Sample records for simulated solar heating

  1. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    NASA Astrophysics Data System (ADS)

    Januševičius, Karolis; Streckienė, Giedrė

    2013-12-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.

  2. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep

    2017-04-01

    In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.

  3. Economic analysis of solar-heated broiler houses in Arkanasas. [Simulation study of 4 locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunderson, R.O.

    A simulation study of the heating energy requirements was made for a prototype broiler house for four locations in Arkansas. In addition, a simulation of the operation of four solar heating systems was made to determine the amount of solar radiation which was available at each location and the portion of the building heat load which could be accounted for by the solar heating systems. The major objectives of this study were: (1) to calculate the heating energy requirements for a broiler house and the supply of solar radiation for four locations in Arkansas: Little Rock, texarkana, Fort Smith andmore » Fayetteville, (2) calculate the auxiliary fuel requirements for each location in the study and for each heating system under examination, (3) compare the cost of a conventional heating system versus the cost of a solar-assisted heating system, and (4) examine the relative financial position of the broiler enterprise amine the relative financial position of the broiler enterprise for each heating system under a variety of economic assumptions.« less

  4. Simulation and optimization study of a solar seasonal storage district heating system: the Fox River Valley case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaels, A.I.; Sillman, S.; Baylin, F.

    1983-05-01

    A central solar-heating plant with seasonal heat storage in a deep underground aquifer is designed by means of a solar-seasonal-storage-system simulation code based on the Solar Energy Research Institute (SERI) code for Solar Annual Storage Simulation (SASS). This Solar Seasonal Storage Plant is designed to supply close to 100% of the annual heating and domestic-hot-water (DHW) load of a hypothetical new community, the Fox River Valley Project, for a location in Madison, Wisconsin. Some analyses are also carried out for Boston, Massachusetts and Copenhagen, Denmark, as an indication of weather and insolation effects. Analyses are conducted for five different typesmore » of solar collectors, and for an alternate system utilizing seasonal storage in a large water tank. Predicted seasonal performance and system and storage costs are calculated. To provide some validation of the SASS results, a simulation of the solar system with seasonal storage in a large water tank is also carried out with a modified version of the Swedish Solar Seasonal Storage Code MINSUN.« less

  5. Simulation and economic analysis of a liquid-based solar system with a direct-contact liquid-liquid heat exchanger, in comparison to a system with a conventional heat exchanger

    NASA Astrophysics Data System (ADS)

    Brothers, P.; Karaki, S.

    Using a solar computer simulation package called TRNSYS, simulations of the direct contact liquid-liquid heat exchanger (DCLLHE) solar system and a system with conventional shell-and-tube heat exchanger were developed, based in part on performance measurements of the actual systems. The two systems were simulated over a full year on an hour-by-hour basis at five locations; Boston, Massachusetts, Charleston, South Carolina, Dodge City, Kansas, Madison, Wisconsin, and Phoenix, Arizona. Typically the direct-contact system supplies slightly more heat for domestic hot water and space heating in all locations and about 5 percentage points more cooling as compared to the conventional system. Using a common set of economic parameters and the appropriate federal and state income tax credits, as well as property tax legislation for solar systems in the corresponding states, the results of the study indicate for heating-only systems, the DCLLHE system has a slight life-cycle cost disadvantage compared to the conventional system. For combined solar heating and cooling systems, the DCLLHE has a slight life-cycle cost advantage which varies with location and amounts to one to three percent difference from the conventional system.

  6. A solar air collector with integrated latent heat thermal storage

    NASA Astrophysics Data System (ADS)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  7. HEAP: Heat Energy Analysis Program, a computer model simulating solar receivers. [solving the heat transfer problem

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1979-01-01

    A computer program which can distinguish between different receiver designs, and predict transient performance under variable solar flux, or ambient temperatures, etc. has a basic structure that fits a general heat transfer problem, but with specific features that are custom-made for solar receivers. The code is written in MBASIC computer language. The methodology followed in solving the heat transfer problem is explained. A program flow chart, an explanation of input and output tables, and an example of the simulation of a cavity-type solar receiver are included.

  8. Perpendicular and Parallel Ion Stochastic Heating by Kinetic Alfvén Wave Turbulence in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Hoppock, I. W.; Chandran, B. D. G.

    2017-12-01

    The dissipation of turbulence is a prime candidate to explain the heating of collisionless plasmas like the solar wind. We consider the heating of protons and alpha particles using test particle simulations with a broad spectrum of randomly phased kinetic Alfvén waves (KAWs). Previous research extensively simulated and analytically considered stochastic heating at low plasma beta for conditions similar to coronal holes and the near-sun solar wind. We verify the analytical models of proton and alpha particle heating rates, and extend these simulations to plasmas with beta of order unity like in the solar wind at 1 au. Furthermore, we consider cases with very large beta of order 100, relevant to other astrophysical plasmas. We explore the parameter dependency of the critical KAW amplitude that breaks the gyro-center approximation and leads to stochastic gyro-orbits of the particles. Our results suggest that stochastic heating by KAW turbulence is an efficient heating mechanisms for moderate to high beta plasmas.

  9. Performance analysis of solar-assisted chemical heat-pump dryer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fadhel, M.I.; Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka; Sopian, K.

    2010-11-15

    A solar-assisted chemical heat-pump dryer has been designed, fabricated and tested. The performance of the system has been studied under the meteorological conditions of Malaysia. The system consists of four main components: solar collector (evacuated tubes type), storage tank, solid-gas chemical heat pump unit and dryer chamber. A solid-gas chemical heat pump unit consists of reactor, condenser and evaporator. The reaction used in this study (CaCl2-NH{sub 3}). A simulation has been developed, and the predicted results are compared with those obtained from experiments. The maximum efficiency for evacuated tubes solar collector of 80% has been predicted against the maximum experimentmore » of 74%. The maximum values of solar fraction from the simulation and experiment are 0.795 and 0.713, respectively, whereas the coefficient of performance of chemical heat pump (COP{sup h}) maximum values 2.2 and 2 are obtained from simulation and experiments, respectively. The results show that any reduction of energy at condenser as a result of the decrease in solar radiation will decrease the coefficient of performance of chemical heat pump as well as decrease the efficiency of drying. (author)« less

  10. Influence of heating rate on the condensational instability. [in outer layers of solar atmosphere

    NASA Technical Reports Server (NTRS)

    Dahlburg, R. B.; Mariska, J. T.

    1988-01-01

    Analysis and numerical simulation are used to determine the effect that various heating rates have on the linear and nonlinear evolution of a typical plasma within a solar magnetic flux tube subject to the condensational instability. It is found that linear stability depends strongly on the heating rate. The results of numerical simulations of the nonlinear evolution of the condensational instability in a solar magnetic flux tube are presented. Different heating rates lead to quite different nonlinear evolutions, as evidenced by the behavior of the global internal energy.

  11. Simulation of an active solar energy system integrated in a passive building in order to obtain system efficiency

    NASA Astrophysics Data System (ADS)

    Ceacaru, Mihai C.

    2012-11-01

    In this work we present a simulation of an active solar energy system. This system belongs to the first passive office building (2086 square meters) in Romania and it is used for water heating consumption. This office building was opened in February 2009 and was built based on passive house design solutions. For this simulation, we use Solar Water Heating module, which belongs to the software RETSCREEN and this simulation is done for several cities in Romania. Results obtained will be compared graphically.

  12. Determination of Thermal State of Charge in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Glakpe, E. K.; Cannon, J. N.; Hall, C. A., III; Grimmett, I. W.

    1996-01-01

    The research project at Howard University seeks to develop analytical and numerical capabilities to study heat transfer and fluid flow characteristics, and the prediction of the performance of solar heat receivers for space applications. Specifically, the study seeks to elucidate the effects of internal and external thermal radiation, geometrical and applicable dimensionless parameters on the overall heat transfer in space solar heat receivers. Over the last year, a procedure for the characterization of the state-of-charge (SOC) in solar heat receivers for space applications has been developed. By identifying the various factors that affect the SOC, a dimensional analysis is performed resulting in a number of dimensionless groups of parameters. Although not accomplished during the first phase of the research, data generated from a thermal simulation program can be used to determine values of the dimensionless parameters and the state-of-charge and thereby obtain a correlation for the SOC. The simulation program selected for the purpose is HOTTube, a thermal numerical computer code based on a transient time-explicit, axisymmetric model of the total solar heat receiver. Simulation results obtained with the computer program are presented the minimum and maximum insolation orbits. In the absence of any validation of the code with experimental data, results from HOTTube appear reasonable qualitatively in representing the physical situations modeled.

  13. Synergistic effect of heat and solar UV on DNA damage and water disinfection of E. coli and bacteriophage MS2.

    PubMed

    Theitler, Dana Jennifer; Nasser, Abid; Gerchman, Yoram; Kribus, Abraham; Mamane, Hadas

    2012-12-01

    The response of a representative virus and indicator bacteria to heating, solar irradiation, or their combination, was investigated in a controlled solar simulator and under real sun conditions. Heating showed higher inactivation of Escherichia coli compared to the bacteriophage MS2. Heating combined with natural or simulated solar irradiation demonstrated a synergistic effect on the inactivation of E. coli, with up to 3-log difference for 50 °C and natural sun insolation of 2,000 kJ m(-2) (compared to the sum of the separate treatments). Similar synergistic effect was also evident when solar-UV induced DNA damage to E. coli was assessed using the endonuclease sensitive site assay (ESS). MS2 was found to be highly resistant to irradiation and heat, with a slightly synergistic effect observed only at 59 °C and natural sun insolation of 5,580 kJ m(-2). Heat treatment also hindered light-dependent recovery of E. coli making the treatment much more effective.

  14. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  15. Performance simulation for the design of solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Mccormick, P. O.

    1975-01-01

    Suitable approaches for evaluating the performance and the cost of a solar heating and cooling system are considered, taking into account the value of a computer simulation concerning the entire system in connection with the large number of parameters involved. Operational relations concerning the collector efficiency in the case of a new improved collector and a reference collector are presented in a graph. Total costs for solar and conventional heating, ventilation, and air conditioning systems as a function of time are shown in another graph.

  16. Modeling of solar polygeneration plant

    NASA Astrophysics Data System (ADS)

    Leiva, Roberto; Escobar, Rodrigo; Cardemil, José

    2017-06-01

    In this work, a exergoeconomic analysis of the joint production of electricity, fresh water, cooling and process heat for a simulated concentrated solar power (CSP) based on parabolic trough collector (PTC) with thermal energy storage (TES) and backup energy system (BS), a multi-effect distillation (MED) module, a refrigeration absorption module, and process heat module is carried out. Polygeneration plant is simulated in northern Chile in Crucero with a yearly total DNI of 3,389 kWh/m2/year. The methodology includes designing and modeling a polygeneration plant and applying exergoeconomic evaluations and calculating levelized cost. Solar polygeneration plant is simulated hourly, in a typical meteorological year, for different solar multiple and hour of storage. This study reveals that the total exergy cost rate of products (sum of exergy cost rate of electricity, water, cooling and heat process) is an alternative method to optimize a solar polygeneration plant.

  17. Guidebook for solar process-heat applications

    NASA Astrophysics Data System (ADS)

    Fazzolare, R.; Mignon, G.; Campoy, L.; Luttmann, F.

    1981-01-01

    The potential for solar process heat in Arizona and some of the general technical aspects of solar, such as insolation, siting, and process analysis are explored. Major aspects of a solar plant design are presented. Collectors, storage, and heat exchange are discussed. Reducing hardware costs to annual dollar benefits is also discussed. Rate of return, cash flow, and payback are discussed as they relate to solar systems. Design analysis procedures are presented. The design cost optimization techniques using a yearly computer simulation of a solar process operation is demonstrated.

  18. Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas

    NASA Technical Reports Server (NTRS)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2003-01-01

    The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.

  19. Magnetically Modulated Heat Transport in a Global Simulation of Solar Magneto-convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cossette, Jean-Francois; Charbonneau, Paul; Smolarkiewicz, Piotr K.

    We present results from a global MHD simulation of solar convection in which the heat transported by convective flows varies in-phase with the total magnetic energy. The purely random initial magnetic field specified in this experiment develops into a well-organized large-scale antisymmetric component undergoing hemispherically synchronized polarity reversals on a 40 year period. A key feature of the simulation is the use of a Newtonian cooling term in the entropy equation to maintain a convectively unstable stratification and drive convection, as opposed to the specification of heating and cooling terms at the bottom and top boundaries. When taken together, themore » solar-like magnetic cycle and the convective heat flux signature suggest that a cyclic modulation of the large-scale heat-carrying convective flows could be operating inside the real Sun. We carry out an analysis of the entropy and momentum equations to uncover the physical mechanism responsible for the enhanced heat transport. The analysis suggests that the modulation is caused by a magnetic tension imbalance inside upflows and downflows, which perturbs their respective contributions to heat transport in such a way as to enhance the total convective heat flux at cycle maximum. Potential consequences of the heat transport modulation for solar irradiance variability are briefly discussed.« less

  20. Application of solar energy; Proceedings of the Third Southeastern Conference, Huntsville, Ala., April 17-19, 1978

    NASA Technical Reports Server (NTRS)

    Wu, S. T. (Editor); Christensen, D. L.; Head, R. R.

    1978-01-01

    Demonstration projects, systems-subsystems simulation programs, applications (heating, cooling, agricultural, industrial), and climatic data testing (standards, economics, institutional) are the topics of the book. Economics of preheating water for commercial use and collecting, processing, and dissemination of data for the national demonstration program are discussed. Computer simulation of a solar energy system and graphical representation of solar collector performance are considered. Attention is given to solar driven heat pumps, solar cooling equipment, hybrid passive/active solar systems, and solar farm buildings. Evaluation of a thermographic scanning device for solar energy and conservation applications, use of meteorological data in system evaluation, and biomass conversion potential are presented.

  1. Development of flat-plate solar collectors for the heating and cooling of buildings

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.

    1975-01-01

    The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.

  2. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... heat loading. (1)(i) Acceptable types of radiant energy emitters that may be used for simulating solar... this section. (3) Radiant energy specifications. (i) Simulated solar radiant energy intensity is... time major changes in the solar simulation hardware occur. (vi) The radiant energy intensity...

  3. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... heat loading. (1)(i) Acceptable types of radiant energy emitters that may be used for simulating solar... this section. (3) Radiant energy specifications. (i) Simulated solar radiant energy intensity is... time major changes in the solar simulation hardware occur. (vi) The radiant energy intensity...

  4. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... heat loading. (1)(i) Acceptable types of radiant energy emitters that may be used for simulating solar... this section. (3) Radiant energy specifications. (i) Simulated solar radiant energy intensity is... time major changes in the solar simulation hardware occur. (vi) The radiant energy intensity...

  5. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... heat loading. (1)(i) Acceptable types of radiant energy emitters that may be used for simulating solar... this section. (3) Radiant energy specifications. (i) Simulated solar radiant energy intensity is... time major changes in the solar simulation hardware occur. (vi) The radiant energy intensity...

  6. Comparison of ground-coupled solar-heat-pump systems to conventional systems for residential heating, cooling and water heating

    NASA Astrophysics Data System (ADS)

    Choi, M. K.; Morehouse, J. H.; Hughes, P. J.

    1981-07-01

    An analysis is performed of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating is determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, DC; Fort Worth, Texas; and Madison, Wisconsin. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Fort Worth. Though the ground-coupled stand-alone heat pump provides 51 percent of the heating and cooling load with non-purchased energy in Fort Worth, its thermal performance in Washington and Madison is poor.

  7. Thermal and economic assessment of ground-coupled storage for residential solar heat pump systems

    NASA Astrophysics Data System (ADS)

    Choi, M. K.; Morehouse, J. H.

    1980-11-01

    This study performed an analysis of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating were determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, D.C., Fort Worth, Tex., and Madison, Wis. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Forth Worth. Though the ground-coupled stand-alone heat pump provides 51% of the heating and cooling load with non-purchased energy in Forth Worth, its thermal performance in Washington and Madison is poor.

  8. Simulation of Solar Energy Use in Livelihood of Buildings

    NASA Astrophysics Data System (ADS)

    Lvocich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.

    2017-11-01

    Solar energy can be considered as the most technological and economical type of renewable energy. The purpose of the paper is to increase the efficiency of solar energy utilization on the basis of the mathematical simulation of the solar collector. A mathematical model of the radiant heat transfer vacuum solar collector is clarified. The model was based on the process of radiative heat transfer between glass and copper walls with the defined blackness degrees. A mathematical model of the ether phase transition point is developed. The dependence of the reservoir walls temperature change on the ambient temperature over time is obtained. The results of the paper can be useful for the development of prospective sources using solar energy.

  9. Optical Properties of Thermal Control Coatings After Weathering, Simulated Ascent Heating, and Simulated Space Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Tuan, George C.; Westheimer, David T.; Peters, Wanda C.; Kauder, Lonny R.

    2008-01-01

    Spacecraft radiators reject heat to their surroundings and coatings play an important role in this heat rejection. The coatings provide the combined optical properties of low solar absorptance and high infrared emittance. The coatings are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an applique. Not designed for a terrestrial weathering environment, the durability of spacecraft paints, coatings, and appliques upon exposure to weathering and subsequent exposure to ascent heating, solar wind, and ultraviolet radiation was studied. In addition to traditional aluminum panels, new isocyanate ester composite panels were exposed for a total of 90 days at the Atmospheric Exposure Site of Kennedy Space Center's (KSC) Beach Corrosion Facility for the purpose of identifying their durability to weathering. Selected panel coupons were subsequently exposed to simulated ascent heating, solar wind, and vacuum ultraviolet (UV) radiation to identify the effect of a simulated space environment on as-weathered surfaces. Optical properties and adhesion testing were used to document the durability of the paints, coatings, and appliques.

  10. Full-size solar dynamic heat receiver thermal-vacuum tests

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, Thomas W.

    1991-01-01

    The testing of a full-size, 120 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test conduct period.

  11. Full-size solar dynamic heat receiver thermal-vacuum tests

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.

  12. Full-size solar dynamic heat receiver thermal-vacuum tests

    NASA Astrophysics Data System (ADS)

    Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.

    The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.

  13. Solar assisted heat pump for a swine nursery barn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havard, P.L.

    1981-01-01

    The raising of hogs in Canada and Northern United States may require heating year round in the nursery area of the operation. The use of a solar assisted heat pump system can lead to substantial energy savings. The heat system and the computer simulation output for a demonstration project built in this area are summarized.

  14. Rankine engine solar power generation. I - Performance and economic analysis

    NASA Technical Reports Server (NTRS)

    Gossler, A. A.; Orrock, J. E.

    1981-01-01

    Results of a computer simulation of the performance of a solar flat plate collector powered electrical generation system are presented. The simulation was configured to include locations in New Mexico, North Dakota, Tennessee, and Massachusetts, and considered a water-based heat-transfer fluid collector system with storage. The collectors also powered a Rankine-cycle boiler filled with a low temperature working fluid. The generator was considered to be run only when excess solar heat and full storage would otherwise require heat purging through the collectors. All power was directed into the utility grid. The solar powered generator unit addition was found to be dependent on site location and collector area, and reduced the effective solar cost with collector areas greater than 400-670 sq m. The sites were economically ranked, best to worst: New Mexico, North Dakota, Massachusetts, and Tennessee.

  15. Characterization of a 6 kW high-flux solar simulator with an array of xenon arc lamps capable of concentrations of nearly 5000 suns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Robert; Bush, Evan; Loutzenhiser, Peter, E-mail: peter.loutzenhiser@me.gatech.edu

    2015-12-15

    A systematic methodology for characterizing a novel and newly fabricated high-flux solar simulator is presented. The high-flux solar simulator consists of seven xenon short-arc lamps mounted in truncated ellipsoidal reflectors. Characterization of spatial radiative heat flux distribution was performed using calorimetric measurements of heat flow coupled with CCD camera imaging of a Lambertian target mounted in the focal plane. The calorimetric measurements and images of the Lambertian target were obtained in two separate runs under identical conditions. Detailed modeling in the high-flux solar simulator was accomplished using Monte Carlo ray tracing to capture radiative heat transport. A least-squares regression modelmore » was used on the Monte Carlo radiative heat transfer analysis with the experimental data to account for manufacturing defects. The Monte Carlo ray tracing was calibrated by regressing modeled radiative heat flux as a function of specular error and electric power to radiation conversion onto measured radiative heat flux from experimental results. Specular error and electric power to radiation conversion efficiency were 5.92 ± 0.05 mrad and 0.537 ± 0.004, respectively. An average radiative heat flux with 95% errors bounds of 4880 ± 223 kW ⋅ m{sup −2} was measured over a 40 mm diameter with a cavity-type calorimeter with an apparent absorptivity of 0.994. The Monte Carlo ray-tracing resulted in an average radiative heat flux of 893.3 kW ⋅ m{sup −2} for a single lamp, comparable to the measured radiative heat fluxes with 95% error bounds of 892.5 ± 105.3 kW ⋅ m{sup −2} from calorimetry.« less

  16. Flat-Plate Solar-Collector Performance Evaluation with a Solar Simulator as a Basis for Collector Selection and Performance Prediction

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1975-01-01

    The use of a solar simulator for performance determination permits collector testing under standard conditions of wind, ambient temperature, flow rate and sun. The performance results determined with the simulator have been found to be in good agreement with outdoor performance results. The measured thermal efficiency and evaluation of 23 collectors are reported which differ according to absorber material (copper, aluminum, steel), absorber coating (nonselective black paint, selective copper oxide, selective black nickel, selective black chrome), type of glazing material (glass, Tedlar, Lexan, antireflection glass), the use of honeycomb material and the use of vacuum to prevent thermal convection losses. The collectors were given performance rankings based on noon-hour solar conditions and all-day solar conditions. The determination with the simulator of an all-day collector performance was made possible by tests at different incident angles. The solar performance rankings were made based on whether the collector is to be used for pool heating, hot water, absorption air conditioning, heating, or for a solar Rankine machine.

  17. Application of solar energy to air conditioning systems

    NASA Technical Reports Server (NTRS)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  18. Liquid-Crystal Display (LCD) Screen Thermal Testing to Simulate Solar Gain

    DTIC Science & Technology

    2015-12-01

    Display (LCD) Screen Thermal Testing to Simulate Solar Gain 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) Steven...Sunlight, Monitor Screen Covered 9 2.6 Test 6 – Bench Test with a 250 W Heat Lamp and Hot Mirror Glass 9 2.7 Test 7 – Bench Test with a 250 W Heat...that was used. The use of a black background with white text was important in creating the worst-case scenario for the absorption of solar radiation

  19. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    NASA Astrophysics Data System (ADS)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  20. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    NASA Technical Reports Server (NTRS)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat flux contributions.

  1. Numerical Simulation of a Solar Domestic Hot Water System

    NASA Astrophysics Data System (ADS)

    Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.

    2014-11-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.

  2. Modelling and control synthesis of a micro-combined heat and power interface for a concentrating solar power system in off-grid rural power applications

    NASA Astrophysics Data System (ADS)

    Prinsloo, Gerro; Dobson, Robert; Brent, Alan; Mammoli, Andrea

    2016-05-01

    Concentrating solar power co-generation systems have been identified as potential stand-alone solar energy supply solutions in remote rural energy applications. This study describes the modelling and synthesis of a combined heat and power Stirling CSP system in order to evaluate its potential performance in small off-grid rural village applications in Africa. This Stirling micro-Combined Heat and Power (micro-CHP) system has a 1 kW electric capacity, with 3 kW of thermal generation capacity which is produced as waste heat recovered from the solar power generation process. As part of the development of an intelligent microgrid control and distribution solution, the Trinum micro-CHP system and other co-generation systems are systematically being modelled on the TRNSYS simulation platform. This paper describes the modelling and simulation of the Trinum micro-CHP configuration on TRNSYS as part of the process to develop the control automation solution for the smart rural microgrid in which the Trinum will serve as a solar powerpack. The results present simulated performance outputs for the Trinum micro-CHP system for a number of remote rural locations in Africa computed from real-time TRNSYS solar irradiation and weather data (yearly, monthly, daily) for the relevant locations. The focus of this paper is on the parametric modelling of the Trinum Stirling micro-CHP system, with specific reference to this system as a TRNSYS functional block in the microgrid simulation. The model is used to forecast the solar energy harvesting potential of the Trinum micro-CHP unit at a number of remote rural sites in Africa.

  3. Solar heating and cooling system design and development

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress of the program during the sixth program quarter is reported. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. The William O'Brien single-family heating system was installed and is operational. The New Castle single-family heating residence is under construction. The Kansas University (KU) system is in the final design stages. The 25 ton cooling subsystem for KU is the debugging stage. Pressure drops that were greater than anticipated were encountered. The 3 ton simulation work is being finalized and the design parameters for the Rankine system were determined from simulation output.

  4. 40 CFR 86.162-00 - Approval of alternative air conditioning test simulations and descriptions of AC1 and AC2.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... power requirements to roadload dynamometer requirements. AC2 simulates, in standard test cell ambient...)(i) (A) and (B) are replaced with 76 °F and 50 grains of water/pound of dry air and the solar heat...)(5)(i) (A) and (B) are replaced with 76 °F and 50 grains of water/pound of dry air and the solar heat...

  5. 40 CFR 86.162-00 - Approval of alternative air conditioning test simulations and descriptions of AC1 and AC2.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... power requirements to roadload dynamometer requirements. AC2 simulates, in standard test cell ambient...)(i) (A) and (B) are replaced with 76 °F and 50 grains of water/pound of dry air and the solar heat...)(5)(i) (A) and (B) are replaced with 76 °F and 50 grains of water/pound of dry air and the solar heat...

  6. Validation of the solar heating and cooling high speed performance (HISPER) computer code

    NASA Technical Reports Server (NTRS)

    Wallace, D. B.

    1980-01-01

    Developed to give a quick and accurate predictions HISPER, a simplification of the TRNSYS program, achieves its computational speed by not simulating detailed system operations or performing detailed load computations. In order to validate the HISPER computer for air systems the simulation was compared to the actual performance of an operational test site. Solar insolation, ambient temperature, water usage rate, and water main temperatures from the data tapes for an office building in Huntsville, Alabama were used as input. The HISPER program was found to predict the heating loads and solar fraction of the loads with errors of less than ten percent. Good correlation was found on both a seasonal basis and a monthly basis. Several parameters (such as infiltration rate and the outside ambient temperature above which heating is not required) were found to require careful selection for accurate simulation.

  7. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  8. Kinetic features revealed by top-hat electrostatic analysers: numerical simulations and instrument response results

    NASA Astrophysics Data System (ADS)

    De Marco, Rossana; Marcucci, Maria Federica; Brienza, Daniele; Bruno, Roberto; Consolini, Giuseppe; Perrone, Denise; Valentini, Franceso; Servidio, Sergio; Stabile, Sara; Pezzi, Oreste; Sorriso-Valvo, Luca; Lavraud, Benoit; De Keyser, Johan; Retinò, Alessandro; Fazakerley, Andrew; Wicks, Robert; Vaivads, Andris; Salatti, Mario; Veltri, Pierliugi

    2017-04-01

    Turbulence Heating ObserveR (THOR) is the first mission devoted to study energization, acceleration and heating of turbulent space plasmas, and designed to perform field and particle measurements at kinetic scales in different near-Earth regions and in the solar wind. Solar Orbiter (SolO), together with Solar Probe Plus, will provide the first comprehensive remote and in situ measurements which are critical to establish the fundamental physical links between the Sun's dynamic atmosphere and the turbulent solar wind. The fundamental process of turbulent dissipation is mediated by physical mechanism that occur at a variety of temporal and spatial scales, and most efficiently at the kinetics scales. Hybrid Vlasov-Maxwell simulations of solar-wind turbulence show that kinetic effects manifest as particle beams, production of temperature anisotropies and ring-like modulations, preferential heating of heavy ions. We use a numerical code able to reproduce the response of a typical electrostatic analyzer of top-hat type starting from velocity distribution functions (VDFs) generated by Hybrid Vlasov-Maxwell (HVM) numerical simulations. Here, we show how optimized particle measurements by top-hat analysers can capture the kinetic features injected by turbulence in the VDFs.

  9. Status of the NASA-Lewis flat-plate collector tests with a solar simulator

    NASA Technical Reports Server (NTRS)

    Simon, F. F.

    1974-01-01

    Simulator test results of 15 collector types are presented. Collectors are given performance ratings according to their use for pool heating, hot water, absorption A/C or heating, and solar Rankine machines. Collectors found to be good performers in the above categories, except for pool heating, were a black nickel coated, 2 glass collector, and a black paint 2 glass collector containing a mylar honeycomb. For pool heating, a black paint, one glass collector was found to be the best performer. Collector performance parameters of 5 collector types were determined to aid in explaining the factors that govern performance. The two factors that had the greatest effect on collector performance were the collector heat loss and the coating absorptivity.

  10. Space Simulation, 7th. [facilities and testing techniques

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Space simulation facilities and techniques are outlined that encompass thermal scale modeling, computerized simulations, reentry materials, spacecraft contamination, solar simulation, vacuum tests, and heat transfer studies.

  11. Signatures Of Coronal Heating Driven By Footpoint Shuffling: Closed and Open Structures.

    NASA Astrophysics Data System (ADS)

    Velli, M. C. M.; Rappazzo, A. F.; Dahlburg, R. B.; Einaudi, G.; Ugarte-Urra, I.

    2017-12-01

    We have previously described the characteristic state of the confined coronal magnetic field as a special case of magnetically dominated magnetohydrodynamic (MHD) turbulence, where the free energy in the transverse magnetic field is continuously cascaded to small scales, even though the overall kinetic energy is small. This coronal turbulence problem is defined by the photospheric boundary conditions: here we discuss recent numerical simulations of the fully compressible 3D MHD equations using the HYPERION code. Loops are forced at their footpoints by random photospheric motions, energizing the field to a state with continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scales that, in the solar corona, remain observationally unresolved: the plasma of simulated loops is multithermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. We will also compare Reduced MHD simulations with fully compressible simulations and photospheric forcings with different time-scales compared to the Alfv'en transit time. Finally, we will discuss the differences between the closed field and open field (solar wind) turbulence heating problem, leading to observational consequences that may be amenable to Parker Solar Probe and Solar Orbiter.

  12. Control Mechanisms of the Electron Heat Flux in the Solar Wind: Observations in Comparison to Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Stverak, S.; Hellinger, P.; Landi, S.; Travnicek, P. M.; Maksimovic, M.

    2017-12-01

    Recent understanding of the heat transport and dissipation in the expanding solar wind propose number of complex control mechanisms down to the electron kinetic scales. We investigate the evolution of electron heat flux properties and constraints along the expansion using in situ observations from Helios spacecraft in comparison to numerical kinetic simulations. In particular we focus on the roles of Coulomb collisions and wave-particle interactions in shaping the electron velocity distribution functions and thus controlling the heat transported by the electron heat flux. We show the general evolution of the electron heat flux to be driven namely by the Coulomb collisions. Locally we demonstrate the wave-particle interactions related to the kinetic plasma instabilities to be providing effective constraints in case of extreme heat flux levels.

  13. Numerical characterisation of one-step and three-step solar air heating collectors used for cocoa bean solar drying.

    PubMed

    Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel; La Madrid, Raúl

    2017-12-01

    In the northern coastal and jungle areas of Peru, cocoa beans are dried using artisan methods, such as direct exposure to sunlight. This traditional process is time intensive, leading to a reduction in productivity and, therefore, delays in delivery times. The present study was intended to numerically characterise the thermal behaviour of three configurations of solar air heating collectors in order to determine which demonstrated the best thermal performance under several controlled operating conditions. For this purpose, a computational fluid dynamics model was developed to describe the simultaneous convective and radiative heat transfer phenomena under several operation conditions. The constructed computational fluid dynamics model was firstly validated through comparison with the data measurements of a one-step solar air heating collector. We then simulated two further three-step solar air heating collectors in order to identify which demonstrated the best thermal performance in terms of outlet air temperature and thermal efficiency. The numerical results show that under the same solar irradiation area of exposition and operating conditions, the three-step solar air heating collector with the collector plate mounted between the second and third channels was 67% more thermally efficient compared to the one-step solar air heating collector. This is because the air exposition with the surface of the collector plate for the three-step solar air heating collector former device was twice than the one-step solar air heating collector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Shock heating of the solar wind plasma

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.; Liu, Shaoliang; Burlaga, L. F.

    1990-01-01

    The role played by shocks in heating solar-wind plasma is investigated using data on 413 shocks which were identified from the plasma and magnetic-field data collected between 1973 and 1982 by Pioneer and Voyager spacecraft. It is found that the average shock strength increased with the heliocentric distance outside 1 AU, reaching a maximum near 5 AU, after which the shock strength decreased with the distance; the entropy of the solar wind protons also reached a maximum at 5 AU. An MHD simulation model in which shock heating is the only heating mechanism available was used to calculate the entropy changes for the November 1977 event. The calculated entropy agreed well with the value calculated from observational data, suggesting that shocks are chiefly responsible for heating solar wind plasma between 1 and 15 AU.

  15. Environmental Influences in the Simulation of a Solar Space Heating System.

    DTIC Science & Technology

    1980-01-01

    this simulation an optimum collector size was determined from the energy requirements given by each model and a comparison made between the...Solar Collector Cross Section .. ............... 26 4. Solar System Schematic. .. .................. 31 5. Contributions to Annual Energy Cost...40 6. House Size I Annual Energy Cost. ....... ........ 46 7. House Size II Annual Energy Cost .. ..... ......... 47 8. House Size III Annual

  16. Dynamic modelling and simulation of linear Fresnel solar field model based on molten salt heat transfer fluid

    NASA Astrophysics Data System (ADS)

    Hakkarainen, Elina; Tähtinen, Matti

    2016-05-01

    Demonstrations of direct steam generation (DSG) in linear Fresnel collectors (LFC) have given promising results related to higher steam parameters compared to the current state-of-the-art parabolic trough collector (PTC) technology using oil as heat transfer fluid (HTF). However, DSG technology lacks feasible solution for long-term thermal energy storage (TES) system. This option is important for CSP technology in order to offer dispatchable power. Recently, molten salts have been proposed to be used as HTF and directly as storage medium in both line-focusing solar fields, offering storage capacity of several hours. This direct molten salt (DMS) storage concept has already gained operational experience in solar tower power plant, and it is under demonstration phase both in the case of LFC and PTC systems. Dynamic simulation programs offer a valuable effort for design and optimization of solar power plants. In this work, APROS dynamic simulation program is used to model a DMS linear Fresnel solar field with two-tank TES system, and example simulation results are presented in order to verify the functionality of the model and capability of APROS for CSP modelling and simulation.

  17. Systems analysis techniques for annual cycle thermal energy storage solar systems

    NASA Astrophysics Data System (ADS)

    Baylin, F.

    1980-07-01

    Community-scale annual cycle thermal energy storage solar systems are options for building heat and cooling. A variety of approaches are feasible in modeling ACTES solar systems. The key parameter in such efforts, average collector efficiency, is examined, followed by several approaches for simple and effective modeling. Methods are also examined for modeling building loads for structures based on both conventional and passive architectural designs. Two simulation models for sizing solar heating systems with annual storage are presented. Validation is presented by comparison with the results of a study of seasonal storage systems based on SOLANSIM, an hour-by-hour simulation. These models are presently used to examine the economic trade-off between collector field area and storage capacity. Programs directed toward developing other system components such as improved tanks and solar ponds or design tools for ACTES solar systems are examined.

  18. The use of solar simulation systems for producing artificial global radiation for the purpose of determining the heat load of rooms

    NASA Technical Reports Server (NTRS)

    Kalt, A. C.

    1975-01-01

    Certain climatic tests which require solar and sky radiation were carried out in the laboratory by using simulated global radiation. The advantages of such a method of measurement and the possibilities and limitations resulting from the simulation of global radiation are described. Experiments concerning the thermal load in rooms were conducted in order to test the procedure. In particular, the heat gain through a window with sunshade is discussed, a venetian blind between the panes of a double-glazed window being used in most cases.

  19. A comparison of fuel savings in the residential and commercial sectors generated by the installation of solar heating and cooling systems under three tax credit scenarios

    NASA Astrophysics Data System (ADS)

    Moden, R.

    An analysis of expected energy savings between 1977 and 1980 under three different solar tax credit scenarios is presented. The results were obtained through the solar heating and cooling of buildings (SHACOB) commercialization model. This simulation provides projected savings of conventional fuels through the installation of solar heating and cooling systems on buildings in the residential and commercial sectors. The three scenarios analyzed considered the tax credits contained in the Windfall Profits Tax of April 1980, the National Tax Act of November 1978, and a case where no tax credit is in effect.

  20. Regional Climate Variability Under Model Simulations of Solar Geoengineering

    NASA Astrophysics Data System (ADS)

    Dagon, Katherine; Schrag, Daniel P.

    2017-11-01

    Solar geoengineering has been shown in modeling studies to successfully mitigate global mean surface temperature changes from greenhouse warming. Changes in land surface hydrology are complicated by the direct effect of carbon dioxide (CO2) on vegetation, which alters the flux of water from the land surface to the atmosphere. Here we investigate changes in boreal summer climate variability under solar geoengineering using multiple ensembles of model simulations. We find that spatially uniform solar geoengineering creates a strong meridional gradient in the Northern Hemisphere temperature response, with less consistent patterns in precipitation, evapotranspiration, and soil moisture. Using regional summertime temperature and precipitation results across 31-member ensembles, we show a decrease in the frequency of heat waves and consecutive dry days under solar geoengineering relative to a high-CO2 world. However in some regions solar geoengineering of this amount does not completely reduce summer heat extremes relative to present day climate. In western Russia and Siberia, an increase in heat waves is connected to a decrease in surface soil moisture that favors persistent high temperatures. Heat waves decrease in the central United States and the Sahel, while the hydrologic response increases terrestrial water storage. Regional changes in soil moisture exhibit trends over time as the model adjusts to solar geoengineering, particularly in Siberia and the Sahel, leading to robust shifts in climate variance. These results suggest potential benefits and complications of large-scale uniform climate intervention schemes.

  1. Large Eddy Simulation of complex sidearms subject to solar radiation and surface cooling.

    PubMed

    Dittko, Karl A; Kirkpatrick, Michael P; Armfield, Steven W

    2013-09-15

    Large Eddy Simulation (LES) is used to model two lake sidearms subject to heating from solar radiation and cooling from a surface flux. The sidearms are part of Lake Audrey, NJ, USA and Lake Alexandrina, SA, Australia. The simulation domains are created using bathymetry data and the boundary is modelled with an Immersed Boundary Method. We investigate the cooling and heating phases with separate quasi-steady state simulations. Differential heating occurs in the cavity due to the changing depth. The resulting temperature gradients drive lateral flows. These flows are the dominant transport process in the absence of wind. Study in this area is important in water quality management as the lateral circulation can carry particles and various pollutants, transporting them to and mixing them with the main lake body. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The effects of solarization on the performance of a gas turbine

    NASA Astrophysics Data System (ADS)

    Homann, Christiaan; van der Spuy, Johan; von Backström, Theodor

    2016-05-01

    Various hybrid solar gas turbine configurations exist. The Stellenbosch University Solar Power Thermodynamic (SUNSPOT) cycle consists of a heliostat field, solar receiver, primary Brayton gas turbine cycle, thermal storage and secondary Rankine steam cycle. This study investigates the effect of the solarization of a gas turbine on its performance and details the integration of a gas turbine into a solar power plant. A Rover 1S60 gas turbine was modelled in Flownex, a thermal-fluid system simulation and design code, and validated against a one-dimensional thermodynamic model at design input conditions. The performance map of a newly designed centrifugal compressor was created and implemented in Flownex. The effect of the improved compressor on the performance of the gas turbine was evident. The gas turbine cycle was expanded to incorporate different components of a CSP plant, such as a solar receiver and heliostat field. The solarized gas turbine model simulates the gas turbine performance when subjected to a typical variation in solar resource. Site conditions at the Helio100 solar field were investigated and the possibility of integrating a gas turbine within this system evaluated. Heat addition due to solar irradiation resulted in a decreased fuel consumption rate. The influence of the additional pressure drop over the solar receiver was evident as it leads to decreased net power output. The new compressor increased the overall performance of the gas turbine and compensated for pressure losses incurred by the addition of solar components. The simulated integration of the solarized gas turbine at Helio100 showed potential, although the solar irradiation is too little to run the gas turbine on solar heat alone. The simulation evaluates the feasibility of solarizing a gas turbine and predicts plant performance for such a turbine cycle.

  3. Parametric Study of Preferential Ion Heating Due to Intermittent Magnetic Fields in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Carbajal Gomez, L.; Chapman, S. C.; Dendy, R. O.; Watkins, N. W.

    2014-12-01

    In situ observations and remote measurements of the solar wind show strong preferential heating of ions along the ambient magnetic field. Understanding the mechanism for this heating process is an open problem. The observed broad-band spectrum of Alfven waves permeating the fast solar wind provide a candidate mechanism for this preferential heating through wave-particle interactions on ion kinetic scales. Previous analytical and numerical studies have considered a single pump wave [1, 2] or a turbulent, broad-band spectra of Alfven waves [3, 4, 5] to drive the ion heating. The latter studies investigated the effects on ion heating due to different initial 1/fγpower spectral exponents and number of modes and the signals were random phase. However, the observed solar wind fluctuations are intermittent so that the phases of the modes comprising the power spectrum are not random. Non-Gaussian fluctuations are seen both on scales identified with the inertial range of Alfvenic turbulence [6], and on longer scales typified by '1/f' spectra [7]. We present results of the first parametric numerical simulations on the effects of different levels of intermittency of the broad-band spectra of Alfven waves on the preferential heating of ions in the solar wind. We performed hybrid simulations for the local heating of the solar wind, which resolves the full kinetic physics of the ions and treats the electrons as a charge-neutralizing fluid. Our simulations evolve the full vector velocities and electromagnetic fields in one configuration space coordinate and in time.We compare the efficiency of different levels of intermittency of the initial turbulent fields and their effect on the efficiency of the wave-particle interactions which are a mechanism for driving preferential ion heating in the solar wind. [1] J. A. Araneda, E. Marsh, A. F. Viñas, J. Geophys. Res. 112, A04104 (2007). [2] J. A. Araneda, E. Marsh, A. F. Viñas, Phys. Rev. Lett. 100, 125003 (2008) [3] Y. G. Maneva, A. F. Viñas, L. Ofman, J. Geophys. Res. 118, 2842 (2013). [4] L. Ofman, J. Geophys. Res. 115, 1461 (2010). [5] L. Ofman, S. P. Gary, A. Viñas, J. Geophys. Res. 107, 1461 (2002). [6] R. Bruno, V. Carbone, Living Rev. Solar Phys. 10, 2 (2013). [7] R. M. Nicol, S. C. Chapman, R. O. Dendy, The Astrophysical Journal 703, 2138 (2009).

  4. Solar residential heating and cooling system development test program

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.; Melton, D. E.

    1974-01-01

    A solar heating and cooling system is described, which was installed in a simulated home at Marshall Space Flight Center. Performance data are provided for the checkout and initial operational phase for key subsystems and for the total system. Valuable information was obtained with regard to operation of a solar cooling system during the first summer of operation. Areas where improvements and modifications are required to optimize such a system are discussed.

  5. Corrosion inhibitors for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Deramus, G. E., Jr.

    1977-01-01

    Problems dealing with corrosion and corrosion protection of solar heating and cooling systems are discussed. A test program was conducted to find suitable and effective corrosion inhibitors for systems employing either water or antifreeze solutions for heat transfer and storage. Aluminum-mild-steel-copper-stainless steel assemblies in electrical contact were used to simulate a multimetallic system which is the type most likely to be employed. Several inhibitors show promise for this application.

  6. An investigation of the Performance of a Conical Solar Water Heater in the Kingdom of Bahrain

    NASA Astrophysics Data System (ADS)

    Gaaliche, Nessreen; Ayhan, Teoman; Fathallah, Raouf

    2017-11-01

    Domestic water heater corresponds to 25% of the house energy consumption and can play an important role to reduce energy house expenses. Solar energy offers a preferred renewable energy resource because of its economic and environmental advantages. It is considered the best alternative to reduce domestic water heater energy consumption cost. Converting solar energy into heat can be considered among the simplest used systems. Solar thermal conversion is more efficient than solar electrical direct conversion method. Solar water heater systems are particularly easy to use and to repair. The integrated conical solar collector water heater (ICSCWH) is so far the easiest among water heating systems. The ICSCWH converts directly and efficiently the solar flux into heat. In order to expand the utilization of ICSCWH systems, many design modifications have been examined and analyzed. This study provides an experimental investigation and mathematical simulation of an ICSCWH system equipped with a glass cover resulting in the increase of the maximum absorption. Integrating the cone-shaped heat collector with an aluminum spiral pipe flow system may enhance the efficiency of the proposed system. In order to maximize the solar radiation of the system, the solar water heater has been designed in a conical shape, which removes the need to change its orientation toward the sun to receive the maximum sun radiation during the day. In this system, the heating of water has been obtained using the spiral pipe flow without the use of the solar cells and mirrors in order to reduce the total cost. The storage water tank of this system is coupled with a conical solar collector. Based on the above design, the solar water heater has been fabricated and tested. In addition, an analytical modeling approach aiming to predict the flow rate within the conical integrated collector storage solar water heater (ICSSWH) and its efficiency, was developed. Modeling through a numerical simulation approach based on energy equations was performed. Considering the entire water amount and the total area of the cone, the amount of water (facing the sun per unit absorbing area in the two symmetrical parts of the system) is found to increase, which is expected to reach a maximum water temperature at a high performance. Our experimental findings show that the daily performance is around 32% and the highest water temperature of about 45°C is obtained in the system at 4 pm, according to seasons and weather conditions. An efficient and simple mathematical simulation approach for the new conical solar water heater is described then validates using experimental data.

  7. 40 CFR 1066.835 - Exhaust emission test procedure for SC03 emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission measurements. (3) Solar heat load. Simulate solar heating as follows: (i) You may use a metal... measurement procedures specified in §§ 1066.410 through 1066.425, subject to the following exceptions and... you may need to filter the UV region between 280 and 320 nm. (iii) Determine radiant energy intensity...

  8. The NASA Langley building solar project and the supporting Lewis solar technology program

    NASA Technical Reports Server (NTRS)

    Ragsdale, R. G.; Namkoong, D.

    1974-01-01

    The use of solar energy to heat and cool a new office building that is now under construction is reported. Planned for completion in December 1975, the 53,000 square foot, single story building will utilize 15,000 square feet of various types of solar collectors in a test bed to provide nearly all of the heating demand and over half of the air conditioning demand. Drawing on its space-program-developed skills and resources in heat transfer, materials, and systems studies, NASA-Lewis will provide technology support for the Langley building project. A solar energy technology program underway at Lewis includes solar collector testing in an indoor solar simulator facility and in an outdoor test facility, property measurements of solar panel coatings, and operation of a laboratory-scale solar model system test facility. Based on results obtained in this program, NASA-Lewis will select and procure the solar collectors for the Langley test bed.

  9. Constructing Black Titania with Unique Nanocage Structure for Solar Desalination.

    PubMed

    Zhu, Guilian; Xu, Jijian; Zhao, Wenli; Huang, Fuqiang

    2016-11-23

    Solar desalination driven by solar radiation as heat source is freely available, however, hindered by low efficiency. Herein, we first design and synthesize black titania with a unique nanocage structure simultaneously with light trapping effect to enhance light harvesting, well-crystallized interconnected nanograins to accelerate the heat transfer from titania to water and with opening mesopores (4-10 nm) to facilitate the permeation of water vapor. Furthermore, the coated self-floating black titania nanocages film localizes the temperature increase at the water-air interface rather than uniformly heating the bulk of the water, which ultimately results in a solar-thermal conversion efficiency as high as 70.9% under a simulated solar light with an intensity of 1 kW m -2 (1 sun). This finding should inspire new black materials with rationally designed structure for superior solar desalination performance.

  10. Environmental testing of flat plate solar cell modules

    NASA Technical Reports Server (NTRS)

    Griffith, J.; Dumas, L.; Hoffman, A.

