and (C) changes in climate, land-use, and an increase in herbicide use. The model successfully distinguished between leachable and non-leachable compounds (88% correctly classified) in a qualitative comparison against regional-scale monitoring data. Leaching was dominated by only a few herbicides and crops under current climate and agronomic conditions. The model simulations suggest that the direct effects of an increase in temperature, which enhances degradation, and precipitation which promotes leaching, cancel each other at a regional scale, resulting in a slight decrease in leachate concentrations in a future climate. However, the area at risk of groundwater contamination doubled when indirect effects of changes in land-use and herbicide use, were considered. We therefore concluded that it is important to consider the indirect effects of climate change alongside the direct effects and that effective mitigation strategies and strict regulation are required to secure future (drinking) water resources. Copyright © 2014 Elsevier B.V. All rights reserved.
Krawchuk, Meg A; Cumming, Steve G
2011-01-01
Predictions of future fire activity over Canada's boreal forests have primarily been generated from climate data following assumptions that direct effects of weather will stand alone in contributing to changes in burning. However, this assumption needs explicit testing. First, areas recently burned can be less likely to burn again in the near term, and this endogenous regulation suggests the potential for self-limiting, negative biotic feedback to regional climate-driven increases in fire. Second, forest harvest is ongoing, and resulting changes in vegetation structure have been shown to affect fire activity. Consequently, we tested the assumption that fire activity will be driven by changes in fire weather without regulation by biotic feedback or regional harvest-driven changes in vegetation structure in the mixedwood boreal forest of Alberta, Canada, using a simulation experiment that includes the interaction of fire, stand dynamics, climate change, and clear cut harvest management. We found that climate change projected with fire weather indices calculated from the Canadian Regional Climate Model increased fire activity, as expected, and our simulations established evidence that the magnitude of regional increase in fire was sufficient to generate negative feedback to subsequent fire activity. We illustrate a 39% (1.39-fold) increase in fire initiation and 47% (1.47-fold) increase in area burned when climate and stand dynamics were included in simulations, yet 48% (1.48-fold) and 61% (1.61-fold) increases, respectively, when climate was considered alone. Thus, although biotic feedbacks reduced burned area estimates in important ways, they were secondary to the direct effect of climate on fire. We then show that ongoing harvest management in this region changed landscape composition in a way that led to reduced fire activity, even in the context of climate change. Although forest harvesting resulted in decreased regional fire activity when compared to unharvested conditions, forest composition and age structure was shifted substantially, illustrating a trade-off between management goals to minimize fire and conservation goals to emulate natural disturbance.
NASA Astrophysics Data System (ADS)
Lee, H.
2016-12-01
Precipitation is one of the most important climate variables that are taken into account in studying regional climate. Nevertheless, how precipitation will respond to a changing climate and even its mean state in the current climate are not well represented in regional climate models (RCMs). Hence, comprehensive and mathematically rigorous methodologies to evaluate precipitation and related variables in multiple RCMs are required. The main objective of the current study is to evaluate the joint variability of climate variables related to model performance in simulating precipitation and condense multiple evaluation metrics into a single summary score. We use multi-objective optimization, a mathematical process that provides a set of optimal tradeoff solutions based on a range of evaluation metrics, to characterize the joint representation of precipitation, cloudiness and insolation in RCMs participating in the North American Regional Climate Change Assessment Program (NARCCAP) and Coordinated Regional Climate Downscaling Experiment-North America (CORDEX-NA). We also leverage ground observations, NASA satellite data and the Regional Climate Model Evaluation System (RCMES). Overall, the quantitative comparison of joint probability density functions between the three variables indicates that performance of each model differs markedly between sub-regions and also shows strong seasonal dependence. Because of the large variability across the models, it is important to evaluate models systematically and make future projections using only models showing relatively good performance. Our results indicate that the optimized multi-model ensemble always shows better performance than the arithmetic ensemble mean and may guide reliable future projections.
NASA Astrophysics Data System (ADS)
Zeroual, Ayoub; Assani, Ali A.; Meddi, Mohamed; Alkama, Ramdane
2018-02-01
Significant changes in regional climates have been observed at the end of the twentieth century, taking place at unprecedented rates. These changes, in turn, lead to changes in global climate zones with pace and amplitude varying from one region to another. Algeria, a country characterized by climate conditions ranging from relatively wet to very dry (desert-like), has also experienced changes in its climate regions, notably in the country's wet region, which represents about 7% of its total surface area, but is home to 75% of its population. In this study, the pace of climate zone changes as it is defined by Koppen-Geiger was analyzed for the period from 1951 to 2098 using climate data from observation and regional climate simulations over Algeria. The ability of the CORDEX-Africa regional climate models simulations to reproduce the current observed climate zones and their shifts was first assessed. Future changes over the whole of the twenty-first century were then estimated based on two Representative Concentration Pathway (RCP4.5 and RCP8.5) scenarios. Analysis of the shift rate of climate zones from 1951 to 2005 found a gradual but significant expansion of the surface area of the desert zone at an approximate rate of 650 ± 160 km2/year along with the abrupt shrinking, by approximately 30%, at a rate of 1086 ± 270 km2/year, of the warm temperate climate zone surface area. According to projections for the RCP8.5 scenario, the rate of expansion of desert climate will increase in the future (twenty-first century), particularly during the period from 2045 to 2098.
Influence of Lake Malawi on regional climate from a double-nested regional climate model experiment
NASA Astrophysics Data System (ADS)
Diallo, Ismaïla; Giorgi, Filippo; Stordal, Frode
2017-07-01
We evaluate the performance of the regional climate model (RCM) RegCM4 coupled to a one dimensional lake model for Lake Malawi (also known as Lake Nyasa in Tanzania and Lago Niassa in Mozambique) in simulating the main characteristics of rainfall and near surface air temperature patterns over the region. We further investigate the impact of the lake on the simulated regional climate. Two RCM simulations, one with and one without Lake Malawi, are performed for the period 1992-2008 at a grid spacing of 10 km by nesting the model within a corresponding 25 km resolution run ("mother domain") encompassing all Southern Africa. The performance of the model in simulating the mean seasonal patterns of near surface air temperature and precipitation is good compared with previous applications of this model. The temperature biases are generally less than 2.5 °C, while the seasonal cycle of precipitation over the region matches observations well. Moreover, the one-dimensional lake model reproduces fairly well the geographical pattern of observed (from satellite measurements) lake surface temperature as well as its mean month-to-month evolution. The Malawi Lake-effects on the moisture and atmospheric circulation of the surrounding region result in an increase of water vapor mixing ratio due to increased evaporation in the presence of the lake, which combines with enhanced rising motions and low-level moisture convergence to yield a significant precipitation increase over the lake and neighboring areas during the whole austral summer rainy season.
The Nested Regional Climate Model: An Approach Toward Prediction Across Scales
NASA Astrophysics Data System (ADS)
Hurrell, J. W.; Holland, G. J.; Large, W. G.
2008-12-01
The reality of global climate change has become accepted and society is rapidly moving to questions of consequences on space and time scales that are relevant to proper planning and development of adaptation strategies. There are a number of urgent challenges for the scientific community related to improved and more detailed predictions of regional climate change on decadal time scales. Two important examples are potential impacts of climate change on North Atlantic hurricane activity and on water resources over the intermountain West. The latter is dominated by complex topography, so that accurate simulations of regional climate variability and change require much finer spatial resolution than is provided with state-of-the-art climate models. Climate models also do not explicitly resolve tropical cyclones, even though these storms have dramatic societal impacts and play an important role in regulating climate. Moreover, the debate over the impact of global warming on tropical cyclones has at times been acrimonious, and the lack of hard evidence has left open opportunities for misinterpretation and justification of pre-existing beliefs. These and similar topics are being assessed at NCAR, in partnership with university colleagues, through the development of a Nested Regional Climate Model (NRCM). This is an ambitious effort to combine a state of the science mesoscale weather model (WRF), a high resolution regional ocean modeling system (ROMS), and a climate model (CCSM) to better simulate the complex, multi-scale interactions intrinsic to atmospheric and oceanic fluid motions that are limiting our ability to predict likely future changes in regional weather statistics and climate. The NRCM effort is attracting a large base of earth system scientists together with societal groups as diverse as the Western Governor's Association and the offshore oil industry. All of these groups require climate data on scales of a few kilometers (or less), so that the NRCM program is producing unique data sets of climate change scenarios of immense interest. In addition, all simulations are archived in a form that will be readily accessible to other researchers, thus enabling a wider group to investigate these important issues.
South American climate during the Last Glacial Maximum: Delayed onset of the South American monsoon
NASA Astrophysics Data System (ADS)
Cook, K. H.; Vizy, E. K.
2006-01-01
The climate of the Last Glacial Maximum (LGM) over South America is simulated using a regional climate model with 60-km resolution, providing a simulation that is superior to those available from global models that do not resolve the topography and regional-scale features of the South American climate realistically. LGM conditions on SST, insolation, vegetation, and reduced atmospheric CO2 on the South American climate are imposed together and individually. Remote influences are not included. Annual rainfall is 25-35% lower in the LGM than in the present day simulation throughout the Amazon basin. A primary cause is a 2-3 month delay in the onset of the rainy season, so that the dry season is about twice as long as in the present day. The delayed onset occurs because the low-level inflow from the tropical Atlantic onto the South American continent is drier than in the present day simulation due to reduced evaporation from cooler surface waters, and this slows the springtime buildup of moist static energy that is needed to initiate convection. Once the monsoon begins in the Southern Hemisphere, LGM rainfall rates are similar to those in the present day. In the Northern Hemisphere, however, rainfall is lower throughout the (shortened) rainy season. Regional-scale structure includes slight precipitation increases in the Nordeste region of Brazil and along the eastern foothills of the Andes, and a region in the center of the Amazon basin that does not experience annual drying. In the Andes Mountains, the signal is complicated, with regions of significant rainfall increases adjacent to regions with reduced precipitation.
NASA Astrophysics Data System (ADS)
Breil, Marcus; Panitz, Hans-Jürgen
2014-05-01
Climate predictions on decadal timescales constitute a new field of research, closing the gap between short-term and seasonal weather predictions and long-term climate projections. Therefore, the Federal Ministry of Education and Research in Germany (BMBF) has recently funded the research program MiKlip (Mittelfristige Klimaprognosen), which aims to create a model system that can provide reliable decadal climate forecasts. Recent studies have suggested that one region with high potential decadal predictability is West Africa. Therefore, the project DEPARTURE (DEcadal Prediction of African Rainfall and ATlantic HURricanE Activity) was established within the MiKlip program to assess the feasibility and the potential added value of regional decadal climate predictions for West Africa. To quantify the potential decadal climate predictability, a multi-model approach with the three different regional climate models REMO, WRF and COSMO-CLM (CCLM) will be realized. The presented research will contribute to DEPARTURE by performing hindcast ensemble simulations with CCLM, driven by global decadal MPI-ESM-LR simulations. Thereby, one focus is on the dynamic soil-vegetation-climate interaction on decadal timescales. Recent studies indicate that there are significant feedbacks between the land-surface and the atmosphere, which might influence the decadal climate variability substantially. To investigate this connection, two different SVATs (Community Land Model (CLM), and VEG3D) will be coupled with the CCLM, replacing TERRA_ML, the standard SVAT implemented in CCLM. Thus, sensitive model parameters shall be identified, whereby the understanding of important processes might be improved. As a first step, TERRA_ML is substituted by VEG3D, a SVAT developed at the IMK-TRO, Karlsruhe, Germany. Compared to TERRA_ML, VEG3D includes an explicit vegetation layer by using a big leaf approach, inducing higher correlations with observations as it has been shown in previous studies. The coupling of VEG3D with CCLM is performed by using the OASIS3-MCT coupling software, developed by CERFACS, Toulouse, France. Results of CCLM simulations using both SVATs are analysed and compared for the DEPARTURE model domain. Thereby ERA-Interim driven CCLM simulations with VEG3D showed better agreement with observational data than simulations with TERRA_ML, especially for dense vegetaded areas. This will be demonstrated exemplarily. Additionally, results for MPI-ESM-LR driven decadal hindcast simulations (1966 - 1975) are analysed and presented.
Kim, John B.; Monier, Erwan; Sohngen, Brent; ...
2017-03-28
We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomesmore » of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO 2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Finally, our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO 2 fertilization effects may considerably reduce the range of projections.« less
NASA Astrophysics Data System (ADS)
Kim, John B.; Monier, Erwan; Sohngen, Brent; Pitts, G. Stephen; Drapek, Ray; McFarland, James; Ohrel, Sara; Cole, Jefferson
2017-04-01
We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomes of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO2 fertilization effects may considerably reduce the range of projections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, John B.; Monier, Erwan; Sohngen, Brent
We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomesmore » of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO 2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Finally, our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO 2 fertilization effects may considerably reduce the range of projections.« less
WRF-Cordex simulations for Europe: mean and extreme precipitation for present and future climates
NASA Astrophysics Data System (ADS)
Cardoso, Rita M.; Soares, Pedro M. M.; Miranda, Pedro M. A.
2013-04-01
The Weather Research and Forecast (WRF-ARW) model, version 3.3.1, was used to perform the European domain Cordex simulations, at 50km resolution. A first simulation, forced by ERA-Interim (1989-2009), was carried out to evaluate the models performance to represent the mean and extreme precipitation in present European climate. This evaluation is based in the comparison of WRF results against the ECAD regular gridded dataset of daily precipitation. Results are comparable to recent studies with other models for the European region, at this resolution. For the same domain a control and a future scenario (RCP8.5) simulation was performed to assess the climate change impact on the mean and extreme precipitation. These regional simulations were forced by EC-EARTH model results, and, encompass the periods from 1960-2006 and 2006-2100, respectively.
Evaluation of CMIP5 and CORDEX Derived Wind Wave Climate in Arabian Sea and Bay of Bengal
NASA Astrophysics Data System (ADS)
Chowdhury, P.; Behera, M. R.
2017-12-01
Climate change impact on surface ocean wave parameters need robust assessment for effective coastal zone management. Climate model skill to simulate dynamical General Circulation Models (GCMs) and Regional Circulation Models (RCMs) forced wind-wave climate over northern Indian Ocean is assessed in the present work. The historical dynamical wave climate is simulated using surface winds derived from four GCMs and four RCMs, participating in the Coupled Model Inter-comparison Project (CMIP5) and Coordinated Regional Climate Downscaling Experiment (CORDEX-South Asia), respectively, and their ensemble are used to force a spectral wave model. The surface winds derived from GCMs and RCMs are corrected for bias, using Quantile Mapping method, before being forced to the spectral wave model. The climatological properties of wave parameters (significant wave height (Hs), mean wave period (Tp) and direction (θm)) are evaluated relative to ERA-Interim historical wave reanalysis datasets over Arabian Sea (AS) and Bay of Bengal (BoB) regions of the northern Indian Ocean for a period of 27 years. We identify that the nearshore wave climate of AS is better predicted than the BoB by both GCMs and RCMs. Ensemble GCM simulated Hs in AS has a better correlation with ERA-Interim ( 90%) than in BoB ( 80%), whereas ensemble RCM simulated Hs has a low correlation in both regions ( 50% in AS and 45% in BoB). In AS, ensemble GCM simulated Tp has better predictability ( 80%) compared to ensemble RCM ( 65%). However, neither GCM nor RCM could satisfactorily predict Tp in nearshore BoB. Wave direction is poorly simulated by GCMs and RCMs in both AS and BoB, with correlation around 50% with GCMs and 60% with RCMs wind derived simulations. However, upon comparing individual RCMs with their parent GCMs, it is found that few of the RCMs predict wave properties better than their parent GCMs. It may be concluded that there is no consistent added value by RCMs over GCMs forced wind-wave climate over northern Indian Ocean. We also identify that there is little to no significance of choosing a finer resolution GCM ( 1.4°) over a coarse GCM ( 2.8°) in improving skill of GCM forced dynamical wave simulations.
NASA Astrophysics Data System (ADS)
Belušić, Andreina; Prtenjak, Maja Telišman; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph
2018-06-01
Over the past few decades the horizontal resolution of regional climate models (RCMs) has steadily increased, leading to a better representation of small-scale topographic features and more details in simulating dynamical aspects, especially in coastal regions and over complex terrain. Due to its complex terrain, the broader Adriatic region represents a major challenge to state-of-the-art RCMs in simulating local wind systems realistically. The objective of this study is to identify the added value in near-surface wind due to the refined grid spacing of RCMs. For this purpose, we use a multi-model ensemble composed of CORDEX regional climate simulations at 0.11° and 0.44° grid spacing, forced by the ERA-Interim reanalysis, a COSMO convection-parameterizing simulation at 0.11° and a COSMO convection-resolving simulation at 0.02° grid spacing. Surface station observations from this region and satellite QuikSCAT data over the Adriatic Sea have been compared against daily output obtained from the available simulations. Both day-to-day wind and its frequency distribution are examined. The results indicate that the 0.44° RCMs rarely outperform ERA-Interim reanalysis, while the performance of the high-resolution simulations surpasses that of ERA-Interim. We also disclose that refining the grid spacing to a few km is needed to properly capture the small-scale wind systems. Finally, we show that the simulations frequently yield the accurate angle of local wind regimes, such as for the Bora flow, but overestimate the associated wind magnitude. Finally, spectral analysis shows good agreement between measurements and simulations, indicating the correct temporal variability of the wind speed.
NASA Astrophysics Data System (ADS)
Betts, R. A.; Cox, P. M.; Collins, M.; Harris, P. P.; Huntingford, C.; Jones, C. D.
A suite of simulations with the HadCM3LC coupled climate-carbon cycle model is used to examine the various forcings and feedbacks involved in the simulated precipitation decrease and forest dieback. Rising atmospheric CO2 is found to contribute 20% to the precipitation reduction through the physiological forcing of stomatal closure, with 80% of the reduction being seen when stomatal closure was excluded and only radiative forcing by CO2 was included. The forest dieback exerts two positive feedbacks on the precipitation reduction; a biogeophysical feedback through reduced forest cover suppressing local evaporative water recycling, and a biogeochemical feedback through the release of CO2 contributing to an accelerated global warming. The precipitation reduction is enhanced by 20% by the biogeophysical feedback, and 5% by the carbon cycle feedback from the forest dieback. This analysis helps to explain why the Amazonian precipitation reduction simulated by HadCM3LC is more extreme than that simulated in other GCMs; in the fully-coupled, climate-carbon cycle simulation, approximately half of the precipitation reduction in Amazonia is attributable to a combination of physiological forcing and biogeophysical and global carbon cycle feedbacks, which are generally not included in other GCM simulations of future climate change. The analysis also demonstrates the potential contribution of regional-scale climate and ecosystem change to uncertainties in global CO2 and climate change projections. Moreover, the importance of feedbacks suggests that a human-induced increase in forest vulnerability to climate change may have implications for regional and global scale climate sensitivity.
LPJ-GUESS Simulated North America Vegetation for 21-0 ka Using the TraCE-21ka Climate Simulation
NASA Astrophysics Data System (ADS)
Shafer, S. L.; Bartlein, P. J.
2016-12-01
Transient climate simulations that span multiple millennia (e.g., TraCE-21ka) have become more common as computing power has increased, allowing climate models to complete long simulations in relatively short periods of time (i.e., months). These climate simulations provide information on the potential rate, variability, and spatial expression of past climate changes. They also can be used as input data for other environmental models to simulate transient changes for different components of paleoenvironmental systems, such as vegetation. Long, transient paleovegetation simulations can provide information on a range of ecological processes, describe the spatial and temporal patterns of changes in species distributions, and identify the potential locations of past species refugia. Paleovegetation simulations also can be used to fill in spatial and temporal gaps in observed paleovegetation data (e.g., pollen records from lake sediments) and to test hypotheses of past vegetation change. We used the TraCE-21ka transient climate simulation for 21-0 ka from CCSM3, a coupled atmosphere-ocean general circulation model. The TraCE-21ka simulated temperature, precipitation, and cloud data were regridded onto a 10-minute grid of North America. These regridded climate data, along with soil data and atmospheric carbon dioxide concentrations, were used as input to LPJ-GUESS, a general ecosystem model, to simulate North America vegetation from 21-0 ka. LPJ-GUESS simulates many of the processes controlling the distribution of vegetation (e.g., competition), although some important processes (e.g., dispersal) are not simulated. We evaluate the LPJ-GUESS-simulated vegetation (in the form of plant functional types and biomes) for key time periods and compare the simulated vegetation with observed paleovegetation data, such as data archived in the Neotoma Paleoecology Database. In general, vegetation simulated by LPJ-GUESS reproduces the major North America vegetation patterns (e.g., forest, grassland) with regional areas of disagreement between simulated and observed vegetation. We describe the regions and time periods with the greatest data-model agreement and disagreement, and discuss some of the strengths and weaknesses of both the simulated climate and simulated vegetation data.
NASA Astrophysics Data System (ADS)
Silva, M. E. S.; Da Rocha, R.; Pereira, G.
2015-12-01
In this study we investigated the climatic impact over South America region due to the increasing of deforestation at the eastern and southern regions of Amazon through the use of the climate model RegCM3 with 50 km of spatial resolution. Many studies, among global and regional models have been used to simulate climatic impact due to deforestation. Most of them used relatively coarse resolution, small domains over South America, besides do not consider deforestation as usually observed. In order to verify the RegCM3 ability to simulate climate impacts due to Amazon deforestation including relatively higher horizontal resolutions, 50 km, a larger domain, the whole South America, deforested areas more similar to the route-shaped commonly seen, and a landuse updating, the model was run for the 2001-2006 period. As the major part of the previous studies focusing Amazon deforestation, RegCM3-50km simulated over degraded areas air temperature increase, ranging from 1.0 to 2.5oC, and precipitation decreasing, ~10%. These aspects are mainly resulting from soil water depletion and roughness vegetation decreasing, both inhibiting evapotranspiration processes. Apart from these results, the model with 50 km simulated precipitation increasing, ~10%, over the eastern South America and adjacent South Atlantic ocean, after Amazon deforestation. Seeking for physical related reasons able to provide the precipitation increasing during rainy seasons, over eastern South America, we found out that upper levels high pressure system (the Bolivian High) intensification, coupled to the southeastward trough, what follows the low troposphere warming, seems to contribute to the precipitation increasing. The climatic impact simulated for winter seasons presents strongest values for areas with altered landuse, over the north region of South America.
NASA Technical Reports Server (NTRS)
Trail, M.; Tsimpidi, A. P.; Liu, P.; Tsigaridis, K.; Hu, Y.; Nenes, A.; Russell, A. G.
2013-01-01
Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with WRF to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the continental United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12km by 12km resolution, as well as the effect of evolving climate conditions on the air quality at major U.S. cities. The high resolution simulations produce somewhat different results than the coarse resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the U.S. during fall (Western U.S., Texas, Northeastern, and Southeastern U.S), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (Northeast). We also find that daily peak temperatures tend to increase in most major cities in the U.S. which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.
NASA Astrophysics Data System (ADS)
Letcher, T.; Minder, J. R.
2015-12-01
High resolution regional climate models are used to characterize and quantify the snow albedo feedback (SAF) over the complex terrain of the Colorado Headwaters region. Three pairs of 7-year control and pseudo global warming simulations (with horizontal grid spacings of 4, 12, and 36 km) are used to study how the SAF modifies the regional climate response to a large-scale thermodynamic perturbation. The SAF substantially enhances warming within the Headwaters domain, locally as much as 5 °C in regions of snow loss. The SAF also increases the inter-annual variability of the springtime warming within Headwaters domain under the perturbed climate. Linear feedback analysis is used quantify the strength of the SAF. The SAF attains a maximum value of 4 W m-2 K-1 during April when snow loss coincides with strong incoming solar radiation. On sub-seasonal timescales, simulations at 4 km and 12 km horizontal grid-spacing show good agreement in the strength and timing of the SAF, whereas a 36km simulation shows greater discrepancies that are tired to differences in snow accumulation and ablation caused by smoother terrain. An analysis of the regional energy budget shows that transport by atmospheric motion acts as a negative feedback to regional warming, damping the effects of the SAF. On the mesoscale, this transport causes non-local warming in locations with no snow. The methods presented here can be used generally to quantify the role of the SAF in other regional climate modeling experiments.
Determing Credibility of Regional Simulations of Future Climate
NASA Astrophysics Data System (ADS)
Mearns, L. O.
2009-12-01
Climate models have been evaluated or validated ever since they were first developed. Establishing that a climate model can reproduce (some) aspects of the current climate of the earth on various spatial and temporal scales has long been a standard procedure for providing confidence in the model's ability to simulate future climate. However, direct links between the successes and failures of models in reproducing the current climate with regard to what future climates the models simulate has been largely lacking. This is to say that the model evaluation process has been largely divorced from the projections of future climate that the models produce. This is evidenced in the separation in the Intergovernmental Panel on Climate Change (IPCC) WG1 report of the chapter on evaluation of models from the chapter on future climate projections. There has also been the assumption of 'one model, one vote, that is, that each model projection is given equal weight in any multi-model ensemble presentation of the projections of future climate. There have been various attempts at determing measures of credibility that would avoid the 'ultrademocratic' assumption of the IPCC. Simple distinctions between models were made by research such as in Giorgi and Mearns (2002), Tebaldi et al., (2005), and Greene et al., (2006). But the metrics used were rather simplistic. More ambitous means of discriminating among the quality of model simulations have been made through the production of complex multivariate metrics, but insufficent work has been produced to verify that the metrics successfully discriminate in meaningful ways. Indeed it has been suggested that we really don't know what a model must successfully model to establish confidence in its regional-scale projections (Gleckler et al., 2008). Perhaps a more process oriented regional expert judgment approach is needed to understand which errors in climate models really matter for the model's response to future forcing. Such an approach is being attempted in the North American Climate Change Assessment Program (NARCCAP) whereby multiple global models are used to drive multiple regional models for the current period and the mid-21st century over the continent. Progress in this endeavor will be reported.
Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations
Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T.; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P.; Rötter, Reimund P.; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank
2016-01-01
We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations. PMID:27055028
Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations.
Hoffmann, Holger; Zhao, Gang; Asseng, Senthold; Bindi, Marco; Biernath, Christian; Constantin, Julie; Coucheney, Elsa; Dechow, Rene; Doro, Luca; Eckersten, Henrik; Gaiser, Thomas; Grosz, Balázs; Heinlein, Florian; Kassie, Belay T; Kersebaum, Kurt-Christian; Klein, Christian; Kuhnert, Matthias; Lewan, Elisabet; Moriondo, Marco; Nendel, Claas; Priesack, Eckart; Raynal, Helene; Roggero, Pier P; Rötter, Reimund P; Siebert, Stefan; Specka, Xenia; Tao, Fulu; Teixeira, Edmar; Trombi, Giacomo; Wallach, Daniel; Weihermüller, Lutz; Yeluripati, Jagadeesh; Ewert, Frank
2016-01-01
We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.
CORDEX Coordinated Output for Regional Evaluation
NASA Astrophysics Data System (ADS)
Gutowski, William; Giorgi, Filippo; Lake, Irene
2017-04-01
The Science Advisory Team for the Coordinated Regional Downscaling Experiment (CORDEX) has developed a baseline framework of specified regions, resolutions and simulation periods intended to provide a foundation for ongoing regional CORDEX activities: the CORDEX Coordinated Output for Regional Evaluation, or CORDEX-CORE. CORDEX-CORE was conceived in part to be responsive to IPCC needs for coordinated simulations that could provide regional climate downscaling (RCD) that yields fine-scale climate information beyond that resolved by GCMs. For each CORDEX region, a matrix of GCM-RCD experiments is designed based on the need to cover as much as possible different dimensions of the uncertainty space (e.g., different emissions and land-use scenarios, GCMs, RCD models and techniques). An appropriate set of driving GCMs can allow a program of simulations that efficiently addresses key scientific issues within CORDEX, while facilitating comparison and transfer of results and lessons learned across different regions. The CORDEX-CORE program seeks to provide, as much as possible, homogeneity across domains, so it is envisioned that a standard set of regional climate models (RCMs) and empirical statistical downscaling (ESD) methods will downscale a standard set of GCMs over all or at least most CORDEX domains for a minimum set of scenarios (high and low end). The focus is on historical climate simulations for the 20th century and projections for 21st century, implying that data would be needed minimally for the period 1950-2100 (but ideally 1900-2100). This foundational ensemble can be regionally enriched with further contributions (additional GCM-RCD pairs) by individual groups over their selected domains of interest. The RCM model resolution for these core experiments will be in the range of 10-20 km, a resolution that has been shown to provide substantial added value for a variety of climate variables and that represents a significant forward step compared in the CORDEX program. This presentation presents the vision and structure of CORDEX-CORE while also soliciting discussion on plans for implementing the program.
NASA Astrophysics Data System (ADS)
Ozturk, Tugba; Turp, M. Tufan; Türkeş, Murat; Kurnaz, M. Levent
2018-07-01
In this study, we investigate changes in seasonal temperature and precipitation climatology of CORDEX Middle East and North Africa (MENA) region for three periods of 2010-2040, 2040-2070 and 2070-2100 with respect to the control period of 1970-2000 by using regional climate model simulations. Projections of future climate conditions are modeled by forcing Regional Climate Model, RegCM4.4 of the International Centre for Theoretical Physics (ICTP) with two different CMIP5 global climate models. HadGEM2-ES global climate model of the Met Office Hadley Centre and MPI-ESM-MR global climate model of the Max Planck Institute for Meteorology were used to generate 50 km resolution data for the Coordinated Regional Climate Downscaling Experiment (CORDEX) Region 13. We test the seasonal time-scale performance of RegCM4.4 in simulating the observed climatology over domain of the MENA by using the output of two different global climate models. The projection results show relatively high increase of average temperatures from 3 °C up to 9 °C over the domain for far future (2070-2100). A strong decrease in precipitation is projected in almost all parts of the domain according to the output of the regional model forced by scenario outputs of two global models. Therefore, warmer and drier than present climate conditions are projected to occur more intensely over the CORDEX-MENA domain.
Improving sea level simulation in Mediterranean regional climate models
NASA Astrophysics Data System (ADS)
Adloff, Fanny; Jordà, Gabriel; Somot, Samuel; Sevault, Florence; Arsouze, Thomas; Meyssignac, Benoit; Li, Laurent; Planton, Serge
2017-08-01
For now, the question about future sea level change in the Mediterranean remains a challenge. Previous climate modelling attempts to estimate future sea level change in the Mediterranean did not meet a consensus. The low resolution of CMIP-type models prevents an accurate representation of important small scales processes acting over the Mediterranean region. For this reason among others, the use of high resolution regional ocean modelling has been recommended in literature to address the question of ongoing and future Mediterranean sea level change in response to climate change or greenhouse gases emissions. Also, it has been shown that east Atlantic sea level variability is the dominant driver of the Mediterranean variability at interannual and interdecadal scales. However, up to now, long-term regional simulations of the Mediterranean Sea do not integrate the full sea level information from the Atlantic, which is a substantial shortcoming when analysing Mediterranean sea level response. In the present study we analyse different approaches followed by state-of-the-art regional climate models to simulate Mediterranean sea level variability. Additionally we present a new simulation which incorporates improved information of Atlantic sea level forcing at the lateral boundary. We evaluate the skills of the different simulations in the frame of long-term hindcast simulations spanning from 1980 to 2012 analysing sea level variability from seasonal to multidecadal scales. Results from the new simulation show a substantial improvement in the modelled Mediterranean sea level signal. This confirms that Mediterranean mean sea level is strongly influenced by the Atlantic conditions, and thus suggests that the quality of the information in the lateral boundary conditions (LBCs) is crucial for the good modelling of Mediterranean sea level. We also found that the regional differences inside the basin, that are induced by circulation changes, are model-dependent and thus not affected by the LBCs. Finally, we argue that a correct configuration of LBCs in the Atlantic should be used for future Mediterranean simulations, which cover hindcast period, but also for scenarios.
Continuously on-going regional climate hindcast simulations for impact applications
NASA Astrophysics Data System (ADS)
Anders, Ivonne; Piringer, Martin; Kaufmann, Hildegard; Knauder, Werner; Resch, Gernot; Andre, Konrad
2017-04-01
Observational data for e.g. temperature, precipitation, radiation, or wind are often used as meteorological forcing for different impact models, like e.g. crop models, urban models, economic models and energy system models. To assess a climate signal, the time period covered by the observation is often too short, they have gaps in between, and are inhomogeneous over time, due to changes in the measurements itself or in the near surrounding. Thus output from global and regional climate models can close the gap and provide homogeneous and physically consistent time series of meteorological parameters. CORDEX evaluation runs performed for the IPCC-AR5 provide a good base for the regional scale. However, with respect to climate services, continuously on-going hindcast simulations are required for regularly updated applications. The Climate Research group at the national Austrian weather service, ZAMG, is focusing on high mountain regions and, especially on the Alps. The hindcast-simulation performed with the regional climate model COSMO-CLM is forced by ERAinterim and optimized for the Alpine Region. The simulation available for the period of 1979-2015 in a spatial resolution of about 10km is prolonged ongoing and fullfils the customer's needs with respect of output variables, levels, intervals and statistical measures. One of the main tasks is to capture strong precipitation events which often occur during summer when low pressure systems develop over the Golf of Genoa, moving to the Northeast. This leads to floods and landslide events in Austria, Czech Republic and Germany. Such events are not sufficiently represented in the CORDEX-evaluation runs. ZAMG use high quality gridded precipitation and temperature data for the Alpine Region (1-6km) to evaluate the model performance. Data is provided e.g. to hydrological modellers (high water, low water), but also to assess icing capability of infrastructure or the calculation the separation distances between livestock farming and residential area.
NASA Astrophysics Data System (ADS)
Darmenova, K.; Higgins, G.; Kiley, H.; Apling, D.
2010-12-01
Current General Circulation Models (GCMs) provide a valuable estimate of both natural and anthropogenic climate changes and variability on global scales. At the same time, future climate projections calculated with GCMs are not of sufficient spatial resolution to address regional needs. Many climate impact models require information at scales of 50 km or less, so dynamical downscaling is often used to estimate the smaller-scale information based on larger scale GCM output. To address current deficiencies in local planning and decision making with respect to regional climate change, our research is focused on performing a dynamical downscaling with the Weather Research and Forecasting (WRF) model and developing decision aids that translate the regional climate data into actionable information for users. Our methodology involves development of climatological indices of extreme weather and heating/cooling degree days based on WRF ensemble runs initialized with the NCEP-NCAR reanalysis and the European Center/Hamburg Model (ECHAM5). Results indicate that the downscale simulations provide the necessary detailed output required by state and local governments and the private sector to develop climate adaptation plans. In addition we evaluated the WRF performance in long-term climate simulations over the Southwestern US and validated against observational datasets.
NASA Astrophysics Data System (ADS)
Dierauer, J. R.; Allen, D. M.
2016-12-01
Climate change is expected to lead to an increase in extremes, including daily maximum temperatures, heat waves, and meteorological droughts, which will likely result in shifts in the hydrological drought regime (i.e. the frequency, timing, duration, and severity of drought events). While many studies have used hydrologic models to simulate climate change impacts on water resources, only a small portion of these studies have analyzed impacts on low flows and/or hydrological drought. This study is the first to use a fully coupled groundwater-surface water (gw-sw) model to study climate change impacts on hydrological drought. Generic catchment-scale gw-sw models were created for each of the six major eco-regions in British Columbia using the MIKE-SHE/MIKE-11 modelling code. Daily precipitation and temperature time series downscaled using bias-correction spatial disaggregation for the simulated period of 1950-2100 were obtained from the Pacific Climate Institute Consortium (PCIC). Streamflow and groundwater drought events were identified from the simulated time series for each catchment model using the moving window quantile threshold. The frequency, timing, duration, and severity of drought events were compared between the reference period (1961-2000) and two future time periods (2031-2060, 2071-2100). Results show how hydrological drought regimes across the different British Columbia eco-regions will be impacted by climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattermann, F. F.; Krysanova, V.; Gosling, S. N.
Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climatemore » change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prein, Andreas; Langhans, Wolfgang; Fosser, Giorgia
Regional climate modeling using convection permitting models (CPMs) emerges as a promising framework to provide more reliable climate information on regional to local scales compared to traditionally used large-scale models (LSMs). CPMs do not use convection parameterization schemes, known as a major source of errors and uncertainties, and have more accurate surface and orography elds. The drawback of CPMs is their high demand on computational resources. For this reason, the CPM climate simulations only appeared a decade ago. In this study we aim to provide a common basis for CPM climate simulations by giving a holistic review of the topic.more » The most important components in CPM, such as physical parameterizations and dynamical formulations are discussed, and an outlook on required future developments and computer architectures that would support the application of CPMs is given. Most importantly, this review presents the consolidated outcome of studies that addressed the added value of CPM climate simulations compared to LSMs. Most improvements are found for processes related to deep convection (e.g., precipitation during summer), for mountainous regions, and for the soil-vegetation-atmosphere interactions. The climate change signals of CPM simulations reveal increases in short and extreme rainfall events and an increased ratio of liquid precipitation at the surface (a decrease of hail) potentially leading to more frequent ash oods. Concluding, CPMs are a very promising tool for future climate research. However, coordinated modeling programs are crucially needed to assess their full potential and support their development.« less
Peng, Jing; Dan, Li; Huang, Mei
2014-01-01
Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics.
Peng, Jing; Dan, Li; Huang, Mei
2014-01-01
Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics. PMID:24748331
NASA Astrophysics Data System (ADS)
Bal, Prasanta Kumar; Ramachandran, A.; Geetha, R.; Bhaskaran, B.; Thirumurugan, P.; Indumathi, J.; Jayanthi, N.
2016-02-01
In this paper, we present regional climate change projections for the Tamil Nadu state of India, simulated by the Met Office Hadley Centre regional climate model. The model is run at 25 km horizontal resolution driven by lateral boundary conditions generated by a perturbed physical ensemble of 17 simulations produced by a version of Hadley Centre coupled climate model, known as HadCM3Q under A1B scenario. The large scale features of these 17 simulations were evaluated for the target region to choose lateral boundary conditions from six members that represent a range of climate variations over the study region. The regional climate, known as PRECIS, was then run 130 years from 1970. The analyses primarily focus on maximum and minimum temperatures and rainfall over the region. For the Tamil Nadu as a whole, the projections of maximum temperature show an increase of 1.0, 2.2 and 3.1 °C for the periods 2020s (2005-2035), 2050s (2035-2065) and 2080s (2065-2095), respectively, with respect to baseline period (1970-2000). Similarly, the projections of minimum temperature show an increase of 1.1, 2.4 and 3.5 °C, respectively. This increasing trend is statistically significant (Mann-Kendall trend test). The annual rainfall projections for the same periods indicate a general decrease in rainfall of about 2-7, 1-4 and 4-9 %, respectively. However, significant exceptions are noticed over some pockets of western hilly areas and high rainfall areas where increases in rainfall are seen. There are also indications of increasing heavy rainfall events during the northeast monsoon season and a slight decrease during the southwest monsoon season. Such an approach of using climate models may maximize the utility of high-resolution climate change information for impact-adaptation-vulnerability assessments.
The regional climate model RegCM3 performances over several regions and climate regimes
NASA Astrophysics Data System (ADS)
Coppola, E.; Rauscher, S.; Gao, X.; Giorgi, F.; Im, E. S.; Mariotti, L.; Seth, A.; Sylla, M. B.
2009-04-01
Regional Climate models are more and more needed to provide high resolution regional climate information in climate impact studies. Water availability in a future scenario is the main request of policy makers for adaptation and mitigation purposes. However precipitation changes are unlikely to be as spatially coherent as temperature changes and they are closely related to the regional model itself. In addition model skill varies regionally. An example of several ICTP regional climate model (RegCM3) simulations is reported over China, Korea, Africa, Central and Southern America, Europe and Australia. Over China, Australia, and Korea the regional model improves the simulation compared to the driving GCM when compared with CRU observations. In China, for example, the higher resolution of the regional model inhibits the penetration of the monsoon precipitation front from the southern slope of the Himalaya onto the Tibetan Plateau. In Korea the nested domain simulation (20 km) shows an encouraging performance with regard to capturing extreme precipitation episodes and the finer spatial distribution reflects the detailed geography of the Korean Peninsula. Over South America, RegCM captures the annual cycle of precipitation over Northeast Brazil and the South American Monsoon region, although the monsoon onset occurs too early in the model. Precipitation over the Amazon is not well captured, with too little precipitation associated with weak easterlies and reduced moisture transport into the interior of the continent. RegCM simulates the annual cycle of precipitation over Central America and the Caribbean fairly well; in particular, the complex spatial distribution of the Mid-Summer Drought, a decrease in precipitation that occurs during the middle of the rainy season in July and August, is better captured by RegCM than by the GCM. In addition, RegCM simulates the strength and position of the Caribbean low level jet, a mesoscale feature related to precipitation anomalies in the region. Over Africa our analysis shows that RegCM3 is able to reproduce fairly well the spatial variability of seasonal mean temperature, precipitation and the associated low-level circulation. However, monsoon flow is over predicted while African Easterly Jet (AEJ) core underestimated and shifted a bit northward. Finally, over Europe the regional model shows a cold bias for most part of the year and a wet bias in winter and spring. Rain frequency is too high especially over the mountainous regions. The spatial patter of the precipitation extreme is well represented in the model although a slight overestimation of the 95, 98 99 percentile is evident.
NASA Astrophysics Data System (ADS)
Caminade, Cyril; Morse, Andy
2010-05-01
Climate variability is an important component in determining the incidence of a number of diseases with significant human/animal health and socioeconomic impacts. The most important diseases affecting health are vector-borne, such as malaria, Rift Valley Fever and including those that are tick borne, with over 3 billion of the world population at risk. Malaria alone is responsible for at least one million deaths annually, with 80% of malaria deaths occurring in sub-Saharan Africa. The climate has a large impact upon the incidence of vector-borne diseases; directly via the development rates and survival of both the pathogen and the vector, and indirectly through changes in the environmental conditions. A large ensemble of regional climate model simulations has been produced within the ENSEMBLES project framework for both the European and African continent. This work will present recent progress in human and animal disease modelling, based on high resolution climate observations and regional climate simulations. Preliminary results will be given as an illustration, including the impact of climate change upon bluetongue (disease affecting the cattle) over Europe and upon malaria and Rift Valley Fever over Africa. Malaria scenarios based on RCM ensemble simulations have been produced for West Africa. These simulations have been carried out using the Liverpool Malaria Model. Future projections highlight that the malaria incidence decreases at the northern edge of the Sahel and that the epidemic belt is shifted southward in autumn. This could lead to significant public health problems in the future as the demography is expected to dramatically rise over Africa for the 21st century.
Final Report: Closeout of the Award NO. DE-FG02-98ER62618 (M.S. Fox-Rabinovitz, P.I.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox-Rabinovitz, M. S.
The final report describes the study aimed at exploring the variable-resolution stretched-grid (SG) approach to decadal regional climate modeling using advanced numerical techniques. The obtained results have shown that variable-resolution SG-GCMs using stretched grids with fine resolution over the area(s) of interest, is a viable established approach to regional climate modeling. The developed SG-GCMs have been extensively used for regional climate experimentation. The SG-GCM simulations are aimed at studying the U.S. regional climate variability with an emphasis on studying anomalous summer climate events, the U.S. droughts and floods.
NASA Astrophysics Data System (ADS)
Niswonger, R. G.; Huntington, J. L.; Dettinger, M. D.; Rajagopal, S.; Gardner, M.; Morton, C. G.; Reeves, D. M.; Pohll, G. M.
2013-12-01
Water resources in the Tahoe basin are susceptible to long-term climate change and extreme events because it is a middle-altitude, snow-dominated basin that experiences large inter-annual climate variations. Lake Tahoe provides critical water supply for its basin and downstream populations, but changes in water supply are obscured by complex climatic and hydrologic gradients across the high relief, geologically complex basin. An integrated surface and groundwater model of the Lake Tahoe basin has been developed using GSFLOW to assess the effects of climate change and extreme events on surface and groundwater resources. Key hydrologic mechanisms are identified with this model that explains recent changes in water resources of the region. Critical vulnerabilities of regional water-supplies and hazards also were explored. Maintaining a balance between (a) accurate representation of spatial features (e.g., geology, streams, and topography) and hydrologic response (i.e., groundwater, stream, lake, and wetland flows and storages), and (b) computational efficiency, is a necessity for the desired model applications. Potential climatic influences on water resources are analyzed here in simulations of long-term water-availability and flood responses to selected 100-year climate-model projections. GSFLOW is also used to simulate a scenario depicting an especially extreme storm event that was constructed from a combination of two historical atmospheric-river storm events as part of the USGS MultiHazards Demonstration Project. Historical simulated groundwater levels, streamflow, wetlands, and lake levels compare well with measured values for a 30-year historical simulation period. Results are consistent for both small and large model grid cell sizes, due to the model's ability to represent water table altitude, streams, and other hydrologic features at the sub-grid scale. Simulated hydrologic responses are affected by climate change, where less groundwater resources will be available during more frequent droughts. Simulated floods for the region indicate issues related to drainage in the developed areas around Lake Tahoe, and necessary dam releases that create downstream flood risks.
Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunsell, Nathaniel; Mechem, David; Ma, Chunsheng
Recent studies have suggested that low-frequency modes of climate variability can significantly influence regional climate. The climatology associated with extreme events has been shown to be particularly sensitive. This has profound implications for droughts, heat waves, and food production. We propose to examine regional climate simulations conducted over the continental United States by applying a recently developed technique which combines wavelet multi–resolution analysis with information theory metrics. This research is motivated by two fundamental questions concerning the spatial and temporal structure of extreme events. These questions are 1) what temporal scales of the extreme value distributions are most sensitive tomore » alteration by low-frequency climate forcings and 2) what is the nature of the spatial structure of variation in these timescales? The primary objective is to assess to what extent information theory metrics can be useful in characterizing the nature of extreme weather phenomena. Specifically, we hypothesize that (1) changes in the nature of extreme events will impact the temporal probability density functions and that information theory metrics will be sensitive these changes and (2) via a wavelet multi–resolution analysis, we will be able to characterize the relative contribution of different timescales on the stochastic nature of extreme events. In order to address these hypotheses, we propose a unique combination of an established regional climate modeling approach and advanced statistical techniques to assess the effects of low-frequency modes on climate extremes over North America. The behavior of climate extremes in RCM simulations for the 20th century will be compared with statistics calculated from the United States Historical Climatology Network (USHCN) and simulations from the North American Regional Climate Change Assessment Program (NARCCAP). This effort will serve to establish the baseline behavior of climate extremes, the validity of an innovative multi–resolution information theory approach, and the ability of the RCM modeling framework to represent the low-frequency modulation of extreme climate events. Once the skill of the modeling and analysis methodology has been established, we will apply the same approach for the AR5 (IPCC Fifth Assessment Report) climate change scenarios in order to assess how climate extremes and the the influence of lowfrequency variability on climate extremes might vary under changing climate. The research specifically addresses the DOE focus area 2. Simulation of climate extremes under a changing climate. Specific results will include (1) a better understanding of the spatial and temporal structure of extreme events, (2) a thorough quantification of how extreme values are impacted by low-frequency climate teleconnections, (3) increased knowledge of current regional climate models ability to ascertain these influences, and (4) a detailed examination of the how the distribution of extreme events are likely to change under different climate change scenarios. In addition, this research will assess the ability of the innovative wavelet information theory approach to characterize extreme events. Any and all of these results will greatly enhance society’s ability to understand and mitigate the regional ramifications of future global climate change.« less
High resolution projections for the western Iberian coastal low level jet in a changing climate
NASA Astrophysics Data System (ADS)
Soares, Pedro M. M.; Lima, Daniela C. A.; Cardoso, Rita M.; Semedo, Alvaro
2017-09-01
The Iberian coastal low-level jet (CLLJ) is one of the less studied boundary layer wind jet features in the Eastern Boundary Currents Systems (EBCS). These regions are amongst the most productive ocean ecosystems, where the atmosphere-land-ocean feedbacks, which include marine boundary layer clouds, coastal jets, upwelling and inland soil temperature and moisture, play an important role in defining the regional climate along the sub-tropical mid-latitude western coastal areas. Recently, the present climate western Iberian CLLJ properties were extensively described using a high resolution regional climate hindcast simulation. A summer maximum frequency of occurrence above 30 % was found, with mean maximum wind speeds around 15 ms-1, between 300 and 400 m heights (at the jet core). Since the 1990s the climate change impact on the EBCS is being studied, nevertheless some lack of consensus still persists regarding the evolution of upwelling and other components of the climate system in these areas. However, recently some authors have shown that changes are to be expected concerning the timing, intensity and spatial homogeneity of coastal upwelling, in response to future warming, especially at higher latitudes, namely in Iberia and Canaries. In this study, the first climate change assessment study regarding the Western Iberian CLLJ, using a high resolution (9 km) regional climate simulation, is presented. The properties of this CLLJ are studied and compared using two 30 years simulations: one historical simulation for the 1971-2000 period, and another simulation for future climate, in agreement with the RCP8.5 scenario, for the 2071-2100 period. Robust and consistent changes are found: (1) the hourly frequency of occurrence of the CLLJ is expected to increase in summer along the western Iberian coast, from mean maximum values of around 35 % to approximately 50 %; (2) the relative increase of the CLLJ frequency of occurrence is higher in the north off western Iberia; (3) the occurrence of the CLLJ covers larger areas both latitudinal and longitudinal; (4) the CLLJ season is lengthened extending to May and September; and, (5) there are shifts for higher occurrences of higher wind speeds and for the jet core to occur at higher heights.
Regional warming of hot extremes accelerated by surface energy fluxes consistent with drying soils
NASA Astrophysics Data System (ADS)
Donat, M.; Pitman, A.; Seneviratne, S. I.
2017-12-01
Strong regional differences exist in how hot temperature extremes increase under global warming. Using an ensemble of coupled climate models, we examine the regional warming rates of hot extremes relative to annual average warming rates in the same regions. We identify hotspots of accelerated warming of model-simulated hot extremes in Europe, North America, South America and Southeast China. These hotspots indicate where the warm tail of a distribution of temperatures increases faster than the average and are robust across most CMIP5 models. Exploring the conditions on the specific day the hot extreme occurs demonstrates the hotspots are explained by changes in the surface energy fluxes consistent with drying soils. Furthermore, in these hotspot regions we find a relationship between the temperature - heat flux correlation under current climate conditions and the magnitude of future projected changes in hot extremes, pointing to a potential emergent constraint for simulations of future hot extremes. However, the model-simulated accelerated warming of hot extremes appears inconsistent with observations of the past 60 years, except over Europe. The simulated acceleration of hot extremes may therefore be unreliable, a result that necessitates a re-evaluation of how climate models resolve the relevant terrestrial processes.
NASA Technical Reports Server (NTRS)
Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Govindaraju, Ravi C.
2002-01-01
The variable-resolution stretched-grid (SG) GEOS (Goddard Earth Observing System) GCM has been used for limited ensemble integrations with a relatively coarse, 60 to 100 km, regional resolution over the U.S. The experiments have been run for the 12-year period, 1987-1998, that includes the recent ENSO cycles. Initial conditions 1-2 days apart are used for ensemble members. The goal of the experiments is analyzing the long-term SG-GCM ensemble integrations in terms of their potential in reducing the uncertainties of regional climate simulation while producing realistic mesoscales. The ensemble integration results are analyzed for both prognostic and diagnostic fields. A special attention is devoted to analyzing the variability of precipitation over the U.S. The internal variability of the SG-GCM has been assessed. The ensemble means appear to be closer to the verifying analyses than the individual ensemble members. The ensemble means capture realistic mesoscale patterns, especially those of induced by orography. Two ENSO cycles have been analyzed in terms their impact on the U.S. climate, especially on precipitation. The ability of the SG-GCM simulations to produce regional climate anomalies has been confirmed. However, the optimal size of the ensembles depending on fine regional resolution used, is still to be determined. The SG-GCM ensemble simulations are performed as a preparation or a preliminary stage for the international SGMIP (Stretched-Grid Model Intercomparison Project) that is under way with participation of the major centers and groups employing the SG-approach for regional climate modeling.
NASA Astrophysics Data System (ADS)
Poan, E.; Gachon, P., Sr.; Laprise, R.; Aider, R.; Dueymes, G.
2017-12-01
This study describes a framework using possibilities given by regional climate models (RCMs) to gain insight into extratropical cyclone (EC) activity during winter over North America (NA). Recent past climate period (1981 - 2005) is firstly considered using the NCEP regional reanalysis (NARR) as a reference, along with the European global reanalysis ERA-Interim (ERAI) and two CMIP5 Global Climate Models (GCMs) used to drive the Canadian RCM - version 5 (CRCM5) and the corresponding regional-scale simulations. While ERAI and GCM simulations show basic agreement with NARR in terms of climatological EC track patterns, detailed bias analyses show that, on the one hand, ERAI presents statistically significant positive biases in terms of EC genesis and therefore occurrence while their intensity is well captured. On the other hand, GCMs present large negative intensity biases in the overall NA domain and particularly over the eastern coast. In addition, storm occurrence from GCMs over the northwestern topographic regions is highly overestimated. When the CRCM5 is driven by ERAI, no significant skill deterioration arises and, more importantly, all storm characteristics near areas with main relief and over regions with large water masses are significantly improved with respect to ERAI. Conversely, in GCM-driven simulations, the added value from the CRCM5 is less prominent and systematic, except over western areas with high topography and over the Western Atlantic coastlines where the most frequent and intense ECs are located. Finally, time period near the end of the 21st century (2071-2100) is considered to analyze EC characteristic trends and changes relative to the current climate conditions, showing important modifications in storm activity for certain winter months, especially in term of intensity over the eastern coast.
Elevation-dependent warming in global climate model simulations at high spatial resolution
NASA Astrophysics Data System (ADS)
Palazzi, Elisa; Mortarini, Luca; Terzago, Silvia; von Hardenberg, Jost
2018-06-01
The enhancement of warming rates with elevation, so-called elevation-dependent warming (EDW), is one of the regional, still not completely understood, expressions of global warming. Sentinels of climate and environmental changes, mountains have experienced more rapid and intense warming trends in the recent decades, leading to serious impacts on mountain ecosystems and downstream. In this paper we use a state-of-the-art Global Climate Model (EC-Earth) to investigate the impact of model spatial resolution on the representation of this phenomenon and to highlight possible differences in EDW and its causes in different mountain regions of the Northern Hemisphere. To this end we use EC-Earth climate simulations at five different spatial resolutions, from ˜ 125 to ˜ 16 km, to explore the existence and the driving mechanisms of EDW in the Colorado Rocky Mountains, the Greater Alpine Region and the Tibetan Plateau-Himalayas. Our results show that the more frequent EDW drivers in all regions and seasons are the changes in albedo and in downward thermal radiation and this is reflected in both daytime and nighttime warming. In the Tibetan Plateau-Himalayas and in the Greater Alpine Region, an additional driver is the change in specific humidity. We also find that, while generally the model shows no clear resolution dependence in its ability to simulate the existence of EDW in the different regions, specific EDW characteristics such as its intensity and the relative role of different driving mechanisms may be different in simulations performed at different spatial resolutions. Moreover, we find that the role of internal climate variability can be significant in modulating the EDW signal, as suggested by the spread found in the multi-member ensemble of the EC-Earth experiments which we use.
Regional Climate Modelling of the Western Iberian Low-Level Wind Jet
NASA Astrophysics Data System (ADS)
Soares, Pedro M. M.; Lima, Daniela C. A.; Cardoso, Rita M.; Semedo, Álvaro
2016-04-01
The Iberian coastal low-level jet (CLLJ) is one the less studied boundary layer wind jet features in the Eastern Boundary Currents Systems (EBCS). These regions are amongst the most productive ocean ecosystems, where the atmosphere-land-ocean feedbacks, which include marine boundary layer clouds, coastal jets, upwelling and inland soil temperature and moisture, play an important role in defining the regional climate along the sub-tropical mid-latitude western coastal areas. Recently, the present climate western Iberian CLLJ properties were extensively described using a high resolution regional climate hindcast simulation. A summer maximum frequency of occurrence above 30% was found, with mean maximum wind speeds around 15 ms-1, between 300 and 400m heights (at the jet core). Since the 1990s the climate change impact on the EBCS is being studied, nevertheless some lack of consensus still persists regarding the evolution of upwelling and other components of the climate system in these areas. However, recently some authors have shown that changes are to be expected concerning the timing, intensity and spatial homogeneity of coastal upwelling and of CLLJs, in response to future warming, especially at higher latitudes, namely in Iberia and Canaries. In this study, the first climate change assessment study regarding the Western Iberian CLLJ, using a high resolution (9km) regional climate simulation, is presented. The properties of this CLLJ are studied and compared using two 30 years simulations: one historical simulation for the 1971-2000 period, and another simulation for future climate, in agreement with the RCP8.5 scenario, for the 2071-2100 period. Robust and consistent changes are found: 1) the hourly frequency of occurrence of the CLLJ is expected to increase in summer along the western Iberian coast, from mean maximum values of around 35% to approximately 50%; 2) the relative increase of the CLLJ frequency of occurrence is higher in the north off western Iberia; 3) the occurrence of the CLLJ covers larger areas both latitudinal and longitudinal; 4) the CLLJ season is enlarged extending to May and September; and, 5) there are shifts for higher occurrences of higher wind speeds and for the jet core to occur at higher heights. Publication supported by project FCT UID/GEO/50019/2013 - Instituto Dom Luiz - University of Lisbon
MODIS land cover uncertainty in regional climate simulations
NASA Astrophysics Data System (ADS)
Li, Xue; Messina, Joseph P.; Moore, Nathan J.; Fan, Peilei; Shortridge, Ashton M.
2017-12-01
MODIS land cover datasets are used extensively across the climate modeling community, but inherent uncertainties and associated propagating impacts are rarely discussed. This paper modeled uncertainties embedded within the annual MODIS Land Cover Type (MCD12Q1) products and propagated these uncertainties through the Regional Atmospheric Modeling System (RAMS). First, land cover uncertainties were modeled using pixel-based trajectory analyses from a time series of MCD12Q1 for Urumqi, China. Second, alternative land cover maps were produced based on these categorical uncertainties and passed into RAMS. Finally, simulations from RAMS were analyzed temporally and spatially to reveal impacts. Our study found that MCD12Q1 struggles to discriminate between grasslands and croplands or grasslands and barren in this study area. Such categorical uncertainties have significant impacts on regional climate model outputs. All climate variables examined demonstrated impact across the various regions, with latent heat flux affected most with a magnitude of 4.32 W/m2 in domain average. Impacted areas were spatially connected to locations of greater land cover uncertainty. Both biophysical characteristics and soil moisture settings in regard to land cover types contribute to the variations among simulations. These results indicate that formal land cover uncertainty analysis should be included in MCD12Q1-fed climate modeling as a routine procedure.
High-resolution dynamic downscaling of CMIP5 output over the Tropical Andes
NASA Astrophysics Data System (ADS)
Reichler, Thomas; Andrade, Marcos; Ohara, Noriaki
2015-04-01
Our project is targeted towards making robust predictions of future changes in climate over the tropical part of the South American Andes. This goal is challenging, since tropical lowlands, steep mountains, and snow covered subarctic surfaces meet over relatively short distances, leading to distinct climate regimes within the same domain and pronounced spatial gradients in virtually every climate quantity. We use an innovative approach to solve this problem, including several quadruple nested versions of WRF, a systematic validation strategy to find the version of WRF that best fits our study region, spatial resolutions at the kilometer scale, 20-year-long simulation periods, and bias-corrected output from various CMIP5 simulations that also include the multi-model mean of all CMIP5 models. We show that the simulated changes in climate are consistent with the results from the global climate models and also consistent with two different versions of WRF. We also discuss the expected changes in snow and ice, derived from off-line coupling the regional simulations to a carefully calibrated snow and ice model.
A New High Resolution Climate Dataset for Climate Change Impacts Assessments in New England
NASA Astrophysics Data System (ADS)
Komurcu, M.; Huber, M.