    1978-01-01

    Commercially available flat-plate solar cell modules have been subjected to a variety of environmental tests designed to simulate service conditions. Among the tests are those simulating heat and rain, wind-driven rains, humidity and freezing, humidity and heat, humidity with a voltage bias, salt fog, hail impact, and fungus infestation. Tests for optical surface soiling and the combined effects of temperature, humidity and UV irradiation are under development. A correlation has been demonstrated between degradation caused by the qualification tests and such observed field effects as power loss.

  11. Solar disinfection of infectious biomedical waste: a new approach for developing countries.

    PubMed

    Chitnis, V; Chitnis, S; Patil, S; Chitnis, D

    2003-10-18

    Poor developing countries cannot afford expensive technologies such as incineration for management of infectious biomedical waste. We assessed solar heating as an alternative technology. We immersed simulated infectious waste with added challenge bacteria in water in a box-type solar cooker, which was left in the sun for 6 h. In 24 sets of observations, the amount of viable bacteria was reduced by about 7 log. We also tested infectious medical waste with a heavy load of bacteria (10(8)-10(9)/g) from our hospital's burn unit for solar heat disinfection in 20 experiments. Our results showed a similar 7 log reduction in the amount of viable bacteria. Solar heating thus seems to be a cheap method to disinfect infectious medical waste in less economically developed countries.

  12. Optimization of absorption air-conditioning for solar energy applications

    NASA Technical Reports Server (NTRS)

    Perry, E. H.

    1976-01-01

    Improved performance of solar cooling systems using the lithium bromide water absorption cycle is investigated. Included are computer simulations of a solar-cooled house, analyses and measurements of heat transfer rates in absorption system components, and design and fabrication of various system components. A survey of solar collector convection suppression methods is presented.

  13. DEVELOPMENT OF A SOFTWARE DESIGN TOOL FOR HYBRID SOLAR-GEOTHERMAL HEAT PUMP SYSTEMS IN HEATING- AND COOLING-DOMINATED BUILDINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yavuzturk, C. C.; Chiasson, A. D.; Filburn, T. P.

    This project provides an easy-to-use, menu-driven, software tool for designing hybrid solar-geothermal heat pump systems (GHP) for both heating- and cooling-dominated buildings. No such design tool currently exists. In heating-dominated buildings, the design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component. The primary benefit of hybrid GHPs is the reduced initial cost of the ground heat exchanger (GHX). Furthermore, solar thermal collectors can be used to balance themore » ground loads over the annual cycle, thus making the GHX fully sustainable; in heating-dominated buildings, the hybrid energy source (i.e., solar) is renewable, in contrast to a typical fossil fuel boiler or electric resistance as the hybrid component; in cooling-dominated buildings, use of unglazed solar collectors as a heat rejecter allows for passive heat rejection, in contrast to a cooling tower that consumes a significant amount of energy to operate, and hybrid GHPs can expand the market by allowing reduced GHX footprint in both heating- and cooling-dominated climates. The design tool allows for the straight-forward design of innovative GHP systems that currently pose a significant design challenge. The project lays the foundations for proper and reliable design of hybrid GHP systems, overcoming a series of difficult and cumbersome steps without the use of a system simulation approach, and without an automated optimization scheme. As new technologies and design concepts emerge, sophisticated design tools and methodologies must accompany them and be made usable for practitioners. Lack of reliable design tools results in reluctance of practitioners to implement more complex systems. A menu-driven software tool for the design of hybrid solar GHP systems is provided that is based on mathematically robust, validated models. An automated optimization tool is used to balance ground loads and incorporated into the simulation engine. With knowledge of the building loads, thermal properties of the ground, the borehole heat exchanger configuration, the heat pump peak hourly and seasonal COP for heating and cooling, the critical heat pump design entering fluid temperature, and the thermal performance of a solar collector, the total GHX length can be calculated along with the area of a supplemental solar collector array and the corresponding reduced GHX length. An economic analysis module allows for the calculation of the lowest capital cost combination of solar collector area and GHX length. ACKNOWLEDGMENTS This project was funded by the United States Department of Energy DOE-DE-FOA-0000116, Recovery Act Geothermal Technologies Program: Ground Source Heat Pumps. The lead contractor, The University of Hartford, was supported by The University of Dayton, and the Oak Ridge National Laboratories. All funding and support for this project as well as contributions of graduate and undergraduate students from the contributing institutions are gratefully acknowledged.« less

  14. Evaluation of solar gain through skylights for inclusion in the SP53 residential building loads data base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanford, J.W.; Huang, Y.J.

    The energy performance of skylights is similar to that of windows in admitting solar heat gain, while at the same time providing a pathway for convective and conductive heat transfer through the building envelope. Since skylights are typically installed at angles ranging from 0{degrees} to 45{degrees}, and differ from windows in both their construction and operation, their conductive and convective heat gains or losses, as well as solar heat gain, will differ for the same rough opening and thermal characteristics. The objective of this work is to quantify the impact of solar gain through skylights on building heating and coolingmore » loads in 45 climates, and to develop a method for including these data into the SP53 residential loads data base previously developed by LBL in support of DOE`s Automated Residential Energy Standard (ARES) program. The authors used the DOE-2.1C program to simulate the heating and cooling loads of a prototypical residential building while varying the size and solar characteristics of skylights and windows. The results are presented as Skylight Solar Loads, which are the contribution of solar gains through skylights to the overall building heating and cooling loads, and as Skylight Solar Load Ratios, which are the ratios of skylight solar loads to those for windows with the same orientation. The study shows that skylight solar loads are larger than those for windows in both heating and cooling. Skylight solar cooling loads are from three to four times greater than those for windows regardless of the skylight tilt, except for those facing north. These cooling loads are largest for south-facing skylights at a tilt angle of approximately 20{degrees}, and drop off at higher tilts and other orientations.« less

  15. Multiple Ions Resonant Heating and Acceleration by Alfven/cyclotron Fluctuations in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Xie, H.; Ofman, L.

    2003-12-01

    We study the interaction between protons, and multiple minor ions (O5+, He++) and a given cyclotron resonant spectra in coronal hole plasma. One-dimensional hybrid simulations are performed in initially homogeneous, collisionless, magnetized plasma with waves propagating parallel to the background magnetic field. The self-consistent hybrid simulations are used to study how multiple minor species may affect the resonance interaction between a spectrum of waves and the solar wind protons. The results of the simulations provide a clear picture of wave-particle interaction under various coronal conditions, which can explain 1) how multiple minor ions affect the resonant heating and the temperature anisotropy of the solar wind protons by a given wave spectrum; 2) how energy is distributed and transferred among waves and different ion species; 3) the growth and damping of different beam microinstability modes, including both inward and outward waves; 4) the formation of proton double-peak distribution in the solar wind.

  16. Performance modeling and techno-economic analysis of a modular concentrated solar power tower with latent heat storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rea, Jonathan E.; Oshman, Christopher J.; Olsen, Michele L.

    In this paper, we present performance simulations and techno-economic analysis of a modular dispatchable solar power tower. Using a heliostat field and power block three orders of magnitude smaller than conventional solar power towers, our unique configuration locates thermal storage and a power block directly on a tower receiver. To make the system dispatchable, a valved thermosyphon controls heat flow from a latent heat thermal storage tank to a Stirling engine. The modular design results in minimal balance of system costs and enables high deployment rates with a rapid realization of economies of scale. In this new analysis, we combinemore » performance simulations with techno-economic analysis to evaluate levelized cost of electricity, and find that the system has potential for cost-competitiveness with natural gas peaking plants and alternative dispatchable renewables.« less

  17. Plasma and wave properties downstream of Martian bow shock: Hybrid simulations and MAVEN observations

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei; Winske, Dan; Cowee, Misa; Bougher, Stephen W.; Andersson, Laila; Connerney, Jack; Epley, Jared; Ergun, Robert; McFadden, James P.; Ma, Yingjuan; Toth, Gabor; Curry, Shannon; Nagy, Andrew; Jakosky, Bruce

    2015-04-01

    Two-dimensional hybrid simulation codes are employed to investigate the kinetic properties of plasmas and waves downstream of the Martian bow shock. The simulations are two-dimensional in space but three dimensional in field and velocity components. Simulations show that ion cyclotron waves are generated by temperature anisotropy resulting from the reflected protons around the Martian bow shock. These proton cyclotron waves could propagate downward into the Martian ionosphere and are expected to heat the O+ layer peaked from 250 to 300 km due to the wave-particle interaction. The proton cyclotron wave heating is anticipated to be a significant source of energy into the thermosphere, which impacts atmospheric escape rates. The simulation results show that the specific dayside heating altitude depends on the Martian crustal field orientations, solar cycles and seasonal variations since both the cyclotron resonance condition and the non/sub-resonant stochastic heating threshold depend on the ambient magnetic field strength. The dayside magnetic field profiles for different crustal field orientation, solar cycle and seasonal variations are adopted from the BATS-R-US Mars multi-fluid MHD model. The simulation results, however, show that the heating of O+ via proton cyclotron wave resonant interaction is not likely in the relatively weak crustal field region, based on our simplified model. This indicates that either the drift motion resulted from the transport of ionospheric O+, or the non/sub-resonant stochastic heating mechanism are important to explain the heating of Martian O+ layer. We will investigate this further by comparing the simulation results with the available MAVEN data. These simulated ion cyclotron waves are important to explain the heating of Martian O+ layer and have significant implications for future observations.

  18. A Self-consistent Model of the Coronal Heating and Solar Wind Acceleration Including Compressible and Incompressible Heating Processes

    NASA Astrophysics Data System (ADS)

    Shoda, Munehito; Yokoyama, Takaaki; Suzuki, Takeru K.

    2018-02-01

    We propose a novel one-dimensional model that includes both shock and turbulence heating and qualify how these processes contribute to heating the corona and driving the solar wind. Compressible MHD simulations allow us to automatically consider shock formation and dissipation, while turbulent dissipation is modeled via a one-point closure based on Alfvén wave turbulence. Numerical simulations were conducted with different photospheric perpendicular correlation lengths {λ }0, which is a critical parameter of Alfvén wave turbulence, and different root-mean-square photospheric transverse-wave amplitudes δ {v}0. For the various {λ }0, we obtain a low-temperature chromosphere, high-temperature corona, and supersonic solar wind. Our analysis shows that turbulence heating is always dominant when {λ }0≲ 1 {Mm}. This result does not mean that we can ignore the compressibility because the analysis indicates that the compressible waves and their associated density fluctuations enhance the Alfvén wave reflection and therefore the turbulence heating. The density fluctuation and the cross-helicity are strongly affected by {λ }0, while the coronal temperature and mass-loss rate depend weakly on {λ }0.

  19. Simulated space environment tests on cadmium sulfide solar cells

    NASA Technical Reports Server (NTRS)

    Clarke, D. R.; Oman, H.

    1971-01-01

    Cadmium sulfide (Cu2s - CdS) solar cells were tested under simulated space environmental conditions. Some cells were thermally cycled with illumination from a Xenon-arc solar simulator. A cycle was one hour of illumination followed immediately with one-half hour of darkness. In the light, the cells reached an equilibrium temperature of 60 C (333 K) and in the dark the cell temperature dropped to -120 C (153 K). Other cells were constantly illuminated with a Xenon-arc solar simulator. The equilibrium temperature of these cells was 55 C (328 K). The black vacuum chamber walls were cooled with liquid nitrogen to simulate a space heat sink. Chamber pressure was maintained at 0.000001 torr or less. Almost all of the solar cells tested degraded in power when exposed to a simulated space environment of either thermal cycling or constant illumination. The cells tested the longest were exposed to 10.050 thermal cycles.

  20. Long-period Intensity Pulsations in Coronal Loops Explained by Thermal Non-equilibrium Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froment, C.; Auchère, F.; Bocchialini, K.

    In solar coronal loops, thermal non-equilibrium (TNE) is a phenomenon that can occur when the heating is both highly stratified and quasi-constant. Unambiguous observational identification of TNE would thus permit us to strongly constrain heating scenarios. While TNE is currently the standard interpretation of coronal rain, the long-term periodic evolution predicted by simulations has never been observed. However, the detection of long-period intensity pulsations (periods of several hours) has been recently reported with the Solar and Heliospheric Observatory /EIT, and this phenomenon appears to be very common in loops. Moreover, the three intensity-pulsation events that we recently studied with themore » Solar Dynamics Observatory /Atmospheric Imaging Assembly (AIA) show strong evidence for TNE in warm loops. In this paper, a realistic loop geometry from linear force-free field (LFFF) extrapolations is used as input to 1D hydrodynamic simulations. Our simulations show that, for the present loop geometry, the heating has to be asymmetrical to produce TNE. We analyze in detail one particular simulation that reproduces the average thermal behavior of one of the pulsating loop bundle observed with AIA. We compare the properties of this simulation with those deduced from the observations. The magnetic topology of the LFFF extrapolations points to the presence of sites of preferred reconnection at one footpoint, supporting the presence of asymmetric heating. In addition, we can reproduce the temporal large-scale intensity properties of the pulsating loops. This simulation further strengthens the interpretation of the observed pulsations as signatures of TNE. This consequently provides important information on the heating localization and timescale for these loops.« less

  1. A 'two-tank' seasonal storage concept for solar space heating of buildings

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Connor, D. W.; Mueller, R. O.

    This paper presents an analysis of a novel 'two-tank' water storage system, consisting of a large primary water tank for seasonal storage of solar energy plus a much smaller secondary water tank for storage of solar energy collected during the heating season. The system offers the advantages of high collection efficiency during the early stages of the heating season, a period when the temperature of the primary tank is generally high. By preferentially drawing energy from the small secondary tank to meet load, its temperature can be kept well below that of the larger primary tank, thereby providing a lower-temperature source for collector inlet fluid. The resulting improvement in annual system efficiency through the addition of a small secondary tank is found to be substantial - for the site considered in the paper (Madison, Wisconsin), the relative percentage gain in annual performance is in the range of 10 to 20%. A simple computer model permits accurate hour-by-hour transient simulation of thermal performance over a yearly cycle. The paper presents results of detailed simulations of collectors and storage sizing and design trade-offs for solar energy systems supplying 90% to 100% of annual heating load requirements.

  2. Solar-simulated radiation and heat treatment induced metalloproteinase-1 expression in cultured dermal fibroblasts via distinct pathways: implications on reduction of sun-associated aging.

    PubMed

    Lan, Cheng-Che E; Wu, Ching-Shang; Yu, Hsin-Su

    2013-12-01

    Sun exposure is an important environmental factor affecting human beings. Most knowledge regarding solar aging focused on light radiation (photoaging), and little emphasis has been placed on heat, a factor that is also closely associated with sun exposure. This study was launched to evaluate the effects of simulated solar radiation (SSR) and environmental heat on skin fibroblasts in terms of dermal aging. Cultured human dermal fibroblasts were treated with moderate amount of SSR (200J/cm(2)) and heat (+2°C). The metalloproteinase-1 (MMP-1) expression was used as a surrogate marker for dermal aging and the involved regulatory mechanisms were explored. Both treatment conditions did not affect viability but significantly increased the expressions of MMP-1. In parallel, both treatments increased the intracellular levels of reactive oxygen species (ROS), but the increase induced by SSR is much greater than heat. In contrast, transient receptor potential vanilloid 1 (TRPV-1), the sensor of environmental heat, was upregulated by heat but not SSR treatment. Pretreating fibroblasts with antioxidant abrogated the SSR-induced MMP-1 but has limited effect on heat-induced MMP-1. On the other hand, TRPV-1 antagonist pretreatment reduced heat-induced MMP-1 in fibroblasts but not their SSR-treated counterparts. Both SSR and heat induced MMP-1 expression in dermal fibroblasts but through different pathways. As current strategies for reducing sun-related aging focused on filtering of light and use of antioxidants, future strategies design to reduce solar aging should also incorporate heat-induced aging into consideration. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Simulation and energy analysis of distributed electric heating system

    NASA Astrophysics Data System (ADS)

    Yu, Bo; Han, Shenchao; Yang, Yanchun; Liu, Mingyuan

    2018-02-01

    Distributed electric heating system assistssolar heating systemby using air-source heat pump. Air-source heat pump as auxiliary heat sourcecan make up the defects of the conventional solar thermal system can provide a 24 - hour high - efficiency work. It has certain practical value and practical significance to reduce emissions and promote building energy efficiency. Using Polysun software the system is simulated and compared with ordinary electric boiler heating system. The simulation results show that upon energy request, 5844.5kW energy is saved and 3135kg carbon - dioxide emissions are reduced and5844.5 kWhfuel and energy consumption is decreased with distributed electric heating system. Theeffect of conserving energy and reducing emissions using distributed electric heating systemis very obvious.

  4. Solar tower cavity receiver aperture optimization based on transient optical and thermo-hydraulic modeling

    NASA Astrophysics Data System (ADS)

    Schöttl, Peter; Bern, Gregor; van Rooyen, De Wet; Heimsath, Anna; Fluri, Thomas; Nitz, Peter

    2017-06-01

    A transient simulation methodology for cavity receivers for Solar Tower Central Receiver Systems with molten salt as heat transfer fluid is described. Absorbed solar radiation is modeled with ray tracing and a sky discretization approach to reduce computational effort. Solar radiation re-distribution in the cavity as well as thermal radiation exchange are modeled based on view factors, which are also calculated with ray tracing. An analytical approach is used to represent convective heat transfer in the cavity. Heat transfer fluid flow is simulated with a discrete tube model, where the boundary conditions at the outer tube surface mainly depend on inputs from the previously mentioned modeling aspects. A specific focus is put on the integration of optical and thermo-hydraulic models. Furthermore, aiming point and control strategies are described, which are used during the transient performance assessment. Eventually, the developed simulation methodology is used for the optimization of the aperture opening size of a PS10-like reference scenario with cavity receiver and heliostat field. The objective function is based on the cumulative gain of one representative day. Results include optimized aperture opening size, transient receiver characteristics and benefits of the implemented aiming point strategy compared to a single aiming point approach. Future work will include annual simulations, cost assessment and optimization of a larger range of receiver parameters.

  5. Simulations of Solar Jets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar chromosphere, and erupting plasma is released outward into the solar corona.A second comparison of simulated observations based on the authors model (left panels) to actual EUV observations of jets (right panels). [Szente et al. 2017]Global InfluencesAfter demonstrating that their models could successfully lead to jet production and propagation, Szente and collaborators compared their results to actual observations of solar jets. The authors constructed simulated EUV and X-ray observations of their modeled events, and they verified that the behavior and structures in these simulated observations were very similar to real observations of coronal jet events from telescopes like SDO/AIA and Hinode.With this confirmed, the authors then used their models to determine how the jets influence the global solar corona and the solar wind. They found that the large-scale corona is significantly affected by the plasma waves from the jet, which travel across 40 in latitude and out to 24 solar radii. In spite of this, the simulated jets contributed only a few percent to the steady-state solar-wind energy outflow.These simulations represent an important step in realistic modeling of the quiet Sun. Because the models make specific predictions about temperature and density gradients within the corona, we can look forward to testing them with upcoming missions like Solar Probe Plus, which should be able to explore the Sun all the way down to ninesolar radii.CitationJ. Szente et al 2017 ApJ 834 123. doi:10.3847/1538-4357/834/2/123

  6. Advanced development receiver thermal vacuum tests with cold wall

    NASA Technical Reports Server (NTRS)

    Sedgwick, Leigh M.

    1991-01-01

    The first ever testing of a full size solar dynamic heat receiver using high temperature thermal energy storage was completed. The heat receiver was designed to meet the requirements for operation on the Space Station Freedom. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partially simulate a low Earth orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to produce flux distributions typical of candidate concentrators. A closed Brayton cycle engine simulator conditioned a helium xenon gas mixture to specific interface conditions to simulate various operational modes of the solar dynamic power module. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles were completed during the test conduct period. The test hardware, execution of testing, test data, and post test inspections are described.

  7. Performance of a solar augmented heat pump

    NASA Astrophysics Data System (ADS)

    Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.

  8. MULTI-SHELL MAGNETIC TWISTERS AS A NEW MECHANISM FOR CORONAL HEATING AND SOLAR WIND ACCELERATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murawski, K.; Srivastava, A. K.; Dwivedi, B. N.

    2015-07-20

    We perform numerical simulations of impulsively generated Alfvén waves in an isolated photospheric flux tube and explore the propagation of these waves along such magnetic structure that extends from the photosphere, where these waves are triggered, to the solar corona, and we analyze resulting magnetic shells. Our model of the solar atmosphere is constructed by adopting the temperature distribution based on the semi-empirical model and specifying the curved magnetic field lines that constitute the magnetic flux tube that is rooted in the solar photosphere. The evolution of the solar atmosphere is described by 3D, ideal MHD equations that are numerically solvedmore » by the FLASH code. Our numerical simulations reveal, based on the physical properties of the multi-shell magnetic twisters and the amount of energy and momentum associated with them, that these multi-shell magnetic twisters may be responsible for the observed heating of the lower solar corona and for the formation of solar wind. Moreover, it is likely that the existence of these twisters can be verified by high-resolution observations.« less

  9. A simple method for predicting solar fractions of IPH and space heating systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, R.; Goodling, J.S.

    1982-01-01

    In this paper, a method has been developed to evaluate the solar fractions of liquid based industrial process heat (IPH) and space heating systems, without the use of computer simulations. The new method is the result of joining two theories, Lunde's equation to determine monthly performance of solar heating systems and the utilizability correlations of Collares-Pereira and Rabl by making appropriate assumptions. The new method requires the input of the monthly averages of the utilizable radiation and the collector operating time. These quantities are determined conveniently by the method of Collares-Pereira and Rabl. A comparison of the results of themore » new method with the most acceptable design methods shows excellent agreement.« less

  10. Indoor thermal performance evaluation of Daystar solar collector

    NASA Technical Reports Server (NTRS)

    Shih, K., Sr.

    1977-01-01

    The test procedures used and results obtained from a test program to obtain thermal performance data on a Daystar Model 21B, S/N 02210, Unit 2, liquid solar collector under simulated conditions are described. The test article is a flat plate solar collector using liquid as a heat transfer medium. The absorber plate is copper and coated with black paint. Between the tempered low iron glass and absorber plate is a polycarbonate trap used to suppress convective heat loss. The collector incorporates a convector heat dump panel to limit temperature excursions during stagnation. The following tests were conducted: (1) collector thermal efficiency; (2) collector time constant; (3) collector incident angle modifier; (4) collector heat loss coefficient; and (5) collector stagnation.

  11. Modeling and simulation of temperature effect in polycrystalline silicon PV cells

    NASA Astrophysics Data System (ADS)

    Marcu, M.; Niculescu, T.; Slusariuc, R. I.; Popescu, F. G.

    2016-06-01

    Due to the human needs of energy, there is a need to apply new technologies in energy conversion to supply the demand of clean and cheap energy in the context of environmental issues. Renewable energy sources like solar energy has one of the highest potentials. In this paper, solar panel is the key part of a photovoltaic system which converts solar energy to electrical energy. The purpose of this paper is to give a MATLAB/ Simulink simulation for photovoltaic module based on the one-diode model of a photovoltaic cell made of polycrystalline silicon. This model reveals the effect of the ambient temperature and the heating of the panel due to the solar infrared radiation. Also the measurements on the solar cell exposed to solar radiation can confirm the simulation.

  12. Indoor test for thermal performance evaluation of Libbey-Owens-Ford solar collector. [using a solar simulator

    NASA Technical Reports Server (NTRS)

    Shih, K.

    1977-01-01

    The thermal performance of a flat plate solar collector that uses liquid as the heat transfer medium was investigated under simulated conditions. The test conditions and thermal performance data obtained during the tests are presented in tabular form, as well as in graphs. Data obtained from a time constant test and incident angle modifier test, conducted to determine transient effect and the incident angle effect on the collector, are included.

  13. Solar air heating system: design and dynamic simulation

    NASA Astrophysics Data System (ADS)

    Bououd, M.; Hachchadi, O.; Janusevicius, K.; Martinaitis, V.; Mechaqrane, A.

    2018-05-01

    The building sector is one of the big energy consumers in Morocco, accounting for about 23% of the country’s total energy consumption. Regarding the population growth, the modern lifestyle requiring more comfort and the increase of the use rate of electronic devices, the energy consumption will continue to increase in the future. In this context, the introduction of renewable energy systems, along with energy efficiency, is becoming a key factor in reducing the energy bill of buildings. This study focuses on the design and dynamic simulation of an air heating system for the mean categories of the tertiary sector where the area exceeds 750 m3. Heating system has been designed via a dynamic simulation environment (TRNSYS) to estimate the produced temperature and airflow rate by one system consisting of three essential components: vacuum tube solar collector, storage tank and water-to-air finned heat exchanger. The performances estimation of this system allows us to evaluate its capacity to meet the heating requirements in Ifrane city based on the prescriptive approach according to the Moroccan Thermal Regulation. The simulation results show that in order to maintain a comfort temperature of 20°C in a building of 750m3, the places requires a thermal powers of approximately 21 kW, 29 kW and 32 kW, respectively, for hotels, hospitals, administrative and public-school. The heat generation is ensured by a solar collector areas of 5 m², 7 m² and 10 m², respectively, for hotels, hospitals, administrative and public-school spaces, a storage tank of 2 m3 and a finned heat exchanger with 24 tubes. The finned tube bundles have been modelled and integrated into the system design via a Matlab code. The heating temperature is adjusted via two controllers to ensure a constant air temperature of 20°C during the heating periods.

  14. Simulation of Solar Heat Pump Dryer Directly Driven by Photovoltaic Panels

    NASA Astrophysics Data System (ADS)

    Houhou, H.; Yuan, W.; Wang, G.

    2017-05-01

    This paper investigates a new type of solar heat pump dryer directly driven by photovoltaic panels. In order to design this system, a mathematical model has been established describing the whole drying process, including models of key components and phenomena of heat and mass transfer at the product layer and the air. The results of simulation at different drying air temperatures and velocities have been calculated and it indicate that the temperature of drying air is crucial external parameter compared to the velocity, with the increase of drying temperature from 45°C to 55°C, the product moisture content (Kg water/Kg dry product) decreased from 0.75 Kg/Kg to 0.3 Kg/Kg.

  15. Magnetic reconnection as a chondrule heating mechanism

    NASA Astrophysics Data System (ADS)

    Lazerson, Samuel A.

    2010-12-01

    The origin of chondrules (sub-millimeter inclusions found in stony meteorites) remains today an open question despite over century of examination. The age of these proto-solar relics shows a well defined cutoff of around 4.5 billion years ago. This places them as the oldest solids in the solar system. Chemical examination indicates that they experienced heating events on the order of 5000 K/hr for periods of around 30 minutes, followed by extending periods of cooling. Additional examination indicates the presence of large magnetic fields during their formation. Most attempts to explain chondrule formation in the proto-solar nebula neglect the existence of a plasma environment, with even less mention of dust being a charge carrier (dusty plasma). Simulations of magnetic reconnection in a dusty plasma are forwarded as a mechanism for chondrule formation in the proto-solar nebula. Here large dust-neutral relative velocities are found in the reconnection region. These flows are associated with the dynamics of reconnection. The high Knudsen number of the dust particles allows for a direct calculation of frictional heating due to collisions with neutrals (allowing for the neglect of boundary layer formation around the particle). Test particle simulations produce heating equivalent to that recorded in the chondrule mineral record. It is shown that magnetic reconnection in a dusty plasma is of fundamental importance to the formation of the most primitive solids in the solar system.

  16. Effects of the inclination angle on the performance of flat plate solar collector

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.

    2018-03-01

    Double glasses cover is typically used in a flat plate solar collector to decrease heat losses to ambient. The working principal of the cover is to allow the solar irradiation hit the plate absorber and blocks it using natural convection mechanism in the enclosure between the glasses. The performance of the enclosure to block the heat loss to the surrounding affected by the inclination angle of the collector. The objective of this study is to explore the effect of the inclination angle to the performance of the solar collector. Numerical simulation using commercial code Computational Fluid Dynamic (CFD) has been carried out to explore the fluid flow and heat transfer characteristics in the enclosure. In the result, streamline, vector velocity, and contour temperature are plotted. It was shown that the inclination angle strongly affects the performance of the collector. The average heat transfer coefficient decreases with increasing inclination angle. This fact suggests that too high inclination angle is not recommended for solar collector.

  17. Three-Dimensional Hybrid-Kinetic Simulations of Alfvénic Turbulence in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Arzamasskiy, Lev; Kunz, Matthew; Chandran, Benjamin; Quataert, Eliot

    2017-10-01

    The interplanetary medium hosts a solar wind, which contains a broadband turbulent spectrum of large-amplitude Alfvén waves. In this talk, we present results from hybrid-kinetic simulations of this turbulent and essentially collisionless system. We confirm power-law indices obtained in previous analytical and numerical (e.g., gyrokinetic) studies, and carefully explore the location of the spectral break and physics occurring at the ion-Larmor scale. In the low-beta regime, we find evidence of perpendicular ion heating, which we interpret as stochastic heating arising from interactions between ions and strong fluctuations at wavelengths comparable to the ion-Larmor scale. We explore the dependence of ion heating on plasma beta. Finally, we discuss the interpretation of spacecraft measurements of this turbulence by testing the Taylor hypothesis with synthetic spacecraft measurements of our simulation data. This work was supported by NASA Grant NNX16AK09G.

  18. 800 Hours of Operational Experience from a 2 kW(sub e) Solar Dynamic System

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Mason, Lee S.

    1999-01-01

    From December 1994 to September 1998, testing with a 2 kW(sub e) Solar Dynamic power system resulted in 33 individual tests, 886 hours of solar heating, and 783 hours of power generation. Power generation ranged from 400 watts to over 2 kW(sub e), and SD system efficiencies have been measured up to 17 per cent, during simulated low-Earth orbit operation. Further, the turbo-alternator-compressors successfully completed 100 start/stops on foil bearings. Operation was conducted in a large thermal/vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Solar Dynamic system featured a closed Brayton conversion unit integrated with a solar heat receiver, which included thermal energy storage for continuous power output through a typical low-Earth orbit. Two power conversion units and three alternator configurations were used during testing. This paper will review the test program, provide operational and performance data, and review a number of technology issues.

  19. Yearly simulation of a solar-aided R22-DEGDME absorption heat pump system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ileri, A.

    1995-12-31

    The performance of a solar-aided R22-DEGDME absorption heat pump system designed for 100 kW cooling capacity is investigated by a computer simulation using hourly data for Ankara. In summer the generator, and in winter the evaporator, receives solar energy while the remaining demands are met by auxiliary heaters. When needed, these boost the temperature of the water from the storage tank to the minimum allowable levels which are determined as 20{degree}C in winter and over 80{degree}C in summer. The system performance, judged by the fraction of the load supplied from solar energy, is affected mostly from the climate, source temperaturemore » limit, collector type and area but little from storage tank size, for the sizes and configuration under investigation. With 400 m{sup 2} of high efficiency collectors, the solar energy supplied 38% of the demand in winter and 91% of the demand in summer. 22 refs., 2 figs., 6 tabs.« less

  20. Summary of NASA Lewis Research Center solar heating and cooling and wind energy programs

    NASA Technical Reports Server (NTRS)

    Vernon, R. W.

    1975-01-01

    Plans for the construction and operation of a solar heating and cooling system in conjunction with a office building being constructed at Langley Research Center, are discussed. Supporting research and technology includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. The areas of a wind energy program that are being conducted include: design and operation of a 100-kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.

  1. Numerical simulation of an innovated building cooling system with combination of solar chimney and water spraying system

    NASA Astrophysics Data System (ADS)

    Rabani, Ramin; Faghih, Ahmadreza K.; Rabani, Mehrdad; Rabani, Mehran

    2014-05-01

    In this study, passive cooling of a room using a solar chimney and water spraying system in the room inlet vents is simulated numerically in Yazd, Iran (a hot and arid city with very high solar radiation). The performance of this system has been investigated for the warmest day of the year (5 August) which depends on the variation of some parameters such as water flow rate, solar heat flux, and inlet air temperature. In order to get the best performance of the system for maximum air change and also absorb the highest solar heat flux by the absorber in the warmest time of the day, different directions (West, East, North and South) have been studied and the West direction has been selected as the best direction. The minimum amount of water used in spraying system to set the inside air averaged relative humidity <65 % is obtained using trial and error method. The simulation results show that this proposed system decreases the averaged air temperature in the middle of the room by 9-14 °C and increases the room relative humidity about 28-45 %.

  2. The Interaction of the Solar Wind with Solar Probe Plus - 3D Hybrid Simulation. Report 1; The Study for the Distance 4.5Rs

    NASA Technical Reports Server (NTRS)

    Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.; Cooper, John F.

    2010-01-01

    Our report devotes a 3D numerical hybrid model of the interaction of the solar wind with the Solar Probe spacecraft. The Solar Probe Plus (SPP) model includes 3 main parts, namely, a non-conducting heat shield, a support system, and cylindrical section or spacecraft bus that contains the particle analysis devices and antenna. One observes an excitation of the low frequency Alfven and whistler type wave directed by the magnetic field with an amplitude of about (0.06-0.6) V/m. The compression waves and the jumps in an electric field with an amplitude of about (0.15-0.7) V/m were also observed. The wave amplitudes are comparable to or greater than previously estimated max wave amplitudes that SPP is expected to measure. The results of our hybrid simulation will be useful for understanding the plasma environment near the SPP spacecraft at the distance 4.5 Rs. Future simulation will take into account the charging of the spacecraft, the charge separation effects, an outgassing from heat shield, a photoionization and an electron impact ionization effects near the spacecraft.

  3. Solar Convective Furnace for Metals Processing

    NASA Astrophysics Data System (ADS)

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  4. Analyses and Comparison of Solar Air Heater with Various Rib Roughness using Computational Fluid Dynamics (CFD)

    NASA Astrophysics Data System (ADS)

    Kumar, K. Ravi; Cheepu, Muralimohan; Srinivas, B.; Venkateswarlu, D.; Pramod Kumar, G.; Shiva, Apireddi

    2018-03-01

    In solar air heater, artificial roughness on absorber plate become prominent technique to improving heat transfer rate of air flowing passage as a result of laminar sublayer. The selection of rib geometries plays important role on friction characteristics and heat transfer rate. Many researchers studying the roughness shapes over the years to investigate the effect of geometries on the performance of friction factor and heat transfer of the solar air heater. The present study made an attempt to develop the different rib shapes utilised for creating artificial rib roughness and its comparison to investigate higher performance of the geometries. The use of computational fluid dynamics software resulted in correlation of friction factor and heat transfer rate. The simulations studies were performed on 2D computational fluid dynamics model and analysed to identify the most effective parameters of relative roughness of the height, width and pitch on major considerations of friction factor and heat transfer. The Reynolds number is varied in a range from 3000 to 20000, in the current study and modelling has conducted on heat transfer and turbulence phenomena by using Reynolds number. The modelling results showed the formation of strong vortex in the main stream flow due to the right angle triangle roughness over the square, rectangle, improved rectangle and equilateral triangle geometries enhanced the heat transfer extension in the solar air heater. The simulation of the turbulence kinetic energy of the geometry suggests the local turbulence kinetic energy has been influenced strongly by the alignments of the right angle triangle.

  5. A general circulation model study of the solar and QBO modulation of the stratospheric circulation during the northern hemisphere winter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodera, Kunihiko; Chiba, Masaru; Shibata, Kiyotaka

    1991-07-01

    A general circulation model has been used to study the modulation of north-polar temperatures during winter by both solar activity and the equatorial quasi-biennial oscillation (QBO). The variation of solar activity was simulated by changing the heating rate due to the absorption of ultraviolet (UV) radiation by ozone, while the QBO zonal wind fields were reproduced by incorporating zonal-momentum sources in the equatorial stratosphere. A total of 10 experiments were conducted by changing the heating rate from 70 to 110% for each of the simulated QBO easterly and westerly cases. The results of the numerical experiments show modulation effects similarmore » to those found by Labitzke (1987) in the 30-mb temperatures at the North Pole.« less

  6. Study of thermal effects and optical properties of an innovative absorber in integrated collector storage solar water heater

    NASA Astrophysics Data System (ADS)

    Taheri, Yaser; Alimardani, Kazem; Ziapour, Behrooz M.

    2015-10-01

    Solar passive water heaters are potential candidates for enhanced heat transfer. Solar water heaters with an integrated water tank and with the low temperature energy resource are used as the simplest and cheapest recipient devices of the solar energy for heating and supplying hot water in the buildings. The solar thermal performances of one primitive absorber were determined by using both the experimental and the simulation model of it. All materials applied for absorber such as the cover glass, the black colored sands and the V shaped galvanized plate were submerged into the water. The water storage tank was manufactured from galvanized sheet of 0.0015 m in thickness and the effective area of the collector was 0.67 m2. The absorber was installed on a compact solar water heater. The constructed flat-plate collectors were tested outdoors. However the simulation results showed that the absorbers operated near to the gray materials and all experimental results showed that the thermal efficiencies of the collector are over than 70 %.

  7. Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Ivy Bo, E-mail: bopeng@kth.se; Markidis, Stefano; Laure, Erwin

    2015-09-15

    We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has beenmore » identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration.« less

  8. Method and apparatus for simulating atomospheric absorption of solar energy due to water vapor and CO.sub.2

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth's surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO.sub.2 and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO.sub.2 and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO.sub.2 and moisture.

  9. Method and apparatus for simulating atmospheric absorption of solar energy due to water vapor and CO{sub 2}

    DOEpatents

    Sopori, B.L.

    1995-06-20

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.

  10. Flat plate solar air heater with latent heat storage

    NASA Astrophysics Data System (ADS)

    Touati, B.; Kerroumi, N.; Virgone, J.

    2017-02-01

    Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.

  11. On the radial evolution of reflection-driven turbulence in the inner solar wind in preparation for Parker Solar Probe

    NASA Astrophysics Data System (ADS)

    Perez, J. C.; Chandran, B. D. G.

    2017-12-01

    In this work we present recent results from high-resolution direct numerical simulations and a phenomenological model that describes the radial evolution of reflection-driven Alfven Wave turbulence in the solar atmosphere and the inner solar wind. The simulations are performed inside a narrow magnetic flux tube that models a coronal hole extending from the solar surface through the chromosphere and into the solar corona to approximately 21 solar radii. The simulations include prescribed empirical profiles that account for the inhomogeneities in density, background flow, and the background magnetic field present in coronal holes. Alfven waves are injected into the solar corona by imposing random, time-dependent velocity and magnetic field fluctuations at the photosphere. The phenomenological model incorporates three important features observed in the simulations: dynamic alignment, weak/strong nonlinear AW-AW interactions, and that the outward-propagating AWs launched by the Sun split into two populations with different characteristic frequencies. Model and simulations are in good agreement and show that when the key physical parameters are chosen within observational constraints, reflection-driven Alfven turbulence is a plausible mechanism for the heating and acceleration of the fast solar wind. By flying a virtual Parker Solar Probe (PSP) through the simulations, we will also establish comparisons between the model and simulations with the kind of single-point measurements that PSP will provide.

  12. Global MHD Simulation of the Coronal Mass Ejection on 2011 March 7: from Chromosphere to 1 AU

    NASA Astrophysics Data System (ADS)

    Jin, M.; Manchester, W.; van der Holst, B.; Oran, R.; Sokolov, I.; Toth, G.; Vourlidas, A.; Liu, Y.; Sun, X.; Gombosi, T. I.

    2013-12-01

    In this study, we present magnetohydrodynamics simulation results of a fast CME event that occurred on 2011 March 7 by using the newly developed Alfven Wave Solar Model (AWSoM) in Space Weather Modeling Framework (SWMF). The background solar wind is driven by Alfven-wave pressure and heated by Alfven-wave dissipation in which we have incorporated balanced turbulence at the top of the closed field lines. The magnetic field of the inner boundary is specified with a synoptic magnetogram from SDO/HMI. In order to produce the physically correct CME structures and CME-driven shocks, the electron and proton temperatures are separated so that the electron heat conduction is explicitly treated in conjunction with proton shock heating. Also, collisionless heat conduction is implemented for getting the correct electron temperature at 1 AU. We initiate the CME by using the Gibson-Low flux rope model and simulate the CME propagation to 1 AU. A comprehensive validation study is performed using remote as well as in-situ observations from SOHO, STEREOA/B, ACE, and WIND. Our result shows that the new model can reproduce most of the observed features and the arrival time of the CME is correctly estimated, which suggests the forecasting capability of the new model. We also examine the simulated CME-driven shock structures that are important for modeling the associated solar energetic event (SEP) with diffusive shock acceleration.

  13. Multiphase numerical analysis of heat pipe with different working fluids for solar applications

    NASA Astrophysics Data System (ADS)

    Aswath, S.; Netaji Naidu, V. H.; Padmanathan, P.; Raja Sekhar, Y.

    2017-11-01

    Energy crisis is a prognosis predicted in many cases with the indiscriminate encroachment of conventional energy sources for applications on a massive scale. This prediction, further emboldened by the marked surge in global average temperatures, attributed to climate change and global warming, the necessity to conserve the environment and explore alternate sources of energy is at an all-time high. Despite being among the lead candidates for such sources, solar energy is utilized far from its vast potential possibilities due to predominant economic constraints. Even while there is a growing need for solar panels at more affordable rates, the other options to harness better out of sun’s energy is to optimize and improvise existing technology. One such technology is the heat pipe used in Evacuated Tube Collectors (ETC). The applications of heat pipe have been gaining momentum in various fields since its inception and substantial volumes of research have explored optimizing and improving the technology which is proving effective in heat recovery and heat transfer better than conventional systems. This paper carries out a computational analysis on a comparative simulation between two working fluids within heat pipe of same geometry. It further endeavors to study the multiphase transitions within the heat pipe. The work is carried out using ANSYS Fluent with inputs taken from solar data for the location of Vellore, Tamil Nadu. A wickless, gravity-assisted heat pipe (GAHP) is taken for the simulation. Water and ammonia are used as the working fluids for comparative multiphase analysis to arrive at the difference in heat transfer at the condenser section. It is demonstrated that a heat pipe ETC with ammonia as working fluid showed higher heat exchange (temperature difference) as against that of water as working fluid. The multiphase model taken aided in study of phase transitions within both cases and supported the result of ammonia as fluid being a better candidate.

  14. EXTENSION OF THE MURAM RADIATIVE MHD CODE FOR CORONAL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rempel, M., E-mail: rempel@ucar.edu

    2017-01-01

    We present a new version of the MURaM radiative magnetohydrodynamics (MHD) code that allows for simulations spanning from the upper convection zone into the solar corona. We implement the relevant coronal physics in terms of optically thin radiative loss, field aligned heat conduction, and an equilibrium ionization equation of state. We artificially limit the coronal Alfvén and heat conduction speeds to computationally manageable values using an approximation to semi-relativistic MHD with an artificially reduced speed of light (Boris correction). We present example solutions ranging from quiet to active Sun in order to verify the validity of our approach. We quantifymore » the role of numerical diffusivity for the effective coronal heating. We find that the (numerical) magnetic Prandtl number determines the ratio of resistive to viscous heating and that owing to the very large magnetic Prandtl number of the solar corona, heating is expected to happen predominantly through viscous dissipation. We find that reasonable solutions can be obtained with values of the reduced speed of light just marginally larger than the maximum sound speed. Overall this leads to a fully explicit code that can compute the time evolution of the solar corona in response to photospheric driving using numerical time steps not much smaller than 0.1 s. Numerical simulations of the coronal response to flux emergence covering a time span of a few days are well within reach using this approach.« less

  15. Researcher and Mechanic with Solar Collector in Solar Simulator Cell

    NASA Image and Video Library

    1976-08-21

    Researcher Susan Johnson and a mechanic examine a flat-plate solar collector in the Solar Simulator Cell in the High Temperature Composites Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The Solar Simulator Cell allowed the researchers to control the radiation levels, air temperature, airflow, and fluid flow. The flat-plate collector, seen in a horizontal position here, was directed at the solar simulator, seen above Johnson, during the tests. Lewis researchers were studying the efficiency of various flat- plate solar collector designs in the 1970s for temperature control systems in buildings. The collectors consisted of a cover material, absorber plate, and parallel flow configuration. The collector’s absorber material and coating, covers, honeycomb material, mirrors, vacuum, and tube attachment could all be modified. Johnson’s study analyzed 35 collectors. Johnson, a lifelong pilot, joined NASA Lewis in 1974. The flat-plate solar collectors, seen here, were her first research project. Johnson also investigated advanced heat engines for general aviation and evaluated variable geometry combustors and liners. Johnson earned the Cleveland Technical Society’s Technical Achievement Award in 1984.

  16. Microphysics of Waves and Instabilities in the Solar Wind and their Macro Manifestations in the Corona and Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia R.; Gurman, Joseph (Technical Monitor)

    2003-01-01

    Investigations of the physical processes responsible for the acceleration of the solar wind were pursued with the development of two new solar wind codes: a hybrid code and a 2-D MHD code. Hybrid simulations were performed to investigate the interaction between ions and parallel propagating low frequency ion cyclotron waves in a homogeneous plasma. In a low-beta plasma such as the solar wind plasma in the inner corona, the proton thermal speed is much smaller than the Alfven speed. Vlasov linear theory predicts that protons are not in resonance with low frequency ion cyclotron waves. However, non-linear effect makes it possible that these waves can strongly heat and accelerate protons. This study has important implications for study of the corona and the solar wind. Low frequency ion cyclotron waves or Alfven waves are commonly observed in the solar wind. Until now, it is believed that these waves are not able to heat the solar wind plasma unless some cascading processes transfer the energy of these waves to high frequency part. However, this study shows that these waves may directly heat and accelerate protons non-linearly. This process may play an important role in the coronal heating and the solar wind acceleration, at least in some parameter space.

  17. Thermal Non-equilibrium Consistent with Widespread Cooling

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Lionello, R.; Mikic, Z.; Linker, J.; Mok, Y.

    2014-01-01

    Time correlation analysis has been used to show widespread cooling in the solar corona; this cooling has been interpreted as a result of impulsive (nanoflare) heating. In this work, we investigate wide-spread cooling using a 3D model for a solar active region which has been heated with highly stratified heating. This type of heating drives thermal non-equilibrium solutions, meaning that though the heating is effectively steady, the density and temperature in the solution are not. We simulate the expected observations in narrowband EUV images and apply the time correlation analysis. We find that the results of this analysis are qualitatively similar to the observed data. We discuss additional diagnostics that may be applied to differentiate between these two heating scenarios.

  18. Development of a thermal storage module using modified anhydrous sodium hydroxide

    NASA Technical Reports Server (NTRS)

    Rice, R. E.; Rowny, P. E.

    1980-01-01

    The laboratory scale testing of a modified anhydrous NaOH latent heat storage concept for small solar thermal power systems such as total energy systems utilizing organic Rankine systems is discussed. A diagnostic test on the thermal energy storage module and an investigation of alternative heat transfer fluids and heat exchange concepts are specifically addressed. A previously developed computer simulation model is modified to predict the performance of the module in a solar total energy system environment. In addition, the computer model is expanded to investigate parametrically the incorporation of a second heat exchange inside the module which will vaporize and superheat the Rankine cycle power fluid.

  19. A Geospatial Comparison of Distributed Solar Heat and Power in Europe and the US

    PubMed Central

    Norwood, Zack; Nyholm, Emil; Otanicar, Todd; Johnsson, Filip

    2014-01-01

    The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the electricity system. PMID:25474632

  20. A geospatial comparison of distributed solar heat and power in Europe and the US.

    PubMed

    Norwood, Zack; Nyholm, Emil; Otanicar, Todd; Johnsson, Filip

    2014-01-01

    The global trends for the rapid growth of distributed solar heat and power in the last decade will likely continue as the levelized cost of production for these technologies continues to decline. To be able to compare the economic potential of solar technologies one must first quantify the types and amount of solar resource that each technology can utilize; second, estimate the technological performance potential based on that resource; and third, compare the costs of each technology across regions. In this analysis, we have performed the first two steps in this process. We use physical and empirically validated models of a total of 8 representative solar system types: non-tracking photovoltaics, 2d-tracking photovoltaics, high concentration photovoltaics, flat-plate thermal, evacuated tube thermal, concentrating trough thermal, concentrating solar combined heat and power, and hybrid concentrating photovoltaic/thermal. These models are integrated into a simulation that uses typical meteorological year weather data to create a yearly time series of heat and electricity production for each system over 12,846 locations in Europe and 1,020 locations in the United States. Through this simulation, systems composed of various permutations of collector-types and technologies can be compared geospatially and temporally in terms of their typical production in each location. For example, we see that silicon solar cells show a significant advantage in yearly electricity production over thin-film cells in the colder climatic regions, but that advantage is lessened in regions that have high average irradiance. In general, the results lead to the conclusion that comparing solar technologies across technology classes simply on cost per peak watt, as is usually done, misses these often significant regional differences in annual performance. These results have implications for both solar power development and energy systems modeling of future pathways of the electricity system.

  1. ASTRID© - Advanced Solar Tubular ReceIver Design: A powerful tool for receiver design and optimization

    NASA Astrophysics Data System (ADS)

    Frantz, Cathy; Fritsch, Andreas; Uhlig, Ralf

    2017-06-01

    In solar tower power plants the receiver is one of the critical components. It converts the solar radiation into heat and must withstand high heat flux densities and high daily or even hourly gradients (due to passage of clouds). For this reason, the challenge during receiver design is to find a reasonable compromise between receiver efficiency, reliability, lifetime and cost. There is a strong interaction between the heliostat field, the receiver and the heat transfer fluid. Therefore, a proper receiver design needs to consider these components within the receiver optimization. There are several design and optimization tools for receivers, but most of them focus only on the receiver, ignoring the heliostat field and other parts of the plant. During the last years DLR developed the ASTRIDcode for tubular receiver concept simulation. The code comprises both a high and a low-detail model. The low-detail model utilizes a number of simplifications which allow the user to screen a high number of receiver concepts for optimization purposes. The high-detail model uses a FE model and is able to compute local absorber and salt temperatures with high accuracy. One key strength of the ASTRIDcode is its interface to a ray tracing software which simulates a realistic heat flux distributions on the receiver surface. The results generated by the ASTRIDcode have been validated by CFD simulations and measurement data.

  2. SIMULATIONS OF ALFVÉN AND KINK WAVE DRIVING OF THE SOLAR CHROMOSPHERE: EFFICIENT HEATING AND SPICULE LAUNCHING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, C. S.; Arber, T. D., E-mail: c.s.brady@warwick.ac.uk

    2016-10-01

    Two of the central problems in our understanding of the solar chromosphere are how the upper chromosphere is heated and what drives spicules. Estimates of the required chromospheric heating, based on radiative and conductive losses, suggest a rate of ∼0.1 erg cm{sup −3} s{sup −1} in the lower chromosphere and drops to ∼10{sup −3} erg cm{sup −3} s{sup −1} in the upper chromosphere. The chromosphere is also permeated by spicules, higher density plasma from the lower atmosphere propelled upwards at speeds of ∼10–20 km s{sup −1}, for so-called Type I spicules, which reach heights of ∼3000–5000 km above the photosphere.more » A clearer understanding of chromospheric dynamics, its heating, and the formation of spicules is thus of central importance to solar atmospheric science. For over 30 years it has been proposed that photospheric driving of MHD waves may be responsible for both heating and spicule formation. This paper presents results from a high-resolution MHD treatment of photospheric driven Alfvén and kink waves propagating upwards into an expanding flux tube embedded in a model chromospheric atmosphere. We show that the ponderomotive coupling from Alfvén and kink waves into slow modes generates shocks, which both heat the upper chromosphere and drive spicules. These simulations show that wave driving of the solar chromosphere can give a local heating rate that matches observations and drive spicules consistent with Type I observations all within a single coherent model.« less

  3. Models of the Solar Atmospheric Response to Flare Heating

    NASA Technical Reports Server (NTRS)

    Allred, Joel

    2011-01-01

    I will present models of the solar atmospheric response to flare heating. The models solve the equations of non-LTE radiation hydrodynamics with an electron beam added as a flare energy source term. Radiative transfer is solved in detail for many important optically thick hydrogen and helium transitions and numerous optically thin EUV lines making the models ideally suited to study the emission that is produced during flares. I will pay special attention to understanding key EUV lines as well the mechanism for white light production. I will also present preliminary results of how the model solar atmosphere responds to Fletcher & Hudson type flare heating. I will compare this with the results from flare simulations using the standard thick target model.

  4. Solar Heating And Cooling Of Buildings (SHACOB): Requirements definition and impact analysis-2. Volume 2: Domestic hot water systems

    NASA Astrophysics Data System (ADS)

    Cretcher, C. K.

    1980-11-01

    The various types of solar domestic hot water systems are discussed including their advantages and disadvantages. The problems that occur in hydronic solar heating systems are reviewed with emphasis on domestic hot water applicatons. System problems in retrofitting of residential buildings are also discussed including structural and space constraints for various components and subsystems. System design parameters include various collector sizing methods, collector orientation, storage capacity and heat loss from pipes and tanks. The installation costs are broken down by components and subsystems. The approach used for utility economic impact analysis is reviewed. The simulation is described, and the results of the economic impact analysis are given. A summary assessment is included.

  5. One-Dimensional Fast Transient Simulator for Modeling Cadmium Sulfide/Cadmium Telluride Solar Cells

    NASA Astrophysics Data System (ADS)

    Guo, Da

    Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary alternative energy sources to fossil fuel. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides a deeper understanding of device operation and ways to improve their efficiency. Over the last two decades, polycrystalline thin-film Cadmium-Sulfide and Cadmium-Telluride (CdS/CdTe) solar cells fabricated on glass substrates have been considered as one of the most promising candidate in the photovoltaic technologies, for their similar efficiency and low costs when compared to traditional silicon-based solar cells. In this work a fast one dimensional time-dependent/steady-state drift-diffusion simulator, accelerated by adaptive non-uniform mesh and automatic time-step control, for modeling solar cells has been developed and has been used to simulate a CdS/CdTe solar cell. These models are used to reproduce transients of carrier transport in response to step-function signals of different bias and varied light intensity. The time-step control models are also used to help convergence in steady-state simulations where constrained material constants, such as carrier lifetimes in the order of nanosecond and carrier mobility in the order of 100 cm2/Vs, must be applied.

  6. Effectiveness of a multi-channel volumetric air receiver for a solar power tower

    NASA Astrophysics Data System (ADS)

    Jung, Eui Guk; Boo, Joon Hong; Kang, Yong Heak; Kim, Nak Hoon

    2013-08-01

    In this study, the heat transfer performance of a multi-channel volumetric air receiver for a solar power tower was numerically analyzed. The governing equations, including the solar radiation heat flux, conduction, convection and radiation heat transfer for a single channel, were solved on the basis of valid related references and a methodology that can predict the temperature distribution of the receiver wall and the heat transfer fluid for specific dimensions and input conditions. Furthermore, a mathematical model of the effectiveness of the receiver was derived from an analysis of the temperature profiles of the wall and the heat transfer fluid. The receiver effectiveness as an appropriate criterion to assess economic feasibility regarding geometric size was investigated, as it would be applied to the design process of the receiver. The main parameters for the thermal performance simulations described in this paper are the air mass flow rate, receiver length and the influence of these parameters on the heat transfer performance from the viewpoint of receiver efficiency and effectiveness.

  7. Ground test program for a full-size solar dynamic heat receiver

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  8. Ground test program for a full-size solar dynamic heat receiver

    NASA Technical Reports Server (NTRS)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full size, solar dynamic heat receiver in a partially simulated, low Earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment were designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed Brayton cycle engine simulator to circulate and condition the helium xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  9. Ground test program for a full-size solar dynamic heat receiver

    NASA Astrophysics Data System (ADS)

    Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  10. Solar cycle variation of Mars exospheric temperatures: Critical review of available dayside measurements and recent model simulations

    NASA Astrophysics Data System (ADS)

    Bougher, Stephen; Huestis, David

    The responses of the Martian dayside thermosphere to solar flux variations (on both solar rotation and solar cycle timescales) have been the subject of considerable debate and study for many years. Available datasets include: Mariner 6,7,9 (UVS dayglow), Viking Lander 1-2 (UAMS densities upon descent), several aerobraking campaigns (MGS, Odyssey, MRO densities), and Mars Express (SPICAM dayglow). Radio Science derived plasma scale heights near the ionospheric peak can be used to derive neutral temperatures in this region (only); such values are not applicable to exobase heights (e.g. Forbes et al. 2008; Bougher et al. 2009). Recently, densities and temperatures derived from precise orbit determination of the MGS spacecraft (1999-2005) have been used to establish the responses of Mars' exosphere to long-term solar flux variations (Forbes et al., 2008). From this multi-year dataset, dayside exospheric temperatures weighted toward moderate southern latitudes are found to change by about 120 K over the solar cycle. However, the applicability of these drag derived exospheric temperatures to near solar minimum conditions is suspect (e.g Bruinsma and Lemoine, 2002). Finally, re-evaluation of production mechanisms for UV dayglow emissions implies revised values for exospheric temperatures (e.g. Simon et al., 2009; Huestis et al. 2010). Several processes are known to influence Mars' exospheric temperatures and their variability (Bougher et al., 1999; 2000; 2009). Solar EUV heating and its variations with solar fluxes received at Mars, CO2 15-micron cooling, molecular thermal conduction, and hydrodynamic heating/cooling associated with global dynamics all contribute to regulate dayside thermo-spheric temperatures. Poorly measured dayside atomic oxygen abundances render CO2 cooling rates uncertain at the present time. However, global thermospheric circulation models can be exercised for conditions spanning the solar cycle and Mars seasons to address the relative roles of these processes in driving observed variations in dayside exospheric temperatures. Mars Thermospheric General Circulation Model (MTGCM) simulations and resulting exo-spheric temperatures will be presented and compared with assimilated temperatures collected from all these available measurements over the solar cycle. It is important to match measure-ments at dayside local times and latitudes for specific seasons with corresponding MTGCM simulated outputs. Calculated local heat budgets and their variations illustrate the changes required to reproduce solar cycle variations in exospheric temperatures. The ability to success-fully predict solar cycle responses of the Martian upper atmosphere is important for simulations of present-day Mars volatile escape rates.

  11. IPS analysis on relationship among velocity, density and temperature of the solar wind

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Tokumaru, M.; Fujiki, K.

    2015-12-01

    The IPS(Interplanetary Scintillation)-MHD(magnetohydrodynamics) tomography is a method we have developed to determine three-dimensional MHD solution of the solar wind that best matches the line-of-sight IPS solar-wind speed data (Hayashi et al., 2003). The tomographic approach is an iteration method in which IPS observations are simulated in MHD steady-state solution, then differences between the simulated observation and the actual IPS observation is reduced by modifying solar-wind boundary map at 50 solar radii. This forward model needs to assume solar wind density and temperature as function of speed. We use empirical functions, N(V) and T(V), derived from Helios in-situ measurement data within 0.5 AU in 1970s. For recent years, especially after 2006, these functions yield higher densities and lower temperatures than in-situ measurements indicate. To characterize the differences between the simulated and actual solar wind plasma, we tune parameters in the functions so that agreements with in-situ data (near the Earth and at Ulysses) will be optimized. This optimization approach can help better simulations of the solar corona and heliosphere, and will help our understandings on roles of magnetic field in solar wind heating and acceleration.

  12. Indoor test for thermal performance evaluation of Lenox-Honeywell solar collector. [conducted using Marshall Space Flight Center Solar Simulator

    NASA Technical Reports Server (NTRS)

    Shih, K.

    1977-01-01

    The test procedures used and the test results obtained from an evaluation test program conducted on a double-covered liquid solar collector under simulated conditions are presented. The test article was a flat plate solar collector using liquid as the heat transfer medium. The absorber plate was steel with the copper tubes bonded on the upper surface. The plate was coated with black chrome with an absorptivity factor of .95 and emissivity factor of .12. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector.

  13. Using Models for How Energetic Electrons Heat the Atmosphere During Flares

    NASA Technical Reports Server (NTRS)

    Allred, Joel

    2011-01-01

    Using models for how energetic electrons heat the atmosphere during flares, we simulate the radiative-hydrodynamic response of the lower solar atmosphere to flare heating. The simulations account for much of the non-LTE, optically thick radiative transfer that occurs in the chromosphere. Our models predict an increase in white light continuum during the flare on the order of 20%, but this is highly sensitive to the electron beam flux used in the simulation. We find that a majority of the white light continuum originates in the chromosphere as a result of Balmer and Paschen recombinations, but a significant portion also forms in the photosphere which has been heated by radiative backwarming.

  14. Importance of the Annual Cycles of SST and Solar Irradiance for Circulation and Rainfall: A Climate Model Simulation Study

    NASA Technical Reports Server (NTRS)

    Sud, Yogesh C.; Lau, William K. M.; Walker, G. K.; Mehta, V. M.

    2001-01-01

    Annual cycle of climate and precipitation is related to annual cycle of sunshine and sea-surface temperatures. Understanding its behavior is important for the welfare of humans worldwide. For example, failure of Asian monsoons can cause widespread famine and grave economic disaster in the subtropical regions. For centuries meteorologists have struggled to understand the importance of the summer sunshine and associated heating and the annual cycle of sea-surface temperatures (SSTs) on rainfall in the subtropics. Because the solar income is pretty steady from year to year, while SSTs depict large interannual variability as consequence of the variability of ocean dynamics, the influence of SSTs on the monsoons are better understood through observational and modeling studies whereas the relationship of annual rainfall to sunshine remains elusive. However, using NASA's state of the art climate model(s) that can generate realistic climate in a computer simulation, one can answer such questions. We asked the question: if there was no annual cycle of the sunshine (and its associated land-heating) or the SST and its associated influence on global circulation, what will happen to the annual cycle of monsoon rains? By comparing the simulation of a 4-year integration of a baseline Control case with two parallel anomaly experiments: 1) with annual mean solar and 2) with annual mean sea-surface temperatures, we were able to draw the following conclusions: (1) Tropical convergence zone and rainfall which moves with the Sun into the northern and southern hemispheres, specifically over the Indian, African, South American and Australian regions, is strongly modulated by the annual cycles of SSTs as well as solar forcings. The influence of the annual cycle of solar heating over land, however, is much stronger than the corresponding SST influence for almost all regions, particularly the subtropics; (2) The seasonal circulation patterns over the vast land-masses of the Northern Hemisphere at mid and high latitudes also get strongly influenced by the annual cycles of solar heating. The SST influence is largely limited to the oceanic regions of these latitudes; (3) The annual mode of precipitation over Amazonia has an equatorial regime revealing a maxima in the month of March associated with SST, and another maxima in the month of January associated with the solar annual cycles, respectively. The baseline simulation, which has both annual cycles, depicts both annual modes and its rainfall is virtually equal to the sum of those two modes; (4) Rainfall over Sahelian-Africa is significantly reduced (increased) in simulations lacking (invoking) solar irradiation with (without) the annual cycle. In fact, the dominant influence of solar irradiation emerges in almost all monsoonal-land regions: India, Southeast Asia, as well as Australia. The only exception is the Continental United States, where solar annual cycle shows only a relatively minor influence on the annual mode of rainfall.

  15. Simulations of the Mg II K and Ca II 8542 Lines From an Alfvén Wave-Heated Flare Chromosphere

    NASA Technical Reports Server (NTRS)

    Kerr, Graham S.; Fletcher, Lyndsay; Russell, Alexander J. B.; Allred, Joel C.

    2016-01-01

    We use radiation hydrodynamic simulations to examine two models of solar flare chromospheric heating: Alfven wave dissipation and electron beam collisional losses. Both mechanisms are capable of strong chromospheric heating, and we show that the distinctive atmospheric evolution in the mid-to-upper chromosphere results in Mg II k-line emission that should be observably different between wave-heated and beam-heated simulations. We also present Ca II 8542 A profiles that are formed slightly deeper in the chromosphere. The Mg II k-line profiles from our wave-heated simulation are quite different from those from a beam-heated model and are more consistent with Interface Region Imaging Spectrograph observations. The predicted differences between the Ca II 8542 A in the two models are small. We conclude that careful observational and theoretical study of lines formed in the mid-to-upper chromosphere holds genuine promise for distinguishing between competing models for chromospheric heating inflares.

  16. Improved Statistical Model Of 10.7-cm Solar Radiation

    NASA Technical Reports Server (NTRS)

    Vedder, John D.; Tabor, Jill L.

    1993-01-01

    Improved mathematical model simulates short-term fluctuations of flux of 10.7-cm-wavelength solar radiation during 91-day averaging period. Called "F10.7 flux", important as measure of solar activity and because it is highly correlated with ultraviolet radiation causing fluctuations in heating and density of upper atmosphere. F10.7 flux easily measureable at surface of Earth.

  17. The Interaction of the Solar Wind with Solar Probe Plus - 3D Hybrid Simulation. Report 1; The Study for the Distance 4.5Rs

    NASA Technical Reports Server (NTRS)

    Lipatov, Alexander S.; Sittler, Edward C.; Hartle, Richard E.; Cooper, John F.

    2010-01-01

    Our report devotes a 3D numerical hybrid model of the interaction of the solar wind with the Solar Probe spacecraft. The SPP model includes 3 main parts, namely, a non-conducting heat shield, a support system, and cylindrical section or spacecraft bus that contains the particle analysis devices and antenna. One observes an excitation of the low frequency Alfven and whistler type wave directed by the magnetic field with an amplitude of about (0.06-0.6) V/m. The compression waves and the jumps in an electric field with an amplitude of about (0.15-0.7) V/m were also observed. The wave amplitudes are comparable to or greater than previously estimated max wave amplitudes that SPP is expected to measure. The results of our hybrid simulation will be useful for understanding the plasma environment near the SPP spacecraft at the distance 4.5 Rs. Future simulation will take into account the charging of the spacecraft, the charge separation effects, an outgassing from heat shield, a photoionization and an electron impact ionization effects near the spacecraft.

  18. CHORUS code for solar and planetary convection

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng

    Turbulent, density stratified convection is ubiquitous in stars and planets. Numerical simulation has become an indispensable tool for understanding it. A primary contribution of this dissertation work is the creation of the Compressible High-ORder Unstructured Spectral-difference (CHORUS) code for simulating the convection and related fluid dynamics in the interiors of stars and planets. In this work, the CHORUS code is verified by using two newly defined benchmark cases and demonstrates excellent parallel performance. It has unique potential to simulate challenging physical phenomena such as multi-scale solar convection, core convection, and convection in oblate, rapidly-rotating stars. In order to exploit its unique capabilities, the CHORUS code has been extended to perform the first 3D simulations of convection in oblate, rapidly rotating solar-type stars. New insights are obtained with respect to the influence of oblateness on the convective structure and heat flux transport. With the presence of oblateness resulting from the centrifugal force effect, the convective structure in the polar regions decouples from the main convective modes in the equatorial regions. Our convection simulations predict that heat flux peaks in both the polar and equatorial regions, contrary to previous theoretical results that predict darker equators. High latitudinal zonal jets are also observed in the simulations.

  19. Particle Acceleration and Heating Processes at the Dayside Magnetopause

    NASA Astrophysics Data System (ADS)

    Berchem, J.; Lapenta, G.; Richard, R. L.; El-Alaoui, M.; Walker, R. J.; Schriver, D.

    2017-12-01

    It is well established that electrons and ions are accelerated and heated during magnetic reconnection at the dayside magnetopause. However, a detailed description of the actual physical mechanisms driving these processes and where they are operating is still incomplete. Many basic mechanisms are known to accelerate particles, including resonant wave-particle interactions as well as stochastic, Fermi, and betatron acceleration. In addition, acceleration and heating processes can occur over different scales. We have carried out kinetic simulations to investigate the mechanisms by which electrons and ions are accelerated and heated at the dayside magnetopause. The simulation model uses the results of global magnetohydrodynamic (MHD) simulations to set the initial state and the evolving boundary conditions of fully kinetic implicit particle-in-cell (iPic3D) simulations for different solar wind and interplanetary magnetic field conditions. This approach allows us to include large domains both in space and energy. In particular, some of these regional simulations include both the magnetopause and bow shock in the kinetic domain, encompassing range of particle energies from a few eV in the solar wind to keV in the magnetospheric boundary layer. We analyze the results of the iPic3D simulations by discussing wave spectra and particle velocity distribution functions observed in the different regions of the simulation domain, as well as using large-scale kinetic (LSK) computations to follow particles' time histories. We discuss the relevance of our results by comparing them with local observations by the MMS spacecraft.

  20. Space Station solar water heater

    NASA Technical Reports Server (NTRS)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  1. Multifluid Simulations of the Global Solar Wind Including Pickup Ions and Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.; Usmanov, A. V.

    2011-01-01

    I will describe a three-dimensional magnetohydrodynamic model of the solar wind that takes into account turbulent heating of the wind by velocity and magnetic fluctuations as well as a variety of effects produced by interstellar pickup protons. The interstellar pickup protons are treated in the model as one fluid and the protons and electrons are treated together as a second fluid. The model equations include a Reynolds decomposition of the plasma velocity and magnetic field into mean and fluctuating quantities, as well as energy transfer from interstellar pickup protons to solar wind protons that results in the deceleration of the solar wind. The model is used to simulate the global steady-state structure of the solar wind in the region from 0.3 to 100 AU. The simulation assumes that the background magnetic field on the Sun is either a dipole (aligned or tilted with respect to the solar rotation axis) or one that is deduced from solar magnetograms.

  2. Preliminary results of fluid dynamic model calculation of convective motion induced by solar heating at the Venus cloud top level.

    NASA Astrophysics Data System (ADS)

    Lee, Yeon Joo; Imamura, Takeshi; Maejima, Yasumitsu; Sugiyama, Ko-ichiro

    The thick cloud layer of Venus reflects solar radiation effectively, resulting in a Bond albedo of 76% (Moroz et al., 1985). Most of the incoming solar flux is absorbed in the upper cloud layer at 60-70 km altitude. An unknown UV absorber is a major sink of the solar energy at the cloud top level. It produces about 40-60% of the total solar heating near the cloud tops, depending on its vertical structure (Crisp et al., 1986; Lee et al., in preparation). UV images of Venus show a clear difference in morphology between laminar flow shaped clouds on the morning side and convective-like cells on the afternoon side of the planet in the equatorial region (Titov et al., 2012). This difference is probably related to strong solar heating at the cloud tops at the sub-solar point, rather than the influence from deeper level convection in the low and middle cloud layers (Imamura et al., 2014). Also, small difference in cloud top structures may trigger horizontal convection at this altitude, because various cloud top structures can significantly alter the solar heating and thermal cooling rates at the cloud tops (Lee et al., in preparation). Performing radiative forcing calculations for various cloud top structures using a radiative transfer model (SHDOM), we investigate the effect of solar heating at the cloud tops on atmospheric dynamics. We use CReSS (Cloud Resolving Storm Simulator), and consider the altitude range from 35 km to 90 km, covering a full cloud deck.

  3. Numerical Study on Natural Vacuum Solar Desalination System with Varying Heat Source Temperature

    NASA Astrophysics Data System (ADS)

    Ambarita, H.

    2017-03-01

    A natural vacuum desalination unit with varying low grade heat source temperature is investigated numerically. The objective is to explore the effects of the variable temperature of the low grade heat source on performances and characteristics of the desalination unit. The specifications of the desalination unit are naturally vacuumed with surface area of seawater in evaporator and heating coil are 0.2 m2 and 0.188 m2, respectively. Temperature of the heating coil is simulated based on the solar radiation in the Medan city. A program to solve the governing equations in forward time step marching technique is developed. Temperature of the evaporator, fresh water production rate, and thermal efficiency of the desalination unit are analysed. Simulation is performed for 9 hours, it starts from 8.00 and finishes at 17.00 of local time. The results show that, the desalination unit with operation time of 9 hours can produce 5.705 L of freshwater and thermal efficiency is 81.8 %. This reveals that varying temperature of the heat source of natural vacuum desalination unit shows better performance in comparison with constant temperature of the heat source.

  4. Optical and heat transfer performance of a novel non-imaging concentrator

    NASA Astrophysics Data System (ADS)

    Sellami, Nazmi; Meng, Xian-long; Xia, Xin-Lin; Knox, Andrew R.; Mallick, Tapas K.

    2015-09-01

    In this study, the Crossed Compound Parabolic Concentrator CCPC is modified to demonstrate for the first time a new generation of solar concentrators working simultaneously as an electricity generator and thermal collector. It is designed to have two complementary surfaces, one reflective and one absorptive, and is called an absorptive/reflective CCPC (AR-CCPC). Usually, the height of the CCPC is truncated with a minor sacrifice of the geometric concentration. These truncated surfaces rather than being eliminated are instead replaced with absorbent surfaces to collect heat from solar radiation. The optical, thermal and total efficiency of the AR-CCPC was simulated and compared for different geometric concentration ratios varying from 3.6x to 4x. It was found that the combined electrical and thermal efficiency of the AR-CCPC 3.6x/4x remains constant and high all day long and the overall efficiency reach up to 94%. In addition, the temperature distributions of AR-CCPC surfaces and the assembled solar cell were simulated based on those heat flux boundary conditions. It shows that the adding of thermal absorbent surface can apparently increase the wall temperature.

  5. CAN A NANOFLARE MODEL OF EXTREME-ULTRAVIOLET IRRADIANCES DESCRIBE THE HEATING OF THE SOLAR CORONA?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajfirouze, E.; Safari, H.

    2012-01-10

    Nanoflares, the basic units of impulsive energy release, may produce much of the solar background emission. Extrapolation of the energy frequency distribution of observed microflares, which follows a power law to lower energies, can give an estimation of the importance of nanoflares for heating the solar corona. If the power-law index is greater than 2, then the nanoflare contribution is dominant. We model a time series of extreme-ultraviolet emission radiance as random flares with a power-law exponent of the flare event distribution. The model is based on three key parameters: the flare rate, the flare duration, and the power-law exponentmore » of the flare intensity frequency distribution. We use this model to simulate emission line radiance detected in 171 A, observed by Solar Terrestrial Relation Observatory/Extreme-Ultraviolet Imager and Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed light curves are matched with simulated light curves using an Artificial Neural Network, and the parameter values are determined across the active region, quiet Sun, and coronal hole. The damping rate of nanoflares is compared with the radiative losses cooling time. The effect of background emission, data cadence, and network sensitivity on the key parameters of the model is studied. Most of the observed light curves have a power-law exponent, {alpha}, greater than the critical value 2. At these sites, nanoflare heating could be significant.« less

  6. Development of a phase-change thermal storage system using modified anhydrous sodium hydroxide for solar electric power generation

    NASA Technical Reports Server (NTRS)

    Cohen, B. M.; Rice, R. E.; Rowny, P. E.

    1978-01-01

    A thermal storage system for use in solar power electricity generation was investigated analytically and experimentally. The thermal storage medium is principally anhydrous NaOH with 8% NaNO3 and 0.2% MnO2. Heat is charged into storage at 584 K and discharged from storage at 582 K by Therminol-66. Physical and thermophysical properties of the storage medium were measured. A mathematical simulation and computer program describing the operation of the system were developed. A 1/10 scale model of a system capable of storing and delivering 3.1 x 10 to the 6th power kJ of heat was designed, built, and tested. Tests included steady state charging, discharging, idling, and charge-discharge conditions simulating a solar daily cycle. Experimental data and computer-predicted results are correlated. A reference design including cost estimates of the full-size system was developed.

  7. A neural network controller for hydronic heating systems of solar buildings.

    PubMed

    Argiriou, Athanassios A; Bellas-Velidis, Ioannis; Kummert, Michaël; André, Philippe

    2004-04-01

    An artificial neural network (ANN)-based controller for hydronic heating plants of buildings is presented. The controller has forecasting capabilities: it includes a meteorological module, forecasting the ambient temperature and solar irradiance, an indoor temperature predictor module, a supply temperature predictor module and an optimizing module for the water supply temperature. All ANN modules are based on the Feed Forward Back Propagation (FFBP) model. The operation of the controller has been tested experimentally, on a real-scale office building during real operating conditions. The operation results were compared to those of a conventional controller. The performance was also assessed via numerical simulation. The detailed thermal simulation tool for solar systems and buildings TRNSYS was used. Both experimental and numerical results showed that the expected percentage of energy savings with respect to a conventional controller is of about 15% under North European weather conditions.

  8. Modeling of the steam hydrolysis in a two-step process for hydrogen production by solar concentrated energy

    NASA Astrophysics Data System (ADS)

    Valle-Hernández, Julio; Romero-Paredes, Hernando; Pacheco-Reyes, Alejandro

    2017-06-01

    In this paper the simulation of the steam hydrolysis for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 to lower-valence cerium oxide, at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. The modeling of endothermic reduction step was presented at the Solar Paces 2015. This work shows the modeling of the exothermic step; the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For this model, three sections of the pipe where the reaction occurs were considered; the steam water inlet, the porous medium and the hydrogen outlet produced. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

  9. High temperature helical tubular receiver for concentrating solar power system

    NASA Astrophysics Data System (ADS)

    Hossain, Nazmul

    In the field of conventional cleaner power generation technology, concentrating solar power systems have introduced remarkable opportunity. In a solar power tower, solar energy concentrated by the heliostats at a single point produces very high temperature. Falling solid particles or heat transfer fluid passing through that high temperature region absorbs heat to generate electricity. Increasing the residence time will result in more heat gain and increase efficiency. A novel design of solar receiver for both fluid and solid particle is approached in this paper which can increase residence time resulting in higher temperature gain in one cycle compared to conventional receivers. The helical tubular solar receiver placed at the focused sunlight region meets the higher outlet temperature and efficiency. A vertical tubular receiver is modeled and analyzed for single phase flow with molten salt as heat transfer fluid and alloy625 as heat transfer material. The result is compared to a journal paper of similar numerical and experimental setup for validating our modeling. New types of helical tubular solar receivers are modeled and analyzed with heat transfer fluid turbulent flow in single phase, and granular particle and air plug flow in multiphase to observe the temperature rise in one cyclic operation. The Discrete Ordinate radiation model is used for numerical analysis with simulation software Ansys Fluent 15.0. The Eulerian granular multiphase model is used for multiphase flow. Applying the same modeling parameters and boundary conditions, the results of vertical and helical receivers are compared. With a helical receiver, higher temperature gain of heat transfer fluid is achieved in one cycle for both single phase and multiphase flow compared to the vertical receiver. Performance is also observed by varying dimension of helical receiver.

  10. Skylab and solar exploration. [chromosphere-corona structure, energy production and heat transport processes

    NASA Technical Reports Server (NTRS)

    Von Puttkamer, J.

    1973-01-01

    Review of some of the findings concerning solar structure, energy production, and heat transport obtained with the aid of the manned Skylab space station observatory launched on May 14, 1973. Among the topics discussed are the observation of thermonuclear fusion processes which cannot be simulated on earth, the observation of short-wave solar radiation not visible to observers on earth, and the investigation of energy-transport processes occurring in the photosphere, chromosphere, and corona. An apparent paradox is noted in that the cooler chromosphere is heating the hotter corona, seemingly in defiance of the second law of thermodynamics, thus suggesting that a nonthermal mechanism underlies the energy transport. Understanding of this nonthermal mechanism is regarded as an indispensable prerequisite for future development of plasma systems for terrestrial applications.

  11. Thermal performance of evacuated tube heat pipe solar collector

    NASA Astrophysics Data System (ADS)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  12. Evaluation of Rankine cycle air conditioning system hardware by computer simulation

    NASA Technical Reports Server (NTRS)

    Healey, H. M.; Clark, D.

    1978-01-01

    A computer program for simulating the performance of a variety of solar powered Rankine cycle air conditioning system components (RCACS) has been developed. The computer program models actual equipment by developing performance maps from manufacturers data and is capable of simulating off-design operation of the RCACS components. The program designed to be a subroutine of the Marshall Space Flight Center (MSFC) Solar Energy System Analysis Computer Program 'SOLRAD', is a complete package suitable for use by an occasional computer user in developing performance maps of heating, ventilation and air conditioning components.

  13. Hard X-ray Detectability of Small Impulsive Heating Events in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Glesener, L.; Klimchuk, J. A.; Bradshaw, S. J.; Marsh, A.; Krucker, S.; Christe, S.

    2015-12-01

    Impulsive heating events ("nanoflares") are a candidate to supply the solar corona with its ~2 MK temperature. These transient events can be studied using extreme ultraviolet and soft X-ray observations, among others. However, the impulsive events may occur in tenuous loops on small enough timescales that the heating is essentially not observed due to ionization timescales, and only the cooling phase is observed. Bremsstrahlung hard X-rays could serve as a more direct and prompt indicator of transient heating events. A hard X-ray spacecraft based on the direct-focusing technology pioneered by the Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket could search for these direct signatures. In this work, we use the hydrodynamical EBTEL code to simulate differential emission measures produced by individual heating events and by ensembles of such events. We then directly predict hard X-ray spectra and consider their observability by a future spaceborne FOXSI, and also by the RHESSI and NuSTAR spacecraft.

  14. Parametric sensitivity study for solar-assisted heat-pump systems

    NASA Astrophysics Data System (ADS)

    White, N. M.; Morehouse, J. H.

    1981-07-01

    The engineering and economic parameters affecting life-cycle costs for solar-assisted heat pump systems are investigted. The change in energy usage resulting from each engineering parameter varied was developed from computer simulations, and is compared with results from a stand-alone heat pump system. Three geographical locations are considered: Washington, DC, Fort Worth, TX, and Madison, WI. Results indicate that most engineering changes to the systems studied do not provide significant energy savings. The most promising parameters to ary are the solar collector parameters tau (-) and U/sub L/ the heat pump capacity at design point, and the minimum utilizable evaporator temperature. Costs associated with each change are estimated, and life-cycle costs computed for both engineering parameters and economic variations in interest rate, discount rate, tax credits, fuel unit costs and fuel inflation rates. Results indicate that none of the feasibile engineering changes for the system configuration studied will make these systems economically competitive with the stand-alone heat pump without a considerable tax credit.

  15. An Efficient Approximation of the Coronal Heating Rate for use in Global Sun-Heliosphere Simulations

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2010-02-01

    The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of debate. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent one-dimensional models have been found to reproduce many observed features of the solar wind by assuming the energy comes from Alfvén waves that are partially reflected, then dissipated by magnetohydrodynamic turbulence. However, the nonlocal physics of wave reflection has made it difficult to apply these processes to more sophisticated (three-dimensional) models. This paper presents a set of robust approximations to the solutions of the linear Alfvén wave reflection equations. A key ingredient of the turbulent heating rate is the ratio of inward-to-outward wave power, and the approximations developed here allow this to be written explicitly in terms of local plasma properties at any given location. The coronal heating also depends on the frequency spectrum of Alfvén waves in the open-field corona, which has not yet been measured directly. A model-based assumption is used here for the spectrum, but the results of future measurements can be incorporated easily. The resulting expression for the coronal heating rate is self-contained, computationally efficient, and applicable directly to global models of the corona and heliosphere. This paper tests and validates the approximations by comparing the results to exact solutions of the wave transport equations in several cases relevant to the fast and slow solar wind.

  16. Modeling and Simulation of Turbulent Flows through a Solar Air Heater Having Square-Sectioned Transverse Rib Roughness on the Absorber Plate

    PubMed Central

    Yadav, Anil Singh; Bhagoria, J. L.

    2013-01-01

    Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e = 14.29) remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement. PMID:24222752

  17. Modeling and simulation of turbulent flows through a solar air heater having square-sectioned transverse rib roughness on the absorber plate.

    PubMed

    Yadav, Anil Singh; Bhagoria, J L

    2013-01-01

    Solar air heater is a type of heat exchanger which transforms solar radiation into heat energy. The thermal performance of conventional solar air heater has been found to be poor because of the low convective heat transfer coefficient from the absorber plate to the air. Use of artificial roughness on a surface is an effective technique to enhance the rate of heat transfer. A CFD-based investigation of turbulent flow through a solar air heater roughened with square-sectioned transverse rib roughness has been performed. Three different values of rib-pitch (P) and rib-height (e) have been taken such that the relative roughness pitch (P/e = 14.29) remains constant. The relative roughness height, e/D, varies from 0.021 to 0.06, and the Reynolds number, Re, varies from 3800 to 18,000. The results predicted by CFD show that the average heat transfer, average flow friction, and thermohydraulic performance parameter are strongly dependent on the relative roughness height. A maximum value of thermohydraulic performance parameter has been found to be 1.8 for the range of parameters investigated. Comparisons with previously published work have been performed and found to be in excellent agreement.

  18. Study of possible solar heating effects on thermosonde probes: Error analysis

    NASA Astrophysics Data System (ADS)

    Brown, James H.; Dewan, Edmond; Murphy, Edmund; Thomas, Peter

    1989-07-01

    Thermosonde data reveals a diurnal daytime shift in measured levels of C square (n) in the free atmosphere. The shift is manifested in two ways. First, an apparent offset in the smallest measured values of C square (n) exists. Secondly, the curve of the average profile shows an enhancement over nighttime profiles. Related optical and radar measurements have indicated that differences between day and night probably exist, but because of limited instrumental resolution and altitude capabilities those results are inconclusive. Several hypotheses were put forward concerning possible instrumental or solar based sources of data contamination. The possibility was examined that solar radiation causes probe heating with subsequent instrumental effects. Calculation, computer simulation, and direct measurements have shown that the sun heats the body of the probe sensor a couple of degrees above the ambient and that the level of heating depends upon the solar aspect angle and magnitude and direction of air flow over the probe. A small but insignificant ac type effect can result from improper probe geometry or probe mismatch together with a coupling of solar heating with velocity turbulence. Transient and dc type effects can occur, but measured, processed, and transmitted root mean square C square (n) information is not likely to contain instrumental contamination.

  19. Thermal Modeling of the Mars Reconnaissance Orbiter's Solar Panel and Instruments during Aerobraking

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Gasbarre, Joseph F.; Amundsen, Ruth M.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) launched on August 12, 2005 and started aerobraking at Mars in March 2006. During the spacecraft s design phase, thermal models of the solar panels and instruments were developed to determine which components would be the most limiting thermally during aerobraking. Having determined the most limiting components, thermal limits in terms of heat rate were established. Advanced thermal modeling techniques were developed utilizing Thermal Desktop and Patran Thermal. Heat transfer coefficients were calculated using a Direct Simulation Monte Carlo technique. Analysis established that the solar panels were the most limiting components during the aerobraking phase of the mission.

  20. Evaluation of a High-Performance Solar Home in Loveland, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendron, R.; Eastment, M.; Hancock, E.

    2006-01-01

    Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR? appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions.more » The HRV provided fresh air at a rate of about 75 cfm (35 l/s), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark [1]. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.« less

  1. Thermal behavior modeling of a cabinet direct solar dryer as influenced by sensible heat storage in a fractured porous medium

    NASA Astrophysics Data System (ADS)

    Sandali, Messaoud; Boubekri, Abdelghani; Mennouche, Djamel

    2018-05-01

    Numerical simulation method has been employed to improve the thermal performance of cabinet direct solar dryer. The present study focused on the numerical simulation of a direct solar dryer with integration of a flat layer of fractured porous medium above the absorber plate in the aim to store thermal energy by sensible heat. Several calculations were conducted, using the finite volume method with a two-dimensional unsteady model implemented in the Fluent CFD software. The porous medium has been integrated with different thickness to show the influence of the medium thickness on the thermal performance of solar dryer. Different kinds of materials have been tested and studied. The effect of porosity of porous medium has been studied. The obtained results showed that the temperature of drying air is increased by 4°C with integration of porous medium. The increasing in the thickness of the porous medium by 1cm leads to increase the temperature of drying air by 2°C. The increasing of the medium porosity by 10% leads to decrease the temperature of drying air by 1°C. The best material is the one that has a highest specific heat and thermal conductivity.

  2. Evaluation of a High-Performance Solar Home in Loveland, Colorado: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendron, R.; Eastment, M.; Hancock, E.

    Building America (BA) partner McStain Neighborhoods built the Discovery House in Loveland, Colorado, with an extensive package of energy-efficient features, including a high-performance envelope, efficient mechanical systems, a solar water heater integrated with the space-heating system, a heat-recovery ventilator (HRV), and ENERGY STAR appliances. The National Renewable Energy Laboratory (NREL) and Building Science Consortium (BSC) conducted short-term field-testing and building energy simulations to evaluate the performance of the house. These evaluations are utilized by BA to improve future prototype designs and to identify critical research needs. The Discovery House building envelope and ducts were very tight under normal operating conditions.more » The HRV provided fresh air at a rate of about 35 l/s (75 cfm), consistent with the recommendations of ASHRAE Standard 62.2. The solar hot water system is expected to meet the bulk of the domestic hot water (DHW) load (>83%), but only about 12% of the space-heating load. DOE-2.2 simulations predict whole-house source energy savings of 54% compared to the BA Benchmark. The largest contributors to energy savings beyond McStain's standard practice are the solar water heater, HRV, improved air distribution, high-efficiency boiler, and compact fluorescent lighting package.« less

  3. Combining IRIS/Hinode Observations and Modeling: a Pathfinder for Coronal Heating

    NASA Astrophysics Data System (ADS)

    Antolin, P.; Okamoto, J.; De Pontieu, B.

    2015-12-01

    The combination of imaging and spectroscopic instruments with multiple temperature diagnostics at high spatial, temporal and spectral resolution can allow to recover the 3D plasma flow and thermodynamic evolution associated with specific coronal heating mechanisms. Although very hard considering the complexity of the solar atmosphere, this approach is becoming possible now through combination of instruments such as IRIS and Hinode, and with proper guiding from advanced numerical simulations and forward modeling. In this talk I will review recent examples of this approach, focusing on a particular, recently published, case study, that serves as a pathfinder in the search for the dominant coronal heating mechanism. In this case, resonant absorption, a long hypothesised wave-related energy conversion mechanism is spotted in action for the first time, and is characterised by a peculiar 3D motion of the plasma. With the help of 3D MHD numerical simulations and forward modeling the observational signatures of resonant absorption are characterised, matching very well the observational results. The process through which this mechanism can lead to observed significant heating in the solar corona is further identified: the resonant flow becomes turbulent following dynamic instabilities and heats the plasma. I will show how this resonance + instability process is expected in different scenarios of the solar atmosphere (the corona, prominences and spicules) and can potentially explain several observed features that remain so far unexplained.

  4. Summary of NASA-Lewis Research Center solar heating and cooling and wind energy programs

    NASA Technical Reports Server (NTRS)

    Vernon, R. W.

    1975-01-01

    NASA is planning to construct and operate a solar heating and cooling system in conjunction with a new office building being constructed at Langley Research Center. The technology support for this project will be provided by a solar energy program underway at NASA's Lewis Research Center. The solar program at Lewis includes: testing of solar collectors with a solar simulator, outdoor testing of collectors, property measurements of selective and nonselective coatings for solar collectors, and a solar model-systems test loop. NASA-Lewis has been assisting the National Science Foundation and now the Energy Research and Development Administration in planning and executing a national wind energy program. The areas of the wind energy program that are being conducted by Lewis include: design and operation of a 100 kW experimental wind generator, industry-designed and user-operated wind generators in the range of 50 to 3000 kW, and supporting research and technology for large wind energy systems. An overview of these activities is provided.

  5. Solar thermophotovoltaic system using nanostructures.

    PubMed

    Ungaro, Craig; Gray, Stephen K; Gupta, Mool C

    2015-09-21

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.

  6. Closed Cycle Engine Program Used in Solar Dynamic Power Testing Effort

    NASA Technical Reports Server (NTRS)

    Ensworth, Clint B., III; McKissock, David B.

    1998-01-01

    NASA Lewis Research Center is testing the world's first integrated solar dynamic power system in a simulated space environment. This system converts solar thermal energy into electrical energy by using a closed-cycle gas turbine and alternator. A NASA-developed analysis code called the Closed Cycle Engine Program (CCEP) has been used for both pretest predictions and post-test analysis of system performance. The solar dynamic power system has a reflective concentrator that focuses solar thermal energy into a cavity receiver. The receiver is a heat exchanger that transfers the thermal power to a working fluid, an inert gas mixture of helium and xenon. The receiver also uses a phase-change material to store the thermal energy so that the system can continue producing power when there is no solar input power, such as when an Earth-orbiting satellite is in eclipse. The system uses a recuperated closed Brayton cycle to convert thermal power to mechanical power. Heated gas from the receiver expands through a turbine that turns an alternator and a compressor. The system also includes a gas cooler and a radiator, which reject waste cycle heat, and a recuperator, a gas-to-gas heat exchanger that improves cycle efficiency by recovering thermal energy.

  7. Three-Dimensional MHD Modeling of The Solar Corona and Solar Wind: Comparison with The Wang-Sheeley Model

    NASA Technical Reports Server (NTRS)

    Usmanov, A. V.; Goldstein, M. L.

    2003-01-01

    We present simulation results from a tilted-dipole steady-state MHD model of the solar corona and solar wind and compare the output from our model with the Wang-Sheeley model which relates the divergence rate of magnetic flux tubes near the Sun (inferred from solar magnetograms) to the solar wind speed observed near Earth and at Ulysses. The boundary conditions in our model specified at the coronal base and our simulation region extends out to 10 AU. We assumed that a flux of Alfven waves with amplitude of 35 km per second emanates from the Sun and provides additional heating and acceleration for the coronal outflow in the open field regions. The waves are treated in the WKB approximation. The incorporation of wave acceleration allows us to reproduce the fast wind measurements obtained by Ulysses, while preserving reasonable agreement with plasma densities typically found at the coronal base. We find that our simulation results agree well with Wang and Sheeley's empirical model.

  8. Space Power Facility at NASA’s Plum Brook Station

    NASA Image and Video Library

    1969-02-21

    Exterior view of the Space Power Facility at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It produces a vacuum deep enough to simulate the conditions at 300 miles altitude. The facility can sustain a high vacuum; simulate solar radiation via a 4-megawatt quartz heat lamp array, solar spectrum by a 400-kilowatt arc lamp, and cold environments. The Space Power Facility was originally designed to test nuclear power sources for spacecraft during long durations in a space atmosphere, but it was never used for that purpose. The facility’s first test in 1970 involved a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the Brayton tests. The facility was also used for jettison tests of the Centaur Standard Shroud. The shroud was designed for the new Titan-Centaur rocket that was scheduled to launch the Viking spacecraft to Mars. The new shroud was tested under conditions that simulated the time from launch to the separation of the stages. Test programs at the facility include high-energy experiments, shroud separation tests, Mars Lander system tests, deployable Solar Sail tests and International Space Station hardware tests.

  9. Role of Magnetic Reconnection in Heating Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Hammoud, M. M.; El Eid, M.; Darwish, M.; Dayeh, M. A.

    2017-12-01

    The description of plasma in the context of a fluid model reveals the important phenomenon of magnetic reconnection (MGR). This process is thought to be the cause of particle heating and acceleration in various astrophysical phenomena. Examples are geomagnetic storms, solar flares, or heating the solar corona, which is the focus of the present contribution. The magnetohydrodynamic approach (MHD) provides a basic description of MGR. However, the simulation of this process is rather challenging. Although it is not yet established whether waves or reconnection play the dominant role in heating the solar atmosphere, the present goal is to examine the tremendous increase of the temperature between the solar chromosphere and the corona in a very narrow transition region. Since we are dealing with very-high temperature plasma, the modeling of such heating process seems to require a two-fluid description consisting of ions and electrons. This treatment is an extension of the one-fluid model of resistive MHD that has been recently developed by [Hammoud et al., 2017] using the modern numerical openfoam toolbox. In this work, we outline the two-fluid approach using coronal conditions, show evidence of MGR in the two-fluid description, and investigate the temperature increase as a result of this MGR process.

  10. Reynolds stress and heat flux in spherical shell convection

    NASA Astrophysics Data System (ADS)

    Käpylä, P. J.; Mantere, M. J.; Guerrero, G.; Brandenburg, A.; Chatterjee, P.