2016-12-01
Assessing regional impacts of climate change (such as changes in extreme events, land surface hydrology, water resources, energy, ecosystems and economy) requires much higher resolution climate variables than those available from global model projections. While it is possible to run global models in higher resolution, the high computational cost associated with these simulations prevent their use in such manner. To alleviate this problem, dynamical downscaling offers a method to deliver higher resolution climate variables. As part of an NSF EPSCoR funded interdisciplinary effort to assess climate change impacts on New Hampshire ecosystems, hydrology and economy (the New Hampshire Ecosystems and Society project), we create a unique high-resolution climate dataset for New England. We dynamically downscale global model projections under a high impact emissions scenario using the Weather Research and Forecasting model (WRF) with three nested grids of 27, 9 and 3 km horizontal resolution with the highest resolution innermost grid focusing over New England. We prefer dynamical downscaling over other methods such as statistical downscaling because it employs physical equations to progressively simulate climate variables as atmospheric processes interact with surface processes, emissions, radiation, clouds, precipitation and other model components, hence eliminates fix relationships between variables. In addition to simulating mean changes in regional climate, dynamical downscaling also allows for the simulation of climate extremes that significantly alter climate change impacts. We simulate three time slices: 2006-2015, 2040-2060 and 2080-2100. This new high-resolution climate dataset (with more than 200 variables saved in hourly (six hourly) intervals for the highest resolution domain (outer two domains)) along with model input and restart files used in our WRF simulations will be publicly available for use to the broader scientific community to support in-depth climate change impacts assessments for New England. We present results focusing on future changes in New England extreme events.
Regional climate projections for Northeast India: an appraisal from CORDEX South Asia experiment
NASA Astrophysics Data System (ADS)
Kumar, D.; Dimri, A. P.
2017-11-01
An appraisal of the recent changes in the present climate (1970-2005) followed by the possible future (2006-2100) changes in the climate has been carried out in the current study using the observations and regional climate model (REMO) over the Northeast Indian region. The regional climate model simulation has been used from the COordinated Regional climate Downscaling EXperiment (CORDEX) South Asia framework. A consistent warming for the winter (December, January, and February (DJF)) and post-monsoon (October and November (ON)) has been observed for the present climate especially in the northern and eastern parts of the region. The changes in the near future (2020-2049) and far future (2070-2099) temperature climatology suggest a rise in temperature by 3-8 °C across different representative concentration pathways (RCPs). The rate of long-term (1970-2099) increase in temperature has been found ranging between 0.01 and 0.07 °C/year across the region in the least emission (RCP2.6) to strongest emission (RCP8.5) scenarios. The daily mean precipitation statistics suggests an overall increasing trends of precipitation during the pre-monsoon (March, April, and May (MAM)) for the present across the region with a mixed trend in other seasons. A change in daily mean precipitation ranging from - 60% (during winter) to + 40% during post-monsoon has been projected by the model across different RCPs. RCP4.5 and RCP8.5 show a strong deficit in precipitation in the warmer climate across the region as compared to RCP2.6. This fact is also confirmed from the long-term trend of precipitation where a consistent decreasing trend dominates in the RCP4.5- and RCP8.5-simulated precipitations by the end of the twenty-first century. A large model bias in temperature and precipitation along with high amount of uncertainty is associated with the model simulations; thus, in order to use the projections, a more careful approach to improve the utility of downscaled product should be adopted.
NASA Astrophysics Data System (ADS)
Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.
2018-06-01
High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.
NASA Astrophysics Data System (ADS)
Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.
2017-09-01
High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.
NASA Technical Reports Server (NTRS)
Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas
2016-01-01
We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yang; Leung, L. Ruby; Fan, Jiwen
This is a collaborative project among North Carolina State University, Pacific Northwest National Laboratory, and Scripps Institution of Oceanography, University of California at San Diego to address the critical need for an accurate representation of aerosol indirect effect in climate and Earth system models. In this project, we propose to develop and improve parameterizations of aerosol-cloud-precipitation feedbacks in climate models and apply them to study the effect of aerosols and clouds on radiation and hydrologic cycle. Our overall objective is to develop, improve, and evaluate parameterizations to enable more accurate simulations of these feedbacks in high resolution regional and globalmore » climate models.« less
Risk Assessment in Relation to the Effect of Climate Change on Water Shortage in the Taichung Area
NASA Astrophysics Data System (ADS)
Hsiao, J.; Chang, L.; Ho, C.; Niu, M.
2010-12-01
Rapid economic development has stimulated a worldwide greenhouse effect and induced global climate change. Global climate change has increased the range of variation in the quantity of regional river flows between wet and dry seasons, which effects the management of regional water resources. Consequently, the influence of climate change has become an important issue in the management of regional water resources. In this study, the Monte Carlo simulation method was applied to risk analysis of shortage of water supply in the Taichung area. This study proposed a simulation model that integrated three models: weather generator model, surface runoff model, and water distribution model. The proposed model was used to evaluate the efficiency of the current water supply system and the potential effectiveness of two additional plans for water supply: the “artificial lakes” plan and the “cross-basin water transport” plan. A first-order Markov Chain method and two probability distribution models, exponential distribution and normal distribution, were used in the weather generator model. In the surface runoff model, researchers selected the Generalized Watershed Loading Function model (GWLF) to simulate the relationship between quantity of rainfall and basin outflow. A system dynamics model (SD) was applied to the water distribution model. Results of the simulation indicated that climate change could increase the annual quantity of river flow in the Dachia River and Daan River basins. However, climate change could also increase the difference in the quantity of river flow between wet and dry seasons. Simulation results showed that in current system case or in the additional plan cases, shortage status of water for both public and agricultural uses with conditions of climate change will be mostly worse than that without conditions of climate change except for the shortage status for the public use in the current system case. With or without considering the effect of climate change, the additional plans, especially the “cross-basin water transport” plan, for water supply could significantly increase the supply of water for public use. The proposed simulation model and results of analysis in this study could provide valuable reference for decision-makers in regards to risk analysis of regional water supply.
NASA Astrophysics Data System (ADS)
Dubrovsky, M.; Farda, A.; Huth, R.
2012-12-01
The regional-scale simulations of weather-sensitive processes (e.g. hydrology, agriculture and forestry) for the present and/or future climate often require high resolution meteorological inputs in terms of the time series of selected surface weather characteristics (typically temperature, precipitation, solar radiation, humidity, wind) for a set of stations or on a regular grid. As even the latest Global and Regional Climate Models (GCMs and RCMs) do not provide realistic representation of statistical structure of the surface weather, the model outputs must be postprocessed (downscaled) to achieve the desired statistical structure of the weather data before being used as an input to the follow-up simulation models. One of the downscaling approaches, which is employed also here, is based on a weather generator (WG), which is calibrated using the observed weather series and then modified (in case of simulations for the future climate) according to the GCM- or RCM-based climate change scenarios. The present contribution uses the parametric daily weather generator M&Rfi to follow two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate/CZ (v.2) Regional Climate Model at 25 km resolution. The WG parameters will be derived from the RCM-simulated surface weather series and compared to those derived from observational data in the Czech meteorological stations. The set of WG parameters will include selected statistics of the surface temperature and precipitation (characteristics of the mean, variability, interdiurnal variability and extremes). (2) Testing a potential of RCM output for calibration of the WG for the ungauged locations. The methodology being examined will consist in using the WG, whose parameters are interpolated from the surrounding stations and then corrected based on a RCM-simulated spatial variability. The quality of the weather series produced by the WG calibrated in this way will be assessed in terms of selected climatic characteristics focusing on extreme precipitation and temperature characteristics (including characteristics of dry/wet/hot/cold spells). Acknowledgements: The present experiment is made within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports) and VALUE (COST ES 1102 action).
The MIT IGSM-CAM framework for uncertainty studies in global and regional climate change
NASA Astrophysics Data System (ADS)
Monier, E.; Scott, J. R.; Sokolov, A. P.; Forest, C. E.; Schlosser, C. A.
2011-12-01
The MIT Integrated Global System Model (IGSM) version 2.3 is an intermediate complexity fully coupled earth system model that allows simulation of critical feedbacks among its various components, including the atmosphere, ocean, land, urban processes and human activities. A fundamental feature of the IGSM2.3 is the ability to modify its climate parameters: climate sensitivity, net aerosol forcing and ocean heat uptake rate. As such, the IGSM2.3 provides an efficient tool for generating probabilistic distribution functions of climate parameters using optimal fingerprint diagnostics. A limitation of the IGSM2.3 is its zonal-mean atmosphere model that does not permit regional climate studies. For this reason, the MIT IGSM2.3 was linked to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM) version 3 and new modules were developed and implemented in CAM in order to modify its climate sensitivity and net aerosol forcing to match that of the IGSM. The IGSM-CAM provides an efficient and innovative framework to study regional climate change where climate parameters can be modified to span the range of uncertainty and various emissions scenarios can be tested. This paper presents results from the cloud radiative adjustment method used to modify CAM's climate sensitivity. We also show results from 21st century simulations based on two emissions scenarios (a median "business as usual" scenario where no policy is implemented after 2012 and a policy scenario where greenhouse-gas are stabilized at 660 ppm CO2-equivalent concentrations by 2100) and three sets of climate parameters. The three values of climate sensitivity chosen are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the observed 20th century climate change with simulations by the IGSM with a wide range of climate parameters values. The associated aerosol forcing values were chosen to ensure a good agreement of the simulations with the observed climate change over the 20th century. Because the concentrations of sulfate aerosols significantly decrease over the 21st century in both emissions scenarios, climate changes obtained in these six simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.
Precipitation frequency analysis based on regional climate simulations in Central Alberta
NASA Astrophysics Data System (ADS)
Kuo, Chun-Chao; Gan, Thian Yew; Hanrahan, Janel L.
2014-03-01
A Regional Climate Model (RCM), MM5 (the Fifth Generation Pennsylvania State University/National Center for Atmospheric Research mesoscale model), is used to simulate summer precipitation in Central Alberta. MM5 was set up with a one-way, three-domain nested framework, with domain resolutions of 27, 9, and 3 km, respectively, and forced with ERA-Interim reanalysis data of ECMWF (European Centre for Medium-Range Weather Forecasts). The objective is to develop high resolution, grid-based Intensity-Duration-Frequency (IDF) curves based on the simulated annual maximums of precipitation (AMP) data for durations ranging from 15-min to 24-h. The performance of MM5 was assessed in terms of simulated rainfall intensity, precipitable water, and 2-m air temperature. Next, the grid-based IDF curves derived from MM5 were compared to IDF curves derived from six RCMs of the North American Regional Climate Change Assessment Program (NARCCAP) set up with 50-km grids, driven with NCEP-DOE (National Centers for Environmental Prediction-Department of Energy) Reanalysis II data, and regional IDF curves derived from observed rain gauge data (RG-IDF). The analyzed results indicate that 6-h simulated precipitable water and 2-m temperature agree well with the ERA-Interim reanalysis data. However, compared to RG-IDF curves, IDF curves based on simulated precipitation data of MM5 are overestimated especially for IDF curves of 2-year return period. In contract, IDF curves developed from NARCCAP data suffer from under-estimation and differ more from RG-IDF curves than the MM5 IDF curves. The over-estimation of IDF curves of MM5 was corrected by a quantile-based, bias correction method. By dynamically downscale the ERA-Interim and after bias correction, it is possible to develop IDF curves useful for regions with limited or no rain gauge data. This estimation process can be further extended to predict future grid-based IDF curves subjected to possible climate change impacts based on climate change projections of GCMs (general circulation models) of IPCC (Intergovernmental Panel on Climate Change).
Introducing the MIT Regional Climate Model (MRCM)
NASA Astrophysics Data System (ADS)
Eltahir, Elfatih A. B.; Winter, Jonathn M.; Marcella, Marc P.; Gianotti, Rebecca L.; Im, Eun-Soon
2013-04-01
During the last decade researchers at MIT have worked on improving the skill of Regional Climate Model version 3 (RegCM3) in simulating climate over different regions through the incorporation of new physical schemes or modification of original schemes. The MIT Regional Climate Model (MRCM) features several modifications over RegCM3 including coupling of Integrated Biosphere Simulator (IBIS), a new surface albedo assignment method, a new convective cloud and rainfall auto-conversion scheme, and a modified boundary layer height and cloud scheme. Here, we introduce the MRCM and briefly describe the major model modifications relative to RegCM3 and their impact on the model performance. The most significant difference relative to the RegCM3 original configuration is coupling the Integrated Biosphere Simulator (IBIS) land-surface scheme (Winter et al., 2009). Based on the simulations using IBIS over the North America, the Maritime Continent, Southwest Asia and West Africa, we demonstrate that the use of IBIS as the land surface scheme results in better representation of surface energy and water budgets in comparison to BATS. Furthermore, the addition of a new irrigation scheme to IBIS makes it possible to investigate the effects of irrigation over any region. Also a new surface albedo assignment method used together with IBIS brings further improvement in simulations of surface radiation (Marcella and Eltahir, 2013). Another important feature of the MRCM is the introduction of a new convective cloud and rainfall auto-conversion scheme (Gianotti and Eltahir, 2013). This modification brings more physical realism into an important component of the model, and succeeds in simulating convective-radiative feedback improving model performance across several radiation fields and rainfall characteristics. Other features of MRCM such as the modified boundary layer height and cloud scheme, and the improvements in the dust emission and transport representations will be discussed.
Future Climate Impacts on Crop Water Demand and Groundwater Longevity in Agricultural Regions
NASA Astrophysics Data System (ADS)
Russo, T. A.; Sahoo, S.; Elliott, J. W.; Foster, I.
2016-12-01
Improving groundwater management practices under future drought conditions in agricultural regions requires three steps: 1) estimating the impacts of climate and drought on crop water demand, 2) projecting groundwater availability given climate and demand forcing, and 3) using this information to develop climate-smart policy and water use practices. We present an innovative combination of models to address the first two steps, and inform the third. Crop water demand was simulated using biophysical crop models forced by multiple climate models and climate scenarios, with one case simulating climate adaptation (e.g. modify planting or harvest time) and another without adaptation. These scenarios were intended to represent a range of drought projections and farm management responses. Nexty, we used projected climate conditions and simulated water demand across the United States as inputs to a novel machine learning-based groundwater model. The model was applied to major agricultural regions relying on the High Plains and Mississippi Alluvial aquifer systems in the US. The groundwater model integrates input data preprocessed using single spectrum analysis, mutual information, and a genetic algorithm, with an artificial neural network model. Model calibration and test results indicate low errors over the 33 year model run, and strong correlations to groundwater levels in hundreds of wells across each aquifer. Model results include a range of projected groundwater level changes from the present to 2050, and in some regions, identification and timeframe of aquifer depletion. These results quantify aquifer longevity under climate and crop scenarios, and provide decision makers with the data needed to compare scenarios of crop water demand, crop yield, and groundwater response, as they aim to balance water sustainability with food security.
Zhu, Q.; Jiang, H.; Peng, C.; Liu, J.; Wei, X.; Fang, X.; Liu, S.; Zhou, G.; Yu, S.
2011-01-01
Water use efficiency (WUE) is an important variable used in climate change and hydrological studies in relation to how it links ecosystem carbon cycles and hydrological cycles together. However, obtaining reliable WUE results based on site-level flux data remains a great challenge when scaling up to larger regional zones. Biophysical, process-based ecosystem models are powerful tools to study WUE at large spatial and temporal scales. The Integrated BIosphere Simulator (IBIS) was used to evaluate the effects of climate change and elevated CO2 concentrations on ecosystem-level WUE (defined as the ratio of gross primary production (GPP) to evapotranspiration (ET)) in relation to terrestrial ecosystems in China for 2009–2099. Climate scenario data (IPCC SRES A2 and SRES B1) generated from the Third Generation Coupled Global Climate Model (CGCM3) was used in the simulations. Seven simulations were implemented according to the assemblage of different elevated CO2 concentrations scenarios and different climate change scenarios. Analysis suggests that (1) further elevated CO2concentrations will significantly enhance the WUE over China by the end of the twenty-first century, especially in forest areas; (2) effects of climate change on WUE will vary for different geographical regions in China with negative effects occurring primarily in southern regions and positive effects occurring primarily in high latitude and altitude regions (Tibetan Plateau); (3) WUE will maintain the current levels for 2009–2099 under the constant climate scenario (i.e. using mean climate condition of 1951–2006 and CO2concentrations of the 2008 level); and (4) WUE will decrease with the increase of water resource restriction (expressed as evaporation ratio) among different ecosystems.
Using climate model simulations to assess the current climate risk to maize production
NASA Astrophysics Data System (ADS)
Kent, Chris; Pope, Edward; Thompson, Vikki; Lewis, Kirsty; Scaife, Adam A.; Dunstone, Nick
2017-05-01
The relationship between the climate and agricultural production is of considerable importance to global food security. However, there has been relatively little exploration of climate-variability related yield shocks. The short observational yield record does not adequately sample natural inter-annual variability thereby limiting the accuracy of probability assessments. Focusing on the United States and China, we present an innovative use of initialised ensemble climate simulations and a new agro-climatic indicator, to calculate the risk of severe water stress. Combined, these regions provide 60% of the world’s maize, and therefore, are crucial to global food security. To probe a greater range of inter-annual variability, the indicator is applied to 1400 simulations of the present day climate. The probability of severe water stress in the major maize producing regions is quantified, and in many regions an increased risk is found compared to calculations from observed historical data. Analysis suggests that the present day climate is also capable of producing unprecedented severe water stress conditions. Therefore, adaptation plans and policies based solely on observed events from the recent past may considerably under-estimate the true risk of climate-related maize shocks. The probability of a major impact event occurring simultaneously across both regions—a multi-breadbasket failure—is estimated to be up to 6% per decade and arises from a physically plausible climate state. This novel approach highlights the significance of climate impacts on crop production shocks and provides a platform for considerably improving food security assessments, in the present day or under a changing climate, as well as development of new risk based climate services.
NASA Astrophysics Data System (ADS)
Heinzeller, Dominikus; Dieng, Diarra; Smiatek, Gerhard; Olusegun, Christiana; Klein, Cornelia; Hamann, Ilse; Salack, Seyni; Bliefernicht, Jan; Kunstmann, Harald
2018-04-01
Climate change and constant population growth pose severe challenges to 21st century rural Africa. Within the framework of the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL), an ensemble of high-resolution regional climate change scenarios for the greater West African region is provided to support the development of effective adaptation and mitigation measures. This contribution presents the overall concept of the WASCAL regional climate simulations, as well as detailed information on the experimental design, and provides information on the format and dissemination of the available data. All data are made available to the public at the CERA long-term archive of the German Climate Computing Center (DKRZ) with a subset available at the PANGAEA Data Publisher for Earth & Environmental Science portal (https://doi.pangaea.de/10.1594/PANGAEA.880512). A brief assessment of the data are presented to provide guidance for future users. Regional climate projections are generated at high (12 km) and intermediate (60 km) resolution using the Weather Research and Forecasting Model (WRF). The simulations cover the validation period 1980-2010 and the two future periods 2020-2050 and 2070-2100. A brief comparison to observations and two climate change scenarios from the Coordinated Regional Downscaling Experiment (CORDEX) initiative is presented to provide guidance on the data set to future users and to assess their climate change signal. Under the RCP4.5 (Representative Concentration Pathway 4.5) scenario, the results suggest an increase in temperature by 1.5 °C at the coast of Guinea and by up to 3 °C in the northern Sahel by the end of the 21st century, in line with existing climate projections for the region. They also project an increase in precipitation by up to 300 mm per year along the coast of Guinea, by up to 150 mm per year in the Soudano region adjacent in the north and almost no change in precipitation in the Sahel. This stands in contrast to existing regional climate projections, which predict increasingly drier conditions.The high spatial and temporal resolution of the data, the extensive list of output variables, the large computational domain and the long time periods covered make this data set a unique resource for follow-up analyses and impact modelling studies over the greater West African region. The comprehensive documentation and standardisation of the data facilitate and encourage their use within and outside of the WASCAL community.
NASA Astrophysics Data System (ADS)
Soares, P. M. M.; Cardoso, R. M.
2017-12-01
Regional climate models (RCM) are used with increasing resolutions pursuing to represent in an improved way regional to local scale atmospheric phenomena. The EURO-CORDEX simulations at 0.11° and simulations exploiting finer grid spacing approaching the convective-permitting regimes are representative examples. The climate runs are computationally very demanding and do not always show improvements. These depend on the region, variable and object of study. The gains or losses associated with the use of higher resolution in relation to the forcing model (global climate model or reanalysis), or to different resolution RCM simulations, is known as added value. Its characterization is a long-standing issue, and many different added-value measures have been proposed. In the current paper, a new method is proposed to assess the added value of finer resolution simulations, in comparison to its forcing data or coarser resolution counterparts. This approach builds on a probability density function (PDF) matching score, giving a normalised measure of the difference between diverse resolution PDFs, mediated by the observational ones. The distribution added value (DAV) is an objective added value measure that can be applied to any variable, region or temporal scale, from hindcast or historical (non-synchronous) simulations. The DAVs metric and an application to the EURO-CORDEX simulations, for daily temperatures and precipitation, are here presented. The EURO-CORDEX simulations at both resolutions (0.44o,0.11o) display a clear added value in relation to ERA-Interim, with values around 30% in summer and 20% in the intermediate seasons, for precipitation. When both RCM resolutions are directly compared the added value is limited. The regions with the larger precipitation DAVs are areas where convection is relevant, e.g. Alps and Iberia. When looking at the extreme precipitation PDF tail, the higher resolution improvement is generally greater than the low resolution for seasons and regions. For temperature, the added value is smaller. AcknowledgmentsThe authors wish to acknowledge SOLAR (PTDC/GEOMET/7078/2014) and FCT UID/GEO/50019/ 2013 (Instituto Dom Luiz) projects.
NASA Astrophysics Data System (ADS)
Patricola, C. M.; Cook, K. H.
2008-12-01
As greenhouse warming continues there is growing concern about the future climate of both Africa, which is highlighted by the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4) as exceptionally vulnerable to climate change, and India. Precipitation projections from the AOGCMs of the IPCC AR4 are relatively consistent over India, but not over northern Africa. Inconsistencies can be related to the model's inability to capture climate process correctly, deficiencies in physical parameterizations, different SST projections, or horizontal atmospheric resolution that is too coarse to realistically represent the tight gradients over West Africa and complex topography of East Africa and India. Treatment of the land surface in a model may also be an issue over West Africa and India where land-surface/atmosphere interactions are very important. Here a method for simulating future climate is developed and applied using a high-resolution regional model in conjunction with output from a suite of AOGCMs, drawing on the advantages of both the regional and global modeling approaches. Integration by the regional model allows for finer horizontal resolution and regionally appropriate selection of parameterizations and land-surface model. AOGCM output is used to provide SST projections and lateral boundary conditions to constrain the regional model. The control simulation corresponds to 1981-2000, and eight future simulations representing 2081-2100 are conducted, each constrained by a different AOGCM and forced by CO2 concentrations from the SRES A2 emissions scenario. After model spin-up, May through October remain for investigation. Analysis is focused on climate change parameters important for impacts on agriculture and water resource management, and is presented in a format compatible with the IPCC reports. Precipitation projections simulated by the regional model are quite consistent, with 75% or more ensemble members agreeing on the sign of the anomaly over vast regions of Africa and India. Over West Africa, where the regional model provides the greatest improvement over the AOGCMs in consistency of ensemble members, precipitation at the end of the century is generally projected to increase during May and decrease in June and July. Wetter conditions are simulated during August though October, with the exception of drying close to the Guinean Coast in August. In late summer, high rainfall rates are simulated more frequently in the future, indicating the possibility for increases in flooding events. The regional model's projections over India are in stark contrast to the AOGCM's, producing intense and generally widespread drying in August and September. The very promising method developed here is young and further potential developments are recognized, including the addition of ocean, vegetation, and dust models. Ensembles which employ other regional models, sets of parameterizations, and emissions scenarios should also be explored.
Simulation of the modern arctic climate by the NCAR CCM1
NASA Technical Reports Server (NTRS)
Bromwich, David H.; Tzeng, Ren-Yow; Parish, Thomas, R.
1994-01-01
The National Center of Atmospheric Research (NCAR) Community Climate Model Version 1 (CCM1's) simulation of the modern arctic climate is evaluated by comparing a five-year seasonal cycle simulation with the European Center for Medium-Range Weather Forecasts (ECMWF) global analyses. The sea level pressure (SLP), storm tracks, vertical cross section of height, 500-hPa height, total energy budget, and moisture budget are analyzed to investigate the biases in the simulated arctic climate. The results show that the model simulates anomalously low SLP, too much storm activity, and anomalously strong baroclinicity to the west of Greenland and vice versa to the east of Greenland. This bias is mainly attributed to the model's topographic representation of Greenland. First, the broadened Greenland topography in the model distorts the path of cyclone waves over the North Atlantic Ocean. Second, the model oversimulates the ridge over Greenland, which intensifies its blocking effect and steers the cyclone waves clockwise around it and hence produces an artificial circum-Greenland trough. These biases are significantly alleviated when the horizontal resolution increases to T42. Over the Arctic basin, the model simulates large amounts of low-level (stratus) clouds in winter and almost no stratus in summer, which is opposite to the observations. This bias is mainly due to the location of the simulated SLP features and the negative anomaly of storm activity, which prevent the transport of moisture into this region during summer but favor this transport in winter. The moisture budget analysis shows that the model's net annual precipitation (P-E) between 70 deg N and the North Pole is 6.6 times larger than the observations and the model transports six times more moisture into this region. The bias in the advection term is attributed to the positive moisture fixer scheme and the distorted flow pattern. However, the excessive moisture transport into the Arctic basin does not solely result from the advection term. The contribution by the moisture fixer is as large as from advection. By contrast, the semi-Lagrangian transport scheme used in the CCM2 significantly improves the moisture simulation for this region; however, globally the error is as serious as for the positive moisture fixer scheme. Finally, because the model has such serious problems in simulating the present arctic climate, its simulations of past and future climate change for this region are questionable.
NASA Astrophysics Data System (ADS)
Mokhov, I. I.
2018-04-01
The results describing the ability of contemporary global and regional climate models not only to assess the risk of general trends of changes but also to predict qualitatively new regional effects are presented. In particular, model simulations predicted spatially inhomogeneous changes in the wind and wave conditions in the Arctic basins, which have been confirmed in recent years. According to satellite and reanalysis data, a qualitative transition to the regime predicted by model simulations occurred about a decade ago.
NASA Astrophysics Data System (ADS)
Poan, E. D.; Gachon, P.; Laprise, R.; Aider, R.; Dueymes, G.
2018-03-01
Extratropical Cyclone (EC) characteristics depend on a combination of large-scale factors and regional processes. However, the latter are considered to be poorly represented in global climate models (GCMs), partly because their resolution is too coarse. This paper describes a framework using possibilities given by regional climate models (RCMs) to gain insight into storm activity during winter over North America (NA). Recent past climate period (1981-2005) is considered to assess EC activity over NA using the NCEP regional reanalysis (NARR) as a reference, along with the European reanalysis ERA-Interim (ERAI) and two CMIP5 GCMs used to drive the Canadian Regional Climate Model—version 5 (CRCM5) and the corresponding regional-scale simulations. While ERAI and GCM simulations show basic agreement with NARR in terms of climatological storm track patterns, detailed bias analyses show that, on the one hand, ERAI presents statistically significant positive biases in terms of EC genesis and therefore occurrence while capturing their intensity fairly well. On the other hand, GCMs present large negative intensity biases in the overall NA domain and particularly over NA eastern coast. In addition, storm occurrence over the northwestern topographic regions is highly overestimated. When the CRCM5 is driven by ERAI, no significant skill deterioration arises and, more importantly, all storm characteristics near areas with marked relief and over regions with large water masses are significantly improved with respect to ERAI. Conversely, in GCM-driven simulations, the added value contributed by CRCM5 is less prominent and systematic, except over western NA areas with high topography and over the Western Atlantic coastlines where the most frequent and intense ECs are located. Despite this significant added-value on seasonal-mean characteristics, a caveat is raised on the RCM ability to handle storm temporal `seriality', as a measure of their temporal variability at a given location. In fact, the driving models induce some significant footprints on the RCM skill to reproduce the intra-seasonal pattern of storm activity.
NASA Astrophysics Data System (ADS)
Masud, M. B.; Khaliq, M. N.; Wheater, H. S.
2017-09-01
The effects of climate change on April-October short- and long-duration precipitation extremes over the Canadian Prairie Provinces were evaluated using a multi-Regional Climate Model (RCM) ensemble available through the North American Regional Climate Change Assessment Program. Simulations considered include those performed with six RCMs driven by the National Centre for Environmental Prediction (NCEP) reanalysis II product for the 1981-2000 period and those driven by four Atmosphere-Ocean General Circulation Models (AOGCMs) for the current 1971-2000 and future 2041-2070 periods (i.e. a total of 11 current-to-future period simulation pairs). A regional frequency analysis approach was used to develop 2-, 5-, 10-, 25-, and 50-year return values of precipitation extremes from NCEP and AOGCM-driven current and future period simulations that respectively were used to study the performance of RCMs and projected changes for selected return values at regional, grid-cell and local scales. Performance errors due to internal dynamics and physics of RCMs studied for the 1981-2000 period reveal considerable variation in the performance of the RCMs. However, the performance errors were found to be much smaller for RCM ensemble averages than for individual RCMs. Projected changes in future climate to selected regional return values of short-duration (e.g. 15- and 30-min) precipitation extremes and for longer return periods (e.g. 50-year) were found to be mostly larger than those to the longer duration (e.g. 24- and 48-h) extremes and short return periods (e.g. 2-year). Overall, projected changes in precipitation extremes were larger for southeastern regions followed by southern and northern regions and smaller for southwestern and western regions of the study area. The changes to return values were also found to be statistically significant for the majority of the RCM-AOGCM simulation pairs. These projections might be useful as a key input for the future planning of urban drainage infrastructure and development of strategic climate change adaptation measures.
The influence of spectral nudging on typhoon formation in regional climate models
NASA Astrophysics Data System (ADS)
Feser, Frauke; Barcikowska, Monika
2012-03-01
Regional climate models can successfully simulate tropical cyclones and typhoons. This has been shown and was evaluated for hindcast studies of the past few decades. But often global and regional weather phenomena are not simulated at the observed location, or occur too often or seldom even though the regional model is driven by global reanalysis data which constitute a near-realistic state of the global atmosphere. Therefore, several techniques have been developed in order to make the regional model follow the global state more closely. One is spectral nudging, which is applied for horizontal wind components with increasing strength for higher model levels in this study. The aim of this study is to show the influence that this method has on the formation of tropical cyclones (TC) in regional climate models. Two ensemble simulations (each with five simulations) were computed for Southeast Asia and the Northwestern Pacific for the typhoon season 2004, one with spectral nudging and one without. First of all, spectral nudging reduced the overall TC number by about a factor of 2. But the number of tracks which are similar to observed best track data (BTD) was greatly increased. Also, spatial track density patterns were found to be more similar when using spectral nudging. The tracks merge after a short time for the spectral nudging simulations and then follow the BTD closely; for the no nudge cases the similarity is greatly reduced. A comparison of seasonal precipitation, geopotential height, and temperature fields at several height levels with observations and reanalysis data showed overall a smaller ensemble spread, higher pattern correlations and reduced root mean square errors and biases for the spectral nudged simulations. Vertical temperature profiles for selected TCs indicate that spectral nudging is not inhibiting TC development at higher levels. Both the Madden-Julian Oscillation and monsoonal precipitation are reproduced realistically by the regional model, with results slightly closer to reanalysis data for the spectral nudged simulations. On the basis of this regional climate model hindcast study of a single typhoon season, spectral nudging seems to be favourable since it has mostly positive effects on typhoon formation, location and general circulation patterns in the generation areas of TCs.
NASA Astrophysics Data System (ADS)
Wandres, Moritz; Pattiaratchi, Charitha; Hemer, Mark A.
2017-09-01
Incident wave energy flux is responsible for sediment transport and coastal erosion in wave-dominated regions such as the southwestern Australian (SWA) coastal zone. To evaluate future wave climates under increased greenhouse gas concentration scenarios, past studies have forced global wave simulations with wind data sourced from global climate model (GCM) simulations. However, due to the generally coarse spatial resolution of global climate and wave simulations, the effects of changing offshore wave conditions and sea level rise on the nearshore wave climate are still relatively unknown. To address this gap of knowledge, we investigated the projected SWA offshore, shelf, and nearshore wave climate under two potential future greenhouse gas concentration trajectories (representative concentration pathways RCP4.5 and RCP8.5). This was achieved by downscaling an ensemble of global wave simulations, forced with winds from GCMs participating in the Coupled Model Inter-comparison Project (CMIP5), into two regional domains, using the Simulating WAves Nearshore (SWAN) wave model. The wave climate is modeled for a historical 20-year time slice (1986-2005) and a projected future 20-year time-slice (2081-2100) for both scenarios. Furthermore, we compare these scenarios to the effects of considering sea-level rise (SLR) alone (stationary wave climate), and to the effects of combined SLR and projected wind-wave change. Results indicated that the SWA shelf and nearshore wave climate is more sensitive to changes in offshore mean wave direction than offshore wave heights. Nearshore, wave energy flux was projected to increase by ∼10% in exposed areas and decrease by ∼10% in sheltered areas under both climate scenarios due to a change in wave directions, compared to an overall increase of 2-4% in offshore wave heights. With SLR, the annual mean wave energy flux was projected to increase by up to 20% in shallow water (< 30 m) as a result of decreased wave dissipation. In winter months, the longshore wave energy flux, which is responsible for littoral drift, is expected to increase by up to 39% (62%) under the RCP4.5 (RCP8.5) greenhouse gas concentration pathway with SLR. The study highlights the importance of using high-resolution wave simulations to evaluate future regional wave climates, since the coastal wave climate is more responsive to changes in wave direction and sea level than offshore wave heights.
Development of ALARO-Climate regional climate model for a very high resolution
NASA Astrophysics Data System (ADS)
Skalak, Petr; Farda, Ales; Brozkova, Radmila; Masek, Jan
2014-05-01
ALARO-Climate is a new regional climate model (RCM) derived from the ALADIN LAM model family. It is based on the numerical weather prediction model ALARO and developed at the Czech Hydrometeorological Institute. The model is expected to able to work in the so called "grey zone" physics (horizontal resolution of 4 - 7 km) and at the same time retain its ability to be operated in resolutions in between 20 and 50 km, which are typical for contemporary generation of regional climate models. Here we present the main results of the RCM ALARO-Climate model simulations in 25 and 6.25 km resolutions on the longer time-scale (1961-1990). The model was driven by the ERA-40 re-analyses and run on the integration domain of ~ 2500 x 2500 km size covering the central Europe. The simulated model climate was compared with the gridded observation of air temperature (mean, maximum, minimum) and precipitation from the E-OBS version dataset 8. Other simulated parameters (e.g., cloudiness, radiation or components of water cycle) were compared to the ERA-40 re-analyses. The validation of the first ERA-40 simulation in both, 25 km and 6.25 km resolutions, revealed significant cold biases in all seasons and overestimation of precipitation in the selected Central Europe target area (0° - 30° eastern longitude ; 40° - 60° northern latitude). The differences between these simulations were small and thus revealed a robustness of the model's physical parameterization on the resolution change. The series of 25 km resolution simulations with several model adaptations was carried out to study their effect on the simulated properties of climate variables and thus possibly identify a source of major errors in the simulated climate. The current investigation suggests the main reason for biases is related to the model physic. Acknowledgements: This study was performed within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation) and CzechGlobe Centre (CZ.1.05/1.1.00/02.0073). The partial support was also provided under the projects P209-11-0956 of the Czech Science Foundation and CZ.1.07/2.4.00/31.0056 (Operational Programme of Education for Competitiveness of Ministry of Education, Youth and Sports of the Czech Republic).
Regional Climate Simulation and Data Assimilation with Variable-Resolution GCMs
NASA Technical Reports Server (NTRS)
Fox-Rabinovitz, Michael S.
2002-01-01
Variable resolution GCMs using a global stretched grid (SG) with enhanced regional resolution over one or multiple areas of interest represents a viable new approach to regional climateklimate change and data assimilation studies and applications. The multiple areas of interest, at least one within each global quadrant, include the major global mountains and major global monsoonal circulations over North America, South America, India-China, and Australia. They also can include the polar domains, and the European and African regions. The SG-approach provides an efficient regional downscaling to mesoscales, and it is an ideal tool for representing consistent interactions of globaYlarge- and regionallmeso- scales while preserving the high quality of global circulation. Basically, the SG-GCM simulations are no different from those of the traditional uniform-grid GCM simulations besides using a variable-resolution grid. Several existing SG-GCMs developed by major centers and groups are briefly described. The major discussion is based on the GEOS (Goddard Earth Observing System) SG-GCM regional climate simulations.
NASA Astrophysics Data System (ADS)
Lebassi-Habtezion, Bereket; Diffenbaugh, Noah S.
2013-10-01
potential importance of local-scale climate phenomena motivates development of approaches to enable computationally feasible nonhydrostatic climate simulations. To that end, we evaluate the potential viability of nested nonhydrostatic model approaches, using the summer climate of the western United States (WUSA) as a case study. We use the Weather Research and Forecast (WRF) model to carry out five simulations of summer 2010. This suite allows us to test differences between nonhydrostatic and hydrostatic resolutions, single and multiple nesting approaches, and high- and low-resolution reanalysis boundary conditions. WRF simulations were evaluated against station observations, gridded observations, and reanalysis data over domains that cover the 11 WUSA states at nonhydrostatic grid spacing of 4 km and hydrostatic grid spacing of 25 km and 50 km. Results show that the nonhydrostatic simulations more accurately resolve the heterogeneity of surface temperature, precipitation, and wind speed features associated with the topography and orography of the WUSA region. In addition, we find that the simulation in which the nonhydrostatic grid is nested directly within the regional reanalysis exhibits the greatest overall agreement with observational data. Results therefore indicate that further development of nonhydrostatic nesting approaches is likely to yield important insights into the response of local-scale climate phenomena to increases in global greenhouse gas concentrations. However, the biases in regional precipitation, atmospheric circulation, and moisture flux identified in a subset of the nonhydrostatic simulations suggest that alternative nonhydrostatic modeling approaches such as superparameterization and variable-resolution global nonhydrostatic modeling will provide important complements to the nested approaches tested here.
NASA Astrophysics Data System (ADS)
Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara
2016-06-01
The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.
NASA Astrophysics Data System (ADS)
Panthou, Gérémy; Vrac, Mathieu; Drobinski, Philippe; Bastin, Sophie; Somot, Samuel; Li, Laurent
2015-04-01
As regularly stated by numerous authors, the Mediterranean climate is considered as one major climate 'hot spot'. At least, three reasons may explain this statement. First, this region is known for being regularly affected by extreme hydro-meteorological events (heavy precipitation and flash-floods during the autumn season; droughts and heat waves during spring and summer). Second, the vulnerability of populations in regard of these extreme events is expected to increase during the XXIst century (at least due to the projected population growth in this region). At last, Global Circulation Models project that this regional climate will be highly sensitive to climate change. Moreover, global warming is expected to intensify the hydrological cycle and thus to increase the frequency of extreme hydro-meteorological events. In order to propose adaptation strategies, the robust estimation of the future evolution of the Mediterranean climate and the associated extreme hydro-meteorological events (in terms of intensity/frequency) is of great relevance. However, these projections are characterized by large uncertainties. Many components of the simulation chain can explain these large uncertainties : (i) uncertainties concerning the emission scenario; (ii) climate model simulations suffer of parametrization errors and uncertainties concerning the initial state of the climate; and (iii) the additional uncertainties given by the (dynamical or statistical) downscaling techniques and the impact model. Narrowing (as fine as possible) these uncertainties is a major challenge of the actual climate research. One way for that is to reduce the uncertainties associated with each component. In this study, we are interested in evaluating the potential improvement of : (i) coupled RCM simulations (with the Mediterranean Sea) in comparison with atmosphere only (stand-alone) RCM simulations and (ii) RCM simulations at a finer resolution in comparison with larger resolution. For that, three different RCMs (WRF, ALADIN, LMDZ4) were run, forced by ERA-Interim reanalyses, within the MED-CORDEX experiment. For each RCM, different versions (coupled/stand-alone, high/low resolution) were realized. A large set of scores was developed and applied in order to evaluate the performances of these different RCMs simulations. These scores were applied for three variables (daily precipitation amount, mean daily air temperature and the dry spell lengths). A particular attention was given to the RCM capability to reproduce the seasonal and spatial pattern of extreme statistics. Results show that the differences between coupled and stand-alone RCMs are localized very near the Mediterranean sea and that the model resolution has a slight impact on the scores obtained. Globally, the main differences between the RCM simulations come from the RCM used. Keywords: Mediterranean climate, extreme hydro-meteorological events, RCM simulations, evaluation of climate simulations
Effects of CO2 Physiological Forcing on Amazon Climate
NASA Astrophysics Data System (ADS)
Halladay, K.; Good, P.; Kay, G.; Betts, R.
2014-12-01
Earth system models provide us with an opportunity to examine the complex interactions and feedbacks between land surface, vegetation and atmosphere. A more thorough understanding of these interactions is essential in reducing uncertainty surrounding the potential impacts of climate and environmental change on the future state and extent of the Amazon rainforest. This forest is a important resource for the region and globally in terms of ecosystem services, hydrology and biodiversity. We aim to investigate the effect of CO2 physiological forcing on the Amazon rainforest and its feedback on regional climate by using the CMIP5 idealised 1% CO2 simulations with a focus on HadGEM2-ES. In these simulations, the atmospheric CO2 concentration is increased by 1% per year for 140 years, reaching around 1150ppm at the end of the simulation. The use of idealised simulations allows the effect of CO2 to be separated from other forcings and the sensitivities to be quantified. In particular, it enables non-linear feedbacks to be identified. In addition to the fully coupled 1% CO2 simulation, in which all schemes respond to the forcing, we use simulations in which (a) only the biochemistry scheme sees the rising CO2 concentration, and (b) in which rising CO2 is only seen by the radiation scheme. With these simulations we examine the degree to which CO2 effects are additive or non-linear when in combination. We also show regional differences in climate and vegetation response, highlighting areas of increased sensitivity.
NASA Astrophysics Data System (ADS)
Tao, F.; Rötter, R.
2013-12-01
Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for better informed decision-making on adaptation strategies. References 1. Coumou, D. & Rahmstorf, S. A decade of extremes. Nature Clim. Change, 2, 491-496 (2012). 2. Rötter, R. P., Carter, T. R., Olesen, J. E. & Porter, J. R. Crop-climate models need an overhaul. Nature Clim. Change, 1, 175-177 (2011). 3. Asseng, S. et al., Uncertainty in simulating wheat yields under climate change. Nature Clim. Change. 10.1038/nclimate1916. (2013). 4. Porter, J.R., & Semenov, M., Crop responses to climatic variation . Trans. R. Soc. B., 360, 2021-2035 (2005). 5. Porter, J.R. & Christensen, S. Deconstructing crop processes and models via identities. Plant, Cell and Environment . doi: 10.1111/pce.12107 (2013). 6. Boogaard, H.L., van Diepen C.A., Rötter R.P., Cabrera J.M. & van Laar H.H. User's guide for the WOFOST 7.1 crop growth simulation model and Control Center 1.5, Alterra, Wageningen, The Netherlands. (1998) 7. Tao, F. & Zhang, Z. Climate change, wheat productivity and water use in the North China Plain: a new super-ensemble-based probabilistic projection. Agric. Forest Meteorol., 170, 146-165. (2013).
The implication of irrigation in climate change impact assessment: a European-wide study.
Zhao, Gang; Webber, Heidi; Hoffmann, Holger; Wolf, Joost; Siebert, Stefan; Ewert, Frank
2015-11-01
This study evaluates the impacts of projected climate change on irrigation requirements and yields of six crops (winter wheat, winter barley, rapeseed, grain maize, potato, and sugar beet) in Europe. Furthermore, the uncertainty deriving from consideration of irrigation, CO2 effects on crop growth and transpiration, and different climate change scenarios in climate change impact assessments is quantified. Net irrigation requirement (NIR) and yields of the six crops were simulated for a baseline (1982-2006) and three SRES scenarios (B1, B2 and A1B, 2040-2064) under rainfed and irrigated conditions, using a process-based crop model, SIMPLACE
Precipitation Organization in a Warmer Climate
NASA Astrophysics Data System (ADS)
Rickenbach, T. M.; Nieto Ferreira, R.; Nissenbaum, M.
2014-12-01
This study will investigate changes in precipitation organization in a warmer climate using the Weather Research and Forecasting (WRF) model and CMIP-5 ensemble climate simulations. This work builds from an existing four-year NEXRAD radar-based precipitation climatology over the southeastern U.S. that uses a simple two-category framework of precipitation organization based on instantaneous precipitating feature size. The first category - mesoscale precipitation features (MPF) - dominates winter precipitation and is linked to the more predictable large-scale forcing provided by the extratropical cyclones. In contrast, the second category - isolated precipitation - dominates the summer season precipitation in the southern coastal and inland regions but is linked to less predictable mesoscale circulations and to local thermodynamics more crudely represented in climate models. Most climate modeling studies suggest that an accelerated water cycle in a warmer world will lead to an overall increase in precipitation, but few studies have addressed how precipitation organization may change regionally. To address this, WRF will simulate representative wintertime and summertime precipitation events in the Southeast US under the current and future climate. These events will be simulated in an environment resembling the future climate of the 2090s using the pseudo-global warming (PGW) approach based on an ensemble of temperature projections. The working hypothesis is that the higher water vapor content in the future simulation will result in an increase in the number of isolated convective systems, while MPFs will be more intense and longer-lasting. In the context of the seasonal climatology of MPF and isolated precipitation, these results have implications for assessing the predictability of future regional precipitation in the southeastern U.S.
Lin, Yu-Pin; Hong, Nien-Ming; Chiang, Li-Chi; Liu, Yen-Lan; Chu, Hone-Jay
2012-01-01
The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region’s hydrology. The objective of this study is to simulate and assess a region’s ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functions) model is used to simulate three hydrological components, namely, runoff, groundwater and streamflow, based on various land-use scenarios under six global climate models. The land-use allocations are simulated by the CLUE-s model for the various development scenarios. The simulation results show that runoff and streamflow are strongly related to the precipitation levels predicted by different global climate models for the wet and dry seasons, but groundwater cycles are more related to land-use. The effects of climate change on groundwater and runoff can be mitigated by modifying current land-use patterns; and slowing the rate of urbanization would also reduce the impact of climate change on hydrological components. Thus, land-use adaptation on a local/regional scale provides an alternative way to reduce the impacts of global climate change on local hydrology. PMID:23202833
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Frank; Dennis, John; MacCready, Parker
This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation. The main computational objectives were: 1. To develop computationally efficient, but physically based, parameterizations of estuary and continental shelf mixing processes for use in an Earth System Model (CESM). 2. Tomore » develop a two-way nested regional modeling framework in order to dynamically downscale the climate response of particular coastal ocean regions and to upscale the impact of the regional coastal processes to the global climate in an Earth System Model (CESM). 3. To develop computational infrastructure to enhance the efficiency of data transfer between specific sources and destinations, i.e., a point-to-point communication capability, (used in objective 1) within POP, the ocean component of CESM.« less
Evaluation of a Mesoscale Convective System in Variable-Resolution CESM
NASA Astrophysics Data System (ADS)
Payne, A. E.; Jablonowski, C.
2017-12-01
Warm season precipitation over the Southern Great Plains (SGP) follows a well observed diurnal pattern of variability, peaking at night-time, due to the eastward propagation of mesoscale convection systems that develop over the eastern slopes of the Rockies in the late afternoon. While most climate models are unable to adequately capture the organization of convection and characteristic pattern of precipitation over this region, models with high enough resolution to explicitly resolve convection show improvement. However, high resolution simulations are computationally expensive and, in the case of regional climate models, are subject to boundary conditions. Newly developed variable resolution global climate models strike a balance between the benefits of high-resolution regional climate models and the large-scale dynamics of global climate models and low computational cost. Recently developed parameterizations that are insensitive to the model grid scale provide a way to improve model performance. Here, we present an evaluation of the newly available Cloud Layers Unified by Binormals (CLUBB) parameterization scheme in a suite of variable-resolution CESM simulations with resolutions ranging from 110 km to 7 km within a regionally refined region centered over the SGP Atmospheric Radiation Measurement (ARM) site. Simulations utilize the hindcast approach developed by the Department of Energy's Cloud-Associated Parameterizations Testbed (CAPT) for the assessment of climate models. We limit our evaluation to a single mesoscale convective system that passed over the region on May 24, 2008. The effects of grid-resolution on the timing and intensity of precipitation, as well as, on the transition from shallow to deep convection are assessed against ground-based observations from the SGP ARM site, satellite observations and ERA-Interim reanalysis.
Towards a unified Global Weather-Climate Prediction System
NASA Astrophysics Data System (ADS)
Lin, S. J.
2016-12-01
The Geophysical Fluid Dynamics Laboratory has been developing a unified regional-global modeling system with variable resolution capabilities that can be used for severe weather predictions and kilometer scale regional climate simulations within a unified global modeling system. The foundation of this flexible modeling system is the nonhydrostatic Finite-Volume Dynamical Core on the Cubed-Sphere (FV3). A unique aspect of FV3 is that it is "vertically Lagrangian" (Lin 2004), essentially reducing the equation sets to two dimensions, and is the single most important reason why FV3 outperforms other non-hydrostatic cores. Owning to its accuracy, adaptability, and computational efficiency, the FV3 has been selected as the "engine" for NOAA's Next Generation Global Prediction System (NGGPS). We have built into the modeling system a stretched grid, a two-way regional-global nested grid, and an optimal combination of the stretched and two-way nests capability, making kilometer-scale regional simulations within a global modeling system feasible. Our main scientific goal is to enable simulations of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously regarded as impossible. In this presentation I will demonstrate that, with the FV3, it is computationally feasible to simulate not only super-cell thunderstorms, but also the subsequent genesis of tornado-like vortices using a global model that was originally designed for climate simulations. The development and tuning strategy between traditional weather and climate models are fundamentally different due to different metrics. We were able to adapt and use traditional "climate" metrics or standards, such as angular momentum conservation, energy conservation, and flux balance at top of the atmosphere, and gain insight into problems of traditional weather prediction model for medium-range weather prediction, and vice versa. Therefore, the unification in weather and climate models can happen not just at the algorithm or parameterization level, but also in the metric and tuning strategy used for both applications, and ultimately, with benefits to both weather and climate applications.
Irrigation as an Historical Climate Forcing
NASA Technical Reports Server (NTRS)
Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.
2014-01-01
Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols, greenhouse gases, etc.) dominate the long term climate evolution in the simulations. To better constrain the magnitude and uncertainties of irrigation-forced climate anomalies, irrigation should therefore be considered as another important anthropogenic climate forcing in the next generation of historical climate simulations and multimodel assessments.
NASA Astrophysics Data System (ADS)
Yilmaz, Y.; Sen, O. L.; Turuncoglu, U. U.
2016-12-01
The Southeastern Anatolia Project (SAP) of Turkey is a multidimensional regional development project based on utilizing the waters of Euphrates and Tigris rivers by irrigating vast semi-arid lands and by producing hydroelectric power. Since the beginning of 90s, the irrigation schemes carried out within the scope of SAP have substantially altered the land cover / land use (LCLU) of the region. In this study, the individual and combined effects of anthropogenic LCLU changes through intensification of irrigation and climate change are investigated by use of a state-of-the-art regional climate model (RegCM4). For this purpose, model simulations with three reconstructed LCLU maps and two future climate change scenarios were conducted over a domain at a horizontal resolution of 48 km over Eastern Mediterranean and Black Sea region, and later on nested domain with 12 km resolution over Turkey. As forcing dataset for RegCM4 at the boundaries, a reanalysis data (NNRP) and outputs of a global circulation model (EC-EARTH) have been used. Model performance was assessed by using high resolution gridded CRU (Climatic Research Unit) data for the period between 1991 and 2008. The model suggests that LCLU changes have some effects on surface hydro-climatic variables in the region (e.g., temperatures are 0.4 0C and 0.8 0C cooler while precipitation amounts are more around 3% and 7%, evapotranspiration rates are higher 51% and 114%, specific humidity amounts are more around 8% and 17%, on annual basis, in simulations respectively with current and future land use maps compared to a simulation with pre-SAP land use conditions). The RCP 4.5 scenario simulation with the default land use map shows that precipitation and evapotranspiration amounts will increase in opposition to the simulation results of RCP 8.5 scenario. Preliminary results of the study indicate that current and future LCLU changes will affect the water balance of the basin. The riparian countries (Turkey, Iraq and Syria) have been facing a crucial water sharing problem. Considering the significant water loss through evapotranspiration has potential for shaping the future water resources management and policies in the region. Acknowledgment This study has been supported by TUBITAK (The Scientific and Technological Research Council of Turkey) under project number 114Y114.
NASA Astrophysics Data System (ADS)
Loikith, Paul C.; Waliser, Duane E.; Lee, Huikyo; Neelin, J. David; Lintner, Benjamin R.; McGinnis, Seth; Mearns, Linda O.; Kim, Jinwon
2015-12-01
Large-scale meteorological patterns (LSMPs) associated with temperature extremes are evaluated in a suite of regional climate model (RCM) simulations contributing to the North American Regional Climate Change Assessment Program. LSMPs are characterized through composites of surface air temperature, sea level pressure, and 500 hPa geopotential height anomalies concurrent with extreme temperature days. Six of the seventeen RCM simulations are driven by boundary conditions from reanalysis while the other eleven are driven by one of four global climate models (GCMs). Four illustrative case studies are analyzed in detail. Model fidelity in LSMP spatial representation is high for cold winter extremes near Chicago. Winter warm extremes are captured by most RCMs in northern California, with some notable exceptions. Model fidelity is lower for cool summer days near Houston and extreme summer heat events in the Ohio Valley. Physical interpretation of these patterns and identification of well-simulated cases, such as for Chicago, boosts confidence in the ability of these models to simulate days in the tails of the temperature distribution. Results appear consistent with the expectation that the ability of an RCM to reproduce a realistically shaped frequency distribution for temperature, especially at the tails, is related to its fidelity in simulating LMSPs. Each ensemble member is ranked for its ability to reproduce LSMPs associated with observed warm and cold extremes, identifying systematically high performing RCMs and the GCMs that provide superior boundary forcing. The methodology developed here provides a framework for identifying regions where further process-based evaluation would improve the understanding of simulation error and help guide future model improvement and downscaling efforts.
Future climate change scenarios in Central America at high spatial resolution.
Imbach, Pablo; Chou, Sin Chan; Lyra, André; Rodrigues, Daniela; Rodriguez, Daniel; Latinovic, Dragan; Siqueira, Gracielle; Silva, Adan; Garofolo, Lucas; Georgiou, Selena
2018-01-01
The objective of this work is to assess the downscaling projections of climate change over Central America at 8-km resolution using the Eta Regional Climate Model, driven by the HadGEM2-ES simulations of RCP4.5 emission scenario. The narrow characteristic of continent supports the use of numerical simulations at very high-horizontal resolution. Prior to assessing climate change, the 30-year baseline period 1961-1990 is evaluated against different sources of observations of precipitation and temperature. The mean seasonal precipitation and temperature distribution show reasonable agreement with observations. Spatial correlation of the Eta, 8-km resolution, simulations against observations show clear advantage over the driver coarse global model simulations. Seasonal cycle of precipitation confirms the added value of the Eta at 8-km over coarser resolution simulations. The Eta simulations show a systematic cold bias in the region. Climate features of the Mid-Summer Drought and the Caribbean Low-Level Jet are well simulated by the Eta model at 8-km resolution. The assessment of the future climate change is based on the 30-year period 2021-2050, under RCP4.5 scenario. Precipitation is generally reduced, in particular during the JJA and SON, the rainy season. Warming is expected over the region, but stronger in the northern portion of the continent. The Mid-Summer Drought may develop in regions that do not occur during the baseline period, and where it occurs the strength may increase in the future scenario. The Caribbean Low-Level Jet shows little change in the future. Extreme temperatures have positive trend within the period 2021-2050, whereas extreme precipitation, measured by R50mm and R90p, shows positive trend in the eastern coast, around Costa Rica, and negative trends in the northern part of the continent. Negative trend in the duration of dry spell, which is an estimate based on evapotranspiration, is projected in most part of the continent. Annual mean water excess has negative trends in most part of the continent, which suggests decreasing water availability in the future scenario.
Future climate change scenarios in Central America at high spatial resolution
Imbach, Pablo; Chou, Sin Chan; Rodrigues, Daniela; Rodriguez, Daniel; Latinovic, Dragan; Siqueira, Gracielle; Silva, Adan; Garofolo, Lucas; Georgiou, Selena
2018-01-01
The objective of this work is to assess the downscaling projections of climate change over Central America at 8-km resolution using the Eta Regional Climate Model, driven by the HadGEM2-ES simulations of RCP4.5 emission scenario. The narrow characteristic of continent supports the use of numerical simulations at very high-horizontal resolution. Prior to assessing climate change, the 30-year baseline period 1961–1990 is evaluated against different sources of observations of precipitation and temperature. The mean seasonal precipitation and temperature distribution show reasonable agreement with observations. Spatial correlation of the Eta, 8-km resolution, simulations against observations show clear advantage over the driver coarse global model simulations. Seasonal cycle of precipitation confirms the added value of the Eta at 8-km over coarser resolution simulations. The Eta simulations show a systematic cold bias in the region. Climate features of the Mid-Summer Drought and the Caribbean Low-Level Jet are well simulated by the Eta model at 8-km resolution. The assessment of the future climate change is based on the 30-year period 2021–2050, under RCP4.5 scenario. Precipitation is generally reduced, in particular during the JJA and SON, the rainy season. Warming is expected over the region, but stronger in the northern portion of the continent. The Mid-Summer Drought may develop in regions that do not occur during the baseline period, and where it occurs the strength may increase in the future scenario. The Caribbean Low-Level Jet shows little change in the future. Extreme temperatures have positive trend within the period 2021–2050, whereas extreme precipitation, measured by R50mm and R90p, shows positive trend in the eastern coast, around Costa Rica, and negative trends in the northern part of the continent. Negative trend in the duration of dry spell, which is an estimate based on evapotranspiration, is projected in most part of the continent. Annual mean water excess has negative trends in most part of the continent, which suggests decreasing water availability in the future scenario. PMID:29694355
NASA Astrophysics Data System (ADS)
van Walsum, P. E. V.
2011-11-01
Climate change impact modelling of hydrologic responses is hampered by climate-dependent model parameterizations. Reducing this dependency was one of the goals of extending the regional hydrologic modelling system SIMGRO with a two-way coupling to the crop growth simulation model WOFOST. The coupling includes feedbacks to the hydrologic model in terms of the root zone depth, soil cover, leaf area index, interception storage capacity, crop height and crop factor. For investigating whether such feedbacks lead to significantly different simulation results, two versions of the model coupling were set up for a test region: one with exogenous vegetation parameters, the "static" model, and one with endogenous simulation of the crop growth, the "dynamic" model WOFOST. The used parameterization methods of the static/dynamic vegetation models ensure that for the current climate the simulated long-term average of the actual evapotranspiration is the same for both models. Simulations were made for two climate scenarios. Owing to the higher temperatures in combination with a higher CO2-concentration of the atmosphere, a forward time shift of the crop development is simulated in the dynamic model; the used arable land crop, potatoes, also shows a shortening of the growing season. For this crop, a significant reduction of the potential transpiration is simulated compared to the static model, in the example by 15% in a warm, dry year. In consequence, the simulated crop water stress (the unit minus the relative transpiration) is lower when the dynamic model is used; also the simulated increase of crop water stress due to climate change is lower; in the example, the simulated increase is 15 percentage points less (of 55) than when a static model is used. The static/dynamic models also simulate different absolute values of the transpiration. The difference is most pronounced for potatoes at locations with ample moisture supply; this supply can either come from storage release of a good soil or from capillary rise. With good supply of moisture, the dynamic model simulates up to 10% less actual evapotranspiration than the static one in the example. This can lead to cases where the dynamic model predicts a slight increase of the recharge in a climate scenario, where the static model predicts a decrease. The use of a dynamic model also affects the simulated demand for surface water from external sources; especially the timing is affected. The proposed modelling approach uses postulated relationships that require validation with controlled field trials. In the Netherlands there is a lack of experimental facilities for performing such validations.