    2011-07-01

    Context. Turbulent fluxes of angular momentum and enthalpy or heat due to rotationally affected convection play a key role in determining differential rotation of stars. Their dependence on latitude and depth has been determined in the past from convection simulations in Cartesian or spherical simulations. Here we perform a systematic comparison between the two geometries as a function of the rotation rate. Aims: Here we want to extend the earlier studies by using spherical wedges to obtain turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. In particular, we want to clarify whether the sharp equatorial profile of the horizontal Reynolds stress found in earlier Cartesian models is also reproduced in spherical geometry. Methods: We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs, and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results: For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equatorward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator. In Cartesian simulations this peak can be explained by the strong "banana cells". Their effect in the spherical case does not appear to be as large. The latitudinal heat flux is mostly equatorward for slow rotation but changes sign for rapid rotation. Longitudinal heat flux is always in the retrograde direction. The rotation profiles vary from anti-solar (slow equator) for slow and intermediate rotation to solar-like (fast equator) for rapid rotation. The solar-like profiles are dominated by the Taylor-Proudman balance. Movies and Appendix A are available in electronic form at http://www.aanda.org

  11. Study on the CFD simulation of refrigerated container

    NASA Astrophysics Data System (ADS)

    Arif Budiyanto, Muhammad; Shinoda, Takeshi; Nasruddin

    2017-10-01

    The objective this study is to performed Computational Fluid Dynamic (CFD) simulation of refrigerated container in the container port. Refrigerated container is a thermal cargo container constructed from an insulation wall to carry kind of perishable goods. CFD simulation was carried out use cross sectional of container walls to predict surface temperatures of refrigerated container and to estimate its cooling load. The simulation model is based on the solution of the partial differential equations governing the fluid flow and heat transfer processes. The physical model of heat-transfer processes considered in this simulation are consist of solar radiation from the sun, heat conduction on the container walls, heat convection on the container surfaces and thermal radiation among the solid surfaces. The validation of simulation model was assessed uses surface temperatures at center points on each container walls obtained from the measurement experimentation in the previous study. The results shows the surface temperatures of simulation model has good agreement with the measurement data on all container walls.

  12. Hourly test reference weather data in the changing climate of Finland for building energy simulations.

    PubMed

    Jylhä, Kirsti; Ruosteenoja, Kimmo; Jokisalo, Juha; Pilli-Sihvola, Karoliina; Kalamees, Targo; Mäkelä, Hanna; Hyvönen, Reijo; Drebs, Achim

    2015-09-01

    Dynamic building energy simulations need hourly weather data as input. The same high temporal resolution is required for assessments of future heating and cooling energy demand. The data presented in this article concern current typical values and estimated future changes in outdoor air temperature, wind speed, relative humidity and global, diffuse and normal solar radiation components. Simulated annual and seasonal delivered energy consumptions for heating of spaces, heating of ventilation supply air and cooling of spaces in the current and future climatic conditions are also presented for an example house, with district heating and a mechanical space cooling system. We provide details on how the synthetic future weather files were created and utilised as input data for dynamic building energy simulations by the IDA Indoor Climate and Energy program and also for calculations of heating and cooling degree-day sums. The information supplied here is related to the research article titled "Energy demand for the heating and cooling of residential houses in Finland in a changing climate" [1].

  13. Sensitivity of fenestration solar gain to source spectrum and angle of incidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCluney, W.R.

    1996-12-31

    The solar heat gain coefficient (SHGC) is the fraction of solar radiant flux incident on a fenestration system entering a building as heat gain. In general it depends on both the angle of incidence and the spectral distribution of the incident solar radiation. In attempts to improve energy performance and user acceptance of high-performance glazing systems, manufacturers are producing glazing systems with increasing spectral selectivity. This poses potential difficulties for calculations of solar heat gain through windows based upon the use of a single solar spectral weighting function. The sensitivity of modern high-performance glazing systems to both the angle ofmore » incidence and the shape of the incident solar spectrum is examined using a glazing performance simulation program. It is found that as the spectral selectivity of the glazing system increases, the SHGC can vary as the incident spectral distribution varies. The variations can be as great as 50% when using several different representative direct-beam spectra. These include spectra having low and high air masses and a standard spectrum having an air mass of 1.5. The variations can be even greater if clear blue diffuse skylight is considered. It is recommended that the current broad-band shading coefficient method of calculating solar gain be replaced by one that is spectral based.« less

  14. A solar escalator on Mars: Self-lifting of dust layers by radiative heating

    NASA Astrophysics Data System (ADS)

    Daerden, F.; Whiteway, J. A.; Neary, L.; Komguem, L.; Lemmon, M. T.; Heavens, N. G.; Cantor, B. A.; Hébrard, E.; Smith, M. D.

    2015-09-01

    Dust layers detected in the atmosphere of Mars by the light detection and ranging (LIDAR) instrument on the Phoenix Mars mission are explained using an atmospheric general circulation model. The layers were traced back to observed dust storm activity near the edge of the north polar ice cap where simulated surface winds exceeded the threshold for dust lifting by saltation. Heating of the atmospheric dust by solar radiation caused buoyant instability and mixing across the top of the planetary boundary layer (PBL). Differential advection by wind shear created detached dust layers above the PBL that ascended due to radiative heating and arrived at the Phoenix site at heights corresponding to the LIDAR observations. The self-lifting of the dust layers is similar to the "solar escalator" mechanism for aerosol layers in the Earth's stratosphere.

  15. ATES/heat pump simulations performed with ATESSS code

    NASA Astrophysics Data System (ADS)

    Vail, L. W.

    1989-01-01

    Modifications to the Aquifer Thermal Energy Storage System Simulator (ATESSS) allow simulation of aquifer thermal energy storage (ATES)/heat pump systems. The heat pump algorithm requires a coefficient of performance (COP) relationship of the form: COP = COP sub base + alpha (T sub ref minus T sub base). Initial applications of the modified ATES code to synthetic building load data for two sizes of buildings in two U.S. cities showed insignificant performance advantage of a series ATES heat pump system over a conventional groundwater heat pump system. The addition of algorithms for a cooling tower and solar array improved performance slightly. Small values of alpha in the COP relationship are the principal reason for the limited improvement in system performance. Future studies at Pacific Northwest Laboratory (PNL) are planned to investigate methods to increase system performance using alternative system configurations and operations scenarios.

  16. Refractive Secondary Solar Concentrator Demonstrated High-Temperature Operation

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2002-01-01

    Space applications that utilize solar thermal energy--such as electric power conversion systems, thermal propulsion systems, and furnaces--require highly efficient solar concentration systems. The NASA Glenn Research Center is developing the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, such as inflatable thin films, the refractive secondary concentrator enables very high system concentration ratios and very high temperatures. Last year, Glenn successfully demonstrated a secondary concentrator throughput efficiency of 87 percent, with a projected efficiency of 93 percent using an antireflective coating. Building on this achievement, Glenn recently successfully demonstrated high-temperature operation of the secondary concentrator when it was used to heat a rhenium receiver to 2330 F. The high-temperature demonstration of the concentrator was conducted in Glenn's 68-ft long Tank 6 thermal vacuum facility equipped with a solar simulator. The facility has a rigid panel primary concentrator that was used to concentrate the light from the solar simulator onto the refractive secondary concentrator. NASA Marshall Space Flight Center provided a rhenium cavity, part of a solar thermal propulsion engine, to serve as the high-temperature receiver. The prototype refractive secondary concentrator, measuring 3.5 in. in diameter and 11.2 in. long, is made of single-crystal sapphire. A water-cooled splash shield absorbs spillage light outside of the 3.5-in. concentrator aperture. Multilayer foil insulation composed of tungsten, molybdenum, and niobium is used to minimize heat loss from the hightemperature receiver. A liquid-cooled canister calorimeter is used to measure the heat loss through the multilayer foil insulation.

  17. The Effects of Ion heating in Martian Magnetic Crustal Fields: Particle Tracing and Ion Distributions

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Andersson, L.

    2014-12-01

    Ion heating is a process that may allow low energy ions within the Martian ionosphere to be accelerated and escape. Ion heating can be especially efficient if the ions stay in the heating region for long time durations. With this in mind, the magnetic crustal field regions on Mars are particularly interesting. We focus on ions present within these regions, where changes in magnetic field strength and direction can heat these ions. Since crustal magnetic fields can maintain a trapped particle population it is unclear how efficiently plasma can be built up that can later escape to space. We investigate here two drivers: rotation of the planet and the solar wind pressure. As crustal fields rotate from the wake of the planet to the sub solar point and back, they experience compression and expansion over time scales of ~24 hours. The solar wind pressure on the other hand can cause variations over much shorter time scales (minutes). The effect of these two drivers using a particle tracing simulation that solves the Lorentz force is presented. O+ ions are seeded within the simulation box. The magnetic environment is a linear sum of a dipole field and a solar wind magnetic field. The dipole field represents the magnetic crustal field and the dipole strength is chosen to be consistent with MGS magnetometer observations of Martian crustal field regions. By increasing the solar wind strength the magnetic dipole is compressed. Decreasing solar wind strength allows the dipole to expand. Small magnitude, short time scale variations can be imposed over the top of this larger variation to represent short time scale solar wind variations. Since the purpose of this analysis is to understand the changes of the ion distribution inside the crustal field, simplistic assumptions of the field outside the crustal field can be made. Initial results are presented, with the focus on two main questions: (a) can low energy ions be heated and escape the closed dipole field lines as a result of varying magnetic fields; (b) is the compression and relaxation of the crustal field due to rotation important for the oxygen escape rates when compared to the particle evolution due to high frequency changes in magnetic field and the lifetimes of these ions.

  18. Detailed partial load investigation of a thermal energy storage concept for solar thermal power plants with direct steam generation

    NASA Astrophysics Data System (ADS)

    Seitz, M.; Hübner, S.; Johnson, M.

    2016-05-01

    Direct steam generation enables the implementation of a higher steam temperature for parabolic trough concentrated solar power plants. This leads to much better cycle efficiencies and lower electricity generating costs. For a flexible and more economic operation of such a power plant, it is necessary to develop thermal energy storage systems for the extension of the production time of the power plant. In the case of steam as the heat transfer fluid, it is important to use a storage material that uses latent heat for the storage process. This leads to a minimum of exergy losses during the storage process. In the case of a concentrating solar power plant, superheated steam is needed during the discharging process. This steam cannot be superheated by the latent heat storage system. Therefore, a sensible molten salt storage system is used for this task. In contrast to the state-of-the-art thermal energy storages within the concentrating solar power area of application, a storage system for a direct steam generation plant consists of a latent and a sensible storage part. Thus far, no partial load behaviors of sensible and latent heat storage systems have been analyzed in detail. In this work, an optimized fin structure was developed in order to minimize the costs of the latent heat storage. A complete system simulation of the power plant process, including the solar field, power block and sensible and latent heat energy storage calculates the interaction between the solar field, the power block and the thermal energy storage system.

  19. On the generation of solar spicules and Alfvénic waves

    NASA Astrophysics Data System (ADS)

    Martínez-Sykora, J.; De Pontieu, B.; Hansteen, V. H.; Rouppe van der Voort, L.; Carlsson, M.; Pereira, T. M. D.

    2017-06-01

    In the lower solar atmosphere, the chromosphere is permeated by jets known as spicules, in which plasma is propelled at speeds of 50 to 150 kilometers per second into the corona. The origin of the spicules is poorly understood, although they are expected to play a role in heating the million-degree corona and are associated with Alfvénic waves that help drive the solar wind. We compare magnetohydrodynamic simulations of spicules with observations from the Interface Region Imaging Spectrograph and the Swedish 1-m Solar Telescope. Spicules are shown to occur when magnetic tension is amplified and transported upward through interactions between ions and neutrals or ambipolar diffusion. The tension is impulsively released to drive flows, heat plasma (through ambipolar diffusion), and generate Alfvénic waves.

  20. Solar powered automobile automation for heatstroke prevention

    NASA Astrophysics Data System (ADS)

    Singh, Navtej Swaroop; Sharma, Ishan; Jangid, Santosh

    2016-03-01

    Heatstroke inside a car has been critical problem in every part of the world. Non-exertional heat stroke results from exposure to a high environmental temperature. Exertional heat stroke happens from strenuous exercise. This paper presents a solution for this fatal problem and proposes an embedded solution, which is cost effective and shows the feasibility in implementation. The proposed system consists of information sharing platform, interfacing of sensors, Global System Mobile (GSM), real time monitoring system and the system is powered by the solar panel. The system has been simulated and tested with experimental setup.

  1. Exoskeleton may influence the internal body temperatures of Neotropical dung beetles (Col. Scarabaeinae)

    PubMed Central

    Amore, Valentina; Hernández, Malva I.M.; Carrascal, Luis M.

    2017-01-01

    The insect exoskeleton is a multifunctional coat with a continuum of mechanical and structural properties constituting the barrier between electromagnetic waves and the internal body parts. This paper examines the ability of beetle exoskeleton to regulate internal body temperature considering its thermal permeability or isolation to simulated solar irradiance and infrared radiation. Seven Neotropical species of dung beetles (Coleoptera, Scarabaeinae) differing in colour, surface sculptures, size, sexual dimorphism, period of activity, guild category and altitudinal distribution were studied. Specimens were repeatedly subjected to heating trials under simulated solar irradiance and infrared radiation using a halogen neodymium bulb light with a balanced daylight spectrum and a ceramic infrared heat emitter. The volume of exoskeleton and its weight per volume unit were significantly more important for the heating rate at the beginning of the heating process than for the asymptotic maximum temperature reached at the end of the trials: larger beetles with relatively thicker exoskeletons heated more slowly. The source of radiation greatly influences the asymptotic temperature reached, but has a negligible effect in determining the rate of heat gain by beetles: they reached higher temperatures under artificial sunlight than under infrared radiation. Interspecific differences were negligible in the heating rate but had a large magnitude effect on the asymptotic temperature, only detectable under simulated sun irradiance. The fact that sun irradiance is differentially absorbed dorsally and transformed into heat among species opens the possibility that differences in dorsal exoskeleton would facilitate the heat gain under restrictive environmental temperatures below the preferred ones. The findings provided by this study support the important role played by the exoskeleton in the heating process of beetles, a cuticle able to act passively in the thermal control of body temperature without implying energetic costs and metabolic changes. PMID:28533987

  2. Exoskeleton may influence the internal body temperatures of Neotropical dung beetles (Col. Scarabaeinae).

    PubMed

    Amore, Valentina; Hernández, Malva I M; Carrascal, Luis M; Lobo, Jorge M

    2017-01-01

    The insect exoskeleton is a multifunctional coat with a continuum of mechanical and structural properties constituting the barrier between electromagnetic waves and the internal body parts. This paper examines the ability of beetle exoskeleton to regulate internal body temperature considering its thermal permeability or isolation to simulated solar irradiance and infrared radiation. Seven Neotropical species of dung beetles (Coleoptera, Scarabaeinae) differing in colour, surface sculptures, size, sexual dimorphism, period of activity, guild category and altitudinal distribution were studied. Specimens were repeatedly subjected to heating trials under simulated solar irradiance and infrared radiation using a halogen neodymium bulb light with a balanced daylight spectrum and a ceramic infrared heat emitter. The volume of exoskeleton and its weight per volume unit were significantly more important for the heating rate at the beginning of the heating process than for the asymptotic maximum temperature reached at the end of the trials: larger beetles with relatively thicker exoskeletons heated more slowly. The source of radiation greatly influences the asymptotic temperature reached, but has a negligible effect in determining the rate of heat gain by beetles: they reached higher temperatures under artificial sunlight than under infrared radiation. Interspecific differences were negligible in the heating rate but had a large magnitude effect on the asymptotic temperature, only detectable under simulated sun irradiance. The fact that sun irradiance is differentially absorbed dorsally and transformed into heat among species opens the possibility that differences in dorsal exoskeleton would facilitate the heat gain under restrictive environmental temperatures below the preferred ones. The findings provided by this study support the important role played by the exoskeleton in the heating process of beetles, a cuticle able to act passively in the thermal control of body temperature without implying energetic costs and metabolic changes.

  3. Performance Investigation of a Solar Heat Driven Adsorption Chiller under Two Different Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Choudhury, Biplab; Chatterjee, Pradip Kumar; Habib, Khairul; Saha, Bidyut Baran

    2018-06-01

    The demand for cooling, especially in the developing economies, is rising at a fast rate. Fast-depleting sources of fossil fuel and environmental concerns necessitate looking for alternative cooling solutions. Solar heat driven adsorption based cooling cycles are environmentally friendly due to their use of natural refrigerants and the thermal compression process. In this paper, a performance simulation study of a basic two-bed solar adsorption chiller has been performed through a transient model for two different climatic locations in India. Effect of operating temperatures and cycle time on the chiller performance has been studied. It is observed that the solar hot water temperature obtained in the composite climate of Delhi (28.65°N, 77.25°E) can run the basic adsorption cooling cycle efficiently throughout the year. Whereas, the monsoon months of July and August in the warm and humid climate of Durgapur (23.48°N, 87.32°E) are unable to supply the required driving heat.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xingshu; Silverman, Timothy J.; Zhou, Zhiguang

    For commercial one-sun solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 °C higher than the ambient. In the long term, extreme self-heating erodes efficiency and shortens lifetime, thereby dramatically reducing the total energy output. Therefore, it is critically important to develop effective and practical (and preferably passive) cooling methods to reduce operating temperature of photovoltaic (PV) modules. In this paper, we explore two fundamental (but often overlooked) origins of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical properties of themore » solar module to eliminate parasitic absorption (selective-spectral cooling) and enhance thermal emission (radiative cooling). Comprehensive opto-electro-thermal simulation shows that the proposed techniques would cool one-sun terrestrial solar modules up to 10 °C. As a result, this self-cooling would substantially extend the lifetime for solar modules, with corresponding increase in energy yields and reduced levelized cost of electricity.« less

  5. Numerical Simulation of DC Coronal Heating

    NASA Astrophysics Data System (ADS)

    Dahlburg, Russell B.; Einaudi, G.; Taylor, Brian D.; Ugarte-Urra, Ignacio; Warren, Harry; Rappazzo, A. F.; Velli, Marco

    2016-05-01

    Recent research on observational signatures of turbulent heating of a coronal loop will be discussed. The evolution of the loop is is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. HYPERION calculates the full energy cycle involving footpoint convection, magnetic reconnection, nonlinear thermal conduction and optically thin radiation. The footpoints of the loop magnetic field are convected by random photospheric motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of thecoronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of the simulated loop is multi thermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Typical simulated coronal loops are 50000 km length and have axial magnetic field intensities ranging from 0.01 to 0.04 Tesla. To connect these simulations to observations the computed number densities and temperatures are used to synthesize the intensities expected in emission lines typically observed with the Extreme ultraviolet Imaging Spectrometer (EIS) on Hinode. These intensities are then employed to compute differential emission measure distributions, which are found to be very similar to those derived from observations of solar active regions.

  6. Numerical analysis on thermal energy storage device to improve the drying time of indirect type solar dryer

    NASA Astrophysics Data System (ADS)

    Yadav, Satyapal; Lingayat, Abhay Bhanudas; Chandramohan, V. P.; Raju, V. R. K.

    2018-05-01

    Thermal energy storage (TES) device that uses phase change material (PCM) in the field of indirect solar drying is economical due to its energy storage characteristics. In this work, a low-temperature latent heat TES device has been numerically analyzed for the application of solar drying of agricultural products in an indirect type solar dryer. Paraffin wax is used as a PCM material. The study has been performed on a single set of concentric tubes which consist of an inner copper tube and an outer plastic tube. A 2D geometry is created and computational fluid dynamics (CFD) simulations are performed using ANSYS Fluent 2015. The hot air coming from solar collector enters the copper tube and then the drying chamber to dry the sample. PCM material is placed in the outer plastic tube. It was found that the drying process can be continued up to 10.00 pm without further source of heating. At a given time, the melting fraction is increased during the heating process and solidification factor is increased during the cooling process while increasing the air flow velocities from 1 to 4 m/s, but 1 m/s is good for maintaining outlet temperature of air (T oa ) for a long time. Heat lost and gained by air was estimated. It was found that air flow velocity influenced the heat lost and gain by air.

  7. The Interaction of Coronal Mass Ejections with Alfvénic Turbulence

    NASA Astrophysics Data System (ADS)

    Manchester, Ward, IV; Van Der Holst, Bart

    2017-09-01

    We provide a first attempt to understand the interaction between Alfvén wave turbulence, kinetic instabilities and temperature anisotropies in the environment of a fast coronal mass ejection (CME) near the Sun. The impact of a fast CME on the solar corona causes turbulent energy, thermal energy and dissipative heating to increase by orders of magnitude, and produces conditions suitable for a host of kinetic instabilities. We study these CME-induced effects with the recently developed Alfvén Wave Solar Model, with which we are able to self-consistently simulate the turbulent energy transport and dissipation as well as isotropic electron heating and anisotropic proton heating. Furthermore, the model also offers the capability to address the effects of fire hose, mirror mode, and cyclotron kinetic instabilities on proton energy partitioning all in a global-scale numerical simulation. We find amplified turbulent energy in the CME sheath, along with strong wave reflection at the shock combine to cause wave dissipation rates to increase by more than a factor of 100. In contrast, wave energy is greatly diminished by adiabatic expansion in the flux rope. Finally, we find proton temperature anisotropies are limited by kinetic instabilities to a level consistent with solar wind observations.

  8. The Interaction of Coronal Mass Ejections with Alfvenic Turbulence

    NASA Astrophysics Data System (ADS)

    Manchester, W.; van der Holst, B.

    2017-12-01

    We provide a first attempt to understand the interaction between Alfven wave turbulence, kinetic instabilities and temperature anisotropies in the environment of a fast coronal mass ejection (CME). The impact of a fast CME on the solar corona causes turbulent energy, thermal energy and dissipative heating to increase by orders of magnitude, and produces conditions suitable for a host of kinetic instabilities. We study these CME-induced effects with the recently developed Alfven Wave Solar Model, with which we are able to self-consistently simulate the turbulent energy transport and dissipation as well as isotropic electron heating and anisotropic proton heating. Furthermore, the model also offers the capability to address the effects of firehose, mirror mode, and cyclotron kinetic instabilities on proton energy partitioning, all in a global-scale numerical simulation. We find turbulent energy greatly enhanced in the CME sheath, strong wave reflection at the shock, which leads to wave dissipation rates increasing by more than a factor of 100. In contrast, wave energy is greatly diminished by adiabatic expansion in the flux rope. Finally, we find proton temperature anisotropies are limited by kinetic instabilities to a level consistent with solar wind observations.

  9. Solar thermophotovoltaic system using nanostructures

    DOE PAGES

    Ungaro, Craig; Gray, Stephen K.; Gupta, Mool C.

    2015-08-20

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is bothmore » easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.« less

  10. Influence of spatiotemporally distributed irradiance data input on temperature evolution in parabolic trough solar field simulations

    NASA Astrophysics Data System (ADS)

    Bubolz, K.; Schenk, H.; Hirsch, T.

    2016-05-01

    Concentrating solar field operation is affected by shadowing through cloud movement. For line focusing systems the impact of varying irradiance has been studied before by several authors with simulations of relevant thermodynamics assuming spatially homogeneous irradiance or using artificial test signals. While today's simulation capabilities allow more and more a higher spatiotemporal resolution of plant processes there are only few studies on influence of spatially distributed irradiance due to lack of available data. Based on recent work on generating real irradiance maps with high spatial resolution this paper demonstrates their influence on solar field thermodynamics. For a case study an irradiance time series is chosen. One solar field section with several loops and collecting header is modeled for simulation purpose of parabolic trough collectors and oil as heat transfer medium. Assuming homogeneous mass flow distribution among all loops we observe spatially varying temperature characteristics. They are analysed without and with mass flow control and their impact on solar field control design is discussed. Finally, the potential of distributed irradiance data is outlined.

  11. Influence of System Operation Method on CO2 Emissions of PV/Solar Heat/Cogeneration System

    NASA Astrophysics Data System (ADS)

    Oke, Shinichiro; Kemmoku, Yoshishige; Takikawa, Hirofumi; Sakakibara, Tateki

    A PV/solar heat/cogeneration system is assumed to be installed in a hotel. The system is operated with various operation methods: CO2 minimum operation, fees minimum operation, seasonal operation, daytime operation and heat demand following operation. Of these five operations, the former two are virtual operations that are operated with the dynamic programming method, and the latter three are actual operations. Computer simulation is implemented using hourly data of solar radiation intensity, atmospheric temperature, electric, cooling, heating and hot water supply demands for one year, and the life-cycle CO2 emission and the total cost are calculated for every operations. The calculation results show that the virtual two and the actual three operations reduce the life-cycle CO2 emission by 21% and 13% compared with the conventional system, respectively. In regard to both the CO2 emission and the cost, there is no significant difference between the virtual two operation methods or among actual three operation methods.

  12. Graphene-Enhanced Thermal Interface Materials for Thermal Management of Solar Cells

    NASA Astrophysics Data System (ADS)

    Saadah, Mohammed Ahmed

    The interest to photovoltaic solar cells as a source of energy for a variety of applications has been rapidly increasing in recent years. Solar cells panels that employ optical concentrators can convert more than 30% of absorbed light into electricity. Most of the remaining 70% of absorbed energy is turned into heat inside the solar cell. The increase in the photovoltaic cell temperature negatively affects its power conversion efficiency and lifetime. In this dissertation research I investigated a feasibility of using graphene fillers in thermal interface materials for improving thermal management of multi-junction concentrator solar cells. Graphene and few-layer graphene fillers, produced by a scalable environmentally-friendly liquid-phase exfoliation technique, were incorporated into conventional thermal interface materials. Characteristics of the composites have been examined with Raman spectroscopy, optical microscopy and thermal conductivity measurements. Graphene-enhanced thermal interface materials have been applied between a solar cell and heat sink to improve heat dissipation. The performance of the single and multi-junction solar cells has been tested using an industry-standard solar simulator under the light concentration of up to 2000 suns. It was found that the application of graphene-enhanced thermal interface materials allows one to reduce the solar cell temperature and increase the open-circuit voltage. We demonstrated that the use of graphene helps in recovering significant amount of the power loss due to solar cell overheating. The obtained results are important for the development of new technologies for thermal management of concentrated and multi-junction photovoltaic solar cells.

  13. Dissipation of Alfven Waves at Fluid Scale through Parametric Decay Instabilities in Low-beta Turbulent Plasma

    NASA Astrophysics Data System (ADS)

    Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.

    2017-12-01

    The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.

  14. Heat transfer analysis of a lab scale solar receiver using the discrete ordinates model

    NASA Astrophysics Data System (ADS)

    Dordevich, Milorad C. W.

    This thesis documents the development, implementation and simulation outcomes of the Discrete Ordinates Radiation Model in ANSYS FLUENT simulating the radiative heat transfer occurring in the San Diego State University lab-scale Small Particle Heat Exchange Receiver. In tandem, it also serves to document how well the Discrete Ordinates Radiation Model results compared with those from the in-house developed Monte Carlo Ray Trace Method in a number of simplified geometries. The secondary goal of this study was the inclusion of new physics, specifically buoyancy. Implementation of an additional Monte Carlo Ray Trace Method software package known as VEGAS, which was specifically developed to model lab scale solar simulators and provide directional, flux and beam spread information for the aperture boundary condition, was also a goal of this study. Upon establishment of the model, test cases were run to understand the predictive capabilities of the model. It was shown that agreement within 15% was obtained against laboratory measurements made in the San Diego State University Combustion and Solar Energy Laboratory with the metrics of comparison being the thermal efficiency and outlet, wall and aperture quartz temperatures. Parametric testing additionally showed that the thermal efficiency of the system was very dependent on the mass flow rate and particle loading. It was also shown that the orientation of the small particle heat exchange receiver was important in attaining optimal efficiency due to the fact that buoyancy induced effects could not be neglected. The analyses presented in this work were all performed on the lab-scale small particle heat exchange receiver. The lab-scale small particle heat exchange receiver is 0.38 m in diameter by 0.51 m tall and operated with an input irradiation flux of 3 kWth and a nominal mass flow rate of 2 g/s with a suspended particle mass loading of 2 g/m3. Finally, based on acumen gained during the implementation and development of the model, a new and improved design was simulated to predict how the efficiency within the small particle heat exchange receiver could be improved through a few simple internal geometry design modifications. It was shown that the theoretical calculated efficiency of the small particle heat exchange receiver could be improved from 64% to 87% with adjustments to the internal geometry, mass flow rate, and mass loading.

  15. Sun-stirred Kraken Mare: Circulation in Titan's seas induced by solar heating and methane precipitation

    NASA Astrophysics Data System (ADS)

    Tokano, T.; Lorenz, R. D.

    2015-10-01

    Density-driven circulation in Titan's seas forced by solar heating and methane evaporation/precipitation is simulated by an ocean circulation model. If the sea is transparent to sunlight, solar heating can induce anti-clockwise gyres near the sea surface and clockwise gyres near the sea bottom. The gyres are in geostrophic balance between the radially symmetric pressure gradient force and Coriolis force. If instead the sea is turbid and most sunlight is absorbed near the sea surface, the sea gets stratified in warm seasons and the circulation remains weak. Strong summer precipitation at high latitudes causes compositional stratification and increase of the nearsurface methane mole fraction towards the north pole. The resultant latitudinal density contrast drives a meridional overturning with equatorward currents near the sea surface and poleward currents near the sea bottom. Weak precipitation induces gyres rather than meridional overturning.

  16. Wood-Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination.

    PubMed

    Liu, Keng-Ku; Jiang, Qisheng; Tadepalli, Sirimuvva; Raliya, Ramesh; Biswas, Pratim; Naik, Rajesh R; Singamaneni, Srikanth

    2017-03-01

    Solar steam generation is a highly promising technology for harvesting solar energy, desalination and water purification. We introduce a novel bilayered structure composed of wood and graphene oxide (GO) for highly efficient solar steam generation. The GO layer deposited on the microporous wood provides broad optical absorption and high photothermal conversion resulting in rapid increase in the temperature at the liquid surface. On the other hand, wood serves as a thermal insulator to confine the photothermal heat to the evaporative surface and to facilitate the efficient transport of water from the bulk to the photothermally active space. Owing to the tailored bilayer structure and the optimal thermo-optical properties of the individual components, the wood-GO composite structure exhibited a solar thermal efficiency of ∼83% under simulated solar excitation at a power density of 12 kW/m 2 . The novel composite structure demonstrated here is highly scalable and cost-efficient, making it an attractive material for various applications involving large light absorption, photothermal conversion and heat localization.

  17. SPECTRO-POLARIMETRIC SIMULATIONS OF THE SOLAR LIMB: ABSORPTION-EMISSION Fe I 6301.5 Å AND 6302.5 Å LINE PROFILES AND TORSIONAL FLOWS IN THE INTERGRANULAR MAGNETIC FLUX CONCENTRATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelyag, S.

    2015-03-01

    Using radiative magnetohydrodynamic simulations of the magnetized solar photosphere and detailed spectro-polarimetric diagnostics with the Fe I 6301.5 Å and 6302.5 Å photospheric lines in the local thermodynamic equilibrium approximation, we model active solar granulation as if it was observed at the solar limb. We analyze general properties of the radiation across the solar limb, such as the continuum and the line core limb darkening and the granulation contrast. We demonstrate the presence of profiles with both emission and absorption features at the simulated solar limb, and pure emission profiles above the limb. These profiles are associated with the regionsmore » of strong linear polarization of the emergent radiation, indicating the influence of the intergranular magnetic fields on the line formation. We analyze physical origins of the emission wings in the Stokes profiles at the limb, and demonstrate that these features are produced by localized heating and torsional motions in the intergranular magnetic flux concentrations.« less

  18. CO2 Reduction Effect of the Utilization of Waste Heat and Solar Heat in City Gas System

    NASA Astrophysics Data System (ADS)

    Okamura, Tomohito; Matsuhashi, Ryuji; Yoshida, Yoshikuni; Hasegawa, Hideo; Ishitani, Hisashi

    We evaluate total energy consumption and CO2 emissions in the phase of the city gas utilization system from obtaining raw materials to consuming the product. First, we develop a simulation model which calculates CO2 emissions for monthly and hourly demands of electricity, heats for air conditioning and hot-water in a typical hospital. Under the given standard capacity and operating time of CGS, energy consumption in the equipments is calculated in detail considering the partial load efficiency and the control by the temperature of exhaust heat. Then, we explored the optimal size and operation of city gas system that minimizes the life cycle CO2 emissions or total cost. The cost-effectiveness is compared between conventional co-generation, solar heat system, and hybrid co-generation utilizing solar heat. We formulate a problem of mixed integer programming that includes integral parameters that express the state of system devices such as on/off of switches. As a result of optimization, the hybrid co-generation can reduce annual CO2 emissions by forty-three percent compared with the system without co-generation. Sensitivity for the scale of CGS on CO2 reduction and cost is also analyzed.

  19. Solar Jets as Sources of Outflows, Heating and Waves

    NASA Astrophysics Data System (ADS)

    Nishizuka, N.

    2013-05-01

    Recent space solar observations of the Sun, such as Hinode and SDO, have revealed that magnetic reconnection is ubiquitous in the solar atmosphere, ranging from small scale reconnection (observed as nanoflares) to large scale one (observed as long duration flares or giant arcades). Especially recent Hinode observations has found various types of tiny chromospheric jets, such as chromospheric anemone jets, penumbral microjets and light bridge jets from sunspot umbra. It was also found that the corona is full of tiny X-ray jets. Often they are seen as helical spinning jets with Alfvenic waves in the corona. Sometimes they are seen as chromospheric jets with slow-mode magnetoacoustic waves and sometimes as unresolved jet-like events at the footpoint of recurrent outflows and waves at the edge of the active region. There is increasing evidence of magnetic reconnection in these tiny jets and its association with waves. The origin of outflows and waves is one of the issues concerning coronal heating and solar wind acceleration. To answer this question, we had a challenge to reproduce solar jets with laboratory plasma experiment and directly measured outflows and waves. As a result, we could find a propagating wave excited by magnetic reconnection, whose energy flux is 10% of the released magnetic energy. That is enough for solar wind acceleration and locally enough for coronal heating, consistent with numerical MHD simulations of solar jets. Here we would discuss recent observations with Hinode, theories and experimental results related to jets and waves by magnetic reconnection, and discuss possible implication to reconnection physics, coronal heating and solar wind acceleration.

  20. Preferential Heating of Oxygen 5+ Ions by Finite-Amplitude Oblique Alfven Waves

    NASA Technical Reports Server (NTRS)

    Maneva, Yana G.; Vinas, Adolfo; Araneda, Jamie; Poedts, Stefaan

    2016-01-01

    Minor ions in the fast solar wind are known to have higher temperatures and to flow faster than protons in the interplanetary space. In this study we combine previous research on parametric instability theory and 2.5D hybrid simulations to study the onset of preferential heating of Oxygen 5+ ions by large-scale finite-amplitude Alfven waves in the collisionless fast solar wind. We consider initially non-drifting isotropic multi-species plasma, consisting of isothermal massless fluid electrons, kinetic protons and kinetic Oxygen 5+ ions. The external energy source for the plasma heating and energization are oblique monochromatic Alfven-cyclotron waves. The waves have been created by rotating the direction of initial parallel pump, which is a solution of the multi-fluid plasma dispersion relation. We consider propagation angles theta less than or equal to 30 deg. The obliquely propagating Alfven pump waves lead to strong diffusion in the ion phase space, resulting in highly anisotropic heavy ion velocity distribution functions and proton beams. We discuss the application of the model to the problems of preferential heating of minor ions in the solar corona and the fast solar wind.

  1. PROTON HEATING BY PICK-UP ION DRIVEN CYCLOTRON WAVES IN THE OUTER HELIOSPHERE: HYBRID EXPANDING BOX SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellinger, Petr; Trávníček, Pavel M., E-mail: petr.hellinger@asu.cas.cz

    Using a one-dimensional hybrid expanding box model, we investigate properties of the solar wind in the outer heliosphere. We assume a proton–electron plasma with a strictly transverse ambient magnetic field and, aside from the expansion, we take into account the influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function, which rapidly becomes unstable, and generate Alfvén cyclotron waves. The Alfvén cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that timemore » owing to the expansion-driven cooling. The Alfvén cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through cyclotron resonance. At later times, the Alfvén cyclotron waves become parametrically unstable and the generated ion-acoustic waves heat protons in the parallel direction through Landau resonance. The resulting heating of the solar wind protons is efficient on the expansion timescale.« less

  2. Weakened Magnetization and Onset of Large-scale Turbulence in the Young Solar Wind—Comparisons of Remote Sensing Observations with Simulation

    NASA Astrophysics Data System (ADS)

    Chhiber, Rohit; Usmanov, Arcadi V.; DeForest, Craig E.; Matthaeus, William H.; Parashar, Tulasi N.; Goldstein, Melvyn L.

    2018-04-01

    Recent analysis of Solar-Terrestrial Relations Observatory (STEREO) imaging observations have described the early stages of the development of turbulence in the young solar wind in solar minimum conditions. Here we extend this analysis to a global magnetohydrodynamic (MHD) simulation of the corona and solar wind based on inner boundary conditions, either dipole or magnetogram type, that emulate solar minimum. The simulations have been calibrated using Ulysses and 1 au observations, and allow, within a well-understood context, a precise determination of the location of the Alfvén critical surfaces and the first plasma beta equals unity surfaces. The compatibility of the the STEREO observations and the simulations is revealed by direct comparisons. Computation of the radial evolution of second-order magnetic field structure functions in the simulations indicates a shift toward more isotropic conditions at scales of a few Gm, as seen in the STEREO observations in the range 40–60 R ⊙. We affirm that the isotropization occurs in the vicinity of the first beta unity surface. The interpretation based on early stages of in situ solar wind turbulence evolution is further elaborated, emphasizing the relationship of the observed length scales to the much smaller scales that eventually become the familiar turbulence inertial range cascade. We argue that the observed dynamics is the very early manifestation of large-scale in situ nonlinear couplings that drive turbulence and heating in the solar wind.

  3. OBSERVATIONAL SIGNATURES OF CORONAL LOOP HEATING AND COOLING DRIVEN BY FOOTPOINT SHUFFLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlburg, R. B.; Taylor, B. D.; Einaudi, G.

    The evolution of a coronal loop is studied by means of numerical simulations of the fully compressible three-dimensional magnetohydrodynamic equations using the HYPERION code. The footpoints of the loop magnetic field are advected by random motions. As a consequence, the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is nonuniformly distributed so that only a fraction of the coronal mass and volume gets heated at any time. Temperature and density are highly structured at scalesmore » that, in the solar corona, remain observationally unresolved: the plasma of our simulated loop is multithermal, where highly dynamical hotter and cooler plasma strands are scattered throughout the loop at sub-observational scales. Numerical simulations of coronal loops of 50,000 km length and axial magnetic field intensities ranging from 0.01 to 0.04 T are presented. To connect these simulations to observations, we use the computed number densities and temperatures to synthesize the intensities expected in emission lines typically observed with the Extreme Ultraviolet Imaging Spectrometer on Hinode. These intensities are used to compute differential emission measure distributions using the Monte Carlo Markov Chain code, which are very similar to those derived from observations of solar active regions. We conclude that coronal heating is found to be strongly intermittent in space and time, with only small portions of the coronal loop being heated: in fact, at any given time, most of the corona is cooling down.« less

  4. Numerical simulations of loops heated to solar flare temperatures. III - Asymmetrical heating

    NASA Technical Reports Server (NTRS)

    Cheng, C.-C.; Doschek, G. A.; Karpen, J. T.

    1984-01-01

    A numerical model is defined for asymmetric full solar flare loop heating and comparisons are made with observational data. The Dynamic Flux Tube Model is used to describe the heating process in terms of one-dimensional, two fluid conservation equations of mass, energy and momentum. An adaptive grid allows for the downward movement of the transition region caused by an advancing conduction front. A loop 20,000 km long is considered, along with a flare heating system and the hydrodynamic evolution of the loop. The model was applied to generating line profiles and spatial X-ray and UV line distributions, which were compared with SMM, P78-1 and Hintori data for Fe, Ca and Mg spectra. Little agreement was obtained, and it is suggested that flares be treated as multi-loop phenomena. Finally, it is concluded that chromospheric evaporation is not an effective mechanism for generating the soft X-ray bursts associated with flares.

  5. Solar Pilot Plant, Phase I. Preliminary design report. Volume II, Book 2. Central receiver optical model users manual. CDRL item 2. [HELIAKI code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1977-05-01

    HELIAKI is a FORTRAN computer program which simulates the optical/thermal performance of a central receiver solar thermal power plant for the dynamic conversion of solar-generated heat to electricity. The solar power plant which this program simulates consists of a field of individual sun tracking mirror units, or heliostats, redirecting sunlight into a cavity, called the receiver, mounted atop a tower. The program calculates the power retained by that cavity receiver at any point in time or the energy into the receiver over a year's time using a Monte Carlo ray trace technique to solve the multiple integral equations. An artist'smore » concept of this plant is shown.« less

  6. VOLATILE LOSS AND CLASSIFICATION OF KUIPER BELT OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R. E.; Schmidt, C.; Oza, A.

    Observations indicate that some of the largest Kuiper Belt Objects (KBOs) have retained volatiles in the gas phase (e.g., Pluto), while others have surface volatiles that might support a seasonal atmosphere (e.g., Eris). Since the presence of an atmosphere can affect their reflectance spectra and thermal balance, Schaller and Brown examined the role of volatile escape driven by solar heating of the surface. Guided by recent simulations, we estimate the loss of primordial N{sub 2} for several large KBOs, accounting for escape driven by UV/EUV heating of the upper atmosphere as well as by solar heating of the surface. Formore » the latter we present new simulations and for the former we scale recent detailed simulations of escape from Pluto using the energy limited escape model validated recently by molecular kinetic simulations. Unlike what has been assumed to date, we show that unless the N{sub 2} atmosphere is thin (<∼10{sup 18} N{sub 2} cm{sup −2}) and/or the radius small (<∼200–300 km), escape is primarily driven by the UV/EUV radiation absorbed in the upper atmosphere. This affects the discussion of the relationship between atmospheric loss and the observed surface properties for a number of the KBOs examined. Our long-term goal is to connect detailed atmospheric loss simulations with a model for volatile transport for individual KBOs.« less

  7. Apparatus Notes

    ERIC Educational Resources Information Center

    Eaton, Bruce G., Ed.

    1976-01-01

    Includes five brief articles on: solar-heating demonstration equipment, mercury or sodium vapor lamp spectroscopy, an apparatus for simulating variable stars, a voltage-to-frequency converter, and an introductory absorption experiment for low-energy beta particles. (MLH)

  8. Solar thermal vacuum tests of Magellan spacecraft

    NASA Technical Reports Server (NTRS)

    Neuman, James C.

    1990-01-01

    The Magellen solar/thermal/vacuum test involved a number of unique requirements and approaches. Because of the need to operate in orbit around Venus, the solar intensity requirement ranged up to 2.3 suns or Earth equivalent solar constants. Extensive modification to the solar simulator portion of the test facility were required to achieve this solar intensity. Venus albedo and infrared emission were simulated using temperature controlled movable louver panels to allow the spacecraft to view either a selectable temperature black heat source with closed louvers, or the chamber coldwall behind open louvers. The test conditions included widely varying solar intensities, multiple sun angles, alternate hardware configurations, steady state and transient cases, and cruise and orbital power profiles. Margin testing was also performed, wherein supplemental heaters were mounted to internal thermal blankets to verify spacecraft performance at higher than expected temperatures. The test was successful, uncovering some spacecraft anomalies and verifying the thermal design. The test support equipment experienced some anomalous behavior and a significant failure during the test.

  9. Advanced solar box and flat plate collector cookers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grupp, M.; Bergler, H.

    Several new solar cooker systems have been developed at Synopsis during the last years: advanced box type cookers, featuring an optimized heat transfer from the absorber into the cooking vessel; flat plate cookers, based on a particular two-way collector with air as transfer fluid; flat plate cookers with heat-pipe transfer; specialized cookers for the baking of bread and flat bread. The working principle of these cookers is described, the structure of a thermal simulation model and results of thermal tests are presented. The results of the first year of local production and use of advanced boxes in India are reported.

  10. Photovoltaic Devices: Opto-Electro-Thermal Physics and Modeling.

    PubMed

    Shang, Aixue; Li, Xiaofeng

    2017-02-01

    An opto-electro-thermal simulation of solar cells (SCs) is presented by addressing optoelectronic and thermodynamic responses simultaneously. The photocurrent losses due to carrier recombinations and the intrinsic heat generation (thermalization/Joule/Peltier/recombination heat) and dissipation (convective/radiative cooling) processes in the SCs are investigated quantitatively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Detection of Heating Processes in Coronal Loops by Soft X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawate, Tomoko; Narukage, Noriyuki; Ishikawa, Shin-nosuke; Imada, Shinsuke

    2017-08-01

    Imaging and Spectroscopic observations in the soft X-ray band will open a new window of the heating/acceleration/transport processes in the solar corona. The soft X-ray spectrum between 0.5 and 10 keV consists of the electron thermal free-free continuum and hot coronal lines such as O VIII, Fe XVII, Mg XI, Si XVII. Intensity of free-free continuum emission is not affected by the population of ions, whereas line intensities especially from highly ionized species have a sensitivity of the timescale of ionization/recombination processes. Thus, spectroscopic observations of both continuum and line intensities have a capability of diagnostics of heating/cooling timescales. We perform a 1D hydrodynamic simulation coupled with the time-dependent ionization, and calculate continuum and line intensities under different heat input conditions in a coronal loop. We also examine the differential emission measure of the coronal loop from the time-integrated soft x-ray spectra. As a result, line intensity shows a departure from the ionization equilibrium and shows different responses depending on the frequency of the heat input. Solar soft X-ray spectroscopic imager will be mounted in the sounding rocket experiment of the Focusing Optics X-ray Solar Imager (FOXSI). This observation will deepen our understanding of heating processes to solve the “coronal heating problem”.

  12. HEATING MECHANISMS IN THE LOW SOLAR ATMOSPHERE THROUGH MAGNETIC RECONNECTION IN CURRENT SHEETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Lei; Lin, Jun; Roussev, Ilia I.

    2016-12-01

    We simulate several magnetic reconnection processes in the low solar chromosphere/photosphere; the radiation cooling, heat conduction and ambipolar diffusion are all included. Our numerical results indicate that both the high temperature (≳8 × 10{sup 4} K) and low temperature (∼10{sup 4} K) magnetic reconnection events can happen in the low solar atmosphere (100–600 km above the solar surface). The plasma β controlled by plasma density and magnetic fields is one important factor to decide how much the plasma can be heated up. The low temperature event is formed in a high β magnetic reconnection process, Joule heating is the mainmore » mechanism to heat plasma and the maximum temperature increase is only several thousand Kelvin. The high temperature explosions can be generated in a low β magnetic reconnection process, slow and fast-mode shocks attached at the edges of the well developed plasmoids are the main physical mechanisms to heat the plasma from several thousand Kelvin to over 8 × 10{sup 4} K. Gravity in the low chromosphere can strongly hinder the plasmoid instability and the formation of slow-mode shocks in a vertical current sheet. Only small secondary islands are formed; these islands, however, are not as well developed as those in the horizontal current sheets. This work can be applied to understand the heating mechanism in the low solar atmosphere and could possibly be extended to explain the formation of common low temperature Ellerman bombs (∼10{sup 4} K) and the high temperature Interface Region Imaging Spectrograph (IRIS) bombs (≳8 × 10{sup 4}) in the future.« less

  13. Magnetic Pumping as a Source of Particle Heating and Power-law Distributions in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Lichko, E.; Egedal, J.; Daughton, W.; Kasper, J.

    2017-12-01

    Based on the rate of expansion of the solar wind, the plasma should cool rapidly as a function of distance to the Sun. Observations show this is not the case. In this work, a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. Most previous studies in this area focus on the role that the dissipation of turbulent energy on microscopic kinetic scales plays in the overall heating of the plasma. However, with magnetic pumping, particles are energized by the largest-scale turbulent fluctuations, thus bypassing the energy cascade. In contrast to other models, we include the pressure anisotropy term, providing a channel for the large-scale fluctuations to heat the plasma directly. A complete set of coupled differential equations describing the evolution, and energization, of the distribution function are derived, as well as an approximate closed-form solution. Numerical simulations using the VPIC kinetic code are applied to verify the model’s analytical predictions. The results of the model for realistic solar wind scenario are computed, where thermal streaming of particles are important for generating a phase shift between the magnetic perturbations and the pressure anisotropy. In turn, averaged over a pump cycle, the phase shift permits mechanical work to be converted directly to heat in the plasma. The results of this scenario show that magnetic pumping may account for a significant portion of the solar wind energization.

  14. Visible Near-infrared Spectral Evolution of Irradiated Mixed Ices and Application to Kuiper Belt Objects and Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Poston, Michael J.; Mahjoub, Ahmed; Ehlmann, Bethany L.; Blacksberg, Jordana; Brown, Michael E.; Carlson, Robert W.; Eiler, John M.; Hand, Kevin P.; Hodyss, Robert; Wong, Ian

    2018-04-01

    Understanding the history of Kuiper Belt Objects and Jupiter Trojans will help to constrain models of solar system formation and dynamical evolution. Laboratory simulations of a possible thermal and irradiation history of these bodies were conducted on ice mixtures while monitoring their spectral properties. These simulations tested the hypothesis that the presence or absence of sulfur explains the two distinct visible near-infrared spectral groups observed in each population and that Trojans and KBOs share a common formation location. Mixed ices consisting of water, methanol, and ammonia, in mixtures both with and without hydrogen sulfide, were deposited and irradiated with 10 keV electrons. Deposition and initial irradiation were performed at 50 K to simulate formation at 20 au in the early solar system, then heated to Trojan-like temperatures and irradiated further. Finally, irradiation was concluded and resulting samples were observed during heating to room temperature. Results indicated that the presence of sulfur resulted in steeper spectral slopes. Heating through the 140–200 K range decreased the slopes and total reflectance for both mixtures. In addition, absorption features at 410, 620, and 900 nm appeared under irradiation, but only in the H2S-containing mixture. These features were lost with heating once irradiation was concluded. While the results reported here are consistent with the hypothesis, additional work is needed to address uncertainties and to simulate conditions not included in the present work.

  15. Simulation model for assessing the efficiency of a combined power installation based on a geothermal heat pump and a vacuum solar collector

    NASA Astrophysics Data System (ADS)

    Vaysman, Ya I.; Surkov, AA; Surkova, Yu I.; Kychkin, AV

    2017-06-01

    The article is devoted to the use of renewable energy sources and the assessment of the feasibility of their use in the climatic conditions of the Western Urals. A simulation model that calculates the efficiency of a combined power installations (CPI) was (RES) developed. The CPI consists of the geothermal heat pump (GHP) and the vacuum solar collector (VCS) and is based on the research model. This model allows solving a wide range of problems in the field of energy and resource efficiency, and can be applied to other objects using RES. Based on the research recommendations for optimizing the management and the application of CPI were given. The optimization system will give a positive effect in the energy and resource consumption of low-rise residential buildings projects.

  16. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    PubMed Central

    Haussener, Sophia; Steinfeld, Aldo

    2012-01-01

    High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium. PMID:28817039

  17. Magnetofluid Simulations of the Global Solar Wind Including Pickup Ions and Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.; Usmanov, Arcadi V.; Matthaeus, William H.

    2011-01-01

    I will describe a three-dimensional magnetohydrodynamic model of the solar wind that takes into account turbulent heating of the wind by velocity and magnetic fluctuations as well as a variety of effects produced by interstellar pickup protons. In this report, the interstellar pickup protons are treated as one fluid and the protons and electrons are treated together as a second fluid. The model equations include a Reynolds decomposition of the plasma velocity and magnetic field into mean and fluctuating quantities, as well as energy transfer from interstellar pickup protons to solar wind protons that results in the deceleration of the solar wind. The model is used to simulate the global steady-state structure of the solar wind in the region from 0.3 to 100 AU. Where possible, the model is compared with Voyager data. Initial results from generalization to a three-fluid model is described elsewhere in this session.

  18. "Kicking Up Some Dust": An Experimental Investigation Relating Lunar Dust Erosive Wear to Solar Power Loss

    NASA Technical Reports Server (NTRS)

    Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III

    2013-01-01

    The exhaust from retrograde rockets fired by spacecraft landing on the Moon can accelerate lunar dust particles to high velocities. Information obtained from NASA's Apollo 12 mission confirmed that these high-speed dust particles can erode nearby structures. This erosive wear damage can affect the performance of optical components such as solar concentrators. Solar concentrators are objects which collect sunlight over large areas and focus the light into smaller areas for purposes such as heating and energy production. In this work, laboratory-scale solar concentrators were constructed and subjected to erosive wear by the JSC-1AF lunar dust simulant. The concentrators were focused on a photovoltaic cell and the degradation in electrical power due to the erosive wear was measured. It was observed that even moderate exposure to erosive wear from lunar dust simulant resulted in a 40 percent reduction in power production from the solar concentrators.

  19. Optics-based approach to thermal management of photovoltaics: Selective-spectral and radiative cooling

    DOE PAGES

    Sun, Xingshu; Silverman, Timothy J.; Zhou, Zhiguang; ...

    2017-01-20

    For commercial one-sun solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 °C higher than the ambient. In the long term, extreme self-heating erodes efficiency and shortens lifetime, thereby dramatically reducing the total energy output. Therefore, it is critically important to develop effective and practical (and preferably passive) cooling methods to reduce operating temperature of photovoltaic (PV) modules. In this paper, we explore two fundamental (but often overlooked) origins of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical properties of themore » solar module to eliminate parasitic absorption (selective-spectral cooling) and enhance thermal emission (radiative cooling). Comprehensive opto-electro-thermal simulation shows that the proposed techniques would cool one-sun terrestrial solar modules up to 10 °C. As a result, this self-cooling would substantially extend the lifetime for solar modules, with corresponding increase in energy yields and reduced levelized cost of electricity.« less

  20. The effects of surface evaporation parameterizations on climate sensitivity to solar constant variations

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Curran, R. J.; Ohring, G.

    1981-01-01

    The effects of two different evaporation parameterizations on the sensitivity of simulated climate to solar constant variations are investigated by using a zonally averaged climate model. One parameterization is a nonlinear formulation in which the evaporation is nonlinearly proportional to the sensible heat flux, with the Bowen ratio determined by the predicted vertical temperature and humidity gradients near the earth's surface (model A). The other is the formulation of Saltzman (1968) with the evaporation linearly proportional to the sensible heat flux (model B). The computed climates of models A and B are in good agreement except for the energy partition between sensible and latent heat at the earth's surface. The difference in evaporation parameterizations causes a difference in the response of temperature lapse rate to solar constant variations and a difference in the sensitivity of longwave radiation to surface temperature which leads to a smaller sensitivity of surface temperature to solar constant variations in model A than in model B. The results of model A are qualitatively in agreement with those of the general circulation model calculations of Wetherald and Manabe (1975).

  1. Performative building envelope design correlated to solar radiation and cooling energy consumption

    NASA Astrophysics Data System (ADS)

    Jacky, Thiodore; Santoni

    2017-11-01

    Climate change as an ongoing anthropogenic environmental challenge is predominantly caused by an amplification in the amount of greenhouse gases (GHGs), notably carbon dioxide (CO2) in building sector. Global CO2 emissions are emitted from HVAC (Heating, Ventilation, and Air Conditioning) occupation to provide thermal comfort in building. In fact, the amount of energy used for cooling or heating building is implication of building envelope design. Building envelope acts as interface layer of heat transfer between outdoor environment and the interior of a building. It appears as wall, window, roof and external shading device. This paper examines performance of various design strategy on building envelope to limit solar radiation and reduce cooling loads in tropical climate. The design strategies are considering orientation, window to wall ratio, material properties, and external shading device. This research applied simulation method using Autodesk Ecotect to investigate simultaneously between variations of wall and window ratio, shading device composition and the implication to the amount of solar radiation, cooling energy consumption. Comparative analysis on the data will determine logical variation between opening and shading device composition and cooling energy consumption. Optimizing the building envelope design is crucial strategy for reducing CO2 emissions and long-term energy reduction in building sector. Simulation technology as feedback loop will lead to better performative building envelope.

  2. Development of a solar-powered residential air conditioner: System optimization preliminary specification

    NASA Technical Reports Server (NTRS)

    Rousseau, J.; Hwang, K. C.

    1975-01-01

    Investigations aimed at the optimization of a baseline Rankine cycle solar powered air conditioner and the development of a preliminary system specification were conducted. Efforts encompassed the following: (1) investigations of the use of recuperators/regenerators to enhance the performance of the baseline system, (2) development of an off-design computer program for system performance prediction, (3) optimization of the turbocompressor design to cover a broad range of conditions and permit operation at low heat source water temperatures, (4) generation of parametric data describing system performance (COP and capacity), (5) development and evaluation of candidate system augmentation concepts and selection of the optimum approach, (6) generation of auxiliary power requirement data, (7) development of a complete solar collector-thermal storage-air conditioner computer program, (8) evaluation of the baseline Rankine air conditioner over a five day period simulating the NASA solar house operation, and (9) evaluation of the air conditioner as a heat pump.

  3. Thermal Performance Analysis of Solar Collectors Installed for Combisystem in the Apartment Building

    NASA Astrophysics Data System (ADS)

    Žandeckis, A.; Timma, L.; Blumberga, D.; Rochas, C.; Rošā, M.

    2012-01-01

    The paper focuses on the application of wood pellet and solar combisystem for space heating and hot water preparation at apartment buildings under the climate of Northern Europe. A pilot project has been implemented in the city of Sigulda (N 57° 09.410 E 024° 52.194), Latvia. The system was designed and optimised using TRNSYS - a dynamic simulation tool. The pilot project was continuously monitored. To the analysis the heat transfer fluid flow rate and the influence of the inlet temperature on the performance of solar collectors were subjected. The thermal performance of a solar collector loop was studied using a direct method. A multiple regression analysis was carried out using STATGRAPHICS Centurion 16.1.15 with the aim to identify the operational and weather parameters of the system which cause the strongest influence on the collector's performance. The parameters to be used for the system's optimisation have been evaluated.

  4. Estimating risks of heat strain by age and sex: a population-level simulation model.

    PubMed

    Glass, Kathryn; Tait, Peter W; Hanna, Elizabeth G; Dear, Keith

    2015-05-18

    Individuals living in hot climates face health risks from hyperthermia due to excessive heat. Heat strain is influenced by weather exposure and by individual characteristics such as age, sex, body size, and occupation. To explore the population-level drivers of heat strain, we developed a simulation model that scales up individual risks of heat storage (estimated using Myrup and Morgan's man model "MANMO") to a large population. Using Australian weather data, we identify high-risk weather conditions together with individual characteristics that increase the risk of heat stress under these conditions. The model identifies elevated risks in children and the elderly, with females aged 75 and older those most likely to experience heat strain. Risk of heat strain in males does not increase as rapidly with age, but is greatest on hot days with high solar radiation. Although cloudy days are less dangerous for the wider population, older women still have an elevated risk of heat strain on hot cloudy days or when indoors during high temperatures. Simulation models provide a valuable method for exploring population level risks of heat strain, and a tool for evaluating public health and other government policy interventions.

  5. Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.

    PubMed

    Sekhar, Y Raja; Sharma, K V; Kamal, Subhash

    2016-05-01

    The solar flat plate collector operating under different convective modes has low efficiency for energy conversion. The energy absorbed by the working fluid in the collector system and its heat transfer characteristics vary with solar insolation and mass flow rate. The performance of the system is improved by reducing the losses from the collector. Various passive methods have been devised to aid energy absorption by the working fluid. Also, working fluids are modified using nanoparticles to improve the thermal properties of the fluid. In the present work, simulation and experimental studies are undertaken for pipe flow at constant heat flux boundary condition in the mixed convection mode. The working fluid at low Reynolds number in the mixed laminar flow range is undertaken with water in thermosyphon mode for different inclination angles of the tube. Local and average coefficients are determined experimentally and compared with theoretical values for water-based Al2O3 nanofluids. The results show an enhancement in heat transfer in the experimental range with Rayleigh number at higher inclinations of the collector tube for water and nanofluids.

  6. Enhanced absorption cycle computer model

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  7. Age-velocity dispersion relations and heating histories in disc galaxies

    NASA Astrophysics Data System (ADS)

    Aumer, Michael; Binney, James; Schönrich, Ralph

    2016-10-01

    We analyse the heating of stellar discs by non-axisymmetric structures and giant molecular clouds (GMCs) in N-body simulations of growing disc galaxies. The analysis resolves long-standing discrepancies between models and data by demonstrating the importance of distinguishing between measured age-velocity dispersion relations (AVRs) and the heating histories of the stars that make up the AVR. We fit both AVRs and heating histories with formulae ∝tβ and determine the exponents βR and βz derived from in-plane and vertical AVRs and tilde{β }_R and tilde{β }_z from heating histories. Values of βz are in almost all simulations larger than values of tilde{β }_z, whereas values of βR are similar to or mildly larger than values of tilde{β }_R. Moreover, values of βz (tilde{β }_z) are generally larger than values of βR (tilde{β }_R). The dominant cause of these relations is the decline over the life of the disc in importance of GMCs as heating agents relative to spiral structure and the bar. We examine how age errors and biases in solar neighbourhood surveys influence the measured AVR: they tend to decrease β values by smearing out ages and thus measured dispersions. We compare AVRs and velocity ellipsoid shapes σz/σR from simulations to solar neighbourhood data. We conclude that for the expected disc mass and dark halo structure, combined GMC and spiral/bar heating can explain the AVR of the Galactic thin disc. Strong departures of the disc mass or the dark halo structure from expectation spoil fits to the data.

  8. Transient analysis and energy optimization of solar heating and cooling systems in various configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calise, F.; Dentice d'Accadia, M.; Palombo, A.

    2010-03-15

    In this paper, a transient simulation model of solar-assisted heating and cooling systems (SHC) is presented. A detailed case study is also discussed, in which three different configurations are considered. In all cases, the SHC system is based on the coupling of evacuated solar collectors with a single-stage LiBr-H{sub 2}O absorption chiller, and a gas-fired boiler is also included for auxiliary heating, only during the winter season. In the first configuration, the cooling capacity of the absorption chiller and the solar collector area are designed on the basis of the maximum cooling load, and an electric chiller is used asmore » the auxiliary cooling system. The second layout is similar to the first one, but, in this case, the absorption chiller and the solar collector area are sized in order to balance only a fraction of the maximum cooling load. Finally, in the third configuration, there is no electric chiller, and the auxiliary gas-fired boiler is also used in summer to feed the absorption chiller, in case of scarce solar irradiation. The simulation model was developed using the TRNSYS software, and included the analysis of the dynamic behaviour of the building in which the SHC systems were supposed to be installed. The building was simulated using a single-lumped capacitance model. An economic model was also developed, in order to assess the operating and capital costs of the systems under analysis. Furthermore, a mixed heuristic-deterministic optimization algorithm was implemented, in order to determine the set of the synthesis/design variables that maximize the energy efficiency of each configuration under analysis. The results of the case study were analyzed on monthly and weekly basis, paying special attention to the energy and monetary flows of the standard and optimized configurations. The results are encouraging as for the potential of energy saving. On the contrary, the SHC systems appear still far from the economic profitability: however, this is notoriously true for the great majority of renewable energy systems. (author)« less

  9. Performance outlook of the SCRAP receiver

    NASA Astrophysics Data System (ADS)

    Lubkoll, Matti; von Backström, Theodor W.; Harms, Thomas M.

    2016-05-01

    A combined cycle (CC) concentrating solar power (CSP) plant provides significant potential to achieve an efficiency increase and an electricity cost reduction compared to current single-cycle plants. A CC CSP system requires a receiver technology capable of effectively transferring heat from concentrated solar irradiation to a pressurized air stream of a gas turbine. The small number of pressurized air receivers demonstrated to date have practical limitations, when operating at high temperatures and pressures. As yet, a robust, scalable and efficient system has to be developed and commercialized. A novel receiver system, the Spiky Central Receiver Air Pre-heater (SCRAP) concept has been proposed to comply with these requirements. The SCRAP system is conceived as a solution for an efficient and robust pressurized air receiver that could be implemented in CC CSP concepts or standalone solar Brayton cycles without a bottoming Rankine cycle. The presented work expands on previous publications on the thermal modeling of the receiver system. Based on the analysis of a single heat transfer element (spike), predictions for its thermal performance can be made. To this end the existing thermal model was improved by heat transfer characteristics for the jet impingement region of the spike tip as well as heat transfer models simulating the interaction with ambient. While the jet impingement cooling effect was simulated employing a commercial CFD code, the ambient heat transfer model was based on simplifying assumptions in order to employ empirical and analytical equations. The thermal efficiency of a spike under design conditions (flux 1.0 MW/m2, air outlet temperature just below 800 °C) was calculated at approximately 80 %, where convective heat losses account for 16.2 % of the absorbed radiation and radiative heat losses for a lower 2.9 %. This effect is due to peak surface temperatures occurring at the root of the spikes. It can thus be concluded that the geometric receiver layout assists to limit radiative heat losses.

  10. A model for the kinetics of a solar-pumped long path laser experiment

    NASA Technical Reports Server (NTRS)

    Stock, L. V.; Wilson, J. W.; Deyoung, R. J.

    1986-01-01

    A kinetic model for a solar-simulator pumped iodine laser system is developed and compared to an experiment in which the solar simulator output is dispersed over a large active volume (150 cu cm) with low simulator light intensity (approx. 200 solar constants). A trace foreign gas which quenches the upper level is introduced into the model. Furthermore, a constant representing optical absorption of the stimulated emission is introduced, in addition to a constant representing the scattering at each of the mirrors, via the optical cavity time constant. The non-uniform heating of the gas is treated as well as the pressure change as a function of time within the cavity. With these new phenomena introduced into the kinetic model, a best reasonable fit to the experimental data is found by adjusting the reaction rate coefficients within the range of known uncertainty by numerical methods giving a new bound within this range of uncertainty. The experimental parameters modeled are the lasing time, laser pulse energy, and time to laser threshold.

  11. Modeling of a CeO2 thermochemistry reduction process for hydrogen production by solar concentrated energy

    NASA Astrophysics Data System (ADS)

    Valle-Hernández, Julio; Romero-Paredes, Hernando; Arancibia-Bulnes, Camilo A.; Villafan-Vidales, Heidi I.; Espinosa-Paredes, Gilberto

    2016-05-01

    In this paper the simulation of the thermal reduction for hydrogen production through the decomposition of cerium oxide is presented. The thermochemical cycle for hydrogen production consists of the endothermic reduction of CeO2 at high temperature, where concentrated solar energy is used as a source of heat; and of the subsequent steam hydrolysis of the resulting cerium oxide to produce hydrogen. For the thermochemical process, a solar reactor prototype is proposed; consisting of a cubic receptacle made of graphite fiber thermally insulated. Inside the reactor a pyramidal arrangement with nine tungsten pipes is housed. The pyramidal arrangement is made respect to the focal point where the reflected energy is concentrated. The solar energy is concentrated through the solar furnace of high radiative flux. The endothermic step is the reduction of the cerium oxide to lower-valence cerium oxide, at very high temperature. The exothermic step is the hydrolysis of the cerium oxide (III) to form H2 and the corresponding initial cerium oxide made at lower temperature inside the solar reactor. For the modeling, three sections of the pipe where the reaction occurs were considered; the carrier gas inlet, the porous medium and the reaction products outlet. The mathematical model describes the fluid mechanics; mass and energy transfer occurring therein inside the tungsten pipe. Thermochemical process model was simulated in CFD. The results show a temperature distribution in the solar reaction pipe and allow obtaining the fluid dynamics and the heat transfer within the pipe. This work is part of the project "Solar Fuels and Industrial Processes" from the Mexican Center for Innovation in Solar Energy (CEMIE-Sol).

  12. Off-farm applications of solar energy in agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, R.E.

    1980-01-01

    Food processing applications make up almost all present off-farm studies of solar energy in agriculture. Research, development and demonstration projects on solar food processing have shown significant progress over the past 3 years. Projects have included computer simulation and mathematical models, hardware and process development for removing moisture from horticultural or animal products, integration of energy conservation with solar energy augmentation in conventional processes, and commercial scale demonstrations. The demonstration projects include solar heated air for drying prunes and raisins, soy beans and onions/garlic; and solar generated steam for orange juice pasteurization. Several new and planned projects hold considerable promisemore » for commerical exploitation in future food processes.« less

  13. Design for On-Sun Evaluation of Evaporator Receivers

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Colozza, Anthony; Sechkar, Edward A.

    2011-01-01

    A heat pipe designed for operation as a solar power receiver should be optimized to accept the solar energy flux and transfer this heat into a reactor. Optical properties of the surface, thermal conductance of the receiver wall, contact resistance of the heat pipe wick, and other heat pipe wick properties ultimately define the maximum amount of power that can be extracted from the concentrated sunlight impinging on the evaporator surface. Modeling of solar power receivers utilizing optical and physical properties provides guidance to their design. On-sun testing is another important means of gathering information on performance. A test rig is being designed and built to conduct on-sun testing. The test rig is incorporating a composite strip mirror concentrator developed as part of a Small Business Innovative Research effort and delivered to NASA Glenn Research Center. In the strip concentrator numerous, lightweight composite parabolic strips of simple curvature were combined to form an array 1.5 m x 1.5 m in size. The line focus of each strip is superimposed in a central area simulating a point of focus. A test stand is currently being developed to hold the parabolic strip concentrator, track the sun, and turn the beam downward towards the ground. The hardware is intended to be sufficiently versatile to accommodate on-sun testing of several receiver concepts, including those incorporating heat pipe evaporators. Characterization devices are also being developed to evaluate the effectiveness of the solar concentrator, including a receiver designed to conduct calorimetry. This paper describes the design and the characterization devices of the on-sun test rig, and the prospect of coupling the concentrated sunlight to a heat pipe solar power receiver developed as part of another Small Business Innovative Research effort.

  14. New Techniques Used in Modeling the 2017 Total Solar Eclipse: Energizing and Heating the Large-Scale Corona

    NASA Astrophysics Data System (ADS)

    Downs, Cooper; Mikic, Zoran; Linker, Jon A.; Caplan, Ronald M.; Lionello, Roberto; Torok, Tibor; Titov, Viacheslav; Riley, Pete; Mackay, Duncan; Upton, Lisa

    2017-08-01

    Over the past two decades, our group has used a magnetohydrodynamic (MHD) model of the corona to predict the appearance of total solar eclipses. In this presentation we detail recent innovations and new techniques applied to our prediction model for the August 21, 2017 total solar eclipse. First, we have developed a method for capturing the large-scale energized fields typical of the corona, namely the sheared/twisted fields built up through long-term processes of differential rotation and flux-emergence/cancellation. Using inferences of the location and chirality of filament channels (deduced from a magnetofrictional model driven by the evolving photospheric field produced by the Advective Flux Transport model), we tailor a customized boundary electric field profile that will emerge shear along the desired portions of polarity inversion lines (PILs) and cancel flux to create long twisted flux systems low in the corona. This method has the potential to improve the morphological shape of streamers in the low solar corona. Second, we apply, for the first time in our eclipse prediction simulations, a new wave-turbulence-dissipation (WTD) based model for coronal heating. This model has substantially fewer free parameters than previous empirical heating models, but is inherently sensitive to the 3D geometry and connectivity of the coronal field---a key property for modeling/predicting the thermal-magnetic structure of the solar corona. Overall, we will examine the effect of these considerations on white-light and EUV observables from the simulations, and present them in the context of our final 2017 eclipse prediction model.Research supported by NASA's Heliophysics Supporting Research and Living With a Star Programs.

  15. Sun-stirred Kraken Mare: Circulation in Titan's seas induced by solar heating and methane precipitation

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya; Lorenz, Ralph D.

    2016-05-01

    Density-driven circulation in Titan's seas forced by solar heating and methane evaporation/precipitation is simulated by an ocean circulation model. If the sea is transparent to sunlight, solar heating can induce anti-clockwise gyres near the sea surface and clockwise gyres near the sea bottom. The gyres are in geostrophic balance between the radially symmetric pressure gradient force and Coriolis force. If instead the sea is turbid and most sunlight is absorbed near the sea surface, the sea gets stratified in warm seasons and the circulation remains weak. Precipitation causes compositional stratification of the sea to an extent that the sea surface temperature can be lower than the sea interior temperature without causing a convective overturning. Non-uniform precipitation can also generate a latitudinal gradient in the methane mole fraction and density, which drives a meridional overturning with equatorward currents near the sea surface and poleward currents near the sea bottom. However, gyres are more ubiquitous than meridional overturning.

  16. Influence of solar heating and precipitation scavenging on the simulated lifetime of post-nuclear war smoke

    NASA Technical Reports Server (NTRS)

    Malone, R. C.; Auer, L. H.; Glatzmaier, G. A.; Wood, M. C.; Toon, O. B.

    1985-01-01

    The behavior of smoke injected into the atmosphere by massive fires that might follow a nuclear war was simulated. Studies with a three-dimensional global atmospheric circulation model showed that heating of the smoke by sunlight would be important and might produce several effects that would decrease the efficiency with which precipitation removes smoke from the atmosphere. The heating gives rise to vertical motions that carry smoke well above the original injection height. Heating of the smoke also causes the tropopause, which is initially above the smoke, to reform below the heated smoke layer. Smoke above the tropopause is physically isolated from precipitation below. Consequently, the atmospheric residence time of the remaining smoke is greatly increased over the prescribed residence times used in previous models of nuclear winter.

  17. NUMERICAL SIMULATIONS OF CORONAL HEATING THROUGH FOOTPOINT BRAIDING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansteen, V.; Pontieu, B. De; Carlsson, M.

    2015-10-01

    Advanced three-dimensional (3D) radiative MHD simulations now reproduce many properties of the outer solar atmosphere. When including a domain from the convection zone into the corona, a hot chromosphere and corona are self-consistently maintained. Here we study two realistic models, with different simulated areas, magnetic field strength and topology, and numerical resolution. These are compared in order to characterize the heating in the 3D-MHD simulations which self-consistently maintains the structure of the atmosphere. We analyze the heating at both large and small scales and find that heating is episodic and highly structured in space, but occurs along loop-shaped structures, andmore » moves along with the magnetic field. On large scales we find that the heating per particle is maximal near the transition region and that widely distributed opposite-polarity field in the photosphere leads to a greater heating scale height in the corona. On smaller scales, heating is concentrated in current sheets, the thicknesses of which are set by the numerical resolution. Some current sheets fragment in time, this process occurring more readily in the higher-resolution model leading to spatially highly intermittent heating. The large-scale heating structures are found to fade in less than about five minutes, while the smaller, local, heating shows timescales of the order of two minutes in one model and one minutes in the other, higher-resolution, model.« less

  18. Magnetic Pumping as a Source of Particle Heating and Power-Law Distributions in the Solar Wind

    DOE PAGES

    Lichko, Emily Rose; Egedal, Jan; Daughton, William Scott; ...

    2017-11-27

    Based on the rate of expansion of the solar wind, the plasma should cool rapidly as a function of distance to the Sun. Observations show this is not the case. In this work, a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. Most previous studies in this area focus on the role that the dissipation of turbulent energy on microscopic kinetic scales plays in the overall heating of the plasma. However, with magnetic pumping, particles are energized by the largest-scale turbulent fluctuations, thusmore » bypassing the energy cascade. In contrast to other models, we include the pressure anisotropy term, providing a channel for the large-scale fluctuations to heat the plasma directly. A complete set of coupled differential equations describing the evolution, and energization, of the distribution function are derived, as well as an approximate closed-form solution. Numerical simulations using the VPIC kinetic code are applied to verify the model's analytical predictions. The results of the model for realistic solar wind scenario are computed, where thermal streaming of particles are important for generating a phase shift between the magnetic perturbations and the pressure anisotropy. In turn, averaged over a pump cycle, the phase shift permits mechanical work to be converted directly to heat in the plasma. Here, the results of this scenario show that magnetic pumping may account for a significant portion of the solar wind energization.« less

  19. Magnetic Pumping as a Source of Particle Heating and Power-Law Distributions in the Solar Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichko, Emily Rose; Egedal, Jan; Daughton, William Scott

    Based on the rate of expansion of the solar wind, the plasma should cool rapidly as a function of distance to the Sun. Observations show this is not the case. In this work, a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. Most previous studies in this area focus on the role that the dissipation of turbulent energy on microscopic kinetic scales plays in the overall heating of the plasma. However, with magnetic pumping, particles are energized by the largest-scale turbulent fluctuations, thusmore » bypassing the energy cascade. In contrast to other models, we include the pressure anisotropy term, providing a channel for the large-scale fluctuations to heat the plasma directly. A complete set of coupled differential equations describing the evolution, and energization, of the distribution function are derived, as well as an approximate closed-form solution. Numerical simulations using the VPIC kinetic code are applied to verify the model's analytical predictions. The results of the model for realistic solar wind scenario are computed, where thermal streaming of particles are important for generating a phase shift between the magnetic perturbations and the pressure anisotropy. In turn, averaged over a pump cycle, the phase shift permits mechanical work to be converted directly to heat in the plasma. Here, the results of this scenario show that magnetic pumping may account for a significant portion of the solar wind energization.« less

  20. TIME-DEPENDENT TURBULENT HEATING OF OPEN FLUX TUBES IN THE CHROMOSPHERE, CORONA, AND SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolsey, L. N.; Cranmer, S. R., E-mail: lwoolsey@cfa.harvard.edu

    We investigate several key questions of plasma heating in open-field regions of the corona that connect to the solar wind. We present results for a model of Alfvén-wave-driven turbulence for three typical open magnetic field structures: a polar coronal hole, an open flux tube neighboring an equatorial streamer, and an open flux tube near a strong-field active region. We compare time-steady, one-dimensional turbulent heating models against fully time-dependent three-dimensional reduced-magnetohydrodynamic modeling of BRAID. We find that the time-steady results agree well with time-averaged results from BRAID. The time dependence allows us to investigate the variability of the magnetic fluctuations andmore » of the heating in the corona. The high-frequency tail of the power spectrum of fluctuations forms a power law whose exponent varies with height, and we discuss the possible physical explanation for this behavior. The variability in the heating rate is bursty and nanoflare-like in nature, and we analyze the amount of energy lost via dissipative heating in transient events throughout the simulation. The average energy in these events is 10{sup 21.91} erg, within the “picoflare” range, and many events reach classical “nanoflare” energies. We also estimated the multithermal distribution of temperatures that would result from the heating-rate variability, and found good agreement with observed widths of coronal differential emission measure distributions. The results of the modeling presented in this paper provide compelling evidence that turbulent heating in the solar atmosphere by Alfvén waves accelerates the solar wind in open flux tubes.« less

  1. Solar-Powered Desalination: A Modelling and Experimental Study

    NASA Astrophysics Data System (ADS)

    Leblanc, Jimmy; Andrews, John

    2007-10-01

    Water shortage is becoming one of the major problems worldwide. As such, desalination technologies have been implemented to meet growing demands for fresh water. Among the desalination technologies, thermal desalination, including multi stage flash (MSF) and multi effect evaporation (MEE), is the current leading desalination process. Reverse osmosis (RO) is also being increasingly used. Despite technological improvements, thermal desalination and reverse osmosis continue to be intensive fossil-fuel consumers and contribute to increased levels of greenhouse gases. As energy costs rise, thermal desalination by solar energy and/or low cost waste heat is likely to become increasingly attractive. As part of a project investigating the productive use of saline land and the development of sustainable desalination systems, the feasibility of producing potable water from seawater or brackish water using desalination systems powered by renewable energy in the form of low-temperature solar-thermal sources has been studied. A salinity-gradient solar pond and an evacuated tube solar collector system have been used as heat sources. Solar ponds combine solar energy collection with long-term storage and can provide reliable thermal energy at temperature ranges from 50 to 90 °C. A visual basic computer model of the different multi-stage flash desalination processes coupled with a salinity-gradient solar pond was developed to determine which process is preferable in regards to performance and greenhouse impact. The governing mathematical equations are derived from mass balances, heat energy balances, and heat transfer characteristics. Using the results from the modelling, a small-scale solar-powered desalination system, capable of producing up to 500 litres of fresh water per day, was designed and manufactured. This single-stage flash system consists of two main units: the heat supply and storage system and the flash desalination unit. Two different condenser heat exchanger materials were investigated: copper-nickel and a commercially available plastic. The modelling and design of a three effects MEE system is also discussed. The effects of the important design and operating parameters (recovery ratio, thermal energy, parasitic electrical energy, distillate production and solar collection area) controlling the cost of fresh water determined both from the computer simulation and experimental results are presented and analysed in this paper. Future work in the overall research program is also outlined.

  2. Series-parallel solar-augmented rock-bed heat pump. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, E.F.; Othmer, P.W.

    1979-12-31

    This report deals with a system representing an alternate arrangement of the components in an air-type, heat pump augmented solar heating system. In this system, referred to as Series-Parallel, the heat pump coils are at opposite ends of the rock bed, allowing heating and cooling of the air entering and leaving the bed. This allows a number of unique modes of operation, some of which allow off-peak use of the necessary utility power. Cooling modes are also available, including off-peak cooling-effect storage, night cooling, and free cooling (economizing). The system finds applications principally in single-family residences. The study examined themore » performance of this system at three locations (Sacramento, Albuquerque, and New York) by means of a simulation model. Seasonal heating and cooling performance factors of about 3 were obtained for Albuquerque for the system integrated into a 200 m/sup 2/ residence. Design integration studies suggest an installed cost of approximately $28,000 above a conventional heat pump system using commercially available components. This high cost is largely due to solar hardware, although system complexity also adds. Availability of low-cost air type collectors may make the system attractive. The study also addresses the general problem of predictive control necessary whenever off-peak storage is employed. An algorithm is presented, along with results.« less

  3. Impacts of Severe Weather, Climate Zone, and Energy Factors on Base Realignment and Closure (BRAC)

    DTIC Science & Technology

    2015-03-26

    hydroelectric, solar photovoltaic , and wind power . Aside from locations and facilities that use electricity to heat, natural gas is the only...have large photovoltaic solar arrays with unique buy-back contracts or power -purchase agreements. These renewable energy projects benefit primarily...these costs, a Monte Carlo simulation is used to forecast annual costs and account for uncertainty with tornado and hurricane risks, along with

  4. Thermoelectric Oxide Modules (TOMs) for the Direct Conversion of Simulated Solar Radiation into Electrical Energy

    PubMed Central

    Tomeš, Petr; Trottmann, Matthias; Suter, Clemens; Aguirre, Myriam Heidi; Steinfeld, Aldo; Haueter, Philipp; Weidenkaff, Anke

    2010-01-01

    The direct conversion of concentrated high temperature solar heat into electrical energy was demonstrated with a series of four–leg thermoelectric oxide modules (TOM). These temperature stable modules were not yet optimized for high efficiency conversion, but served as proof-of-principle for high temperature conversion. They were constructed by connecting two p- (La1.98Sr0.02CuO4) and two n-type (CaMn0.98Nb0.02O3) thermoelements electrically in series and thermally in parallel. The temperature gradient ΔT was applied by a High–Flux Solar Simulator source (HFSS) which generates a spectrum similar to solar radiation. The influence of the graphite layer coated on the hot side of the Al2O3 substrate compared to the uncoated surface on ΔT, Pmax and η was studied in detail. The measurements show an almost linear temperature profile along the thermoelectric legs. The maximum output power of 88.8 mW was reached for a TOM with leg length of 5 mm at ΔT = 622 K. The highest conversion efficiency η was found for a heat flux of 4–8 W cm-2 and the dependence of η on the leg length was investigated.

  5. Climate variability related to the 11 year solar cycle as represented in different spectral solar irradiance reconstructions

    NASA Astrophysics Data System (ADS)

    Kruschke, Tim; Kunze, Markus; Misios, Stergios; Matthes, Katja; Langematz, Ulrike; Tourpali, Kleareti

    2016-04-01

    Advanced spectral solar irradiance (SSI) reconstructions differ significantly from each other in terms of the mean solar spectrum, that is the spectral distribution of energy, and solar cycle variability. Largest uncertainties - relative to mean irradiance - are found for the ultraviolet range of the spectrum, a spectral region highly important for radiative heating and chemistry in the stratosphere and troposphere. This study systematically analyzes the effects of employing different SSI reconstructions in long-term (40 years) chemistry-climate model (CCM) simulations to estimate related uncertainties of the atmospheric response. These analyses are highly relevant for the next round of CCM studies as well as climate models within the CMIP6 exercise. The simulations are conducted by means of two state-of-the-art CCMs - CESM1(WACCM) and EMAC - run in "atmosphere-only"-mode. These models are quite different with respect to the complexity of the implemented radiation and chemistry schemes. CESM1(WACCM) features a chemistry module with considerably higher spectral resolution of the photolysis scheme while EMAC employs a radiation code with notably higher spectral resolution. For all simulations, concentrations of greenhouse gases and ozone depleting substances, as well as observed sea surface temperatures (SST) are set to average conditions representative for the year 2000 (for SSTs: mean of decade centered over year 2000) to exclude anthropogenic influences and differences due to variable SST forcing. Only the SSI forcing differs for the various simulations. Four different forcing datasets are used: NRLSSI1 (used as a reference in all previous climate modeling intercomparisons, i.e. CMIP5, CCMVal, CCMI), NRLSSI2, SATIRE-S, and the SSI forcing dataset recommended for the CMIP6 exercise. For each dataset, a solar maximum and minimum timeslice is integrated, respectively. The results of these simulations - eight in total - are compared to each other with respect to their shortwave heating rate differences (additionally collated with line-by-line calculations using libradtran), differences in the photolysis rates, as well as atmospheric circulation features (temperature, zonal wind, geopotential height, etc.). It is shown that atmospheric responses to the different SSI datasets differ significantly from each other. This is a result from direct radiative effects as well as indirect effects induced by ozone feedbacks. Differences originating from using different SSI datasets for the same level of solar activity are in the same order of magnitude as those associated with the 11 year solar cycle within a specific dataset. However, the climate signals related to the solar cycle are quite comparable across datasets.

  6. Preparation of gold nanoparticle aggregates and their photothermal heating property.

    PubMed

    Kim, Jun-Hyun; Lavin, Brian W

    2011-01-01

    This report describes simple synthetic strategies to prepare partially aggregated gold nanoparticles (GNPs) and their ability to produce photothermally-induced heating of an aqueous medium upon exposure to broadband light. The formation of various GNPs and their aggregates were accomplished in the absence of surfactants at room temperature. The morphologies, structures, and absorption properties of these GNPs were carefully characterized. Given that the resulting GNPs possessing strong and wide absorption bands fall in the most intense solar radiation spectrum, the photothermally-induced heating of water was examined in the presence of the GNPs via irradiation with a solar simulator (i.e., 100 mW/cm2; 1-sun condition). Our GNPs exhibited a slightly greater increase in the water temperature (3-4 degrees C) than that of conventional citrate-stabilized GNPs. This superior photothermal heating property of our GNPs directly indicated that the intense and broad absorption band effectively improved the conversion of highly absorbed photon energy into heat.

  7. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  8. Combined Modeling of Acceleration, Transport, and Hydrodynamic Response in Solar Flares. 1; The Numerical Model

    NASA Technical Reports Server (NTRS)

    Liu, Wei; Petrosian, Vahe; Mariska, John T.

    2009-01-01

    Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated the simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a -10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a non thermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.

  9. CFD analysis of supercritical CO2 used as HTF in a solar tower receiver

    NASA Astrophysics Data System (ADS)

    Roldán, M. I.; Fernández-Reche, J.

    2016-05-01

    The relative cost of a solar receiver can be minimized by the selection of an appropriate heat transfer fluid capable of achieving high receiver efficiencies. In a conventional central receiver system, the concentrated solar energy is transferred from the receiver tube walls to the heat transfer fluid (HTF), which passes through a heat exchanger to generate steam for a Rankine cycle. Thus, higher working fluid temperature is associated with greater efficiency in receiver and power cycle. Emerging receiver designs that can enable higher efficiencies using advanced power cycles, such as supercritical CO2 (s-CO2) closed-loop Brayton cycles, include direct heating of s-CO2 in tubular receiver designs capable of withstanding high internal fluid pressures (around 20 MPa) and temperatures (900 K). Due to the high pressures required and the presence of moving components installed in pipelines (ball-joints and/or flexible connections), the use of s-CO2 presents many technical challenges due to the compatibility of seal materials and fluid leakages of the moving connections. These problems are solved in solar tower systems because the receiver is fixed. In this regard, a preliminary analysis of a tubular receiver with s-CO2 as HTF has been developed using the design of a molten-salt receiver which was previously tested at Plataforma Solar de Almería (PSA). Therefore, a simplified CFD model has been carried out in this study in order to analyze the feasibility of s-CO2 as HTF in solar towers. Simulation results showed that the heat gained by s-CO2 was around 75% greater than the one captured by molten salts (fluid inlet temperature of 715 K), but at a pressure range of 7.5-9.7 MPa. Thus, the use of s-CO2 as HTF in solar tower receivers appears to be a promising alternative, taking into account both the operating conditions required and their maintenance cost.

  10. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    NASA Astrophysics Data System (ADS)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR retrievals was compared with pyranometer measurement. The results showed good agreements: the columnar values of the SKYLIDAR retrievals agreed with reliable SKYRAD.PACK retrievals, and the SKYLIDAR retrievals were sufficiently accurate to evaluate the surface solar irradiance.

  11. Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parashar, T. N.; Shay, M. A.; Cassak, P. A.

    The kinetic evolution of the Orszag-Tang vortex is studied using collisionless hybrid simulations. In magnetohydrodynamics (MHD) this configuration leads rapidly to broadband turbulence. At large length scales, the evolution of the hybrid simulations is very similar to MHD, with magnetic power spectra displaying scaling similar to a Kolmogorov scaling of -5/3. At small scales, differences from MHD arise, as energy dissipates into heat almost exclusively through the magnetic field. The magnetic energy spectrum of the hybrid simulation shows a break where linear theory predicts that the Hall term in Ohm's law becomes significant, leading to dispersive kinetic Alfven waves. Amore » key result is that protons are heated preferentially in the plane perpendicular to the mean magnetic field, creating a proton temperature anisotropy of the type observed in the corona and solar wind.« less

  12. Turbulence and wave particle interactions in solar-terrestrial plasmas

    NASA Technical Reports Server (NTRS)

    Dulk, G. A.; Goldman, M. V.; Toomre, J.

    1985-01-01

    Activities in the following study areas are reported: (1) particle and wave processes in solar flares; (2) solar convection zone turbulence; and (3) solar radiation emission. To investigate the amplification of cyclotron maser radiation in solar flares, a radio frequency. (RF) heating model was developed for the corona surrounding the energy release site. Then nonlinear simulations of compressible convection display prominent penetration by plumes into regions of stable stratification at the base of the solar convection zone, leading to the excitation of internal gravity waves there. Lastly, linear saturation of electron-beam-driven Langmuir waves by ambient density fluctuations, nonlinear saturation by strong turbulence processes, and radiation emission mechanisms are examined. An additional section discusses solar magnetic fields and hydromagnetic waves in inhomogeneous media, and the effect of magnetic fields on stellar oscillation.

  13. Effects of solar radiation, terrestrial radiation and lunar interior heat flow on surface temperature at the nearside of the Moon: Based on numerical calculation and data analysis

    NASA Astrophysics Data System (ADS)

    Song, Yutian; Wang, Xueqiang; Bi, Shengshan; Wu, Jiangtao; Huang, Shaopeng

    2017-09-01

    Surface temperature at the nearside of the Moon (Ts,n) embraces an abundance of valuable information to be explored, and its measurement contributes to studying Earth's energy budget. On a basis of a one-dimensional unsteady heat-transfer model, this paper ran a quantitative calculation that how much the Ts,n varies with the changes of different heat sources, including solar radiation, terrestrial radiation, and lunar interior heat flow. The results reveal that solar radiation always has the most important influence on Ts,n not only during lunar daytime (by means of radiation balance) but also during lunar nighttime (by means of lunar regolith heat conduction). Besides, the effect of terrestrial radiation is also unavoidable, and measuring the variation of lunar nighttime low temperature is exactly helpful in observing Earth outgoing radiation. Accordingly, it is practical to establish a Moon-base observatory on the Moon. For verification, the Apollo 15 mission temperature data was used and analyzed as well. Moreover, other 9 typical lunar areas were selected and the simulation was run one after another in these areas after proper model amendation. It is shown that the polar regions on the Moon are the best areas for establishing Moon-base observatory.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, H.; Bemporad, G.A.

    This manuscript concerns the possible improvement of the conventional solar pond (CSP) performance by applying a multiselective injection and withdrawal procedure. The authors apply the term advanced solar pond (ASP), for a solar pond (SP) in which such a procedure is applied. The multiselective injection and withdrawal procedure creates in the SP a stratified thermal layer, namely a flowing layer which is subject to salinity and temperature stratification. This phenomenon is associated with reduction of heat losses into the atmosphere and an increase of the temperature of the fluid layer adjacent to the SP bottom. In the framework of thismore » study transport phenomena in the ASP are analyzed and simulated by applying a simplified mathematical model. The analysis and simulations indicate that the multiselective and withdrawal procedure may significantly improve the performance of the SP.« less

  15. Observational Signatures of Coronal Heating

    NASA Astrophysics Data System (ADS)

    Dahlburg, R. B.; Einaudi, G.; Ugarte-Urra, I.; Warren, H. P.; Rappazzo, A. F.; Velli, M.; Taylor, B.

    2016-12-01

    Recent research on observational signatures of turbulent heating of a coronal loop will be discussed. The evolution of the loop is is studied by means of numericalsimulations of the fully compressible three-dimensionalmagnetohydrodynamic equations using the HYPERION code. HYPERION calculates the full energy cycle involving footpoint convection, magnetic reconnection,nonlinear thermal conduction and optically thin radiation.The footpoints of the loop magnetic field are convected by random photospheric motions. As a consequence the magnetic field in the loop is energized and develops turbulent nonlinear dynamics characterized by the continuous formation and dissipation of field-aligned current sheets: energy is deposited at small scales where heating occurs. Dissipation is non-uniformly distributed so that only a fraction of thecoronal mass and volume gets heated at any time. Temperature and density are highly structured at scales which, in the solar corona, remain observationally unresolved: the plasma of the simulated loop is multi-thermal, where highly dynamical hotter and cooler plasma strands arescattered throughout the loop at sub-observational scales. Typical simulated coronal loops are 50000 km length and have axial magnetic field intensities ranging from 0.01 to 0.04 Tesla.To connect these simulations to observations the computed numberdensities and temperatures are used to synthesize the intensities expected inemission lines typically observed with the Extreme ultraviolet Imaging Spectrometer(EIS) on Hinode. These intensities are then employed to compute differentialemission measure distributions, which are found to be very similar to those derivedfrom observations of solar active regions.

  16. Magnetic pumping as a source of particle heating in the solar wind

    NASA Astrophysics Data System (ADS)

    Lichko, E. R.; Egedal, J.; Daughton, W. S.; Kasper, J. C.

    2017-12-01

    Magnetic pumping is a means of heating plasmas for both fusion and astrophysical applications. In this study a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. In most previous studies turbulent energy is only dissipated at microscopic kinetic scales. In contrast, magnetic pumping energizes the particles through the largest scale turbulent fluctuations, thus bypassing the energy cascade. Kinetic simulations are applied to verify these analytic predictions. Previous results for the one-dimensional model, as well as initial results for a two-dimensional model which includes the effects of trapped and passing particles are presented. Preliminary results of the presence of this mechanism in the bow shock region, using spacecraft data from the Magnetospheric Multiscale mission, are presented as well.

  17. Ionosphere/microwave beam interaction study. [satellite solar energy conversion

    NASA Technical Reports Server (NTRS)

    Duncan, L. M.; Gordon, W. E.