NASA Astrophysics Data System (ADS)
Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y.
2011-12-01
The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. While the latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic important-sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e., the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.
NASA Astrophysics Data System (ADS)
Qian, Y.; Yang, B.; Lin, G.; Leung, R.; Zhang, Y.
2012-04-01
The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. The latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic important-sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e., the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.
NASA Astrophysics Data System (ADS)
Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y.
2012-03-01
The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. While the latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic importance sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e. the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.
Impact of Variable-Resolution Meshes on Regional Climate Simulations
NASA Astrophysics Data System (ADS)
Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.
2014-12-01
The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using ERA-Interim re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally- refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.
Impact of Variable-Resolution Meshes on Regional Climate Simulations
NASA Astrophysics Data System (ADS)
Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.
2013-12-01
The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using NCEP/NCAR re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally-refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.
Characterizing bias correction uncertainty in wheat yield predictions
NASA Astrophysics Data System (ADS)
Ortiz, Andrea Monica; Jones, Julie; Freckleton, Robert; Scaife, Adam
2017-04-01
Farming systems are under increased pressure due to current and future climate change, variability and extremes. Research on the impacts of climate change on crop production typically rely on the output of complex Global and Regional Climate Models, which are used as input to crop impact models. Yield predictions from these top-down approaches can have high uncertainty for several reasons, including diverse model construction and parameterization, future emissions scenarios, and inherent or response uncertainty. These uncertainties propagate down each step of the 'cascade of uncertainty' that flows from climate input to impact predictions, leading to yield predictions that may be too complex for their intended use in practical adaptation options. In addition to uncertainty from impact models, uncertainty can also stem from the intermediate steps that are used in impact studies to adjust climate model simulations to become more realistic when compared to observations, or to correct the spatial or temporal resolution of climate simulations, which are often not directly applicable as input into impact models. These important steps of bias correction or calibration also add uncertainty to final yield predictions, given the various approaches that exist to correct climate model simulations. In order to address how much uncertainty the choice of bias correction method can add to yield predictions, we use several evaluation runs from Regional Climate Models from the Coordinated Regional Downscaling Experiment over Europe (EURO-CORDEX) at different resolutions together with different bias correction methods (linear and variance scaling, power transformation, quantile-quantile mapping) as input to a statistical crop model for wheat, a staple European food crop. The objective of our work is to compare the resulting simulation-driven hindcasted wheat yields to climate observation-driven wheat yield hindcasts from the UK and Germany in order to determine ranges of yield uncertainty that result from different climate model simulation input and bias correction methods. We simulate wheat yields using a General Linear Model that includes the effects of seasonal maximum temperatures and precipitation, since wheat is sensitive to heat stress during important developmental stages. We use the same statistical model to predict future wheat yields using the recently available bias-corrected simulations of EURO-CORDEX-Adjust. While statistical models are often criticized for their lack of complexity, an advantage is that we are here able to consider only the effect of the choice of climate model, resolution or bias correction method on yield. Initial results using both past and future bias-corrected climate simulations with a process-based model will also be presented. Through these methods, we make recommendations in preparing climate model output for crop models.
Eagle, Robert A; Risi, Camille; Mitchell, Jonathan L; Eiler, John M; Seibt, Ulrike; Neelin, J David; Li, Gaojun; Tripati, Aradhna K
2013-05-28
The East Asian monsoon is one of Earth's most significant climatic phenomena, and numerous paleoclimate archives have revealed that it exhibits variations on orbital and suborbital time scales. Quantitative constraints on the climate changes associated with these past variations are limited, yet are needed to constrain sensitivity of the region to changes in greenhouse gas levels. Here, we show central China is a region that experienced a much larger temperature change since the Last Glacial Maximum than typically simulated by climate models. We applied clumped isotope thermometry to carbonates from the central Chinese Loess Plateau to reconstruct temperature and water isotope shifts from the Last Glacial Maximum to present. We find a summertime temperature change of 6-7 °C that is reproduced by climate model simulations presented here. Proxy data reveal evidence for a shift to lighter isotopic composition of meteoric waters in glacial times, which is also captured by our model. Analysis of model outputs suggests that glacial cooling over continental China is significantly amplified by the influence of stationary waves, which, in turn, are enhanced by continental ice sheets. These results not only support high regional climate sensitivity in Central China but highlight the fundamental role of planetary-scale atmospheric dynamics in the sensitivity of regional climates to continental glaciation, changing greenhouse gas levels, and insolation.
Agriculture Impacts of Regional Nuclear Conflict
NASA Astrophysics Data System (ADS)
Xia, Lili; Robock, Alan; Mills, Michael; Toon, Owen Brian
2013-04-01
One of the major consequences of nuclear war would be climate change due to massive smoke injection into the atmosphere. Smoke from burning cities can be lofted into the stratosphere where it will have an e-folding lifetime more than 5 years. The climate changes include significant cooling, reduction of solar radiation, and reduction of precipitation. Each of these changes can affect agricultural productivity. To investigate the response from a regional nuclear war between India and Pakistan, we used the Decision Support System for Agrotechnology Transfer agricultural simulation model. We first evaluated the model by forcing it with daily weather data and management practices in China and the USA for rice, maize, wheat, and soybeans. Then we perturbed observed weather data using monthly climate anomalies for a 10-year period due to a simulated 5 Tg soot injection that could result from a regional nuclear war between India and Pakistan, using a total of 100 15 kt atomic bombs, much less than 1% of the current global nuclear arsenal. We computed anomalies using the NASA Goddard Institute for Space Studies ModelE and NCAR's Whole Atmosphere Community Climate Model (WACCM). We perturbed each year of the observations with anomalies from each year of the 10-year nuclear war simulations. We found that different regions respond differently to a regional nuclear war; southern regions show slight increases of crop yields while in northern regions crop yields drop significantly. Sensitivity tests show that temperature changes due to nuclear war are more important than precipitation and solar radiation changes in affecting crop yields in the regions we studied. In total, crop production in China and the USA would decrease 15-50% averaged over the 10 years using both models' output. Simulations forced by ModelE output show smaller impacts than simulations forced by WACCM output at the end of the 10 year period because of the different temperature responses in the two models.
North-western Mediterranean sea-breeze circulation in a regional climate system model
NASA Astrophysics Data System (ADS)
Drobinski, Philippe; Bastin, Sophie; Arsouze, Thomas; Béranger, Karine; Flaounas, Emmanouil; Stéfanon, Marc
2017-04-01
In the Mediterranean basin, moisture transport can occur over large distance from remote regions by the synoptic circulation or more locally by sea breezes, driven by land-sea thermal contrast. Sea breezes play an important role in inland transport of moisture especially between late spring and early fall. In order to explicitly represent the two-way interactions at the atmosphere-ocean interface in the Mediterranean region and quantify the role of air-sea feedbacks on regional meteorology and climate, simulations at 20 km resolution performed with WRF regional climate model (RCM) and MORCE atmosphere-ocean regional climate model (AORCM) coupling WRF and NEMO-MED12 in the frame of HyMeX/MED-CORDEX are compared. One result of this study is that these simulations reproduce remarkably well the intensity, direction and inland penetration of the sea breeze and even the existence of the shallow sea breeze despite the overestimate of temperature over land in both simulations. The coupled simulation provides a more realistic representation of the evolution of the SST field at fine scale than the atmosphere-only one. Temperature and moisture anomalies are created in direct response to the SST anomaly and are advected by the sea breeze over land. However, the SST anomalies are not of sufficient magnitude to affect the large-scale sea-breeze circulation. The temperature anomalies are quickly damped by strong surface heating over land, whereas the water vapor mixing ratio anomalies are transported further inland. The inland limit of significance is imposed by the vertical dilution in a deeper continental boundary-layer.
NASA Astrophysics Data System (ADS)
Braun, Marco; Chaumont, Diane
2013-04-01
Using climate model output to explore climate change impacts on hydrology requires several considerations, choices and methods in the post treatment of the datasets. In the effort of producing a comprehensive data base of climate change scenarios for over 300 watersheds in the Canadian province of Québec, a selection of state of the art procedures were applied to an ensemble comprising 87 climate simulations. The climate data ensemble is based on global climate simulations from the Coupled Model Intercomparison Project - Phase 3 (CMIP3) and regional climate simulations from the North American Regional Climate Change Assessment Program (NARCCAP) and operational simulations produced at Ouranos. Information on the response of hydrological systems to changing climate conditions can be derived by linking climate simulations with hydrological models. However, the direct use of raw climate model output variables as drivers for hydrological models is limited by issues such as spatial resolution and the calibration of hydro models with observations. Methods for downscaling and bias correcting the data are required to achieve seamless integration of climate simulations with hydro models. The effects on the results of four different approaches to data post processing were explored and compared. We present the lessons learned from building the largest data base yet for multiple stakeholders in the hydro power and water management sector in Québec putting an emphasis on the benefits and pitfalls in choosing simulations, extracting the data, performing bias corrections and documenting the results. A discussion of the sources and significance of uncertainties in the data will also be included. The climatological data base was subsequently used by the state owned hydro power company Hydro-Québec and the Centre d'expertise hydrique du Québec (CEHQ), the provincial water authority, to simulate future stream flows and analyse the impacts on hydrological indicators. While this submission focuses on the production of climatic scenarios for application in hydrology, the submission « The (cQ)2 project: assessing watershed scale hydrological changes for the province of Québec at the 2050 horizon, a collaborative framework » by Catherine Guay describes how Hydro-Québec and CEHQ put the data into use.
NASA Astrophysics Data System (ADS)
Ji, Zhenming; Wang, Guiling; Pal, Jeremy S.; Yu, Miao
2016-02-01
Mineral dusts present in the atmosphere can play an important role in climate over West Africa and surrounding regions. However, current understanding regarding how dust aerosols influence climate of West Africa is very limited. In this study, a regional climate model is used to investigate the potential climatic impacts of dust aerosols. Two sets of simulations driven by reanalysis and Earth System Model boundary conditions are performed with and without the representation of dust processes. The model, regardless of the boundary forcing, captures the spatial and temporal variability of the aerosol optical depth and surface concentration. The shortwave radiative forcing of dust is negative at the surface and positive in the atmosphere, with greater changes in the spring and summer. The presence of mineral dusts causes surface cooling and lower troposphere heating, resulting in a stabilization effect and reduction in precipitation in the northern portion of the monsoon close to the dust emissions region. This results in an enhancement of precipitation to the south. While dusts cause the lower troposphere to stabilize, upper tropospheric cooling makes the region more prone to intense deep convection as is evident by a simulated increase in extreme precipitation. In a companion paper, the impacts of dust emissions on future West African climate are investigated.
NASA Astrophysics Data System (ADS)
Ghimire, S.; Choudhary, A.; Dimri, A. P.
2018-04-01
Analysis of regional climate simulations to evaluate the ability of 11 Coordinated Regional Climate Downscaling Experiment in South Asia experiments (CORDEX-South Asia) along with their ensemble to produce precipitation from June to September (JJAS) over the Himalayan region have been carried out. These suite of 11 combinations come from 6 regional climate models (RCMs) driven with 10 initial and boundary conditions from different global climate models and are collectively referred here as 11 CORDEX South Asia experiments. All the RCMs use a similar domain and are having similar spatial resolution of 0.44° ( 50 km). The set of experiments are considered to study precipitation sensitivity associated with the Indian summer monsoon (ISM) over the study region. This effort is made as ISM plays a vital role in summertime precipitation over the Himalayan region which acts as driver for the sustenance of habitat, population, crop, glacier, hydrology etc. In addition, so far the summer monsoon precipitation climatology over the Himalayan region has not been studied with the help of CORDEX data. Thus this study is initiated to evaluate the ability of the experiments and their ensemble in reproducing the characteristics of summer monsoon precipitation over Himalayan region, for the present climate (1970-2005). The precipitation climatology, annual precipitation cycles and interannual variabilities from each simulation have been assessed against the gridded observational dataset: Asian Precipitation-Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources for the given time period. Further, after the selection of the better performing experiment the frequency distribution of precipitation was also studied. In this study, an approach has also been made to study the degree of agreement among individual experiments as a way to quantify the uncertainty among them. The experiments though show a wide variation among themselves and individually over time and space in simulating precipitation distribution over the study region, but noticeably along the foothills of the Himalayas all the simulations show dry precipitation bias against the corresponding observation. In addition, as we move towards higher elevation regions these experiments in general show wet bias. The experiment driven by EC-EARTH global climate model and downscaled using Rossby Center regional Atmospheric model version 4 developed by Swedish Meteorological and Hydrological Institute (SMHI-RCA4) simulate precipitation closely in correspondence with the observation. The ensemble outperforms the result of individual experiments. Correspondingly, different kinds of statistical analysis like spatial and temporal correlation, Taylor diagram, frequency distribution and scatter plot have been performed to compare the model output with observation and to explain the associated resemblance, robustness and dynamics statistically. Through the bias and ensemble spread analysis, an estimation of the uncertainty of the model fields and the degree of agreement among them has also been carried out in this study. Overview of the study suggests that these experiments facilitate precipitation evolution and structure over the Himalayan region with certain degree of uncertainty.
Piras, Monica; Mascaro, Giuseppe; Deidda, Roberto; Vivoni, Enrique R
2016-02-01
Mediterranean region is characterized by high precipitation variability often enhanced by orography, with strong seasonality and large inter-annual fluctuations, and by high heterogeneity of terrain and land surface properties. As a consequence, catchments in this area are often prone to the occurrence of hydrometeorological extremes, including storms, floods and flash-floods. A number of climate studies focused in the Mediterranean region predict that extreme events will occur with higher intensity and frequency, thus requiring further analyses to assess their effect at the land surface, particularly in small- and medium-sized watersheds. In this study, climate and hydrologic simulations produced within the Climate Induced Changes on the Hydrology of Mediterranean Basins (CLIMB) EU FP7 research project were used to analyze how precipitation extremes propagate into discharge extremes in the Rio Mannu basin (472.5km(2)), located in Sardinia, Italy. The basin hydrologic response to climate forcings in a reference (1971-2000) and a future (2041-2070) period was simulated through the combined use of a set of global and regional climate models, statistical downscaling techniques, and a process based distributed hydrologic model. We analyzed and compared the distribution of annual maxima extracted from hourly and daily precipitation and peak discharge time series, simulated by the hydrologic model under climate forcing. For this aim, yearly maxima were fit by the Generalized Extreme Value (GEV) distribution using a regional approach. Next, we discussed commonality and contrasting behaviors of precipitation and discharge maxima distributions to better understand how hydrological transformations impact propagation of extremes. Finally, we show how rainfall statistical downscaling algorithms produce more reliable forcings for hydrological models than coarse climate model outputs. Copyright © 2015 Elsevier B.V. All rights reserved.
Regional climate simulations with COSMO-CLM over MENA-CORDEX domain
NASA Astrophysics Data System (ADS)
Galluccio, Salvatore; Bucchignani, Edoardo; Mercogliano, Paola; Montesarchio, Myriam
2014-05-01
In the frame of WCRP Coordinated Regional Downscaling Experiment (CORDEX), a set of common Regional Climate Downscaling (RCD) domains has been defined, as a prerequisite for the development of model evaluation and climate projection frameworks. CORDEX domains encompass the majority of land areas of the world. In this work, climate simulations have been performed over MENA-CORDEX domain, which includes North-Africa, southern Europe and the whole Arabian peninsula. The non-hydrostatic regional climate model COSMO-CLM has been used. At CMCC, regional climate modelling is a part of an integrated simulation system and it has been used in different European and African projects to provide qualitative and quantitative evaluation of the hydrogeological and public health risks. A series of simulations has been conducted over the MENA-CORDEX area at spatial resolution of 0.44°. A sensitivity analysis was conducted to adjust the model configuration to better reproduce the observed climate data. The numerical simulations were driven by ERA-Interim reanalysis (horizontal resolution of 0.703°) for the period 1979-1984; the first year, was considered as a spin up period. The validation was performed by using several data sets: CRU data set was used to validate temperature, precipitation and cloud cover; MERRA data set was used to validate temperature and precipitation and GPCP for precipitation. The model sensitivity to the external parameters was tested considering two different configurations for the surface albedo. In the first one, albedo is only function of soil-type whereas in the second configuration it is prescribed by two external fields for dry and saturated soil based on MODIS data. Moreover, we tested two aerosol distributions as well, namely the default Tanre aerosol distribution and aerosol maps according to Tegen (NASA/GISS). We found, as expected, a significant sensitivity, in particular on the African region. We also varied tuning and physical parameters, such as the scaling factor for the thickness of the laminar boundary layer for heat, which defines the layer with non-turbulent characteristics, mean entrainment rate for shallow convection, cloud ice threshold for autoconversion, radiation and clouds. We choose such parameters following several literature works, which showed that these parameters mostly affect the fields simulated by the model. However, it is known that the sensitivity of a RCM with respect to parameter variations depends, in general, on the model domain, the temporal and spatial scales and the model variables considered. We made a first set of simulations varying one parameter at a time, using Taylor's diagrams, as well as seasonal cycles and bias maps to take tracking changes in the model performance. Successively, we run a second set of simulations in which we varied two or three parameters at a time to get an optimal configuration. The selected configuration is being used to carry out simulations on a 30-years past period, starting from 1979, for three horizontal resolutions, namely 0.44°, 0.22° and 0.11°.
Assessing the Impact of Climatic Variability and Change on Maize Production in the Midwestern USA
NASA Astrophysics Data System (ADS)
Andresen, J.; Jain, A. K.; Niyogi, D. S.; Alagarswamy, G.; Biehl, L.; Delamater, P.; Doering, O.; Elias, A.; Elmore, R.; Gramig, B.; Hart, C.; Kellner, O.; Liu, X.; Mohankumar, E.; Prokopy, L. S.; Song, C.; Todey, D.; Widhalm, M.
2013-12-01
Weather and climate remain among the most important uncontrollable factors in agricultural production systems. In this study, three process-based crop simulation models were used to identify the impacts of climate on the production of maize in the Midwestern U.S.A. during the past century. The 12-state region is a key global production area, responsible for more than 80% of U.S. domestic and 25% of total global production. The study is a part of the Useful to Useable (U2U) Project, a USDA NIFA-sponsored project seeking to improve the resilience and profitability of farming operations in the region amid climate variability and change. Three process-based crop simulation models were used in the study: CERES-Maize (DSSAT, Hoogenboom et al., 2012), the Hybrid-Maize model (Yang et al., 2004), and the Integrated Science Assessment Model (ISAM, Song et al., 2013). Model validation was carried out with individual plot and county observations. The models were run with 4 to 50 km spatial resolution gridded weather data for representative soils and cultivars, 1981-2012, to examine spatial and temporal yield variability within the region. We also examined the influence of different crop models and spatial scales on regional scale yield estimation, as well as a yield gap analysis between observed and attainable yields. An additional study was carried out with the CERES-Maize model at 18 individual site locations 1901-2012 to examine longer term historical trends. For all simulations, all input variables were held constant in order to isolate the impacts of climate. In general, the model estimates were in good agreement with observed yields, especially in central sections of the region. Regionally, low precipitation and soil moisture stress were chief limitations to simulated crop yields. The study suggests that at least part of the observed yield increases in the region during recent decades have occurred as the result of wetter, less stressful growing season weather conditions.
Test of High-resolution Global and Regional Climate Model Projections
NASA Astrophysics Data System (ADS)
Stenchikov, Georgiy; Nikulin, Grigory; Hansson, Ulf; Kjellström, Erik; Raj, Jerry; Bangalath, Hamza; Osipov, Sergey
2014-05-01
In scope of CORDEX project we have simulated the past (1975-2005) and future (2006-2050) climates using the GFDL global high-resolution atmospheric model (HIRAM) and the Rossby Center nested regional model RCA4 for the Middle East and North Africa (MENA) region. Both global and nested runs were performed with roughly the same spatial resolution of 25 km in latitude and longitude, and were driven by the 2°x2.5°-resolution fields from GFDL ESM2M IPCC AR5 runs. The global HIRAM simulations could naturally account for interaction of regional processes with the larger-scale circulation features like Indian Summer Monsoon, which is lacking from regional model setup. Therefore in this study we specifically address the consistency of "global" and "regional" downscalings. The performance of RCA4, HIRAM, and ESM2M is tested based on mean, extreme, trends, seasonal and inter-annual variability of surface temperature, precipitation, and winds. The impact of climate change on dust storm activity, extreme precipitation and water resources is specifically addressed. We found that the global and regional climate projections appear to be quite consistent for the modeled period and differ more significantly from ESM2M than between each other.
Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing
NASA Astrophysics Data System (ADS)
Persad, Geeta Gayatri
Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols' surface versus atmospheric forcing. Future aerosol emissions patterns will affect the distribution of regional climate impacts. This dissertation interrogates how international trade affects existing assumptions about East Asia's future black carbon aerosol emissions, using integrated assessment modeling, emissions and economic data, and AM3 simulations. Exports emerge as a uniquely large and potentially growing source of Chinese black carbon emissions that could impede projected regional emissions reductions, with substantial climate and health consequences. The findings encourage greater emissions projection sophistication and illustrate how societal decisions may influence future aerosol forcing heterogeneity.
NASA Astrophysics Data System (ADS)
Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.
2017-12-01
Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.
NASA Astrophysics Data System (ADS)
Miguez-Macho, Gonzalo; Stenchikov, Georgiy L.; Robock, Alan
2005-04-01
The reasons for biases in regional climate simulations were investigated in an attempt to discern whether they arise from deficiencies in the model parameterizations or are due to dynamical problems. Using the Regional Atmospheric Modeling System (RAMS) forced by the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis, the detailed climate over North America at 50-km resolution for June 2000 was simulated. First, the RAMS equations were modified to make them applicable to a large region, and its turbulence parameterization was corrected. The initial simulations showed large biases in the location of precipitation patterns and surface air temperatures. By implementing higher-resolution soil data, soil moisture and soil temperature initialization, and corrections to the Kain-Fritch convective scheme, the temperature biases and precipitation amount errors could be removed, but the precipitation location errors remained. The precipitation location biases could only be improved by implementing spectral nudging of the large-scale (wavelength of 2500 km) dynamics in RAMS. This corrected for circulation errors produced by interactions and reflection of the internal domain dynamics with the lateral boundaries where the model was forced by the reanalysis.
NASA Astrophysics Data System (ADS)
Kongoli, C.; Nair, U. S.; Welch, R. M.; Sever, T. L.; Irwin, D.; Pielke, R. A.
2002-05-01
The collapse the Mayan Empire, which flourished from 250 to 900 AD in the Southern Mexico and Central American regions, is one of the greatest demographic disasters in the human history. Early studies of Mayan civilization found cessation in dating and inscription of monuments in the ninth century. Later studies suggest a two-thirds decline in Mayan population numbering millions between 830 and 900 AD. The reason for this population decline and the subsequent collapse of Mayan Empire in ninth century is not known. The mass exodus of population has been ruled out since the population in the surrounding regions remained stable during this time period. Other suggested reasons for this population decline include conflict, disease, warfare, climate change. However, studies of historical pollen data indicate increased rates of deforestation starting in the fifth century with most of the trees in the region being cut down by the ninth century. Lake core sediments document a major drought around 800 AD that was one of the most intense drought in an 8000 year history. A recent study on climatic reconstruction from pollen records also indicate that climate became drier following the collapse of the Mayan Empire, and suggest that this may be due to the cutting down of trees. In the present study, the effect of forest clearing on the regional climate in the Mayan region is examined using the Colorado State University Regional Atmospheric Modeling System (CSU RAMS). The RAMS is being used to simulate the rainfall over the Mayan region for conditions where the surface is assumed to be completely forested and deforested. Simulations are being done for two months, both in the wet and dry season. Comparison of RAMS simulated rainfall between the completely forested and deforested scenarios are expected to provide bounds on regional climate change brought about by deforestation. Further details will be presented at the conference.
Water Source and Isotope changes through the Deglaciation and Holocene
NASA Astrophysics Data System (ADS)
LeGrande, A. N.; Carlson, A. E.; Ullman, D. J.; Nusbaumer, J. M.
2017-12-01
The deglacial period saw radical shifts in climate across the globe. Water isotopologues provide some of the most wide-spread proxy archives of these climate changes. Here we present new analyses on a suite of 12 water isotope-enabled coupled atmosphere-ocean GCM simulations from GISS ModelE-R that span 24kya to the pre-industrial period. We show how millennial scale co-variability in water isotopes and climate (temperature, precipitation, humidity, and moist-static energy) is distinct from regional scale spatial slopes, consistent with proxy archives (e.g., Cuffey et al 1995). We supplement this set of simulations with a new ensemble of deglacial simulations that contain a complementary suite of tracers that determine moisture provenance changes through the deglaciation. We diagnose regions that have had significant changes in moisture provenance and compare this information against simulated changes in the water isotope changes.
Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate ...
Deforestation changes land-atmosphere interactions across South American biomes
NASA Astrophysics Data System (ADS)
Salazar, Alvaro; Katzfey, Jack; Thatcher, Marcus; Syktus, Jozef; Wong, Kenneth; McAlpine, Clive
2016-04-01
South American biomes are increasingly affected by land use/land cover change. However, the climatic impacts of this phenomenon are still not well understood. In this paper, we model vegetation-climate interactions with a focus on four main biomes distributed in four key regions: The Atlantic Forest, the Cerrado, the Dry Chaco, and the Chilean Matorral ecosystems. We applied a three member ensemble climate model simulation for the period 1981-2010 (30 years) at 25 km resolution over the focus regions to quantify the changes in the regional climate resulting from historical deforestation. The results of computed modelling experiments show significant changes in surface fluxes, temperature and moisture in all regions. For instance, simulated temperature changes were stronger in the Cerrado and the Chilean Matorral with an increase of between 0.7 and 1.4 °C. Changes in the hydrological cycle revealed high regional variability. The results showed consistent significant decreases in relative humidity and soil moisture, and increases in potential evapotranspiration across biomes, yet without conclusive changes in precipitation. These impacts were more significant during the dry season, which resulted to be drier and warmer after deforestation.
NASA Astrophysics Data System (ADS)
Mendoza, Pablo A.; Mizukami, Naoki; Ikeda, Kyoko; Clark, Martyn P.; Gutmann, Ethan D.; Arnold, Jeffrey R.; Brekke, Levi D.; Rajagopalan, Balaji
2016-10-01
We examine the effects of regional climate model (RCM) horizontal resolution and forcing scaling (i.e., spatial aggregation of meteorological datasets) on the portrayal of climate change impacts. Specifically, we assess how the above decisions affect: (i) historical simulation of signature measures of hydrologic behavior, and (ii) projected changes in terms of annual water balance and hydrologic signature measures. To this end, we conduct our study in three catchments located in the headwaters of the Colorado River basin. Meteorological forcings for current and a future climate projection are obtained at three spatial resolutions (4-, 12- and 36-km) from dynamical downscaling with the Weather Research and Forecasting (WRF) regional climate model, and hydrologic changes are computed using four different hydrologic model structures. These projected changes are compared to those obtained from running hydrologic simulations with current and future 4-km WRF climate outputs re-scaled to 12- and 36-km. The results show that the horizontal resolution of WRF simulations heavily affects basin-averaged precipitation amounts, propagating into large differences in simulated signature measures across model structures. The implications of re-scaled forcing datasets on historical performance were primarily observed on simulated runoff seasonality. We also found that the effects of WRF grid resolution on projected changes in mean annual runoff and evapotranspiration may be larger than the effects of hydrologic model choice, which surpasses the effects from re-scaled forcings. Scaling effects on projected variations in hydrologic signature measures were found to be generally smaller than those coming from WRF resolution; however, forcing aggregation in many cases reversed the direction of projected changes in hydrologic behavior.
NASA Astrophysics Data System (ADS)
Kim, S.; Kim, J.; Prasad, A. K.; Stack, D. H.; El-Askary, H. M.; Kafatos, M.
2012-12-01
Like other ecosystems, agricultural productivity is substantially affected by climate factors. Therefore, accurate climatic data (i.e. precipitation, temperature, and radiation) is crucial to simulating crop yields. In order to understand and anticipate climate change and its impacts on agricultural productivity in the Southwestern United States, the WRF regional climate model (RCM) and the Agricultural Production Systems sIMulator (APSIM) were employed for simulating crop production. 19 years of WRF RCM output show that there is a strong dry bias during the warm season, especially in Arizona. Consequently, the APSIM crop model indicates very low crop yields in this region. We suspect that the coarse resolution of reanalysis data could not resolve the relatively warm Sea Surface Temperature (SST) in the Gulf of California (GC), causing the SST to be up to 10 degrees lower than the climatology. In the Southwestern United States, a significant amount of precipitation is associated with North American Monsoon (NAM). During the monsoon season, the low-level moisture is advected to the Southwestern United States via the GC, which is known to be the dominant moisture source. Thus, high-resolution SST data in the GC is required for RCM simulations to accurately represent a reasonable amount of precipitation in the region, allowing reliable evaluation of the impacts on regional ecosystems.and evaluate impacts on regional ecosystems. To evaluate the influence of SST on agriculture in the Southwestern U.S., two sets of numerical simulations were constructed: a control, using unresolved SST of GC, and daily updated SST data from the MODIS satellite sensor. The meteorological drivers from each of the 6 year RCM runs were provided as input to the APSIM model to determine the crop yield. Analyses of the simulated crop production, and the interannual variation of the meteorological drivers, demonstrate the influence of SST on crop yields in the Southwestern United States.
Early-Holocene warming in Beringia and its mediation by sea-level and vegetation changes
Bartlein, P.J.; Edwards, M.E.; Hostetler, Steven W.; Shafer, Sarah; Anderson, P.M.; Brubaker, L. B; Lozhkin, A. V
2015-01-01
Arctic land-cover changes induced by recent global climate change (e.g., expansion of woody vegetation into tundra and effects of permafrost degradation) are expected to generate further feedbacks to the climate system. Past changes can be used to assess our understanding of feedback mechanisms through a combination of process modeling and paleo-observations. The subcontinental region of Beringia (northeastern Siberia, Alaska, and northwestern Canada) was largely ice-free at the peak of deglacial warming and experienced both major vegetation change and loss of permafrost when many arctic regions were still ice covered. The evolution of Beringian climate at this time was largely driven by global features, such as the amplified seasonal cycle of Northern Hemisphere insolation and changes in global ice volume and atmospheric composition, but changes in regional land-surface controls, such as the widespread development of thaw lakes, the replacement of tundra by deciduous forest or woodland, and the flooding of the Bering–Chukchi land bridge, were probably also important. We examined the sensitivity of Beringia's early Holocene climate to these regional-scale controls using a regional climate model (RegCM). Lateral and oceanic boundary conditions were provided by global climate simulations conducted using the GENESIS V2.01 atmospheric general circulation model (AGCM) with a mixed-layer ocean. We carried out two present-day simulations of regional climate – one with modern and one with 11 ka geography – plus another simulation for 6 ka. In addition, we performed five ~ 11 ka climate simulations, each driven by the same global AGCM boundary conditions: (i) 11 ka Control, which represents conditions just prior to the major transitions (exposed land bridge, no thaw lakes or wetlands, widespread tundra vegetation), (ii) sea-level rise, which employed present-day continental outlines, (iii) vegetation change, with deciduous needleleaf and deciduous broadleaf boreal vegetation types distributed as suggested by the paleoecological record, (iv) thaw lakes, which used the present-day distribution of lakes and wetlands, and (v) post-11 ka All, incorporating all boundary conditions changed in experiments (ii)–(iv). We find that regional-scale controls strongly mediate the climate responses to changes in the large-scale controls, amplifying them in some cases, damping them in others, and, overall, generating considerable spatial heterogeneity in the simulated climate changes. The change from tundra to deciduous woodland produces additional widespread warming in spring and early summer over that induced by the 11 ka insolation regime alone, and lakes and wetlands produce modest and localized cooling in summer and warming in winter. The greatest effect is the flooding of the land bridge and shelves, which produces generally cooler conditions in summer but warmer conditions in winter and is most clearly manifest on the flooded shelves and in eastern Beringia. By 6 ka continued amplification of the seasonal cycle of insolation and loss of the Laurentide ice sheet produce temperatures similar to or higher than those at 11 ka, plus a longer growing season.
Using a Freshwater Lake Model Coupled with WRF for Dynamical Downscaling Applications
The ability to represent extremes in temperature and precipitation in regional climates (including those affected by inland lakes) has become an area of focus as regional climate models (RCMs) simulate smaller temporal and spatial scales. When using the Weather Research and Fore...
NASA Technical Reports Server (NTRS)
Johnson, Donald R.
2001-01-01
This research was directed to the development and application of global isentropic modeling and analysis capabilities to describe hydrologic processes and energy exchange in the climate system, and discern regional climate change. An additional objective was to investigate the accuracy and theoretical limits of global climate predictability which are imposed by the inherent limitations of simulating trace constituent transport and the hydrologic processes of condensation, precipitation and cloud life cycles.
Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; Diana Burton; Chi-Chung. Chen
2000-01-01
A multiperiod, regional, mathematical programming economic model is used to evaluate the potential economic impacts of global climatic change on the US forest sector. A wide range of scenarios for the biological response of forests to climate change are developed, ranging from small to large changes in forest growth rates. These scenarios are simulated in the economic...
NASA Astrophysics Data System (ADS)
De Sales, F.; Rother, D.
2017-12-01
Current climate change assessments project an increase in temperature throughout the western U.S. over the next century, while precipitation is projected to decrease in the Southwest. These assessments are based mainly on coarse spatial resolution general circulation model (GCM) simulations, which do not include groundwater (soil and aquifer) storage projections. However, water availability is a regionally variable resource and climate change impacts on groundwater distribution will probably differ regionally across the southwestern U.S. We have implemented a coupled atmosphere-biosphere-aquifer regional modelling system (WRF/SSiB2/SIMGM) to generate recent (2005-2017) and near-future (2018-2030) high-resolution groundwater projections for Southern California. These projections are obtained by dynamic downscaling data from the Global Operation Analysis (recent) and the NCAR Community Earth System Model CMIP5 global projections (near future), which supported the Intergovernmental Panel on Climate Change 5th Assessment Report. Near-future simulations include three representative concentration pathway (RCP) scenarios namely, RCP4.5, RCP6, and RCP8.5. The model can reasonably simulate the recent changes in Southern California's groundwater as indicated by a comparison to terrestrial water storage obtained from the Gravity Recovery and Climate Experiment dataset. In particular, the 2011-2017 drought is simulated well with total groundwater storages declining throughout the period, especially along the western portion of the domain, which includes the high-populated areas of western Los Angeles, San Diego, Ventura and Orange counties. In general, the near-future simulations show a decline in groundwater storage for the region. The largest changes are observed with the RCP8.5 emission pathway, towards to southeastern tier of the study area. In addition to groundwater, this downscaling experiment also generates high-resolution precipitation and temperature estimates, which can help policy makers in the development of strategies to alleviate potential water resource deficiencies in California in the near future.
Combining Statistics and Physics to Improve Climate Downscaling
NASA Astrophysics Data System (ADS)
Gutmann, E. D.; Eidhammer, T.; Arnold, J.; Nowak, K.; Clark, M. P.
2017-12-01
Getting useful information from climate models is an ongoing problem that has plagued climate science and hydrologic prediction for decades. While it is possible to develop statistical corrections for climate models that mimic current climate almost perfectly, this does not necessarily guarantee that future changes are portrayed correctly. In contrast, convection permitting regional climate models (RCMs) have begun to provide an excellent representation of the regional climate system purely from first principles, providing greater confidence in their change signal. However, the computational cost of such RCMs prohibits the generation of ensembles of simulations or long time periods, thus limiting their applicability for hydrologic applications. Here we discuss a new approach combining statistical corrections with physical relationships for a modest computational cost. We have developed the Intermediate Complexity Atmospheric Research model (ICAR) to provide a climate and weather downscaling option that is based primarily on physics for a fraction of the computational requirements of a traditional regional climate model. ICAR also enables the incorporation of statistical adjustments directly within the model. We demonstrate that applying even simple corrections to precipitation while the model is running can improve the simulation of land atmosphere feedbacks in ICAR. For example, by incorporating statistical corrections earlier in the modeling chain, we permit the model physics to better represent the effect of mountain snowpack on air temperature changes.
Climate Change Impacts at Department of Defense Installations
2017-06-16
locations. The ease of use of this method and its flexibility have led to a wide variety of applications for assessing impacts of climate change 4...versions of these statistical methods to provide the basis for regional climate assessments for various states, regions, and government agencies...averaging (REA) method proposed by Giorgi and Mearns (2002). This method assigns reliability classifications for the multi-model ensemble simulation by
Xia, Jianyang; McGuire, A. David; Lawrence, David; ...
2017-01-26
Realistic projection of future climate-carbon (C) cycle feedbacks requires better understanding and an improved representation of the C cycle in permafrost regions in the current generation of Earth system models. Here we evaluated 10 terrestrial ecosystem models for their estimates of net primary productivity (NPP) and responses to historical climate change in permafrost regions in the Northern Hemisphere. In comparison with the satellite estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS; 246 ± 6 g C m -2 yr -1), most models produced higher NPP (309 ± 12 g C m -2 yr -1) over the permafrost region during 2000–2009.more » By comparing the simulated gross primary productivity (GPP) with a flux tower-based database, we found that although mean GPP among the models was only overestimated by 10% over 1982–2009, there was a twofold discrepancy among models (380 to 800 g C m -2 yr -1), which mainly resulted from differences in simulated maximum monthly GPP (GPP max). Most models overestimated C use efficiency (CUE) as compared to observations at both regional and site levels. Further analysis shows that model variability of GPP and CUE are nonlinearly correlated to variability in specific leaf area and the maximum rate of carboxylation by the enzyme Rubisco at 25°C (Vc max_25), respectively. The models also varied in their sensitivities of NPP, GPP, and CUE to historical changes in climate and atmospheric CO 2 concentration. In conclusion, these results indicate that model predictive ability of the C cycle in permafrost regions can be improved by better representation of the processes controlling CUE and GPP max as well as their sensitivity to climate change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Jianyang; McGuire, A. David; Lawrence, David
Realistic projection of future climate-carbon (C) cycle feedbacks requires better understanding and an improved representation of the C cycle in permafrost regions in the current generation of Earth system models. Here we evaluated 10 terrestrial ecosystem models for their estimates of net primary productivity (NPP) and responses to historical climate change in permafrost regions in the Northern Hemisphere. In comparison with the satellite estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS; 246 ± 6 g C m -2 yr -1), most models produced higher NPP (309 ± 12 g C m -2 yr -1) over the permafrost region during 2000–2009.more » By comparing the simulated gross primary productivity (GPP) with a flux tower-based database, we found that although mean GPP among the models was only overestimated by 10% over 1982–2009, there was a twofold discrepancy among models (380 to 800 g C m -2 yr -1), which mainly resulted from differences in simulated maximum monthly GPP (GPP max). Most models overestimated C use efficiency (CUE) as compared to observations at both regional and site levels. Further analysis shows that model variability of GPP and CUE are nonlinearly correlated to variability in specific leaf area and the maximum rate of carboxylation by the enzyme Rubisco at 25°C (Vc max_25), respectively. The models also varied in their sensitivities of NPP, GPP, and CUE to historical changes in climate and atmospheric CO 2 concentration. In conclusion, these results indicate that model predictive ability of the C cycle in permafrost regions can be improved by better representation of the processes controlling CUE and GPP max as well as their sensitivity to climate change.« less
Shields, Christine A.; Kiehl, Jeffrey T.; Meehl, Gerald A.
2016-06-02
The global fully coupled half-degree Community Climate System Model Version 4 (CCSM4) was integrated for a suite of climate change ensemble simulations including five historical runs, five Representative Concentration Pathway 8.5 [RCP8.5) runs, and a long Pre-Industrial control run. This study focuses on precipitation at regional scales and its sensitivity to horizontal resolution. The half-degree historical CCSM4 simulations are compared to observations, where relevant, and to the standard 1° CCSM4. Both the halfdegree and 1° resolutions are coupled to a nominal 1° ocean. North American and South Asian/Indian monsoon regimes are highlighted because these regimes demonstrate improvements due to highermore » resolution, primarily because of better-resolved topography. Agriculturally sensitive areas are analyzed and include Southwest, Central, and Southeast U.S., Southern Europe, and Australia. Both mean and extreme precipitation is discussed for convective and large-scale precipitation processes. Convective precipitation tends to decrease with increasing resolution and large-scale precipitation tends to increase. Improvements for the half-degree agricultural regions can be found for mean and extreme precipitation in the Southeast U.S., Southern Europe, and Australian regions. Climate change responses differ between the model resolutions for the U.S. Southwest/Central regions and are seasonally dependent in the Southeast and Australian regions. Both resolutions project a clear drying signal across Southern Europe due to increased greenhouse warming. As a result, differences between resolutions tied to the representation of convective and large-scale precipitation play an important role in the character of the climate change and depend on regional influences.« less
NASA Astrophysics Data System (ADS)
Huang, X.; Chen, X.; Flanner, M.; Yang, P.; Feldman, D.; Kuo, C.
2017-12-01
Surface longwave emissivity can be less than unity and vary significantly with frequency. The emissivities of water, ice, and bare land all exhibit different spectral dependence, for both the far-IR and mid-IR bands. However, most climate models still assume blackbody surface in the longwave (LW) radiation scheme of their atmospheric modules. This study incorporates realistic surface spectral emissivity into the RRTMG_LW, the LW radiation scheme in CAM, which is the atmospheric component of the NCAR Community Earth System Model (CESM) version 1.1.1. Then we evaluate its impact on simulated climatology, especially for the polar regions. By ensuring the consistency of the broadband longwave flux across different modules of the CESM, the TOA energy balance in the simulation can be attained without additional tuning of the model. While the impact on global mean surface temperature is small, the surface temperature differences in Polar Regions are statistically significant. The mean surface temperature in Arctic in the modified CESM is 1.5K warmer than that in the standard CESM, reducing the cold bias that the standard CESM has with respect to observations. Accordingly the sea ice fraction in the modified CESM simulation is less than that in the standard CESM simulation by as much as 0.1, which significantly reduces the positive biases in the simulated sea ice coverage by the CESM. The largest sea-ice coverage difference happens in August and September, when new sea ice starts to form. The similar changes can be seen for the simulated Antarctic surface climate as well. In a nutshell, incorporating realistic surface spectral emissivity helps improving the fidelity of simulated surface energy budget in the polar region, which leads to a better simulation of the surface temperature and sea ice coverage.
NASA Astrophysics Data System (ADS)
Lewinschal, Anna; Ekman, Annica; Hansson, Hans-Christen
2017-04-01
Emissions of anthropogenic aerosols vary substantially over the globe and the short atmospheric residence time of aerosols leads to a highly uneven radiative forcing distribution, both spatially and temporally. Regional aerosol radiative forcing can, nevertheless, exert a large influence on the temperature field away from the forcing region through changes in heat transport or the atmospheric or ocean circulation. Moreover, the global temperature response distribution to aerosol forcing may vary depending on the geographical location of the forcing. In other words, the climate sensitivity in one region can vary depending on the location of the forcing. The surface temperature distribution response to changes in sulphate aerosol forcing caused by sulphur dioxide (SO2) emission perturbations in four different regions is investigated using the Norwegian Earth System Model (NorESM). The four regions, Europe, North America, East and South Asia, are all regions with historically high aerosol emissions and are relevant from both an air-quality and climate policy perspective. All emission perturbations are defined relative to the year 2000 emissions provided for the Coupled Model Intercomparison Project phase 5. The global mean temperature change per unit SO2 emission change is similar for all four regions for similar magnitudes of emissions changes. However, the global temperature change per unit SO2 emission in simulations where regional SO2 emission were removed is substantially higher than that obtained in simulations where regional SO2 emissions were increased. Thus, the climate sensitivity to regional SO2 emissions perturbations depends on the magnitude of the emission perturbation in NorESM. On regional scale, on the other hand, the emission perturbations in different geographical locations lead to different regional temperature responses, both locally and in remote regions. The results from the model simulations are used to construct regional temperature potential (RTP) coefficients, which directly link regional aerosol or aerosol precursor emissions to the temperature response in different regions. These RTP coefficients can provide a simplified way to perform an initial evaluation of climate impacts of e.g. different emission policy pathways and pollution abatement strategies.
NASA Astrophysics Data System (ADS)
Prein, A. F.; Ikeda, K.; Liu, C.; Bullock, R.; Rasmussen, R.
2016-12-01
Convective storms are causing extremes such as flooding, landslides, and wind gusts and are related to the development of tornadoes and hail. Convective storms are also the dominant source of summer precipitation in most regions of the Contiguous United States. So far little is known about how convective storms might change due to global warming. This is mainly because of the coarse grid spacing of state-of-the-art climate models that are not able to resolve deep convection explicitly. Instead, coarse resolution models rely on convective parameterization schemes that are a major source of errors and uncertainties in climate change projections. Convection-permitting climate simulations, with grid-spacings smaller than 4 km, show significant improvements in the simulation of convective storms by representing deep convection explicitly. Here we use a pair of 13-year long current and future convection-permitting climate simulations that cover large parts of North America. We use the Method for Object-Based Diagnostic Evaluation (MODE) that incorporates the time dimension (MODE-TD) to analyze the model performance in reproducing storm features in the current climate and to investigate their potential future changes. We show that the model is able to accurately reproduce the main characteristics of convective storms in the present climate. The comparison with the future climate simulation shows that convective storms significantly increase in frequency, intensity, and size. Furthermore, they are projected to move slower which could result in a substantial increase in convective storm-related hazards such as flash floods, debris flows, and landslides. Some regions, such as the North Atlantic, might experience a regime shift that leads to significantly stronger storms that are unrepresented in the current climate.
NASA Astrophysics Data System (ADS)
Remy, Cécile C.; Hély, Christelle; Blarquez, Olivier; Magnan, Gabriel; Bergeron, Yves; Lavoie, Martin; Ali, Adam A.
2017-03-01
Global warming could increase climatic instability and large wildfire activity in circumboreal regions, potentially impairing both ecosystem functioning and human health. However, links between large wildfire events and climatic and/or meteorological conditions are still poorly understood, partly because few studies have covered a wide range of past climate-fire interactions. We compared palaeofire and simulated climatic data over the last 7000 years to assess causes of large wildfire events in three coniferous boreal forest regions in north-eastern Canada. These regions span an east-west cline, from a hilly region influenced by the Atlantic Ocean currently dominated by Picea mariana and Abies balsamea to a flatter continental region dominated by Picea mariana and Pinus banksiana. The largest wildfires occurred across the entire study zone between 3000 and 1000 cal. BP. In western and central continental regions these events were triggered by increases in both the fire-season length and summer/spring temperatures, while in the eastern region close to the ocean they were likely responses to hydrological (precipitation/evapotranspiration) variability. The impact of climatic drivers on fire size varied spatially across the study zone, confirming that regional climate dynamics could modulate effects of global climate change on wildfire regimes.
NASA Astrophysics Data System (ADS)
Anderson, C. J.; Wildhaber, M. L.; Wikle, C. K.; Moran, E. H.; Franz, K. J.; Dey, R.
2012-12-01
Climate change operates over a broad range of spatial and temporal scales. Understanding the effects of change on ecosystems requires accounting for the propagation of information and uncertainty across these scales. For example, to understand potential climate change effects on fish populations in riverine ecosystems, climate conditions predicted by course-resolution atmosphere-ocean global climate models must first be translated to the regional climate scale. In turn, this regional information is used to force watershed models, which are used to force river condition models, which impact the population response. A critical challenge in such a multiscale modeling environment is to quantify sources of uncertainty given the highly nonlinear nature of interactions between climate variables and the individual organism. We use a hierarchical modeling approach for accommodating uncertainty in multiscale ecological impact studies. This framework allows for uncertainty due to system models, model parameter settings, and stochastic parameterizations. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. We use NARCCAP data to determine confidence the capability of climate models to simulate relevant processes and to quantify regional climate variability within the context of the hierarchical model of uncertainty quantification. By confidence, we mean the ability of the regional climate model to replicate observed mechanisms. We use the NCEP-driven simulations for this analysis. This provides a base from which regional change can be categorized as either a modification of previously observed mechanisms or emergence of new processes. The management implications for these categories of change are significantly different in that procedures to address impacts from existing processes may already be known and need adjustment; whereas, an emergent processes may require new management strategies. The results from hierarchical analysis of uncertainty are used to study the relative change in weights of the endangered Missouri River pallid sturgeon (Scaphirhynchus albus) under a 21st century climate scenario.
Diffusion impact on atmospheric moisture transport
NASA Astrophysics Data System (ADS)
Moseley, C.; Haerter, J.; Göttel, H.; Hagemann, S.; Jacob, D.
2009-04-01
To ensure numerical stability, many global and regional climate models employ numerical diffusion to dampen short wavelength modes. Terrain following sigma diffusion is known to cause unphysical effects near the surface in orographically structured regions. They can be reduced by applying z-diffusion on geopotential height levels. We investigate the effect of the diffusion scheme on atmospheric moisture transport and precipitation formation at different resolutions in the European region. With respect to a better understanding of diffusion in current and future grid-space global models, current day regional models may serve as the appropriate tool for studies of the impact of diffusion schemes: Results can easily be constrained to a small test region and checked against reliable observations, which often are unavailable on a global scale. Special attention is drawn to the Alps - a region of strong topographic gradients and good observational coverage. Our study is further motivated by the appearance of the "summer drying problem" in South Eastern Europe. This too warm and too dry simulation of climate is common to many regional climate models and also to some global climate models, and remains a permanent unsolved problem in the community. We perform a systematic comparison of the two diffusion-schemes with respect to the hydrological cycle. In particular, we investigate how local meteorological quantities - such as the atmospheric moisture in the region east of the Alps - depend on the spatial model resolution. Higher model resolution would lead to a more accurate representation of the topography and entail larger gradients in the Alps. This could lead to consecutively stronger transport of moisture along the slopes in the case of sigma-diffusion with subsequent orographic precipitation, whereas the effect could be qualitatively different in the case of z-diffusion. For our study, we analyse a sequence of simulations of the regional climate model REMO employing the different diffusion methods over Europe. For these simulations, REMO was forced at the lateral boundaries with ERA40 reanalysis data for a five year period. For our higher resolution simulations we employ the double nesting technique.
Attribution of changes in precipitation patterns in African rainforests
NASA Astrophysics Data System (ADS)
Otto, F. E.; Jones, R. G.; Halladay, K.; Allen, M. R.
2013-12-01
The effects of projected future global and regional climate change on the water cycle and thus on global water security are amongst the most economically and politically important challenges that society faces in the 21st century. The provision of secure access to water resources and the protection of communities from water-related risks have emerged as top priorities amongst policymakers within the public and private sectors alike. Investment decisions on water infrastructure rely heavily on quantitative assessments of risks and uncertainties associated with future changes in water-related threats. Especially with the introduction of loss and damages on the agenda of the UNFCCC additionally the attribution of such changes to anthropogenic climate change and other external climate drivers is crucial. Probabilistic event attribution (PEA) provides a method of evaluating the extent to which human-induced climate change is affecting localised weather events and impacts of such events that relies on good observations as well as climate modelling. The overall approach is to simulate both, the statistics of observed weather, and the statistics of the weather that would have occurred had specific external drivers of climate change been absent. The majority of studies applying PEA have focused on quantifying attributable risk, with changes in risk depending on an assumption of 'all other things being equal', including natural drivers of climate change and vulnerability. Most previous attribution studies have focused on European extreme weather events, but the most vulnerable regions to climate change are in Asia and Africa. One of the most complex hydrological systems is the tropical rainforest, with the rainforests in tropical Africa being some of the most under-researched regions in the world. Research in the Amazonian rainforest suggests potential vulnerability to climate change. We will present results from using the large ensemble of atmosphere-only general circulation model (AGCM) simulations within the weather@home project, and analysing statistics of precipitation in the dry season of the Congo Basin rainforests. Because observed data sets in that region are of very poor quality we show how validation methods not only relying on such data have been used to investigate the applicability of PEA analysis from large model ensembles to this tropical region. Additionally we will present results for the same region but generated with a very large ensemble of regional climate simulations which allows analysing the importance of a realistic simulation of small scale precipitation processes for attribution studies in a tropical climate. We highlight that PEA analysis has the potential to provide valuable scientific evidence of recent or anticipated climatological changes in the water cycle, especially in regions with sparse observational data and unclear projections of future changes. However, the strong influence of SST tele-connection patterns on tropical precipitation provides more challenges in the set-up of attribution studies than studies on mid-latitude rainfall.
NASA Astrophysics Data System (ADS)
Goldie, J. K.; Alexander, L. V.; Lewis, S. C.; Sherwood, S. C.
2017-12-01
A wide body of literature now establishes the harm of extreme heat on human health, and work is now emerging on the projection of future health impacts. However, heat-health relationships vary across different populations (Gasparrini et al. 2015), so accurate simulation of regional climate is an important component of joint health impact projection. Here, we evaluate the ability of nine Global Climate Models (GCMs) from CMIP5 and the NARCliM Regional Climate Model to reproduce a selection of 15 health-relevant heatwave and heat-humidity indices over the historical period (1990-2005) using the Perkins skill score (Perkins et al. 2007) in five Australian cities. We explore the reasons for poor model skill, comparing these modelled distributions to both weather station observations and gridded reanalysis data. Finally, we show changes in the modelled distributions from the highest-performing models under RCP4.5 and RCP8.5 greenhouse gas scenarios and discuss the implications of simulated heat stress for future climate change adaptation. ReferencesGasparrini, Antonio, Yuming Guo, Masahiro Hashizume, Eric Lavigne, Antonella Zanobetti, Joel Schwartz, Aurelio Tobias, et al. "Mortality Risk Attributable to High and Low Ambient Temperature: A Multicountry Observational Study." The Lancet 386, no. 9991 (July 31, 2015): 369-75. doi:10.1016/S0140-6736(14)62114-0. Perkins, S. E., A. J. Pitman, N. J. Holbrook, and J. McAneney. "Evaluation of the AR4 Climate Models' Simulated Daily Maximum Temperature, Minimum Temperature, and Precipitation over Australia Using Probability Density Functions." Journal of Climate 20, no. 17 (September 1, 2007): 4356-76. doi:10.1175/JCLI4253.1.
Changes in Intense Precipitation Events in West Africa and the central U.S. under Global Warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kerry H.; Vizy, Edward
The purpose of the proposed project is to improve our understanding of the physical processes and large-scale connectivity of changes in intense precipitation events (high rainfall rates) under global warming in West Africa and the central U.S., including relationships with low-frequency modes of variability. This is in response to the requested subject area #2 “simulation of climate extremes under a changing climate … to better quantify the frequency, duration, and intensity of extreme events under climate change and elucidate the role of low frequency climate variability in modulating extremes.” We will use a regional climate model and emphasize an understandingmore » of the physical processes that lead to an intensification of rainfall. The project objectives are as follows: 1. Understand the processes responsible for simulated changes in warm-season rainfall intensity and frequency over West Africa and the Central U.S. associated with greenhouse gas-induced global warming 2. Understand the relationship between changes in warm-season rainfall intensity and frequency, which generally occur on regional space scales, and the larger-scale global warming signal by considering modifications of low-frequency modes of variability. 3. Relate changes simulated on regional space scales to global-scale theories of how and why atmospheric moisture levels and rainfall should change as climate warms.« less
Introducing the Met Office 2.2-km Europe-wide convection-permitting regional climate simulations
NASA Astrophysics Data System (ADS)
Kendon, Elizabeth J.; Chan, Steven C.; Berthou, Segolene; Fosser, Giorgia; Roberts, Malcolm J.; Fowler, Hayley J.
2017-04-01
The Met Office is currently conducting Europe-wide 2.2-km convection-permitting model (CPM) simulations driven by ERA-Interim reanalysis and present/future-climate GCM simulations. Here, we present the preliminary results of these new European simulations examining daily and sub-daily precipitation outputs in comparison with observations across Europe, 12-km European and 1.5-km UK climate model simulations. As the simulations are not yet complete, we focus on diagnostics that are relatively robust with a limited amount of data; for instance, the diurnal cycle and the probability distribution of daily and sub-daily precipitation intensities. We will also present specific case studies that showcase the benefits of using continental-scale CPM simulations over previously-available small-domain CPM simulations.
NASA Astrophysics Data System (ADS)
Monier, E.; Scott, J. R.; Sokolov, A. P.; Forest, C. E.; Schlosser, C. A.
2013-12-01
This paper describes a computationally efficient framework for uncertainty studies in global and regional climate change. In this framework, the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity to a human activity model, is linked to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). Since the MIT IGSM-CAM framework (version 1.0) incorporates a human activity model, it is possible to analyze uncertainties in emissions resulting from both uncertainties in the underlying socio-economic characteristics of the economic model and in the choice of climate-related policies. Another major feature is the flexibility to vary key climate parameters controlling the climate system response to changes in greenhouse gases and aerosols concentrations, e.g., climate sensitivity, ocean heat uptake rate, and strength of the aerosol forcing. The IGSM-CAM is not only able to realistically simulate the present-day mean climate and the observed trends at the global and continental scale, but it also simulates ENSO variability with realistic time scales, seasonality and patterns of SST anomalies, albeit with stronger magnitudes than observed. The IGSM-CAM shares the same general strengths and limitations as the Coupled Model Intercomparison Project Phase 3 (CMIP3) models in simulating present-day annual mean surface temperature and precipitation. Over land, the IGSM-CAM shows similar biases to the NCAR Community Climate System Model (CCSM) version 3, which shares the same atmospheric model. This study also presents 21st century simulations based on two emissions scenarios (unconstrained scenario and stabilization scenario at 660 ppm CO2-equivalent) similar to, respectively, the Representative Concentration Pathways RCP8.5 and RCP4.5 scenarios, and three sets of climate parameters. Results of the simulations with the chosen climate parameters provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century changes in global mean surface air temperature from previous work with the IGSM. Because the IGSM-CAM framework only considers one particular climate model, it cannot be used to assess the structural modeling uncertainty arising from differences in the parameterization suites of climate models. However, comparison of the IGSM-CAM projections with simulations of 31 CMIP5 models under the RCP4.5 and RCP8.5 scenarios show that the range of warming at the continental scale shows very good agreement between the two ensemble simulations, except over Antarctica, where the IGSM-CAM overestimates the warming. This demonstrates that by sampling the climate system response, the IGSM-CAM, even though it relies on one single climate model, can essentially reproduce the range of future continental warming simulated by more than 30 different models. Precipitation changes projected in the IGSM-CAM simulations and the CMIP5 multi-model ensemble both display a large uncertainty at the continental scale. The two ensemble simulations show good agreement over Asia and Europe. However, the ranges of precipitation changes do not overlap - but display similar size - over Africa and South America, two continents where models generally show little agreement in the sign of precipitation changes and where CCSM3 tends to be an outlier. Overall, the IGSM-CAM provides an efficient and consistent framework to explore the large uncertainty in future projections of global and regional climate change associated with uncertainty in the climate response and projected emissions.
Wildfire potential evaluation during a drought event with a regional climate model and NDVI
Y. Liu; J. Stanturf; S. Goodrick
2010-01-01
Regional climate modeling is a technique for simulating high-resolution physical processes in the atmosphere, soil and vegetation. It can be used to evaluate wildfire potential by either providing meteorological conditions for computation of fire indices or predicting soil moisture as a direct measure of fire potential. This study examines these roles using a regional...
Simulating forage crop production in a northern climate with the Integrated Farm System Model
USDA-ARS?s Scientific Manuscript database
Whole-farm simulation models are useful tools for evaluating the effect of management practices and climate variability on the agro-environmental and economic performance of farms. A few process-based farm-scale models have been developed, but none have been evaluated in a northern region with a sho...
An ARM data-oriented diagnostics package to evaluate the climate model simulation
NASA Astrophysics Data System (ADS)
Zhang, C.; Xie, S.