    1977-01-01

    A solar power satellite microwave power density of 20mw sq cm was confirmed as the level where nonlinear interactions may occur in the ionosphere, particularly at 100 km altitude. Radio wave heating at this altitude, produced at the Arecibo Observatory, yielded negative results for radio wave heating of an underdense ionosphere. Overdense heating produced striations in the ionosphere which may cause severe radio frequency interference problems under certain conditions. The effects of thermal self-focusing are shown to be limited severely geographically. The aspect sensitivity of field-aligned striations makes interference-free regions above magnetic latitude about 60 deg. A test program is proposed to simulate the interaction of the SPS beam with the ionosphere, to measure the effects of the interaction on the ionosphere and on communication and navigation systems, and to interpret the results.

  18. Design and modelling of an innovative three-stage thermal storage system for direct steam generation CSP plants

    NASA Astrophysics Data System (ADS)

    Garcia, Pierre; Vuillerme, Valéry; Olcese, Marco; El Mourchid, Nadim

    2016-05-01

    Thermal Energy Storage systems (TES) for a Direct Steam Generation (DSG) solar plant feature preferably three stages in series including a latent heat storage module so that steam can be recovered with a limited temperature loss. The storage system designed within the Alsolen Sup project is characterized by an innovative combination of sensible and latent modules. A dynamic model of this three-stage storage has been developed and applied to size the storage system of the Alsolen Sup® plant demonstrator at CEA Cadarache. Results of this simulation show that this promising concept is an efficient way to store heat in DSG solar plants.

  19. An MHD Code for the Study of Magnetic Structures in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Allred, J. C.; MacNeice, P. J.

    2015-01-01

    We have developed a 2.5D MHD code designed to study how the solar wind influences the evolution of transient events in the solar corona and inner heliosphere. The code includes thermal conduction, coronal heating and radiative cooling. Thermal conduction is assumed to be magnetic field-aligned in the inner corona and transitions to a collisionless formulation in the outer corona. We have developed a stable method to handle field-aligned conduction around magnetic null points. The inner boundary is placed in the upper transition region, and the mass flux across the boundary is determined from 1D field-aligned characteristics and a 'radiative energy balance' condition. The 2.5D nature of this code makes it ideal for parameter studies not yet possible with 3D codes. We have made this code publicly available as a tool for the community. To this end we have developed a graphical interface to aid in the selection of appropriate options and a graphical interface that can process and visualize the data produced by the simulation. As an example, we show a simulation of a dipole field stretched into a helmet streamer by the solar wind. Plasmoids periodically erupt from the streamer, and we perform a parameter study of how the frequency and location of these eruptions changed in response to different levels of coronal heating. As a further example, we show the solar wind stretching a compact multi-polar flux system. This flux system will be used to study breakout coronal mass ejections in the presence of the solar wind.

  20. Simulation of a solar-assisted absorption air conditioning system for applications in Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, A.Y.; Hernandez, H.R.; Gonzalez, J.E.

    1995-11-01

    Regions without conventional fuel sources have felt the need for the development of new technologies for air conditioning applications as cost of electrical energy production has continually risen the cost of air conditioning by conventional means. This paper deals with the simulation of a solar-assisted absorption system for air conditioning application in Puerto Rico. A simple thermodynamic model for the solar assisted absorption system has been developed. A solar energy based thermal storage system along with an auxiliary heater is used to provide the required energy in the generator of this absorption system. Results from a parametric analysis to studymore » the influence of the absorber, generator, condenser and evaporator temperatures, on the COP of the system are presented in this paper. The influence of two different refrigerant/absorbent pairs, water/lithium bromide and water/lithium-chloride have also been studied. A sub-system consisting of an array of flat plate solar collectors along with a hot water storage is modeled and verified with the data from an already existing system operating in Sacramento. Finally, off-design performance of a 35 kW solar-assisted absorption system is simulated to report the auxiliary heating requirement for a typical summer day operation in southern Puerto Rico.« less

  1. Hydrogen production by the solar-powered hybrid sulfur process: Analysis of the integration of the CSP and chemical plants in selected scenarios

    NASA Astrophysics Data System (ADS)

    Liberatore, Raffaele; Lanchi, Michela; Turchetti, Luca

    2016-05-01

    The Hybrid Sulfur (HyS) is a water splitting process for hydrogen production powered with high temperature nuclear heat and electric power; among the numerous thermo-chemical and thermo-electro-chemical cycles proposed in the literature, such cycle is considered to have a particularly high potential also if powered by renewable energy. SOL2HY2 (Solar to Hydrogen Hybrid Cycles) is a 3 year research project, co-funded by the Fuel Cells and Hydrogen Joint Undertaking (FCH JU). A significant part of the project activities are devoted to the analysis and optimization of the integration of the solar power plant with the chemical, hydrogen production plant. This work reports a part of the results obtained in such research activity. The analysis presented in this work builds on previous process simulations used to determine the energy requirements of the hydrogen production plant in terms of electric power, medium (<550°C) and high (>550°C) temperature heat. For the supply of medium temperature (MT) heat, a parabolic trough CSP plant using molten salts as heat transfer and storage medium is considered. A central receiver CSP (Concentrated Solar Power) plant is considered to provide high temperature (HT) heat, which is only needed for sulfuric acid decomposition. Finally, electric power is provided by a power block included in the MT solar plant and/or drawn from the grid, depending on the scenario considered. In particular, the analysis presented here focuses on the medium temperature CSP plant, possibly combined with a power block. Different scenarios were analysed by considering plants with different combinations of geographical location and sizing criteria.

  2. Heating and scattering of ring-beam distributions by turbulence

    NASA Technical Reports Server (NTRS)

    Gray, P. C.; Pontius, D. H., Jr.; Matthaeus, W. H.

    1995-01-01

    Pickup ions in the solar wind are initially are born in ring-beam distributions, i.e. f(v) varies as delta(v(sub perpendicular) - V(sub sw)sin(Theta)) delta(v(sub parallel) - V(sub sw)cos(Theta)), where Theta is the angle between the solar wind velocity and the IMF(Interplanetary Magnetic Field), and V(sub sw) is the solar wind speed. Often the distribution has been presumed to relax to a distribution that is isotropic in Theta and essentially mono-energetic, a shell or a 'bi-spherical distribution.' However solar wind turbulence is capable of heating the ring distribution on the timescale of a few tens of gyroperiods, a timescale not greatly distinct from that required for pitch angle scattering to a shell. To describe this effect, we have performed test-particle studies of the heating/scattering of the ring beam distribution by MHD turbulence, adopting various models for the MHD fluctuations, including slab and fully dynamic 2D and 3D incompressible turbulence. Furthermore, a system composed of a cold ion ring and a background plasma is unstable to several kinetic plasma instabilities. We carried out kinetic simulations of the ring beam distribution, showing that plasma instabilities also rapidly energize and scatter particles. Results will be presented comparing relaxation and heating rates of the ring-beam distribution by the various mechanisms.

  3. Three-Dimensional Hybrid-Kinetic Simulations of Alfvénic Turbulence in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Arzamasskiy, Lev; Kunz, Matthew; Chandran, Ben; Quataert, Eliot

    2016-10-01

    It is well established that the solar wind is turbulent, exhibiting a power spectrum extending over several decades in scale and with most of the energy at large scales is in form of Alfvénic fluctuations. The solar wind is also weakly collisional, with a wide variety of non-Maxwellian features observed in the particle distribution functions. In this talk, we present the first hybrid-kinetic three-dimensional simulations of driven Alfvénic turbulence in the solar wind. We confirm power-law indices obtained in previous analytical and numerical (e.g., gyrokinetic) studies, and carefully explore the location of and physics occurring at the ion Larmor scale. In the low-beta regime, we find evidence of stochastic heating, which arises when ions interact with strong fluctuations at wavelengths comparable to the ion Larmor scale. Finally, we discuss the interpretation of spacecraft measurements of the turbulence by testing the Taylor hypothesis with synthetic spacecraft measurements of our simulation data. This work was supported by Grant NNX16AK09G from NASA's Heliophysics Theory Program.

  4. Subcontracted activities related to TES for building heating and cooling

    NASA Technical Reports Server (NTRS)

    Martin, J.

    1980-01-01

    The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.

  5. Numerical simulation of thermally induced near-surface flows over Martian terrain

    NASA Technical Reports Server (NTRS)

    Parish, T. R.; Howard, A. D.

    1993-01-01

    Numerical simulations of the Martian near-surface wind regime using a mesoscale atmospheric model have shown that the thermally induced near-surface winds are analogous to terrestrial circulations. In particular, katabatic wind displays a striking similarity to flow observed over Antarctica. Introduction of solar radiation strongly perturbs the slope flows; anabatic conditions develop in middle to high latitudes during the daytime hours due to the solar heating of the sloping terrain. There appears to be a rapid transition from the katabatic to the anabatic flow regimes, emphasizing the primary importance of radiative exchanges at the surface in specifying the horizontal pressure gradient force.

  6. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    NASA Astrophysics Data System (ADS)

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-02-01

    SummaryTwo physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32 m diameter by 0.99 m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed. Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1 cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9 cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6 cm of water and 55.9 cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix lags behind maximum solar radiation by approximately 2 h. A slightly longer temperature lag was observed between the maximum solar radiation and maximum water temperature both with and without soil.

  7. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    USGS Publications Warehouse

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-01-01

    Two physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32. m diameter by 0.99. m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed.Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1. cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9. cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6. cm of water and 55.9. cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix lags behind maximum solar radiation by approximately 2. h. A slightly longer temperature lag was observed between the maximum solar radiation and maximum water temperature both with and without soil. ?? 2012 Elsevier B.V.

  8. Dynamic modelling and simulation of CSP plant based on supercritical carbon dioxide closed Brayton cycle

    NASA Astrophysics Data System (ADS)

    Hakkarainen, Elina; Sihvonen, Teemu; Lappalainen, Jari

    2017-06-01

    Supercritical carbon dioxide (sCO2) has recently gained a lot of interest as a working fluid in different power generation applications. For concentrated solar power (CSP) applications, sCO2 provides especially interesting option if it could be used both as the heat transfer fluid (HTF) in the solar field and as the working fluid in the power conversion unit. This work presents development of a dynamic model of CSP plant concept, in which sCO2 is used for extracting the solar heat in Linear Fresnel collector field, and directly applied as the working fluid in the recuperative Brayton cycle; these both in a single flow loop. We consider the dynamic model is capable to predict the system behavior in typical operational transients in a physically plausible way. The novel concept was tested through simulation cases under different weather conditions. The results suggest that the concept can be successfully controlled and operated in the supercritical region to generate electric power during the daytime, and perform start-up and shut down procedures in order to stay overnight in sub-critical conditions. Besides the normal daily operation, the control system was demonstrated to manage disturbances due to sudden irradiance changes.

  9. Two-fluid and magnetohydrodynamic modelling of magnetic reconnection in the MAST spherical tokamak and the solar corona

    NASA Astrophysics Data System (ADS)

    Browning, P. K.; Cardnell, S.; Evans, M.; Arese Lucini, F.; Lukin, V. S.; McClements, K. G.; Stanier, A.

    2016-01-01

    Twisted magnetic flux ropes are ubiquitous in laboratory and astrophysical plasmas, and the merging of such flux ropes through magnetic reconnection is an important mechanism for restructuring magnetic fields and releasing free magnetic energy. The merging-compression scenario is one possible start-up scheme for spherical tokamaks, which has been used on the Mega Amp Spherical Tokamak (MAST). Two current-carrying plasma rings or flux ropes approach each due to mutual attraction, forming a current sheet and subsequently merge through magnetic reconnection into a single plasma torus, with substantial plasma heating. Two-dimensional resistive and Hall-magnetohydrodynamic simulations of this process are reported, including a strong guide field. A model of the merging based on helicity-conserving relaxation to a minimum energy state is also presented, extending previous work to tight-aspect-ratio toroidal geometry. This model leads to a prediction of the final state of the merging, in good agreement with simulations and experiment, as well as the average temperature rise. A relaxation model of reconnection between two or more flux ropes in the solar corona is also described, allowing for different senses of twist, and the implications for heating of the solar corona are discussed.

  10. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  11. 24 CFR 200.950 - Building product standards and certification program for solar water heating system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be...) Document OG-300-93, Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems...

  12. 24 CFR 200.950 - Building product standards and certification program for solar water heating system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be...) Document OG-300-93, Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems...

  13. Mars Science Laboratory Rover System Thermal Test

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Kempenaar, Joshua E.; Liu, Yuanming; Bhandari, Pradeep; Dudik, Brenda A.

    2012-01-01

    On November 26, 2011, NASA launched a large (900 kg) rover as part of the Mars Science Laboratory (MSL) mission to Mars. The MSL rover is scheduled to land on Mars on August 5, 2012. Prior to launch, the Rover was successfully operated in simulated mission extreme environments during a 16-day long Rover System Thermal Test (STT). This paper describes the MSL Rover STT, test planning, test execution, test results, thermal model correlation and flight predictions. The rover was tested in the JPL 25-Foot Diameter Space Simulator Facility at the Jet Propulsion Laboratory (JPL). The Rover operated in simulated Cruise (vacuum) and Mars Surface environments (8 Torr nitrogen gas) with mission extreme hot and cold boundary conditions. A Xenon lamp solar simulator was used to impose simulated solar loads on the rover during a bounding hot case and during a simulated Mars diurnal test case. All thermal hardware was exercised and performed nominally. The Rover Heat Rejection System, a liquid-phase fluid loop used to transport heat in and out of the electronics boxes inside the rover chassis, performed better than predicted. Steady state and transient data were collected to allow correlation of analytical thermal models. These thermal models were subsequently used to predict rover thermal performance for the MSL Gale Crater landing site. Models predict that critical hardware temperatures will be maintained within allowable flight limits over the entire 669 Sol surface mission.

  14. Liquid metals for solar power systems

    NASA Astrophysics Data System (ADS)

    Flesch, J.; Niedermeier, K.; Fritsch, A.; Musaeva, D.; Marocco, L.; Uhlig, R.; Baake, E.; Buck, R.; Wetzel, T.

    2017-07-01

    The use of liquid metals in solar power systems is not new. The receiver tests with liquid sodium in the 1980s at the Plataforma Solar de Almería (PSA) already proved the feasibility of liquid metals as heat transfer fluid. Despite the high efficiency achieved with that receiver, further investigation of liquid metals in solar power systems was stopped due to a sodium spray fire. Recently, the topic has become interesting again and the gained experience during the last 30 years of liquid metals handling is applied to the concentrated solar power community. In this paper, recent activities of the Helmholtz Alliance LIMTECH concerning liquid metals for solar power systems are presented. In addition to the components and system simulations also the experimental setup and results are included.

  15. Computational Fluid Dynamic Analysis of Enhancing Passenger Cabin Comfort Using PCM

    NASA Astrophysics Data System (ADS)

    Purusothaman, M.; Valarmathi, T. N.; Dada Mohammad, S. K.

    2016-09-01

    The main purpose of this study is to determine a cost effective way to enhance passenger cabin comfort by analyzing the effect of solar radiation of a open parked vehicle, which is exposed to constant solar radiation on a hot and sunny day. Maximum heat accumulation occurs in the car cabin due to the solar radiation. By means of computational fluid dynamics (CFD) analysis, a simulation process is conducted for the thermal regulation of the passenger cabin using a layer of phase change material (PCM) on the roof structure of a stationary car when exposed to ambient temperature on a hot sunny day. The heat energy accumulated in the passenger cabin is absorbed by a layer of PCM for phase change process. The installation of a ventilation system which uses an exhaust fan to create a natural convection scenario in the cabin is also considered to enhance passenger comfort along with PCM.

  16. Field-Lines-Threaded Model for: (1) the Low Solar Corona; (2) Electrons in the Transition Region; and (3) Solar Energetic Particle Acceleration and Transport

    NASA Astrophysics Data System (ADS)

    Sokolov, I.; van der Holst, B.; Jin, M.; Gombosi, T. I.; Taktakishvili, A.; Khazanov, G. V.

    2013-12-01

    In numerical simulations of the solar corona, both for the ambient state and especially for dynamical processes the most computational resources are spent for maintaining the numerical solution in the Low Solar Corona and in the transition region, where the temperature gradients are very sharp and the magnetic field has a complicated topology. The degraded computational efficiency is caused by the need in a highest resolution as well as the use of the fully three-dimensional implicit solver for electron heat conduction. On the other hand, the physical nature of the processes involved is rather simple (which still does not facilitate the numerical methods) as long as the heat fluxes as well as slow plasma motional velocities are aligned with the magnetic field. The Alfven wave turbulence, which is often believed to be the main driver of the solar wind and the main source of the coronal heating, is characterized by the Poynting flux of the waves, which is also aligned with the magnetic field. Therefore, the plasma state in any point of the three-dimensional grid in the Low Solar Corona can be found by solving a set of one-dimensional equations for the magnetic field line ('thread'), which passes through this point and connects it to the chromosphere and to the global Solar Corona. In the present paper we describe an innovative computational technology based upon the use of the magnetic-field-line-threads to find the local solution. We present the development of the AWSoM code of the University of Michigan with the field-lines-threaded Low Solar Corona. In the transition region, where the essentially kinetic description of the electron energy fluxes is required, we solve the Fokker-Plank equation on the system of threads, to achieve the physically consistent description of chromosphere evaporation. The third application for the field-lines-treaded model is the Solar Energetic Particle (SEP) acceleration and transport. Being the natural extension of the Field-Line-Advection Model for Particle Acceleration (FLAMPA), earlier suggested for a single magnetic field line advected with the plasma motion, the multiple-field-lines model allows us to simulate the SEP fluxes at multiple points of possible observation (at the Earth location, at STEREOs, at Mercury).

  17. Chromosphere to 1 AU Simulation of the 2011 March 7th Event: A Comprehensive Study of Coronal Mass Ejection Propagation

    NASA Astrophysics Data System (ADS)

    Jin, M.; Manchester, W. B.; van der Holst, B.; Sokolov, I.; Tóth, G.; Vourlidas, A.; de Koning, C. A.; Gombosi, T. I.

    2017-01-01

    We perform and analyze the results of a global magnetohydrodynamic simulation of the fast coronal mass ejection (CME) that occurred on 2011 March 7. The simulation is made using the newly developed Alfvén Wave Solar Model (AWSoM), which describes the background solar wind starting from the upper chromosphere and extends to 24 R⊙. Coupling AWSoM to an inner heliosphere model with the Space Weather Modeling Framework extends the total domain beyond the orbit of Earth. Physical processes included in the model are multi-species thermodynamics, electron heat conduction (both collisional and collisionless formulations), optically thin radiative cooling, and Alfvén-wave turbulence that accelerates and heats the solar wind. The Alfvén-wave description is physically self-consistent, including non-Wentzel-Kramers-Brillouin reflection and physics-based apportioning of turbulent dissipative heating to both electrons and protons. Within this model, we initiate the CME by using the Gibson-Low analytical flux rope model and follow its evolution for days, in which time it propagates beyond STEREO A. A detailed comparison study is performed using remote as well as in situ observations. Although the flux rope structure is not compared directly due to lack of relevant ejecta observation at 1 au in this event, our results show that the new model can reproduce many of the observed features near the Sun (e.g., CME-driven extreme ultraviolet [EUV] waves, deflection of the flux rope from the coronal hole, “double-front” in the white light images) and in the heliosphere (e.g., shock propagation direction, shock properties at STEREO A).

  18. Solar dynamic heat receiver technology

    NASA Technical Reports Server (NTRS)

    Sedgwick, Leigh M.

    1991-01-01

    A full-size, solar dynamic heat receiver was designed to meet the requirements specified for electrical power modules on the U.S. Space Station, Freedom. The heat receiver supplies thermal energy to power a heat engine in a closed Brayton cycle using a mixture of helium-xenon gas as the working fluid. The electrical power output of the engine, 25 kW, requires a 100 kW thermal input throughout a 90 minute orbit, including when the spacecraft is eclipsed for up to 36 minutes from the sun. The heat receiver employs an integral thermal energy storage system utilizing the latent heat available through the phase change of a high-temperature salt mixture. A near eutectic mixture of lithium fluoride and calcium difluoride is used as the phase change material. The salt is contained within a felt metal matrix which enhances heat transfer and controls the salt void distribution during solidification. Fabrication of the receiver is complete and it was delivered to NASA for verification testing in a simulated low-Earth-orbit environment. This document reviews the receiver design and describes its fabrication history. The major elements required to operate the receiver during testing are also described.

  19. Simulation of floor heating in a combined solar-biomass system integrated in a public bathhouse located in Marrakech

    NASA Astrophysics Data System (ADS)

    Krarouch, M.; Hamdi, H.; Lamghari, S.; Outzourhit, A.

    2018-05-01

    This study was conducted in the framework of the HYBRID-BATH project aiming at improving the energy efficiency of traditional Hammams (Turkish baths) and the reduction of the use of wood energy and therefore of greenhouse gases emissions. The present work focuses on the energetic performance of a two-room Hammam located in Marrakech. The rooms were heated by the ground using a hybrid system Micro-CSP/biomass boiler. The dynamic simulation of the system (Hammam coupled with the hybrid system Micro-CSP/biomass boiler) was conducted using TRNSYS18 software. The parametric study was performed on a Typical Meteorological Year data (TMY). This study is devoted to presenting the results of the dynamic simulation of a part of the Hammam investigated, in order to optimize the underfloor heating system. The models and the results of the simulations will be validated by comparisons with experimental results. The main objective is to optimize the operation of such system and to improve its performance.

  20. Climate Fundamentals for Solar Heating.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The design of any solar heating system is influenced heavily by climate; in this bulletin, information on climate as related to solar heating is as related to solar heating is provided. Topics discussed include: (1) solar radiation; (2) degree days; (3) climate and calculations which make use of solar radiation and degree days; and (4)…

  1. Threaded-Field-Line Model for the Transition Region and Solar Corona

    NASA Astrophysics Data System (ADS)

    Sokolov, I.; van der Holst, B.; Gombosi, T. I.

    2014-12-01

    In numerical simulations of the solar corona, both for the ambient state and especially for dynamical processes the most computational resources are spent for maintaining the numerical solution in the Low Solar Corona and in the transition region, where the temperature gradients are very sharp and the magnetic field has a complicated topology. The degraded computational efficiency is caused by the need in a highest resolution as well as the use of the fully three-dimensional implicit solver for electron heat conduction. On the other hand, the physical nature of the processes involved is rather simple (which still does not facilitate the numerical methods) as long as the heat fluxes as well as slow plasma motional velocities are aligned with the magnetic field. The Alfven wave turbulence, which is often believed to be the main driver of the solar wind and the main source of the coronal heating, is characterized by the Poynting flux of the waves, which is also aligned with the magnetic field. Therefore, the plasma state in any point of the three-dimensional grid in the Low Solar Corona can be found by solving a set of one-dimensional equations for the magnetic field line ("thread"), which passes through this point and connects it to the chromosphere and to the global Solar Corona. In the present paper we describe an innovative computational technology based upon the use of the magnetic-field-line-threads to forlmulate the boundary condition for the global solar corona model which traces the connection of each boundary point to the cromosphere along the threads.

  2. Turbulent Heating and Wave Pressure in Solar Wind Acceleration Modeling: New Insights to Empirical Forecasting of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Woolsey, L. N.; Cranmer, S. R.

    2013-12-01

    The study of solar wind acceleration has made several important advances recently due to improvements in modeling techniques. Existing code and simulations test the competing theories for coronal heating, which include reconnection/loop-opening (RLO) models and wave/turbulence-driven (WTD) models. In order to compare and contrast the validity of these theories, we need flexible tools that predict the emergent solar wind properties from a wide range of coronal magnetic field structures such as coronal holes, pseudostreamers, and helmet streamers. ZEPHYR (Cranmer et al. 2007) is a one-dimensional magnetohydrodynamics code that includes Alfven wave generation and reflection and the resulting turbulent heating to accelerate solar wind in open flux tubes. We present the ZEPHYR output for a wide range of magnetic field geometries to show the effect of the magnetic field profiles on wind properties. We also investigate the competing acceleration mechanisms found in ZEPHYR to determine the relative importance of increased gas pressure from turbulent heating and the separate pressure source from the Alfven waves. To do so, we developed a code that will become publicly available for solar wind prediction. This code, TEMPEST, provides an outflow solution based on only one input: the magnetic field strength as a function of height above the photosphere. It uses correlations found in ZEPHYR between the magnetic field strength at the source surface and the temperature profile of the outflow solution to compute the wind speed profile based on the increased gas pressure from turbulent heating. With this initial solution, TEMPEST then adds in the Alfven wave pressure term to the modified Parker equation and iterates to find a stable solution for the wind speed. This code, therefore, can make predictions of the wind speeds that will be observed at 1 AU based on extrapolations from magnetogram data, providing a useful tool for empirical forecasting of the sol! ar wind.

  3. Exploring the role of turbulent acceleration and heating in fractal current sheet of solar flares­ from hybrid particle in cell and lattice Boltzmann virtual test

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Lin, J.; Yuan, X.; Li, Y.; Shen, C.

    2016-12-01

    The role of turbulent acceleration and heating in the fractal magnetic reconnection of solar flares is still not clear, especially at the X-point in the diffusion region. At virtual test aspect, it is hardly to quantitatively analyze the vortex generation, turbulence evolution, particle acceleration and heating in the magnetic islands coalesce in fractal manner, formatting into largest plasmid and ejection process in diffusion region through classical magnetohydrodynamics numerical method. With the development of physical particle numerical method (particle in cell method [PIC], Lattice Boltzmann method [LBM]) and high performance computing technology in recently two decades. Kinetic simulation has developed into an effectively manner to exploring the role of magnetic field and electric field turbulence in charged particles acceleration and heating process, since all the physical aspects relating to turbulent reconnection are taken into account. In this paper, the LBM based lattice DxQy grid and extended distribution are added into charged-particles-to-grid-interpolation of PIC based finite difference time domain scheme and Yee Grid, the hybrid PIC-LBM simulation tool is developed to investigating turbulence acceleration on TIANHE-2. The actual solar coronal condition (L≈105Km,B≈50-500G,T≈5×106K, n≈108-109, mi/me≈500-1836) is applied to study the turbulent acceleration and heating in solar flare fractal current sheet. At stage I, magnetic islands shrink due to magnetic tension forces, the process of island shrinking halts when the kinetic energy of the accelerated particles is sufficient to halt the further collapse due to magnetic tension forces, the particle energy gain is naturally a large fraction of the released magnetic energy. At stage II and III, the particles from the energized group come in to the center of the diffusion region and stay longer in the area. In contract, the particles from non energized group only skim the outer part of the diffusion regions. At stage IV, the magnetic reconnection type nanoplasmid (200km) stop expanding and carrying enough energy to eject particles as constant velocity. Last, the role of magnetic field turbulence and electric field turbulence in electron and ion acceleration at the diffusion regions in solar flare fractural current sheet is given.

  4. Uniform-burning matrix burner

    DOEpatents

    Bohn, Mark S.; Anselmo, Mark

    2001-01-01

    Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

  5. Preferential Heating and Acceleration of Heavy Ions in Impulsive Solar Flares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rahul; Gaspari, Massimo; Spitkovsky, Anatoly

    2017-02-01

    We simulate decaying turbulence in a homogeneous pair plasma using a three-dimensional electromagnetic particle-in-cell method. A uniform background magnetic field permeates the plasma such that the magnetic pressure is three times larger than the thermal pressure and the turbulence is generated by counter-propagating shear Alfvén waves. The energy predominately cascades transverse to the background magnetic field, rendering the turbulence anisotropic at smaller scales. We simultaneously move several ion species of varying charge to mass ratios in our simulation and show that the particles of smaller charge to mass ratios are heated and accelerated to non-thermal energies at a faster rate.more » This is in accordance with the enhancement of heavy ions and a non-thermal tail in their energy spectrum observed in the impulsive solar flares. We further show that the heavy ions are energized mostly in the direction perpendicular to the background magnetic field, with a rate consistent with our analytical estimate of the rate of heating due to cyclotron resonance with the Alfvén waves, of which a large fraction is due to obliquely propagating waves.« less

  6. The Solar UV-x-Ray Spectrum from 1.5 to 2000 A

    DTIC Science & Technology

    2010-01-01

    the field lines reconnect to a lower magnetic energy state than the initial state, the difference in energy going into plasma heating, particle ... simulations including physics such as wave propagation and radiative transfer are now being developed to explain the many fine-scale features of Figure...reconnection in the corona. In this model, reconnection heats plasma and accelerates high- energy particles . In the model some of these particles as well as

  7. THE CONTRIBUTION OF CORONAL JETS TO THE SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lionello, R.; Török, T.; Titov, V. S.

    Transient collimated plasma eruptions in the solar corona, commonly known as coronal (or X-ray) jets, are among the most interesting manifestations of solar activity. It has been suggested that these events contribute to the mass and energy content of the corona and solar wind, but the extent of these contributions remains uncertain. We have recently modeled the formation and evolution of coronal jets using a three-dimensional (3D) magnetohydrodynamic (MHD) code with thermodynamics in a large spherical domain that includes the solar wind. Our model is coupled to 3D MHD flux-emergence simulations, i.e., we use boundary conditions provided by such simulationsmore » to drive a time-dependent coronal evolution. The model includes parametric coronal heating, radiative losses, and thermal conduction, which enables us to simulate the dynamics and plasma properties of coronal jets in a more realistic manner than done so far. Here, we employ these simulations to calculate the amount of mass and energy transported by coronal jets into the outer corona and inner heliosphere. Based on observed jet-occurrence rates, we then estimate the total contribution of coronal jets to the mass and energy content of the solar wind to (0.4–3.0)% and (0.3–1.0)%, respectively. Our results are largely consistent with the few previous rough estimates obtained from observations, supporting the conjecture that coronal jets provide only a small amount of mass and energy to the solar wind. We emphasize, however, that more advanced observations and simulations (including parametric studies) are needed to substantiate this conjecture.« less

  8. Shock heating in numerical simulations of kink-unstable coronal loops

    PubMed Central

    Bareford, M. R.; Hood, A. W.

    2015-01-01

    An analysis of the importance of shock heating within coronal magnetic fields has hitherto been a neglected area of study. We present new results obtained from nonlinear magnetohydrodynamic simulations of straight coronal loops. This work shows how the energy released from the magnetic field, following an ideal instability, can be converted into thermal energy, thereby heating the solar corona. Fast dissipation of magnetic energy is necessary for coronal heating and this requirement is compatible with the time scales associated with ideal instabilities. Therefore, we choose an initial loop configuration that is susceptible to the fast-growing kink, an instability that is likely to be created by convectively driven vortices, occurring where the loop field intersects the photosphere (i.e. the loop footpoints). The large-scale deformation of the field caused by the kinking creates the conditions for the formation of strong current sheets and magnetic reconnection, which have previously been considered as sites of heating, under the assumption of an enhanced resistivity. However, our simulations indicate that slow mode shocks are the primary heating mechanism, since, as well as creating current sheets, magnetic reconnection also generates plasma flows that are faster than the slow magnetoacoustic wave speed. PMID:25897092

  9. Heat pipes in solar collectors

    NASA Astrophysics Data System (ADS)

    Bairamov, R.; Toiliev, K.

    The diode property of heat pipes is evaluated for use in solar collectors. Model experiments show that the effect of heat pipes in solar collectors is most pronounced during the nighttime, when solar radiation is zero, due to a significant reduction in the heat loss from the transparent cover surface of the collector compared to that for conventional collectors. For a solar collector with a glass cover area of one square meter during the summer season when the maximum water temperature is 60 C and the discharge is 85 l/sq m/day, the water temperature in the accumulator tank of the solar collector with a heat pipe is 10-11 C higher than in the solar collector lacking a heat pipe. In addition, the design of a solar house with passive systems in which heat pipes serve as the heat eliminating mechanism is discussed

  10. Simulation of temperature effect on microalgae culture in a tubular photo bioreactor for local solar irradiance

    NASA Astrophysics Data System (ADS)

    Shahriar, M.; Deb, Ujjwal Kumar; Rahman, Kazi Afzalur

    2017-06-01

    Microalgae based biofuel is now an emerging source of renewable energy alternative to the fossil fuel. This paper aims to present computational model of microalgae culture taking effect of solar irradiance and corresponding temperature in a photo bioreactor (PBR). As microalgae is a photosynthetic microorganism, so irradiance of sunlight is one of the important limiting factors for the proper growth of microalgae cells as temperature is associated with it. We consider the transient behaviour of temperature inside the photo bioreactor for a microalgae culture. The optimum range of temperature for outdoor cultivation of microalgae is about 16-35°c and out of this range the cell growth inhibits. Many correlations have already been established to investigate the heat transfer phenomena inside a tubular PBR. However, none of them are validated yet numerically by using a user defined function in a simulated model. A horizontal tubular PBR length 20.5m with radius 0.05m has taken account to investigate the temperature effect for the growth of microalgae cell. As the solar irradiance varies at any geographic latitude for a year so an empirical relation is established between local solar irradiance and temperature to simulate the effect. From our simulation, we observed that the growth of microalgae has a significant effect of temperature and the solar irradiance of our locality is suitable for the culture of microalgae.

  11. High-Absorptance Radiative Heat Sink

    NASA Technical Reports Server (NTRS)

    Cafferty, T.

    1983-01-01

    Absorptance of black-painted open-cell aluminum honeycomb improved by cutting honeycomb at angle or bias rather than straight across. This ensures honeycomb cavities escapes. At each reflection radiation attenuated by absorption. Applications include space-background simulators, space radiators, solar absorbers, and passive coolers for terrestrial use.

  12. Solar heating and cooling of buildings

    NASA Technical Reports Server (NTRS)

    Bourke, R. D.; Davis, E. S.

    1975-01-01

    Solar energy has been used for space heating and water heating for many years. A less common application, although technically feasible, is solar cooling. This paper describes the techniques employed in the heating and cooling of buildings, and in water heating. The potential for solar energy to displace conventional energy sources is discussed. Water heating for new apartments appears to have some features which could make it a place to begin the resurgence of solar energy applications in the United States. A project to investigate apartment solar water heating, currently in the pilot plant construction phase, is described.

  13. Solar heating and cooling: Technical data and systems analysis

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1975-01-01

    The solar energy research is reported including climatic data, architectural data, heating and cooling equipment, thermal loads, and economic data. Lists of data sources presented include: selected data sources for solar energy heating and cooling; bibliography of solar energy, and other energy sources; sources for manufacturing and sales, solar energy collectors; and solar energy heating and cooling projects.

  14. Consequences of high effective Prandtl number on solar differential rotation and convective velocity

    NASA Astrophysics Data System (ADS)

    Karak, Bidya Binay; Miesch, Mark; Bekki, Yuto

    2018-04-01

    Observations suggest that the large-scale convective velocities obtained by solar convection simulations might be over-estimated (convective conundrum). One plausible solution to this could be the small-scale dynamo which cannot be fully resolved by global simulations. The small-scale Lorentz force suppresses the convective motions and also the turbulent mixing of entropy between upflows and downflows, leading to a large effective Prandtl number (Pr). We explore this idea in three-dimensional global rotating convection simulations at different thermal conductivity (κ), i.e., at different Pr. In agreement with previous non-rotating simulations, the convective velocity is reduced with the increase of Pr as long as the thermal conductive flux is negligible. A subadiabatic layer is formed near the base of the convection zone due to continuous deposition of low entropy plumes in low-κ simulations. The most interesting result of our low-κ simulations is that the convective motions are accompanied by a change in the convection structure that is increasingly influenced by small-scale plumes. These plumes tend to transport angular momentum radially inward and thus establish an anti-solar differential rotation, in striking contrast to the solar rotation profile. If such low diffusive plumes, driven by the radiative-surface cooling, are present in the Sun, then our results cast doubt on the idea that a high effective Pr may be a viable solution to the solar convective conundrum. Our study also emphasizes that any resolution of the conundrum that relies on the downward plumes must take into account the angular momentum transport and heat transport.

  15. Relating Alfvén Wave Heating Model to Observations of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Yoritomo, J. Y.; Van Ballegooijen, A. A.

    2012-12-01

    We compared images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) with simulations of propagating and dissipating Alfvén waves from a three-dimensional magnetohydrodynamic (MHD) model (van Ballegooijen et. al 2011; Asgari-Targhi & van Ballegooijen 2012). The goal was to search for observational evidence of Alfvén waves in the solar corona and understand their role in coronal heating. We looked at one particular active region on the 5th of May 2012. Certain distinct loops in the SDO/AIA observations were selected and expanded. Movies were created from these selections in an attempt to discover transverse motions that may be Alfvén waves. Using a magnetogram of that day and the corresponding synoptic map, a potential field model was created for the active region. Three-dimensional MHD models for several loops in different locations in the active region were created. Each model specifies the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We find that the heating is intermittent in the loops and reflection occurs at the transition region. For loops at larger and larger height, a point is reached where thermal non-equilibrium occurs. In the center this critical height is much higher than in the periphery of the active region. Lastly, we find that the average heating rate and coronal pressure decrease with increasing height in the corona. This research was supported by an NSF grant for the Smithsonian Astrophysical Observatory (SAO) Solar REU program and a SDO/AIA grant for the Smithsonian Astrophysical Observatory.

  16. Solar thermal upper stage technology demonstrator liquid hydrogen storage and feed system test program

    NASA Astrophysics Data System (ADS)

    Cady, E. C.

    1997-01-01

    The Solar Thermal Upper Stage Technology Demonstrator (STUSTD) Liquid Hydrogen Storage and Feed System (LHSFS) Test Program is described. The test program consists of two principal phases. First, an engineering characterization phase includes tests performed to demonstrate and understand the expected tank performance. This includes fill and drain; baseline heat leak; active Thermodynamic Vent System (TVS); and flow tests. After the LHSFS performance is understood and performance characteristics are determined, a 30 day mission simulation test will be conducted. This test will simulate a 30 day transfer mission from low earth orbit (LEO) to geosynchronous equatorial orbit (GEO). Mission performance predictions, based on the results of the engineering characterization tests, will be used to correlate the results of the 30 day mission simulation.

  17. Climate Sensitivity to Realistic Solar Heating of Snow and Ice

    NASA Astrophysics Data System (ADS)

    Flanner, M.; Zender, C. S.

    2004-12-01

    Snow and ice-covered surfaces are highly reflective and play an integral role in the planetary radiation budget. However, GCMs typically prescribe snow reflection and absorption based on minimal knowledge of snow physical characteristics. We performed climate sensitivity simulations with the NCAR CCSM including a new physically-based multi-layer snow radiative transfer model. The model predicts the effects of vertically resolved heating, absorbing aerosol, and snowpack transparency on snowpack evolution and climate. These processes significantly reduce the model's near-infrared albedo bias over deep snowpacks. While the current CCSM implementation prescribes all solar radiative absorption to occur in the top 2 cm of snow, we estimate that about 65% occurs beneath this level. Accounting for the vertical distribution of snowpack heating and more realistic reflectance significantly alters snowpack depth, surface albedo, and surface air temperature over Northern Hemisphere regions. Implications for the strength of the ice-albedo feedback will be discussed.

  18. Opto-thermal analysis of a lightweighted mirror for solar telescope.

    PubMed

    Banyal, Ravinder K; Ravindra, B; Chatterjee, S

    2013-03-25

    In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in ground and space applications.

  19. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  20. Dynamic thermal signature prediction for real-time scene generation

    NASA Astrophysics Data System (ADS)

    Christie, Chad L.; Gouthas, Efthimios (Themie); Williams, Owen M.; Swierkowski, Leszek

    2013-05-01

    At DSTO, a real-time scene generation framework, VIRSuite, has been developed in recent years, within which trials data are predominantly used for modelling the radiometric properties of the simulated objects. Since in many cases the data are insufficient, a physics-based simulator capable of predicting the infrared signatures of objects and their backgrounds has been developed as a new VIRSuite module. It includes transient heat conduction within the materials, and boundary conditions that take into account the heat fluxes due to solar radiation, wind convection and radiative transfer. In this paper, an overview is presented, covering both the steady-state and transient performance.

  1. 24 CFR 200.950 - Building product standards and certification program for solar water heating system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be designed, manufactured, and tested in compliance with Solar Rating and Certification Corporation (SRCC...

  2. 24 CFR 200.950 - Building product standards and certification program for solar water heating system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be designed, manufactured, and tested in compliance with Solar Rating and Certification Corporation (SRCC...

  3. 24 CFR 200.950 - Building product standards and certification program for solar water heating system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be designed, manufactured, and tested in compliance with Solar Rating and Certification Corporation (SRCC...

  4. Energy performance of semi-transparent PV modules for applications in buildings

    NASA Astrophysics Data System (ADS)

    Fung, Yu Yan

    Owing to the increasing awareness on energy conservation and environmental protection, building-integrated photovoltaic (BIPV) has been developed rapidly in the past decade. A number of research studies have been conducted on the energy performance of BIPV systems. However, most of the previous studies focused on the systems that incorporated with opaque type PV modules, little attention has been devoted to semi-transparent type PV modules, which have been commonly integrated in modern architectures. This thesis aims at evaluating the energy performance of the semi-transparent BIPV modules, including heat gains to the indoor environment, power generation from the PV modules and daylight utilization. Solar radiation intensity on PV module's surfaces is an essential parameter for assessing energy performance of the PV modules. Different slope solar radiation models are analyzed and compared. The model that best suits Hong Kong situations is selected for the further development of the energy performance of the BIPV modules. The optimum orientation and tilted angle are determined in the analysis. In addition to the solar radiation models, a detailed investigation on the heat gain through the semi-transparent BIPV modules is carried out in this study. A one-dimensional transient heat transfer model, the SPVHG model, for evaluating the thermal performance of the semi-transparent BIPV modules is developed. The SPVHG model considers in detail the energy that is transmitted, absorbed and reflected in each element of the BIPV modules such as solar cells and glass layers. A computer program of the model is written accordingly. By applying the SPVHG model, the heat gain through the semi-transparent BIPV module of any thickness can be determined for any solar irradiance level. The annual performance can also be assessed by inputting annual weather data to the model. In order to verify the SPVHG model, laboratory tests have been carried out on semi-transparent BIPV modules. A well-insulated calorimeter box and an adjustable steady-state type solar simulator which can provide up to 1600 W/m2 have been used in the tests. Energy that transmitted through the semi-transparent BIPV modules and entered the calorimeter box was evaluated. It was found that the experimental results and the simulated results support each other. The SPVHG model is validated and can be used for further studies. Other than heat transfer, power production and the daylight utilization are also the vital parts in the energy performance assessment of the semi-transparent BIPV module for applications in building facades. Power generation models of both opaque and semi-transparent BIPV modules are investigated in this study. In order to test the validity of the power generation model, measurements on a BIPV system of an existing building are carried out. The measurement results reveal a good validity of the power generation model. Only a minor modification to the model is required. The daylight utilization is evaluated by using an indoor illuminance model. The model estimates the mean internal illuminance on the working plane of a room when there is both sunlight and skylight. Consequently, the power saving due to the daylight utilization can be determined. By using the SPVHG model together with the power generation model and the indoor illuminance model, the energy performance, in terms of electricity benefit, of building facades that incorporated with semi-transparent BIPV modules is evaluated. Different scenarios are studied by changing various parameters such as the window to wall ratios, thickness and efficiency of the solar cells. The results show that the solar cells within the semi-transparent BIPV modules significantly reduce the solar heat gain and thus reduce the power consumption of air-conditioning systems. Taking into account the impacts of PV electricity generation and daylight utilization, the optimum solar cell area ratio in the PV modules varies from 0.7 to 0.9 for different window-to-wall ratios of the building facade. The largest net electricity benefit of the BIPV facade under the simulation conditions is around 120 kWh/m 2. The SPVHG model developed in this study is a precise model for calculating the amount of heat gains through the semi-transparent BIPV modules. By considering also the power generation and daylight utilization, the electricity benefit of different BIPV facade configurations can be simulated. This information should help engineers predict the cooling load due to the BIPV facade and thus review their designs for energy efficiency optimization. On the whole, the results of this study provide valuable reference to local engineers, designers and professionals for efficient BIPV facade applications.

  5. The Polarization Signature of Photospheric Magnetic Fields in 3D MHD Simulations and Observations at Disk Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, C.; Fabbian, D.; Rezaei, R.

    2017-06-10

    Before using three-dimensional (3D) magnetohydrodynamical (MHD) simulations of the solar photosphere in the determination of elemental abundances, one has to ensure that the correct amount of magnetic flux is present in the simulations. The presence of magnetic flux modifies the thermal structure of the solar photosphere, which affects abundance determinations and the solar spectral irradiance. The amount of magnetic flux in the solar photosphere also constrains any possible heating in the outer solar atmosphere through magnetic reconnection. We compare the polarization signals in disk-center observations of the solar photosphere in quiet-Sun regions with those in Stokes spectra computed on themore » basis of 3D MHD simulations having average magnetic flux densities of about 20, 56, 112, and 224 G. This approach allows us to find the simulation run that best matches the observations. The observations were taken with the Hinode SpectroPolarimeter (SP), the Tenerife Infrared Polarimeter (TIP), the Polarimetric Littrow Spectrograph (POLIS), and the GREGOR Fabry–Pèrot Interferometer (GFPI), respectively. We determine characteristic quantities of full Stokes profiles in a few photospheric spectral lines in the visible (630 nm) and near-infrared (1083 and 1565 nm). We find that the appearance of abnormal granulation in intensity maps of degraded simulations can be traced back to an initially regular granulation pattern with numerous bright points in the intergranular lanes before the spatial degradation. The linear polarization signals in the simulations are almost exclusively related to canopies of strong magnetic flux concentrations and not to transient events of magnetic flux emergence. We find that the average vertical magnetic flux density in the simulation should be less than 50 G to reproduce the observed polarization signals in the quiet-Sun internetwork. A value of about 35 G gives the best match across the SP, TIP, POLIS, and GFPI observations.« less

  6. DISSIPATION OF PARALLEL AND OBLIQUE ALFVÉN-CYCLOTRON WAVES—IMPLICATIONS FOR HEATING OF ALPHA PARTICLES IN THE SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maneva, Y. G.; Poedts, Stefaan; Viñas, Adolfo F.

    2015-11-20

    We perform 2.5D hybrid simulations with massless fluid electrons and kinetic particle-in-cell ions to study the temporal evolution of ion temperatures, temperature anisotropies, and velocity distribution functions in relation to the dissipation and turbulent evolution of a broadband spectrum of parallel and obliquely propagating Alfvén-cyclotron waves. The purpose of this paper is to study the relative role of parallel versus oblique Alfvén-cyclotron waves in the observed heating and acceleration of alpha particles in the fast solar wind. We consider collisionless homogeneous multi-species plasma, consisting of isothermal electrons, isotropic protons, and a minor component of drifting α particles in a finite-βmore » fast stream near the Earth. The kinetic ions are modeled by initially isotropic Maxwellian velocity distribution functions, which develop nonthermal features and temperature anisotropies when a broadband spectrum of low-frequency nonresonant, ω ≤ 0.34 Ω{sub p}, Alfvén-cyclotron waves is imposed at the beginning of the simulations. The initial plasma parameter values, such as ion density, temperatures, and relative drift speeds, are supplied by fast solar wind observations made by the Wind spacecraft at 1 AU. The imposed broadband wave spectra are left-hand polarized and resemble Wind measurements of Alfvénic turbulence in the solar wind. The imposed magnetic field fluctuations for all cases are within the inertial range of the solar wind turbulence and have a Kraichnan-type spectral slope α = −3/2. We vary the propagation angle from θ = 0° to θ = 30° and θ = 60°, and find that the heating of alpha particles is most efficient for the highly oblique waves propagating at 60°, whereas the protons exhibit perpendicular cooling at all propagation angles.« less

  7. Hard X-ray Detectability of Small-Scale Coronal Heating Events

    NASA Astrophysics Data System (ADS)

    Marsh, A.; Glesener, L.; Klimchuk, J. A.; Bradshaw, S. J.; Smith, D. M.; Hannah, I. G.