2016-12-01
A set of diagnostics that utilize long-term high frequency measurements from the DOE Atmospheric Radiation Measurement (ARM) program is developed for evaluating the regional simulation of clouds, radiation and precipitation in climate models. The diagnostics results are computed and visualized automatically in a python-based package that aims to serve as an easy entry point for evaluating climate simulations using the ARM data, as well as the CMIP5 multi-model simulations. Basic performance metrics are computed to measure the accuracy of mean state and variability of simulated regional climate. The evaluated physical quantities include vertical profiles of clouds, temperature, relative humidity, cloud liquid water path, total column water vapor, precipitation, sensible and latent heat fluxes, radiative fluxes, aerosol and cloud microphysical properties. Process-oriented diagnostics focusing on individual cloud and precipitation-related phenomena are developed for the evaluation and development of specific model physical parameterizations. Application of the ARM diagnostics package will be presented in the AGU session. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, IM release number is: LLNL-ABS-698645.
Simulation of Anomalous Regional Climate Events with a Variable Resolution Stretched Grid GCM
NASA Technical Reports Server (NTRS)
Fox-Rabinovitz, Michael S.
1999-01-01
The stretched-grid approach provides an efficient down-scaling and consistent interactions between global and regional scales due to using one variable-resolution model for integrations. It is a workable alternative to the widely used nested-grid approach introduced over a decade ago as a pioneering step in regional climate modeling. A variable-resolution General Circulation Model (GCM) employing a stretched grid, with enhanced resolution over the US as the area of interest, is used for simulating two anomalous regional climate events, the US summer drought of 1988 and flood of 1993. The special mode of integration using a stretched-grid GCM and data assimilation system is developed that allows for imitating the nested-grid framework. The mode is useful for inter-comparison purposes and for underlining the differences between these two approaches. The 1988 and 1993 integrations are performed for the two month period starting from mid May. Regional resolutions used in most of the experiments is 60 km. The major goal and the result of the study is obtaining the efficient down-scaling over the area of interest. The monthly mean prognostic regional fields for the stretched-grid integrations are remarkably close to those of the verifying analyses. Simulated precipitation patterns are successfully verified against gauge precipitation observations. The impact of finer 40 km regional resolution is investigated for the 1993 integration and an example of recovering subregional precipitation is presented. The obtained results show that the global variable-resolution stretched-grid approach is a viable candidate for regional and subregional climate studies and applications.
Statistical downscaling of regional climate scenarios for the French Alps : Impacts on snow cover
NASA Astrophysics Data System (ADS)
Rousselot, M.; Durand, Y.; Giraud, G.; Mérindol, L.; Déqué, M.; Sanchez, E.; Pagé, C.; Hasan, A.
2010-12-01
Mountain areas are particularly vulnerable to climate change. Owing to the complexity of mountain terrain, climate research at scales relevant for impacts studies and decisive for stakeholders is challenging. A possible way to bridge the gap between these fine scales and those of the general circulation models (GCMs) consists of combining high-resolution simulations of Regional Climate Models (RCMs) to statistical downscaling methods. The present work is based on such an approach. It aims at investigating the impacts of climate change on snow cover in the French Alps for the periods 2021-2050 and 2071-2100 under several IPCC hypotheses. An analogue method based on high resolution atmospheric fields from various RCMs and climate reanalyses is used to simulate local climate scenarios. These scenarios, which provide meteorological parameters relevant for snowpack evolution, subsequently feed the CROCUS snow model. In these simulations, various sources of uncertainties are thus considered (several greenhouse gases emission scenarios and RCMs). Results are obtained for different regions of the French Alps at various altitudes. For all scenarios, temperature increase is relatively uniform over the Alps. This regional warming is larger than that generally modeled at the global scale (IPCC, 2007), and particularly strong in summer. Annual precipitation amounts seem to decrease, mainly as a result of decreasing precipitation trends in summer and fall. As a result of these climatic evolutions, there is a general decrease of the mean winter snow depth and seasonal snow duration for all massifs. Winter snow depths are particularly reduced in the Northern Alps. However, the impact on seasonal snow duration is more significant in the Southern and Extreme Southern Alps, since these regions are already characterized by small winter snow depths at low elevations. Reference : IPCC (2007a). Climate change 2007 : The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. In : Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H.L. Miller (eds.). Cambridge University Press, Cambridge, UK and New York, NY, USA. This work is performed in the framework of the SCAMPEI ANR (French research project).
Can regional climate engineering save the summer Arctic sea ice?
NASA Astrophysics Data System (ADS)
Tilmes, S.; Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika; Lamarque, Jean-Francois
2014-02-01
Rapid declines in summer Arctic sea ice extent are projected under high-forcing future climate scenarios. Regional Arctic climate engineering has been suggested as an emergency strategy to save the sea ice. Model simulations of idealized regional dimming experiments compared to a business-as-usual greenhouse gas emission simulation demonstrate the importance of both local and remote feedback mechanisms to the surface energy budget in high latitudes. With increasing artificial reduction in incoming shortwave radiation, the positive surface albedo feedback from Arctic sea ice loss is reduced. However, changes in Arctic clouds and the strongly increasing northward heat transport both counteract the direct dimming effects. A 4 times stronger local reduction in solar radiation compared to a global experiment is required to preserve summer Arctic sea ice area. Even with regional Arctic dimming, a reduction in the strength of the oceanic meridional overturning circulation and a shut down of Labrador Sea deep convection are possible.
NASA Astrophysics Data System (ADS)
Li, J.; Wasko, C.; Johnson, F.; Evans, J. P.; Sharma, A.
2018-05-01
The spatial extent and organization of extreme storm events has important practical implications for flood forecasting. Recently, conflicting evidence has been found on the observed changes of storm spatial extent with increasing temperatures. To further investigate this question, a regional climate model assessment is presented for the Greater Sydney region, in Australia. Two regional climate models were considered: the first a convection-resolving simulation at 2-km resolution, the second a resolution of 10 km with three different convection parameterizations. Both the 2- and the 10-km resolutions that used the Betts-Miller-Janjic convective scheme simulate decreasing storm spatial extent with increasing temperatures for 1-hr duration precipitation events, consistent with the observation-based study in Australia. However, other observed relationships of extreme rainfall with increasing temperature were not well represented by the models. Improved methods for considering storm organization are required to better understand potential future changes.
NASA Astrophysics Data System (ADS)
He, Bian; Yang, Song; Li, Zhenning
2016-05-01
The response of monsoon precipitation to global warming, which is one of the most significant climate change signals at the earth's surface, exhibits very distinct regional features, especially over the South China Sea (SCS) and adjacent regions in boreal summer. To understand the possible atmospheric dynamics in these specific regions under the global warming background, changes in atmospheric heating and their possible influences on Asian summer climate are investigated by both observational diagnosis and numerical simulations. Results indicate that heating in the middle troposphere has intensified in the SCS and western Pacific regions in boreal summer, accompanied by increased precipitation, cloud cover, and lower-tropospheric convergence and decreased sea level pressure. Sensitivity experiments show that middle and upper tropospheric heating causes an east-west feedback pattern between SCS and western Pacific and continental South Asia, which strengthens the South Asian High in the upper troposphere and moist convergence in the lower troposphere, consequently forcing a descending motion and adiabatic warming over continental South Asia. When air-sea interaction is considered, the simulation results are overall more similar to observations, and in particular the bias of precipitation over the Indian Ocean simulated by AGCMs has been reduced. The result highlights the important role of air-sea interaction in understanding the changes in Asian climate.
An assessment of precipitation and surface air temperature over China by regional climate models
NASA Astrophysics Data System (ADS)
Wang, Xueyuan; Tang, Jianping; Niu, Xiaorui; Wang, Shuyu
2016-12-01
An analysis of a 20-year summer time simulation of present-day climate (1989-2008) over China using four regional climate models coupled with different land surface models is carried out. The climatic means, interannual variability, linear trends, and extremes are examined, with focus on precipitation and near surface air temperature. The models are able to reproduce the basic features of the observed summer mean precipitation and temperature over China and the regional detail due to topographic forcing. Overall, the model performance is better for temperature than that of precipitation. The models reasonably grasp the major anomalies and standard deviations over China and the five subregions studied. The models generally reproduce the spatial pattern of high interannual variability over wet regions, and low variability over the dry regions. The models also capture well the variable temperature gradient increase to the north by latitude. Both the observed and simulated linear trend of precipitation shows a drying tendency over the Yangtze River Basin and wetting over South China. The models capture well the relatively small temperature trends in large areas of China. The models reasonably simulate the characteristics of extreme precipitation indices of heavy rain days and heavy precipitation fraction. Most of the models also performed well in capturing both the sign and magnitude of the daily maximum and minimum temperatures over China.
Persistent cold air outbreaks over North America in a warming climate
Gao, Yang; Leung, L. Ruby; Lu, Jian; ...
2015-03-30
This study examines future changes of cold air outbreaks (CAO) using a multi-model ensemble of global climate simulations from the Coupled Model Intercomparison Project Phase 5 as well as regional high resolution climate simulations. In the future, while robust decrease of CAO duration dominates in most regions, the magnitude of decrease over northwestern U.S. is much smaller than the surrounding regions. We identified statistically significant increases in sea level pressure during CAO events centering over Yukon, Alaska, and Gulf of Alaska that advects continental cold air to northwestern U.S., leading to blocking and CAO events. Changes in large scale circulationmore » contribute to about 50% of the enhanced sea level pressure anomaly conducive to CAO in northwestern U.S. in the future. High resolution regional simulations revealed potential contributions of increased existing snowpack to increased CAO in the near future over the Rocky Mountain, southwestern U.S., and Great Lakes areas through surface albedo effects, despite winter mean snow water equivalent decreases in the future. Overall, the multi-model projections emphasize that cold extremes do not completely disappear in a warming climate. Concomitant with the relatively smaller reduction in CAO events in northwestern U.S., the top 5 most extreme CAO events may still occur in the future, and wind chill warning will continue to have societal impacts in that region.« less
NASA Astrophysics Data System (ADS)
Schaefer, R. K.; Nix, M.; Ihde, A. G.; Paxton, L. J.; Weiss, M.; Simpkins, S.; Fountain, G. H.; APl GAIA Team
2011-12-01
In this paper we describe the application of a proven methodology for modeling the complex social and economic interactions of a system under stress to the regional issues that are tied to global climate disruption. Under the auspices of the GAIA project (http://gaia.jhuapl.edu), we have investigated simulating the complex interplay between climate, politics, society, industry, and the environment in the Chesapeake Bay Watershed and associated geographic areas of Maryland, Virginia, and Pennsylvania. This Chesapeake Bay simulation draws on interrelated geophysical and climate models to support decision-making analysis about the Bay. In addition to physical models, however, human activity is also incorporated via input and output calculations. For example, policy implications are modeled in relation to business activities surrounding fishing, farming, industry and manufacturing, land development, and tourism. This approach fosters collaboration among subject matter experts to advance a more complete understanding of the regional impacts of climate change. Simulated interactive competition, in which teams of experts are assigned conflicting objectives in a controlled environment, allow for subject exploration which avoids trivial solutions that neglect the possible responses of affected parties. Results include improved planning, the anticipation of areas of conflict or high risk, and the increased likelihood of developing mutually acceptable solutions.
NASA Astrophysics Data System (ADS)
Sun, Z.; Jia, S. F.; Lv, A. F.; Yang, K. J.; Svensson, J.; Gao, Y. C.
2015-10-01
This paper advances understanding of the impacts of climate change on crops in China by moving from ex-post analysis to forecasting, and by demonstrating how the effects of climate change will affect the growth period and the planting boundaries of winter wheat. Using a multiple regression model based on agricultural meteorological observations and the IPCC AR5 GCMs simulations, we find that the sowing date of winter wheat in the base period, 2040s and 2070s, shows a gradually delayed trend from north to south and the growth period of winter wheat in China will be shortened under climate change. The simulation results also show that (i) the north planting boundaries of winter wheat in China will likely move northward and expand westward in the future, while the south planting boundary will rise and spread in south Hainan and Taiwan; and (ii) the Xinjiang Uygur Autonomous Region and the Inner Mongolia Autonomous Region will have the largest increases in planting areas in 2040s and 2070s. Our simulation implies that Xinjiang and Inner Mongolia are more sensitive to climate change than other regions in China and priority should be given to design adaptation strategies for winter wheat planting for these provinces.
Towards bridging the gap between climate change projections and maize producers in South Africa
NASA Astrophysics Data System (ADS)
Landman, Willem A.; Engelbrecht, Francois; Hewitson, Bruce; Malherbe, Johan; van der Merwe, Jacobus
2018-05-01
Multi-decadal regional projections of future climate change are introduced into a linear statistical model in order to produce an ensemble of austral mid-summer maximum temperature simulations for southern Africa. The statistical model uses atmospheric thickness fields from a high-resolution (0.5° × 0.5°) reanalysis-forced simulation as predictors in order to develop a linear recalibration model which represents the relationship between atmospheric thickness fields and gridded maximum temperatures across the region. The regional climate model, the conformal-cubic atmospheric model (CCAM), projects maximum temperatures increases over southern Africa to be in the order of 4 °C under low mitigation towards the end of the century or even higher. The statistical recalibration model is able to replicate these increasing temperatures, and the atmospheric thickness-maximum temperature relationship is shown to be stable under future climate conditions. Since dry land crop yields are not explicitly simulated by climate models but are sensitive to maximum temperature extremes, the effect of projected maximum temperature change on dry land crops of the Witbank maize production district of South Africa, assuming other factors remain unchanged, is then assessed by employing a statistical approach similar to the one used for maximum temperature projections.
Flash Floods Simulation using a Physical-Based Hydrological Model at Different Hydroclimatic Regions
NASA Astrophysics Data System (ADS)
Saber, Mohamed; Kamil Yilmaz, Koray
2016-04-01
Currently, flash floods are seriously increasing and affecting many regions over the world. Therefore, this study will focus on two case studies; Wadi Abu Subeira, Egypt as arid environment, and Karpuz basin, Turkey as Mediterranean environment. The main objective of this work is to simulate flash floods at both catchments considering the hydrometeorological differences between them which in turn effect their flash flood behaviors. An integrated methodology incorporating Hydrological River Basin Environmental Assessment Model (Hydro-BEAM) and remote sensing observations was devised. Global Satellite Mapping of Precipitation (GSMAP) were compared with the rain gauge network at the target basins to estimate the bias in an effort to further use it effectively in simulation of flash floods. Based on the preliminary results of flash floods simulation on both basins, we found that runoff behaviors of flash floods are different due to the impacts of climatology, hydrological and topographical conditions. Also, the simulated surface runoff hydrographs are reasonably coincide with the simulated ones. Consequently, some mitigation strategies relying on this study could be introduced to help in reducing the flash floods disasters at different climate regions. This comparison of different climatic basins would be a reasonable implication for the potential impact of climate change on the flash floods frequencies and occurrences.
NASA Astrophysics Data System (ADS)
Mutz, Sebastian G.; Ehlers, Todd A.; Werner, Martin; Lohmann, Gerrit; Stepanek, Christian; Li, Jingmin
2018-04-01
The denudation history of active orogens is often interpreted in the context of modern climate gradients. Here we address the validity of this approach and ask what are the spatial and temporal variations in palaeoclimate for a latitudinally diverse range of active orogens? We do this using high-resolution (T159, ca. 80 × 80 km at the Equator) palaeoclimate simulations from the ECHAM5 global atmospheric general circulation model and a statistical cluster analysis of climate over different orogens (Andes, Himalayas, SE Alaska, Pacific NW USA). Time periods and boundary conditions considered include the Pliocene (PLIO, ˜ 3 Ma), the Last Glacial Maximum (LGM, ˜ 21 ka), mid-Holocene (MH, ˜ 6 ka), and pre-industrial (PI, reference year 1850). The regional simulated climates of each orogen are described by means of cluster analyses based on the variability in precipitation, 2 m air temperature, the intra-annual amplitude of these values, and monsoonal wind speeds where appropriate. Results indicate the largest differences in the PI climate existed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. The LGM climate shows the largest deviation in annual precipitation from the PI climate and shows enhanced precipitation in the temperate Andes and coastal regions for both SE Alaska and the US Pacific Northwest. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time slice experiments conducted here. Taken together, these results highlight significant changes in late Cenozoic regional climatology over the last ˜ 3 Myr. Comparison of simulated climate with proxy-based reconstructions for the MH and LGM reveal satisfactory to good performance of the model in reproducing precipitation changes, although in some cases discrepancies between neighbouring proxy observations highlight contradictions between proxy observations themselves. Finally, we document regions where the largest magnitudes of late Cenozoic changes in precipitation and temperature occur and offer the highest potential for future observational studies that quantify the impact of climate change on denudation and weathering rates.
NASA Technical Reports Server (NTRS)
Nolte, Christopher; Otte, Tanya; Pinder, Robert; Bowden, J.; Herwehe, J.; Faluvegi, Gregory; Shindell, Drew
2013-01-01
Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture regional-scale changes in temperatures and precipitation. We use a regional climate model (RCM) to dynamically downscale the GCM's large-scale signal to investigate the changes in regional and local extremes of temperature and precipitation that may result from a changing climate. In this paper, we show preliminary results from downscaling the NASA/GISS ModelE IPCC AR5 Representative Concentration Pathway (RCP) 6.0 scenario. We use the Weather Research and Forecasting (WRF) model as the RCM to downscale decadal time slices (1995-2005 and 2025-2035) and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0. The regional climate change scenario is further processed using the Community Multiscale Air Quality modeling system to explore influences of regional climate change on air quality.
Amin, M Z M; Shaaban, A J; Ercan, A; Ishida, K; Kavvas, M L; Chen, Z Q; Jang, S
2017-01-01
Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model utilizing an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century was dynamically downscaled to 6km resolution over Peninsular Malaysia by a regional climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over Muda and Dungun watersheds. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions in the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant from April to May and from July to October at Muda watershed. Also, the increase in mean monthly flows is shown to be significant in November during 2030-2070 and from November to December during 2070-2100 at Dungun watershed. In other words, the impact of the expected climate change will be significant during the northeast and southwest monsoon seasons at Muda watershed and during the northeast monsoon season at Dungun watershed. Furthermore, the flood frequency analyses for both watersheds indicated an overall increasing trend in the second half of the 21st century. Copyright © 2016 Elsevier B.V. All rights reserved.
Land-Climate Feedbacks in Indian Summer Monsoon Rainfall
NASA Astrophysics Data System (ADS)
Asharaf, Shakeel; Ahrens, Bodo
2016-04-01
In an attempt to identify how land surface states such as soil moisture influence the monsoonal precipitation climate over India, a series of numerical simulations including soil moisture sensitivity experiments was performed. The simulations were conducted with a nonhydrostatic regional climate model (RCM), the Consortium for Small-Scale Modeling (COSMO) in climate mode (CCLM) model, which was driven by the European Center for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis (ERA-Interim) data. Results showed that pre-monsoonal soil moisture has a significant impact on monsoonal precipitation formation and large-scale atmospheric circulations. The analysis revealed that even a small change in the processes that influence precipitation via changes in local evapotranspiration was able to trigger significant variations in regional soil moisture-precipitation feedback. It was observed that these processes varied spatially from humid to arid regions in India, which further motivated an examination of soil-moisture memory variation over these regions and determination of the ISM seasonal forecasting potential. A quantitative analysis indicated that the simulated soil-moisture memory lengths increased with soil depth and were longer in the western region than those in the eastern region of India. Additionally, the subsequent precipitation variance explained by soil moisture increased from east to west. The ISM rainfall was further analyzed in two different greenhouse gas emission scenarios: the Special Report on Emissions Scenario (SRES: B1) and the new Representative Concentration Pathways (RCPs: RCP4.5). To that end, the CCLM and its driving global-coupled atmospheric-oceanic model (GCM), ECHAM/MPIOM were used in order to understand the driving processes of the projected inter-annual precipitation variability and associated trends. Results inferred that the projected rainfall changes were the result of two largely compensating processes: increase of remotely induced precipitation and decrease of precipitation efficiency. However, the complementing precipitation components and their simulation uncertainties rendered climate projections of the Indian summer monsoon rainfall as an ongoing, highly ambiguous challenge for both the GCM and the RCM.
Clime: analyzing and producing climate data in GIS environment
NASA Astrophysics Data System (ADS)
Cattaneo, Luigi; Rillo, Valeria; Mercogliano, Paola
2014-05-01
In the last years, Impacts on Soil and Coasts Division (ISC) of CMCC (Euro-Mediterranean Center on Climate Change) had several collaboration experiences with impact communities, including IS-ENES (FP7-INF) and SafeLand (FP7-ENV) projects, which involved a study of landslide risk in Europe, and is currently active in GEMINA (FIRB) and ORIENTGATE (SEE Transnational Cooperation Programme) research projects. As a result, it has brought research activities about different impact of climate changes as flood and landslide hazards, based on climate simulation obtained from the high resolution regional climate models COSMO CLM, developed at CMCC as member of the consortium CLM Assembly. ISC-Capua also collaborates with local institutions interested in atmospherical climate change and also of their impacts on the soil, such as river basin authorities in the Campania region, ARPA Emilia Romagna and ARPA Calabria. Impact models (e.g. hydraulic or stability models) are usually developed in a GIS environment, since they need an accurate territory description, so Clime has been designed to bridge the usually existing gap between climate data - both observed and simulated - gathered from different sources, and impact communities. The main goal of Clime, special purpose Geographic Information System (GIS) software integrated in ESRI ArcGIS Desktop 10, is to easily evaluate multiple climate features and study climate changes over specific geographical domains with their related effects on environment, including impacts on soil. Developed as an add-in tool, this software has been conceived for research activities of ISC Division in order to provide a substantial contribution during post-processing and validation phase. Therefore, it is possible to analyze and compare multiple datasets (observations, climate simulations, etc.) through processes involving statistical functions, percentiles, trends test and evaluation of extreme events with a flexible system of temporal and spatial filtering, and to represent results as maps, temporal and statistic plots (time series, seasonal cycles, PDFs, scatter plots, Taylor diagrams) or Excel tables; in addition, it features bias correction techniques for climate model results. Summarizing, Clime is able to provide users a simple and fast way to retrieve analysis over simulated climate data and observations within any geographical site of interest (provinces, regions, countries, etc.).
NASA Astrophysics Data System (ADS)
Chen, X.; Huang, X.; Flanner, M.; Yang, P.; Feldman, D.; Kuo, C.
2016-12-01
As of today, most state-of-the-art GCMs still assumes blackbody surface in their longwave radiation scheme. Recent works by Chen et al. (2014) and Feldman et al. (2014) have suggested that the surface spectral emissivity can impact the simulated radiation budget and climate change in a discernible way, especially in high latitudes. Using a recently developed global emissivity database that covers both far-IR and mid-IR, we incorporated the LW surface spectral emissivity into the radiation scheme of the CESM. Effort has been made to ensure a consistent treatment of surface upward LW broadband flux in both the land module and the atmospheric module of the CESM, an important aspect overlooked by the previous study. Then we assess impacts of the inclusion of surface spectral emissivity on simulated mean-state climate and climate changes by carrying out two sets of parallel runs. The first pair of experiments uses the standard slab-ocean CESM v1.1.1 to run two experiments: one control run using forcings at year 2000 level and one sensitivity run abruptly doubling the CO2. The second pair of experiment setup is identical to the first one but using the CESM that we have modified (Surface emissivity is a prognostic variable in our second pair of experiments). The current climate simulation results show that the Sahara desert region in the modified CESM has a warmer surface temperature than in the standard CESM by 2-3K. Over the high-latitude regions, the modified CESM tends to have a colder surface temperature than the standard CESM by 1-2.5K. As a result, the climatological sea ice coverage in the modified CESM is 8% more than it in the standard CESM in both Polar Regions. All these differences are statistically significant. As for simulated climate change in response to a doubling of CO2, the Arctic region in the modified CESM warms consistently faster than in the standard CESM by 1-2K while the Antarctic region shows a non-uniform pattern of differences between two models. Differences in the changes of sea ice coverage between two models show a zonally-uniform dipole pattern over both polar oceans. The reasons for such differences and its linkage with the change of surface spectral emissivity are further explained.
Towards process-informed bias correction of climate change simulations
NASA Astrophysics Data System (ADS)
Maraun, Douglas; Shepherd, Theodore G.; Widmann, Martin; Zappa, Giuseppe; Walton, Daniel; Gutiérrez, José M.; Hagemann, Stefan; Richter, Ingo; Soares, Pedro M. M.; Hall, Alex; Mearns, Linda O.
2017-11-01
Biases in climate model simulations introduce biases in subsequent impact simulations. Therefore, bias correction methods are operationally used to post-process regional climate projections. However, many problems have been identified, and some researchers question the very basis of the approach. Here we demonstrate that a typical cross-validation is unable to identify improper use of bias correction. Several examples show the limited ability of bias correction to correct and to downscale variability, and demonstrate that bias correction can cause implausible climate change signals. Bias correction cannot overcome major model errors, and naive application might result in ill-informed adaptation decisions. We conclude with a list of recommendations and suggestions for future research to reduce, post-process, and cope with climate model biases.
Impact of Desiccation of Aral Sea on the Regional Climate of Central Asia Using WRF Model
NASA Astrophysics Data System (ADS)
Sharma, Ashish; Huang, Huei-Ping; Zavialov, Peter; Khan, Valentina
2018-01-01
This study explores the impacts of the desiccation of the Aral Sea and large-scale climate change on the regional climate of Central Asia in the post-1960 era. A series of climate downscaling experiments for the 1960's and 2000's decades were performed using the Weather Research and Forecast model at 12-km horizontal resolution. To quantify the impacts of the changing surface boundary condition, a set of simulations with an identical lateral boundary condition but different extents of the Aral Sea were performed. It was found that the desiccation of the Aral Sea leads to more snow (and less rain) as desiccated winter surface is relatively much colder than water surface. In summer, desiccation led to substantial warming over the Aral Sea. These impacts were largely confined to within the area covered by the former Aral Sea and its immediate vicinity, although desiccation of the Sea also led to minor cooling over the greater Central Asia in winter. A contrasting set of simulations with an identical surface boundary condition but different lateral boundary conditions produced more identifiable changes in regional climate over the greater Central Asia which was characterized by a warming trend in both winter and summer. Simulations also showed that while the desiccation of the Aral Sea has significant impacts on the local climate over the Sea, the climate over the greater Central Asia on inter-decadal time scale was more strongly influenced by the continental or global-scale climate change on that time scale.
NASA Technical Reports Server (NTRS)
Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong;
2012-01-01
One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5
Shafer, Sarah L; Bartlein, Patrick J; Gray, Elizabeth M; Pelltier, Richard T
2015-01-01
Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0-58.0°N latitude by 136.6-103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070-2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.
NASA Astrophysics Data System (ADS)
Leutwyler, D.; Fuhrer, O.; Ban, N.; Lapillonne, X.; Lüthi, D.; Schar, C.
2017-12-01
The representation of moist convection in climate models represents a major challenge, due to the small scales involved. Regional climate simulations using horizontal resolutions of O(1km) allow to explicitly resolve deep convection leading to an improved representation of the water cycle. However, due to their extremely demanding computational requirements, they have so far been limited to short simulations and/or small computational domains. A new version of the Consortium for Small-Scale Modeling weather and climate model (COSMO) is capable of exploiting new supercomputer architectures employing GPU accelerators, and allows convection-resolving climate simulations on computational domains spanning continents and time periods up to one decade. We present results from a decade-long, convection-resolving climate simulation on a European-scale computational domain. The simulation has a grid spacing of 2.2 km, 1536x1536x60 grid points, covers the period 1999-2008, and is driven by the ERA-Interim reanalysis. Specifically we present an evaluation of hourly rainfall using a wide range of data sets, including several rain-gauge networks and a remotely-sensed lightning data set. Substantial improvements are found in terms of the diurnal cycles of precipitation amount, wet-hour frequency and all-hour 99th percentile. However the results also reveal substantial differences between regions with and without strong orographic forcing. Furthermore we present an index for deep-convective activity based on the statistics of vertical motion. Comparison of the index with lightning data shows that the convection-resolving climate simulations are able to reproduce important features of the annual cycle of deep convection in Europe. Leutwyler D., D. Lüthi, N. Ban, O. Fuhrer, and C. Schär (2017): Evaluation of the Convection-Resolving Climate Modeling Approach on Continental Scales , J. Geophys. Res. Atmos., 122, doi:10.1002/2016JD026013.
Superensemble of a Regional Climate Model for the Western US using Climateprediction.net
NASA Astrophysics Data System (ADS)
Mote, P.; Salahuddin, A.; Allen, M.; Jones, R.
2010-12-01
For over a decade, a citizen science experiment called climateprediction.net organized by Oxford University has used computer time contributed by over 80,000 volunteers around the world to create superensembles of global climate simulations. A new climateprediction.net experiment built by the UK Meteorological Office and Oxford, and released in late summer 2010, brings these computing resources to bear on regional climate modeling for the Western US, western Europe, and southern Africa. For the western US, the spatial resolution of 25km permits important topological features -- mountain ranges and valleys -- to be resolved and to influence simulated climate, which consequently includes many important observed features of climate like the fact that California’s Central Valley is hottest at the north and south ends in summer, and cooler in the middle owing to the maritime influence that leaks through the gap in the coast range in the San Francisco area. We designed the output variables to satisfy both research needs and societal and environmental impacts needs. These include atmospheric circulation on regional and global scales, surface fluxes of energy, and hydrologic variables; extremes of temperature, precipitation, and wind; and derived quantities like frost days and number of consecutive dry days. Early results from pre-release beta testing suggest that the simulated fields compare favorably with available observations, and that the model performs as well in the distributed computing environment as on a dedicated high-performance machine. The advantages of a superensemble in interpreting regional climate change will permit an unprecedented combination of statistical completeness and spatial resolution.
Regional climate modeling over the Maritime Continent: Assessment of RegCM3-BATS1e and RegCM3-IBIS
NASA Astrophysics Data System (ADS)
Gianotti, R. L.; Zhang, D.; Eltahir, E. A.
2010-12-01
Despite its importance to global rainfall and circulation processes, the Maritime Continent remains a region that is poorly simulated by climate models. Relatively few studies have been undertaken using a model with fine enough resolution to capture the small-scale spatial heterogeneity of this region and associated land-atmosphere interactions. These studies have shown that even regional climate models (RCMs) struggle to reproduce the climate of this region, particularly the diurnal cycle of rainfall. This study builds on previous work by undertaking a more thorough evaluation of RCM performance in simulating the timing and intensity of rainfall over the Maritime Continent, with identification of major sources of error. An assessment was conducted of the Regional Climate Model Version 3 (RegCM3) used in a coupled system with two land surface schemes: Biosphere Atmosphere Transfer System Version 1e (BATS1e) and Integrated Biosphere Simulator (IBIS). The model’s performance in simulating precipitation was evaluated against the 3-hourly TRMM 3B42 product, with some validation provided of this TRMM product against ground station meteorological data. It is found that the model suffers from three major errors in the rainfall histogram: underestimation of the frequency of dry periods, overestimation of the frequency of low intensity rainfall, and underestimation of the frequency of high intensity rainfall. Additionally, the model shows error in the timing of the diurnal rainfall peak, particularly over land surfaces. These four errors were largely insensitive to the choice of boundary conditions, convective parameterization scheme or land surface scheme. The presence of a wet or dry bias in the simulated volumes of rainfall was, however, dependent on the choice of convection scheme and boundary conditions. This study also showed that the coupled model system has significant error in overestimation of latent heat flux and evapotranspiration from the land surface, and specifically overestimation of interception loss with concurrent underestimation of transpiration, irrespective of the land surface scheme used. Discussion of the origin of these errors is provided, with some suggestions for improvement.
Stohlgren, T.J.; Chase, T.N.; Pielke, R.A.; Kittel, T.G.F.; Baron, Jill S.
1998-01-01
We present evidence that land use practices in the plains of Colorado influence regional climate and vegetation in adjacent natural areas in the Rocky Mountains in predictable ways. Mesoscale climate model simulations using the Colorado State University Regional Atmospheric Modelling System (RAMS) projected that modifications to natural vegetation in the plains, primarily due to agriculture and urbanization, could produce lower summer temperatures in the mountains. We corroborate the RAMS simulations with three independent sets of data: (i) climate records from 16 weather stations, which showed significant trends of decreasing July temperatures in recent decades; (ii) the distribution of seedlings of five dominant conifer species in Rocky Mountain National Park, Colorado, which suggested that cooler, wetter conditions occurred over roughly the same time period; and (iii) increased stream flow, normalized for changes in precipitation, during the summer months in four river basins, which also indicates cooler summer temperatures and lower transpiration at landscape scales. Combined, the mesoscale atmospheric/land-surface model, short-term in regional temperatures, forest distribution changes, and hydrology data indicate that the effects of land use practices on regional climate may overshadow larger-scale temperature changes commonly associated with observed increases in CO2 and other greenhouse gases.
NASA Astrophysics Data System (ADS)
Rasmussen, K. L.; Prein, A. F.; Rasmussen, R. M.; Ikeda, K.; Liu, C.
2017-11-01
Novel high-resolution convection-permitting regional climate simulations over the US employing the pseudo-global warming approach are used to investigate changes in the convective population and thermodynamic environments in a future climate. Two continuous 13-year simulations were conducted using (1) ERA-Interim reanalysis and (2) ERA-Interim reanalysis plus a climate perturbation for the RCP8.5 scenario. The simulations adequately reproduce the observed precipitation diurnal cycle, indicating that they capture organized and propagating convection that most climate models cannot adequately represent. This study shows that weak to moderate convection will decrease and strong convection will increase in frequency in a future climate. Analysis of the thermodynamic environments supporting convection shows that both convective available potential energy (CAPE) and convective inhibition (CIN) increase downstream of the Rockies in a future climate. Previous studies suggest that CAPE will increase in a warming climate, however a corresponding increase in CIN acts as a balancing force to shift the convective population by suppressing weak to moderate convection and provides an environment where CAPE can build to extreme levels that may result in more frequent severe convection. An idealized investigation of fundamental changes in the thermodynamic environment was conducted by shifting a standard atmospheric profile by ± 5 °C. When temperature is increased, both CAPE and CIN increase in magnitude, while the opposite is true for decreased temperatures. Thus, even in the absence of synoptic and mesoscale variations, a warmer climate will provide more CAPE and CIN that will shift the convective population, likely impacting water and energy budgets on Earth.
Underestimation of the Tambora effects in North American taiga ecosystems
NASA Astrophysics Data System (ADS)
Gennaretti, Fabio; Boucher, Etienne; Nicault, Antoine; Gea-Izquierdo, Guillermo; Arseneault, Dominique; Berninger, Frank; Savard, Martine M.; Bégin, Christian; Guiot, Joel
2018-03-01
The Tambora eruption (1815 AD) was one of the major eruptions of the last two millennia and has no equivalents over the last two centuries. Here, we collected an extensive network of early meteorological time series, climate simulation data and numerous, well-replicated proxy records from Eastern Canada to analyze the strength and the persistence of the Tambora impact on the regional climate and forest processes. Our results show that the Tambora impacts on the terrestrial biosphere were stronger than previously thought, and not only affected tree growth and carbon uptake for a longer period than registered in the regional climate, but also determined forest demography and structure. Increased tree mortality, four times higher than the background level, indicates that the Tambora climatic impact propagated to influence the structure of the North American taiga for several decades. We also show that the Tambora signal is more persistent in observed data (temperature, river ice dynamics, forest growth, tree mortality) than in simulated ones (climate and forest-growth simulations), indicating that our understanding of the mechanisms amplifying volcanic perturbations on climates and ecosystems is still limited, notably in the North American taiga.
Windblown Dust and Air Quality Under a Changing Climate in the Pacific Northwest
NASA Astrophysics Data System (ADS)
Sharratt, B. S.; Tatarko, J.; Abatzoglou, J. T.; Fox, F.; Huggins, D. R.
2016-12-01
Wind erosion is a concern for sustainable agriculture and societal health in the US Pacific Northwest. Indeed, wind erosion continues to cause exceedances of the National Ambient Air Quality Standard for PM10 in the region. Can we expect air quality to deteriorate or improve as climate changes? Will wind erosion escalate in the future under a warmer and drier climate as forecast for Australia, southern prairies of Canada, northern China, and United States Corn Belt and Colorado Plateau? To answer these questions, we used 18 global climate models, cropping systems simulation model (CropSyst), and the Wind Erosion Prediction System (WEPS) to simulate the complex interactions among climate, crop production, and wind erosion. These simulations were carried out in eastern Washington where wind erosion of agricultural lands contribute to poor air quality in the region. Our results suggest that an increase in temperature and CO2 concentration, coupled with nominal increases in precipitation, will enhance biomass production and reduce soil and PM10 losses by the mid-21st century. This study reveals that climate change may reduce the risk of wind erosion and improve air quality in the Inland Pacific Northwest.
A linear regression model for predicting PNW estuarine temperatures in a changing climate
Pacific Northwest coastal regions, estuaries, and associated ecosystems are vulnerable to the potential effects of climate change, especially to changes in nearshore water temperature. While predictive climate models simulate future air temperatures, no such projections exist for...
Climate change unlikely to increase malaria burden in West Africa
NASA Astrophysics Data System (ADS)
Yamana, Teresa K.; Bomblies, Arne; Eltahir, Elfatih A. B.
2016-11-01
The impact of climate change on malaria transmission has been hotly debated. Recent conclusions have been drawn using relatively simple biological models and statistical approaches, with inconsistent predictions. Consequently, the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) echoes this uncertainty, with no clear guidance for the impacts of climate change on malaria transmission, yet recognizing a strong association between local climate and malaria. Here, we present results from a decade-long study involving field observations and a sophisticated model simulating village-scale transmission. We drive the malaria model using select climate models that correctly reproduce historical West African climate, and project reduced malaria burden in a western sub-region and insignificant impact in an eastern sub-region. Projected impacts of climate change on malaria transmission in this region are not of serious concern.
Zhu, Qiuan; Jiang, Hong; Peng, Changhui; Liu, Jinxun; Fang, Xiuqin; Wei, Xiaohua; Liu, Shirong; Zhou, Guomo
2012-01-01
Investigating the relationship between factors (climate change, atmospheric CO2 concentrations enrichment, and vegetation structure) and hydrological processes is important for understanding and predicting the interaction between the hydrosphere and biosphere. The Integrated Biosphere Simulator (IBIS) was used to evaluate the effects of climate change, rising CO2, and vegetation structure on hydrological processes in China at the end of the 21st century. Seven simulations were implemented using the assemblage of the IPCC climate and CO2 concentration scenarios, SRES A2 and SRES B1. Analysis results suggest that (1) climate change will have increasing effects on runoff, evapotranspiration (ET), transpiration (T), and transpiration ratio (transpiration/evapotranspiration, T/E) in most hydrological regions of China except in the southernmost regions; (2) elevated CO2 concentrations will have increasing effects on runoff at the national scale, but at the hydrological region scale, the physiology effects induced by elevated CO2 concentration will depend on the vegetation types, climate conditions, and geographical background information with noticeable decreasing effects shown in the arid Inland region of China; (3) leaf area index (LAI) compensation effect and stomatal closure effect are the dominant factors on runoff in the arid Inland region and southern moist hydrological regions, respectively; (4) the magnitudes of climate change (especially the changing precipitation pattern) effects on the water cycle are much larger than those of the elevated CO2 concentration effects; however, increasing CO2 concentration will be one of the most important modifiers to the water cycle; (5) the water resource condition will be improved in northern China but depressed in southernmost China under the IPCC climate change scenarios, SRES A2 and SRES B1.
NASA Astrophysics Data System (ADS)
Im, Eun-Soon; Coppola, Erika; Giorgi, Filippo
2010-05-01
Since anthropogenic climate change is a rather important factor for the future human life all over the planet and its effects are not globally uniform, climate information at regional or local scales become more and more important for an accurate assessment of the potential impact of climate change on societies and ecosystems. High resolution information with suitably fine-scale for resolving complex geographical features could be a critical factor for successful linkage between climate models and impact assessment studies. However, scale mismatch between them still remains major problem. One method for overcoming the resolution limitations of global climate models and for adding regional details to coarse-grid global projections is to use dynamical downscaling by means of a regional climate model. In this study, the ECHAM5/MPI-OM (1.875 degree) A1B scenario simulation has been dynamically downscaled by using two different approaches within the framework of RegCM3 modeling system. First, a mosaic-type parameterization of subgrid-scale topography and land use (Sub-BATS) is applied over the European Alpine region. The Sub-BATS system is composed of 15 km coarse-grid cell and 3 km sub-grid cell. Second, we developed the RegCM3 one-way double-nested system, with the mother domain encompassing the eastern regions of Asia at 60 km grid spacing and the nested domain covering the Korean Peninsula at 20 km grid spacing. By comparing the regional climate model output and the driving global model ECHAM5/MPI-OM output, it is possible to estimate the added value of physically-based dynamical downscaling when for example impact studies at hydrological scale are performed.
Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM
NASA Technical Reports Server (NTRS)
Crane, Robert G.; Hewitson, Bruce
1990-01-01
Model simulations of global climate change are seen as an essential component of any program aimed at understanding human impact on the global environment. A major weakness of current general circulation models (GCMs), however, is their inability to predict reliably the regional consequences of a global scale change, and it is these regional scale predictions that are necessary for studies of human/environmental response. This research is directed toward the development of a methodology for the validation of the synoptic scale climatology of GCMs. This is developed with regard to the Goddard Institute for Space Studies (GISS) GCM Model 2, with the specific objective of using the synoptic circulation form a doubles CO2 simulation to estimate regional climate change over North America, south of Hudson Bay. This progress report is specifically concerned with validating the synoptic climatology of the GISS GCM, and developing the transfer function to derive grid-point temperatures from the synoptic circulation. Principal Components Analysis is used to characterize the primary modes of the spatial and temporal variability in the observed and simulated climate, and the model validation is based on correlations between component loadings, and power spectral analysis of the component scores. The results show that the high resolution GISS model does an excellent job of simulating the synoptic circulation over the U.S., and that grid-point temperatures can be predicted with reasonable accuracy from the circulation patterns.
NASA Astrophysics Data System (ADS)
Adeniyi, Mojisola Oluwayemisi; Dilau, Kabiru Alabi
2018-02-01
The skill of Coordinated Regional Climate Downscaling Experiment (CORDEX) models (ARPEGE, CCLM, HIRHAM, RACMO, REMO, PRECIS, RegCM3, RCA, WRF and CRCM) in simulating the climate (precipitation, temperature and drought) of West Africa is determined using a process-based metric. This is done by comparing the CORDEX models' simulated and observed correlation coefficients between Atlantic Niño Index 1 (ATLN1) and the climate over West Africa. Strong positive correlation is observed between ATLN1 and the climate parameters at the Guinea Coast (GC). The Atlantic Ocean has Niño behaviours through the ATLN indices which influence the climate of the tropics. Drought has distinct dipole structure of correlation with ATLN1 (negative at the Sahel); precipitation does not have distinct dipole structure of correlation, while temperature has almost a monopole correlation structure with ATLN1 over West Africa. The magnitude of the correlation increases with closeness to the equatorial eastern Atlantic. Correlations between ATLN1 and temperature are mostly stronger than those between ATLN1 and precipitation over the region. Most models have good performance over the GC, but ARPEGE has the highest skill at GC. The PRECIS is the most skilful over Savannah and RCA over Sahel. These models can be used to downscale the projected climate at the region of their highest skill.
Bias-correction of CORDEX-MENA projections using the Distribution Based Scaling method
NASA Astrophysics Data System (ADS)
Bosshard, Thomas; Yang, Wei; Sjökvist, Elin; Arheimer, Berit; Graham, L. Phil
2014-05-01
Within the Regional Initiative for the Assessment of the Impact of Climate Change on Water Resources and Socio-Economic Vulnerability in the Arab Region (RICCAR) lead by UN ESCWA, CORDEX RCM projections for the Middle East Northern Africa (MENA) domain are used to drive hydrological impacts models. Bias-correction of newly available CORDEX-MENA projections is a central part of this project. In this study, the distribution based scaling (DBS) method has been applied to 6 regional climate model projections driven by 2 RCP emission scenarios. The DBS method uses a quantile mapping approach and features a conditional temperature correction dependent on the wet/dry state in the climate model data. The CORDEX-MENA domain is particularly challenging for bias-correction as it spans very diverse climates showing pronounced dry and wet seasons. Results show that the regional climate models simulate too low temperatures and often have a displaced rainfall band compared to WATCH ERA-Interim forcing data in the reference period 1979-2008. DBS is able to correct the temperature biases as well as some aspects of the precipitation biases. Special focus is given to the analysis of the influence of the dry-frequency bias (i.e. climate models simulating too few rain days) on the bias-corrected projections and on the modification of the climate change signal by the DBS method.
NASA Astrophysics Data System (ADS)
Xia, Jianyang; McGuire, A. David; Lawrence, David; Burke, Eleanor; Chen, Guangsheng; Chen, Xiaodong; Delire, Christine; Koven, Charles; MacDougall, Andrew; Peng, Shushi; Rinke, Annette; Saito, Kazuyuki; Zhang, Wenxin; Alkama, Ramdane; Bohn, Theodore J.; Ciais, Philippe; Decharme, Bertrand; Gouttevin, Isabelle; Hajima, Tomohiro; Hayes, Daniel J.; Huang, Kun; Ji, Duoying; Krinner, Gerhard; Lettenmaier, Dennis P.; Miller, Paul A.; Moore, John C.; Smith, Benjamin; Sueyoshi, Tetsuo; Shi, Zheng; Yan, Liming; Liang, Junyi; Jiang, Lifen; Zhang, Qian; Luo, Yiqi
2017-02-01
Realistic projection of future climate-carbon (C) cycle feedbacks requires better understanding and an improved representation of the C cycle in permafrost regions in the current generation of Earth system models. Here we evaluated 10 terrestrial ecosystem models for their estimates of net primary productivity (NPP) and responses to historical climate change in permafrost regions in the Northern Hemisphere. In comparison with the satellite estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS; 246 ± 6 g C m-2 yr-1), most models produced higher NPP (309 ± 12 g C m-2 yr-1) over the permafrost region during 2000-2009. By comparing the simulated gross primary productivity (GPP) with a flux tower-based database, we found that although mean GPP among the models was only overestimated by 10% over 1982-2009, there was a twofold discrepancy among models (380 to 800 g C m-2 yr-1), which mainly resulted from differences in simulated maximum monthly GPP (GPPmax). Most models overestimated C use efficiency (CUE) as compared to observations at both regional and site levels. Further analysis shows that model variability of GPP and CUE are nonlinearly correlated to variability in specific leaf area and the maximum rate of carboxylation by the enzyme Rubisco at 25°C (Vcmax_25), respectively. The models also varied in their sensitivities of NPP, GPP, and CUE to historical changes in climate and atmospheric CO2 concentration. These results indicate that model predictive ability of the C cycle in permafrost regions can be improved by better representation of the processes controlling CUE and GPPmax as well as their sensitivity to climate change.
Xia, Jianyang; McGuire, A. David; Lawrence, David; Burke, Eleanor J.; Chen, Guangsheng; Chen, Xiaodong; Delire, Christine; Koven, Charles; MacDougall, Andrew; Peng, Shushi; Rinke, Annette; Saito, Kazuyuki; Zhang, Wenxin; Alkama, Ramdane; Bohn, Theodore J.; Ciais, Philippe; Decharme, Bertrand; Gouttevin, Isabelle; Hajima, Tomohiro; Hayes, Daniel J.; Huang, Kun; Ji, Duoying; Krinner, Gerhard; Lettenmaier, Dennis P.; Miller, Paul A.; Moore, John C.; Smith, Benjamin; Sueyoshi, Tetsuo; Shi, Zheng; Yan, Liming; Liang, Junyi; Jiang, Lifen; Zhang, Qian; Luo, Yiqi
2017-01-01
Realistic projection of future climate-carbon (C) cycle feedbacks requires better understanding and an improved representation of the C cycle in permafrost regions in the current generation of Earth system models. Here we evaluated 10 terrestrial ecosystem models for their estimates of net primary productivity (NPP) and responses to historical climate change in permafrost regions in the Northern Hemisphere. In comparison with the satellite estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS; 246 ± 6 g C m−2 yr−1), most models produced higher NPP (309 ± 12 g C m−2 yr−1) over the permafrost region during 2000–2009. By comparing the simulated gross primary productivity (GPP) with a flux tower-based database, we found that although mean GPP among the models was only overestimated by 10% over 1982–2009, there was a twofold discrepancy among models (380 to 800 g C m−2 yr−1), which mainly resulted from differences in simulated maximum monthly GPP (GPPmax). Most models overestimated C use efficiency (CUE) as compared to observations at both regional and site levels. Further analysis shows that model variability of GPP and CUE are nonlinearly correlated to variability in specific leaf area and the maximum rate of carboxylation by the enzyme Rubisco at 25°C (Vcmax_25), respectively. The models also varied in their sensitivities of NPP, GPP, and CUE to historical changes in climate and atmospheric CO2 concentration. These results indicate that model predictive ability of the C cycle in permafrost regions can be improved by better representation of the processes controlling CUE and GPPmax as well as their sensitivity to climate change.
Climate and tourism in the Black Forest during the warm season.
Endler, Christina; Matzarakis, Andreas
2011-03-01
Climate, climate change and tourism all interact. Part of the public discussion about climate change focusses on the tourism sector, with direct and indirect impacts being of equally high relevance. Climate and tourism are closely linked. Thus, climate is a very decisive factor in choices both of destination and of type of journey (active holidays, wellness, and city tours) in the tourism sector. However, whether choices about destinations or types of trip will alter with climate change is difficult to predict. Future climates can be simulated and projected, and the tendencies of climate parameters can be estimated using global and regional climate models. In this paper, the focus is on climate change in the mountainous regions of southwest Germany - the Black Forest. The Black Forest is one of the low mountain ranges where both winter and summer tourism are vulnerable to climate change due to its southern location; the strongest climatic changes are expected in areas covering the south and southwest of Germany. Moreover, as the choice of destination is highly dependent on good weather, a climatic assessment for tourism is essential. Thus, the aim of this study was to estimate climatic changes in mountainous regions during summer, especially for tourism and recreation. The assessment method was based on human-biometeorology as well as tourism-climatologic approaches. Regional climate simulations based on the regional climate model REMO were used for tourism-related climatic analyses. Emission scenarios A1B and B1 were considered for the time period 2021 to 2050, compared to the 30-year base period of 1971-2000, particularly for the warm period of the year, defined here as the months of March-November. In this study, we quantified the frequency, but not the means, of climate parameters. The study results show that global and regional warming is reflected in an increase in annual mean air temperature, especially in autumn. Changes in the spring show a slight negative trend, which is in line with the trend of a decrease in physiologically equivalent temperature as well as in thermal comfort conditions. Due to the rising air temperature, heat stress as well as sultry conditions are projected to become more frequent, affecting human health and recreation, especially at lower lying altitudes. The tops of the mountains and higher elevated areas still have the advantage of offering comfortable climatic conditions.
Research on climate impacts and agriculture over the past two decades has applied simulation models at a range of scales and future climate scenarios, finding that crop growth and yield responds to changing climate conditions, and that the impacts are regional and highly depende...
NASA Astrophysics Data System (ADS)
Shafer, S. L.; Bartlein, P. J.
2017-12-01
The period from 15-10 ka was a time of rapid vegetation changes in North America. Continental ice sheets in northern North America were receding, exposing new habitat for vegetation, and regions distant from the ice sheets experienced equally large environmental changes. Northern hemisphere temperatures during this period were increasing, promoting transitions from cold-adapted to temperate plant taxa at mid-latitudes. Long, transient paleovegetation simulations can provide important information on vegetation responses to climate changes, including both the spatial dynamics and rates of species distribution changes over time. Paleovegetation simulations also can fill the spatial and temporal gaps in observed paleovegetation records (e.g., pollen data from lake sediments), allowing us to test hypotheses about past vegetation changes (e.g., the location of past refugia). We used the CCSM3 TraCE transient climate simulation as input for LPJ-GUESS, a general ecosystem model, to simulate vegetation changes from 15-10 ka for parts of western North America at mid-latitudes ( 35-55° N). For these simulations, LPJ-GUESS was parameterized to simulate key tree taxa for western North America (e.g., Pseudotsuga, Tsuga, Quercus, etc.). The CCSM3 TraCE transient climate simulation data were regridded onto a 10-minute grid of the study area. We analyzed the simulated spatial and temporal dynamics of these taxa and compared the simulated changes with observed paleovegetation changes recorded in pollen and plant macrofossil data (e.g., data from the Neotoma Paleoecology Database). In general, the LPJ-GUESS simulations reproduce the general patterns of paleovegetation responses to climate change, although the timing of some simulated vegetation changes do not match the observed paleovegetation record. We describe the areas and time periods with the greatest data-model agreement and disagreement, and discuss some of the strengths and weaknesses of the simulated climate and vegetation data. The magnitude and rate of the simulated past vegetation changes are compared with projected future vegetation changes for the region.
NASA Astrophysics Data System (ADS)
King, J.; Harrington, M. D.; Cole, J. E.; Drysdale, R.; Woodhead, J. D.; Fasullo, J.; Stevenson, S.; Otto-Bliesner, B. L.; Overpeck, J. T.; Edwards, R. L.; Henderson, G. M.
2017-12-01
Understanding long-term hydroclimate is particularly important in semiarid regions where prolonged droughts may be exacerbated by a warming climate. In many regions, speleothem trace elements correlate with regional wet and dry climate signals. In the drought-prone Southwestern US (SW), wet and dry episodes are strongly influenced by seasonal changes in atmospheric circulation and teleconnections to remote forcing. Here, we address the need for seasonal moisture reconstructions using paleoclimate and climate model approaches. First, we present a high-resolution (sub-annual) record of speleothem trace elements spanning the last 3000 years from Fort Huachuca Cave, AZ, to investigate the variability of regional seasonal precipitation and sustained regional droughts. In a principal component (PC) analysis of the speleothem, trace elements associated with wet (Sr, Ba) and dry (P, Y, Zn) episodes load strongly and inversely, and the associated PC signals correlate with local gridded precipitation data over the last 50 years (R > 0.6, p < 0.1). These results suggest that the elemental signals provide a seasonal moisture record for Southern Arizona. We use the record to examine the frequency and timing of extreme droughts in the region and compare the speleothem record's frequency domain characteristics with other regional moisture records and with climate model output. The speleothem record demonstrates strong low-frequency variability with pronounced multi-decadal dry periods, a feature notably lacking in drought metrics from simulations of the last millennium. We also examine the seasonal SW precipitation response to modes of climate variability and external forcings, including volcanic eruptions, in both the speleothem record and the Community Earth System Model's Last Millennium Ensemble (CESM-LME). Notably, ENSO and volcanic forcing have a discernable effect on SW seasonal precipitation in model simulations, particularly when the two processes combine to shift the position of the ITCZ. This integrated analysis of paleodata with climate model results will help us identify and explain discrepancies between these information sources and improve stakeholders' ability to anticipate and prepare for future drought.
NASA Astrophysics Data System (ADS)
Chiu, C. M.; Hamlet, A. F.
2014-12-01
Climate change is likely to impact the Great Lakes region and Midwest region via changes in Great Lakes water levels, agricultural impacts, river flooding, urban stormwater impacts, drought, water temperature, and impacts to terrestrial and aquatic ecosystems. Self-consistent and temporally homogeneous long-term data sets of precipitation and temperature over the entire Great Lakes region and Midwest regions are needed to provide inputs to hydrologic models, assess historical trends in hydroclimatic variables, and downscale global and regional-scale climate models. To support these needs a new hybrid gridded meteorological forcing dataset at 1/16 degree resolution based on data from co-op station records, the U. S Historical Climatology Network (HCN) , the Historical Canadian Climate Database (HCCD), and Precipitation Regression on Independent Slopes Method (PRISM) has been assembled over the Great Lakes and Midwest region from 1915-2012 at daily time step. These data were then used as inputs to the macro-scale Variable Infiltration Capacity (VIC) hydrology model, implemented over the Midwest and Great Lakes region at 1/16 degree resolution, to produce simulated hydrologic variables that are amenable to long-term trend analysis. Trends in precipitation and temperature from the new meteorological driving data sets, as well as simulated hydrometeorological variables such as snowpack, soil moisture, runoff, and evaporation over the 20th century are presented and discussed.
NASA Astrophysics Data System (ADS)
Contoux, C.; Jost, A.; Sepulchre, P.; Ramstein, G.
2012-04-01
The mid-Pliocene Warm Period (mPWP, ca. 3.3 -3 Ma) is the last geological period showing a warmer climate than the preindustrial during a sustained period of time, much longer than interglacial periods of the last million years. Moreover, mPWP position of the continents and atmospheric pCO2 are very close to present-day, both conditions making the mPWP a relevant analogue for future global warming. For these reasons, the mPWP has been the focus of Pliocene Modelling Intercomparison Project (PlioMIP), which associates data analysis and modelling. We use the IPSLCM5 Earth System model and its atmospheric component alone (LMDZ), to simulate the climate of the mPWP. Boundary conditions such as sea surface temperatures (SSTs), topography, ice sheet extent and vegetation are the ones used within the PlioMIP framework. On a global scale we show the impact of different boundary conditions with LMDZ, and of a global coupling on the simulated climate. Results from the Earth System model are also compared to SST reconstructions, particularly in the North Atlantic Ocean, where an important warming occurs, generally poorly reproduced by models. These results will then be part of the multi-model analysis for the Pliocene. The PlioMIP exercise is also about better understanding model/data mismatches. In the present-day desertic regions of Lake Chad (Africa) and Lake Eyre (Australia), vegetation data show the presence of tropical savanna at the expense of deserts during the mPWP. Vegetation models forced by mPWP climatic simulations fail to reproduce more humid vegetation in these locations. There might be a reason for this model/data discrepancy: geological data stand for the presence of mega-lakes in these two regions during the mPWP that are not accounted for in previous simulations. Such extended waterbodies could have important feedbacks on the hydrological cycle and regional climate. We use the LMDZ4 atmospheric model imbedding explicitly resolved lake surfaces to simulate the climate under mega-lake conditions, using a zoom on the regions of interest. This allows us to determine the viability of such waterbodies under mid-Pliocene climatic conditions as well as their feedbacks on the climate system.
Simulating malaria transmission in the current and future climate of West Africa
NASA Astrophysics Data System (ADS)
Yamana, T. K.; Bomblies, A.; Eltahir, E. A. B.
2015-12-01
Malaria transmission in West Africa is closely tied to climate, as rain fed water pools provide breeding habitat for the anopheles mosquito vector, and temperature affects the mosquito's ability to spread disease. We present results of a highly detailed, spatially explicit mechanistic modelling study exploring the relationships between the environment and malaria in the current and future climate of West Africa. A mechanistic model of human immunity was incorporated into an existing agent-based model of malaria transmission, allowing us to move beyond entomological measures such as mosquito density and vectorial capacity to analyzing the prevalence of the malaria parasite within human populations. The result is a novel modelling tool that mechanistically simulates all of the key processes linking environment to malaria transmission. Simulations were conducted across climate zones in West Africa, linking temperature and rainfall to entomological and epidemiological variables with a focus on nonlinearities due to threshold effects and interannual variability. Comparisons to observations from the region confirmed that the model provides a reasonable representation of the entomological and epidemiological conditions in this region. We used the predictions of future climate from the most credible CMIP5 climate models to predict the change in frequency and severity of malaria epidemics in West Africa as a result of climate change.
USDA-ARS?s Scientific Manuscript database
The Texas High Plains (THP) region contributes to about 25% of the US cotton production. Dwindling groundwater resources in the underlying Ogallala aquifer, future climate variability and frequent occurrences of droughts are major concerns for cotton production in this region. Assessing the impacts ...
USDA-ARS?s Scientific Manuscript database
The Texas High Plains (THP) region contributes to about 25% of the US cotton production. Dwindling groundwater resources in the underlying Ogallala aquifer, future climate variability and frequent occurrences of droughts are major concerns for cotton production in this region. Assessing the impacts ...
NASA Astrophysics Data System (ADS)
Devanand, Anjana; Ghosh, Subimal; Paul, Supantha; Karmakar, Subhankar; Niyogi, Dev
2018-06-01
Regional simulations of the seasonal Indian summer monsoon rainfall (ISMR) require an understanding of the model sensitivities to physics and resolution, and its effect on the model uncertainties. It is also important to quantify the added value in the simulated sub-regional precipitation characteristics by a regional climate model (RCM), when compared to coarse resolution rainfall products. This study presents regional model simulations of ISMR at seasonal scale using the Weather Research and Forecasting (WRF) model with the synoptic scale forcing from ERA-interim reanalysis, for three contrasting monsoon seasons, 1994 (excess), 2002 (deficit) and 2010 (normal). Impact of four cumulus schemes, viz., Kain-Fritsch (KF), Betts-Janjić-Miller, Grell 3D and modified Kain-Fritsch (KFm), and two micro physical parameterization schemes, viz., WRF Single Moment Class 5 scheme and Lin et al. scheme (LIN), with eight different possible combinations are analyzed. The impact of spectral nudging on model sensitivity is also studied. In WRF simulations using spectral nudging, improvement in model rainfall appears to be consistent in regions with topographic variability such as Central Northeast and Konkan Western Ghat sub-regions. However the results are also dependent on choice of cumulus scheme used, with KF and KFm providing relatively good performance and the eight member ensemble mean showing better results for these sub-regions. There is no consistent improvement noted in Northeast and Peninsular Indian monsoon regions. Results indicate that the regional simulations using nested domains can provide some improvements on ISMR simulations. Spectral nudging is found to improve upon the model simulations in terms of reducing the intra ensemble spread and hence the uncertainty in the model simulated precipitation. The results provide important insights regarding the need for further improvements in the regional climate simulations of ISMR for various sub-regions and contribute to the understanding of the added value in seasonal simulations by RCMs.
NASA Astrophysics Data System (ADS)
Devanand, Anjana; Ghosh, Subimal; Paul, Supantha; Karmakar, Subhankar; Niyogi, Dev
2017-08-01
Regional simulations of the seasonal Indian summer monsoon rainfall (ISMR) require an understanding of the model sensitivities to physics and resolution, and its effect on the model uncertainties. It is also important to quantify the added value in the simulated sub-regional precipitation characteristics by a regional climate model (RCM), when compared to coarse resolution rainfall products. This study presents regional model simulations of ISMR at seasonal scale using the Weather Research and Forecasting (WRF) model with the synoptic scale forcing from ERA-interim reanalysis, for three contrasting monsoon seasons, 1994 (excess), 2002 (deficit) and 2010 (normal). Impact of four cumulus schemes, viz., Kain-Fritsch (KF), Betts-Janjić-Miller, Grell 3D and modified Kain-Fritsch (KFm), and two micro physical parameterization schemes, viz., WRF Single Moment Class 5 scheme and Lin et al. scheme (LIN), with eight different possible combinations are analyzed. The impact of spectral nudging on model sensitivity is also studied. In WRF simulations using spectral nudging, improvement in model rainfall appears to be consistent in regions with topographic variability such as Central Northeast and Konkan Western Ghat sub-regions. However the results are also dependent on choice of cumulus scheme used, with KF and KFm providing relatively good performance and the eight member ensemble mean showing better results for these sub-regions. There is no consistent improvement noted in Northeast and Peninsular Indian monsoon regions. Results indicate that the regional simulations using nested domains can provide some improvements on ISMR simulations. Spectral nudging is found to improve upon the model simulations in terms of reducing the intra ensemble spread and hence the uncertainty in the model simulated precipitation. The results provide important insights regarding the need for further improvements in the regional climate simulations of ISMR for various sub-regions and contribute to the understanding of the added value in seasonal simulations by RCMs.
Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanderson, Benjamin M.; Xu, Yangyang; Tebaldi, Claudia
The Paris Agreement of December 2015 stated a goal to pursue efforts to keep global temperatures below 1.5 °C above preindustrial levels and well below 2 °C. The IPCC was charged with assessing climate impacts at these temperature levels, but fully coupled equilibrium climate simulations do not currently exist to inform such assessments. Here, we produce a set of scenarios using a simple model designed to achieve long-term 1.5 and 2 °C temperatures in a stable climate. These scenarios are then used to produce century-scale ensemble simulations using the Community Earth System Model, providing impact-relevant long-term climate data for stabilization pathways at 1.5 andmore » 2 °C levels and an overshoot 1.5 °C case, which are realized (for the 21st century) in the coupled model and are freely available to the community. We also describe the design of the simulations and a brief overview of their impact-relevant climate response. Exceedance of historical record temperature occurs with 60 % greater frequency in the 2 °C climate than in a 1.5 °C climate aggregated globally, and with twice the frequency in equatorial and arid regions. Extreme precipitation intensity is statistically significantly higher in a 2.0 °C climate than a 1.5 °C climate in some specific regions (but not all). The model exhibits large differences in the Arctic, which is ice-free with a frequency of 1 in 3 years in the 2.0 °C scenario, and 1 in 40 years in the 1.5 °C scenario. Significance of impact differences with respect to multi-model variability is not assessed.« less
Community climate simulations to assess avoided impacts in 1.5 and 2 °C futures
Sanderson, Benjamin M.; Xu, Yangyang; Tebaldi, Claudia; ...
2017-09-19
The Paris Agreement of December 2015 stated a goal to pursue efforts to keep global temperatures below 1.5 °C above preindustrial levels and well below 2 °C. The IPCC was charged with assessing climate impacts at these temperature levels, but fully coupled equilibrium climate simulations do not currently exist to inform such assessments. Here, we produce a set of scenarios using a simple model designed to achieve long-term 1.5 and 2 °C temperatures in a stable climate. These scenarios are then used to produce century-scale ensemble simulations using the Community Earth System Model, providing impact-relevant long-term climate data for stabilization pathways at 1.5 andmore » 2 °C levels and an overshoot 1.5 °C case, which are realized (for the 21st century) in the coupled model and are freely available to the community. We also describe the design of the simulations and a brief overview of their impact-relevant climate response. Exceedance of historical record temperature occurs with 60 % greater frequency in the 2 °C climate than in a 1.5 °C climate aggregated globally, and with twice the frequency in equatorial and arid regions. Extreme precipitation intensity is statistically significantly higher in a 2.0 °C climate than a 1.5 °C climate in some specific regions (but not all). The model exhibits large differences in the Arctic, which is ice-free with a frequency of 1 in 3 years in the 2.0 °C scenario, and 1 in 40 years in the 1.5 °C scenario. Significance of impact differences with respect to multi-model variability is not assessed.« less
Uncertainty of future projections of species distributions in mountainous regions.
Tang, Ying; Winkler, Julie A; Viña, Andrés; Liu, Jianguo; Zhang, Yuanbin; Zhang, Xiaofeng; Li, Xiaohong; Wang, Fang; Zhang, Jindong; Zhao, Zhiqiang
2018-01-01
Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM) simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt) modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline climate information to the projected changes in species distribution.
Uncertainty of future projections of species distributions in mountainous regions
Tang, Ying; Viña, Andrés; Liu, Jianguo; Zhang, Yuanbin; Zhang, Xiaofeng; Li, Xiaohong; Wang, Fang; Zhang, Jindong; Zhao, Zhiqiang
2018-01-01
Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM) simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt) modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline climate information to the projected changes in species distribution. PMID:29320501
NASA Astrophysics Data System (ADS)
Zhang, Wenxin; Jansson, Christer; Miller, Paul; Smith, Ben; Samuelsson, Patrick
2014-05-01
Vegetation-climate feedbacks induced by vegetation dynamics under climate change alter biophysical properties of the land surface that regulate energy and water exchange with the atmosphere. Simulations with Earth System Models applied at global scale suggest that the current warming in the Arctic has been amplified, with large contributions from positive feedbacks, dominated by the effect of reduced surface albedo as an increased distribution, cover and taller stature of trees and shrubs mask underlying snow, darkening the surface. However, these models generally employ simplified representation of vegetation dynamics and structure and a coarse grid resolution, overlooking local or regional scale details determined by diverse vegetation composition and landscape heterogeneity. In this study, we perform simulations using an advanced regional coupled vegetation-climate model (RCA-GUESS) applied at high resolution (0.44×0.44° ) over the Arctic Coordinated Regional Climate Downscaling Experiment (CORDEX-Arctic) domain. The climate component (RCA4) is forced with lateral boundary conditions from EC-EARTH CMIP5 simulations for three representative concentration pathways (RCP 2.6, 4.5, 8.5). Vegetation-climate response is simulated by the individual-based dynamic vegetation model (LPJ-GUESS), accounting for phenology, physiology, demography and resource competition of individual-based vegetation, and feeding variations of leaf area index and vegetative cover fraction back to the climate component, thereby adjusting surface properties and surface energy fluxes. The simulated 2m air temperature, precipitation, vegetation distribution and carbon budget for the present period has been evaluated in another paper. The purpose of this study is to elucidate the spatial and temporal characteristics of the biophysical feedbacks arising from vegetation shifts in response to different CO2 concentration pathways and their associated climate change. Our results indicate that the albedo feedback dominates simulated warming in spring in all three scenarios, while in summer, evapotranspiration feedback, governing the partitioning of the return energy flux from the surface to the atmosphere into latent and sensible heat, exerts evaporative cooling effects, the magnitude of which depends on the severity of climate change, in turn driven by the underlying GHG emissions pathway, resulting in shift in the sign of net biophysical at higher levels of warming. Spatially, western Siberia is identified as the most susceptible location, experiencing the potential to reverse biophysical feedbacks in all seasons. We further analyze how the pattern of vegetation shifts triggers different signs of net effects of biophysical feedbacks.
Impacts of Stratospheric Black Carbon on Agriculture
NASA Astrophysics Data System (ADS)
Xia, L.; Robock, A.; Elliott, J. W.
2017-12-01
A regional nuclear war between India and Pakistan could inject 5 Tg of soot into the stratosphere, which would absorb sunlight, decrease global surface temperature by about 1°C for 5-10 years and have major impacts on precipitation and the amount of solar radiation reaching Earth's surface. Using two global gridded crop models forced by one global climate model simulation, we investigate the impacts on agricultural productivity in various nations. The crop model in the Community Land Model 4.5 (CLM-crop4.5) and the parallel Decision Support System for Agricultural Technology (pDSSAT) in the parallel System for Integrating Impact Models and Sectors are participating in the Global Gridded Crop Model Intercomparison. We force these two crop models with output from the Whole Atmospheric Community Climate Model to characterize the global agricultural impact from climate changes due to a regional nuclear war. Crops in CLM-crop4.5 include maize, rice, soybean, cotton and sugarcane, and crops in pDSSAT include maize, rice, soybean and wheat. Although the two crop models require a different time frequency of weather input, we downscale the climate model output to provide consistent temperature, precipitation and solar radiation inputs. In general, CLM-crop4.5 simulates a larger global average reduction of maize and soybean production relative to pDSSAT. Global rice production shows negligible change with climate anomalies from a regional nuclear war. Cotton and sugarcane benefit from a regional nuclear war from CLM-crop4.5 simulation, and global wheat production would decrease significantly in the pDSSAT simulation. The regional crop yield responses to a regional nuclear conflict are different for each crop, and we present the changes in production on a national basis. These models do not include the crop responses to changes in ozone, ultraviolet radiation, or diffuse radiation, and we would like to encourage more modelers to improve crop models to account for those impacts. We present these results as a demonstration of using different crop models to study this problem, and we invite more global crop modeling groups to use the same climate forcing, which we would be happy to provide, to gain a better understanding of global agricultural responses under different future climate scenarios with stratospheric aerosols.
EXAMINING THE IMPACT OF CLIMATE CHANGE ON REGIONAL AIR QUALITY OVER THE UNITED STATES
This presentation summarizes recent results produced in support of the assessment of climate change impacts on ozone and particulate matter over the continental United States. Preliminary findings of climate scenario, meteorologically-drive emissions and air quality simulation a...
An integrated land change model for projecting future climate and land change scenarios
Wimberly, Michael; Sohl, Terry L.; Lamsal, Aashis; Liu, Zhihua; Hawbaker, Todd J.
2013-01-01
Climate change will have myriad effects on ecosystems worldwide, and natural and anthropogenic disturbances will be key drivers of these dynamics. In addition to climatic effects, continual expansion of human settlement into fire-prone forests will alter fire regimes, increase human vulnerability, and constrain future forest management options. There is a need for modeling tools to support the simulation and assessment of new management strategies over large regions in the context of changing climate, shifting development patterns, and an expanding wildland-urban interface. To address this need, we developed a prototype land change simulator that combines human-driven land use change (derived from the FORE-SCE model) with natural disturbances and vegetation dynamics (derived from the LADS model) and incorporates novel feedbacks between human land use and disturbance regimes. The prototype model was implemented in a test region encompassing the Denver metropolitan area along with its surrounding forested and agricultural landscapes. Initial results document the feasibility of integrated land change modeling at a regional scale but also highlighted conceptual and technical challenges for this type of model integration. Ongoing development will focus on improving climate sensitivities and modeling constraints imposed by climate change and human population growth on forest management activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.
We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less
Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.; ...
2017-02-17
We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Frank; Dennis, John; MacCready, Parker
This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Frank; Dennis, John; MacCready, Parker
This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.
NASA Astrophysics Data System (ADS)
Biernath, Christian; Hauck, Julia; Klein, Christian; Thieme, Christoph; Heinlein, Florian; Priesack, Eckart
2014-05-01
Persons susceptible to allergenic pollen grains need to apply suppressive pharmacy before the occurrence of the first allergy symptoms. Patient targeted medication could be improved if forecasts of the allergenic potential of pollen (biochemical composition of the pollen grain) and the onset, duration, and end of the pollen season are precise on regional scale. In plant tissue the biochemical composition may change within hours due to the resource availability for plant growth and plant internal nutrient re-mobilization. As these processes highly depend on both, the environmental conditions and the development stage of a plant, precise simulations of the onset and duration of the flowering period are crucial to determine the allergenic potential of tissues and pollen. Here, dynamic plant models that consider the dependence of the chemical composition of tissue on the development stage of the plant embedded in process-based ecosystem models seem promising tools; however, today dynamic plant growth is widely ignored in simulations of atmospheric pollen loads. In this study we raise the question whether frequently applied temperature sum models (TSM) could precisely simulate the plant development stages in case of birches on regional scale. These TSM integrate average temperatures above a base temperature below which no further plant development is assumed. In this study, we therefore tested the ability of TSM to simulate the flowering period of birches on more than 100 sites in Bavaria, Germany over a period of three years (2010-2012). Our simulations indicate that the often applied base temperatures between 2.3°C and 3.5°C for the integration of daily or hourly average temperatures, respectively, in Europe are too high to adequately simulate the onset of birch flowering in Bavaria where a base temperature of 1°C seems more convenient. A more regional calibration of the models to sub-regions in Bavaria with comparable climatic conditions could further improve the simulation results if compared to simulations using a model that was adjusted to only one representative location in Bavaria. Our simulation results suggest that birch phenology needs to be modelled on a more regional scale to derive precise predictions of the flowering period. Some weak simulation results are suspected to be due to the high genetic diversity of birches and their high adaptive potential to a wide range of environmental conditions which indeed is a characteristic for many pioneer species. The high adaptive potential could be an explanation why authors who calibrate their models to other climatic regions observe better simulation results using higher base temperatures. However, our simulations indicate that the simulation results may be biased if the base temperatures are assumed constant for one species and transferred to larger or smaller scales, to other regions with different climatic conditions, or when applied to extrapolate birch pollen seasons to future climate conditions.
McGuire, A.D.; Clein, Joy S.; Melillo, J.M.; Kicklighter, D.W.; Meier, R.A.; Vorosmarty, C.J.; Serreze, Mark C.
2000-01-01
Historical and projected climate trends for high latitudes show substantial temporal and spatial variability. To identify uncertainties in simulating carbon (C) dynamics for pan-Arctic tundra, we compare the historical and projected responses of tundra C storage from 1921 to 2100 between simulations by the Terrestrial Ecosystem Model (TEM) for the pan-Arctic and the Kuparuk River Basin, which was the focus of an integrated study of C dynamics from 1994 to 1996. In the historical period from 1921 to 1994, the responses of net primary production (NPP) and heterotrophic respiration (RH) simulated for the Kuparuk River Basin and the pan-Arctic are correlated with the same factors; NPP is positively correlated with net nitrogen mineralization (NMIN) and RH is negatively correlated with mean annual soil moisture. In comparison to the historical period, the spatially aggregated responses of NPP and RH for the Kuparuk River Basin and the pan-Arctic in our simulations for the projected period have different sensitivities to temperature, soil moisture and NMIN. In addition to being sensitive to soil moisture during the projected period, RH is also sensitive to temperature and there is a significant correlation between RH and NMIN. We interpret the increases in NPP during the projected period as being driven primarily by increases in NMIN, and that the correlation between NPP and temperature in the projected period is a result primarily of the causal linkage between temperature, RH, and NMIN. Although similar factors appear to be controlling simulated regional-and biome-scale C dynamics, simulated C dynamics at the two scales differ in magnitude with higher increases in C storage simulated for the Kuparuk River Basin than for the pan-Arctic at the end of the historical period and throughout the projected period. Also, the results of the simulations indicate that responses of C storage show different climate sensitivities at regional and pan-Arctic spatial scales and that these sensitivities change across the temporal scope of the simulations. The results of the TEM simulations indicate that the scaling of C dynamics to a region of arctic tundra may not represent C dynamics of pan-Arctic tundra because of the limited spatial variation in climate and vegetation within a region relative to the pan-Arctic. For reducing uncertainties, our analyses highlight the importance of incorporating the understanding gained from process-level studies of C dynamics in a region of arctic tundra into process-based models that simulate C dynamics in a spatially explicit fashion across the spatial domain of pan-Arctic tundra. Also, efforts to improve gridded datasets of historical climate for the pan-Arctic would advance the ability to assess the responses of C dynamics for pan-Arctic tundra in a more realistic fashion. A major challenge will be to incorporate topographic controls over soil moisture in assessing the response of C storage for pan-Arctic tundra.
NASA Technical Reports Server (NTRS)
Johnson, Donald R.
1998-01-01
The goal of this research is the continued development and application of global isentropic modeling and analysis capabilities to describe hydrologic processes and energy exchange in the climate system, and discern regional climate change. This work involves a combination of modeling and analysis efforts involving 4DDA datasets and simulations from the University of Wisconsin (UW) hybrid isentropic-sigma (theta-sigma) coordinate model and the GEOS GCM.
Werner, B.A.; Johnson, W. Carter; Guntenspergen, Glenn R.
2013-01-01
The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.
Werner, Brett A; Johnson, W Carter; Guntenspergen, Glenn R
2013-09-01
The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946-1975; 1976-2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.
Climate change: Future rise in rain inequality
NASA Astrophysics Data System (ADS)
Biasutti, Michela
2013-05-01
Rainfall disparities are expected to intensify in response to anthropogenic climate change. Model simulations suggest that wet regions and seasons will get wetter, and that a warmer equator will get wetter too.
Influence of spatial resolution on precipitation simulations for the central Andes Mountains
NASA Astrophysics Data System (ADS)
Trachte, Katja; Bendix, Jörg
2013-04-01
The climate of South America is highly influenced by the north-south oriented Andes Mountains. Their complex structure causes modifications of large-scale atmospheric circulations resulting in various mesoscale phenomena as well as a high variability in the local conditions. Due to their height and length the terrain generates distinctly climate conditions between the western and the eastern slopes. While in the tropical regions along the western flanks the conditions are cold and arid, the eastern slopes are dominated by warm-moist and rainy air coming from the Amazon basin. Below 35° S the situation reverses with rather semiarid conditions in the eastern part and temperate rainy climate along southern Chile. Generally, global circulation models (GCMs) describe the state of the global climate and its changes, but are disabled to capture regional or even local features due to their coarse resolution. This is particularly true in heterogeneous regions such as the Andes Mountains, where local driving features, e. g. local circulation systems, highly varies on small scales and thus, lead to a high variability of rainfall distributions. An appropriate technique to overcome this problem and to gain regional and local scale rainfall information is the dynamical downscaling of the global data using a regional climate model (RCM). The poster presents results of the evaluation of the performance of the Weather Research and Forecasting (WRF) model over South America with special focus on the central Andes Mountains of Ecuador. A sensitivity study regarding the cumulus parametrization, microphysics, boundary layer processes and the radiation budget is conducted. With 17 simulations consisting of 16 parametrization scheme combinations and 1 default run a suitable model set-up for climate research in this region is supposed to be evaluated. The simulations were conducted in a two-way nested mode i) to examine the best physics scheme combination for the target and ii) to analyze the impact of spatial resolution and thus, the representation of the terrain on the result.
NASA Astrophysics Data System (ADS)
Chan, Steven C.; Kahana, Ron; Kendon, Elizabeth J.; Fowler, Hayley J.
2018-03-01
The UK Met Office has previously conducted convection-permitting climate simulations over the southern UK (Kendon et al. in Nat Clim Change 4:570-576, 2014). The southern UK simulations have been followed up by a new set of northern UK simulations using the same model configuration. Here we present the mean and extreme precipitation projections from these new simulations. Relative to the southern UK, the northern UK projections show a greater summertime increase of return levels and extreme precipitation intensity in both 1.5 km convection-permitting and 12 km convection-parameterised simulations, but this increase is against a backdrop of large decreases in summertime mean precipitation and precipitation frequency. Similar to the southern UK, projected change is model resolution dependent and the convection-permitting simulation projects a larger intensification. For winter, return level increases are somewhat lower than for the southern UK. Analysis of model biases highlight challenges in simulating the diurnal cycle over high terrain, sensitivity to domain size and driving-GCM biases, and quality issues of radar precipitation observations, which are relevant to the wider regional climate modelling community.
NASA Astrophysics Data System (ADS)
Nengker, T.; Choudhary, A.; Dimri, A. P.
2018-04-01
The ability of an ensemble of five regional climate models (hereafter RCMs) under Coordinated Regional Climate Downscaling Experiments-South Asia (hereafter, CORDEX-SA) in simulating the key features of present day near surface mean air temperature (Tmean) climatology (1970-2005) over the Himalayan region is studied. The purpose of this paper is to understand the consistency in the performance of models across the ensemble, space and seasons. For this a number of statistical measures like trend, correlation, variance, probability distribution function etc. are applied to evaluate the performance of models against observation and simultaneously the underlying uncertainties between them for four different seasons. The most evident finding from the study is the presence of a large cold bias (-6 to -8 °C) which is systematically seen across all the models and across space and time over the Himalayan region. However, these RCMs with its fine resolution perform extremely well in capturing the spatial distribution of the temperature features as indicated by a consistently high spatial correlation (greater than 0.9) with the observation in all seasons. In spite of underestimation in simulated temperature and general intensification of cold bias with increasing elevation the models show a greater rate of warming than the observation throughout entire altitudinal stretch of study region. During winter, the simulated rate of warming gets even higher at high altitudes. Moreover, a seasonal response of model performance and its spatial variability to elevation is found.
Development of ALARO-Climate regional climate model for a very high resolution
NASA Astrophysics Data System (ADS)
Skalak, Petr; Farda, Ales; Brozkova, Radmila; Masek, Jan
2013-04-01
ALARO-Climate is a new regional climate model (RCM) derived from the ALADIN LAM model family. It is based on the numerical weather prediction model ALARO and developed at the Czech Hydrometeorological Institute. The model is expected to able to work in the so called "grey zone" physics (horizontal resolution of 4 - 7 km) and at the same time retain its ability to be operated in resolutions in between 20 and 50 km, which are typical for contemporary generation of regional climate models. Here we present the main features of the RCM ALARO-Climate and results of the first model simulations on longer time-scales (1961-1990). The model was driven by the ERA-40/Interim re-analyses and run on the large pan-European integration domain ("ENSEMBLES / Euro-Cordex domain") with spatial resolution of 25 km. The simulated model climate was compared with the gridded observation of air temperature (mean, maximum, minimum) and precipitation from the E-OBS version 7 dataset. The validation of the first ERA-40 simulation has revealed significant cold biases in all seasons (between -4 and -2 °C) and overestimation of precipitation on 20% to 60% in the selected Central Europe target area (0° - 30° eastern longitude ; 40° - 60° northern latitude). The consequent adaptations in the model and their effect on the simulated properties of climate variables are illustrated. Acknowledgements: This study was performed within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation) and CzechGlobe Centre (CZ.1.05/1.1.00/02.0073). The partial support was also provided under the projects P209-11-0956 of the Czech Science Foundation and CZ.1.07/2.4.00/31.0056 (Operational Programme of Education for Competitiveness of Ministry of Education, Youth and Sports of the Czech Republic).
CWRF performance at downscaling China climate characteristics
NASA Astrophysics Data System (ADS)
Liang, Xin-Zhong; Sun, Chao; Zheng, Xiaohui; Dai, Yongjiu; Xu, Min; Choi, Hyun I.; Ling, Tiejun; Qiao, Fengxue; Kong, Xianghui; Bi, Xunqiang; Song, Lianchun; Wang, Fang
2018-05-01
The performance of the regional Climate-Weather Research and Forecasting model (CWRF) for downscaling China climate characteristics is evaluated using a 1980-2015 simulation at 30 km grid spacing driven by the ECMWF Interim reanalysis (ERI). It is shown that CWRF outperforms the popular Regional Climate Modeling system (RegCM4.6) in key features including monsoon rain bands, diurnal temperature ranges, surface winds, interannual precipitation and temperature anomalies, humidity couplings, and 95th percentile daily precipitation. Even compared with ERI, which assimilates surface observations, CWRF better represents the geographic distributions of seasonal mean climate and extreme precipitation. These results indicate that CWRF may significantly enhance China climate modeling capabilities.
Objective spatiotemporal proxy-model comparisons of the Asian monsoon for the last millennium
NASA Astrophysics Data System (ADS)
Anchukaitis, K. J.; Cook, E. R.; Ammann, C. M.; Buckley, B. M.; D'Arrigo, R. D.; Jacoby, G.; Wright, W. E.; Davi, N.; Li, J.
2008-12-01
The Asian monsoon system can be studied using a complementary proxy/simulation approach which evaluates climate models using estimates of past precipitation and temperature, and which subsequently applies the best understanding of the physics of the climate system as captured in general circulation models to evaluate the broad-scale dynamics behind regional paleoclimate reconstructions. Here, we use a millennial-length climate field reconstruction of monsoon season summer (JJA) drought, developed from tree- ring proxies, with coupled climate simulations from NCAR CSM1.4 and CCSM3 to evaluate the cause of large- scale persistent droughts over the last one thousand years. Direct comparisons are made between the external forced response within the climate model and the spatiotemporal field reconstruction. In order to identify patterns of drought associated with internal variability in the climate system, we use a model/proxy analog technique which objectively selects epochs in the model that most closely reproduce those observed in the reconstructions. The concomitant ocean-atmosphere dynamics are then interpreted in order to identify and understand the internal climate system forcing of low frequency monsoon variability. We examine specific periods of extensive or intensive regional drought in the 15th, 17th, and 18th centuries, many of which are coincident with major cultural changes in the region.
NASA Technical Reports Server (NTRS)
Zhang, Zhen; Babst, Flurin; Bellassen, Valentin; Frank, David; Launois, Thomas; Tan, Kun; Ciais, Philippe; Poulter, Benjamin
2017-01-01
The impacts of climate variability and trends on European forests are unevenly distributed across different bioclimatic zones and species. Extreme climate events are also becoming more frequent and it is unknown how they will affect feed backs of CO2 between forest ecosystems and the atmosphere. An improved understanding of species differences at the regional scale of the response of forest productivity to climate variation and extremes is thus important for forecasting forest dynamics. In this study, we evaluate the climate sensitivity of above ground net primary production (NPP) simulated by two dynamic global vegetation models (DGVM; ORCHIDEE and LPJ-wsl) against tree ring width (TRW) observations from about1000 sites distributed across Europe. In both the model simulations and the TRW observations, forests in northern Europe and the Alps respond positively to warmer spring and summer temperature, and their overall temperature sensitivity is larger than that of the soil-moisture-limited forests in central Europe and Mediterranean regions. Compared with TRW observations, simulated NPP from ORCHIDEE and LPJ-wsl appear to be overly sensitive to climatic factors. Our results indicate that the models lack biological processes that control time lags, such as carbohydrate storage and remobilization, that delay the effects of radial growth dynamics to climate. Our study highlights the need for re-evaluating the physiological controls on the climate sensitivity of NPP simulated by DGVMs. In particular, DGVMs could be further enhanced by a more detailed representation of carbon reserves and allocation that control year-to year variation in plant growth.
NASA Astrophysics Data System (ADS)
Ane Dionizio, Emily; Heil Costa, Marcos; de Almeida Castanho, Andrea D.; Ferreira Pires, Gabrielle; Schwantes Marimon, Beatriz; Hur Marimon-Junior, Ben; Lenza, Eddie; Martins Pimenta, Fernando; Yang, Xiaojuan; Jain, Atul K.
2018-02-01
Climate, fire and soil nutrient limitation are important elements that affect vegetation dynamics in areas of the forest-savanna transition. In this paper, we use the dynamic vegetation model INLAND to evaluate the influence of interannual climate variability, fire and phosphorus (P) limitation on Amazon-Cerrado transitional vegetation structure and dynamics. We assess how each environmental factor affects net primary production, leaf area index and aboveground biomass (AGB), and compare the AGB simulations to an observed AGB map. We used two climate data sets (monthly average climate for 1961-1990 and interannual climate variability for 1948-2008), two data sets of total soil P content (one based on regional field measurements and one based on global data), and the INLAND fire module. Our results show that the inclusion of interannual climate variability, P limitation and fire occurrence each contribute to simulating vegetation types that more closely match observations. These effects are spatially heterogeneous and synergistic. In terms of magnitude, the effect of fire is strongest and is the main driver of vegetation changes along the transition. Phosphorus limitation, in turn, has a stronger effect on transitional ecosystem dynamics than interannual climate variability does. Overall, INLAND typically simulates more than 80 % of the AGB variability in the transition zone. However, the AGB in many places is clearly not well simulated, indicating that important soil and physiological factors in the Amazon-Cerrado border region, such as lithology, water table depth, carbon allocation strategies and mortality rates, still need to be included in the model.
NASA Astrophysics Data System (ADS)
Barcikowska, Monika J.; Kapnick, Sarah B.; Feser, Frauke
2018-03-01
The Mediterranean region, located in the transition zone between the dry subtropical and wet European mid-latitude climate, is very sensitive to changes in the global mean climate state. Projecting future changes of the Mediterranean hydroclimate under global warming therefore requires dynamic climate models to reproduce the main mechanisms controlling regional hydroclimate with sufficiently high resolution to realistically simulate climate extremes. To assess future winter precipitation changes in the Mediterranean region we use the Geophysical Fluid Dynamics Laboratory high-resolution general circulation model for control simulations with pre-industrial greenhouse gas and aerosol concentrations which are compared to future scenario simulations. Here we show that the coupled model is able to reliably simulate the large-scale winter circulation, including the North Atlantic Oscillation and Eastern Atlantic patterns of variability, and its associated impacts on the mean Mediterranean hydroclimate. The model also realistically reproduces the regional features of daily heavy rainfall, which are absent in lower-resolution simulations. A five-member future projection ensemble, which assumes comparatively high greenhouse gas emissions (RCP8.5) until 2100, indicates a strong winter decline in Mediterranean precipitation for the coming decades. Consistent with dynamical and thermodynamical consequences of a warming atmosphere, derived changes feature a distinct bipolar behavior, i.e. wetting in the north—and drying in the south. Changes are most pronounced over the northwest African coast, where the projected winter precipitation decline reaches 40% of present values. Despite a decrease in mean precipitation, heavy rainfall indices show drastic increases across most of the Mediterranean, except the North African coast, which is under the strong influence of the cold Canary Current.
Impact of anthropogenic aerosols on regional climate change in Beijing, China
NASA Astrophysics Data System (ADS)
Zhao, B.; Liou, K. N.; He, C.; Lee, W. L.; Gu, Y.; Li, Q.; Leung, L. R.
2015-12-01
Anthropogenic aerosols affect regional climate significantly through radiative (direct and semi-direct) and indirect effects, but the magnitude of these effects over megacities are subject to large uncertainty. In this study, we evaluated the effects of anthropogenic aerosols on regional climate change in Beijing, China using the online-coupled Weather Research and Forecasting/Chemistry Model (WRF/Chem) with the Fu-Liou-Gu radiation scheme and a spatial resolution of 4km. We further updated this radiation scheme with a geometric-optics surface-wave (GOS) approach for the computation of light absorption and scattering by black carbon (BC) particles in which aggregation shape and internal mixing properties are accounted for. In addition, we incorporated in WRF/Chem a 3D radiative transfer parameterization in conjunction with high-resolution digital data for city buildings and landscape to improve the simulation of boundary-layer, surface solar fluxes and associated sensible/latent heat fluxes. Preliminary simulated meteorological parameters, fine particles (PM2.5) and their chemical components agree well with observational data in terms of both magnitude and spatio-temporal variations. The effects of anthropogenic aerosols, including BC, on radiative forcing, surface temperature, wind speed, humidity, cloud water path, and precipitation are quantified on the basis of simulation results. With several preliminary sensitivity runs, we found that meteorological parameters and aerosol radiative effects simulated with the incorporation of improved BC absorption and 3-D radiation parameterizations deviate substantially from simulation results using the conventional homogeneous/core-shell configuration for BC and the plane-parallel model for radiative transfer. Understanding of the aerosol effects on regional climate change over megacities must consider the complex shape and mixing state of aerosol aggregates and 3D radiative transfer effects over city landscape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirks, James A.; Gorrissen, Willy J.; Hathaway, John E.
2015-01-01
This paper presents the results of numerous commercial and residential building simulations, with the purpose of examining the impact of climate change on peak and annual building energy consumption over the portion of the Eastern Interconnection (EIC) located in the United States. The climate change scenario considered (IPCC A2 scenario as downscaled from the CASCaDE data set) has changes in mean climate characteristics as well as changes in the frequency and duration of intense weather events. This investigation examines building energy demand for three annual periods representative of climate trends in the CASCaDE data set at the beginning, middle, andmore » end of the century--2004, 2052, and 2089. Simulations were performed using the Building ENergy Demand (BEND) model which is a detailed simulation platform built around EnergyPlus. BEND was developed in collaboration with the Platform for Regional Integrated Modeling and Analysis (PRIMA), a modeling framework designed to simulate the complex interactions among climate, energy, water, and land at decision-relevant spatial scales. Over 26,000 building configurations of different types, sizes, vintages, and, characteristics which represent the population of buildings within the EIC, are modeled across the 3 EIC time zones using the future climate from 100 locations within the target region, resulting in nearly 180,000 spatially relevant simulated demand profiles for each of the 3 years. In this study, the building stock characteristics are held constant based on the 2005 building stock in order to isolate and present results that highlight the impact of the climate signal on commercial and residential energy demand. Results of this analysis compare well with other analyses at their finest level of specificity. This approach, however, provides a heretofore unprecedented level of specificity across multiple spectrums including spatial, temporal, and building characteristics. This capability enables the ability to perform detailed hourly impact studies of building adaptation and mitigation strategies on energy use and electricity peak demand within the context of the entire grid and economy.« less
Implications of climate variability for monitoring the effectiveness of global mercury policy
NASA Astrophysics Data System (ADS)
Giang, A.; Monier, E.; Couzo, E. A.; Pike-thackray, C.; Selin, N. E.
2016-12-01
We investigate how climate variability affects ability to detect policy-related anthropogenic changes in mercury emissions in wet deposition monitoring data using earth system and atmospheric chemistry modeling. The Minamata Convention, a multilateral environmental agreement that aims to protect human health and the environment from anthropogenic emissions and releases of mercury, includes provisions for monitoring treaty effectiveness. Because meteorology can affect mercury chemistry and transport, internal variability is an important contributor to uncertainty in how effective policy may be in reducing the amount of mercury entering ecosystems through wet deposition. We simulate mercury chemistry using the GEOS-Chem global transport model to assess the influence of meteorology in the context of other uncertainties in mercury cycling and policy. In these simulations, we find that interannual variability in meteorology may be a dominant contributor to the spatial pattern and magnitude of historical regional wet deposition trends. To further assess the influence of climate variability in the GEOS-Chem mercury simulation, we use a 5-member ensemble of meteorological fields from the MIT Integrated Global System Model under present and future climate. Each member involves randomly initialized 20 year simulations centered around 2000 and 2050 (under a no-policy and a climate stabilization scenario). Building on previous efforts to understand climate-air quality interactions for ground-level O3 and particulate matter, we estimate from the ensemble the range of trends in mercury wet deposition given natural variability, and, to extend our previous results on regions that are sensitive to near-source vs. remote anthropogenic signals, we identify geographic regions where mercury wet deposition is most sensitive to this variability. We discuss how an improved understanding of natural variability can inform the Conference of Parties on monitoring strategy and policy ambition.
Scale dependency of regional climate modeling of current and future climate extremes in Germany
NASA Astrophysics Data System (ADS)
Tölle, Merja H.; Schefczyk, Lukas; Gutjahr, Oliver
2017-11-01
A warmer climate is projected for mid-Europe, with less precipitation in summer, but with intensified extremes of precipitation and near-surface temperature. However, the extent and magnitude of such changes are associated with creditable uncertainty because of the limitations of model resolution and parameterizations. Here, we present the results of convection-permitting regional climate model simulations for Germany integrated with the COSMO-CLM using a horizontal grid spacing of 1.3 km, and additional 4.5- and 7-km simulations with convection parameterized. Of particular interest is how the temperature and precipitation fields and their extremes depend on the horizontal resolution for current and future climate conditions. The spatial variability of precipitation increases with resolution because of more realistic orography and physical parameterizations, but values are overestimated in summer and over mountain ridges in all simulations compared to observations. The spatial variability of temperature is improved at a resolution of 1.3 km, but the results are cold-biased, especially in summer. The increase in resolution from 7/4.5 km to 1.3 km is accompanied by less future warming in summer by 1 ∘C. Modeled future precipitation extremes will be more severe, and temperature extremes will not exclusively increase with higher resolution. Although the differences between the resolutions considered (7/4.5 km and 1.3 km) are small, we find that the differences in the changes in extremes are large. High-resolution simulations require further studies, with effective parameterizations and tunings for different topographic regions. Impact models and assessment studies may benefit from such high-resolution model results, but should account for the impact of model resolution on model processes and climate change.
NASA Astrophysics Data System (ADS)
Kang, Suchul; Im, Eun-Soon; Eltahir, Elfatih A. B.
2018-03-01
In this study, future changes in rainfall due to global climate change are investigated over the western Maritime Continent based on dynamically downscaled climate projections using the MIT Regional Climate Model (MRCM) with 12 km horizontal resolution. A total of nine 30-year regional climate projections driven by multi-GCMs projections (CCSM4, MPI-ESM-MR and ACCESS1.0) under multi-scenarios of greenhouse gases emissions (Historical: 1976-2005, RCP4.5 and RCP8.5: 2071-2100) from phase 5 of the Coupled Model Inter-comparison Project (CMIP5) are analyzed. Focusing on dynamically downscaled rainfall fields, the associated systematic biases originating from GCM and MRCM are removed based on observations using Parametric Quantile Mapping method in order to enhance the reliability of future projections. The MRCM simulations with bias correction capture the spatial patterns of seasonal rainfall as well as the frequency distribution of daily rainfall. Based on projected rainfall changes under both RCP4.5 and RCP8.5 scenarios, the ensemble of MRCM simulations project a significant decrease in rainfall over the western Maritime Continent during the inter-monsoon periods while the change in rainfall is not relevant during wet season. The main mechanism behind the simulated decrease in rainfall is rooted in asymmetries of the projected changes in seasonal dynamics of the meridional circulation along different latitudes. The sinking motion, which is marginally positioned in the reference simulation, is enhanced and expanded under global climate change, particularly in RCP8.5 scenario during boreal fall season. The projected enhancement of rainfall seasonality over the western Maritime Continent suggests increased risk of water stress for natural ecosystems as well as man-made water resources reservoirs.
NASA Astrophysics Data System (ADS)
Proestos, Y.; Christophides, G.; Erguler, K.; Tanarhte, M.; Waldock, J.; Lelieveld, J.
2014-12-01
Climate change can influence the transmission of vector borne diseases (VBDs) through altering the habitat suitability of insect vectors. Here we present global climate model simulations and evaluate the associated uncertainties in view of the main meteorological factors that may affect the distribution of the Asian Tiger mosquito (Aedes albopictus), which can transmit pathogens that cause Chikungunya, Dengue fever, yellow fever and various encephalitides. Using a general circulation model (GCM) at 50 km horizontal resolution to simulate mosquito survival variables including temperature, precipitation and relative humidity, we present both global and regional projections of the habitat suitability up to the middle of the 21st century. The model resolution of 50 km allows evaluation against previous projections for Europe and provides a basis for comparative analyses with other regions. Model uncertainties and performance are addressed in light of the recent CMIP5 ensemble climate model simulations for the RCP8.5 concentration pathway and using meteorological re-analysis data (ERA-Interim/ECMWF) for the recent past. Uncertainty ranges associated with the thresholds of meteorological variables that may affect the distribution of Ae. albopictus are diagnosed using fuzzy-logic methodology, notably to assess the influence of selected meteorological criteria and combinations of criteria that influence mosquito habitat suitability. From the climate projections for 2050, and adopting a habitat suitability index larger than 70%, we estimate that about 2.4 billion individuals in a land area of nearly 20 million square kilometres will potentially be exposed to Ae. albopictus. The synthesis of fuzzy-logic based on mosquito biology and climate change analysis provides new insights into the regional and global spreading of VBDs to support disease control and policy making.
NASA Astrophysics Data System (ADS)
Kerandi, Noah Misati; Laux, Patrick; Arnault, Joel; Kunstmann, Harald
2017-10-01
This study investigates the ability of the regional climate model Weather Research and Forecasting (WRF) in simulating the seasonal and interannual variability of hydrometeorological variables in the Tana River basin (TRB) in Kenya, East Africa. The impact of two different land use classifications, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) and the US Geological Survey (USGS) at two horizontal resolutions (50 and 25 km) is investigated. Simulated precipitation and temperature for the period 2011-2014 are compared with Tropical Rainfall Measuring Mission (TRMM), Climate Research Unit (CRU), and station data. The ability of Tropical Rainfall Measuring Mission (TRMM) and Climate Research Unit (CRU) data in reproducing in situ observation in the TRB is analyzed. All considered WRF simulations capture well the annual as well as the interannual and spatial distribution of precipitation in the TRB according to station data and the TRMM estimates. Our results demonstrate that the increase of horizontal resolution from 50 to 25 km, together with the use of the MODIS land use classification, significantly improves the precipitation results. In the case of temperature, spatial patterns and seasonal cycle are well reproduced, although there is a systematic cold bias with respect to both station and CRU data. Our results contribute to the identification of suitable and regionally adapted regional climate models (RCMs) for East Africa.
Dugan, Jack T.; Zelt, Ronald B.
2000-01-01
Ground-water recharge and consumptive-irrigation requirements in the Great Plains and adjacent areas largely depend upon an environment extrinsic to the ground-water system. This extrinsic environment, which includes climate, soils, and vegetation, determines the water demands of evapotranspiration, the availability of soil water to meet these demands, and the quantity of soil water remaining for potential ground-water recharge after these demands are met. The geographic extent of the Great Plains contributes to large regional differences among all elements composing the extrinsic environment, particularly the climatic factors. A soil-water simulation program, SWASP, which synthesizes selected climatic, soil, and vegetation factors, was used to simulate the regional soil-water conditions during 1951-80. The output from SWASP consists of several soil-water characteristics, including surface runoff, infiltration, consumptive water requirements, actual evapotranspiration, potential recharge or deep percolation under various conditions, consumptive irrigation requirements, and net fluxes from the ground-water system under irrigated conditions. Simulation results indicate that regional patterns of potential recharge, consumptive irrigation requirements, and net fluxes from the ground-water system under irrigated conditions are largely determined by evapotranspiration and precipitation. The local effects of soils and vegetation on potential recharge cause potential recharge to vary by more than 50 percent in some areas having similar climatic conditions.
Importance of ensembles in projecting regional climate trends
NASA Astrophysics Data System (ADS)
Arritt, Raymond; Daniel, Ariele; Groisman, Pavel
2016-04-01
We have performed an ensemble of simulations using RegCM4 to examine the ability to reproduce observed trends in precipitation intensity and to project future changes through the 21st century for the central United States. We created a matrix of simulations over the CORDEX North America domain for 1950-2099 by driving the regional model with two different global models (HadGEM2-ES and GFDL-ESM2M, both for RCP8.5), by performing simulations at both 50 km and 25 km grid spacing, and by using three different convective parameterizations. The result is a set of 12 simulations (two GCMs by two resolutions by three convective parameterizations) that can be used to systematically evaluate the influence of simulation design on predicted precipitation. The two global models were selected to bracket the range of climate sensitivity in the CMIP5 models: HadGEM2-ES has the highest ECS of the CMIP5 models, while GFDL-ESM2M has one of the lowestt. Our evaluation metrics differ from many other RCM studies in that we focus on the skill of the models in reproducing past trends rather than the mean climate state. Trends in frequency of extreme precipitation (defined as amounts exceeding 76.2 mm/day) for most simulations are similar to the observed trend but with notable variations depending on RegCM4 configuration and on the driving GCM. There are complex interactions among resolution, choice of convective parameterization, and the driving GCM that carry over into the future climate projections. We also note that biases in the current climate do not correspond to biases in trends. As an example of these points the Emanuel scheme is consistently "wet" (positive bias in precipitation) yet it produced the smallest precipitation increase of the three convective parameterizations when used in simulations driven by HadGEM2-ES. However, it produced the largest increase when driven by GFDL-ESM2M. These findings reiterate that ensembles using multiple RCM configurations and driving GCMs are essential for projecting regional climate change, even when a single RCM is used. This research was sponsored by the U.S. Department of Agriculture National Institute of Food and Agriculture.
NASA Astrophysics Data System (ADS)
Vukovic, Ana; Vujadinovic, Mirjam; Djurdjevic, Vladimir; Cvetkovic, Bojan; Djordjevic, Marija; Ruml, Mirjana; Rankovic-Vasic, Zorica; Przic, Zoran; Stojicic, Djurdja; Krzic, Aleksandra; Rajkovic, Borivoj
2015-04-01
Serbia is a country with relatively small scale terrain features with economy mostly based on local landowners' agricultural production. Climate change analysis must be downscaled accordingly, to recognize climatological features of the farmlands. Climate model simulations and impact studies significantly contribute to the future strategic planning in economic development and therefore impact analysis must be approached with high level of confidence. This paper includes research related to climate change and impacts in Serbia resulted from cooperative work of the modeling and user community. Dynamical downscaling of climate projections for the 21st century with multi-model approach and statistical bias correction are done in order to prepare model results for impact studies. Presented results are from simulations performed using regional EBU-POM model, which is forced with A1B and A2 SRES/IPCC (2007) with comparative analysis with other regional models and from the latest high resolution NMMB simulations forced with RCP8.5 IPCC scenario (2012). Application of bias correction of the model results is necessary when calculated indices are not linearly dependent on the model results and delta approach in presenting results with respect to present climate simulations is insufficient. This is most important during the summer over the north part of the country where model bias produce much higher temperatures and less precipitation, which is known as "summer drying problem" and is common in regional models' simulations over the Pannonian valley. Some of the results, which are already observed in present climate, like higher temperatures and disturbance in the precipitation pattern, lead to present and future advancement of the start of the vegetation period toward earlier dates, associated with an increased risk of the late spring frost, extended vegetation period, disturbed preparation for the rest period, increased duration and frequency of the draught periods, etc. Based on the projected climate changes an application is proposed of the ensemble seasonal forecasts for early preparation in case of upcoming unfavorable weather conditions. This paper was realized as a part of the projects "Studying climate change and its influence on the environment: impacts, adaptation and mitigation" (43007) and "Assessment of climate change impacts on water resources in Serbia" (37005) financed by the Ministry of Education and Science of the Republic of Serbia within the framework of integrated and interdisciplinary research for the period 2011-2015.
NASA Astrophysics Data System (ADS)
Deser, C.
2017-12-01
Natural climate variability occurs over a wide range of time and space scales as a result of processes intrinsic to the atmosphere, the ocean, and their coupled interactions. Such internally generated climate fluctuations pose significant challenges for the identification of externally forced climate signals such as those driven by volcanic eruptions or anthropogenic increases in greenhouse gases. This challenge is exacerbated for regional climate responses evaluated from short (< 50 years) data records. The limited duration of the observations also places strong constraints on how well the spatial and temporal characteristics of natural climate variability are known, especially on multi-decadal time scales. The observational constraints, in turn, pose challenges for evaluation of climate models, including their representation of internal variability and assessing the accuracy of their responses to natural and anthropogenic radiative forcings. A promising new approach to climate model assessment is the advent of large (10-100 member) "initial-condition" ensembles of climate change simulations with individual models. Such ensembles allow for accurate determination, and straightforward separation, of externally forced climate signals and internal climate variability on regional scales. The range of climate trajectories in a given model ensemble results from the fact that each simulation represents a particular sequence of internal variability superimposed upon a common forced response. This makes clear that nature's single realization is only one of many that could have unfolded. This perspective leads to a rethinking of approaches to climate model evaluation that incorporate observational uncertainty due to limited sampling of internal variability. Illustrative examples across a range of well-known climate phenomena including ENSO, volcanic eruptions, and anthropogenic climate change will be discussed.
NASA Astrophysics Data System (ADS)
Othmanli, Hussein; Zhao, Chengyi; Stahr, Karl
2017-04-01
The Tarim River Basin is the largest continental basin in China. The region has extremely continental desert climate characterized by little rainfall <50 mm/a and high potential evaporation >3000 mm/a. The climate change is affecting severely the basin causing soil salinization, water shortage, and regression in crop production. Therefore, a Soil and Land Resources Information System (SLISYS-Tarim) for the regional simulation of crop yield production in the basin was developed. The SLISYS-Tarim consists of a database and an agro-ecological simulation model EPIC (Environmental Policy Integrated Climate). The database comprises relational tables including information about soils, terrain conditions, land use, and climate. The soil data implicate information of 50 soil profiles which were dug, analyzed, described and classified in order to characterize the soils in the region. DEM data were integrated with geological maps to build a digital terrain structure. Remote sensing data of Landsat images were applied for soil mapping, and for land use and land cover classification. An additional database for climate data, land management and crop information were linked to the system, too. Construction of the SLISYS-Tarim database was accomplished by integrating and overlaying the recommended thematic maps within environment of the geographic information system (GIS) to meet the data standard of the global and national SOTER digital database. This database forms appropriate input- and output data for the crop modelling with the EPIC model at various scales in the Tarim Basin. The EPIC model was run for simulating cotton production under a constructed scenario characterizing the current management practices, soil properties and climate conditions. For the EPIC model calibration, some parameters were adjusted so that the modeled cotton yield fits to the measured yield on the filed scale. The validation of the modeling results was achieved in a later step based on remote sensing data. The simulated cotton yield varied according to field management, soil type and salinity level, where soil salinity was the main limiting factor. Furthermore, the calibrated and validated EPIC model was run under several scenarios of climate conditions and land management practices to estimate the effect of climate change on cotton production and sustainability of agriculture systems in the basin. The application of SLISYS-Tarim showed that this database can be a suitable framework for storage and retrieval of soil and terrain data at various scales. The simulation with the EPIC model can assess the impact of climate change and management strategies. Therefore, SLISYS-Tarim can be a good tool for regional planning and serve the decision support system on regional and national scale.
Analysing regional climate change in Africa in a 1.5 °C global warming world
NASA Astrophysics Data System (ADS)
Weber, Torsten; Haensler, Andreas; Jacob, Daniela
2017-04-01
At the 21st session of the UNFCCC Conference of the Parties (COP21) in Paris, a reaffirmation to strengthen the effort to limit the global temperature increase to 1.5 °C was decided. However, even if global warming is limited, some regions might still be substantially affected by climate change, especially for continents like Africa where the socio-economic conditions are strongly linked to the climatic conditions. Hence, providing a detailed analysis of the projected climate changes in a 1.5 °C global warming scenario will allow the African society to undertake measures for adaptation in order to mitigate potential negative consequences. In order to provide such climate change information, the existing CORDEX Africa ensemble for RCP2.6 scenario simulations has systematically been increased by conducting additional REMO simulations using data from various global circulation models (GCMs) as lateral boundary conditions. Based on this ensemble, which now consists of eleven CORDEX Africa RCP2.6 regional climate model simulations from three RCMs (forced with different GCMs), various temperature and precipitation indices such as number of cold/hot days and nights, duration of the rainy season, the amount of rainfall in the rainy seasons and the number of dry spells have been calculated for a 1.5 °C global warming scenario. The applied method to define the 1.5 °C global warming period has been already applied in the IMPACT2C project. In our presentation, we will discuss the analysis of the climate indices in a 1.5 °C global warming world for the CORDEX-Africa region. Amongst presenting the magnitude of projected changes, we will also address the question for selected indices if the changes projected in a 1.5 °C global warming scenario are already larger than the climate variability and we will also draw links to the changes projected under a more extreme scenario.
Simulation of the West African Monsoon using the MIT Regional Climate Model
NASA Astrophysics Data System (ADS)
Im, Eun-Soon; Gianotti, Rebecca L.; Eltahir, Elfatih A. B.
2013-04-01
We test the performance of the MIT Regional Climate Model (MRCM) in simulating the West African Monsoon. MRCM introduces several improvements over Regional Climate Model version 3 (RegCM3) including coupling of Integrated Biosphere Simulator (IBIS) land surface scheme, a new albedo assignment method, a new convective cloud and rainfall auto-conversion scheme, and a modified boundary layer height and cloud scheme. Using MRCM, we carried out a series of experiments implementing two different land surface schemes (IBIS and BATS) and three convection schemes (Grell with the Fritsch-Chappell closure, standard Emanuel, and modified Emanuel that includes the new convective cloud scheme). Our analysis primarily focused on comparing the precipitation characteristics, surface energy balance and large scale circulations against various observations. We document a significant sensitivity of the West African monsoon simulation to the choices of the land surface and convection schemes. In spite of several deficiencies, the simulation with the combination of IBIS and modified Emanuel schemes shows the best performance reflected in a marked improvement of precipitation in terms of spatial distribution and monsoon features. In particular, the coupling of IBIS leads to representations of the surface energy balance and partitioning that are consistent with observations. Therefore, the major components of the surface energy budget (including radiation fluxes) in the IBIS simulations are in better agreement with observation than those from our BATS simulation, or from previous similar studies (e.g Steiner et al., 2009), both qualitatively and quantitatively. The IBIS simulations also reasonably reproduce the dynamical structure of vertically stratified behavior of the atmospheric circulation with three major components: westerly monsoon flow, African Easterly Jet (AEJ), and Tropical Easterly Jet (TEJ). In addition, since the modified Emanuel scheme tends to reduce the precipitation amount, it improves the precipitation over regions suffering from systematic wet bias.
Mehran, Ali; AghaKouchak, Amir; Phillips, Thomas J.
2014-02-25
Numerous studies have emphasized that climate simulations are subject to various biases and uncertainties. The objective of this study is to cross-validate 34 Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations of precipitation against the Global Precipitation Climatology Project (GPCP) data, quantifying model pattern discrepancies and biases for both entire data distributions and their upper tails. The results of the Volumetric Hit Index (VHI) analysis of the total monthly precipitation amounts show that most CMIP5 simulations are in good agreement with GPCP patterns in many areas, but that their replication of observed precipitation over arid regions and certain sub-continentalmore » regions (e.g., northern Eurasia, eastern Russia, central Australia) is problematical. Overall, the VHI of the multi-model ensemble mean and median also are superior to that of the individual CMIP5 models. However, at high quantiles of reference data (e.g., the 75th and 90th percentiles), all climate models display low skill in simulating precipitation, except over North America, the Amazon, and central Africa. Analyses of total bias (B) in CMIP5 simulations reveal that most models overestimate precipitation over regions of complex topography (e.g. western North and South America and southern Africa and Asia), while underestimating it over arid regions. Also, while most climate model simulations show low biases over Europe, inter-model variations in bias over Australia and Amazonia are considerable. The Quantile Bias (QB) analyses indicate that CMIP5 simulations are even more biased at high quantiles of precipitation. Lastly, we found that a simple mean-field bias removal improves the overall B and VHI values, but does not make a significant improvement in these model performance metrics at high quantiles of precipitation.« less
NASA Astrophysics Data System (ADS)
Tuluri, F.
2013-12-01
The realization of long term changes in climate in research community has to go beyond the comfort zone through climate literacy in academics. Higher education on climate change is the platform to bring together the otherwise disconnected factors such as effective discovery, decision making, innovation, interdisciplinary collaboration, Climate change is a complex process that may be due to natural internal processes within the climate system, or to variations in natural or anthropogenic (human-driven) external forcing. Global climate change indicates a change in either the mean state of the climate or in its variability, persisting for several decades or longer. This includes changes in average weather conditions on Earth, such as a change in average global temperature, as well as changes in how frequently regions experience heat waves, droughts, floods, storms, and other extreme weather. It is important to examine the effects of climate variations on human health and disorders in order to take preventive measures. Similarly, the influence of climate changes on animal management practices, pests and pest management systems, and high value crops such as citrus and vegetables is also equally important for investigation. New genetic agricultural varieties must be explored, and pilot studies should examine biotechnology transfer. Recent climate model improvements have resulted in an enhanced ability to simulate many aspects of climate variability and extremes. However, they are still characterized by systematic errors and limitations in accurately simulating more precisely regional climate conditions. The present situations warrant developing climate literacy on the synergistic impacts of environmental change, and improve development, testing and validation of integrated stress impacts through computer modeling. In the present study we present a detailed study of the current status on the impacts of global/regional climate changes on environment and health with a view to highlighting the need for integrated research and education collaboration at national and global level.
NASA Astrophysics Data System (ADS)
Olesen, M.; Christensen, J. H.; Boberg, F.
2016-12-01
Climate change indices for Greenland applied directly for other arctic regions - Enhanced and utilized climate information from one high resolution RCM downscaling for Greenland evaluated through pattern scaling and CMIP5Climate change affects the Greenlandic society both advantageously and disadvantageously. Changes in temperature and precipitation patterns may result in changes in a number of derived society related climate indices, such as the length of growing season or the number of annual dry days or a combination of the two - indices of substantial importance to society in a climate adaptation context.Detailed climate indices require high resolution downscaling. We have carried out a very high resolution (5 km) simulation with the regional climate model HIRHAM5, forced by the global model EC-Earth. Evaluation of RCM output is usually done with an ensemble of downscaled output with multiple RCM's and GCM's. Here we have introduced and tested a new technique; a translation of the robustness of an ensemble of GCM models from CMIP5 into the specific index from the HIRHAM5 downscaling through a correlation between absolute temperatures and its corresponding index values from the HIRHAM5 output.The procedure is basically conducted in two steps: First, the correlation between temperature and a given index for the HIRHAM5 simulation by a best fit to a second order polynomial is identified. Second, the standard deviation from the CMIP5 simulations is introduced to show the corresponding standard deviation of the index from the HIRHAM5 run. The change of specific climate indices due to global warming will then be possible to evaluate elsewhere corresponding to the change in absolute temperature.Results based on selected indices with focus on the future climate in Greenland calculated for the rcp4.5 and rcp8.5 scenarios will be presented.
The Influence of the Green River Lake System on the Local Climate During the Early Eocene Period
NASA Astrophysics Data System (ADS)
Elguindi, N.; Thrasher, B.; Sloan, L. C.