    2016-12-01

    The nanoflare heating theory predicts the ubiquitous presence of hot ( >5 MK) plasma in the solar corona, but evidence for this high-temperature component has been scarce. Current hard x-ray instruments such as RHESSI lack the sensitivity to see the trace amounts of this plasma that are predicted by theoretical models. New hard X-ray instruments that use focusing optics, such as FOXSI (the Focusing Optics X-ray Solar Imager) and NuSTAR (the Nuclear Spectroscopic Telescope Array) can extend the visible parameter space of nanoflare "storms" that create hot plasma. We compare active-region data from FOXSI and NuSTAR with a series of EBTEL hydrodynamic simulations, and constrain nanoflare properties to give good agreement with observations.

  8. Hard X-ray Detectability of Small-Scale Coronal Heating Events

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Glesener, Lindsay; Klimchuk, James A.; Bradshaw, Stephen; Smith, David; Hannah, Iain

    2016-05-01

    The nanoflare heating theory predicts the ubiquitous presence of hot (~>5 MK) plasma in the solar corona, but evidence for this high-temperature component has been scarce. Current hard x-ray instruments such as RHESSI lack the sensitivity to see the trace amounts of this plasma that are predicted by theoretical models. New hard X-ray instruments that use focusing optics, such as FOXSI (the Focusing Optics X-ray Solar Imager) and NuSTAR (the Nuclear Spectroscopic Telescope Array) can extend the visible parameter space of nanoflare “storms” that create hot plasma. We compare active-region data from FOXSI and NuSTAR with a series of EBTEL hydrodynamic simulations, and constrain nanoflare properties to give good agreement with observations.

  9. Inactivation of fecal bacteria in drinking water by solar heating.

    PubMed

    Joyce, T M; McGuigan, K G; Elmore-Meegan, M; Conroy, R M

    1996-02-01

    We report simulations of the thermal effect of strong equatorial sunshine on water samples contaminated with high populations of fecal coliforms. Water samples, heavily contaminated with a wild-type strain of Escherichia coli (starting population = 20 x 10(5) CFU/ml), are heated to those temperatures recorded for 2-liter samples stored in transparent plastic bottles and exposed to full Kenyan sunshine (maximum water temperature, 55 degrees C). The samples are completely disinfected within 7 h, and no viable E. coli organisms are detected at either the end of the experiment or a further 12 h later, showing that no bacterial recovery has occurred. The feasibility of employing solar disinfection for highly turbid, fecally contaminated water is discussed.

  10. Simulations of the general circulation of the Martian atmosphere. II - Seasonal pressure variations

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Haberle, Robert M.; Murphy, James R.; Schaeffer, James; Lee, Hilda

    1993-01-01

    The CO2 seasonal cycle of the Martian atmosphere and surface is simulated with a hybrid energy balance model that incorporates dynamical and radiation information from a large number of general circulation model runs. This information includes: heating due to atmospheric heat advection, the seasonally varying ratio of the surface pressure at the two Viking landing sites to the globally averaged pressure, the rate of CO2 condensation in the atmosphere, and solar heating of the atmosphere and surface. The predictions of the energy balance model are compared with the seasonal pressure variations measured at the two Viking landing sites and the springtime retreat of the seasonal polar cap boundaries. The following quantities are found to have a strong influence on the seasonal pressures at the Viking landing sites: albedo of the seasonal CO2 ice deposits, emissivity of this deposit, atmospheric heat advection, and the pressure ratio.

  11. Orbital foamed material extruder

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S. (Inventor)

    2009-01-01

    This invention is a process for producing foamed material in space comprising the steps of: rotating the material to simulate the force of gravity; heating the rotating material until it is molten; extruding the rotating, molten material; injecting gas into the extruded, rotating, molten material to produce molten foamed material; allowing the molten foamed material to cool to below melting temperature to produce the foamed material. The surface of the extruded foam may be heated to above melting temperature and allowed to cool to below melting temperature. The extruded foam may also be cut to predetermined length. The starting material may be metal or glass. Heating may be accomplished by electrical heating elements or by solar heating.

  12. Heat pumps could inject life into solar energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, P.

    1977-07-14

    Prospects for the use of solar energy in Great Britain are discussed. The only economically feasible solar system is considered to be a solar assisted heat pump. One of the factors included in an economic assessment of the solar system include the degree to which the house is insulated. Government incentives were suggested to increase solar consumerism. Detailed calculations showed that solar collectors on small British houses were currently uneconomical. The most promising market for solar collectors is outside the domestic market. The lack of standardization of solar collectors also is a hindrance to public acceptance of solar. Heat pumpsmore » with a coefficient of performance of 3:1 and giving a heat output of 3 kW for every 1 kW of electricity are considered economically feasible. Wind powered heat pumps are considered. Estimates of future heat pump use are as high as 30% of the domestic heating market. The US is considered technically more advanced than Britain for many types of solar applications. Technology of solar cells in the United States as opposed to Britain is also discussed.« less

  13. Experimental investigations of the performance of a solar air collector with latent heat thermal storage integrated with the solar absorber

    NASA Astrophysics Data System (ADS)

    Charvat, P.; Pech, O.; Hejcik, J.

    2013-04-01

    The paper deals with experimental investigations of the performance of a solar air collector with latent heat thermal storage integrated with the solarabsorber. The main purpose of heat storage in solar thermal systems is to store heat when the supply of solar heat exceeds demand and release it when otherwise. A number of heat storage materials can be used for this purpose; the phase change materials among them. Short-term latent heat thermal storage integrated with the solar absorber can stabilize the air temperature at the outlet of the collector on cloudy days when solar radiation intensity incident on a solar collector fluctuates significantly. Two experimental front-and-back pass solar air collectors of the same dimensions have been built for the experimental investigations. One collector had a "conventional" solar absorber made of a metal sheet while the solar absorber of the other collector consisted of containers filled with organic phase change material. The experimental collectors were positioned side by side during the investigations to ensure the same operating conditions (incident solar radiation, outdoor temperature).

  14. Modelisation, conception et simulation des performances d'un collecteur solaire aeraulique a tubes sous vide en milieu nordique

    NASA Astrophysics Data System (ADS)

    Paradis, Pierre-Luc

    The global energy consumption is still increasing year after year even if different initiatives are set up to decrease fossil fuel dependency. In Canada 80% of the energy is used for space heating and domestic hot water heating in residential sector. This heat could be provided by solar thermal technologies despite few difficulties originating from the cold climate. The aim of this project is to design a solar evacuated tube thermal collector using air as the working fluid. Firstly, needs and specifications of the product are established in a clear way. Then, three concepts of collector are presented. The first one relies on the standard evacuated tube. The second one uses a new technology of tubes; both sides are open. The third one uses heat pipe to extract the heat from the tubes. Based on the needs and specification as criteria, the concept involving tubes with both sides open has been selected as the best idea. In order to simulate the performances of the collector, a model of the heat exchanges in an evacuated tube was developed in 4 steps. The first step is a model in steady state intended to calculate the stagnation temperature of the tube for a fixed solar radiation, outside temperature and wind speed. As a second step, the model is generalised to transient condition in order to validate it with an experimental setup. A root mean square error of 2% is then calculated. The two remainder steps are intended to calculate the temperature of airflow leaving the tube. In the same way, a first model in steady state is developed and then generalised to the transient mode. Then, the validation with an experimental setup gave a difference of 0.2% for the root mean square error. Finally, a preindustrial prototype intended to work in open loop for preheating of fresh air is presented. During the project, explosion of the both sides open evacuated tube in overheating condition blocked the construction of a real prototype for the test. Different path for further work are also identified. One of these is in relation with CFD simulation of the uniformity of the airflow inside of the collector. Another one is the analysis of the design with a design of experiment plan.

  15. Accelerated Lifetime Testing of Organic-Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene.

    PubMed

    Shi, Lei; Young, Trevor L; Kim, Jincheol; Sheng, Yun; Wang, Lei; Chen, Yifeng; Feng, Zhiqiang; Keevers, Mark J; Hao, Xiaojing; Verlinden, Pierre J; Green, Martin A; Ho-Baillie, Anita W Y

    2017-08-02

    Metal halide perovskite solar cells (PSCs) have undergone rapid progress. However, unstable performance caused by sensitivity to environmental moisture and high temperature is a major impediment to commercialization of PSCs. In the present work, a low-temperature, glass-glass encapsulation technique using high performance polyisobutylene (PIB) as the moisture barrier is investigated on planar glass/FTO/TiO 2 /FAPbI 3 /PTAA/gold perovskite solar cells. PIB was applied as either an edge seal or blanket layer. Electrical connections to the encapsulated PSCs were provided by either the FTO or Au layers. Results of a "calcium test" demonstrated that a PIB edge-seal effectively prevents moisture ingress. A shelf life test was performed and the PIB-sealed PSC was stable for at least 200 days. Damp heat and thermal cycling tests, in compliance with IEC61215:2016, were used to evaluate different encapsulation methods. Current-voltage measurements were performed regularly under simulated AM1.5G sunlight to monitor changes in PCE. The best results we have achieved to date maintained the initial efficiency after 540 h of damp heat testing and 200 thermal cycles. To the best of the authors' knowledge, these are among the best damp heat and thermal cycle test results for perovskite solar cells published to date. Given the modest performance of the cells (8% averaged from forward and reverse scans) especially with the more challenging FAPbI 3 perovskite material tested in this work, it is envisaged that better stability results can be further achieved when higher performance perovskite solar cells are encapsulated using the PIB packaging techniques developed in this work. We propose that heat rather than moisture was the main cause of our PSC degradation. Furthermore, we propose that preventing the escape of volatile decomposition products from the perovskite solar cell materials is the key for stability. PIB encapsulation is a very promising packaging solution for perovskite solar cells, given its demonstrated effectiveness, ease of application, low application temperature, and low cost.

  16. Effect of the Solar UV/EUV Heating on the Intensity and Spatial Distribution of Jupiter's Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Kita, Hajime; Misawa, H.; Tsuchiya, F.; Tao, C.; Morioka, A.

    2012-10-01

    Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons, and it is the most effective probe for remote sensing of Jupiter's radiation belt from the Earth. Recent observations reveal short term variations of JSR with the time scale of days to weeks. Brice and McDonough (1973) proposed that the solar UV/EUV heating for Jupiter's upper atmosphere causes enhancement of total flux density. If such a process occurs at Jupiter, it is also expected that diurnal wind system produces dawn-dusk asymmetry of the JSR brightness distribution. Preceding studies confirmed that the short term variations in total flux density correspond to the solar UV/EUV. However, the effect of solar UV/EUV heating on the brightness distribution has not been confirmed. Hence, the purpose of this study is to confirm the solar UV/EUV heating effect on total flux density and brightness distribution. We made radio imaging analysis using the National Radio Astronomy Observatory (NRAO) archived data of the Very Large Array (VLA) obtained in 2000, and following results were shown. 1, Total flux density varied corresponding to the solar UV/EUV. 2, Dawn side emission was brighter than dusk side emission almost every day. 3, Variations of the dawn-dusk asymmetry did not correspond to the solar UV/EUV. In order to explain the second result, we estimate the diurnal wind velocity from the observed dawn-dusk ratio by using the model brightness distribution of JSR. Estimated neutral wind velocity is 46+/-11 m/s, which reasonably corresponds to the numerical simulation of Jupiter's upper atmosphere. In order to explain the third result, we examined the effect of the global convection electric field driven by tailward outflow of plasma in Jupiter's magnetosphere. As the result, it is suggested that typical fluctuation of the convection electric field strength was enough to cause the observed variations of the dawn-dusk asymmetry.

  17. Assessment of solar-assisted gas-fired heat pump systems

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.

  18. Consistent multiphysics simulation of a central tower CSP plant as applied to ISTORE

    NASA Astrophysics Data System (ADS)

    Votyakov, Evgeny V.; Papanicolas, Costas N.

    2017-06-01

    We present a unified consistent multiphysics approach to model a central tower CSP plant. The framework for the model includes Monte Carlo ray tracing (RT) and computational fluid dynamics (CFD) components utilizing the OpenFOAM C++ software library. The RT part works effectively with complex surfaces of engineering design given in CAD formats. The CFD simulation, which is based on 3D Navier-Stokes equations, takes into account all possible heat transfer mechanisms: radiation, conduction, and convection. Utilizing this package, the solar field of the experimental Platform for Research, Observation, and TEchnological Applications in Solar Energy (PROTEAS) and the Integrated STOrage and Receiver (ISTORE), developed at the Cyprus Institute, are being examined.

  19. Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood

    NASA Astrophysics Data System (ADS)

    Taleghani, Mohammad; Sailor, David; Ban-Weiss, George A.

    2016-02-01

    The urban heat island impacts the thermal comfort of pedestrians in cities. In this paper, the effects of four heat mitigation strategies on micrometeorology and the thermal comfort of pedestrians were simulated for a neighborhood in eastern Los Angeles County. The strategies investigated include solar reflective ‘cool roofs’, vegetative ‘green roofs’, solar reflective ‘cool pavements’, and increased street-level trees. A series of micrometeorological simulations for an extreme heat day were carried out assuming widespread adoption of each mitigation strategy. Comparing each simulation to the control simulation assuming current land cover for the neighborhood showed that additional street-trees and cool pavements reduced 1.5 m air temperature, while cool and green roofs mostly provided cooling at heights above pedestrian level. However, cool pavements increased reflected sunlight from the ground to pedestrians at a set of unshaded receptor locations. This reflected radiation intensified the mean radiant temperature and consequently increased physiological equivalent temperature (PET) by 2.2 °C during the day, reducing the thermal comfort of pedestrians. At another set of receptor locations that were on average 5 m from roadways and underneath preexisting tree cover, cool pavements caused significant reductions in surface air temperatures and small changes in mean radiant temperature during the day, leading to decreases in PET of 1.1 °C, and consequent improvements in thermal comfort. For improving thermal comfort of pedestrians during the afternoon in unshaded locations, adding street trees was found to be the most effective strategy. However, afternoon thermal comfort improvements in already shaded locations adjacent to streets were most significant for cool pavements. Green and cool roofs showed the lowest impact on the thermal comfort of pedestrians since they modify the energy balance at roof level, above the height of pedestrians.

  20. Link between von-Karman energy decay and reconnection heating in turbulent plasmas

    NASA Astrophysics Data System (ADS)

    Shay, M. A.; Parashar, T.; Haggerty, C. C.; Matthaeus, W. H.; Phan, T.; Drake, J. F.; Cassak, P.; Wu, P.

    2016-12-01

    Coherent structures such as current sheets are prevalent in many turbulent plasmas and have been shown to be correlated with dissipation and heating in observations of solar wind turbulence and dissipation in kinetic particle-in-cell (PIC) simulations. However, the role that they play in the dissipation of turbulent energy and ultimately the heating of the plasma are still not well understood. A recent study [1] using kinetic PIC simulations of turbulence found that the total heating in the plasma is consistent with a von-Karman scaling of the cascade rate, and that the proton to electron heating ratio was proportional to the total heating rate and linked to the ratio of gyroperiod to nonlinear turnover time at the ion kinetic scales. We review recent findings regarding the rate of heating in outflow jets during laminar reconnection and apply it to kinetic PIC simulations of turbulence, employing some reasonable assumptions to connect the two theories. The goal is to determine if reconnection is a primary heating mechanism or plays less of a role. Conversely, we also apply the new understanding of the von-Karman cascade to isolated reconnection events to determine if a cascade-like process is controlling the heating rate. [1] W. Matthaeus et al., ApJ Letters, 827, L7, 2016, doi:10.3847/2041-8205/827/1/L7

  1. Silicon material task. Part 3: Low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Roques, R. A.; Coldwell, D. M.

    1977-01-01

    The feasibility of a process for carbon reduction of low impurity silica in a plasma heat source was investigated to produce low-cost solar-grade silicon. Theoretical aspects of the reaction chemistry were studied with the aid of a computer program using iterative free energy minimization. These calculations indicate a threshold temperature exists at 2400 K below which no silicon is formed. The computer simulation technique of molecular dynamics was used to study the quenching of product species.

  2. An Observational and Modeling Study of Auroral Upwelling in the Thermosphere

    DTIC Science & Technology

    2016-04-28

    0000UT) on each of the nights of 15 and 17 February 2015. The Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) provided additional line-of...photoionisation based on solar fluxes, Figure 5 Conventional Joule heating in the region 110-150 km (Thayer et al., 1995) Distribution A: Approved...i.e. 2100 UT). The simulations are for January solar minimum, using f10.7 value of 80 and quiet steady state conditions. Table 1: Four CMAT2

  3. Nonlinear Evolution of Observed Fast Streams in the Solar Wind - Micro-instabilities and Energy Exchange between Protons and Alpha Particles

    NASA Astrophysics Data System (ADS)

    Maneva, Y. G.; Poedts, S.

    2017-12-01

    Non-thermal kinetic components such as deformed velocity distributions, temperature anisotropies and relative drifts between the multiple ion populations are frequently observed features in the collisionless fast solar wind streams near the Earth whose origin is still to be better understood. Some of the traditional models consider the formation of the temperature anisotropies through the effect of the solar wind expansion, while others assume in situ heating and particle acceleration by local fluctuations, such as plasma waves, or by spacial structures, such as advected or locally generated current sheets. In this study we consider the evolution of initial ion temperature anisotropies and relative drifts in the presence of plasma oscillations, such as ion-cyclotron and kinetic Alfven waves. We perform 2.5D hybrid simulations to study the evolution of observed fast solar wind plasma parcels, including the development of the plasma micro-instabilities, the field-particle correlations and the energy transfer between the multiple ion species. We consider two distinct cases of highly anisotropic and quickly drifting protons which excite ion-cyclotron waves and of moderately anisotropic slower protons, which co-exist with kinetic Alfven waves. The alpha particles for both cases are slightly anisotropic in the beginning and remain anisotropic throughout the simulation time. Both the imposed magnetic fluctuations and the initial differential streaming decrease in time for both cases, while the minor ions are getting heated. Finally we study the effects of the solar wind expansion and discuss its implications for the nonlinear evolution of the system.

  4. Simulation of an active cooling system for photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Abdelhakim, Lotfi

    2016-06-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  5. Global simulation of the Czochralski silicon crystal growth in ANSYS FLUENT

    NASA Astrophysics Data System (ADS)

    Kirpo, Maksims

    2013-05-01

    Silicon crystals for high efficiency solar cells are produced mainly by the Czochralski (CZ) crystal growth method. Computer simulations of the CZ process established themselves as a basic tool for optimization of the growth process which allows to reduce production costs keeping high quality of the crystalline material. The author shows the application of the general Computational Fluid Dynamics (CFD) code ANSYS FLUENT to solution of the static two-dimensional (2D) axisymmetric global model of the small industrial furnace for growing of silicon crystals with a diameter of 100 mm. The presented numerical model is self-sufficient and incorporates the most important physical phenomena of the CZ growth process including latent heat generation during crystallization, crystal-melt interface deflection, turbulent heat and mass transport, oxygen transport, etc. The demonstrated approach allows to find the heater power for the specified pulling rate of the crystal but the obtained power values are smaller than those found in the literature for the studied furnace. However, the described approach is successfully verified with the respect to the heater power by its application for the numerical simulations of the real CZ pullers by "Bosch Solar Energy AG".

  6. Seasonal Solar Thermal Absorption Energy Storage Development.

    PubMed

    Daguenet-Frick, Xavier; Gantenbein, Paul; Rommel, Mathias; Fumey, Benjamin; Weber, Robert; Gooneseker, Kanishka; Williamson, Tommy

    2015-01-01

    This article describes a thermochemical seasonal storage with emphasis on the development of a reaction zone for an absorption/desorption unit. The heat and mass exchanges are modelled and the design of a suitable reaction zone is explained. A tube bundle concept is retained for the heat and mass exchangers and the units are manufactured and commissioned. Furthermore, experimental results of both absorption and desorption processes are presented and the exchanged power is compared to the results of the simulations.

  7. Solar Energy and You.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  8. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models.

    PubMed

    Holland, Marika M; Landrum, Laura

    2015-07-13

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models

    PubMed Central

    Holland, Marika M.; Landrum, Laura

    2015-01-01

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. PMID:26032318

  10. Performance of evacuated tubular solar collectors in a residential heating and cooling system. Final report, 1 October 1978-30 September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duff, W.S.; Loef, G.O.G.

    1981-03-01

    Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation aremore » provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.« less

  11. Three-dimensional kinetic simulations of whistler turbulence in solar wind on parallel supercomputers

    NASA Astrophysics Data System (ADS)

    Chang, Ouliang

    The objective of this dissertation is to study the physics of whistler turbulence evolution and its role in energy transport and dissipation in the solar wind plasmas through computational and theoretical investigations. This dissertation presents the first fully three-dimensional (3D) particle-in-cell (PIC) simulations of whistler turbulence forward cascade in a homogeneous, collisionless plasma with a uniform background magnetic field B o, and the first 3D PIC simulation of whistler turbulence with both forward and inverse cascades. Such computationally demanding research is made possible through the use of massively parallel, high performance electromagnetic PIC simulations on state-of-the-art supercomputers. Simulations are carried out to study characteristic properties of whistler turbulence under variable solar wind fluctuation amplitude (epsilon e) and electron beta (betae), relative contributions to energy dissipation and electron heating in whistler turbulence from the quasilinear scenario and the intermittency scenario, and whistler turbulence preferential cascading direction and wavevector anisotropy. The 3D simulations of whistler turbulence exhibit a forward cascade of fluctuations into broadband, anisotropic, turbulent spectrum at shorter wavelengths with wavevectors preferentially quasi-perpendicular to B o. The overall electron heating yields T ∥ > T⊥ for all epsilone and betae values, indicating the primary linear wave-particle interaction is Landau damping. But linear wave-particle interactions play a minor role in shaping the wavevector spectrum, whereas nonlinear wave-wave interactions are overall stronger and faster processes, and ultimately determine the wavevector anisotropy. Simulated magnetic energy spectra as function of wavenumber show a spectral break to steeper slopes, which scales as k⊥lambda e ≃ 1 independent of betae values, where lambdae is electron inertial length, qualitatively similar to solar wind observations. Specific spectral indices from simulated wavevector energy spectra do not match the frequency spectral indices from observations due to the inapplicability of Taylor's hypothesis. In contrast, the direct comparison of simulated frequency energy spectra and solar wind observations shows a closer similarity. Electron density fluctuations power spectra also exhibit a close similarity to solar wind observations and MHD predications, both qualitatively and quantitatively. Linear damping represents an intermediate fraction of the total dissipation of whistler turbulence over a wide range of betae and epsilone. The relative importance of linear damping by comparison to nonlinear dissipation increases with increasing beta e but decreases with increasing epsilone. Correlation coefficient calculations imply that the nonlinear dissipation processes in our simulation are primarily associated with dissipation in regions of intermittent current sheet structures. The simulation results suggest that whistler fluctuations could be the substantial constituent of solar wind turbulence at higher frequencies and short wavelengths, and support the magnetosonic-whistler interpretation of the quasilinear scenario. An even larger scale 3D whistler turbulence simulation exhibits both a forward cascade to shorter wavelengths with wavevectors preferentially k⊥ > k∥, and an inverse cascade to longer wavelengths with wavevectors k ≳ k⊥. The inverse cascade process is primarily driven by the nonlinear wave-wave interaction. It is shown that the energy inverse cascade rate is similar to the energy forward cascade rate at early times although the overall energy in the two cascades is very different. The presence of inverse cascade process does not affect qualitative conclusions established from the whistler turbulence forward cascade simulations.

  12. Fundamentals of Solar Heating. Correspondence Course.

    ERIC Educational Resources Information Center

    Sheet Metal and Air Conditioning Contractors National Association, Vienna, VA.

    This course is designed for the use of employees of the air conditioning industry, and offers supervised correspondence instruction about solar technology. The following aspects of applied solar technology are covered: solar heating and cooling, solar radiation, solar collectors, heat storage control devices and specialty items, sizing solar…

  13. Lunar Swirls: Plasma Magnetic Field Interaction and Dust Transport

    NASA Astrophysics Data System (ADS)

    Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell

    2013-10-01

    In close collaboration between the Center for Astrophysics, Space Physics and Engineering Research (CASPER) at Baylor University, Texas, and the Institute of Space Systems (IRS) at the University of Stuttgart, Germany, two plasma facilities have been established using the Inductively heated Plasma Generator 6 (IPG6), based on proven IRS designs. A wide range of applications is currently under consideration for both test and research facilities. Basic investigations in the area of plasma radiation and catalysis, simulation of certain parameters of fusion divertors and space applications are planned. In this paper, the facility at Baylor University (IPG6-B) will be used for simulation of mini-magnetospheres on the Moon. The interaction of the solar wind with magnetic fields leads to the formation of electric fields, which can influence the incoming solar wind ion flux and affect dust transport processes on the lunar surface. Both effects may be partially responsible for the occurrence of lunar swirls. Interactions of the solar wind with such mini-magnetospheres will be simulated in the IPG6-B by observing the interaction between a plasma jet and a permanent magnet. The resulting data should lead to better models of dust transport processes and solar wind deflection on the moon.

  14. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  15. The Effect of Cumulus Cloud Field Anisotropy on Domain-Averaged Solar Fluxes and Atmospheric Heating Rates

    NASA Technical Reports Server (NTRS)

    Hinkelman, Laura M.; Evans, K. Franklin; Clothiaux, Eugene E.; Ackerman, Thomas P.; Stackhouse, Paul W., Jr.

    2006-01-01

    Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam.

  16. COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Wei; Petrosian, Vahe; Mariska, John T.

    2009-09-10

    Acceleration and transport of high-energy particles and fluid dynamics of atmospheric plasma are interrelated aspects of solar flares, but for convenience and simplicity they were artificially separated in the past. We present here self-consistently combined Fokker-Planck modeling of particles and hydrodynamic simulation of flare plasma. Energetic electrons are modeled with the Stanford unified code of acceleration, transport, and radiation, while plasma is modeled with the Naval Research Laboratory flux tube code. We calculated the collisional heating rate directly from the particle transport code, which is more accurate than those in previous studies based on approximate analytical solutions. We repeated themore » simulation of Mariska et al. with an injection of power law, downward-beamed electrons using the new heating rate. For this case, a {approx}10% difference was found from their old result. We also used a more realistic spectrum of injected electrons provided by the stochastic acceleration model, which has a smooth transition from a quasi-thermal background at low energies to a nonthermal tail at high energies. The inclusion of low-energy electrons results in relatively more heating in the corona (versus chromosphere) and thus a larger downward heat conduction flux. The interplay of electron heating, conduction, and radiative loss leads to stronger chromospheric evaporation than obtained in previous studies, which had a deficit in low-energy electrons due to an arbitrarily assumed low-energy cutoff. The energy and spatial distributions of energetic electrons and bremsstrahlung photons bear signatures of the changing density distribution caused by chromospheric evaporation. In particular, the density jump at the evaporation front gives rise to enhanced emission, which, in principle, can be imaged by X-ray telescopes. This model can be applied to investigate a variety of high-energy processes in solar, space, and astrophysical plasmas.« less

  17. 40 CFR 86.127-12 - Test procedures; overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applicable for determining emission results for vehicle exhaust emission systems designed to comply with the... dry air (approximately 40 percent relative humidity); (iii) Simulated solar heat intensity of 850 W/m2... conditioner system condenser cooling at all vehicle speeds (see § 86.161-00(e)). (3) Manufacturers have the...

  18. 40 CFR 86.127-00 - Test procedures; overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and 86.144-94 are applicable for determining emission results for vehicle exhaust emission systems...); (iii) Simulated solar heat intensity of 850 W/m 2 (see § 86.161-00(d)); and (iv) air flow directed at the vehicle that will provide representative air conditioner system condenser cooling at all vehicle...

  19. 40 CFR 86.127-12 - Test procedures; overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicable for determining emission results for vehicle exhaust emission systems designed to comply with the... dry air (approximately 40 percent relative humidity); (iii) Simulated solar heat intensity of 850 W/m2... conditioner system condenser cooling at all vehicle speeds (see § 86.161-00(e)). (3) Manufacturers have the...

  20. 40 CFR 86.127-00 - Test procedures; overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and 86.144-94 are applicable for determining emission results for vehicle exhaust emission systems...); (iii) Simulated solar heat intensity of 850 W/m 2 (see § 86.161-00(d)); and (iv) air flow directed at the vehicle that will provide representative air conditioner system condenser cooling at all vehicle...

  1. Solar forcing for CMIP6 (v3.2)

    NASA Astrophysics Data System (ADS)

    Matthes, Katja; Funke, Bernd; Andersson, Monika E.; Barnard, Luke; Beer, Jürg; Charbonneau, Paul; Clilverd, Mark A.; Dudok de Wit, Thierry; Haberreiter, Margit; Hendry, Aaron; Jackman, Charles H.; Kretzschmar, Matthieu; Kruschke, Tim; Kunze, Markus; Langematz, Ulrike; Marsh, Daniel R.; Maycock, Amanda C.; Misios, Stergios; Rodger, Craig J.; Scaife, Adam A.; Seppälä, Annika; Shangguan, Ming; Sinnhuber, Miriam; Tourpali, Kleareti; Usoskin, Ilya; van de Kamp, Max; Verronen, Pekka T.; Versick, Stefan

    2017-06-01

    This paper describes the recommended solar forcing dataset for CMIP6 and highlights changes with respect to CMIP5. The solar forcing is provided for radiative properties, namely total solar irradiance (TSI), solar spectral irradiance (SSI), and the F10.7 index as well as particle forcing, including geomagnetic indices Ap and Kp, and ionization rates to account for effects of solar protons, electrons, and galactic cosmic rays. This is the first time that a recommendation for solar-driven particle forcing has been provided for a CMIP exercise. The solar forcing datasets are provided at daily and monthly resolution separately for the CMIP6 preindustrial control, historical (1850-2014), and future (2015-2300) simulations. For the preindustrial control simulation, both constant and time-varying solar forcing components are provided, with the latter including variability on 11-year and shorter timescales but no long-term changes. For the future, we provide a realistic scenario of what solar behavior could be, as well as an additional extreme Maunder-minimum-like sensitivity scenario. This paper describes the forcing datasets and also provides detailed recommendations as to their implementation in current climate models.For the historical simulations, the TSI and SSI time series are defined as the average of two solar irradiance models that are adapted to CMIP6 needs: an empirical one (NRLTSI2-NRLSSI2) and a semi-empirical one (SATIRE). A new and lower TSI value is recommended: the contemporary solar-cycle average is now 1361.0 W m-2. The slight negative trend in TSI over the three most recent solar cycles in the CMIP6 dataset leads to only a small global radiative forcing of -0.04 W m-2. In the 200-400 nm wavelength range, which is important for ozone photochemistry, the CMIP6 solar forcing dataset shows a larger solar-cycle variability contribution to TSI than in CMIP5 (50 % compared to 35 %).We compare the climatic effects of the CMIP6 solar forcing dataset to its CMIP5 predecessor by using time-slice experiments of two chemistry-climate models and a reference radiative transfer model. The differences in the long-term mean SSI in the CMIP6 dataset, compared to CMIP5, impact on climatological stratospheric conditions (lower shortwave heating rates of -0.35 K day-1 at the stratopause), cooler stratospheric temperatures (-1.5 K in the upper stratosphere), lower ozone abundances in the lower stratosphere (-3 %), and higher ozone abundances (+1.5 % in the upper stratosphere and lower mesosphere). Between the maximum and minimum phases of the 11-year solar cycle, there is an increase in shortwave heating rates (+0.2 K day-1 at the stratopause), temperatures ( ˜ 1 K at the stratopause), and ozone (+2.5 % in the upper stratosphere) in the tropical upper stratosphere using the CMIP6 forcing dataset. This solar-cycle response is slightly larger, but not statistically significantly different from that for the CMIP5 forcing dataset.CMIP6 models with a well-resolved shortwave radiation scheme are encouraged to prescribe SSI changes and include solar-induced stratospheric ozone variations, in order to better represent solar climate variability compared to models that only prescribe TSI and/or exclude the solar-ozone response. We show that monthly-mean solar-induced ozone variations are implicitly included in the SPARC/CCMI CMIP6 Ozone Database for historical simulations, which is derived from transient chemistry-climate model simulations and has been developed for climate models that do not calculate ozone interactively. CMIP6 models without chemistry that perform a preindustrial control simulation with time-varying solar forcing will need to use a modified version of the SPARC/CCMI Ozone Database that includes solar variability. CMIP6 models with interactive chemistry are also encouraged to use the particle forcing datasets, which will allow the potential long-term effects of particles to be addressed for the first time. The consideration of particle forcing has been shown to significantly improve the representation of reactive nitrogen and ozone variability in the polar middle atmosphere, eventually resulting in further improvements in the representation of solar climate variability in global models.

  2. Study on the application of NASA energy management techniques for control of a terrestrial solar water heating system

    NASA Technical Reports Server (NTRS)

    Swanson, T. D.; Ollendorf, S.

    1979-01-01

    This paper addresses the potential for enhanced solar system performance through sophisticated control of the collector loop flow rate. Computer simulations utilizing the TRNSYS solar energy program were performed to study the relative effect on system performance of eight specific control algorithms. Six of these control algorithms are of the proportional type: two are concave exponentials, two are simple linear functions, and two are convex exponentials. These six functions are typical of what might be expected from future, more advanced, controllers. The other two algorithms are of the on/off type and are thus typical of existing control devices. Results of extensive computer simulations utilizing actual weather data indicate that proportional control does not significantly improve system performance. However, it is shown that thermal stratification in the liquid storage tank may significantly improve performance.

  3. Power-Law Statistics of Driven Reconnection in the Magnetically Closed Corona

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.; DeVore, C. R.; Knizhnik, K. J.; Uritskiy, V. M.

    2018-01-01

    Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.

  4. Four Point Measurements of the Foreshock

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.; Omidi, N.; Angelopoulos, V.

    2008-01-01

    Hybrid code numerical simulations accurately predict the properties of the Earth's foreshock, a region populated by solar wind particles heated and reflected by their interaction with the bow shock. The thermal pressures associated with the reflected population suffice to substantially modify the oncoming solar wind, substantially reducing densities, velocities, and magnetic field strengths, but enhance temperatures. Enhanced thermal pressures cause the foreshock to expand at the expense of the ambient solar wind, creating a boundary that extends approx.10 RE upstream which is marked by enhanced densities and magnetic field strengths, and flows deflected away from the foreshock. We present a case study of Cluster plasma and magnetic field observations of this boundary.

  5. The Xenon Test Chamber Q-SUN® for testing realistic tolerances of fungi exposed to simulated full spectrum solar radiation.

    PubMed

    Dias, Luciana P; Araújo, Claudinéia A S; Pupin, Breno; Ferreira, Paulo C; Braga, Gilberto Ú L; Rangel, Drauzio E N

    2018-06-01

    The low survival of insect-pathogenic fungi when used for insect control in agriculture is mainly due to the deleterious effects of ultraviolet radiation and heat from solar irradiation. In this study, conidia of 15 species of entomopathogenic fungi were exposed to simulated full-spectrum solar radiation emitted by a Xenon Test Chamber Q-SUN XE-3-HC 340S (Q-LAB ® Corporation, Westlake, OH, USA), which very closely simulates full-spectrum solar radiation. A dendrogram obtained from cluster analyses, based on lethal time 50 % and 90 % calculated by Probit analyses, separated the fungi into three clusters: cluster 3 contains species with highest tolerance to simulated full-spectrum solar radiation, included Metarhizium acridum, Cladosporium herbarum, and Trichothecium roseum with LT 50  > 200 min irradiation. Cluster 2 contains eight species with moderate UV tolerance: Aschersonia aleyrodis, Isaria fumosorosea, Mariannaea pruinosa, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, and Torrubiella homopterorum with LT 50 between 120 and 150 min irradiation. The four species in cluster 1 had the lowest UV tolerance: Lecanicillium aphanocladii, Beauveria bassiana, Tolypocladium cylindrosporum, and Tolypocladium inflatum with LT 50  < 120 min irradiation. The QSUN Xenon Test Chamber XE3 is often used by the pharmaceutical and automotive industry to test light stability and weathering, respectively, but it was never used to evaluate fungal tolerance to full-spectrum solar radiation before. We conclude that the equipment provided an excellent tool for testing realistic tolerances of fungi to full-spectrum solar radiation of microbial agents for insect biological control in agriculture. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Modelling and optimization of transient processes in line focusing power plants with single-phase heat transfer medium

    NASA Astrophysics Data System (ADS)

    Noureldin, K.; González-Escalada, L. M.; Hirsch, T.; Nouri, B.; Pitz-Paal, R.

    2016-05-01

    A large number of commercial and research line focusing solar power plants are in operation and under development. Such plants include parabolic trough collectors (PTC) or linear Fresnel using thermal oil or molten salt as the heat transfer medium (HTM). However, the continuously varying and dynamic solar condition represent a big challenge for the plant control in order to optimize its power production and to keep the operation safe. A better understanding of the behaviour of such power plants under transient conditions will help reduce defocusing instances, improve field control, and hence, increase the energy yield and confidence in this new technology. Computational methods are very powerful and cost-effective tools to gain such understanding. However, most simulation models described in literature assume equal mass flow distributions among the parallel loops in the field or totally decouple the flow and thermal conditions. In this paper, a new numerical model to simulate a whole solar field with single-phase HTM is described. The proposed model consists of a hydraulic part and a thermal part that are coupled to account for the effect of the thermal condition of the field on the flow distribution among the parallel loops. The model is specifically designed for large line-focusing solar fields offering a high degree of flexibility in terms of layout, condition of the mirrors, and spatially resolved DNI data. Moreover, the model results have been compared to other simulation tools, as well as experimental and plant data, and the results show very good agreement. The model can provide more precise data to the control algorithms to improve the plant control. In addition, short-term and accurate spatially discretized DNI forecasts can be used as input to predict the field behaviour in-advance. In this paper, the hydraulic and thermal parts, as well as the coupling procedure, are described and some validation results and results of simulating an example field are shown.

  7. Spectral radiation analyses of the GOES solar illuminated hexagonal cell scan mirror back

    NASA Technical Reports Server (NTRS)

    Fantano, Louis G.

    1993-01-01

    A ray tracing analytical tool has been developed for the simulation of spectral radiation exchange in complex systems. Algorithms are used to account for heat source spectral energy, surface directional radiation properties, and surface spectral absorptivity properties. This tool has been used to calculate the effective solar absorptivity of the geostationary operational environmental satellites (GOES) scan mirror in the calibration position. The development and design of Sounder and Imager instruments on board GOES is reviewed and the problem of calculating the effective solar absorptivity associated with the GOES hexagonal cell configuration is presented. The analytical methodology based on the Monte Carlo ray tracing technique is described and results are presented and verified by experimental measurements for selected solar incidence angles.

  8. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe.

    PubMed

    Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong

    2018-01-28

    The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties-including the thermal conductivity and viscosity-of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe's start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected.

  9. Experimental Study on the Thermal Start-Up Performance of the Graphene/Water Nanofluid-Enhanced Solar Gravity Heat Pipe

    PubMed Central

    Zhao, Shanguo; Xu, Guoying; Wang, Ning; Zhang, Xiaosong

    2018-01-01

    The solar gravity heat pipe has been widely used for solar thermal water heating because of its high efficient heat transfer and thermal diode characteristics. Operated on fluctuant and low intensity solar radiation conditions, a solar gravity heat pipe may frequently start up. This severely affects its solar collection performance. To enhance the thermal performance of the solar gravity heat pipe, this study proposes using graphene/water nanofluid as the working fluid instead of deionized water. The stability of the prepared graphene/water nanofluid added with PVP was firstly investigated to obtain the optimum mass ratios of the added dispersant. Thermophysical properties—including the thermal conductivity and viscosity—of nanofluid with various graphene nanoplatelets (GNPs) concentrations were measured at different temperatures for further analysis. Furthermore, based on the operational evaluation on a single heat pipe’s start-up process, the performance of nanofluid-enhanced solar gravity heat pipes using different concentrations of GNPs were compared by using water heating experiments. Results indicated that the use of 0.05 wt % graphene/water nanofluid instead of water could achieve a 15.1% and 10.7% reduction in start-up time under 30 and 60 W input heating conditions, respectively. Consequently, a higher thermal efficiency for solar collection could be expected. PMID:29382094

  10. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Magnetohydrodynamics Simulation Module for the Global Solar Corona.

    PubMed

    Hayashi, K; Hoeksema, J T; Liu, Y; Bobra, M G; Sun, X D; Norton, A A

    Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.

  11. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) was constructed to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test the performance of a complete solar heating and cooling system, (3) investigate component interactions, and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is printed along with the objectives, test approach, expected system performance, and some preliminary results.

  12. Heating the polar corona by collisionless shocks: an example of cross-fertilization in space physics

    NASA Astrophysics Data System (ADS)

    Zimbardo, Gaetano; Nistico, Giuseppe

    We propose a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona. We consider that a large number of small scale shock waves can be present in the solar corona, as suggested by recent observations of polar coronal jets. The heavy ion energization mechanism is, essentially, the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E = -V × B. The mechanism of heavy ion reflection is based on ion gyration in the magnetic overshoot of the shock. The acceleration due to E is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T⊥ T , in agreement with observations. Also, heating is more than mass proportional with respect to protons, because the heavy ion orbit is mostly upstream of the quasi-perpendicular shock foot. The observed temperature ratios between O5+ ions and protons in the polar corona, and between α particles and protons in the solar wind are easily recovered. Results of numerical simulations reproducing the heavy ion reflection will be presented. This work is an interesting example of cross-fertilization in space plasma physics: the non adiabatic heating of heavy ions comes from Speiser orbits in the magnetotail, observations of preferential heating of heavy ions at shocks comes from Ulysses data on corotating interaction regions shocks, heavy ion reflecton from a magnetic barrier is akin to the ion orbits in the Ferraro-Rosenbluth sheath considered for the magnetopause, the formation of shocks in the reconnection outflow regions comes from solar flare models, and evidence of reconnection and fast flows in the polar corona comes from Hinode and STEREO observations of coronal hole jets.

  13. FOXSI-2 Observations and Coronal Heating

    NASA Astrophysics Data System (ADS)

    Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S. N.; Buitrago Casas, J. C.; Takahashi, T.; Foster, N.

    2015-12-01

    Energy release and particle acceleration on the Sun is a frequent occurrence associated with a number of different solar phenomenon including but not limited to solar flares, coronal mass ejections and nanoflares. The exact mechanism through which particles are accelerated and energy is released is still not well understood. This issue is related to the unsolved coronal heating problem, the mystery of the heating mechanism for the million degree solar corona. One prevalent theory posits the existence of a multitude of small flares, dubbed nanoflares. Recent observations of active region AR11890 by IRIS (Testa et al. 2014) are consistent with numerical simulations of heating by impulsive beams of nonthermal electrons, suggesting that nanoflares may be similar to large flares in that they accelerate particles. Furthermore, observations by the EUNIS sounding rocket (Brosius et al. 2014) of faint Fe XIX (592.2 Angstrom) emission in an active region is indicative of plasma at temperatures of at least 8.9 MK providing further evidence of nanoflare heating. One of the best ways to gain insight into accelerated particles on the Sun and the presence of hot plasma is by observing the Sun in hard X-rays (HXR). We present on observations taken during the second successful flight of the Focusing Optics X-ray Solar Imager (FOXSI-2). FOXSI flew on December 11, 2014 with upgraded optics as well as new CdTe strip detectors. FOXSI-2 observed thermal emission (4-15 keV) from at least three active regions (AR#12234, AR#12233, AR#12235) and observed regions of the Sun without active regions. We present on using FOXSI observations to test the presence of hot temperatures in and outside of active regions.

  14. Demonstrated Performance of the Solar Probe Cup

    NASA Astrophysics Data System (ADS)

    Case, A. W.; Kasper, J. C.; Korreck, K. E.; Stevens, M. L.; Daigneau, P.; Freeman, M.; Caldwell, D.; Gauron, T.; Wright, K. H.; Bergner, H.; Cirtain, J. W.; Larson, D.; Brodu, E.; Balat-Pichelin, M.

    2013-12-01

    The Solar Probe Cup (SPC) is a Faraday Cup being developed for the Solar Probe Plus (SPP) mission. SPP will be the first spacecraft to directly measure the solar environment near the Alfven point in the atmosphere of the Sun, approaching to within 10 solar radii of the center of the Sun. In order to make the observations of radially flowing solar wind needed to address questions of coronal and solar wind heating and acceleration, SPC must operate while looking directly at the Sun. As a result, SPC will face a harsh and unprecidented environment, with component temperatures exceeding 1000C at closest approach. SPC is similar in design and operation to the two Faraday Cup instruments on the Wind spacecraft, which have been making stable measurements of the solar wind near Earth for two decades, with two key differences. SPC must survive and operate at extreme temperatures due to the levels of solar flux near the Sun, and it must record the solar wind approximately one thousand times faster than the instruments on Wind to keep up with the rapid variations expected near the Sun. We present results of a demonstration model of SPC operated in laboratory reproductions of the near-Sun environment. In the last year, SPC has been exposed to simulated encounter solar fluxes and resulting temperature profiles using a vaccum chamber and modified IMAX film projectors. In addition, SPC has been exposed to realistic ion beams. We show that SPC can operate in these environments, and make the measurements required for the sucess of the Solar Probe mission. Based on the performance of our prototype, the expected cadence and sensitivity of SPC will be discussed, with a focus on its ability to distinguish between models of heating in the solar corona.

  15. Effects of vertically ribbed surface roughness on the forced convective heat losses in central receiver systems

    NASA Astrophysics Data System (ADS)

    Uhlig, Ralf; Frantz, Cathy; Fritsch, Andreas

    2016-05-01

    External receiver configurations are directly exposed to ambient wind. Therefore, a precise determination of the convective losses is a key factor in the prediction and evaluation of the efficiency of the solar absorbers. Based on several studies, the forced convective losses of external receivers are modeled using correlations for a roughened cylinder in a cross-flow of air. However at high wind velocities, the thermal efficiency measured during the Solar Two experiment was considerably lower than the efficiency predicted by these correlations. A detailed review of the available literature on the convective losses of external receivers has been made. Three CFD models of different level of detail have been developed to analyze the influence of the actual shape of the receiver and tower configuration, of the receiver shape and of the absorber panels on the forced convective heat transfer coefficients. The heat transfer coefficients deduced from the correlations have been compared to the results of the CFD simulations. In a final step the influence of both modeling approaches on the thermal efficiency of an external tubular receiver has been studied in a thermal FE model of the Solar Two receiver.

  16. German central solar heating plants with seasonal heat storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, D.; Marx, R.; Nussbicker-Lux, J.

    2010-04-15

    Central solar heating plants contribute to the reduction of CO{sub 2}-emissions and global warming. The combination of central solar heating plants with seasonal heat storage enables high solar fractions of 50% and more. Several pilot central solar heating plants with seasonal heat storage (CSHPSS) built in Germany since 1996 have proven the appropriate operation of these systems and confirmed the high solar fractions. Four different types of seasonal thermal energy stores have been developed, tested and monitored under realistic operation conditions: Hot-water thermal energy store (e.g. in Friedrichshafen), gravel-water thermal energy store (e.g. in Steinfurt-Borghorst), borehole thermal energy store (inmore » Neckarsulm) and aquifer thermal energy store (in Rostock). In this paper, measured heat balances of several German CSHPSS are presented. The different types of thermal energy stores and the affiliated central solar heating plants and district heating systems are described. Their operational characteristics are compared using measured data gained from an extensive monitoring program. Thus long-term operational experiences such as the influence of net return temperatures are shown. (author)« less

  17. Ground coupled solar heat pumps: analysis of four options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, J.W.

    Heat pump systems which utilize both solar energy and energy withdrawn from the ground are analyzed using a simplified procedure which optimizes the solar storage temperature on a monthly basis. Four ways of introducing collected solar energy to the system are optimized and compared. These include use of actively collected thermal input to the heat pump; use of collected solar energy to heat the load directly (two different ways); and use of a passive option to reduce the effective heating load.

  18. The USDOE Reflux Receiver Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimas, P.C.; Andraka, C.E.; Moreno, J.B.