2006-12-01
Several modeling efforts have attempted to reproduce the climate of the early Eocene North America. However when compared to proxy data, General Circulation Models (GCMs) tend to produce a large-scale cold-bias. Although higher resolution Regional Climate Models (RCMs) that are able to resolve many of the sub-GCM scale forcings improve this cold bias, RCMs are still unable to reproduce the warm climate of the Eocene. From geologic data, we know that the greater Green River and the Uinta basins were intermontane basins with a large lake system during portions of the Eocene. We speculate that the lack of presence of these lakes in previous modeling studies may explain part of the persistent cold-bias of GCMs and RCMs. In this study, we utilize a regional climate model coupled with a 1D-lake model in an attempt to reduce the uncertainties and biases associated with climate simulations over Eocene western North American. Specifically, we include the Green River Lake system in our RCM simulation and compare climates with and without lakes to proxy data.
NASA Astrophysics Data System (ADS)
Jacquemin, Ingrid; Henrot, Alexandra-Jane; Beckers, Veronique; Berckmans, Julie; Debusscher, Bos; Dury, Marie; Minet, Julien; Hamdi, Rafiq; Dendoncker, Nicolas; Tychon, Bernard; Hambuckers, Alain; François, Louis
2016-04-01
The interactions between land surface and climate are complex. Climate changes can affect ecosystem structure and functions, by altering photosynthesis and productivity or inducing thermal and hydric stresses on plant species. These changes then impact socio-economic systems, through e.g., lower farming or forestry incomes. Ultimately, it can lead to permanent changes in land use structure, especially when associated with other non-climatic factors, such as urbanization pressure. These interactions and changes have feedbacks on the climate systems, in terms of changing: (1) surface properties (albedo, roughness, evapotranspiration, etc.) and (2) greenhouse gas emissions (mainly CO2, CH4, N2O). In the framework of the MASC project (« Modelling and Assessing Surface Change impacts on Belgian and Western European climate »), we aim at improving regional climate model projections at the decennial scale over Belgium and Western Europe by combining high-resolution models of climate, land surface dynamics and socio-economic processes. The land surface dynamics (LSD) module is composed of a dynamic vegetation model (CARAIB) calculating the productivity and growth of natural and managed vegetation, and an agent-based model (CRAFTY), determining the shifts in land use and land cover. This up-scaled LSD module is made consistent with the surface scheme of the regional climate model (RCM: ALARO) to allow simulations of the RCM with a fully dynamic land surface for the recent past and the period 2000-2030. In this contribution, we analyze the results of the first simulations performed with the CARAIB dynamic vegetation model over Belgium at a resolution of 1km. This analysis is performed at the species level, using a set of 17 species for natural vegetation (trees and grasses) and 10 crops, especially designed to represent the Belgian vegetation. The CARAIB model is forced with surface atmospheric variables derived from the monthly global CRU climatology or ALARO outputs (from a 4 km resolution simulation) for the recent past and the decennial projections. Evidently, these simulations lead to a first analysis of the impact of climate change on carbon stocks (e.g., biomass, soil carbon) and fluxes (e.g., gross and net primary productivities (GPP and NPP) and net ecosystem production (NEP)). The surface scheme is based on two land use/land cover databases, ECOPLAN for the Flemish region and, for the Walloon region, the COS-Wallonia database and the Belgian agricultural statistics for agricultural land. Land use and land cover are fixed through time (reference year: 2007) in these simulations, but a first attempt of coupling between CARAIB and CRAFTY will be made to establish dynamic land use change scenarios for the next decades. A simulation with variable land use would allow an analysis of land use change impacts not only on crop yields and the land carbon budget, but also on climate relevant parameters, such as surface albedo, roughness length and evapotranspiration towards a coupling with the RCM.
NASA Astrophysics Data System (ADS)
Gädeke, Anne; Koch, Hagen; Pohle, Ina; Grünewald, Uwe
2014-05-01
In anthropogenically heavily impacted river catchments, such as the Lusatian river catchments of Spree and Schwarze Elster (Germany), the robust assessment of possible impacts of climate change on the regional water resources is of high relevance for the development and implementation of suitable climate change adaptation strategies. Large uncertainties inherent in future climate projections may, however, reduce the willingness of regional stakeholder to develop and implement suitable adaptation strategies to climate change. This study provides an overview of different possibilities to consider uncertainties in climate change impact assessments by means of (1) an ensemble based modelling approach and (2) the incorporation of measured and simulated meteorological trends. The ensemble based modelling approach consists of the meteorological output of four climate downscaling approaches (DAs) (two dynamical and two statistical DAs (113 realisations in total)), which drive different model configurations of two conceptually different hydrological models (HBV-light and WaSiM-ETH). As study area serve three near natural subcatchments of the Spree and Schwarze Elster river catchments. The objective of incorporating measured meteorological trends into the analysis was twofold: measured trends can (i) serve as a mean to validate the results of the DAs and (ii) be regarded as harbinger for the future direction of change. Moreover, regional stakeholders seem to have more trust in measurements than in modelling results. In order to evaluate the nature of the trends, both gradual (Mann-Kendall test) and step changes (Pettitt test) are considered as well as both temporal and spatial correlations in the data. The results of the ensemble based modelling chain show that depending on the type (dynamical or statistical) of DA used, opposing trends in precipitation, actual evapotranspiration and discharge are simulated in the scenario period (2031-2060). While the statistical DAs simulate a strong decrease in future long term annual precipitation, the dynamical DAs simulate a tendency towards increasing precipitation. The trend analysis suggests that precipitation has not changed significantly during the period 1961-2006. Therefore, the decrease simulated by the statistical DAs should be interpreted as a rather dry future projection. Concerning air temperature, measured and simulated trends agree on a positive trend. Also the uncertainty related to the hydrological model within the climate change modelling chain is comparably low when long-term averages are considered but increases significantly during extreme events. This proposed framework of combining an ensemble based modelling approach with measured trend analysis is a promising approach for regional stakeholders to gain more confidence into the final results of climate change impact assessments. However, climate change impact assessments will remain highly uncertain. Thus, flexible adaptation strategies need to be developed which should not only consider climate but also other aspects of global change.
Regional scaling of annual mean precipitation and water availability with global temperature change
NASA Astrophysics Data System (ADS)
Greve, Peter; Gudmundsson, Lukas; Seneviratne, Sonia I.
2018-03-01
Changes in regional water availability belong to the most crucial potential impacts of anthropogenic climate change, but are highly uncertain. It is thus of key importance for stakeholders to assess the possible implications of different global temperature thresholds on these quantities. Using a subset of climate model simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), we derive here the sensitivity of regional changes in precipitation and in precipitation minus evapotranspiration to global temperature changes. The simulations span the full range of available emission scenarios, and the sensitivities are derived using a modified pattern scaling approach. The applied approach assumes linear relationships on global temperature changes while thoroughly addressing associated uncertainties via resampling methods. This allows us to assess the full distribution of the simulations in a probabilistic sense. Northern high-latitude regions display robust responses towards wetting, while subtropical regions display a tendency towards drying but with a large range of responses. Even though both internal variability and the scenario choice play an important role in the overall spread of the simulations, the uncertainty stemming from the climate model choice usually accounts for about half of the total uncertainty in most regions. We additionally assess the implications of limiting global mean temperature warming to values below (i) 2 K or (ii) 1.5 K (as stated within the 2015 Paris Agreement). We show that opting for the 1.5 K target might just slightly influence the mean response, but could substantially reduce the risk of experiencing extreme changes in regional water availability.
NASA Astrophysics Data System (ADS)
Breil, Marcus; Panitz, Hans-Jürgen
2013-04-01
Climate predictions on decadal timescales constitute a new field of research, closing the gap between short-term and seasonal weather predictions and long-term climate projections. Therefore, the Federal Ministry of Education and Research in Germany (BMBF) has recently funded the research program MiKlip (Mittelfristige Klimaprognosen), which aims to create a model system that can provide reliable decadal climate forecasts. Recent studies have suggested that one region with high potential decadal predictability is West Africa. Therefore, the DEPARTURE project (DEcadal Prediction of African Rainfall and ATlantic HURricanE Activity) was established within the MiKlip program to assess the feasibility and the potential added value of regional decadal climate predictions for West Africa. To quantify the potential decadal climate predictability, a multi-model approach with the three different regional climate models REMO, WRF and COSMO-CLM (CCLM) will be realized. The presented research will contribute to DEPARTURE by performing hindcast ensemble simulations with CCLM, based on SST-driven global MPI-ESM-LR simulations. Thereby, one focus is on the dynamic soil-vegetation-climate interaction on decadal timescales. Recent studies indicate that there are significant feedbacks between the land-surface and the atmosphere, which might influence the decadal climate variability substantially. To investigate this connection, three different SVAT's (TERRA_ML, Community Land Model (CLM), and VEG3D) will be coupled with the CCLM. Thus, sensitive model parameters shall be identified, whereby the understanding of important processes might be improved. As a first step, the influence of the model domain on the CCLM results was examined. For this purpose, recent CCLM results from simulations for the official CORDEX domain were compared with CCLM results achieved by using an extended DEPARTURE model domain to about 60°W. This sensitivity analysis was performed with a horizontal resolution of 0.44°. Thereby, the analysis showed that the domain size doesn't affect the quality of the simulation results significantly. The impact of different SVAT's on the model performance is supposed to be higher. To investigate this assumption, TERRA_ML, the standard SVAT implemented in CCLM, is replaced by VEG3D using the OASIS3-MCT coupling software. Compared to TERRA_ML, VEG3D includes an explicit vegetation layer, inducing higher correlations with observations as it has been shown in previous studies. The results of both model configurations are analysed and presented for the DEPARTURE model domain.
Late Cenozoic Climate Change and its Implications on the Denudation of Orogen Syntaxes
NASA Astrophysics Data System (ADS)
Mutz, Sebastian; Ehlers, Todd
2017-04-01
The denudation history of active orogens is often interpreted in the context of modern climate gradients. Despite the influence of climatic conditions on erosion rates, information about paleoclimate evolution is often not available and thus not considered when denudation histories are interpreted. In this study, we analyze output from paleoclimate simulations conducted with ECHAM5-wiso at T159 (ca. 80x80km) resolution. Specifically, we analyze simulations of pre-industrial (PI, pre-1850), Mid-Holocene (MH, ca. 6ka), Last Glacial Maximum (LGM, ca. 21ka) and Pliocene (PLIO, ca. 3ka) climates and focus on a selection of orogen syntaxes as study regions (e.g. Himalaya, SE Alaska, Cascadia, and Central Andes). For the selected region, we carry out a cluster analysis using a hybrid of hierarchical and k-means clustering procedures using mean annual temperature (MAT), temperature amplitude, mean annual precipitation (MAP), precipitation amplitude and u-wind and v-wind in different months to provide a general overview of paleoclimates in the study regions. Additionally, we quantify differences between paleoclimates by applying two-group linear discrimination analyses to the simulation output for a similar selection of variables. Results indicate the largest differences to the PI climate are observed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. These global trends can be observed for most locations in the investigated areas, but the strength varies regionally and the trends in precipitation are less uniform than trends in temperatures. The LGM climate shows the largest deviation in annual precipitation from the PI climate, and shows enhanced precipitation in the temperate Andes, and coastal regions for both SE Alaska and the US Pacific Northwest Pacific. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen towards the eastern syntax. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time-slice experiments conducted here. Results from the discriminant analysis show that the quantified differences in climate and the relative contribution to these differences by each of the analyzed parameters are highly variable in space for each of the paleoclimates. Taken together, these results highlight significant changes in Late Cenozoic regional climatology over active orogens on time scales ranging from glacial cycles to geologic. As a result, future interpretation of recent and paleo denudation rates in these areas from sediment flux inventories, cosmogenic radionuclides, or low-temperature thermochronology techniques warrant careful consideration of these changes.
Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.
This article investigates projected changes in temperature and water cycle extremes at 1.5°C global warming, and highlights the role of land processes and land-use changes (LUC) for these projections. We provide new comparisons of changes in climate at 1.5°C vs 2°C based on empirical sampling analyses of transient simulations vs simulations from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield overall similar results regarding changes in climate extremes on land, and reveal a substantial difference in regional extremes occurrence at 1.5°C vs 2°C. Land processes mediated through soil moisture feedbacks andmore » land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from Integrated Assessment Models (IAMs), which include major LUC in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUC are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.« less
Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C
Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.; ...
2018-04-02
Here, this article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated throughmore » soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.« less
NASA Astrophysics Data System (ADS)
Zhang, Wenxin; Miller, Paul A.; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf
2013-09-01
One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model-downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961-1990) agreed well with a composite map of actual arctic vegetation. In the future (2051-2080), a poleward advance of the forest-tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH4, may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux.
Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.
Here, this article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated throughmore » soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.« less
Evaluation of high-resolution climate simulations for West Africa using COSMO-CLM
NASA Astrophysics Data System (ADS)
Dieng, Diarra; Smiatek, Gerhard; Bliefernicht, Jan; Laux, Patrick; Heinzeller, Dominikus; Kunstmann, Harald; Sarr, Abdoulaye; Thierno Gaye, Amadou
2017-04-01
The climate change modeling activities within the WASCAL program (West African Science Service Center on Climate Change and Adapted Land Use) concentrate on the provisioning of future climate change scenario data at high spatial and temporal resolution and quality in West Africa. Such information is highly required for impact studies in water resources and agriculture for the development of reliable climate change adaptation and mitigation strategies. In this study, we present a detailed evaluation of high simulation runs based on the regional climate model, COSMO model in CLimate Mode (COSMO-CLM). The model is applied over West Africa in a nested approach with two simulation domains at 0.44° and 0.11° resolution using reanalysis data from ERA-Interim (1979-2013). The models runs are compared to several state-of-the-art observational references (e.g., CRU, CHIRPS) including daily precipitation data provided by national meteorological services in West Africa. Special attention is paid to the reproduction of the dynamics of the West African Monsoon (WMA), its associated precipitation patterns and crucial agro-climatological indices such as the onset of the rainy season. In addition, first outcomes of the regional climate change simulations driven by MPI-ESM-LR are presented for a historical period (1980 to 2010) and two future periods (2020 to 2050, 2070 to 2100). The evaluation of the reanalysis runs shows that COSMO-CLM is able to reproduce the observed major climate characteristics including the West African Monsoon within the range of comparable RCM evaluations studies. However, substantial uncertainties remain, especially in the Sahel zone. The added value of the higher resolution of the nested run is reflected in a smaller bias in extreme precipitation statistics with respect to the reference data.
NASA Astrophysics Data System (ADS)
Kleinn, J.; Frei, C.; Gurtz, J.; Vidale, P. L.; Schär, C.
2003-04-01
The consequences of extreme runoff and extreme water levels are within the most important weather induced natural hazards. The question about the impact of a global climate change on the runoff regime, especially on the frequency of floods, is of utmost importance. In winter-time, two possible climate effects could influence the runoff statistis of large Central European rivers: the shift from snowfall to rain as a consequence of higher temperatures and the increase of heavy precipitation events due to an intensification of the hydrological cycle. The combined effect on the runoff statistics is examined in this study for the river Rhine. To this end, sensitivity experiments with a model chain including a regional climate model and a distributed runoff model are presented. The experiments are based on an idealized surrogate climate change scenario which stipulates a uniform increase in temperature by 2 Kelvin and an increase in atmospheric specific humidity by 15% (resulting from unchanged relative humidity) in the forcing fields for the regional climate model. The regional climate model CHRM is based on the mesoscale weather prediction model HRM of the German Weather Service (DWD) and has been adapted for climate simulations. The model is being used in a nested mode with horizontal resolutions of 56 km and 14 km. The boundary conditions are taken from the original ECMWF reanalysis and from a modified version representing the surrogate scenario. The distributed runoff model (WaSiM) is used at a horizontal resolution of 1 km for the whole Rhine basin down to Cologne. The coupling of the models is provided by a downscaling of the climate model fields (precipitaion, temperature, radiation, humidity, and wind) to the resolution of the distributed runoff model. The simulations cover the period of September 1987 to January 1994 with a special emphasis on the five winter seasons 1989/90 until 1993/94, each from November until January. A detailed validation of the control simulation shows a good correspondence of the precipitation fields from the regional climate model with measured fields regarding the distribution of precipitation at the scale of the Rhine basin. Systematic errors are visible at the scale of single subcatchements, in the altitudinal distribution and in the frequency distribution of precipitation. These errors only marginally affect the runoff simulations, which show good correspondence with runoff observations. The presentation includes results from the scenario simulations for the whole basin as well as for Alpine and lowland subcatchements. The change in the runoff statistics is being analyzed with respect to the changes in snowfall and to the fequency distribution of precipitation.
NASA Astrophysics Data System (ADS)
He, B.
2015-12-01
Global warming is one of the most significant climate change signals at the earth's surface. However, the responses of monsoon precipitation to global warming show very distinct regional features, especially over the South China Sea (SCS) and surrounding regions during boreal summer. To understand the possible dynamics in these specific regions under the global warming background, the changes in atmospheric latent heating and their possible influences on global climate are investigated by both observational diagnosis and numerical sensitivity simulations. Results indicate that summertime latent heating has intensified in the SCS and western Pacific, accompanied by increased precipitation, cloud cover, lower-tropospheric convergence, and decreased sea level pressure. Sensitivity experiments show that middle and upper tropospheric heating causes an east-west feedback pattern between SCS-western Pacific and South Asia, which strengthens the South Asian High in the upper troposphere and moist convergence in the lower troposphere, consequently forcing a descending motion and adiabatic warming over continental South Asia and leading to a warm and dry climate. When air-sea interaction is considered, the simulation results are overall more similar to observations, and in particular the bias of precipitation over the Indian Ocean simulated by AGCMs has been reduced. The results highlight the important role of latent heating in adjusting the changes in sea surface temperature through atmospheric dynamics.
Yongqiang Liu
2005-01-01
Simulations are performed to understand the importance of smoke from biomass burning in tropical South America to regional radiation and climate. The National Center for Atmospheric Research (NCAR) regional climate model coupled with the NCAR column radiative model is used to estimate smoke direct radiative forcing and consequent atmospheric perturbations during a...
Patterns of crop cover under future climates.
Porfirio, Luciana L; Newth, David; Harman, Ian N; Finnigan, John J; Cai, Yiyong
2017-04-01
We study changes in crop cover under future climate and socio-economic projections. This study is not only organised around the global and regional adaptation or vulnerability to climate change but also includes the influence of projected changes in socio-economic, technological and biophysical drivers, especially regional gross domestic product. The climatic data are obtained from simulations of RCP4.5 and 8.5 by four global circulation models/earth system models from 2000 to 2100. We use Random Forest, an empirical statistical model, to project the future crop cover. Our results show that, at the global scale, increases and decreases in crop cover cancel each other out. Crop cover in the Northern Hemisphere is projected to be impacted more by future climate than the in Southern Hemisphere because of the disparity in the warming rate and precipitation patterns between the two Hemispheres. We found that crop cover in temperate regions is projected to decrease more than in tropical regions. We identified regions of concern and opportunities for climate change adaptation and investment.
NASA Astrophysics Data System (ADS)
Wartenburger, Richard; Hirschi, Martin; Donat, Markus G.; Greve, Peter; Pitman, Andy J.; Seneviratne, Sonia I.
2017-09-01
This article extends a previous study Seneviratne et al. (2016) to provide regional analyses of changes in climate extremes as a function of projected changes in global mean temperature. We introduce the DROUGHT-HEAT Regional Climate Atlas, an interactive tool to analyse and display a range of well-established climate extremes and water-cycle indices and their changes as a function of global warming. These projections are based on simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). A selection of example results are presented here, but users can visualize specific indices of interest using the online tool. This implementation enables a direct assessment of regional climate changes associated with global mean temperature targets, such as the 2 and 1.5° limits agreed within the 2015 Paris Agreement.
On the added value and sensitivity of WRF to driving conditions over CORDEX-Africa domain
NASA Astrophysics Data System (ADS)
Lorente-Plazas, Raquel; García-Díez, Markel; Jimenez-Guerrero, Pedro; Fernández, Jesús; Montavez, Juan Pedro
2014-05-01
The assessment of the climate variability over Africa has recently attracted the interest of the regional climate downscaling research community. The main reasons are not only because Africa is a climate change hot-spot, but also due to the low capacity of this region for the adaptation and mitigation under negative impacts and its direct dependency on its socio-economic sustainability of the climate variability. Therefore, improvements in the understanding of the African climate could help the governments in decision-making. Under this umbrella, regional climate models (RCMs) are promising tools to assess the African regional climate. The main advantage of the RCMs, with respect to global reanalysis datasets, is the higher detail provided by the increased resolution which implies a better representation of land-surface interactions and atmospheric processes. However, the confidence on the RCMs strongly depends on the reduction/bounding of uncertainties. One of these sources of uncertainties is associated with the selection of the boundary conditions for driving the regional models. In this work, two identical CORDEX-compliant simulations have been performed over Africa with the unique difference of being driven by two different reanalyses. The reanalyses used were the European Centre for Medium Range Weather Forecasts Interim reanalysis (ERA-I) and the Japanese 25-year reanalysis (JRA-25) by the Japanese Meteorological Service. Both reanalyses have identical temporal resolution (6-hr) but different spatial grid resolution, 0.75 and 1.25 degrees, respectively. The regional model used was the Weather Research and Forecasting Model (WRF). The numerical experiments encompass the period 1989-2010 covering the Africa-CORDEX domain with a 50 km horizontal spatial resolution and 28 vertical levels up to 50 hPa. The WRF simulations are compared between them and against observations. For the mean and maximum temperature the CRU monthly time series (0.25deg) from Climatic Research Unit of the University of East Anglia are used. The precipitation is compared against the Tropical Rainfall Measuring Mission Project (TRMM) monthly data (0.25deg). The results depict that none of the reanalyses used outperforms the other in representing the African climate, since their performance depends on the variable, season and region assessed. The simulations show a noticeable disagreement for 2-m temperature in north-western Africa, where WRF-JRA tends to underestimate this variable mostly in winter and spring. For the monthly mean daily maximum temperature, WRF-JRA tends to overestimate the temperature in the Sahel in summer and in the border between Angola and Namibia in Winter. When comparing with CRU observations, there is a remarkably better spatial representation for the WRF-EI simulation in the North of Africa. However, the behaviour of WRF-EI and WRF-JRA is similar in the South of Africa. Intra-annual variability is well represented except in Atlas mountains where WRF-JRA underestimates temperature. Regarding precipitation, the main differences appear over the Sahel region in JAS and in the Congo area during JFM. The comparison with the TRMM data shows a better agreement with the WRF-JRA simulation except during summer in the Sahel region. The monthly annual cycle is well captured, except in Ethiopian highlands and Northern West Africa where WRF-JRA (WRF-EI) underestimate (overestimate) the annual cycle.
NASA Astrophysics Data System (ADS)
Pohle, Ina; Koch, Hagen; Gädeke, Anne; Grünewald, Uwe; Kaltofen, Michael; Redetzky, Michael
2014-05-01
In the catchments of the rivers Schwarze Elster, Spree and Lusatian Neisse, hydrologic and socioeconomic systems are coupled via a complex water management system in which water users, reservoirs and water transfers are included. Lignite mining and electricity production are major water users in the region: To allow for open pit lignite mining, ground water is depleted and released into the river system while cooling water is used in the thermal power plants. In order to assess potential climate change impacts on water availability in the catchments as well as on the water demand of the thermal power plants, a climate change impact assessment was performed using the hydrological model SWIM and the long term water management model WBalMo. The potential impacts of climate change were considered by using three regional climate change scenarios of the statistical regional climate model STAR assuming a further temperature increase of 0, 2 or 3 K by the year 2050 in the region respectively. Furthermore, scenarios assuming decreasing mining activities in terms of a decreasing groundwater depression cone, lower mining water discharges, and reduced cooling water demand of the thermal power plants are considered. In the standard version of the WBalMo model cooling water demand is considered as static with regard to climate variables. However, changes in the future cooling water demand over time according to the plans of the local mining and power plant operator are considered. In order to account for climate change impacts on the cooling water demand of the thermal power plants, a dynamical approach for calculating water demand was implemented in WBalMo. As this approach is based on air temperature and air humidity, the projected air temperature and air humidity of the climate scenarios at the locations of the power plants are included in the calculation. Due to increasing temperature and decreasing precipitation declining natural and managed discharges, and hence a lower water availability in the region, were simulated by SWIM and WBalMo respectively. Next to changing climate conditions, also the different mining scenarios have considerable impacts on natural and managed discharges. Using the dynamic approach for cooling water demand, the simulated water demands are lower in winter, but higher in summer compared to the static approach. As a consequence of changes in the seasonal pattern of the cooling water demand of the power plants, lower summer discharges downstream of the thermal power plants are simulated using the dynamical approach. Due to the complex water management system in the region included in the water management model WBalMo, also the simulation of reservoir releases and volumes is impacted by the choice of either the static or the dynamic approach for calculating the cooling water demand of the thermal power plants.
Integrated watershed-scale response to climate change for selected basins across the United States
Markstrom, Steven L.; Hay, Lauren E.; Ward-Garrison, D. Christian; Risley, John C.; Battaglin, William A.; Bjerklie, David M.; Chase, Katherine J.; Christiansen, Daniel E.; Dudley, Robert W.; Hunt, Randall J.; Koczot, Kathryn M.; Mastin, Mark C.; Regan, R. Steven; Viger, Roland J.; Vining, Kevin C.; Walker, John F.
2012-01-01
A study by the U.S. Geological Survey (USGS) evaluated the hydrologic response to different projected carbon emission scenarios of the 21st century using a hydrologic simulation model. This study involved five major steps: (1) setup, calibrate and evaluated the Precipitation Runoff Modeling System (PRMS) model in 14 basins across the United States by local USGS personnel; (2) acquire selected simulated carbon emission scenarios from the World Climate Research Programme's Coupled Model Intercomparison Project; (3) statistical downscaling of these scenarios to create PRMS input files which reflect the future climatic conditions of these scenarios; (4) generate PRMS projections for the carbon emission scenarios for the 14 basins; and (5) analyze the modeled hydrologic response. This report presents an overview of this study, details of the methodology, results from the 14 basin simulations, and interpretation of these results. A key finding is that the hydrological response of the different geographical regions of the United States to potential climate change may be different, depending on the dominant physical processes of that particular region. Also considered is the tremendous amount of uncertainty present in the carbon emission scenarios and how this uncertainty propagates through the hydrologic simulations.
NASA Astrophysics Data System (ADS)
Tölle, Merja H.; Gutjahr, Oliver; Busch, Gerald; Thiele, Jan C.
2014-03-01
The extent and magnitude of land cover change effect on local and regional future climate during the vegetation period due to different forms of bioenergy plants are quantified for extreme temperatures and energy fluxes. Furthermore, we vary the spatial extent of plant allocation on arable land and simulate alternative availability of transpiration water to mimic both rainfed agriculture and irrigation. We perform climate simulations down to 1 km scale for 1970-1975 C20 and 2070-2075 A1B over Germany with Consortium for Small-Scale Modeling in Climate Mode. Here an impact analysis indicates a strong local influence due to land cover changes. The regional effect is decreased by two thirds of the magnitude of the local-scale impact. The changes are largest locally for irrigated poplar with decreasing maximum temperatures by 1°C in summer months and increasing specific humidity by 0.15 g kg-1. The increased evapotranspiration may result in more precipitation. The increase of surface radiative fluxes Rnet due to changes in latent and sensible heat is estimated by 5 W m-2locally. Moreover, increases in the surface latent heat flux cause strong local evaporative cooling in the summer months, whereas the associated regional cooling effect is pronounced by increases in cloud cover. The changes on a regional scale are marginal and not significant. Increasing bioenergy production on arable land may result in local temperature changes but not in substantial regional climate change in Germany. We show the effect of agricultural practices during climate transitions in spring and fall.
NASA Astrophysics Data System (ADS)
Tøfte, Lena S.; Martino, Sara; Mo, Birger
2016-04-01
This study analyses whether and to which extent today's hydropower system and reservoirs in Mid-Norway are able to balance new intermittent energy sources in the region, in both today's and tomorrow's climate. We also investigate if the electricity marked model EMPS gives us reasonable results also when run in a multi simulation mode without recalibration. Climate related energy (CRE) is influenced by the weather, the system for energy production and transport, and by market mechanisms. In the region of Mid-Norway, nearly all power demand is generated by hydro-electric facilities. Due to energy deficiency and limitations in the power grid the region experiences a deficit of electricity. The region is likely to experience considerable investments in wind power and small-scale hydropower and the transmission grid within and out of the region will probably be extended, so this situation might change. In addition climate change scenarios for the region agree on higher temperatures, more precipitation in total and a larger portion of the precipitation coming as rain instead of snow, as well as we expect slightly higher wind speed and more storms during the winter. Changing temperatures will also change the electricity demand. EMPS is a tool for forecasting and planning in electricity markets, developed for optimization and simulation of hydrothermal power systems with a considerable share of hydro power. It takes into account transport constraints and hydrological differences between major areas or regional subsystems. During optimization the objective is to minimize the expected cost in the whole system subject to all constraints. Incremental water values (marginal costs for hydropower) are computed for each area using stochastic dynamic programming. A heuristic approach is used to treat the interaction between areas. In the simulation part of the model total system costs are minimized week by week for each climate scenario in a linear problem formulation. A detailed representation of hydropower is included and total hydro power production for each area is calculated, and the production is distributed among all available plants within each area. During simulation, the demand is affected by prices and temperatures. 6 different infrastructure scenarios of wind and power line development are analyzed. The analyses are done by running EMPS calibrated for today's situation for 11*11*8 different combinations of altered weather variables (temperature, precipitation and wind) describing different climate change scenarios, finding the climate response function for every EMPS-variable according the electricity production, such as prices and income, energy balances (supply, consumption and trade), overflow losses, probability of curtailment etc .
NASA Astrophysics Data System (ADS)
Handiani, D.; Paul, A.; Dupont, L.
2011-06-01
Abrupt climate changes associated with Heinrich Event 1 (HE1) about 18 to 15 thousand years before present (ka BP) strongly affected climate and vegetation patterns not only in the Northern Hemisphere, but also in tropical regions in the South Atlantic Ocean. We used the University of Victoria (UVic) Earth System-Climate Model (ESCM) with dynamical vegetation and land surface components to simulate four scenarios of climate-vegetation interaction: the pre-industrial era (PI), the Last Glacial Maximum (LGM), and a Heinrich-like event with two different climate backgrounds (interglacial and glacial). The HE1-like simulation with a glacial climate background produced sea surface temperature patterns and enhanced interhemispheric thermal gradients in accordance with the "bipolar seesaw" hypothesis. It allowed us to investigate the vegetation changes that result from a transition to a drier climate as predicted for northern tropical Africa due to a southward shift of the Intertropical Convergence Zone (ITCZ). We found that a cooling of the Northern Hemisphere caused a southward shift of those plant-functional types (PFTs) in Northern Tropical Africa that are indicative of an increased desertification, and a retreat of broadleaf forests in Western Africa and Northern South America. We used the PFTs generated by the model to calculate mega-biomes to allow for a direct comparison between paleodata and palynological vegetation reconstructions. Our calculated mega-biomes for the pre-industrial period and the LGM corresponded well to the modern and LGM sites of the BIOME6000 (v.4.2) reconstruction, except that our present-day simulation predicted the dominance of grassland in Southern Europe and our LGM simulation simulated more forest cover in tropical and sub-tropical South America. The mega-biomes from the HE1 simulation with glacial background climate were in agreement with paleovegetation data from land and ocean proxies in West, Central, and Northern Tropical Africa as well as Northeast South America. However, our model did not agree well with predicted biome distributions in Eastern South America.
Future summer mega-heatwave and record-breaking temperatures in a warmer France climate
NASA Astrophysics Data System (ADS)
Bador, Margot; Terray, Laurent; Boé, Julien; Somot, Samuel; Alias, Antoinette; Gibelin, Anne-Laure; Dubuisson, Brigitte
2017-07-01
This study focuses on future very hot summers associated with severe heatwaves and record-breaking temperatures in France. Daily temperature observations and a pair of historical and scenario (greenhouse gas radiative concentration pathway 8.5) simulations with the high-resolution (∼12.5 km) ALADIN regional climate model provide a robust framework to examine the spatial distribution of these extreme events and their 21st century evolution. Five regions are identified with an extreme event spatial clustering algorithm applied to observed temperatures. They are used to diagnose the 21st century heatwave spatial patterns. In the 2070s, we find a simulated mega-heatwave as severe as the 2003 observed heatwave relative to its contemporaneous climate. A 20-member initial condition ensemble is used to assess the sensitivity of this future heatwave to the internal variability in the regional climate model and to pre-existing land surface conditions. Even in a much warmer and drier climate in France, late spring dry land conditions may lead to a significant amplification of summer extreme temperatures and heatwave intensity through limitations in evapotranspiration. By 2100, the increase in summer temperature maxima exhibits a range from 6 °C to almost 13 °C in the five regions in France, relative to historical maxima. These projections are comparable with the estimates given by a large number of global climate models.
NASA Astrophysics Data System (ADS)
Endler, Christina; Matzarakis, Andreas
2011-03-01
An analysis of climate simulations from a point of view of tourism climatology based on two regional climate models, namely REMO and CLM, was performed for a regional domain in the southwest of Germany, the Black Forest region, for two time frames, 1971-2000 that represents the twentieth century climate and 2021-2050 that represents the future climate. In that context, the Intergovernmental Panel on Climate Change (IPCC) scenarios A1B and B1 are used. The analysis focuses on human-biometeorological and applied climatologic issues, especially for tourism purposes - that means parameters belonging to thermal (physiologically equivalent temperature, PET), physical (precipitation, snow, wind), and aesthetic (fog, cloud cover) facets of climate in tourism. In general, both models reveal similar trends, but differ in their extent. The trend of thermal comfort is contradicting: it tends to decrease in REMO, while it shows a slight increase in CLM. Moreover, REMO reveals a wider range of future climate trends than CLM, especially for sunshine, dry days, and heat stress. Both models are driven by the same global coupled atmosphere-ocean model ECHAM5/MPI-OM. Because both models are not able to resolve meso- and micro-scale processes such as cloud microphysics, differences between model results and discrepancies in the development of even those parameters (e.g., cloud formation and cover) are due to different model parameterization and formulation. Climatic changes expected by 2050 are small compared to 2100, but may have major impacts on tourism as for example, snow cover and its duration are highly vulnerable to a warmer climate directly affecting tourism in winter. Beyond indirect impacts are of high relevance as they influence tourism as well. Thus, changes in climate, natural environment, demography, tourists' demands, among other things affect economy in general. The analysis of the CLM results and its comparison with the REMO results complete the analysis performed within the project Climate Trends and Sustainable Development of Tourism in Coastal and Low Mountain Range Regions (CAST) funded by the German Federal Ministry of Education and Research (BMBF).
NASA Technical Reports Server (NTRS)
Badr, Hamada S.; Dezfuli, Amin K.; Zaitchik, Benjamin F.; Peters-Lidard, Christa D.
2016-01-01
Many studies have documented dramatic climatic and environmental changes that have affected Africa over different time scales. These studies often raise questions regarding the spatial extent and regional connectivity of changes inferred from observations and proxies and/or derived from climate models. Objective regionalization offers a tool for addressing these questions. To demonstrate this potential, applications of hierarchical climate regionalizations of Africa using observations and GCM historical simulations and future projections are presented. First, Africa is regionalized based on interannual precipitation variability using Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data for the period 19812014. A number of data processing techniques and clustering algorithms are tested to ensure a robust definition of climate regions. These regionalization results highlight the seasonal and even month-to-month specificity of regional climate associations across the continent, emphasizing the need to consider time of year as well as research question when defining a coherent region for climate analysis. CHIRPS regions are then compared to those of five GCMs for the historic period, with a focus on boreal summer. Results show that some GCMs capture the climatic coherence of the Sahel and associated teleconnections in a manner that is similar to observations, while other models break the Sahel into uncorrelated subregions or produce a Sahel-like region of variability that is spatially displaced from observations. Finally, shifts in climate regions under projected twenty-first-century climate change for different GCMs and emissions pathways are examined. A projected change is found in the coherence of the Sahel, in which the western and eastern Sahel become distinct regions with different teleconnections. This pattern is most pronounced in high-emissions scenarios.
The Geographic Climate Information System Project (GEOCLIMA): Overview and preliminary results
NASA Astrophysics Data System (ADS)
Feidas, H.; Zanis, P.; Melas, D.; Vaitis, M.; Anadranistakis, E.; Symeonidis, P.; Pantelopoulos, S.
2012-04-01
The project GEOCLIMA aims at developing an integrated Geographic Information System (GIS) allowing the user to manage, analyze and visualize the information which is directly or indirectly related to climate and its future projections in Greece. The main components of the project are: a) collection and homogenization of climate and environmental related information, b) estimation of future climate change based on existing regional climate model (RCM) simulations as well as a supplementary high resolution (10 km x 10 km) simulation over the period 1961-2100 using RegCM3, c) compilation of an integrated uniform geographic database, and d) mapping of climate data, creation of digital thematic maps, and development of the integrated web GIS application. This paper provides an overview of the ongoing research efforts and preliminary results of the project. First, the trends in the annual and seasonal time series of precipitation and air temperature observations for all available stations in Greece are assessed. Then the set-up of the high resolution RCM simulation (10 km x 10 km) is discussed with respect to the selected convective scheme. Finally, the relationship of climatic variables with geophysical features over Greece such as altitude, location, distance from the sea, slope, aspect, distance from climatic barriers, land cover etc) is investigated, to support climate mapping. The research has been co-financed by the European Union (European Regional Development Fund) and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the National Strategic Reference Framework (NSRF) - Research Funding Program COOPERATION 2009.
NASA Astrophysics Data System (ADS)
Willgoose, G. R.; Cohen, S.; Svoray, T.; Sela, S.; Hancock, G. R.
2010-12-01
Numerical models are an important tool for studying landscape processes as they allow us to isolate specific processes and drivers and test various physics and spatio-temporal scenarios. Here we use a distributed physically-based soil evolution model (mARM4D) to describe the drivers and processes controlling soil-landscape evolution on a field-site at the fringe between the Mediterranean and desert regions of Israel. This study is an initial effort in a larger project aimed at improving our understanding of the mechanisms and drivers that led to the extensive removal of soils from the loess covered hillslopes of this region. This specific region is interesting as it is located between the Mediterranean climate region in which widespread erosion from hillslopes was attributed to human activity during the Holocene and the arid region in which extensive removal of loess from hillslopes was shown to have been driven by climatic changes during the late-Pleistocene. First we study the sediment transport mechanism of the soil-landscape evolution processes in our study-site. We simulate soil-landscape evolution with only one sediment transport process (fluvial or diffusive) at a time. We find that diffusive sediment transport is likely the dominant process in this site as it resulted in soil distributions that better corresponds to current observations. We then simulate several realistic climatic/anthropogenic scenarios (based on the literature) in order to quantify the sensitivity of the soil-landscape evolution process to temporal fluctuations. We find that this site is relatively insensitive to short term (several thousands of years) sharp, changes. This suggests that climate, rather then human activity, was the main driver for the extensive removal of loess from the hillslopes.
NASA Astrophysics Data System (ADS)
Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Folwell, Sonja S.
2015-04-01
During extended periods without rain (dry spells), the soil can dry out due to vegetation transpiration and soil evaporation. At some point in this drying cycle, land surface conditions change from energy-limited to water-limited evapotranspiration, and this is accompanied by an increase of the ground and overlying air temperatures. Regionally, the characteristics of this transition determine the influence of soil moisture on air temperature and rainfall. Global Climate Models (GCMs) disagree on where and how strongly the surface energy budget is limited by soil moisture. Flux tower observations are improving our understanding of these dry down processes, but typical heterogeneous landscapes are too sparsely sampled to ascertain a representative regional response. Alternatively, satellite observations of land surface temperature (LST) provide indirect information about the surface energy partition at 1km resolution globally. In our study, we analyse how well the dry spell dynamics of LST are represented by GCMs across the globe. We use a spatially and temporally aggregated diagnostic to describe the composite response of LST during surface dry down in rain-free periods in distinct climatic regions. The diagnostic is derived from daytime MODIS-Terra LST observations and bias-corrected meteorological re-analyses, and compared against the outputs of historical climate simulations of seven models running the CMIP5 AMIP experiment. Dry spell events are stratified by antecedent precipitation, land cover type and geographic regions to assess the sensitivity of surface warming rates to soil moisture levels at the onset of a dry spell for different surface and climatic zones. In a number of drought-prone hot spot regions, we find important differences in simulated dry spell behaviour, both between models, and compared to observations. These model biases are likely to compromise seasonal forecasts and future climate projections.
Quantifying the effect of varying GHG's concentration in Regional Climate Models
NASA Astrophysics Data System (ADS)
López-Romero, Jose Maria; Jerez, Sonia; Palacios-Peña, Laura; José Gómez-Navarro, Juan; Jiménez-Guerrero, Pedro; Montavez, Juan Pedro
2017-04-01
Regional Climate Models (RCMs) are driven at the boundaries by Global Circulation Models (GCM), and in the particular case of Climate Change projections, such simulations are forced by varying greenhouse gases (GHGs) concentrations. In hindcast simulations driven by reanalysis products, the climate change signal is usually introduced in the assimilation process as well. An interesting question arising in this context is whether GHGs concentrations have to be varied within the RCMs model itself, or rather they should be kept constant. Some groups keep the GHGs concentrations constant under the assumption that information about climate change signal is given throughout the boundaries; sometimes certain radiation parameterization schemes do not permit such changes. Other approaches vary these concentrations arguing that this preserves the physical coherence respect to the driving conditions for the RCM. This work aims to shed light on this topic. For this task, various regional climate simulations with the WRF model for the 1954-2004 period have been carried out for using a Euro-CORDEX compliant domain. A series of simulations with constant and variable GHGs have been performed using both, a GCM (ECHAM6-OM) and a reanalysis product (ERA-20C) data. Results indicate that there exist noticeable differences when introducing varying GHGs concentrations within the RCM domain. The differences in 2-m temperature series between the experiments with varying or constant GHGs concentration strongly depend on the atmospheric conditions, appearing a strong interannual variability. This suggests that short-term experiments are not recommended if the aim is to assess the role of varying GHGs. In addition, and consistently in both GCM and reanalysis-driven experiments, the magnitude of temperature trends, as well as the spatial pattern represented by varying GHGs experiment, are closer to the driving dataset than in experiments keeping constant the GHGs concentration. These results point towards the need for the inclusion of varying GHGs concentration within the RCM itself when dynamically downscaling global datasets, both in GCM and hindcast simulations.
Climate change projections for Greek viticulture as simulated by a regional climate model
NASA Astrophysics Data System (ADS)
Lazoglou, Georgia; Anagnostopoulou, Christina; Koundouras, Stefanos
2017-07-01
Viticulture represents an important economic activity for Greek agriculture. Winegrapes are cultivated in many areas covering the whole Greek territory, due to the favorable soil and climatic conditions. Given the dependence of viticulture on climate, the vitivinicultural sector is expected to be affected by possible climatic changes. The present study is set out to investigate the impacts of climatic change in Greek viticulture, using nine bioclimatic indices for the period 1981-2100. For this purpose, reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and data from the regional climatic model Regional Climate Model Version 3 (RegCM3) are used. It was found that the examined regional climate model estimates satisfactorily these bioclimatic indices. The results of the study show that the increasing trend of temperature and drought will affect all wine-producing regions in Greece. In vineyards in mountainous regions, the impact is positive, while in islands and coastal regions, it is negative. Overall, it should be highlighted that for the first time that Greece is classified into common climatic characteristic categories, according to the international Geoviticulture Multicriteria Climatic Classification System (MCC system). According to the proposed classification, Greek viticulture regions are estimated to have similar climatic characteristics with the warmer wine-producing regions of the world up to the end of twenty-first century. Wine growers and winemakers should take the findings of the study under consideration in order to take measures for Greek wine sector adaptation and the continuation of high-quality wine production.
Predicting the Impacts of Climate Change on Central American Agriculture
NASA Astrophysics Data System (ADS)
Winter, J. M.; Ruane, A. C.; Rosenzweig, C.
2011-12-01
Agriculture is a vital component of Central America's economy. Poor crop yields and harvest reliability can produce food insecurity, malnutrition, and conflict. Regional climate models (RCMs) and agricultural models have the potential to greatly enhance the efficiency of Central American agriculture and water resources management under both current and future climates. A series of numerical experiments was conducted using Regional Climate Model Version 3 (RegCM3) and the Weather Research and Forecasting Model (WRF) to evaluate the ability of RCMs to reproduce the current climate of Central America and assess changes in temperature and precipitation under multiple future climate scenarios. Control simulations were thoroughly compared to a variety of observational datasets, including local weather station data, gridded meteorological data, and high-resolution satellite-based precipitation products. Future climate simulations were analyzed for both mean shifts in climate and changes in climate variability, including extreme events (droughts, heat waves, floods). To explore the impacts of changing climate on maize, bean, and rice yields in Central America, RCM output was used to force the Decision Support System for Agrotechnology Transfer Model (DSSAT). These results were synthesized to create climate change impacts predictions for Central American agriculture that explicitly account for evolving distributions of precipitation and temperature extremes.
Diffenbaugh, N.S.; Sloan, L.C.; Snyder, M.A.; Bell, J.L.; Kaplan, J.; Shafer, S.L.; Bartlein, P.J.
2003-01-01
Anthropogenic increases in atmospheric carbon dioxide (CO2) concentrations may affect vegetation distribution both directly through changes in photosynthesis and water-use efficiency, and indirectly through CO2-induced climate change. Using an equilibrium vegetation model (BIOME4) driven by a regional climate model (RegCM2.5), we tested the sensitivity of vegetation in the western United States, a topographically complex region, to the direct, indirect, and combined effects of doubled preindustrial atmospheric CO2 concentrations. Those sensitivities were quantified using the kappa statistic. Simulated vegetation in the western United States was sensitive to changes in atmospheric CO2 concentrations, with woody biome types replacing less woody types throughout the domain. The simulated vegetation was also sensitive to climatic effects, particularly at high elevations, due to both warming throughout the domain and decreased precipitation in key mountain regions such as the Sierra Nevada of California and the Cascade and Blue Mountains of Oregon. Significantly, when the direct effects of CO2 on vegetation were tested in combination with the indirect effects of CO2-induced climate change, new vegetation patterns were created that were not seen in either of the individual cases. This result indicates that climatic and nonclimatic effects must be considered in tandem when assessing the potential impacts of elevated CO2 levels.
Micro Climate Simulation in new Town 'Hashtgerd'
NASA Astrophysics Data System (ADS)
Sodoudi, S.; Langer, I.; Cubasch, U.
2012-04-01
One of the objectives of climatological part of project Young Cities 'Developing Energy-Efficient Urban Fabric in the Tehran-Karaj Region' is to simulate the micro climate (with 1m resolution) in 35ha of new town Hashtgerd, which is located 65 km far from mega city Tehran. The Project aims are developing, implementing and evaluating building and planning schemes and technologies which allow to plan and build sustainable, energy-efficient and climate sensible form mass housing settlements in arid and semi-arid regions ("energy-efficient fabric"). Climate sensitive form also means designing and planning for climate change and its related effects for Hashtgerd New Town. By configuration of buildings and open spaces according to solar radiation, wind and vegetation, climate sensitive urban form can create outdoor thermal comfort. To simulate the climate on small spatial scales, the micro climate model Envi-met has been used to simulate the micro climate in 35 ha. The Eulerian model ENVI-met is a micro-scale climate model which gives information about the influence of architecture and buildings as well as vegetation and green area on the micro climate up to 1 m resolution. Envi-met has been run with information from topography, downscaled climate data with neuro-fuzzy method, meteorological measurements, building height and different vegetation variants (low and high number of trees) Through the optimal Urban Design and Planning for the 35ha area the microclimate results shows, that with vegetation the microclimate in streets will be change: • 2 m temperature is decreased by about 2 K • relative humidity increase by about 10 % • soil temperature is decreased by about 3 K • wind speed is decreased by about 60% The style of buildings allows free movement of air, which is of high importance for fresh air supply. The increase of inbuilt areas in 35 ha reduces the heat island effect through cooling caused by vegetation and increase of air humidity which caused by trees evaporation.
NASA Astrophysics Data System (ADS)
Kemp, E. M.; Putman, W. M.; Gurganus, J.; Burns, R. W.; Damon, M. R.; McConaughy, G. R.; Seablom, M. S.; Wojcik, G. S.
2009-12-01
We present a regional downscaling system (RDS) suitable for high-resolution weather and climate simulations in multiple supercomputing environments. The RDS is built on the NASA Workflow Tool, a software framework for configuring, running, and managing computer models on multiple platforms with a graphical user interface. The Workflow Tool is used to run the NASA Goddard Earth Observing System Model Version 5 (GEOS-5), a global atmospheric-ocean model for weather and climate simulations down to 1/4 degree resolution; the NASA Land Information System Version 6 (LIS-6), a land surface modeling system that can simulate soil temperature and moisture profiles; and the Weather Research and Forecasting (WRF) community model, a limited-area atmospheric model for weather and climate simulations down to 1-km resolution. The Workflow Tool allows users to customize model settings to user needs; saves and organizes simulation experiments; distributes model runs across different computer clusters (e.g., the DISCOVER cluster at Goddard Space Flight Center, the Cray CX-1 Desktop Supercomputer, etc.); and handles all file transfers and network communications (e.g., scp connections). Together, the RDS is intended to aid researchers by making simulations as easy as possible to generate on the computer resources available. Initial conditions for LIS-6 and GEOS-5 are provided by Modern Era Retrospective-Analysis for Research and Applications (MERRA) reanalysis data stored on DISCOVER. The LIS-6 is first run for 2-4 years forced by MERRA atmospheric analyses, generating initial conditions for the WRF soil physics. GEOS-5 is then initialized from MERRA data and run for the period of interest. Large-scale atmospheric data, sea-surface temperatures, and sea ice coverage from GEOS-5 are used as boundary conditions for WRF, which is run for the same period of interest. Multiply nested grids are used for both LIS-6 and WRF, with the innermost grid run at a resolution sufficient for typical local weather features (terrain, convection, etc.) All model runs, restarts, and file transfers are coordinated by the Workflow Tool. Two use cases are being pursued. First, the RDS generates regional climate simulations down to 4-km for the Chesapeake Bay region, with WRF output provided as input to more specialized models (e.g., ocean/lake, hydrological, marine biology, and air pollution). This will allow assessment of climate impact on local interests (e.g., changes in Bay water levels and temperatures, innundation, fish kills, etc.) Second, the RDS generates high-resolution hurricane simulations in the tropical North Atlantic. This use case will support Observing System Simulation Experiments (OSSEs) of dynamically-targeted lidar observations as part of the NASA Sensor Web Simulator project. Sample results will be presented at the AGU Fall Meeting.
Learning to love the rain in Bergen (Norway) and other lessons from a Climate Services neophyte
NASA Astrophysics Data System (ADS)
Sobolowski, Stefan; Wakker, Joyce
2014-05-01
A question that is often asked of regional climate modelers generally, and Climate Service providers specifically, is: "What is the added-value of regional climate simulations and how can I use this information?" The answer is, unsurprisingly, not straightforward and depends greatly on what one needs to know. In particular it is important for scientist to communicate directly with the users of this information to determine what kind of information is important for them to do their jobs. This study is part of the ECLISE project (Enabling Climate Information Services for Europe) and involves a user at the municipality of Bergen's (Norway) water and drainage administration and a provider from Uni Research and the Bjerknes Center for Climate Research. The water and drain administration is responsible for communicating potential future changes in extreme precipitation, particularly short-term high-intensity rainfall, which is common in Bergen and making recommendations to the engineering department for changes in design criteria. Thus, information that enables better decision-making is crucial. This study then actually has two relevant components for climate services: 1) is a scientific exercise to evaluate the performance of high resolution regional climate simulations and their ability to reproduce high intensity short duration precipitation and 2) an exercise in communication between a provider community and user community with different concerns, mandates, methodological approaches and even vocabularies. A set of Weather Research and Forecasting (WRF) simulations was run at high resolution (8km) over a large domain covering much of Scandinavia and Northern Europe. One simulation was driven by so-called "perfect" boundary conditions taken from reanalysis data (ERA-interim, 1989-2010) the second and third simulations used Norway's global climate model as boundary forcing (NorESM) and were run for a historical period (1950-2005) and a 30yr. end of the century time slice under the rcp4.5 "middle of the road" emissions scenario (2071-2100). A unique feature of the WRF modeling system is the ability to write data for selected locations at every time step, thus creating time series of very high temporal resolution which can be compared to observations. This high temporal resolution also allowed us to directly calculate intensity-duration-frequency (IDF) curves for intense precipitation of short to long duration (5 minutes - 1 day) for a number of return periods (2-100 years) with out resorting to factors to calculate rainfall intensities at higher temporal resolutions, as is commonly done. We investigated the IDF curves using a number of parametric and non-parametric approaches. Given the relatively short time periods of the modeled data the standard Gumble approach is presented here. This is also done to maintain consistency with previous calculations by the water and drain administration. Curves were also generated from observed time series at two locations in Bergen. Both the historical, GCM-driven simulation and the ERA-interim driven simulation closely match the observed IDF curves for all return periods up to durations of about 10 minutes where WRF then fails to reproduce the very short, very high intensity events. IDF curves under future conditions were also generated and the changes were compared with the current standard approach of applying climate change-factors to observed extreme precipitation in order to account for structural errors in global and regional climate models. Our investigation suggests that high-resolution regional simulations can capture many of the topographic features and dynamical processes necessary to accurately model extreme rainfall, even in at highly local scales and over complex terrain such as Bergen, Norway. The exercise also produced many lessons for climate service providers and users alike.
Characterization of extreme sea level at the European coast
NASA Astrophysics Data System (ADS)
Elizalde, Alberto; Jorda, Gabriel; Mathis, Moritz; Mikolajewicz, Uwe
2015-04-01
Extreme high sea levels arise as a combination of storm surges and particular high tides events. Future climate simulations not only project changes in the atmospheric circulation, which induces changes in the wind conditions, but also an increase in the global mean sea level by thermal expansion and ice melting. Such changes increase the risk of coastal flooding, which represents a possible hazard for human activities. Therefore, it is important to investigate the pattern of sea level variability and long-term trends at coastal areas. In order to analyze further extreme sea level events at the European coast in the future climate projections, a new setup for the global ocean model MPIOM coupled with the regional atmosphere model REMO is prepared. The MPIOM irregular grid has enhanced resolution in the European region to resolve the North and the Mediterranean Seas (up to 11 x 11 km at the North Sea). The ocean model includes as well the full luni-solar ephemeridic tidal potential for tides simulation. To simulate the air-sea interaction, the regional atmospheric model REMO is interactively coupled to the ocean model over Europe. Such region corresponds to the EuroCORDEX domain with a 50 x 50 km resolution. Besides the standard fluxes of heat, mass (freshwater), momentum and turbulent energy input, the ocean model is also forced with sea level pressure, in order to be able to capture the full variation of sea level. The hydrological budget within the study domain is closed using a hydrological discharge model. With this model, simulations for present climate and future climate scenarios are carried out to study transient changes on the sea level and extreme events. As a first step, two simulations (coupled and uncoupled ocean) driven by reanalysis data (ERA40) have been conducted. They are used as reference runs to evaluate the climate projection simulations. For selected locations at the coast side, time series of sea level are separated on its different components: tides, short time atmospheric process influence (1-30 days), seasonal cycle and interannual variability. Every sea level component is statistically compared with data from local tide gauges.
NASA Astrophysics Data System (ADS)
Christensen, J. H.; Larsen, M. A. D.; Christensen, O. B.; Drews, M.
2017-12-01
For more than 20 years, coordinated efforts to apply regional climate models to downscale GCM simulations for Europe have been pursued by an ever increasing group of scientists. This endeavor showed its first results during EU framework supported projects such as RACCS and MERCURE. Here, the foundation for today's advanced worldwide CORDEX approach was laid out by a core of six research teams, who conducted some of the first coordinated RCM simulations with the aim to assess regional climate change for Europe. However, it was realized at this stage that model bias in GCMs as well as RCMs made this task very challenging. As an immediate outcome, the idea was conceived to make an even more coordinated effort by constructing a well-defined and structured set of common simulations; this lead to the PRUDENCE project (2001-2004). Additional coordinated efforts involving ever increasing numbers of GCMs and RCMs followed in ENSEMBLES (2004-2009) and the ongoing Euro-CORDEX (officially commenced 2011) efforts. Along with the overall coordination, simulations have increased their standard resolution from 50km (PRUDENCE) to about 12km (Euro-CORDEX) and from time slice simulations (PRUDENCE) to transient experiments (ENSEMBLES and CORDEX); from one driving model and emission scenario (PRUDENCE) to several (Euro-CORDEX). So far, this wealth of simulations have been used to assess the potential impacts of future climate change in Europe providing a baseline change as defined by a multi-model mean change with associated uncertainties calculated from model spread in the ensemble. But how has the overall picture of state-of-the-art regional climate change projections changed over this period of almost two decades? Here we compare across scenarios, model resolutions and model vintage the results from PRUDENCE, ENSEMBLES and Euro-CORDEX. By appropriate scaling we identify robust findings about the projected future of European climate expressed by temperature and precipitation changes that confirm the basic findings of PRUDENCE. For parameters such as snow cover and soil moisture availability we also identify major new results, which illustrate that model improvements and higher resolution offer new, physically grounded, robust information that could not have been identified twenty years ago with the approach taken at that time
Inter-comparison of precipitable water among reanalyses and its effect on downscaling in the tropics
NASA Astrophysics Data System (ADS)
Takahashi, H. G.; Fujita, M.; Hara, M.
2012-12-01
This paper compared precipitable water (PW) among four major reanalyses. In addition, we also investigated the effect of the boundary conditions on downscaling in the tropics, using a regional climate model. The spatial pattern of PW in the reanalyses agreed closely with observations. However, the absolute amounts of PW in some reanalyses were very small compared to observations. The discrepancies of the 12-year mean PW in July over the Southeast Asian monsoon region exceeded the inter-annual standard deviation of the PW. There was also a discrepancy in tropical PWs throughout the year, an indication that the problem is not regional, but global. The downscaling experiments were conducted, which were forced by the different four reanalyses. The atmospheric circulation, including monsoon westerlies and various disturbances, was very small among the reanalyses. However, simulated precipitation was only 60 % of observed precipitation, although the dry bias in the boundary conditions was only 6 %. This result indicates that dry bias has large effects on precipitation in downscaling over the tropics. This suggests that a simulated regional climate downscaled from ensemble-mean boundary conditions is quite different from an ensemble-mean regional climate averaged over the several regional ones downscaled from boundary conditions of the ensemble members in the tropics. Downscaled models can provide realistic simulations of regional tropical climates only if the boundary conditions include realistic absolute amounts of PW. Use of boundary conditions that include realistic absolute amounts of PW in downscaling in the tropics is imperative at the present time. This work was partly supported by the Global Environment Research Fund (RFa-1101) of the Ministry of the Environment, Japan.
The foundation for climate services in Belgium: CORDEX.be
NASA Astrophysics Data System (ADS)
Van Schaeybroeck, Bert; Termonia, Piet; De Ridder, Koen; Fettweis, Xavier; Gobin, Anne; Luyten, Patrick; Marbaix, Philippe; Pottiaux, Eric; Stavrakou, Trissevgeni; Van Lipzig, Nicole; van Ypersele, Jean-Pascal; Willems, Patrick
2017-04-01
According to the Global Framework for Climate Services (GFCS) there are four pillars required to build climate services. As the first step towards the realization of a climate center in Belgium, the national project CORDEX.be focused on one pillar: research modelling and projection. By bringing together the Belgian climate and impact modeling research of nine groups a data-driven capacity development and community building in Belgium based on interactions with users. The project is based on the international CORDEX ("COordinated Regional Climate Downscaling Experiment") project where ".be" indicates it will go beyond for Belgium. Our national effort links to the regional climate initiatives through the contribution of multiple high-resolution climate simulations over Europe following the EURO-CORDEX guidelines. Additionally the same climate simulations were repeated at convection-permitting resolutions over Belgium (3 to 5 km). These were used to drive different local impact models to investigate the impact of climate change on urban effects, storm surges and waves, crop production and changes in emissions from vegetation. Akin to international frameworks such as CMIP and CORDEX a multi-model approach is adopted allowing for uncertainty estimation, a crucial aspect of climate projections for policy-making purposes. However, due to the lack of a large set of high resolution model runs, a combination of all available climate information is supplemented with the statistical downscaling approach. The organization of the project, together with its main results will be outlined. The proposed coordination framework could serve as a demonstration case for regions or countries where the climate-research capacity is present but a structure is required to assemble it coherently. Based on interactions and feedback with stakeholders different applications are planned, demonstrating the use of the climate data.
NASA Astrophysics Data System (ADS)
Rasmussen, R.; Ikeda, K.; Liu, C.; Gochis, D.; Chen, F.; Barlage, M. J.; Dai, A.; Dudhia, J.; Clark, M. P.; Gutmann, E. D.; Li, Y.
2015-12-01
The NCAR Water System program strives to improve the full representation of the water cycle in both regional and global models. Our previous high-resolution simulations using the WRF model over the Rocky Mountains revealed that proper spatial and temporal depiction of snowfall adequate for water resource and climate change purposes can be achieved with the appropriate choice of model grid spacing (< 6 km horizontal) and parameterizations. The climate sensitivity experiment consistent with expected climate change showed an altered hydrological cycle with increased fraction of rain versus snow, increased snowfall at high altitudes, earlier melting of snowpack, and decreased total runoff. In order to investigate regional differences between the Rockies and other major mountain barriers and to study climate change impacts over other regions of the contiguous U.S. (CONUS), we have expanded our prior CO Headwaters modeling study to encompass most of North America at a horizontal grid spacing of 4 km. A domain expansion provides the opportunity to assess changes in orographic precipitation across different mountain ranges in the western USA, as well as the very dominant role of convection in the eastern half of the USA. The high resolution WRF-downscaled climate change data will also become a valuable community resource for many university groups who are interested in studying regional climate changes and impacts but unable to perform such long-duration and high-resolution WRF-based downscaling simulations of their own. The scientific goals and details of the model dataset will be presented including some preliminary results.
NASA Astrophysics Data System (ADS)
Kim, Yura; Jun, Mikyoung; Min, Seung-Ki; Suh, Myoung-Seok; Kang, Hyun-Suk
2016-05-01
CORDEX-East Asia, a branch of the coordinated regional climate downscaling experiment (CORDEX) initiative, provides high-resolution climate simulations for the domain covering East Asia. This study analyzes temperature data from regional climate models (RCMs) participating in the CORDEX - East Asia region, accounting for the spatial dependence structure of the data. In particular, we assess similarities and dissimilarities of the outputs from two RCMs, HadGEM3-RA and RegCM4, over the region and over time. A Bayesian functional analysis of variance (ANOVA) approach is used to simultaneously model the temperature patterns from the two RCMs for the current and future climate. We exploit nonstationary spatial models to handle the spatial dependence structure of the temperature variable, which depends heavily on latitude and altitude. For a seasonal comparison, we examine changes in the winter temperature in addition to the summer temperature data. We find that the temperature increase projected by RegCM4 tends to be smaller than the projection of HadGEM3-RA for summers, and that the future warming projected by HadGEM3-RA tends to be weaker for winters. Also, the results show that there will be a warming of 1-3°C over the region in 45 years. More specifically, the warming pattern clearly depends on the latitude, with greater temperature increases in higher latitude areas, which implies that warming may be more severe in the northern part of the domain.
NASA Astrophysics Data System (ADS)
Fernandez, J. P. R.; Franchito, S. H.; Rao, V. B.
2006-09-01
This study investigates the capabilities of two regional models (the ICTP RegCM3 and the climate version of the CPTEC Eta model - EtaClim) in simulating the mean climatological features of the summer quasi-stationary circulations over South America. Comparing the results with the NCEP/DOE reanalysis II data it is seen that the RegCM3 simulates a weaker and southward shifted Bolivian high (BH). But, the Nordeste low (NL) is located close to its climatological position. In the EtaClim the position of the BH is reproduced well, but the NL is shifted towards the interior of the continent. To the east of Andes, the RegCM3 simulates a weaker low level jet and a weaker basic flow from the tropical Atlantic to Amazonia while they are stronger in the EtaClim. In general, the RegCM3 and EtaClim show, respectively a negative and positive bias in the surface temperature in almost all regions of South America. For both models, the correlation coefficients between the simulated precipitation and the GPCP data are high over most of South America. Although the RegCM3 and EtaClim overestimate the precipitation in the Andes region they show a negative bias in general over the entire South America. The simulations of upper and lower level circulations and precipitation fields in EtaClim were better than that of the RegCM3. In central Amazonia both models were unable to simulate the precipitation correctly. The results showed that although the RegCM3 and EtaClim are capable of simulating the main climatological features of the summer climate over South America, there are areas which need improvement. This indicates that the models must be more adequately tuned in order to give reliable predictions in the different regions of South America.
NASA Astrophysics Data System (ADS)
Omrani, Hiba; Drobinski, Philippe; Dubos, Thomas
2015-03-01
Regional climate modelling sometimes requires that the regional model be nudged towards the large-scale driving data to avoid the development of inconsistencies between them. These inconsistencies are known to produce large surface temperature and rainfall artefacts. Therefore, it is essential to maintain the synoptic circulation within the simulation domain consistent with the synoptic circulation at the domain boundaries. Nudging techniques, initially developed for data assimilation purposes, are increasingly used in regional climate modeling and offer a workaround to this issue. In this context, several questions on the "optimal" use of nudging are still open. In this study we focus on a specific question which is: What variable should we nudge? in order to maintain the consistencies between the regional model and the driving fields as much as possible. For that, a "Big Brother Experiment", where a reference atmospheric state is known, is conducted using the weather research and forecasting (WRF) model over the Euro-Mediterranean region. A set of 22 3-month simulations is performed with different sets of nudged variables and nudging options (no nudging, indiscriminate nudging, spectral nudging) for summer and winter. The results show that nudging clearly improves the model capacity to reproduce the reference fields. However the skill scores depend on the set of variables used to nudge the regional climate simulations. Nudging the tropospheric horizontal wind is by far the key variable to nudge to simulate correctly surface temperature and wind, and rainfall. To a lesser extent, nudging tropospheric temperature also contributes to significantly improve the simulations. Indeed, nudging tropospheric wind or temperature directly impacts the simulation of the tropospheric geopotential height and thus the synoptic scale atmospheric circulation. Nudging moisture improves the precipitation but the impact on the other fields (wind and temperature) is not significant. As an immediate consequence, nudging tropospheric wind, temperature and moisture in WRF gives by far the best results with respect to the Big-Brother simulation. However, we noticed that a residual bias of the geopotential height persists due to a negative surface pressure anomaly which suggests that surface pressure is the missing quantity to nudge. Nudging the geopotential has no discernible effect. Finally, it should be noted that the proposed strategy ensures a dynamical consistency between the driving field and the simulated small-scale field but it does not ensure the best "observed" fine scale field because of the possible impact of incorrect driving large-scale field.
NASA Astrophysics Data System (ADS)
Caffarra, Amelia; Zottele, Fabio; Gleeson, Emily; Donnelly, Alison
2014-05-01
In order to predict the impact of future climate warming on trees it is important to quantify the effect climate has on their development. Our understanding of the phenological response to environmental drivers has given rise to various mathematical models of the annual growth cycle of plants. These models simulate the timing of phenophases by quantifying the relationship between development and its triggers, typically temperature. In addition, other environmental variables have an important role in determining the timing of budburst. For example, photoperiod has been shown to have a strong influence on phenological events of a number of tree species, including Betula pubescens (birch). A recently developed model for birch (DORMPHOT), which integrates the effects of temperature and photoperiod on budburst, was applied to future temperature projections from a 19-member ensemble of regional climate simulations (on a 25 km grid) generated as part of the ENSEMBLES project, to simulate the timing of birch budburst in Ireland each year up to the end of the present century. Gridded temperature time series data from the climate simulations were used as input to the DORMPHOT model to simulate future budburst timing. The results showed an advancing trend in the timing of birch budburst over most regions in Ireland up to 2100. Interestingly, this trend appeared greater in the northeast of the country than in the southwest, where budburst is currently relatively early. These results could have implications for future forest planning, species distribution modeling, and the birch allergy season.
NASA Astrophysics Data System (ADS)
Zorita, E.
2009-09-01
Two European temperature records for the past half-millennium, January-to-April air temperature for Stockholm (Sweden) and seasonal temperature for a Central European region, both derived from the analysis of documentary sources combined with long instrumental records, are compared with the output of forced (solar, volcanic, greenhouse gases) climate simulations with the model ECHO-G. The analysis is complemented with the long (early)-instrumental record of Central England Temperature (CET). Both approaches to study past climates (simulations and reconstructions) are burdened with uncertainties. The main objective of this comparative analysis is to identify robust features and weaknesses that may help to improve models and reconstruction methods. The results indicate a general agreement between simulations and the reconstructed Stockholm and CET records regarding the long-term temperature trend over the recent centuries, suggesting a reasonable choice of the amplitude of the solar forcing in the simulations and sensitivity of the model to the external forcing. However, the Stockholm reconstruction and the CET record also show a long and clear multi-decadal warm episode peaking around 1730, which is absent in the simulations. The uncertainties associated with the reconstruction method or with the simulated internal climate variability cannot easily explain this difference. Regarding the interannual variability, the Stockholm series displays in some periods higher amplitudes than the simulations but these differences are within the statistical uncertainty and further decrease if output from a regional model driven by the global model is used. The long-term trends in the simulations and reconstructions of the Central European temperature agree less well. The reconstructed temperature displays, for all seasons, a smaller difference between the present climate and past centuries than the simulations. Possible reasons for these differences may be related to a limitation of the traditional technique for converting documentary evidence to temperature values to capture long-term climate changes, because the documents often reflect temperatures relative to the contemporary authors' own perception of what constituted 'normal' conditions. By contrast, the simulated and reconstructed inter-annual variability is in rather good agreement.
Future local and remote influences on Mediterranean ozone air quality and climate forcing
NASA Astrophysics Data System (ADS)
Arnold, Steve; Martin, Maria Val; Emmons, Louisa; Rap, Alex; Heald, Colette; Lamarque, Jean-Francois; Tilmes, Simone
2013-04-01
The Mediterranean region is expected to display large increases in population over the coming decades, and to exhibit strong sensitivity to projected climate change, with increasing frequency of extreme summer temperatures and decreases in precipitation. Understanding of how these changes will affect atmospheric composition in the region is limited. The eastern Mediterranean basin has been shown to exhibit a pronounced summertime local maximum in tropospheric ozone, which impacts both local air quality and the atmospheric radiation balance. In summer, the region is subject to import of pollution from Northern Europe in the boundary layer and lower troposphere, from North American sources in the large-scale westerly flow of the free mid and upper-troposphere, as well as import of pollution lofted in the Asian monsoon and carried west to the eastern Mediterranean in anticyclonic flow in the upper troposphere over north Africa. In addition, interactions with the land-surface through biogenic emission sources and dry deposition play important roles in the Mediterranean ozone budget. Here we use the NCAR Community Earth System Model (CESM) to investigate how tropospheric ozone in the Mediterranean region responds to climate, land surface and global emissions changes between present day and 2050. We simulate climate and atmospheric composition for the year 2050, based on greenhouse gas abundances, trace gas and aerosol emissions and land cover and use from two representative concentration pathway (RCP) scenarios (RCP4.5 & RCP8.5), designed for use by the Coupled Model Intercomparison Project Phase 5(CMIP5) experiments in support of the IPCC. By comparing these simulations with a present-day scenario, we investigate the effects of predicted changes in climate and emissions on air quality and climate forcing over the Mediterranean region. The simulations suggest decreases in boundary layer ozone and sulfate aerosol throughout the tropospheric column over the Mediterranean under both RCP scenarios, and a significant increase in ozone between 5-10km. Using tagged regional NOy and tropospheric ozone tracers, we show that this ozone increase is coincident with an increase in easterly import of ozone and precursors in upper tropospheric outflow from Asian monsoon convection in 2050. We present a breakdown of the projected Mediterranean ozone changes by precursor source (anthropogenic and biogenic), and contributions due to changes in climate. Finally, we estimate the implications of the predicted changes in tropospheric composition for Mediterranean air quality and climate in 2050, and the consequences for the effectiveness of European policies aimed at protecting the region's climate and public health.
NASA Astrophysics Data System (ADS)
Ault, T. R.; Cole, J. E.; St. George, S.
2012-11-01
We assess the magnitude of decadal to multidecadal (D2M) variability in Climate Model Intercomparison Project 5 (CMIP5) simulations that will be used to understand, and plan for, climate change as part of the Intergovernmental Panel on Climate Change's 5th Assessment Report. Model performance on D2M timescales is evaluated using metrics designed to characterize the relative and absolute magnitude of variability at these frequencies. In observational data, we find that between 10% and 35% of the total variance occurs on D2M timescales. Regions characterized by the high end of this range include Africa, Australia, western North America, and the Amazon region of South America. In these areas D2M fluctuations are especially prominent and linked to prolonged drought. D2M fluctuations account for considerably less of the total variance (between 5% and 15%) in the CMIP5 archive of historical (1850-2005) simulations. The discrepancy between observation and model based estimates of D2M prominence reflects two features of the CMIP5 archive. First, interannual components of variability are generally too energetic. Second, decadal components are too weak in several key regions. Our findings imply that projections of the future lack sufficient decadal variability, presenting a limited view of prolonged drought and pluvial risk.
South Asia river flow projections and their implications for water resources
NASA Astrophysics Data System (ADS)
Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.
2015-06-01
South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990-2006 for ERA-Interim and 1960-2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a benchmark for comparison against the downscaled GCMs. On the basis that these simulations are among the highest resolution climate simulations available we examine how useful they are for understanding the changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows, with timing of maximum river flows broadly matching the available observations and the downscaled ERA-Interim simulation. Typically the RCM simulations over-estimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model although comparison with the downscaled ERA-Interim simulation is more mixed with only a couple of the gauges showing a bias compared with the downscaled GCM runs. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century; this trend is generally masked by the large annual variability of river flows for this region. The future seasonality of river flows does not change with the future maximum river flow rates still occuring during the ASM period, with a magnitude in some cases, greater than the present day natural variability. Increases in river flow during peak flow periods means additional water resource for irrigation, the largest usage of water in this region, but also has implications in terms of inundation risk. Low flow rates also increase which is likely to be important at times of the year when water is historically more scarce. However these projected increases in resource from rivers could be more than countered by changes in demand due to reductions in the quantity and quality of water available from groundwater, increases in domestic use due to a rising population or expansion of other industries such as hydro-electric power generation.
NASA Astrophysics Data System (ADS)
Klaus, D.; Dethloff, K.; Dorn, W.; Rinke, A.; Wu, D. L.
2016-05-01
Cloud observations from the CloudSat and CALIPSO satellites helped to explain the reduced total cloud cover (Ctot) in the atmospheric regional climate model HIRHAM5 with modified cloud physics. Arctic climate conditions are found to be better reproduced with (1) a more efficient Bergeron-Findeisen process and (2) a more generalized subgrid-scale variability of total water content. As a result, the annual cycle of Ctot is improved over sea ice, associated with an almost 14% smaller area average than in the control simulation. The modified cloud scheme reduces the Ctot bias with respect to the satellite observations. Except for autumn, the cloud reduction over sea ice improves low-level temperature profiles compared to drifting station data. The HIRHAM5 sensitivity study highlights the need for improving accuracy of low-level (<700 m) cloud observations, as these clouds exert a strong impact on the near-surface climate.
NASA Astrophysics Data System (ADS)
Huziy, O.; Sushama, L.; Khaliq, M.; Lehner, B.; Laprise, R.; Roy, R.
2011-12-01
According to the Intergovernmental Panel on Climate Change (IPCC, 2007), an intensification of the global hydrological cycle and increase in precipitation for some regions around the world, including the northern mid- to high-latitudes, is expected in future climate. This will have an impact on mean and extreme flow characteristics, which need to be assessed for better development of adaptation strategies. Analysis of the mean and extreme streamflow characteristics for Quebec (North-eastern Canada) basins in current climate and their projected changes in future climate are assessed using a 10 member ensemble of current (1970 - 1999) and future (2041 - 2070) Canadian RCM (CRCM4) simulations. Validation of streamflow characteristics, performed by comparing modeled values with those observed, available from the Centre d'expertise hydrique du Quebec (CEHQ) shows that the model captures reasonably well the high flows. Results suggest increase in mean and 10 year return levels of 1 day high flows, which appear significant for most of the northern basins.
Regional Climate Change Hotspots over Africa
NASA Astrophysics Data System (ADS)
Anber, U.
2009-04-01
Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation ( , of present day value ), change in regional surface air temperature interannual variability ( ,of present day value), change in regional precipitation interannual variability ( , of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter annual variability, which is critical for many activity sectors, such as agriculture and water management. The RCCI is calculated for the above mentioned set of global climate change simulations and is inter compared across regions to identify climate change, Hot- Spots, that is regions with the largest values of RCCI. It is important to stress that, as will be seen, the RCCI is a comparative index, that is a small RCCI value does not imply a small absolute change, but only a small climate response compared to other regions. The models used are: CCMA-3-T47 CNRM-CM3 CSIRO-MK3 GFDL-CM2-0 GISS-ER INMCM3 IPSL-CM4 MIROC3-2M MIUB-ECHO-G MPI-ECHAM5 MRI-CGCM2 NCAR-CCSM3 NCAR-PCM1 UKMO-HADCM3 Note that the 3 IPCC emission scenarios, A1B, B1 and A2 almost encompass the entire IPCC scenario range, the A2 being close to the high end of the range, the B1 close to the low end and the A1B lying toward the middle of the range. The model data are obtained from the IPCC site and are interpolated onto a common 1 degree grid to facilitate intercomparison. The RCCI is here defined as in Giorgi (2006), except that the entire yea is devided into two six months periods, D J F M A M and J J A S O N. RCCI=[n(∆P)+n(∆σP)+n(RWAF)+n(∆σT)]D...M + [n(∆P)+n(∆σP)+n(RWAF)+n(∆σT)]J…N (1)
Impact of climate change on groundwater resources in Southern Austria
NASA Astrophysics Data System (ADS)
Reszler, C.; Harum, T.; Poltnig, W.; Saccon, P.; Reichl, P.; Ruch, C.; Kopeinig, C.; Freundl, G.; Schlamberger, J.; Zessar, H.; Suette, G.
2012-04-01
Groundwater is the most important source for drinking water in Austria. In some parts of Southern Austria water resources already are very vulnerable to unfavourable climate conditions. This paper summarizes case studies of estimating the impact of climate change on groundwater recharge and groundwater flow in Southern Austria in the frame of the ETC-Alpine Space project ALP-WATER-SCARCE. In several pilot regions a distributed hydrological model was set up to simulate groundwater recharge and groundwater flow for a period of 10 to 30 years. The pilot sites range from mountainous catchments with steep hillslopes to Alpine valleys and flatlands with pore aquifers. In the model period comprehensive land data and meteorological data were used, and the models were calibrated to available stream gauge data. Additional low flow monitoring in the frame of the project also allowed for a more detailed regional analysis in some catchments. The simulations were firstly used to extend runoff and groundwater recharge depths on an annual basis up to 200 years into the past by regression analysis with long time meteorological parameters (HISTALP). The historical view shows that groundwater flow and recharge in most of the pilot regions decreased since the beginning of the 20th century, which is mainly the effect of climate change. Changes of land use are of minor relevance in most of the regions. Second, by the calibrated model scenarios were simulated to quantify the impact of a possible future change in the climatic conditions on water resources. The scenarios were generated by altering the model input by a "Delta-Change", under consideration of the historical development. These scenarios can be interpreted as "what if"-scenarios to quantify the sensitivity of the hydrological systems on these climatic variables. The results are compared with actual and projected water uses as a basis for regional water resources management.
Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina
NASA Astrophysics Data System (ADS)
Cabré, María Fernanda; Quénol, Hervé; Nuñez, Mario
2016-09-01
Due to the importance of the winemaking sector in Mendoza, Argentina, the assessment of future scenarios for viticulture is of foremost relevance. In this context, it is important to understand how temperature increase and precipitation changes will impact on grapes, because of changes in grapevine phenology and suitability wine-growing regions must be understood as an indicator of climate change. The general objective is to classify the suitable areas of viticulture in Argentina for the current and future climate using the MM5 regional climate change simulations. The spatial distribution of annual mean temperature, annual rainfall, and some bioclimatic indices has been analyzed for the present (1970-1989) and future (2080-2099) climate under SRES A2 emission scenario. In general, according to projected average growing season temperature and Winkler index classification, the regional model estimates (i) a reduction of cool areas, (ii) a westward and southward displacement of intermediate and warm suitability areas, and (iii) the arise of new suitability regions (hot and very hot areas) over Argentina. In addition, an increase of annual accumulated precipitation is projected over the center-west of Argentina. Similar pattern of change is modeled for growing season, but with lower intensity. Furthermore, the evaluation of projected seasonal precipitation shows a little precipitation increase over Cuyo and center of Argentina in summer and a little precipitation decrease over Cuyo and northern Patagonia in winter. Results show that Argentina has a great potential for expansion into new suitable vineyard areas by the end of twenty-first century, particularly due to projected displacement to higher latitudes for most present suitability winegrowing regions. Even though main conclusions are based on one global-regional model downscaling, this approach provides valuable information for implementing proper and diverse adaptation measures in the Argentinean viticultural regions. It has been concluded that regional climate change simulations are an adequate methodology, and indeed, the MM5 regional model is an appropriate tool to be applied in viticultural zoning in Mendoza, Argentina.
Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina.
Cabré, María Fernanda; Quénol, Hervé; Nuñez, Mario
2016-09-01
Due to the importance of the winemaking sector in Mendoza, Argentina, the assessment of future scenarios for viticulture is of foremost relevance. In this context, it is important to understand how temperature increase and precipitation changes will impact on grapes, because of changes in grapevine phenology and suitability wine-growing regions must be understood as an indicator of climate change. The general objective is to classify the suitable areas of viticulture in Argentina for the current and future climate using the MM5 regional climate change simulations. The spatial distribution of annual mean temperature, annual rainfall, and some bioclimatic indices has been analyzed for the present (1970-1989) and future (2080-2099) climate under SRES A2 emission scenario. In general, according to projected average growing season temperature and Winkler index classification, the regional model estimates (i) a reduction of cool areas, (ii) a westward and southward displacement of intermediate and warm suitability areas, and (iii) the arise of new suitability regions (hot and very hot areas) over Argentina. In addition, an increase of annual accumulated precipitation is projected over the center-west of Argentina. Similar pattern of change is modeled for growing season, but with lower intensity. Furthermore, the evaluation of projected seasonal precipitation shows a little precipitation increase over Cuyo and center of Argentina in summer and a little precipitation decrease over Cuyo and northern Patagonia in winter. Results show that Argentina has a great potential for expansion into new suitable vineyard areas by the end of twenty-first century, particularly due to projected displacement to higher latitudes for most present suitability winegrowing regions. Even though main conclusions are based on one global-regional model downscaling, this approach provides valuable information for implementing proper and diverse adaptation measures in the Argentinean viticultural regions. It has been concluded that regional climate change simulations are an adequate methodology, and indeed, the MM5 regional model is an appropriate tool to be applied in viticultural zoning in Mendoza, Argentina.
NASA Astrophysics Data System (ADS)
Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.
2015-12-01
Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of climate extremes and associated impacts. [1] http://www.climateprediction.net/weatherathome/
NASA Astrophysics Data System (ADS)
Ines, A. V. M.; Han, E.; Baethgen, W.
2017-12-01
Advances in seasonal climate forecasts (SCFs) during the past decades have brought great potential to improve agricultural climate risk managements associated with inter-annual climate variability. In spite of popular uses of crop simulation models in addressing climate risk problems, the models cannot readily take seasonal climate predictions issued in the format of tercile probabilities of most likely rainfall categories (i.e, below-, near- and above-normal). When a skillful SCF is linked with the crop simulation models, the informative climate information can be further translated into actionable agronomic terms and thus better support strategic and tactical decisions. In other words, crop modeling connected with a given SCF allows to simulate "what-if" scenarios with different crop choices or management practices and better inform the decision makers. In this paper, we present a decision support tool, called CAMDT (Climate Agriculture Modeling and Decision Tool), which seamlessly integrates probabilistic SCFs to DSSAT-CSM-Rice model to guide decision-makers in adopting appropriate crop and agricultural water management practices for given climatic conditions. The CAMDT has a functionality to disaggregate a probabilistic SCF into daily weather realizations (either a parametric or non-parametric disaggregation method) and to run DSSAT-CSM-Rice with the disaggregated weather realizations. The convenient graphical user-interface allows easy implementation of several "what-if" scenarios for non-technical users and visualize the results of the scenario runs. In addition, the CAMDT also translates crop model outputs to economic terms once the user provides expected crop price and cost. The CAMDT is a practical tool for real-world applications, specifically for agricultural climate risk management in the Bicol region, Philippines, having a great flexibility for being adapted to other crops or regions in the world. CAMDT GitHub: https://github.com/Agro-Climate/CAMDT
NASA Astrophysics Data System (ADS)
Knist, Sebastian; Goergen, Klaus; Simmer, Clemens
2018-02-01
We perform simulations with the WRF regional climate model at 12 and 3 km grid resolution for the current and future climates over Central Europe and evaluate their added value with a focus on the daily cycle and frequency distribution of rainfall and the relation between extreme precipitation and air temperature. First, a 9 year period of ERA-Interim driven simulations is evaluated against observations; then global climate model runs (MPI-ESM-LR RCP4.5 scenario) are downscaled and analyzed for three 12-year periods: a control, a mid-of-century and an end-of-century projection. The higher resolution simulations reproduce both the diurnal cycle and the hourly intensity distribution of precipitation more realistically compared to the 12 km simulation. Moreover, the observed increase of the temperature-extreme precipitation scaling from the Clausius-Clapeyron (C-C) scaling rate of 7% K-1 to a super-adiabatic scaling rate for temperatures above 11 °C is reproduced only by the 3 km simulation. The drop of the scaling rates at high temperatures under moisture limited conditions differs between sub-regions. For both future scenario time spans both simulations suggest a slight decrease in mean summer precipitation and an increase in hourly heavy and extreme precipitation. This increase is stronger in the 3 km runs. Temperature-extreme precipitation scaling curves in the future climate are projected to shift along the 7% K-1 trajectory to higher peak extreme precipitation values at higher temperatures. The curves keep their typical shape of C-C scaling followed by super-adiabatic scaling and a drop-off at higher temperatures due to moisture limitation.
NASA Astrophysics Data System (ADS)
Biercamp, Joachim; Adamidis, Panagiotis; Neumann, Philipp
2017-04-01
With the exa-scale era approaching, length and time scales used for climate research on one hand and numerical weather prediction on the other hand blend into each other. The Centre of Excellence in Simulation of Weather and Climate in Europe (ESiWACE) represents a European consortium comprising partners from climate, weather and HPC in their effort to address key scientific challenges that both communities have in common. A particular challenge is to reach global models with spatial resolutions that allow simulating convective clouds and small-scale ocean eddies. These simulations would produce better predictions of trends and provide much more fidelity in the representation of high-impact regional events. However, running such models in operational mode, i.e with sufficient throughput in ensemble mode clearly will require exa-scale computing and data handling capability. We will discuss the ESiWACE initiative and relate it to work-in-progress on high-resolution simulations in Europe. We present recent strong scalability measurements from ESiWACE to demonstrate current computability in weather and climate simulation. A special focus in this particular talk is on the Icosahedal Nonhydrostatic (ICON) model used for a comparison of high resolution regional and global simulations with high quality observation data. We demonstrate that close-to-optimal parallel efficiency can be achieved in strong scaling global resolution experiments on Mistral/DKRZ, e.g. 94% for 5km resolution simulations using 36k cores on Mistral/DKRZ. Based on our scalability and high-resolution experiments, we deduce and extrapolate future capabilities for ICON that are expected for weather and climate research at exascale.
Hanson, R.T.; Flint, L.E.; Flint, A.L.; Dettinger, M.D.; Faunt, C.C.; Cayan, D.; Schmid, W.
2012-01-01
Potential climate change effects on aspects of conjunctive management of water resources can be evaluated by linking climate models with fully integrated groundwater-surface water models. The objective of this study is to develop a modeling system that links global climate models with regional hydrologic models, using the California Central Valley as a case study. The new method is a supply and demand modeling framework that can be used to simulate and analyze potential climate change and conjunctive use. Supply-constrained and demand-driven linkages in the water system in the Central Valley are represented with the linked climate models, precipitation-runoff models, agricultural and native vegetation water use, and hydrologic flow models to demonstrate the feasibility of this method. Simulated precipitation and temperature were used from the GFDL-A2 climate change scenario through the 21st century to drive a regional water balance mountain hydrologic watershed model (MHWM) for the surrounding watersheds in combination with a regional integrated hydrologic model of the Central Valley (CVHM). Application of this method demonstrates the potential transition from predominantly surface water to groundwater supply for agriculture with secondary effects that may limit this transition of conjunctive use. The particular scenario considered includes intermittent climatic droughts in the first half of the 21st century followed by severe persistent droughts in the second half of the 21st century. These climatic droughts do not yield a valley-wide operational drought but do cause reduced surface water deliveries and increased groundwater abstractions that may cause additional land subsidence, reduced water for riparian habitat, or changes in flows at the Sacramento-San Joaquin River Delta. The method developed here can be used to explore conjunctive use adaptation options and hydrologic risk assessments in regional hydrologic systems throughout the world.
Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle
Kapnick, Sarah B.; Delworth, Thomas L.; Ashfaq, Moetasim; Malyshev, Sergey; Milly, Paul C.D.
2014-01-01
The high mountains of Asia, including the Karakoram, Himalayas and Tibetan Plateau, combine to form a region of perplexing hydroclimate changes. Glaciers have exhibited mass stability or even expansion in the Karakoram region1, 2, 3, contrasting with glacial mass loss across the nearby Himalayas and Tibetan Plateau1, 4, a pattern that has been termed the Karakoram anomaly. However, the remote location, complex terrain and multi-country fabric of high-mountain Asia have made it difficult to maintain longer-term monitoring systems of the meteorological components that may have influenced glacial change. Here we compare a set of high-resolution climate model simulations from 1861 to 2100 with the latest available observations to focus on the distinct seasonal cycles and resulting climate change signatures of Asia’s high-mountain ranges. We find that the Karakoram seasonal cycle is dominated by non-monsoonal winter precipitation, which uniquely protects it from reductions in annual snowfall under climate warming over the twenty-first century. The simulations show that climate change signals are detectable only with long and continuous records, and at specific elevations. Our findings suggest a meteorological mechanism for regional differences in the glacier response to climate warming.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2009-04-01
It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset.
Regional Scale/Regional Climate Model Development and Its Applications at Goddard
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lau, W.; Qian, J.; Jia, Y.; Wetzel, P.; Chou, M.-D.; Wang, Y.; Lynn, B.
2000-01-01
A Regional Land-Atmosphere Climate Simulation System (RELACS) is being developed and implemented at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model (Penn State/NCAR MM5) with improved physical processes and in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water/energy cycles in the Indo-China/South China Sea (SCS)/China, N. America and S. America region.
Modelling recent and future climatic suitability for fasciolosis in Europe.
Caminade, Cyril; van Dijk, Jan; Baylis, Matthew; Williams, Diana
2015-03-19
Fasciola hepatica is a parasitic worm responsible for fasciolosis in grazed ruminants in Europe. The free-living stages of this parasite are sensitive to temperature and soil moisture, as are the intermediate snail hosts the parasite depends on for its life-cycle. We used a climate-driven disease model in order to assess the impact of recent and potential future climate changes on the incidence of fasciolosis and to estimate the related uncertainties at the scale of the European landmass. The current climate appears to be highly suitable for fasciolosis throughout the European Union with the exception of some parts of the Mediterranean region. Simulated climatic suitability for fasciolosis significantly increased during the 2000s in central and northwestern Europe, which is consistent with an observed increased in ruminant infections. The simulation showed that recent trends are likely to continue in the future with the estimated pattern of climate change for northern Europe, possibly extending the season suitable for development of the parasite in the environment by up to four months. For southern Europe, the simulated burden of disease may be lower, but the projected climate change will increase the risk during the winter months, since the simulated changes in temperature and moisture support the development of the free-living and intra-molluscan stages between November and March. In the event of predicted climate change, F. hepatica will present a serious risk to the health, welfare and productivity of all ruminant livestock. Improved, bespoke control programmes, both at farm and region levels, will then become imperative if problems, such as resistance of the parasite associated with increased drug use, are to be mitigated.
Kumar, Pankaj; Wiltshire, Andrew; Mathison, Camilla; Asharaf, Shakeel; Ahrens, Bodo; Lucas-Picher, Philippe; Christensen, Jens H; Gobiet, Andreas; Saeed, Fahad; Hagemann, Stefan; Jacob, Daniela
2013-12-01
This study presents the possible regional climate change over South Asia with a focus over India as simulated by three very high resolution regional climate models (RCMs). One of the most striking results is a robust increase in monsoon precipitation by the end of the 21st century but regional differences in strength. First the ability of RCMs to simulate the monsoon climate is analyzed. For this purpose all three RCMs are forced with ECMWF reanalysis data for the period 1989-2008 at a horizontal resolution of ~25 km. The results are compared against independent observations. In order to simulate future climate the models are driven by lateral boundary conditions from two global climate models (GCMs: ECHAM5-MPIOM and HadCM3) using the SRES A1B scenario, except for one RCM, which only used data from one GCM. The results are presented for the full transient simulation period 1970-2099 and also for several time slices. The analysis concentrates on precipitation and temperature over land. All models show a clear signal of gradually wide-spread warming throughout the 21st century. The ensemble-mean warming over India is 1.5°C at the end of 2050, whereas it is 3.9°C at the end of century with respect to 1970-1999. The pattern of projected precipitation changes shows considerable spatial variability, with an increase in precipitation over the peninsular of India and coastal areas and, either no change or decrease further inland. From the analysis of a larger ensemble of global climate models using the A1B scenario a wide spread warming (~3.2°C) and an overall increase (~8.5%) in mean monsoon precipitation by the end of the 21st century is very likely. The influence of the driving GCM on the projected precipitation change simulated with each RCM is as strong as the variability among the RCMs driven with one. Copyright © 2013 Elsevier B.V. All rights reserved.
Regional Impacts of Climate Change on the Amazon Rainforest: 2080-2100
NASA Astrophysics Data System (ADS)
Cook, K. H.; Vizy, E. K.
2006-12-01
A regional climate model with resolution of 60 km is coupled with a potential vegetation model to simulate future climate over South America. The following steps are taken to effectively communicate the results across disciplines and to make them useful to the policy and impacts communities: the simulation is aimed at a particular time period (2081-2100), the climate change results are translated into changes in vegetation distribution, and the results are reported on regional space scales relative to political boundaries. In addition, the model validation in clearly presented to provide perspective on uncertainty for the prognosis. The model reproduces today's climate and vegetation over tropical and subtropical South America accurately. In simulations of the future, the model is forced by the IPCC's A2 scenario of future emissions, which assumes that CO2 emissions continue to grow at essentially today's rate throughout the 21st century, reaching 757 ppmv averaged over 2081-2100. The model is constrained on its lateral boundaries by atmospheric conditions simulated by a global climate model, applied as anomalies to present day conditions, and predicted changes in sea surface temperatures. The extent of the Amazon rainforest is reduced by about 70 per cent in the simulation, and the shrubland (caatinga) vegetation of Brazil's Nordeste region spreads westward and southward well into the continental interior. Bolivia, Paraguay, and Argentina lose all of their rainforest vegetation, and Brazil and Peru lose most of it. The surviving rain forest is concentrated near the equator. Columbia's rainforest survives largely intact and, along the northern coast, Venezuela and French Guiana suffer relatively small reductions. The loss in Guyana and Surinam is 30-50 per cent. Much of the rainforest in the central Amazon north of about 15S is replaced by savanna vegetation, but in southern Bolivia, northern Paraguay, and southern Brazil, grasslands take the place of the rainforest. Over a large portion of eastern Brazil, present day savanna is replaced by shrubland as the so-called caatinga vegetation of the Nordeste region spreads, and the present day caatinga vegetation is replaced by barren land. The simulated changes in vegetation are caused by changes in moisture, not temperature. Reductions in annual mean precipitation are widespread and rainfall becomes insufficient to support the rainforest in these regions, but some areas receive more precipitation. The length of the dry season increases in the central and southern Amazon in association with changes in the global-scale tropical Hadley circulation. Without this change in seasonality, local "refugia" of Amazon vegetation would be preserved and the retreat of the rainforest would be somewhat less extensive.
NASA Astrophysics Data System (ADS)
Letcher, Theodore
As the climate warms, the snow albedo feedback (SAF) will play a substantial role in shaping the climate response of mid-latitude mountain regions with transient snow cover. One such region is the Rocky Mountains of the western United States where large snow packs accumulate during the winter and persist throughout the spring. In this dissertation, the Weather Research and Forecast model (WRF) configured as a regional climate model is used to investigate the role of the SAF in determining the regional climate response to forced anthropogenic climate change. The regional effects of climate change are investigated by using the pseudo global warming (PGW) framework, which is an experimental configuration in a which a mean climate perturbation is added to the boundary forcing of a regional model, thus preserving the large-scale circulation entering the region through the model boundaries and isolating the mesoscale climate response. Using this framework, the impact of the SAF on the regional energetics and atmospheric dynamics is examined and quantified. Linear feedback analysis is used to quantify the strength of the SAF over the Headwaters region of the Colorado Rockies for a series of high-resolution PGW experiments. This technique is used to test sensitivity of the feedback strength to model resolution and land surface model. Over the Colorado Rockies, and integrated over the entire spring season, the SAF strength is largely insensitive to model resolution, however there are more substantial differences on the sub-seasonal (monthly) timescale. In contrast, the SAF strength over this region is very sensitive to choice of land surface model. These simulations are also used to investigate how spatial and diurnal variability in warming caused by the SAF influences the dynamics of thermally driven mountain-breeze circulations. It is shown that, the SAF causes stronger daytime mountain-breeze circulations by increasing the warming on the mountains slopes thus enhancing the thermal contrast between the mountain slopes and the surrounding lowlands which drives these wind systems. This analysis is extended to investigate the impacts that the SAF has on the large-scale mountain-plain circulation that develops east of the Rockies over the Great Plains. To help isolate the SAF, a more idealized regional climate experiment which isolates the SAF is performed. It was found that SAF may influence thermally driven atmospheric dynamics up-to 200km east of the Mountains where the SAF originates, suggesting broader regional impacts of the SAF which may not be well resolved by coarser resolution global climate models. The implications of these changes on pollution transport and moist convection are also explored using these simulations.
Evaluating wind extremes in CMIP5 climate models
NASA Astrophysics Data System (ADS)
Kumar, Devashish; Mishra, Vimal; Ganguly, Auroop R.
2015-07-01
Wind extremes have consequences for renewable energy sectors, critical infrastructures, coastal ecosystems, and insurance industry. Considerable debates remain regarding the impacts of climate change on wind extremes. While climate models have occasionally shown increases in regional wind extremes, a decline in the magnitude of mean and extreme near-surface wind speeds has been recently reported over most regions of the Northern Hemisphere using observed data. Previous studies of wind extremes under climate change have focused on selected regions and employed outputs from the regional climate models (RCMs). However, RCMs ultimately rely on the outputs of global circulation models (GCMs), and the value-addition from the former over the latter has been questioned. Regional model runs rarely employ the full suite of GCM ensembles, and hence may not be able to encapsulate the most likely projections or their variability. Here we evaluate the performance of the latest generation of GCMs, the Coupled Model Intercomparison Project phase 5 (CMIP5), in simulating extreme winds. We find that the multimodel ensemble (MME) mean captures the spatial variability of annual maximum wind speeds over most regions except over the mountainous terrains. However, the historical temporal trends in annual maximum wind speeds for the reanalysis data, ERA-Interim, are not well represented in the GCMs. The historical trends in extreme winds from GCMs are statistically not significant over most regions. The MME model simulates the spatial patterns of extreme winds for 25-100 year return periods. The projected extreme winds from GCMs exhibit statistically less significant trends compared to the historical reference period.
NASA Astrophysics Data System (ADS)
Khodayar, S.; Sehlinger, A.; Feldmann, H.; Kottmeier, C.
2015-12-01
The impact of soil initialization is investigated through perturbation simulations with the regional climate model COSMO-CLM. The focus of the investigation is to assess the sensitivity of simulated extreme periods, dry and wet, to soil moisture initialization in different climatic regions over Europe and to establish the necessary spin up time within the framework of decadal predictions for these regions. Sensitivity experiments consisted of a reference simulation from 1968 to 1999 and 5 simulations from 1972 to 1983. The Effective Drought Index (EDI) is used to select and quantify drought status in the reference run to establish the simulation time period for the sensitivity experiments. Different soil initialization procedures are investigated. The sensitivity of the decadal predictions to soil moisture initial conditions is investigated through the analysis of water cycle components' (WCC) variability. In an episodic time scale the local effects of soil moisture on the boundary-layer and the propagated effects on the large-scale dynamics are analysed. The results show: (a) COSMO-CLM reproduces the observed features of the drought index. (b) Soil moisture initialization exerts a relevant impact on WCC, e.g., precipitation distribution and intensity. (c) Regional characteristics strongly impact the response of the WCC. Precipitation and evapotranspiration deviations are larger for humid regions. (d) The initial soil conditions (wet/dry), the regional characteristics (humid/dry) and the annual period (wet/dry) play a key role in the time that soil needs to restore quasi-equilibrium and the impact on the atmospheric conditions. Humid areas, and for all regions, a humid initialization, exhibit shorter spin up times, also soil reacts more sensitive when initialised during dry periods. (e) The initial soil perturbation may markedly modify atmospheric pressure field, wind circulation systems and atmospheric water vapour distribution affecting atmospheric stability conditions, thus modifying precipitation intensity and distribution even several years after the initialization.
Shafer, Sarah; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.
2015-01-01
Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.
Shafer, Sarah L.; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.
2015-01-01
Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas. PMID:26488750
NASA Astrophysics Data System (ADS)
Xue, L.; Newman, A. J.; Ikeda, K.; Rasmussen, R.; Clark, M. P.; Monaghan, A. J.
2016-12-01
A high-resolution (a 1.5 km grid spacing domain nested within a 4.5 km grid spacing domain) 10-year regional climate simulation over the entire Hawaiian archipelago is being conducted at the National Center for Atmospheric Research (NCAR) using the Weather Research and Forecasting (WRF) model version 3.7.1. Numerical sensitivity simulations of the Hawaiian Rainband Project (HaRP, a filed experiment from July to August in 1990) showed that the simulated precipitation properties are sensitive to initial and lateral boundary conditions, sea surface temperature (SST), land surface models, vertical resolution and cloud droplet concentration. The validations of model simulated statistics of the trade wind inversion, temperature, wind field, cloud cover, and precipitation over the islands against various observations from soundings, satellites, weather stations and rain gauges during the period from 2003 to 2012 will be presented at the meeting.
Air-sea exchange over Black Sea estimated from high resolution regional climate simulations
NASA Astrophysics Data System (ADS)
Velea, Liliana; Bojariu, Roxana; Cica, Roxana
2013-04-01
Black Sea is an important influencing factor for the climate of bordering countries, showing cyclogenetic activity (Trigo et al, 1999) and influencing Mediterranean cyclones passing over. As for other seas, standard observations of the atmosphere are limited in time and space and available observation-based estimations of air-sea exchange terms present quite large ranges of uncertainty. The reanalysis datasets (e.g. ERA produced by ECMWF) provide promising validation estimates of climatic characteristics against the ones in available climatic data (Schrum et al, 2001), while cannot reproduce some local features due to relatively coarse horizontal resolution. Detailed and realistic information on smaller-scale processes are foreseen to be provided by regional climate models, due to continuous improvements of physical parameterizations and numerical solutions and thus affording simulations at high spatial resolution. The aim of the study is to assess the potential of three regional climate models in reproducing known climatological characteristics of air-sea exchange over Black Sea, as well as to explore the added value of the model compared to the input (reanalysis) data. We employ results of long-term (1961-2000) simulations performed within ENSEMBLE project (http://ensemblesrt3.dmi.dk/) using models ETHZ-CLM, CNRM-ALADIN, METO-HadCM, for which the integration domain covers the whole area of interest. The analysis is performed for the entire basin for several variables entering the heat and water budget terms and available as direct output from the models, at seasonal and annual scale. A comparison with independent data (ERA-INTERIM) and findings from other studies (e.g. Schrum et al, 2001) is also presented. References: Schrum, C., Staneva, J., Stanev, E. and Ozsoy, E., 2001: Air-sea exchange in the Black Sea estimated from atmospheric analysis for the period 1979-1993, J. Marine Systems, 31, 3-19 Trigo, I. F., T. D. Davies, and G. R. Bigg (1999): Objective climatology of cyclones in the Mediterranean region. J. Climate, 12, 1685- 169
The Detection and Attribution Model Intercomparison Project (DAMIP v1.0)contribution to CMIP6
Gillett, Nathan P.; Shiogama, Hideo; Funke, Bernd; ...
2016-10-18
Detection and attribution (D&A) simulations were important components of CMIP5 and underpinned the climate change detection and attribution assessments of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The primary goals of the Detection and Attribution Model Intercomparison Project (DAMIP) are to facilitate improved estimation of the contributions of anthropogenic and natural forcing changes to observed global warming as well as to observed global and regional changes in other climate variables; to contribute to the estimation of how historical emissions have altered and are altering contemporary climate risk; and to facilitate improved observationally constrained projections of futuremore » climate change. D&A studies typically require unforced control simulations and historical simulations including all major anthropogenic and natural forcings. Such simulations will be carried out as part of the DECK and the CMIP6 historical simulation. In addition D&A studies require simulations covering the historical period driven by individual forcings or subsets of forcings only: such simulations are proposed here. Key novel features of the experimental design presented here include firstly new historical simulations with aerosols-only, stratospheric-ozone-only, CO2-only, solar-only, and volcanic-only forcing, facilitating an improved estimation of the climate response to individual forcing, secondly future single forcing experiments, allowing observationally constrained projections of future climate change, and thirdly an experimental design which allows models with and without coupled atmospheric chemistry to be compared on an equal footing.« less
The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6
NASA Astrophysics Data System (ADS)
Gillett, Nathan P.; Shiogama, Hideo; Funke, Bernd; Hegerl, Gabriele; Knutti, Reto; Matthes, Katja; Santer, Benjamin D.; Stone, Daithi; Tebaldi, Claudia
2016-10-01
Detection and attribution (D&A) simulations were important components of CMIP5 and underpinned the climate change detection and attribution assessments of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The primary goals of the Detection and Attribution Model Intercomparison Project (DAMIP) are to facilitate improved estimation of the contributions of anthropogenic and natural forcing changes to observed global warming as well as to observed global and regional changes in other climate variables; to contribute to the estimation of how historical emissions have altered and are altering contemporary climate risk; and to facilitate improved observationally constrained projections of future climate change. D&A studies typically require unforced control simulations and historical simulations including all major anthropogenic and natural forcings. Such simulations will be carried out as part of the DECK and the CMIP6 historical simulation. In addition D&A studies require simulations covering the historical period driven by individual forcings or subsets of forcings only: such simulations are proposed here. Key novel features of the experimental design presented here include firstly new historical simulations with aerosols-only, stratospheric-ozone-only, CO2-only, solar-only, and volcanic-only forcing, facilitating an improved estimation of the climate response to individual forcing, secondly future single forcing experiments, allowing observationally constrained projections of future climate change, and thirdly an experimental design which allows models with and without coupled atmospheric chemistry to be compared on an equal footing.
Towards Better Simulation of US Maize Yield Responses to Climate in the Community Earth System Model
NASA Astrophysics Data System (ADS)
Peng, B.; Guan, K.; Chen, M.; Lawrence, D. M.; Jin, Z.; Bernacchi, C.; Ainsworth, E. A.; DeLucia, E. H.; Lombardozzi, D. L.; Lu, Y.
2017-12-01
Global food security is undergoing continuing pressure from increased population and climate change despites the potential advancement in breeding and management technologies. Earth system models (ESMs) are essential tools to study the impacts of historical and future climate on regional and global food production, as well as to assess the effectiveness of possible adaptations and their potential feedback to climate. Here we developed an improved maize representation within the Community Earth System Model (CESM) by combining the strengths of both the Community Land Model version 4.5 (CLM4.5) and the Agricultural Production Systems sIMulator (APSIM) models. Specifically, we modified the maize planting scheme, incorporated the phenology scheme adopted from the APSIM model, added a new carbon allocation scheme into CLM4.5, and improved the estimation of canopy structure parameters including leaf area index (LAI) and canopy height. Unique features of the new model (CLM-APSIM) include more detailed phenology stages, an explicit implementation of the impacts of various abiotic environmental stresses (including nitrogen, water, temperature and heat stresses) on maize phenology and carbon allocation, as well as an explicit simulation of grain number and grain size. We conducted a regional simulation of this new model over the US Corn Belt during 1990 to 2010. The simulated maize yield as well as its responses to climate (growing season mean temperature and precipitation) are benchmarked with data from UADA NASS statistics. Our results show that the CLM-APSIM model outperforms the CLM4.5 in simulating county-level maize yield production and reproduces more realistic yield responses to climate variations than CLM4.5. However, some critical processes (such as crop failure due to frost and inundation and suboptimal growth condition due to biotic stresses) are still missing in both CLM-APSIM and CLM4.5, making the simulated yield responses to climate slightly deviate from the reality. Our results demonstrate that with improved paramterization of crop growth, the ESMs can be powerful tools for realistically simulating agricultural production, which is gaining increasing interests and critical to study of global food security and food-energy-water nexus.
Simulating future climate and land-use impacts on at-risk species in parks and protected areas
Alpine and sagebrush ecosystems in the mountain west are under threat from climate change and development. The wolverine, fisher, greater sage-grouse,and pygmy rabbit are iconic at-risk species in the region. We explore the impacts of future climate and land-use change on these s...
The impact of climate change on surface-level ozone is examined through a multiscale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the relative response factor (RRFE), which estimates the ...
NASA Astrophysics Data System (ADS)
Wakazuki, Yasutaka; Hara, Masayuki; Fujita, Mikiko; Ma, Xieyao; Kimura, Fujio
2013-04-01
Regional scale climate change projections play an important role in assessments of influences of global warming and include statistical (SD) and dynamical downscaling (DD) approaches. One of DD methods is developed basing on the pseudo-global-warming (PGW) method developed by Kimura and Kitoh (2007) in this study. In general, DD uses regional climate model (RCM) with lateral boundary data. In PGW method, the climatological mean difference estimated by GCMs are added to the objective analysis data (ANAL), and the data are used as the lateral boundary data in the future climate simulations. The ANAL is also used as the lateral boundary conditions of the present climate simulation. One of merits of the PGW method is that influences of biases of GCMs in RCM simulations are reduced. However, the PGW method does not treat climate changes in relative humidity, year-to-year variation, and short-term disturbances. The developing new downscaling method is named as the incremental dynamical downscaling and analysis system (InDDAS). The InDDAS treat climate changes in relative humidity and year-to-year variations. On the other hand, uncertainties of climate change projections estimated by many GCMs are large and are not negligible. Thus, stochastic regional scale climate change projections are expected for assessments of influences of global warming. Many RCM runs must be performed to make stochastic information. However, the computational costs are huge because grid size of RCM runs should be small to resolve heavy rainfall phenomena. Therefore, the number of runs to make stochastic information must be reduced. In InDDAS, climatological differences added to ANAL become statistically pre-analyzed information. The climatological differences of many GCMs are divided into mean climatological difference (MD) and departures from MD. The departures are analyzed by principal component analysis, and positive and negative perturbations (positive and negative standard deviations multiplied by departure patterns (eigenvectors)) with multi modes are added to MD. Consequently, the most likely future states are calculated with climatological difference of MD. For example, future states in cases that temperature increase is large and small are calculated with MD plus positive and negative perturbations of the first mode.
Effects of Implementing Subgrid-Scale Cloud-Radiation Interactions in a Regional Climate Model
NASA Astrophysics Data System (ADS)
Herwehe, J. A.; Alapaty, K.; Otte, T.; Nolte, C. G.
2012-12-01
Interactions between atmospheric radiation, clouds, and aerosols are the most important processes that determine the climate and its variability. In regional scale models, when used at relatively coarse spatial resolutions (e.g., larger than 1 km), convective cumulus clouds need to be parameterized as subgrid-scale clouds. Like many groups, our regional climate modeling group at the EPA uses the Weather Research & Forecasting model (WRF) as a regional climate model (RCM). One of the findings from our RCM studies is that the summertime convective systems simulated by the WRF model are highly energetic, leading to excessive surface precipitation. We also found that the WRF model does not consider the interactions between convective clouds and radiation, thereby omitting an important process that drives the climate. Thus, the subgrid-scale cloudiness associated with convective clouds (from shallow cumuli to thunderstorms) does not exist and radiation passes through the atmosphere nearly unimpeded, potentially leading to overly energetic convection. This also has implications for air quality modeling systems that are dependent upon cloud properties from the WRF model, as the failure to account for subgrid-scale cloudiness can lead to problems such as the underrepresentation of aqueous chemistry processes within clouds and the overprediction of ozone from overactive photolysis. In an effort to advance the climate science of the cloud-aerosol-radiation (CAR) interactions in RCM systems, as a first step we have focused on linking the cumulus clouds with the radiation processes. To this end, our research group has implemented into WRF's Kain-Fritsch (KF) cumulus parameterization a cloudiness formulation that is widely used in global earth system models (e.g., CESM/CAM5). Estimated grid-scale cloudiness and associated condensate are adjusted to account for the subgrid clouds and then passed to WRF's Rapid Radiative Transfer Model - Global (RRTMG) radiation schemes to affect the shortwave and longwave radiative processes. To evaluate the effects of implementing the subgrid-scale cloud-radiation interactions on WRF regional climate simulations, a three-year study period (1988-1990) was simulated over the CONUS using two-way nested domains with 108 km and 36 km horizontal grid spacing, without and with the cumulus feedbacks to radiation, and without and with some form of four dimensional data assimilation (FDDA). Initial and lateral boundary conditions (as well as data for the FDDA, when enabled) were supplied from downscaled NCEP-NCAR Reanalysis II (R2) data sets. Evaluation of the simulation results will be presented comparing regional surface precipitation and temperature statistics with North American Regional Reanalysis (NARR) data and Climate Forecast System Reanalysis (CFSR) data, respectively, as well as comparison with available surface radiation (SURFRAD) and satellite (CERES) observations. This research supports improvements in the EPA's WRF-CMAQ modeling system, leading to better predictions of present and future air quality and climate interactions in order to protect human health and the environment.
Hay, Lauren E.; Markstrom, Steven; Ward-Garrison, Christian D.
2011-01-01
The hydrologic response of different climate-change emission scenarios for the twenty-first century were evaluated in 14 basins from different hydroclimatic regions across the United States using the Precipitation-Runoff Modeling System (PRMS), a process-based, distributed-parameter watershed model. This study involves four major steps: 1) setup and calibration of the PRMS model in 14 basins across the United States by local U.S. Geological Survey personnel; 2) statistical downscaling of the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3 climate-change emission scenarios to create PRMS input files that reflect these emission scenarios; 3) run PRMS for the climate-change emission scenarios for the 14 basins; and 4) evaluation of the PRMS output.This paper presents an overview of this project, details of the methodology, results from the 14 basin simulations, and interpretation of these results. A key finding is that the hydrological response of the different geographical regions of the United States to potential climate change may be very different, depending on the dominant physical processes of that particular region. Also considered is the tremendous amount of uncertainty present in the climate emission scenarios and how this uncertainty propagates through the hydrologic simulations. This paper concludes with a discussion of the lessons learned and potential for future work.
Downscaling CESM1 climate change projections for the MENA-CORDEX domain using WRF
NASA Astrophysics Data System (ADS)
Zittis, George; Hadjinicolaou, Panos; Lelieveld, Jos
2017-04-01
According to analysis of observations and global climate model projections, the broader Middle East, North Africa and Mediterranean region is found to be a climate change hotspot. Substantial changes in precipitation amounts and patterns and strong summer warming (including an intensification of heat extremes) is a likely future scenario for the region, but a recent uncertainty analysis indicated good model agreement for temperature but much less for precipitation. Although the horizontal resolution of global models has increased over the last years, it is still not adequate for impact and adaptation assessments of regional or national level and further downscaling of the climate information is required. The region is now studied within the CORDEX initiative (Coordinated Regional Climate Downscaling Experiment) with the establishment of a domain covering the Middle East - North Africa (MENA-CORDEX) region (http://mena-cordex.cyi.ac.cy/). In this study, we present the first climate change projections for the MENA produced by dynamically downscaling a bias-corrected output of the CESM1 global earth system model. For the downscaling, we use a climate configuration of the Weather, Research and Forecasting model (WRF). Our simulations use a standard CORDEX Phase I 50-km grid in three simulations, a historical (1950-2005) and two scenario runs (2006-2100) with the greenhouse gas forcing following the RCP 4.5 and 8.5. We evaluate precipitation, temperature and other surface meteorological variables from the historical using gridded and station observational datasets. Maps of projected changes are constructed for different periods in the future as differences of the two scenarios model output against the data from the historical run. The main spatial and temporal patterns of change are discussed, especially in the context of the United Nations Framework Convention on Climate Change agreement in Paris to limit the global average temperature increase to 1.5 degrees above pre-industrial levels.
Zhu, Q.; Jiang, H.; Liu, J.; Peng, C.; Fang, X.; Yu, S.; Zhou, G.; Wei, X.; Ju, W.
2011-01-01
The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr-1 during the last half of the 21st century. An NPP increase of about 24 Mt C by the end of the 21st century was estimated with the combined effects of increasing CO2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr-1. NEP will increase to about 5 Mt C yr-1 by the end of the 21st century with the increasing atmospheric CO2 concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang's forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO2 concentration will have little contribution to vegetation changes. Simulated NPP shows geographic patterns consistent with temperature to a certain extent, and precipitation is not the limiting factor for forest NPP in the subtropical climate conditions. There is no close relationship between the spatial pattern of NEP and climate condition.
Zhu, Q.; Jiang, H.; Liu, J.; Peng, C.; Fang, X.; Yu, S.; Zhou, G.; Wei, X.; Ju, W.
2011-01-01
The regional carbon budget of the climatic transition zone may be very sensitive to climate change and increasing atmospheric CO 2 concentrations. This study simulated the carbon cycles under these changes using process-based ecosystem models. The Integrated Biosphere Simulator (IBIS), a Dynamic Global Vegetation Model (DGVM), was used to evaluate the impacts of climate change and CO 2 fertilization on net primary production (NPP), net ecosystem production (NEP), and the vegetation structure of terrestrial ecosystems in Zhejiang province (area 101,800 km 2, mainly covered by subtropical evergreen forest and warm-temperate evergreen broadleaf forest) which is located in the subtropical climate area of China. Two general circulation models (HADCM3 and CGCM3) representing four IPCC climate change scenarios (HC3AA, HC3GG, CGCM-sresa2, and CGCM-sresb1) were used as climate inputs for IBIS. Results show that simulated historical biomass and NPP are consistent with field and other modelled data, which makes the analysis of future carbon budget reliable. The results indicate that NPP over the entire Zhejiang province was about 55 Mt C yr -1 during the last half of the 21 st century. An NPP increase of about 24 Mt C by the end of the 21 st century was estimated with the combined effects of increasing CO 2 and climate change. A slight NPP increase of about 5 Mt C was estimated under the climate change alone scenario. Forests in Zhejiang are currently acting as a carbon sink with an average NEP of about 2.5 Mt C yr -1. NEP will increase to about 5 Mt C yr -1 by the end of the 21 st century with the increasing atmospheric CO 2 concentration and climate change. However, climate change alone will reduce the forest carbon sequestration of Zhejiang's forests. Future climate warming will substantially change the vegetation cover types; warm-temperate evergreen broadleaf forest will be gradually substituted by subtropical evergreen forest. An increasing CO 2 concentration will have little contribution to vegetation changes. Simulated NPP shows geographic patterns consistent with temperature to a certain extent, and precipitation is not the limiting factor for forest NPP in the subtropical climate conditions. There is no close relationship between the spatial pattern of NEP and climate condition.
NASA Technical Reports Server (NTRS)
Fox-Rabinovitz, Michael S.; Takacs, Lawrence; Govindaraju, Ravi C.; Atlas, Robert (Technical Monitor)
2002-01-01
The new stretched-grid design with multiple (four) areas of interest, one at each global quadrant, is implemented into both a stretched-grid GCM (general circulation model) and a stretched-grid data assimilation system (DAS). The four areas of interest include: the U.S./Northern Mexico, the El Nino area/Central South America, India/China, and the Eastern Indian Ocean/Australia. Both the stretched-grid GCM and DAS annual (November 1997 through December 1998) integrations are performed with 50 km regional resolution. The efficient regional down-scaling to mesoscales is obtained for each of the four areas of interest while the consistent interactions between regional and global scales and the high quality of global circulation, are preserved. This is the advantage of the stretched-grid approach. The global variable resolution DAS incorporating the stretched-grid GCM has been developed and tested as an efficient tool for producing regional analyses and diagnostics with enhanced mesoscale resolution. The anomalous regional climate events of 1998 that occurred over the U.S., Mexico, South America, China, India, African Sahel, and Australia are investigated in both simulation and data assimilation modes. Tree assimilated products are also used, along with gauge precipitation data, for validating the simulation results. The obtained results show that the stretched-grid GCM and DAS are capable of producing realistic high quality simulated and assimilated products at mesoscale resolution for regional climate studies and applications.
NASA Astrophysics Data System (ADS)
Lee, J.; Waliser, D. E.; Lee, H.; Loikith, P. C.; Kunkel, K.
2017-12-01
Monitoring temporal changes in key climate variables, such as surface air temperature and precipitation, is an integral part of the ongoing efforts of the United States National Climate Assessment (NCA). Climate models participating in CMIP5 provide future trends for four different emissions scenarios. In order to have confidence in the future projections of surface air temperature and precipitation, it is crucial to evaluate the ability of CMIP5 models to reproduce observed trends for three different time periods (1895-1939, 1940-1979, and 1980-2005). Towards this goal, trends in surface air temperature and precipitation obtained from the NOAA nClimGrid 5 km gridded station observation-based product are compared during all three time periods to the 206 CMIP5 historical simulations from 48 unique GCMs and their multi-model ensemble (MME) for NCA-defined climate regions during summer (JJA) and winter (DJF). This evaluation quantitatively examines the biases of simulated trends of the spatially averaged temperature and precipitation in the NCA climate regions. The CMIP5 MME reproduces historical surface air temperature trends for JJA for all time period and all regions, except the Northern Great Plains from 1895-1939 and Southeast during 1980-2005. Likewise, for DJF, the MME reproduces historical surface air temperature trends across all time periods over all regions except the Southeast from 1895-1939 and the Midwest during 1940-1979. The Regional Climate Model Evaluation System (RCMES), an analysis tool which supports the NCA by providing access to data and tools for regional climate model validation, facilitates the comparisons between the models and observation. The RCMES Toolkit is designed to assist in the analysis of climate variables and the procedure of the evaluation of climate projection models to support the decision-making processes. This tool is used in conjunction with the above analysis and results will be presented to demonstrate its capability to access observation and model datasets, calculate evaluation metrics, and visualize the results. Several other examples of the RCMES capabilities can be found at https://rcmes.jpl.nasa.gov.
NASA Astrophysics Data System (ADS)
Bhatla, R.; Ghosh, Soumik; Mall, R. K.; Sinha, P.; Sarkar, Abhijit
2018-05-01
Establishment of Indian summer monsoon (ISM) rainfall passes through the different phases and is not uniformly distributed over the Indian subcontinent. This enhancement and reduction in daily rainfall anomaly over the Indian core monsoon region during peak monsoon season (i.e., July and August) are commonly termed as `active' and `break' phases of monsoon. The purpose of this study is to analyze REGional Climate Model (RegCM) results obtained using the most suitable convective parameterization scheme (CPS) to determine active/break phases of ISM. The model-simulated daily outgoing longwave radiation (OLR), mean sea level pressure (MSLP), and the wind at 850 hPa of spatial resolution of 0.5°× 0.5° are compared with NOAA, NCEP, and EIN15 data, respectively over the South-Asia Co-Ordinated Regional Climate Downscaling EXperiment (CORDEX) region. 25 years (1986-2010) composites of OLR, MSLP, and the wind at 850 hPa are considered from start to the dates of active/break phase and up to the end dates of active/break spell of monsoon. A negative/positive anomaly of OLR with active/break phase is found in simulations with CPSs Emanuel and Mix99 (Grell over land; Emanuel over ocean) over the core monsoon region as well as over Monsoon Convergence Zone (MCZ) of India. The appearance of monsoon trough during active phase over the core monsoon zone and its shifting towards the Himalayan foothills during break phase are also depicted well. Because of multi-cloud function over oceanic region and single cloud function over the land mass, the Mix99 CPSs perform well in simulating the synoptic features during the phases of monsoon.
NASA Astrophysics Data System (ADS)
Li, Jingwan; Sharma, Ashish; Evans, Jason; Johnson, Fiona
2018-01-01
Addressing systematic biases in regional climate model simulations of extreme rainfall is a necessary first step before assessing changes in future rainfall extremes. Commonly used bias correction methods are designed to match statistics of the overall simulated rainfall with observations. This assumes that change in the mix of different types of extreme rainfall events (i.e. convective and non-convective) in a warmer climate is of little relevance in the estimation of overall change, an assumption that is not supported by empirical or physical evidence. This study proposes an alternative approach to account for the potential change of alternate rainfall types, characterized here by synoptic weather patterns (SPs) using self-organizing maps classification. The objective of this study is to evaluate the added influence of SPs on the bias correction, which is achieved by comparing the corrected distribution of future extreme rainfall with that using conventional quantile mapping. A comprehensive synthetic experiment is first defined to investigate the conditions under which the additional information of SPs makes a significant difference to the bias correction. Using over 600,000 synthetic cases, statistically significant differences are found to be present in 46% cases. This is followed by a case study over the Sydney region using a high-resolution run of the Weather Research and Forecasting (WRF) regional climate model, which indicates a small change in the proportions of the SPs and a statistically significant change in the extreme rainfall over the region, although the differences between the changes obtained from the two bias correction methods are not statistically significant.
Evaporative cooling over the Tibetan Plateau induced by vegetation growth.
Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z X; Li, Yue; Myneni, Ranga B; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong
2015-07-28
In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.
Evaporative cooling over the Tibetan Plateau induced by vegetation growth
Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z. X.; Li, Yue; Myneni, Ranga B.; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong
2015-01-01
In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system. PMID:26170316
Prediction of future climate change for the Blue Nile, using a nested Regional Climate Model
NASA Astrophysics Data System (ADS)
Soliman, E.; Jeuland, M.
2009-04-01
Although the Nile River Basin is rich in natural resources, it faces many challenges. Rainfall is highly variable across the region, on both seasonal and inter-annual scales. This variability makes the region vulnerable to droughts and floods. Many development projects involving Nile waters are currently underway, or being studied. These projects will lead to land-use patterns changes and water distribution and availability. It is thus important to assess the effects of a) these projects and b) evolving water resource management and policies, on regional hydrological processes. This paper seeks to establish a basis for evaluation of such impacts within the Blue Nile River sub-basin, using the RegCM3 Regional Climate Model to simulate interactions between the land surface and climatic processes. We first present results from application of this RCM model nested with downscaled outputs obtained from the ECHAM5/MPI-OM1 transient simulations for the 20th Century. We then investigate changes associated with mid-21st century emissions forcing of the SRES A1B scenario. The results obtained from the climate model are then fed as inputs to the Nile Forecast System (NFS), a hydrologic distributed rainfall runoff model of the Nile Basin, The interaction between climatic and hydrological processes on the land surface has been fully coupled. Rainfall patterns and evaporation rates have been generated using RegCM3, and the resulting runoff and Blue Nile streamflow patterns have been simulated using the NFS. This paper compares the results obtained from the RegCM3 climate model with observational datasets for precipitation and temperature from the Climate Research Unit (UK) and the NASA Goddard Space Flight Center GPCP (USA) for 1985-2000. The validity of the streamflow predictions from the NFS is assessed using historical gauge records. Finally, we present results from modeling of the A1B emissions scenario of the IPCC for the years 2034-2055. Our results indicate that future changes in rainfall may vary over different areas of the Upper Blue Nile catchment in Ethiopia. Our results suggest that there may be good reasons for developing climate models with finer spatial resolution than the more commonly used GCMs.
Can Regional Climate Models Improve Warm Season Forecasts in the North American Monsoon Region?
NASA Astrophysics Data System (ADS)
Dominguez, F.; Castro, C. L.
2009-12-01
The goal of this work is to improve warm season forecasts in the North American Monsoon Region. To do this, we are dynamically downscaling warm season CFS (Climate Forecast System) reforecasts from 1982-2005 for the contiguous U.S. using the Weather Research and Forecasting (WRF) regional climate model. CFS is the global coupled ocean-atmosphere model used by the Climate Prediction Center (CPC), a branch of the National Center for Environmental Prediction (NCEP), to provide official U.S. seasonal climate forecasts. Recently, NCEP has produced a comprehensive long-term retrospective ensemble CFS reforecasts for the years 1980-2005. These reforecasts show that CFS model 1) has an ability to forecast tropical Pacific SSTs and large-scale teleconnection patterns, at least as evaluated for the winter season; 2) has greater skill in forecasting winter than summer climate; and 3) demonstrates an increase in skill when a greater number of ensembles members are used. The decrease in CFS skill during the warm season is due to the fact that the physical mechanisms of rainfall at this time are more related to mesoscale processes, such as the diurnal cycle of convection, low-level moisture transport, propagation and organization of convection, and surface moisture recycling. In general, these are poorly represented in global atmospheric models. Preliminary simulations for years with extreme summer climate conditions in the western and central U.S. (specifically 1988 and 1993) show that CFS-WRF simulations can provide a more realistic representation of convective rainfall processes. Thus a RCM can potentially add significant value in climate forecasting of the warm season provided the downscaling methodology incorporates the following: 1) spectral nudging to preserve the variability in the large scale circulation while still permitting the development of smaller-scale variability in the RCM; and 2) use of realistic soil moisture initial condition, in this case provided by the North American Regional Reanalysis. With these conditions, downscaled CFS-WRF reforecast simulations can produce realistic continental-scale patterns of warm season precipitation. This includes a reasonable representation of the North American monsoon in the southwest U.S. and northwest Mexico, which is notoriously difficult to represent in a global atmospheric model. We anticipate that this research will help lead the way toward substantially improved real time operational forecasts of North American summer climate with a RCM.
A prognostic pollen emissions model for climate models (PECM1.0)
NASA Astrophysics Data System (ADS)
Wozniak, Matthew C.; Steiner, Allison L.
2017-11-01
We develop a prognostic model called Pollen Emissions for Climate Models (PECM) for use within regional and global climate models to simulate pollen counts over the seasonal cycle based on geography, vegetation type, and meteorological parameters. Using modern surface pollen count data, empirical relationships between prior-year annual average temperature and pollen season start dates and end dates are developed for deciduous broadleaf trees (Acer, Alnus, Betula, Fraxinus, Morus, Platanus, Populus, Quercus, Ulmus), evergreen needleleaf trees (Cupressaceae, Pinaceae), grasses (Poaceae; C3, C4), and ragweed (Ambrosia). This regression model explains as much as 57 % of the variance in pollen phenological dates, and it is used to create a climate-flexible phenology that can be used to study the response of wind-driven pollen emissions to climate change. The emissions model is evaluated in the Regional Climate Model version 4 (RegCM4) over the continental United States by prescribing an emission potential from PECM and transporting pollen as aerosol tracers. We evaluate two different pollen emissions scenarios in the model using (1) a taxa-specific land cover database, phenology, and emission potential, and (2) a plant functional type (PFT) land cover, phenology, and emission potential. The simulated surface pollen concentrations for both simulations are evaluated against observed surface pollen counts in five climatic subregions. Given prescribed pollen emissions, the RegCM4 simulates observed concentrations within an order of magnitude, although the performance of the simulations in any subregion is strongly related to the land cover representation and the number of observation sites used to create the empirical phenological relationship. The taxa-based model provides a better representation of the phenology of tree-based pollen counts than the PFT-based model; however, we note that the PFT-based version provides a useful and climate-flexible emissions model for the general representation of the pollen phenology over the United States.
Hanson, Randall T.; Dettinger, Michael D.
2005-01-01
Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa Clara-Calleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate-driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/°C, compared to 0.9 m/°C in observations. This close agreement shows that the GCM-RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM-RGWM combination could be used for planning purposes and — when the GCM forecast skills are adequate — for near term predictions.
Hanson, R.T.; Dettinger, M.D.
2005-01-01
Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa ClaraCalleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Nin??o Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate-driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/??C, compared to 0.9 m/??C in observations. This close agreement shows that the GCM-RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM-RGWM combination could be used for planning purposes and - when the GCM forecast skills are adequate - for near term predictions.
Projecting Heat-Related Mortality Impacts Under a Changing Climate in the New York City Region
Knowlton, Kim; Lynn, Barry; Goldberg, Richard A.; Rosenzweig, Cynthia; Hogrefe, Christian; Rosenthal, Joyce Klein; Kinney, Patrick L.
2007-01-01
Objectives. We sought to project future impacts of climate change on summer heat-related premature deaths in the New York City metropolitan region. Methods. Current and future climates were simulated over the northeastern United States with a global-to-regional climate modeling system. Summer heat-related premature deaths in the 1990s and 2050s were estimated by using a range of scenarios and approaches to modeling acclimatization (e.g., increased use of air conditioning, gradual physiological adaptation). Results. Projected regional increases in heat-related premature mortality by the 2050s ranged from 47% to 95%, with a mean 70% increase compared with the 1990s. Acclimatization effects reduced regional increases in summer heat-related premature mortality by about 25%. Local impacts varied considerably across the region, with urban counties showing greater numbers of deaths and smaller percentage increases than less-urbanized counties. Conclusions. Although considerable uncertainty exists in climate forecasts and future health vulnerability, the range of projections we developed suggests that by midcentury, acclimatization may not completely mitigate the effects of climate change in the New York City metropolitan region, which would result in an overall net increase in heat-related premature mortality. PMID:17901433
NASA Astrophysics Data System (ADS)
Zhang, Huqiang; Zhao, Y.; Moise, A.; Ye, H.; Colman, R.; Roff, G.; Zhao, M.
2018-02-01
Significant uncertainty exists in regional climate change projections, particularly for rainfall and other hydro-climate variables. In this study, we conduct a series of Atmospheric General Circulation Model (AGCM) experiments with different future sea surface temperature (SST) warming simulated by a range of coupled climate models. They allow us to assess the extent to which uncertainty from current coupled climate model rainfall projections can be attributed to their simulated SST warming. Nine CMIP5 model-simulated global SST warming anomalies have been super-imposed onto the current SSTs simulated by the Australian climate model ACCESS1.3. The ACCESS1.3 SST-forced experiments closely reproduce rainfall means and interannual variations as in its own fully coupled experiments. Although different global SST warming intensities explain well the inter-model difference in global mean precipitation changes, at regional scales the SST influence vary significantly. SST warming explains about 20-25% of the patterns of precipitation changes in each of the four/five models in its rainfall projections over the oceans in the Indo-Pacific domain, but there are also a couple of models in which different SST warming explains little of their precipitation pattern changes. The influence is weaker again for rainfall changes over land. Roughly similar levels of contribution can be attributed to different atmospheric responses to SST warming in these models. The weak SST influence in our study could be due to the experimental setup applied: superimposing different SST warming anomalies onto the same SSTs simulated for current climate by ACCESS1.3 rather than directly using model-simulated past and future SSTs. Similar modelling and analysis from other modelling groups with more carefully designed experiments are needed to tease out uncertainties caused by different SST warming patterns, different SST mean biases and different model physical/dynamical responses to the same underlying SST forcing.
Evaluation of mean climate in a chemistry-climate model simulation
NASA Astrophysics Data System (ADS)
Hong, S.; Park, H.; Wie, J.; Park, R.; Lee, S.; Moon, B. K.
2017-12-01
Incorporation of the interactive chemistry is essential for understanding chemistry-climate interactions and feedback processes in climate models. Here we assess a newly developed chemistry-climate model (GRIMs-Chem), which is based on the Global/Regional Integrated Model system (GRIMs) including the aerosol direct effect as well as stratospheric linearized ozone chemistry (LINOZ). We conducted GRIMs-Chem with observed sea surface temperature during the period of 1979-2010, and compared the simulation results with observations and also with CMIP models. To measure the relative performance of our model, we define the quantitative performance metric using the Taylor diagram. This metric allow us to assess overall features in simulating multiple variables. Overall, our model better reproduce the zonal mean spatial pattern of temperature, horizontal wind, vertical motion, and relative humidity relative to other models. However, the model did not produce good simulations at upper troposphere (200 hPa). It is currently unclear which model processes are responsible for this. AcknowledgementsThis research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."
NASA Astrophysics Data System (ADS)
Wang, Xunming; Yang, Yi; Dong, Zhibao; Zhang, Caixia
2009-06-01
Most areas of arid and semiarid China are covered by aeolian sand dunes, sand sheets, and desert steppes, and the existence of the nearly 80 million people who live in this region could be seriously jeopardized if climate change increases desertification. However, the expected trends in desertification during the 21st century are poorly understood. In the present study, we selected the ECHAM4 and HadCM3 global climate models (after comparing them with the results of the GFDL-R30, CGCM2, and CSIRO-Mk2b models) and used simulations of a dune mobility index under IPCC SRES climate scenarios A1FI, A2a, A2b, A2c, B1a, B2a, and B2b to estimate future trends in dune activity and desertification in China. Although uncertainties in climate predictions mean that there is still far to go before we can develop a comprehensive dune activity estimation system, HadCM3 simulations with most greenhouse forcing scenarios showed decreased desertification in most western region of arid and semiarid China by 2039, but increased desertification thereafter, whereas ECHAM4 simulation results showed that desertification will increase during this period. Inhabitants of thecentral region will benefit from reversed desertification from 2010 to 2099, whereas inhabitants of the eastern region will suffer from increased desertification from 2010 to 2099. From 2010 to 2039, most regions will not be significantly affected by desertification, but from 2040 to 2099, the environments of the western and eastern regions will deteriorate due to the significant effects of global warming (particularly the interaction between precipitation and potential evapotranspiration), leading to decreased livestock and grain yields and possibly threatening China's food security.
Interactive coupling of regional climate and sulfate aerosol models over eastern Asia
NASA Astrophysics Data System (ADS)
Qian, Yun; Giorgi, Filippo
1999-03-01
The NCAR regional climate model (RegCM) is interactively coupled to a simple radiatively active sulfate aerosol model over eastern Asia. Both direct and indirect aerosol effects are represented. The coupled model system is tested for two simulation periods, November 1994 and July 1995, with aerosol sources representative of present-day anthropogenic sulfur emissions. The model sensitivity to the intensity of the aerosol source is also studied. The main conclusions from our work are as follows: (1) The aerosol distribution and cycling processes show substantial regional spatial variability, and temporal variability varying on a range of scales, from the diurnal scale of boundary layer and cumulus cloud evolution to the 3-10 day scale of synoptic scale events and the interseasonal scale of general circulation features; (2) both direct and indirect aerosol forcings have regional effects on surface climate; (3) the regional climate response to the aerosol forcing is highly nonlinear, especially during the summer, due to the interactions with cloud and precipitation processes; (4) in our simulations the role of the aerosol indirect effects is dominant over that of direct effects; (5) aerosol-induced feedback processes can affect the aerosol burdens at the subregional scale. This work constitutes the first step in a long term research project aimed at coupling a hierarchy of chemistry/aerosol models to the RegCM over the eastern Asia region.
NASA Astrophysics Data System (ADS)
Wang, X.; Wu, Y.; Huang, Y.; Tilmes, S.
2016-12-01
Water vapor maxima are found in the upper troposphere lower stratosphere (UTLS) over Asian and North America monsoon regions during Northern Hemisphere (NH) summer months. High concentrations of stratospheric water vapor are associated with the upper-level anticyclonic circulation and they play an important role in the radiative forcing for the climate system. However, discrepancies in the simulation of stratospheric water vapor are found among different models. In this study, we use both observational data: Aura Microwave Limb Sounder satellite observations (MLS), the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) and chemistry climate model outputs: different configurations of the Whole Atmosphere Community Climate Model (WACCM), including standard configuration of WACCM, WACCM L110, specified chemistry (SC) WACCM and specified dynamics (SD) WACCM. We find that WACCM L110 with finer vertical resolution better simulates the stratospheric water vapor maxima over the summer monsoon regions. To better understand the mechanism, we examine the simulated temperature at around 100 hPa since 100 hPa is known to act as a dehydration mechanism, i.e. the warmer the temperature, the wetter the stratospheric water vapor. We find that both WACCM L110 and SD-WACCM better simulate the temperature at 100 hPa as compared to that of MERRA2. This suggests that improving model vertical resolution and dynamical processes in the UTLS is crucial in simulating the stratospheric water vapor concentrations.
NASA Astrophysics Data System (ADS)
Liu, Changhai; Rasmussen, Roy; Ikeda, Kyoko; Barlage, Michael; Chen, Fei; Clark, Martyn; Dai, Aiguo; Dudhia, Jimy; Gochis, David; Gutmann, Ethan; Li, Yanping; Newman, Andrew; Thompson, Gregory
2016-04-01
The WRF model with a domain size of 1360x1016x51 points, using a 4 km spacing to encompass most of North America, is employed to investigate the water cycle and climate change impacts over the Contiguous United States (CONUS). Four suites of numerical experiments are being conducted, consisting of a 13-year retrospective simulation forced with ERA-I reanalysis, a 13-year climate sensitivity or Pseudo-Global Warming (PGW) simulation, and two 10-year CMIP5-based historical/future period simulations based on a revised bias-correction method. The major objectives are: 1) to evaluate high-resolution WRF's capability to capture orographic precipitation and snow mass balance over the western CONUS and convective precipitation over the eastern CONUS; 2) to assess future changes of seasonal snowfall and snowpack and associated hydrological cycles along with their regional variability across the different mountain barriers and elevation dependency, in response to the CMIP5 projected 2071-2100 climate warming; 3) to examine the precipitation changes under the projected global warming, with an emphasis on precipitation extremes and the warm-season precipitation corridor in association with MCS tracks in the central US; and 4) to provide a valuable community dataset for regional climate change and impact studies. Preliminary analysis of the retrospective simulation shows both seasonal/sub-seasonal precipitation and temperature are well reproduced, with precipitation bias being within 10% of the observations and temperature bias being below 1 degree C in most seasons and locations. The observed annual cycle of snow water equivalent (SWE), such as peak time and disappearance time, is also realistically replicated, even though the peak value is somewhat underestimated. The PGW simulation shows a large cold-season warming in northeast US and eastern Canada, possibly associated with snow albedo feedback, and a strong summer warming in north central US in association with precipitation reduction. There is an increase in annual rainfall/precipitation, but a sharp reduction in snowfall/snowpack in response to the global warming. A pronounced seasonal feature is the suppressed summertime precipitation in central US for the warmer climate. More detailed analysis of the modeling results is presently under way and will be presented in the meeting.
NASA Astrophysics Data System (ADS)
Klug, P.; Bach, H.; Migdall, S.
2013-12-01
In arid regions the infiltration of sparse rainfalls and resulting ground water recharge is a critical quantity for the water cycle. With the PROMET model the infiltration process can be simulated in detail, since 4 soil layers together with the hourly calculation time step allow simulating the vertical water transport. Wet soils are darker than dry soils. Using the SLC reflectance model this effect can be simulated and compared to temporal high resolution time series of measured reflectances from Meteosat in order to monitor the drying process. This study demonstrates how MSG can be used to better parameterize the simulation of the infiltration process and reduce uncertainties in ground water recharge estimation. The study is carried out in the frame of the EU FP7 project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins). According to climate projections, Mediterranean countries are at risk of changes in the hydrological budget, the agricultural productivity and drinking water supply in the future. The CLIMB FP-7 project coordinated by the University of Munich (LMU) aims at employing integrated hydrological modelling in a new framework to reduce existing uncertainties in climate change impact analysis of the Mediterranean region [1, 2].
NASA Astrophysics Data System (ADS)
Siler, Nicholas; Po-Chedley, Stephen; Bretherton, Christopher S.
2018-02-01
Despite the increasing sophistication of climate models, the amount of surface warming expected from a doubling of atmospheric CO_2 (equilibrium climate sensitivity) remains stubbornly uncertain, in part because of differences in how models simulate the change in global albedo due to clouds (the shortwave cloud feedback). Here, model differences in the shortwave cloud feedback are found to be closely related to the spatial pattern of the cloud contribution to albedo (α) in simulations of the current climate: high-feedback models exhibit lower (higher) α in regions of warm (cool) sea-surface temperatures, and therefore predict a larger reduction in global-mean α as temperatures rise and warm regions expand. The spatial pattern of α is found to be strongly predictive (r=0.84) of a model's global cloud feedback, with satellite observations indicating a most-likely value of 0.58± 0.31 Wm^{-2} K^{-1} (90% confidence). This estimate is higher than the model-average cloud feedback of 0.43 Wm^{-2} K^{-1}, with half the range of uncertainty. The observational constraint on climate sensitivity is weaker but still significant, suggesting a likely value of 3.68 ± 1.30 K (90% confidence), which also favors the upper range of model estimates. These results suggest that uncertainty in model estimates of the global cloud feedback may be substantially reduced by ensuring a realistic distribution of clouds between regions of warm and cool SSTs in simulations of the current climate.
NASA Technical Reports Server (NTRS)
Molnar, Gyula I.; Susskind, Joel; Iredell, Lena
2011-01-01
In the beginning, a good measure of a GMCs performance was their ability to simulate the observed mean seasonal cycle. That is, a reasonable simulation of the means (i.e., small biases) and standard deviations of TODAY?S climate would suffice. Here, we argue that coupled GCM (CG CM for short) simulations of FUTURE climates should be evaluated in much more detail, both spatially and temporally. Arguably, it is not the bias, but rather the reliability of the model-generated anomaly time-series, even down to the [C]GCM grid-scale, which really matter. This statement is underlined by the social need to address potential REGIONAL climate variability, and climate drifts/changes in a manner suitable for policy decisions.
Simulating Climate Change in Ireland
NASA Astrophysics Data System (ADS)
Nolan, P.; Lynch, P.
2012-04-01
At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at high spatial resolution. To address the issue of model uncertainty, a Multi-Model Ensemble (MME) approach is used. The ensemble method uses different RCMs, driven by several Global Climate Models (GCMs), to simulate climate change. Through the MME approach, the uncertainty in the RCM projections is quantified, enabling us to estimate the probability density function of predicted changes, and providing a measure of confidence in the predictions. The RCMs were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCMs exhibit reasonable and realistic features as documented in the historical data record. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 GCM, the UK Met Office HadGEM2-ES GCM and the CGCM3.1 GCM from the Canadian Centre for Climate Modelling. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B, A2, B1, RCP 4.5 & RCP 8.5 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in precipitation and wind speed for the future winter months and a decrease during the summer months. The predicted annual change in temperature is approximately 1.1°C over Ireland. To date, all RCM projections are in general agreement, thus increasing our confidence in the robustness of the results.
NASA Astrophysics Data System (ADS)
Castro, C. L.; Dominguez, F.; Chang, H.
2010-12-01
Current seasonal climate forecasts and climate change projections of the North American monsoon are based on the use of course-scale information from a general circulation model. The global models, however, have substantial difficulty in resolving the regional scale forcing mechanisms of precipitation. This is especially true during the period of the North American Monsoon in the warm season. Precipitation is driven primarily due to the diurnal cycle of convection, and this process cannot be resolve in coarse-resolution global models that have a relatively poor representation of terrain. Though statistical downscaling may offer a relatively expedient method to generate information more appropriate for the regional scale, and is already being used in the resource decision making processes in the Southwest U.S., its main drawback is that it cannot account for a non-stationary climate. Here we demonstrate the use of a regional climate model, specifically the Weather Research and Forecast (WRF) model, for dynamical downscaling of the North American Monsoon. To drive the WRF simulations, we use retrospective reforecasts from the Climate Forecast System (CFS) model, the operational model used at the U.S. National Center for Environmental Prediction, and three select “well performing” IPCC AR 4 models for the A2 emission scenario. Though relatively computationally expensive, the use of WRF as a regional climate model in this way adds substantial value in the representation of the North American Monsoon. In both cases, the regional climate model captures a fairly realistic and reasonable monsoon, where none exists in the driving global model, and captures the dominant modes of precipitation anomalies associated with ENSO and the Pacific Decadal Oscillation (PDO). Long-term precipitation variability and trends in these simulations is considered via the standardized precipitation index (SPI), a commonly used metric to characterize long-term drought. Dynamically downscaled climate projection data will be integrated into future water resource projections in the state of Arizona, through a cooperative effort involving numerous water resource stakeholders.
Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles
NASA Astrophysics Data System (ADS)
Vergara-Temprado, Jesús; Miltenberger, Annette K.; Furtado, Kalli; Grosvenor, Daniel P.; Shipway, Ben J.; Hill, Adrian A.; Wilkinson, Jonathan M.; Field, Paul R.; Murray, Benjamin J.; Carslaw, Ken S.
2018-03-01
Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions.
Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles
Miltenberger, Annette K.; Furtado, Kalli; Grosvenor, Daniel P.; Shipway, Ben J.; Hill, Adrian A.; Wilkinson, Jonathan M.; Field, Paul R.
2018-01-01
Large biases in climate model simulations of cloud radiative properties over the Southern Ocean cause large errors in modeled sea surface temperatures, atmospheric circulation, and climate sensitivity. Here, we combine cloud-resolving model simulations with estimates of the concentration of ice-nucleating particles in this region to show that our simulated Southern Ocean clouds reflect far more radiation than predicted by global models, in agreement with satellite observations. Specifically, we show that the clouds that are most sensitive to the concentration of ice-nucleating particles are low-level mixed-phase clouds in the cold sectors of extratropical cyclones, which have previously been identified as a main contributor to the Southern Ocean radiation bias. The very low ice-nucleating particle concentrations that prevail over the Southern Ocean strongly suppress cloud droplet freezing, reduce precipitation, and enhance cloud reflectivity. The results help explain why a strong radiation bias occurs mainly in this remote region away from major sources of ice-nucleating particles. The results present a substantial challenge to climate models to be able to simulate realistic ice-nucleating particle concentrations and their effects under specific meteorological conditions. PMID:29490918
Shortwave forcing and feedbacks in Last Glacial Maximum and Mid-Holocene PMIP3 simulations.
Braconnot, Pascale; Kageyama, Masa
2015-11-13
Simulations of the climates of the Last Glacial Maximum (LGM), 21 000 years ago, and of the Mid-Holocene (MH), 6000 years ago, allow an analysis of climate feedbacks in climate states that are radically different from today. The analyses of cloud and surface albedo feedbacks show that the shortwave cloud feedback is a major driver of differences between model results. Similar behaviours appear when comparing the LGM and MH simulated changes, highlighting the fingerprint of model physics. Even though the different feedbacks show similarities between the different climate periods, the fact that their relative strength differs from one climate to the other prevents a direct comparison of past and future climate sensitivity. The land-surface feedback also shows large disparities among models even though they all produce positive sea-ice and snow feedbacks. Models have very different sensitivities when considering the vegetation feedback. This feedback has a regional pattern that differs significantly between models and depends on their level of complexity and model biases. Analyses of the MH climate in two versions of the IPSL model provide further indication on the possibilities to assess the role of model biases and model physics on simulated climate changes using past climates for which observations can be used to assess the model results. © 2015 The Author(s).
Linking the Weather Generator with Regional Climate Model: Effect of Higher Resolution
NASA Astrophysics Data System (ADS)
Dubrovsky, Martin; Huth, Radan; Farda, Ales; Skalak, Petr
2014-05-01
This contribution builds on our last year EGU contribution, which followed two aims: (i) validation of the simulations of the present climate made by the ALADIN-Climate Regional Climate Model (RCM) at 25 km resolution, and (ii) presenting a methodology for linking the parametric weather generator (WG) with RCM output (aiming to calibrate a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations). Now we have available new higher-resolution (6.25 km) simulations with the same RCM. The main topic of this contribution is an anser to a following question: What is an effect of using a higher spatial resolution on a quality of simulating the surface weather characteristics? In the first part, the high resolution RCM simulation of the present climate will be validated in terms of selected WG parameters, which are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series. When comparing the WG parameters from the two sources (RCM vs observations), we interpolate the RCM-based parameters into the station locations while accounting for the effect of altitude. In the second part, we will discuss an effect of using the higher resolution: the results of the validation tests will be compared with those obtained with the lower-resolution RCM. Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102 action).
Herrmann, Frank; Baghdadi, Nicolas; Blaschek, Michael; Deidda, Roberto; Duttmann, Rainer; La Jeunesse, Isabelle; Sellami, Haykel; Vereecken, Harry; Wendland, Frank
2016-02-01
We used observed climate data, an ensemble of four GCM-RCM combinations (global and regional climate models) and the water balance model mGROWA to estimate present and future groundwater recharge for the intensively-used Thau lagoon catchment in southern France. In addition to a highly resolved soil map, soil moisture distributions obtained from SAR-images (Synthetic Aperture Radar) were used to derive the spatial distribution of soil parameters covering the full simulation domain. Doing so helped us to assess the impact of different soil parameter sources on the modelled groundwater recharge levels. Groundwater recharge was simulated in monthly time steps using the ensemble approach and analysed in its spatial and temporal variability. The soil parameters originating from both sources led to very similar groundwater recharge rates, proving that soil parameters derived from SAR images may replace traditionally used soil maps in regions where soil maps are sparse or missing. Additionally, we showed that the variance in different GCM-RCMs influences the projected magnitude of future groundwater recharge change significantly more than the variance in the soil parameter distributions derived from the two different sources. For the period between 1950 and 2100, climate change impacts based on the climate model ensemble indicated that overall groundwater recharge will possibly show a low to moderate decrease in the Thau catchment. However, as no clear trend resulted from the ensemble simulations, reliable recommendations for adapting the regional groundwater management to changed available groundwater volumes could not be derived. Copyright © 2015 Elsevier B.V. All rights reserved.
Comparison of Radiative Energy Flows in Observational Datasets and Climate Modeling
NASA Technical Reports Server (NTRS)
Raschke, Ehrhard; Kinne, Stefan; Rossow, William B.; Stackhouse, Paul W. Jr.; Wild, Martin
2016-01-01
This study examines radiative flux distributions and local spread of values from three major observational datasets (CERES, ISCCP, and SRB) and compares them with results from climate modeling (CMIP3). Examinations of the spread and differences also differentiate among contributions from cloudy and clear-sky conditions. The spread among observational datasets is in large part caused by noncloud ancillary data. Average differences of at least 10Wm(exp -2) each for clear-sky downward solar, upward solar, and upward infrared fluxes at the surface demonstrate via spatial difference patterns major differences in assumptions for atmospheric aerosol, solar surface albedo and surface temperature, and/or emittance in observational datasets. At the top of the atmosphere (TOA), observational datasets are less influenced by the ancillary data errors than at the surface. Comparisons of spatial radiative flux distributions at the TOA between observations and climate modeling indicate large deficiencies in the strength and distribution of model-simulated cloud radiative effects. Differences are largest for lower-altitude clouds over low-latitude oceans. Global modeling simulates stronger cloud radiative effects (CRE) by +30Wmexp -2) over trade wind cumulus regions, yet smaller CRE by about -30Wm(exp -2) over (smaller in area) stratocumulus regions. At the surface, climate modeling simulates on average about 15Wm(exp -2) smaller radiative net flux imbalances, as if climate modeling underestimates latent heat release (and precipitation). Relative to observational datasets, simulated surface net fluxes are particularly lower over oceanic trade wind regions (where global modeling tends to overestimate the radiative impact of clouds). Still, with the uncertainty in noncloud ancillary data, observational data do not establish a reliable reference.
Objective calibration of regional climate models
NASA Astrophysics Data System (ADS)
Bellprat, O.; Kotlarski, S.; Lüthi, D.; SchäR, C.
2012-12-01
Climate models are subject to high parametric uncertainty induced by poorly confined model parameters of parameterized physical processes. Uncertain model parameters are typically calibrated in order to increase the agreement of the model with available observations. The common practice is to adjust uncertain model parameters manually, often referred to as expert tuning, which lacks objectivity and transparency in the use of observations. These shortcomings often haze model inter-comparisons and hinder the implementation of new model parameterizations. Methods which would allow to systematically calibrate model parameters are unfortunately often not applicable to state-of-the-art climate models, due to computational constraints facing the high dimensionality and non-linearity of the problem. Here we present an approach to objectively calibrate a regional climate model, using reanalysis driven simulations and building upon a quadratic metamodel presented by Neelin et al. (2010) that serves as a computationally cheap surrogate of the model. Five model parameters originating from different parameterizations are selected for the optimization according to their influence on the model performance. The metamodel accurately estimates spatial averages of 2 m temperature, precipitation and total cloud cover, with an uncertainty of similar magnitude as the internal variability of the regional climate model. The non-linearities of the parameter perturbations are well captured, such that only a limited number of 20-50 simulations are needed to estimate optimal parameter settings. Parameter interactions are small, which allows to further reduce the number of simulations. In comparison to an ensemble of the same model which has undergone expert tuning, the calibration yields similar optimal model configurations, but leading to an additional reduction of the model error. The performance range captured is much wider than sampled with the expert-tuned ensemble and the presented methodology is effective and objective. It is argued that objective calibration is an attractive tool and could become standard procedure after introducing new model implementations, or after a spatial transfer of a regional climate model. Objective calibration of parameterizations with regional models could also serve as a strategy toward improving parameterization packages of global climate models.
Land radiative management as contributor to regional-scale climate adaptation and mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seneviratne, Sonia I.; Phipps, Steven J.; Pitman, Andrew J.
The urgency to reduce greenhouse gas emissions has been recognized, but the goal of limiting global temperature rise “well below 2 degrees” and possibly down to 1.5°C remains highly challenging, despite the large regional consequences. Slow progress in the reduction of CO2 emissions have led to the discussion of climate engineering schemes,, which remain controversial within the climate research communityIn particular, the reduction of global mean temperature via solar radiation management (SRMglob) could lead to strong regional disparities. Here we show, based on a literature review and climate model simulations, that regional land radiative management (LRMreg), a generally little-considered optionmore » in assessments of climate engineering could help reduce warming (and in particular hot extremes) in densely populated and major agricultural land regions. Several ethical issues would remain with the application of LRMreg, and its efficacy would also be limited in time and space related to crop growing periods and constraints on agricultural management. However, through its regional focus and reliance on tested techniques, LRMreg avoids main shortcomings associated with SRMglob. We argue therefore that albedo-related climate benefits of land management should be considered when assessing ecosystem services and integrated in scenarios of regional-scale climate adaptation and mitigation.« less
Garcia, Elizabeth S; Swann, Abigail L S; Villegas, Juan C; Breshears, David D; Law, Darin J; Saleska, Scott R; Stark, Scott C
2016-01-01
Forest loss in hotspots around the world impacts not only local climate where loss occurs, but also influences climate and vegetation in remote parts of the globe through ecoclimate teleconnections. The magnitude and mechanism of remote impacts likely depends on the location and distribution of forest loss hotspots, but the nature of these dependencies has not been investigated. We use global climate model simulations to estimate the distribution of ecologically-relevant climate changes resulting from forest loss in two hotspot regions: western North America (wNA), which is experiencing accelerated dieoff, and the Amazon basin, which is subject to high rates of deforestation. The remote climatic and ecological net effects of simultaneous forest loss in both regions differed from the combined effects of loss from the two regions simulated separately, as evident in three impacted areas. Eastern South American Gross Primary Productivity (GPP) increased due to changes in seasonal rainfall associated with Amazon forest loss and changes in temperature related to wNA forest loss. Eurasia's GPP declined with wNA forest loss due to cooling temperatures increasing soil ice volume. Southeastern North American productivity increased with simultaneous forest loss, but declined with only wNA forest loss due to changes in VPD. Our results illustrate the need for a new generation of local-to-global scale analyses to identify potential ecoclimate teleconnections, their underlying mechanisms, and most importantly, their synergistic interactions, to predict the responses to increasing forest loss under future land use change and climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sands, Ronald D.; Edmonds, James A.
PNNL's Agriculture and Land Use (AgLU) model is used to demonstrate the impact of potential changes in climate on agricultural production and land use in the United States. AgLU simulates production of four crop types in several world regions, in 15-year time steps from 1990 to 2095. Changes in yield of major field crops in the United States, for 12 climate scenarios, are obtained from simulations of the EPIC crop growth model. Results from the HUMUS model are used to constrain crop irrigation, and the BIOME3 model is used to simulate productivity of unmanaged ecosystems. Assumptions about changes in agriculturalmore » productivity outside the United States are treated on a scenario basis, either responding in the same way as in the United States, or not responding to climate.« less
NASA Astrophysics Data System (ADS)
Ivanov, Martin; Warrach-Sagi, Kirsten; Wulfmeyer, Volker
2018-04-01
A new approach for rigorous spatial analysis of the downscaling performance of regional climate model (RCM) simulations is introduced. It is based on a multiple comparison of the local tests at the grid cells and is also known as `field' or `global' significance. The block length for the local resampling tests is precisely determined to adequately account for the time series structure. New performance measures for estimating the added value of downscaled data relative to the large-scale forcing fields are developed. The methodology is exemplarily applied to a standard EURO-CORDEX hindcast simulation with the Weather Research and Forecasting (WRF) model coupled with the land surface model NOAH at 0.11 ∘ grid resolution. Daily precipitation climatology for the 1990-2009 period is analysed for Germany for winter and summer in comparison with high-resolution gridded observations from the German Weather Service. The field significance test controls the proportion of falsely rejected local tests in a meaningful way and is robust to spatial dependence. Hence, the spatial patterns of the statistically significant local tests are also meaningful. We interpret them from a process-oriented perspective. While the downscaled precipitation distributions are statistically indistinguishable from the observed ones in most regions in summer, the biases of some distribution characteristics are significant over large areas in winter. WRF-NOAH generates appropriate stationary fine-scale climate features in the daily precipitation field over regions of complex topography in both seasons and appropriate transient fine-scale features almost everywhere in summer. As the added value of global climate model (GCM)-driven simulations cannot be smaller than this perfect-boundary estimate, this work demonstrates in a rigorous manner the clear additional value of dynamical downscaling over global climate simulations. The evaluation methodology has a broad spectrum of applicability as it is distribution-free, robust to spatial dependence, and accounts for time series structure.
A Risk-Based Framework for Assessing the Effectiveness of Stratospheric Aerosol Geoengineering
Ferraro, Angus J.; Charlton-Perez, Andrew J.; Highwood, Eleanor J.
2014-01-01
Geoengineering by stratospheric aerosol injection has been proposed as a policy response to warming from human emissions of greenhouse gases, but it may produce unequal regional impacts. We present a simple, intuitive risk-based framework for classifying these impacts according to whether geoengineering increases or decreases the risk of substantial climate change, with further classification by the level of existing risk from climate change from increasing carbon dioxide concentrations. This framework is applied to two climate model simulations of geoengineering counterbalancing the surface warming produced by a quadrupling of carbon dioxide concentrations, with one using a layer of sulphate aerosol in the lower stratosphere, and the other a reduction in total solar irradiance. The solar dimming model simulation shows less regional inequality of impacts compared with the aerosol geoengineering simulation. In the solar dimming simulation, 10% of the Earth's surface area, containing 10% of its population and 11% of its gross domestic product, experiences greater risk of substantial precipitation changes under geoengineering than under enhanced carbon dioxide concentrations. In the aerosol geoengineering simulation the increased risk of substantial precipitation change is experienced by 42% of Earth's surface area, containing 36% of its population and 60% of its gross domestic product. PMID:24533155
Potential climatic impacts of vegetation change: A regional modeling study
NASA Astrophysics Data System (ADS)
Copeland, Jeffrey H.; Pielke, Roger A.; Kittel, Timothy G. F.
1996-03-01
The human species has been modifying the landscape long before the development of modern agrarian techniques. Much of the land area of the conterminous United States is currently used for agricultural production. In certain regions this change in vegetative cover from its natural state may have led to local climatic change. A regional climate version of the Colorado State University Regional Atmospheric Modeling System was used to assess the impact of a natural versus current vegetation distribution on the weather and climate of July 1989. The results indicate that coherent regions of substantial changes, of both positive and negative sign, in screen height temperature, humidity, wind speed, and precipitation are a possible consequence of land use change throughout the United States. The simulated changes in the screen height quantities were closely related to changes in the vegetation parameters of albedo, roughness length, leaf area index, and fractional coverage.
Potential climatic impacts of vegetation change: A regional modeling study
Copeland, J.H.; Pielke, R.A.; Kittel, T.G.F.
1996-01-01
The human species has been modifying the landscape long before the development of modern agrarian techniques. Much of the land area of the conterminous United States is currently used for agricultural production. In certain regions this change in vegetative cover from its natural state may have led to local climatic change. A regional climate version of the Colorado State University Regional Atmospheric Modeling System was used to assess the impact of a natural versus current vegetation distribution on the weather and climate of July 1989. The results indicate that coherent regions of substantial changes, of both positive and negative sign, in screen height temperature, humidity, wind speed, and precipitation are a possible consequence of land use change throughout the United States. The simulated changes in the screen height quantities were closely related to changes in the vegetation parameters of albedo, roughness length, leaf area index, and fractional coverage. Copyright 1996 by the American Geophysical Union.
Potential effects of climate change on ground water in Lansing, Michigan
Croley, T.E.; Luukkonen, C.L.
2003-01-01
Computer simulations involving general circulation models, a hydrologic modeling system, and a ground water flow model indicate potential impacts of selected climate change projections on ground water levels in the Lansing, Michigan, area. General circulation models developed by the Canadian Climate Centre and the Hadley Centre generated meteorology estimates for 1961 through 1990 (as a reference condition) and for the 20 years centered on 2030 (as a changed climate condition). Using these meteorology estimates, the Great Lakes Environmental Research Laboratory's hydrologic modeling system produced corresponding period streamflow simulations. Ground water recharge was estimated from the streamflow simulations and from variables derived from the general circulation models. The U.S. Geological Survey developed a numerical ground water flow model of the Saginaw and glacial aquifers in the Tri-County region surrounding Lansing, Michigan. Model simulations, using the ground water recharge estimates, indicate changes in ground water levels. Within the Lansing area, simulated ground water levels in the Saginaw aquifer declined under the Canadian predictions and increased under the Hadley.
Baruffi, F; Cisotto, A; Cimolino, A; Ferri, M; Monego, M; Norbiato, D; Cappelletto, M; Bisaglia, M; Pretner, A; Galli, A; Scarinci, A; Marsala, V; Panelli, C; Gualdi, S; Bucchignani, E; Torresan, S; Pasini, S; Critto, A; Marcomini, A
2012-12-01
Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life+ project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961-1990 and the projection period 2010-2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071-2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble produced information about the potential variations of the water balance components (e.g. river discharge, groundwater level and volume) due to climate change. Such projections were used to develop potential hazard scenarios for the case study area, to be further applied within climate change risk assessment studies for groundwater resources and associated ecosystems. This paper describes the models' chain and the methodological approach adopted in the TRUST project and analyzes the hazard scenarios produced in order to investigate climate change risks for the case study area. Copyright © 2012 Elsevier B.V. All rights reserved.
Uncertain soil moisture feedbacks in model projections of Sahel precipitation
NASA Astrophysics Data System (ADS)
Berg, Alexis; Lintner, Benjamin R.; Findell, Kirsten; Giannini, Alessandra
2017-06-01
Given the uncertainties in climate model projections of Sahel precipitation, at the northern edge of the West African Monsoon, understanding the factors governing projected precipitation changes in this semiarid region is crucial. This study investigates how long-term soil moisture changes projected under climate change may feedback on projected changes of Sahel rainfall, using simulations with and without soil moisture change from five climate models participating in the Global Land Atmosphere Coupling Experiment-Coupled Model Intercomparison Project phase 5 experiment. In four out of five models analyzed, soil moisture feedbacks significantly influence the projected West African precipitation response to warming; however, the sign of these feedbacks differs across the models. These results demonstrate that reducing uncertainties across model projections of the West African Monsoon requires, among other factors, improved mechanistic understanding and constraint of simulated land-atmosphere feedbacks, even at the large spatial scales considered here.
Muslim, Mohammad; Romshoo, Shakil Ahmad; Rather, A Q
2015-06-01
The Kashmir Himalayan region of India is expected to be highly prone to the change in agricultural land use because of its geo-ecological fragility, strategic location vis-à-vis the Himalayan landscape, its trans-boundary river basins, and inherent socio-economic instabilities. Food security and sustainability of the region are thus greatly challenged by these impacts. The effect of future climate change, increased competition for land and water, labor from non-agricultural sectors, and increasing population adds to this complex problem. In current study, paddy rice yield at regional level was estimated using GIS-based environment policy integrated climate (GEPIC) model. The general approach of current study involved combining regional level crop database, regional soil data base, farm management data, and climatic data outputs with GEPIC model. The simulated yield showed that estimated production to be 4305.55 kg/ha (43.05 q h(-1)). The crop varieties like Jhelum, K-39, Chenab, China 1039, China-1007, and Shalimar rice-1 grown in plains recorded average yield of 4783.3 kg/ha (47.83 q ha(-1)). Meanwhile, high altitude areas with varieties like Kohsaar, K-78 (Barkat), and K-332 recorded yield of 4102.2 kg/ha (41.02 q ha(-1)). The observed and simulated yield showed a good match with R (2) = 0.95, RMSE = 132.24 kg/ha, respectively.
NASA Astrophysics Data System (ADS)
Hawkins, L. R.; Rupp, D. E.; Li, S.; Mote, P.; Sparrow, S.; Massey, N.
2016-12-01
The forests of western North America serve as a carbon sink sequestering carbon and slowing the rise of CO2 in the atmosphere. Though still positive, the rate of net carbon uptake has been in decline over the past two decades. Regional drought has been shown to slow forest productivity and net carbon uptake despite warmer temperatures and longer growing seasons. With drought conditions projected to increase in frequency and severity under climate change there is concern that these forests' capacity as an effective carbon sink will continue to decrease in the future. To investigate how changes in regional hydroclimate may affect future carbon uptake in western US forests we dynamically downscaled global climate simulations using a 25-km resolution regional climate model HadRM3P with the land surface scheme MOSES2. We generated a 100-member ensemble of simulations for an historical period (1985-2015) and mid-21st century period (2030-2060) under Representative Concentration Pathway 8.5. We evaluated the effects of regional changes in atmospheric moisture demand, seasonality of water supply, and water stress on forest productivity and carbon uptake. We investigated how these changes in hydroclimate interact with the relaxing of temperature controls. This work can inform future adaptation efforts through improving our understanding of climatic controls on forest carbon sequestration.
Regional Climate Variability Under Model Simulations of Solar Geoengineering
NASA Astrophysics Data System (ADS)
Dagon, Katherine; Schrag, Daniel P.
2017-11-01
Solar geoengineering has been shown in modeling studies to successfully mitigate global mean surface temperature changes from greenhouse warming. Changes in land surface hydrology are complicated by the direct effect of carbon dioxide (CO2) on vegetation, which alters the flux of water from the land surface to the atmosphere. Here we investigate changes in boreal summer climate variability under solar geoengineering using multiple ensembles of model simulations. We find that spatially uniform solar geoengineering creates a strong meridional gradient in the Northern Hemisphere temperature response, with less consistent patterns in precipitation, evapotranspiration, and soil moisture. Using regional summertime temperature and precipitation results across 31-member ensembles, we show a decrease in the frequency of heat waves and consecutive dry days under solar geoengineering relative to a high-CO2 world. However in some regions solar geoengineering of this amount does not completely reduce summer heat extremes relative to present day climate. In western Russia and Siberia, an increase in heat waves is connected to a decrease in surface soil moisture that favors persistent high temperatures. Heat waves decrease in the central United States and the Sahel, while the hydrologic response increases terrestrial water storage. Regional changes in soil moisture exhibit trends over time as the model adjusts to solar geoengineering, particularly in Siberia and the Sahel, leading to robust shifts in climate variance. These results suggest potential benefits and complications of large-scale uniform climate intervention schemes.
How does the sensitivity of climate affect stratospheric solar radiation management?
NASA Astrophysics Data System (ADS)
Ricke, K.; Rowlands, D. J.; Ingram, W.; Keith, D.; Morgan, M. G.
2011-12-01
If implementation of proposals to engineer the climate through solar radiation management (SRM) ever occurs, it is likely to be contingent upon climate sensitivity. Despite this, no modeling studies have examined how the effectiveness of SRM forcings differs between the typical Atmosphere-Ocean General Circulation Models (AOGCMs) with climate sensitivities close to the Coupled Model Intercomparison Project (CMIP) mean and ones with high climate sensitivities. Here, we use a perturbed physics ensemble modeling experiment to examine variations in the response of climate to SRM under different climate sensitivities. When SRM is used as a substitute for mitigation its ability to maintain the current climate state gets worse with increased climate sensitivity and with increased concentrations of greenhouse gases. However, our results also demonstrate that the potential of SRM to slow climate change, even at the regional level, grows with climate sensitivity. On average, SRM reduces regional rates of temperature change by more than 90 percent and rates of precipitation change by more than 50 percent in these higher sensitivity model configurations. To investigate how SRM might behave in models with high climate sensitivity that are also consistent with recent observed climate change we perform a "perturbed physics" ensemble (PPE) modelling experiment with the climateprediction.net (cpdn) version of the HadCM3L AOGCM. Like other perturbed physics climate modelling experiments, we simulate past and future climate scenarios using a wide range of model parameter combinations that both reproduce past climate within a specified level of accuracy and simulate future climates with a wide range of climate sensitivities. We chose 43 members ("model versions") from a subset of the 1,550 from the British Broadcasting Corporation (BBC) climateprediction.net project that have data that allow restarts. We use our results to explore how much assessments of SRM that use best-estimate models, and so near-median climate sensitivity, may be ignoring important contingencies associated with implementing SRM in reality. A primary motivation for studying SRM via the injection of aerosols in the stratosphere is to evaluate its potential effectiveness as "insurance" in the case of higher-than-expected climate response to global warming. We find that this is precisely when SRM appears to be least effective in returning regional climates to their baseline states and reducing regional rates of precipitation change. On the other hand, given the very high regional temperature anomalies associated with rising greenhouse gas concentrations in high sensitivity models, it is also where SRM is most effective in reducing rates of change relative to a no SRM alternative.
Regional Impacts of Urbanization in the United States
NASA Technical Reports Server (NTRS)
Bounoua, Lahouari; Zhang, Ping; Nigro, Joseph; Lachir, Asia; Thome, Kurtis
2017-01-01
We simulate the impact of impervious surface areas (ISA) on the U.S. local and regional climate. At a local scale, we find the urban area warmer than the surrounding vegetation in most cities, except in arid climate cities where urban temperature is cooler for much of the daytime. For all 9 regions studied, simulated results show that the growing season maximum surface temperature difference between urban and the dominant vegetation occurs around mid-day and is strongest in the northern regions. Regional temperature differences of 3.0 C, 3.4 C, and 3.9 C were simulated in the Northeast, Midwest, and Northwest, respectively. In these regions evaporative cooling, during the growing season, creates a stronger urban heat island (UHI). The UHI is less pronounced during winter when vegetation is dormant. Our results suggest that the ISA temperature is set by building material's characteristics and its departure from that of the surrounding vegetation is essentially driven by evaporative cooling. Except when rainfall is small, the highest surface runoff to precipitation ratios are simulated in most cities, especially when precipitation events occur as heavy downpours. In terms of photosynthesis, we provide a detailed distribution of maximum production in the U.S., a needed product for policy and urban planners.
NASA Astrophysics Data System (ADS)
Challinor, A. J.
2010-12-01
Recent progress in assessing the impacts of climate variability and change on crops using multiple regional-scale simulations of crop and climate (i.e. ensembles) is presented. Simulations for India and China used perturbed responses to elevated carbon dioxide constrained using observations from FACE studies and controlled environments. Simulations with crop parameter sets representing existing and potential future adapted varieties were also carried out. The results for India are compared to sensitivity tests on two other crop models. For China, a parallel approach used socio-economic data to account for autonomous farmer adaptation. Results for the USA analysed cardinal temperatures under a range of local warming scenarios for 2711 varieties of spring wheat. The results are as follows: 1. Quantifying and reducing uncertainty. The relative contribution of uncertainty in crop and climate simulation to the total uncertainty in projected yield changes is examined. The observational constraints from FACE and controlled environment studies are shown to be the likely critical factor in maintaining relatively low crop parameter uncertainty. Without these constraints, crop simulation uncertainty in a doubled CO2 environment would likely be greater than uncertainty in simulating climate. However, consensus across crop models in India varied across different biophysical processes. 2. The response of yield to changes in local mean temperature was examined and compared to that found in the literature. No consistent response to temperature change was found across studies. 3. Implications for adaptation. China. The simulations of spring wheat in China show the relative importance of tolerance to water and heat stress in avoiding future crop failures. The greatest potential for reducing the number of harvests less than one standard deviation below the baseline mean yield value comes from alleviating water stress; the greatest potential for reducing harvests less than two standard deviations below the mean comes from alleviation of heat stress. The socio-economic analysis suggests that adaptation is also possible through measures such as greater investment. India. The simulations of groundnut in India identified regions where heat stress will play an increasing role in limiting crop yields, and other regions where crops with greater thermal time requirement will be needed. The simulations were used, together with an observed dataset and a simple analysis of crop cardinal temperatures and thermal time, to estimate the potential for adaptation using existing cultivars. USA. Analysis of spring wheat in the USA showed that at +2oC of local warming, 87% of the 2711 varieties examined, and all of the five most common varieties, could be used to maintain the crop duration of the current climate (i.e. successful adaptation to mean warming). At +4o this fell to 54% of all varieties, and two of the top five. 4. Future research. The results, and the limitations of the study, suggest directions for research to link climate and crop models, socio-economic analyses and crop variety trial data in order to prioritise adaptation options such as capacity building, plant breeding and biotechnology.
The impact of climate change on surface level ozone is examined through a multi-scale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the Relative Response Factor (RRFE), which es...
Regional Climate Change Assessment Program (NARCCAP) Related Info CM2.1 experiments (6hr data) AM2.1 : oar.gfdl.webmaster-data1@ Spotlight on NOMADS NOMADS is being developed as a Unified Climate and Weather Archive to observed and simulated data to the climate and weather communities. The infrastructure created within GO
NASA Astrophysics Data System (ADS)
Berman, Ana Laura; Silvestri, Gabriel E.; Tonello, Marcela S.
2018-04-01
Differences between climate conditions during the Last Glacial Maximum (LGM) and the Mid-Holocene (MH) in southern South America inferred from the state-of-the-art PMIP3 paleoclimatic simulations are described for the first time in this paper. The aim is to expose characteristics of past climate changes occurred without human influence. In this context, numerical simulations are an indispensable tool for inferring changes in near-surface air temperature and precipitation in regions where proxy information is scarce or absent. The analyzed PMIP3 models describe MH temperatures significantly warmer than those of LGM with magnitudes of change depending on the season and the specific geographic region. In addition, models indicate that seasonal mean precipitation during MH increased with respect to LGM values in wide southern continental areas to the east of the Andes Cordillera whereas seasonal precipitation developed in areas to the west of Patagonian Andes reduced from LGM to MH.