    1992-01-01

    The US DOE's Solar Thermal Electric Program, through its Sandia and Renewable Energy National Laboratories, has been actively developing liquid metal reflux receivers for application to modular parabolic dish concentrator/Stirling cycle converter solar energy systems. These systems are intended for use in high-value remote and grid-connected utility applications. The liquid-metal reflux-receiver concept was selected because this type of solar receiver (1) can optically mate a given dish with a given engine, and (2) can provide an isothermal environment for the high-temperature heat-input portion of the l engine, thus enhancing reliability. The Program is investigating two types of reflux receivers: heatmore » pipes and pool boilers. Sintered-nickel-wick sodium heat-pipe receivers rated at 30 kW[sub t] have been extensively tested as part of DOE/Cummins cooperative commercialization programs. One recent test article was tested at rated and power temperature for 500 hours. This same receiver demonstrated a 40 kW[sub t] throughput, believed to be the most ever for a solar heated heat-pipe receiver. Another 30-kW[sub t] sodium heat-pipe receiver, this one using a stainless-steel-screen wick design, was also tested as part of these cooperative programs. Much of experimental reflux receiver work conducted at the program's laboratories involves the pool-boiler concept. During nearly 50 hours of solar testing, the Sandia 75-kW[sub t] pool-boiler receiver demonstrated stable sodium boiling over a wide range of temperatures. Hot restarts after simulated cloud passages were investigated using various quantities of added non-condensible gases. Novel x-ray techniques provided information on instantaneous void fractions in the receiver. Present work is focusing on longer lived designs having low-cost, high-strength boiling surface enhancements and using eutectic NaK as the working fluid. The paper will summarize the developments leading to the present and describe future plans.« less

  19. The USDOE Reflux Receiver Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimas, P.C.; Andraka, C.E.; Moreno, J.B.

    1992-11-01

    The US DOE`s Solar Thermal Electric Program, through its Sandia and Renewable Energy National Laboratories, has been actively developing liquid metal reflux receivers for application to modular parabolic dish concentrator/Stirling cycle converter solar energy systems. These systems are intended for use in high-value remote and grid-connected utility applications. The liquid-metal reflux-receiver concept was selected because this type of solar receiver (1) can optically mate a given dish with a given engine, and (2) can provide an isothermal environment for the high-temperature heat-input portion of the l engine, thus enhancing reliability. The Program is investigating two types of reflux receivers: heatmore » pipes and pool boilers. Sintered-nickel-wick sodium heat-pipe receivers rated at 30 kW{sub t} have been extensively tested as part of DOE/Cummins cooperative commercialization programs. One recent test article was tested at rated and power temperature for 500 hours. This same receiver demonstrated a 40 kW{sub t} throughput, believed to be the most ever for a solar heated heat-pipe receiver. Another 30-kW{sub t} sodium heat-pipe receiver, this one using a stainless-steel-screen wick design, was also tested as part of these cooperative programs. Much of experimental reflux receiver work conducted at the program`s laboratories involves the pool-boiler concept. During nearly 50 hours of solar testing, the Sandia 75-kW{sub t} pool-boiler receiver demonstrated stable sodium boiling over a wide range of temperatures. Hot restarts after simulated cloud passages were investigated using various quantities of added non-condensible gases. Novel x-ray techniques provided information on instantaneous void fractions in the receiver. Present work is focusing on longer lived designs having low-cost, high-strength boiling surface enhancements and using eutectic NaK as the working fluid. The paper will summarize the developments leading to the present and describe future plans.« less

  20. Interrelation of soft and hard X-ray emissions during solar flares. II - Simulation model

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Dulk, G. A.; Bornmann, P. L.; Brown, J. C.

    1991-01-01

    Two-dimensional electrostatic particle simulations are presented which incorporate the effect of quasi-static electric fields on particle dynamics as well as effects associated with wave-particle interactions induced by the accelerated particles. The properties of the soft and hard X-ray and microwave emissions from such systems are examined. In particular, it is shown that acceleration by quasi-static electric fields and heating via wave-particle interactions produces electron distributions with a broken-power law, similar to those inferred from hard X-ray spectra. Also, heating of the ambient plasma gives rise to a region of hot plasma propagating down to the chromosphere at about the ion sound speed.

  1. Numerical and Experimental Approaches Toward Understanding Lava Flow Heat Transfer

    NASA Astrophysics Data System (ADS)

    Rumpf, M.; Fagents, S. A.; Hamilton, C.; Crawford, I. A.

    2013-12-01

    We have performed numerical modeling and experimental studies to quantify the heat transfer from a lava flow into an underlying particulate substrate. This project was initially motivated by a desire to understand the transfer of heat from a lava flow into the lunar regolith. Ancient regolith deposits that have been protected by a lava flow may contain ancient solar wind, solar flare, and galactic cosmic ray products that can give insight into the history of our solar system, provided the records were not heated and destroyed by the overlying lava flow. In addition, lava-substrate interaction is an important aspect of lava fluid dynamics that requires consideration in lava emplacement models Our numerical model determines the depth to which the heat pulse will penetrate beneath a lava flow into the underlying substrate. Rigorous treatment of the temperature dependence of lava and substrate thermal conductivity and specific heat capacity, density, and latent heat release are imperative to an accurate model. Experiments were conducted to verify the numerical model. Experimental containers with interior dimensions of 20 x 20 x 25 cm were constructed from 1 inch thick calcium silicate sheeting. For initial experiments, boxes were packed with lunar regolith simulant (GSC-1) to a depth of 15 cm with thermocouples embedded at regular intervals. Basalt collected at Kilauea Volcano, HI, was melted in a gas forge and poured directly onto the simulant. Initial lava temperatures ranged from ~1200 to 1300 °C. The system was allowed to cool while internal temperatures were monitored by a thermocouple array and external temperatures were monitored by a Forward Looking Infrared (FLIR) video camera. Numerical simulations of the experiments elucidate the details of lava latent heat release and constrain the temperature-dependence of the thermal conductivity of the particulate substrate. The temperature-dependence of thermal conductivity of particulate material is not well known, especially at high temperatures. It is important to have this property well constrained as substrate thermal conductivity is the greatest influence on the rate of lava-substrate heat transfer. At Kilauea and Mauna Loa Volcanoes, Hawaii, and other volcanoes that threaten communities, lava may erupt over a variety of substrate materials including cool lava flows, volcanic tephra, soils, sand, and concrete. The composition, moisture, organic content, porosity, and grain size of the substrate dictate the thermophysical properties, thus affecting the transfer of heat from the lava flow into the substrate and flow mobility. Particulate substrate materials act as insulators, subduing the rate of heat transfer from the flow core. Therefore, lava that flows over a particulate substrate will maintain higher core temperatures over a longer period, enhancing flow mobility and increasing the duration and aerial coverage of the resulting flow. Lava flow prediction models should include substrate specification with temperature dependent material property definitions for an accurate understanding of flow hazards.

  2. Heat Pipe Solar Receiver for Oxygen Production of Lunar Regolith

    NASA Astrophysics Data System (ADS)

    Hartenstine, John R.; Anderson, William G.; Walker, Kara L.; Ellis, Michael C.

    2009-03-01

    A heat pipe solar receiver operating in the 1050° C range is proposed for use in the hydrogen reduction process for the extraction of oxygen from the lunar soil. The heat pipe solar receiver is designed to accept, isothermalize and transfer solar thermal energy to reactors for oxygen production. This increases the available area for heat transfer, and increases throughput and efficiency. The heat pipe uses sodium as the working fluid, and Haynes 230 as the heat pipe envelope material. Initial design requirements have been established for the heat pipe solar receiver design based on information from the NASA In-Situ Resource Utilization (ISRU) program. Multiple heat pipe solar receiver designs were evaluated based on thermal performance, temperature uniformity, and integration with the solar concentrator and the regolith reactor(s). Two designs were selected based on these criteria: an annular heat pipe contained within the regolith reactor and an annular heat pipe with a remote location for the reactor. Additional design concepts have been developed that would use a single concentrator with a single solar receiver to supply and regulate power to multiple reactors. These designs use variable conductance or pressure controlled heat pipes for passive power distribution management between reactors. Following the design study, a demonstration heat pipe solar receiver was fabricated and tested. Test results demonstrated near uniform temperature on the outer surface of the pipe, which will ultimately be in contact with the regolith reactor.

  3. Hybrid Vlasov simulations for alpha particles heating in the solar wind

    NASA Astrophysics Data System (ADS)

    Perrone, Denise; Valentini, Francesco; Veltri, Pierluigi

    2011-06-01

    Heating and acceleration of heavy ions in the solar wind and corona represent a long-standing theoretical problem in space physics and are distinct experimental signatures of kinetic processes occurring in collisionless plasmas. To address this problem, we propose the use of a low-noise hybrid-Vlasov code in four dimensional phase space (1D in physical space and 3D in velocity space) configuration. We trigger a turbulent cascade injecting the energy at large wavelengths and analyze the role of kinetic effects along the development of the energy spectra. Following the evolution of both proton and α distribution functions shows that both the ion species significantly depart from the maxwellian equilibrium, with the appearance of beams of accelerated particles in the direction parallel to the background magnetic field.

  4. Foaming of aluminium-silicon alloy using concentrated solar energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cambronero, L.E.G.; Ruiz-Roman, J.M.; Canadas, I.

    2010-06-15

    Solar energy is used for the work reported here as a nonconventional heating system to produce aluminium foam from Al-Si alloy precursors produced by powder metallurgy. A commercial precursor in cylindrical bars enclosed in a stainless-steel mould was heated under concentrated solar radiation in a solar furnace with varied heating conditions (heating rate, time, and temperature). Concentrated solar energy close to 300 W/cm{sup 2} on the mould is high enough to achieve complete foaming after heating for only 200 s. Under these conditions, the density and pore distribution in the foam change depending on the solar heating parameters and mouldmore » design. (author)« less

  5. Phase change wallboard for peak demand reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, K.L.; Shepard, M.

    1993-12-31

    After more than a decade of research in university and government laboratories, wallboard impregnated with a phase change material (PCM) appears to be close to commercialization, and could prove to be a powerful peak demand management tool for utilities, particularly in the residential sector. As a lightweight, easily installed thermal storage medium, PCM wallboard could be suitable for both new construction and retrofit applications. Computer simulations performed at Los Alamos National Laboratory (LANL) predicted that PCM wallboard could shift more than 90 percent of the sensible load of a residential air-conditioning system to off-peak periods, and could permit a 30more » percent reduction in equipment capacity. Residential winter peak loads could also be reduced. An Oak Ridge National Laboratory (ORNL) simulation showed that PCM wallboard could reduce peak heating demand by a third in a Tennessee climate. With more than 70 billion square feet of plasterboard produced annually in the US, widespread adoption of PCM wallboard could have a significant impact on peak load, while moderating temperature swings and enhancing comfort in homes and perhaps commercial spaces as well. Energy savings are also possible when PCM wallboard is used to take advantage of solar gain. LANL simulations predict 28 percent heating energy savings in a Boston passive solar house, and 54 percent savings in Denver. ORNL researchers support these findings -- they calculate that moving windows to the south and adding PCM wallboard could save from one-third to one-half of the heating energy needed in a Denver home.« less

  6. Comparison of heat exchanger and solar block wall in a swine nursery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, D.D.; Friday, W.H.; Thieme, R.H.

    1984-01-01

    A pig nursery building was divided into two equal rooms, one with a heat exchanger and one with a solar block wall. The average air inlet temperatures were 16.4/sup 0/C in the heat exchanger room and 11.9/sup 0/C in the solar heated room. Supplemental heating costs were 67% higher in the solar block wall room.

  7. A regional comparison of solar, heat pump, and solar-heat pump systems

    NASA Astrophysics Data System (ADS)

    Manton, B. E.; Mitchell, J. W.

    1982-08-01

    A comparative study of the thermal and economic performance of the parallel and series solar heat pump systems, stand alone solar and stand alone heat pump systems for residential space and domestic hot water heating for the U.S. using FCHART 4.0 is presented. Results show that the parallel solar heat pump system yields the greatest energy savings in the south. Very low cost collectors (50-150 dollars/sq m) are required for a series solar heat pump system in order for it to compete economically with the better of the parallel or solar systems. Conventional oil or gas furnaces need to have a seasonal efficiency of at least 70-85% in order to save as much primary energy as the best primary system in the northeast. In addition, the implications of these results for current or proposed federal tax credit measures are discussed.

  8. Performance and economics of residential solar space heating

    NASA Astrophysics Data System (ADS)

    Zehr, F. J.; Vineyard, T. A.; Barnes, R. W.; Oneal, D. L.

    1982-11-01

    The performance and economics of residential solar space heating were studied for various locations in the contiguous United States. Common types of active and passive solar heating systems were analyzed with respect to an average-size, single-family house designed to meet or exceed the thermal requirements of the Department of Housing and Urban Development Minimum Property Standards (HUD-MPS). The solar systems were evaluated in seventeen cities to provide a broad range of climatic conditions. Active systems evaluated consist of air and liquid flat plate collectors with single- and double-glazing: passive systems include Trombe wall, water wall, direct gain, and sunspace systems. The active system solar heating performance was computed using the University of Wisconsin's F-CHART computer program. The Los Alamos Scientific Laboratory's Solar Load Ratio (SLR) method was employed to compute solar heating performance for the passive systems. Heating costs were computed with gas, oil, and electricity as backups and as conventional heating system fuels.

  9. A heat receiver design for solar dynamic space power systems

    NASA Technical Reports Server (NTRS)

    Baker, Karl W.; Dustin, Miles O.; Crane, Roger

    1990-01-01

    An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.

  10. Multi-fluid Modeling of Magnetosonic Wave Propagation in the Solar Chromosphere: Effects of Impact Ionization and Radiative Recombination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maneva, Yana G.; Laguna, Alejandro Alvarez; Poedts, Stefaan

    2017-02-20

    In order to study chromospheric magnetosonic wave propagation including, for the first time, the effects of ion–neutral interactions in the partially ionized solar chromosphere, we have developed a new multi-fluid computational model accounting for ionization and recombination reactions in gravitationally stratified magnetized collisional media. The two-fluid model used in our 2D numerical simulations treats neutrals as a separate fluid and considers charged species (electrons and ions) within the resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskiis transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations and the solenoidality of the magneticmore » field is enforced with a hyperbolic divergence-cleaning scheme. The initial density and temperature profiles are similar to VAL III chromospheric model in which dynamical, thermal, and chemical equilibrium are considered to ensure comparison to existing MHD models and avoid artificial numerical heating. In this initial setup we include simple homogeneous flux tube magnetic field configuration and an external photospheric velocity driver to simulate the propagation of MHD waves in the partially ionized reactive chromosphere. In particular, we investigate the loss of chemical equilibrium and the plasma heating related to the steepening of fast magnetosonic wave fronts in the gravitationally stratified medium.« less

  11. Experimental Results From a 2kW Brayton Power Conversion Unit

    NASA Technical Reports Server (NTRS)

    Hervol, David; Mason, Lee; Birchenough, Arthur

    2003-01-01

    This paper presents experimental test results from operation of a 2 kWe Brayton power conversion unit. The Brayton converter was developed for a solar dynamic power system flight experiment planned for the Mir Space Station in 1997. The flight experiment was cancelled, but the converter was tested at Glenn Research Center as part of the Solar Dynamic Ground Test Demonstration system which included a solar concentrator, heat receiver, and space radiator. In preparation for the current testing, the heat receiver was removed and replaced with an electrical resistance heater, simulating the thermal input of a steady-state nuclear source. The converter was operated over a full range of thermal input power levels and rotor speeds to generate an overall performance map. The converter unit will serve as the centerpiece of a Nuclear Electric Propulsion Testbed at Glenn. Future potential uses for the Testbed include high voltage electrical controller development, integrated electric thruster testing and advanced radiator demonstration testing to help guide high power Brayton technology development for Nuclear Electric Propulsion (NEP).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, M.; Manchester, W. B.; Holst, B. van der

    We perform and analyze the results of a global magnetohydrodynamic simulation of the fast coronal mass ejection (CME) that occurred on 2011 March 7. The simulation is made using the newly developed Alfvén Wave Solar Model (AWSoM), which describes the background solar wind starting from the upper chromosphere and extends to 24 R {sub ⊙}. Coupling AWSoM to an inner heliosphere model with the Space Weather Modeling Framework extends the total domain beyond the orbit of Earth. Physical processes included in the model are multi-species thermodynamics, electron heat conduction (both collisional and collisionless formulations), optically thin radiative cooling, and Alfvén-wavemore » turbulence that accelerates and heats the solar wind. The Alfvén-wave description is physically self-consistent, including non-Wentzel–Kramers–Brillouin reflection and physics-based apportioning of turbulent dissipative heating to both electrons and protons. Within this model, we initiate the CME by using the Gibson-Low analytical flux rope model and follow its evolution for days, in which time it propagates beyond STEREO A . A detailed comparison study is performed using remote as well as in situ observations. Although the flux rope structure is not compared directly due to lack of relevant ejecta observation at 1 au in this event, our results show that the new model can reproduce many of the observed features near the Sun (e.g., CME-driven extreme ultraviolet [EUV] waves, deflection of the flux rope from the coronal hole, “double-front” in the white light images) and in the heliosphere (e.g., shock propagation direction, shock properties at STEREO A ).« less

  13. Solar heating and cooling systems design and development

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Solar heating and heating/cooling systems were designed for single family, multifamily, and commercial applications. Subsystems considered included solar collectors, heat storage systems, auxiliary energy sources, working fluids, and supplementary controls, piping, and pumps.

  14. Modeling the direct sun component in buildings using matrix algebraic approaches: Methods and validation

    DOE PAGES

    Lee, Eleanor S.; Geisler-Moroder, David; Ward, Gregory

    2017-12-23

    Simulation tools that enable annual energy performance analysis of optically-complex fenestration systems have been widely adopted by the building industry for use in building design, code development, and the development of rating and certification programs for commercially-available shading and daylighting products. The tools rely on a three-phase matrix operation to compute solar heat gains, using as input low-resolution bidirectional scattering distribution function (BSDF) data (10–15° angular resolution; BSDF data define the angle-dependent behavior of light-scattering materials and systems). Measurement standards and product libraries for BSDF data are undergoing development to support solar heat gain calculations. Simulation of other metrics suchmore » as discomfort glare, annual solar exposure, and potentially thermal discomfort, however, require algorithms and BSDF input data that more accurately model the spatial distribution of transmitted and reflected irradiance or illuminance from the sun (0.5° resolution). This study describes such algorithms and input data, then validates the tools (i.e., an interpolation tool for measured BSDF data and the five-phase method) through comparisons with ray-tracing simulations and field monitored data from a full-scale testbed. Simulations of daylight-redirecting films, a micro-louvered screen, and venetian blinds using variable resolution, tensor tree BSDF input data derived from interpolated scanning goniophotometer measurements were shown to agree with field monitored data to within 20% for greater than 75% of the measurement period for illuminance-based performance parameters. The three-phase method delivered significantly less accurate results. We discuss the ramifications of these findings on industry and provide recommendations to increase end user awareness of the current limitations of existing software tools and BSDF product libraries.« less

  15. Modeling the direct sun component in buildings using matrix algebraic approaches: Methods and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eleanor S.; Geisler-Moroder, David; Ward, Gregory

    Simulation tools that enable annual energy performance analysis of optically-complex fenestration systems have been widely adopted by the building industry for use in building design, code development, and the development of rating and certification programs for commercially-available shading and daylighting products. The tools rely on a three-phase matrix operation to compute solar heat gains, using as input low-resolution bidirectional scattering distribution function (BSDF) data (10–15° angular resolution; BSDF data define the angle-dependent behavior of light-scattering materials and systems). Measurement standards and product libraries for BSDF data are undergoing development to support solar heat gain calculations. Simulation of other metrics suchmore » as discomfort glare, annual solar exposure, and potentially thermal discomfort, however, require algorithms and BSDF input data that more accurately model the spatial distribution of transmitted and reflected irradiance or illuminance from the sun (0.5° resolution). This study describes such algorithms and input data, then validates the tools (i.e., an interpolation tool for measured BSDF data and the five-phase method) through comparisons with ray-tracing simulations and field monitored data from a full-scale testbed. Simulations of daylight-redirecting films, a micro-louvered screen, and venetian blinds using variable resolution, tensor tree BSDF input data derived from interpolated scanning goniophotometer measurements were shown to agree with field monitored data to within 20% for greater than 75% of the measurement period for illuminance-based performance parameters. The three-phase method delivered significantly less accurate results. We discuss the ramifications of these findings on industry and provide recommendations to increase end user awareness of the current limitations of existing software tools and BSDF product libraries.« less

  16. Ensemble Simulations of Proton Heating in the Solar Wind via Turbulence and Ion Cyclotron Resonance

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2014-07-01

    Protons in the solar corona and heliosphere exhibit anisotropic velocity distributions, violation of magnetic moment conservation, and a general lack of thermal equilibrium with the other particle species. There is no agreement about the identity of the physical processes that energize non-Maxwellian protons in the solar wind, but a traditional favorite has been the dissipation of ion cyclotron resonant Alfvén waves. This paper presents kinetic models of how ion cyclotron waves heat protons on their journey from the corona to interplanetary space. It also derives a wide range of new solutions for the relevant dispersion relations, marginal stability boundaries, and nonresonant velocity-space diffusion rates. A phenomenological model containing both cyclotron damping and turbulent cascade is constructed to explain the suppression of proton heating at low alpha-proton differential flow speeds. These effects are implemented in a large-scale model of proton thermal evolution from the corona to 1 AU. A Monte Carlo ensemble of realistic wind speeds, densities, magnetic field strengths, and heating rates produces a filled region of parameter space (in a plane described by the parallel plasma beta and the proton temperature anisotropy ratio) similar to what is measured. The high-beta edges of this filled region are governed by plasma instabilities and strong heating rates. The low-beta edges correspond to weaker proton heating and a range of relative contributions from cyclotron resonance. On balance, the models are consistent with other studies that find only a small fraction of the turbulent power spectrum needs to consist of ion cyclotron waves.

  17. EVIDENCE FOR EVAPORATION-INCOMPLETE CONDENSATION CYCLES IN WARM SOLAR CORONAL LOOPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froment, C.; Auchère, F.; Bocchialini, K.

    2015-07-10

    Quasi-constant heating at the footpoints of loops leads to evaporation and condensation cycles of the plasma: thermal non-equilibrium (TNE). This phenomenon is believed to play a role in the formation of prominences and coronal rain. However, it is often discounted as being involved in the heating of warm loops because the models do not reproduce observations. Recent simulations have shown that these inconsistencies with observations may be due to oversimplifications of the geometries of the models. In addition, our recent observations reveal that long-period intensity pulsations (several hours) are common in solar coronal loops. These periods are consistent with thosemore » expected from TNE. The aim of this paper is to derive characteristic physical properties of the plasma for some of these events to test the potential role of TNE in loop heating. We analyzed three events in detail using the six EUV coronal channels of the Solar Dynamics Observatory/Atmospheric Imaging Assembly. We performed both a differential emission measure (DEM) and a time-lag analysis, including a new method to isolate the relevant signal from the foreground and background emission. For the three events, the DEM undergoes long-period pulsations, which is a signature of periodic heating even though the loops are captured in their cooling phase, as is the bulk of the active regions. We link long-period intensity pulsations to new signatures of loop heating with strong evidence for evaporation and condensation cycles. We thus simultaneously witness widespread cooling and TNE. Finally, we discuss the implications of our new observations for both static and impulsive heating models.« less

  18. Study of radiatively sustained cesium plasmas for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Dunning, G. J.

    1980-01-01

    The results of a study aimed at developing a high temperature solar electric converter are reported. The converter concept is based on the use of an alkali plasma to serve as both an efficient high temperature collector of solar radiation as well as the working fluid for a high temperature working cycle. The working cycle is a simple magnetohydrodynamic (MHD) Rankine cycle employing a solid electrode Faraday MHD channel. Research milestones include the construction of a theoretical model for coupling sunlight in a cesium plasma and the experimental demonstration of cesium plasma heating with a solar simulator in excellent agreement with the theory. Analysis of a solar MHD working cycle in which excimer laser power rather than electric power is extracted is also presented. The analysis predicts a positive gain coefficient on the cesium-xenon excimer laser transition.

  19. Smart windows based on cholesteric liquid crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Khandelwal, Hitesh; Debije, Michael G.; Schenning, Albert P. H. J.

    2017-02-01

    With increase in global warming, use of active cooling and heating devices are continuously increasing to maintain interior temperature of built environment, greenhouses and cars. To reduce the consumption of tremendous amount of energy on cooling and heating devices we need an improved control of transparent features (i.e. windows). In this respect, smart window which is capable for reflecting solar infrared energy without interfering with the visible light would be very attractive. Most of the technologies developed so far are to control the visible light. These technologies block visual contact to the outside world which cause negative effects on human health. An appealing method to selectively control infrared transmission is via utilizing the reflection properties of cholesteric liquid crystals. In our research, we have fabricated a smart window which is capable of reflecting different amount of solar infrared energy depending on the specific climate conditions. The reflection bandwidth can be tuned from 120 nm to 1100 nm in the infrared region without interfering with the visible solar radiations. Calculations reveal that between 8% and 45% of incident solar infrared light can be reflected with a single cell. Simulation studies predicted that more than 12% of the energy spent on heating, cooling and lighting in the built environment can be saved by using the fabricated smart window compared to standard double glazing window.

  20. Glass heat pipe evacuated tube solar collector

    DOEpatents

    McConnell, Robert D.; Vansant, James H.

    1984-01-01

    A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.

  1. Heat transfer and flow in solar energy and bioenergy systems

    NASA Astrophysics Data System (ADS)

    Xu, Ben

    The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae culture raceway for biofuel production. According to the proposed flow field design of ARID-HV algal raceway, experiments and numerical simulation have been conducted to understand the enhancement of flow mixing in the flow field of ARID-HV raceway by cutting slots on top of the dam near the dead zones. A new method was proposed to quantitatively evaluate the flow mixing by using the statistics of temporal and spatial distribution of the massless fluid particles (centered in each cell at the inlet surface) in the raceway collecting the data of path-lines of fluid particles from CFD results. It is hoped that this method can be applied to assist the algal raceway flow field design as well as other engineering applications. The third part introduces the details about the construction work of a high temperature molten salt test loop. Because of the limited operating temperature of conventional synthetic oils, in order to obtain higher energy conversion efficiency, higher operating temperature is always desirable in a CSP plant which leads to the requirement of new generation of HTF. Currently, a halide salt eutectic mixture (NaCl-KCl-ZnCl2) as a potential HTF for future CSP applications has been proposed by a multi-institute research team, led by University of Arizona. The thermophysical properties of the halide eutectic salt have been measured. However, this new developed halide eutectic salt has not been tested in a circulating loop at a high operating temperature for the measurement of heat transfer coefficient. It is a significant effort to build such a test system due to extremely high operating temperature. As a consequence, in the third part of this dissertation, details about the design of the lab-scale test system and all the equipment items will be introduced. The investigations included in this dissertation for the heat transfer and flow in solar energy and bioenergy systems are of particular interest to the renewable energy engineering community. It is expected that the proposed methods can provide useful information for engineers and researchers.

  2. Ion Thermalization and Electron Heating across Quasi-Perpendicular Shocks Observed by the MMS Mission

    NASA Astrophysics Data System (ADS)

    Chen, L.-J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Viñas, A. F.-; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J. L.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R. E.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Yu. V.

    2017-12-01

    Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We 'image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.

  3. Ion Thermalization and Electron Heating across Quasi-Perpendicular Shocks Observed by the MMS Mission

    NASA Astrophysics Data System (ADS)

    Chen, L. J.; Wilson, L. B., III; Wang, S.; Bessho, N.; Figueroa-Vinas, A.; Lai, H.; Russell, C. T.; Schwartz, S. J.; Hesse, M.; Moore, T. E.; Burch, J.; Gershman, D. J.; Giles, B. L.; Torbert, R. B.; Ergun, R.; Dorelli, J.; Strangeway, R. J.; Paterson, W. R.; Lavraud, B.; Khotyaintsev, Y. V.

    2017-12-01

    Collisionless shocks often involve intense plasma heating in space and astrophysical systems. Despite decades of research, a number of key questions concerning electron and ion heating across collisionless shocks remain unanswered. We `image' 20 supercritical quasi-perpendicular bow shocks encountered by the Magnetospheric Multiscale (MMS) spacecraft with electron and ion distribution functions to address how ions are thermalized and how electrons are heated. The continuous burst measurements of 3D plasma distribution functions from MMS reveal that the primary thermalization phase of ions occurs concurrently with the main temperature increase of electrons as well as large-amplitude wave fluctuations. Approaching the shock from upstream, the ion temperature (Ti) increases due to the reflected ions joining the incoming solar wind population, as recognized by prior studies, and the increase of Ti precedes that of the electrons. Thermalization in the form of merging between the decelerated solar wind ions and the reflected component often results in a decrease in Ti. In most cases, the Ti decrease is followed by a gradual increase further downstream. Anisotropic, energy-dependent, and/or nongyrotropic electron energization are observed in association with large electric field fluctuations in the main electron temperature (Te) gradient, motivating a renewed scrutiny of the effects from the electrostatic cross-shock potential and wave fluctuations on electron heating. Particle-in-cell (PIC) simulations are carried out to assist interpretations of the MMS observations. We assess the roles of instabilities and the cross-shock potential in thermalizing ions and heating electrons based on the MMS measurements and PIC simulation results. Challenges will be posted for future computational studies and laboratory experiments on collisionless shocks.

  4. Three story residence with solar heat--Manchester, New Hampshire

    NASA Technical Reports Server (NTRS)

    1981-01-01

    When heat lost through ducts is counted for accurate performance assessment, solar energy supplied 56 percent of building's space heating load. Average outdoor temperature was 53 degrees F; average indoor temperature was 69 degrees F. System operating modes included heating from solar collectors, storing heat, heating from storage, auxiliary heating with oil fired furnace, summer venting, and hot water preheating.

  5. THE COUPLED EVOLUTION OF ELECTRONS AND IONS IN CORONAL MASS EJECTION-DRIVEN SHOCKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manchester IV, W. B.; Van der Holst, B.; Toth, G.

    2012-09-01

    We present simulations of coronal mass ejections (CMEs) performed with a new two-temperature coronal model developed at the University of Michigan, which is able to address the coupled thermodynamics of the electron and proton populations in the context of a single fluid. This model employs heat conduction for electrons, constant adiabatic index ({gamma} = 5/3), and includes Alfven wave pressure to accelerate the solar wind. The Wang-Sheeley-Arge empirical model is used to determine the Alfven wave pressure necessary to produce the observed bimodal solar wind speed. The Alfven waves are dissipated as they propagate from the Sun and heat protonsmore » on open magnetic field lines to temperatures above 2 MK. The model is driven by empirical boundary conditions that includes GONG magnetogram data to calculate the coronal field, and STEREO/EUVI observations to specify the density and temperature at the coronal boundary by the Differential Emission Measure Tomography method. With this model, we simulate the propagation of fast CMEs and study the thermodynamics of CME-driven shocks. Since the thermal speed of the electrons greatly exceeds the speed of the CME, only protons are directly heated by the shock. Coulomb collisions low in the corona couple the protons and electrons allowing heat exchange between the two species. However, the coupling is so brief that the electrons never achieve more than 10% of the maximum temperature of the protons. We find that heat is able to conduct on open magnetic field lines and rapidly propagates ahead of the CME to form a shock precursor of hot electrons.« less

  6. Classifications of central solar domestic hot water systems

    NASA Astrophysics Data System (ADS)

    Guo, J. Y.; Hao, B.; Peng, C.; Wang, S. S.

    2016-08-01

    Currently, there are many means by which to classify solar domestic hot water systems, which are often categorized according to their scope of supply, solar collector positions, and type of heat storage tank. However, the lack of systematic and scientific classification as well as the general disregard of the thermal performance of the auxiliary heat source is important to DHW systems. Thus, the primary focus of this paper is to determine a classification system for solar domestic hot water systems based on the positions of the solar collector and auxiliary heating device, both respectively and in combination. Field-testing data regarding many central solar DHW systems demonstrates that the position of the auxiliary heat source clearly reflects the operational energy consumption. The consumption of collective auxiliary heating hot water system is much higher than individual auxiliary heating hot water system. In addition, costs are significantly reduced by the separation of the heat storage tank and the auxiliary heating device.

  7. Accelerating the design of solar thermal fuel materials through high throughput simulations.

    PubMed

    Liu, Yun; Grossman, Jeffrey C

    2014-12-10

    Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.

  8. Introduction to solar heating and cooling design and sizing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This manual is designed to introduce the practical aspects of solar heating/cooling systems to HVAC contractors, architects, engineers, and other interested individuals. It is intended to enable readers to assess potential solar heating/cooling applications in specific geographical areas, and includes tools necessary to do a preliminary design of the system and to analyze its economic benefits. The following are included: the case for solar energy; solar radiation and weather; passive solar design; system characteristics and selection; component performance criteria; determining solar system thermal performance and economic feasibility; requirements, availability, and applications of solar heating systems; and sources of additional information.more » (MHR)« less

  9. Magnetic reconnection in numerical simulations of the Bastille day flare

    NASA Astrophysics Data System (ADS)

    Vincent, A. P.; Charbonneau, P.

    2011-12-01

    If neither waves nor adiabatic heating due to compression are taken into account, coronal heating may be obtained in numerical simulations from current dissipation inside solar flares. To increase Joule heating locally we used a model for hyper resistivity (Klimas et al., 2004: Journal of Geophysical Research, 109, 2218-2231). Here the change in resistivity is due to small scale (less than 1Mm in our simulations) current density fluctuations. Whenever the current exceeds a cut-off value, magnetic resistivity jumps sharply to reach a maximum locally thus increasing magnetic gradients at the border of the flare. In this way, not only the current increases but also the maximum is slowly displaced and simulations of the full set of 3-D MHD equations show a progression westward as can be seen in SOHO-EIT images of the ''slinky''. In our simulations of the Bastille day flare, most of the reconnection events take place just above the transition and mostly follow the neutral line but it is Spitzer thermal diffusivity together with radiative cooling that illuminates magnetic arcades in a way similar to what can be seen in extreme ultra-violet animations of the slinky.

  10. High Temperature Concentrated Solar Power Using Liquid Metal

    NASA Astrophysics Data System (ADS)

    Henry, Asegun

    One of the most attractive ways to try and reduce the cost of concentrated solar power (CSP) is to increase the system efficiency and the biggest loss in the system occurs in the conversion of heat to electricity via heat engine. Heat engines that utilize turbomachinery currently operate near their thermodynamic limitations and thus one of the only ways to improve heat engine efficiency is to increase the turbine inlet temperature. Significant effort is being devoted to the development of supercritical CO2 heat engines, but the most efficient heat engines are combined cycles, which reach efficiencies as high as 60%. However, such heat engines require turbine inlet temperatures ~1300-1500C, which is far beyond what is currently feasible with the state of the art molten salt infrastructure. In working towards the development of a system that can operate in the 1300-1500C temperature range, the most significant challenges lie in the materials and forming functional and reliable components out of new materials. One of the most attractive options from a cost and heat transfer perspective is to use liquid metals, such as tin and aluminum-silicon alloys along with a ceramic based infrastructure. This talk will overview ongoing efforts in the Atomistic Simulation and Energy (ASE) research group at Georgia Tech to develop prototype components such as an efficient high temperature cavity receiver, pumps and valves that can make a liquid metal based CSP infrastructure realizable.

  11. Heating heavy ions in the polar corona by collisionless shocks: A one-dimensional simulation

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Zimbardo, Gaetano

    2012-01-01

    Recently a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona was proposed (Zimbardo, 2010, 2011). In that model the ion energization mechanism is the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E = -V × B/c. The mechanism of heavy ion reflection is based on ion gyration in the magnetic overshoot of the shock. The acceleration due to the motional electric field is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T⊥ ≫ T∥, in agreement with SoHO observations. Such a model is tested here by means of a one dimensional test particle simulation where ions are launched toward electric and magnetic profiles representing the shock transition. We study the dynamics of O5+, as representative of coronal heavy ions for Alfvénic Mach numbers of 2-4, as appropriate to solar corona. It is found that O5+ ions are easily reflected and gain more than mass proportional energy with respect to protons.

  12. A comparison of microwave versus direct solar heating for lunar brick production

    NASA Technical Reports Server (NTRS)

    Yankee, S. J.; Strenski, D. G.; Pletka, B. J.; Patil, D. S.; Mutsuddy, B. C.

    1990-01-01

    Two processing techniques considered suitable for producing bricks from lunar regolith are examined: direct solar heating and microwave heating. An analysis was performed to compare the two processes in terms of the amount of power and time required to fabricate bricks of various sizes. Microwave heating was shown to be significantly faster than solar heating for rapid production of realistic-size bricks. However, the relative simplicity of the solar collector(s) used for the solar furnace compared to the equipment necessary for microwave generation may present an economic tradeoff.

  13. Test bench HEATREC for heat loss measurement on solar receiver tubes

    NASA Astrophysics Data System (ADS)

    Márquez, José M.; López-Martín, Rafael; Valenzuela, Loreto; Zarza, Eduardo

    2016-05-01

    In Solar Thermal Electricity (STE) plants the thermal energy of solar radiation is absorbed by solar receiver tubes (HCEs) and it is transferred to a heat transfer fluid. Therefore, heat losses of receiver tubes have a direct influence on STE plants efficiency. A new test bench called HEATREC has been developed by Plataforma Solar de Almería (PSA) in order to determinate the heat losses of receiver tubes under laboratory conditions. The innovation of this test bench consists in the possibility to determine heat losses under controlled vacuum.

  14. Solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  15. Space shuttle L-tube radiator testing

    NASA Technical Reports Server (NTRS)

    Phillips, M. A.

    1976-01-01

    A series of tests were conducted to support the development of the Orbiter Heat Rejection System. The details of the baseline radiator were defined by designing, fabricating, and testing representative hardware. The tests were performed in the Space Environmental Simulation Laboratory Chamber A. An IR source was used to simulate total solar and infrared environmental loads on the flowing shuttle radiators panel. The thermal and mechanical performance of L tube space radiators and their thermal coating were established.

  16. Brayton Cycle Power System in the Space Power Facility

    NASA Image and Video Library

    1969-07-21

    Set up of a Brayton Cycle Power System test in the Space Power Facility’s massive vacuum chamber at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The $28.4-million facility, which began operations in 1969, is the largest high vacuum chamber ever built. The chamber is 100 feet in diameter and 120 feet high. It can produce a vacuum deep enough to simulate the conditions at 300 miles altitude. The Space Power Facility was originally designed to test nuclear-power sources for spacecraft, but it was never used for that purpose. The Space Power Facility was first used to test a 15 to 20-kilowatt Brayton Cycle Power System for space applications. Three different methods of simulating solar heat were employed during the tests. Lewis researchers studied the Brayton power system extensively in the 1960s and 1970s. The Brayton engine converted solar thermal energy into electrical power. The system operated on a closed-loop Brayton thermodynamic cycle with a helium-xenon gas mixture as its working fluid. A space radiator was designed to serve as the system’s waste heat rejecter. The radiator was later installed in the vacuum chamber and tested in a simulated space environment to determine its effect on the power conversion system. The Brayton system was subjected to simulated orbits with 62 minutes of sun and 34 minutes of shade.

  17. Ponderomotive Acceleration in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Dahlburg, Russell B.; Laming, J. Martin; Taylor, Brian; Obenschain, Keith

    2017-08-01

    Ponderomotive acceleration has been asserted to be a cause of the First Ionization Potential (FIP) effect, the by now well known enhancement in abundance by a factor of 3-4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a ``byproduct'' of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of a coronal loops with an axial magnetic field from 0.005 Teslas to 0.02 Teslas and lengths from 25000 km to 75000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets which act to heat the loop. As a consequence of coronal magnetic reconnection, small scale, high speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  18. Simulation of an active cooling system for photovoltaic modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelhakim, Lotfi

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water alsomore » acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.« less

  19. Solar collector parameter identification from unsteady data by a discrete-gradient optimization algorithm

    NASA Technical Reports Server (NTRS)

    Hotchkiss, G. B.; Burmeister, L. C.; Bishop, K. A.

    1980-01-01

    A discrete-gradient optimization algorithm is used to identify the parameters in a one-node and a two-node capacitance model of a flat-plate collector. Collector parameters are first obtained by a linear-least-squares fit to steady state data. These parameters, together with the collector heat capacitances, are then determined from unsteady data by use of the discrete-gradient optimization algorithm with less than 10 percent deviation from the steady state determination. All data were obtained in the indoor solar simulator at the NASA Lewis Research Center.

  20. Experimental investigation of an ammonia-based combined power and cooling cycle

    NASA Astrophysics Data System (ADS)

    Tamm, Gunnar Olavi

    A novel ammonia-water thermodynamic cycle, capable of producing both power and refrigeration, was proposed by D. Yogi Goswami. The binary mixture exhibits variable boiling temperatures during the boiling process, which leads to a good thermal match between the heating fluid and working fluid for efficient heat source utilization. The cycle can be driven by low temperature sources such as solar, geothermal, and waste heat from a conventional power cycle, reducing the reliance on high temperature sources such as fossil fuels. A theoretical simulation of the cycle at heat source temperatures obtainable from low and mid temperature solar collectors showed that the ideal cycle could produce power and refrigeration at a maximum exergy efficiency, defined as the ratio of the net work and refrigeration output to the change in availability of the heat source, of over 60%. The exergy efficiency is a useful measure of the cycle's performance as it compares the effectiveness of different cycles in harnessing the same source. An experimental system was constructed to demonstrate the feasibility of the cycle and to compare the experimental results with the theoretical simulations. In this first phase of experimentation, the turbine expansion was simulated with a throttling valve and a heat exchanger. Results showed that the vapor generation and absorption condensation processes work experimentally. The potential for combined turbine work and refrigeration output was evidenced in operating the system. Analysis of losses led to modifications in the system design, which were implemented to yield improvements in heat exchange, vapor generation, pump performance and overall stability. The research that has been conducted verifies the potential of the power and cooling cycle as an alternative to using conventional fossil fuel technologies. The research that continues is to further demonstrate the concept and direct it towards industry. On the large scale, the cycle can be used for industrial power production or as a central power plant for a community, with refrigeration produced as required by the application. On the small scale, an affordable residential or commercial unit could allow independent electricity generation for the home or business while also cooling it.

  1. Installation guidelines for solar heating system, single-family residence at New Castle, Pennsylvania

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar heating system installer guidelines are presented for each subsystem. This single family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: (1) liquid cooled flat plate collectors; (2) water storage tank; (3) passive solar-fired domestic water preheater; (4) electric hot water heater; (5) heat pump with electric backup; (6) solar hot water coil unit; (7) tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; (8) control system; and (9) air-cooled heat purge unit. Information is provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance in the form of written descriptions, schematics, detail drawings, pictures, and manufacturer's component data.

  2. Collisional dissipation in Vlasov turbulence

    NASA Astrophysics Data System (ADS)

    Pezzi, O.; Perrone, D.; Servidio, S.; Valentini, F.; Sorriso-Valvo, L.; Zouganelis, Y.; Veltri, P.

    2017-12-01

    A puzzling aspect of solar-wind dynamics consists in the empirical evidence that it is hotter than expected for an adiabatic expanding gas. The cooling of the expanding solar wind is less efficient than it should be, then a key question is how does the solar wind energy turn into heat and keep it hot. Understanding the mechanisms of energy dissipation into heat from the Sun in such a collision-free system represents a key challenge not only in space plasma physics but also from a general thermodynamic perspective. Indeed, any mechanism which does not take into account collisions lacks the final part of the heating process description, related to the irreversible degradation of information. In the solar wind collisions are considered far too weak to produce significant effects on plasma behavior. However, the presence of strong out-of-equilibrium phase space structures, whose signature has been highlighted by in-situ spacecraft measurements and by means of kinetic numerical simulations, could enhance the inter-particle collisions and convert the non-equilibrium features into heat. Here, by focusing on a spatially homogeneous force-free weakly collisional plasma, it is shown that several characteristic times are recovered during the collisional relaxation of fine velocity structures and, hence, fine velocity structures are dissipated by collisions in a time much shorter compared to global non-Maxwellian features, as temperature anisotropies. This indicates that plasma collisionality can locally increase due to the strong velocity space deformation of the particle velocity distribution function (VDF). To quantify the effect of collisions in a turbulent scenario, a hybrid Vlasov-Maxwell simulation has been performed to generate the typical turbulent kinetic plasma regime, characterized by the presence of coherent structures, such as vortices and current sheets, where the ion distribution function is found to be strongly deformed. A direct measure of the collisional dissipation confirms that VDF deformations are significantly related to the enhancement of the plasma collisionality. Finally, the use of the collisional operator in an already developed turbulence allows us to investigate the inter-play of collisions, which tend to restore the thermal equilibrium, and other collisionless physical processes.

  3. Two-phase Heating in Flaring Loops

    NASA Astrophysics Data System (ADS)

    Zhu, Chunming; Qiu, Jiong; Longcope, Dana W.

    2018-03-01

    We analyze and model a C5.7 two-ribbon solar flare observed by the Solar Dynamics Observatory, Hinode, and GOES on 2011 December 26. The flare is made of many loops formed and heated successively over one and half hours, and their footpoints are brightened in the UV 1600 Å before enhanced soft X-ray and EUV missions are observed in flare loops. Assuming that anchored at each brightened UV pixel is a half flaring loop, we identify more than 6700 half flaring loops, and infer the heating rate of each loop from the UV light curve at the footpoint. In each half loop, the heating rate consists of two phases: intense impulsive heating followed by a low-rate heating that is persistent for more than 20 minutes. Using these heating rates, we simulate the evolution of their coronal temperatures and densities with the model of the “enthalpy-based thermal evolution of loops.” In the model, suppression of thermal conduction is also considered. This model successfully reproduces total soft X-ray and EUV light curves observed in 15 passbands by four instruments GOES, AIA, XRT, and EVE. In this flare, a total energy of 4.9 × 1030 erg is required to heat the corona, around 40% of this energy is in the slow-heating phase. About two-fifths of the total energy used to heat the corona is radiated by the coronal plasmas, and the other three fifth transported to the lower atmosphere by thermal conduction.

  4. Integration of dye-sensitized solar cells, thermoelectric modules and electrical storage loop system to constitute a novel photothermoelectric generator.

    PubMed

    Chang, Ho; Yu, Zhi-Rong

    2012-08-01

    This study self-develops a novel type of photothermoelectric power generation modules. Dye-sensitized solar cells (DSSCs) serve as the photoelectric conversion system and a copper (Cu) heat-transfer nanofilm coating on both sides of the thermoelectric generator (TEG) acts as a thermoelectric conversion system. Thus module assembly absorbs light and generates electricity by DSSCs, and also recycles waste heat and generates power by the TEG. In addition, a set of pulsating heat pipes (PHP) filled with Cu nanofluid is placed on the cooling side to increase cooling effects and enhance the power generation efficiency. Results show that when the heat source of thermoelectric modules reaches 90 degrees C, TEG power output is increased by 85.7%. Besides, after thermoelectric modules are heated by additional heat source at 80 degrees C, the electrical energy generated by them can let a NiMH cell (1.25 V) be sufficiently charged in about 30 minutes. When photothermoelectric modules is illumined by simulated light, the temperature difference of two sides of TEG can reach 7 degrees C and the thermoelectric conversion efficiency is 2.17%. Furthermore, the power output of the thermoelectric modules is 11.48 mW/cm2, enhancing 1.4 % compared to merely using DSSCs module.

  5. Solar tower power plant using a particle-heated steam generator: Modeling and parametric study

    NASA Astrophysics Data System (ADS)

    Krüger, Michael; Bartsch, Philipp; Pointner, Harald; Zunft, Stefan

    2016-05-01

    Within the framework of the project HiTExStor II, a system model for the entire power plant consisting of volumetric air receiver, air-sand heat exchanger, sand storage system, steam generator and water-steam cycle was implemented in software "Ebsilon Professional". As a steam generator, the two technologies fluidized bed cooler and moving bed heat exchangers were considered. Physical models for the non-conventional power plant components as air- sand heat exchanger, fluidized bed coolers and moving bed heat exchanger had to be created and implemented in the simulation environment. Using the simulation model for the power plant, the individual components and subassemblies have been designed and the operating parameters were optimized in extensive parametric studies in terms of the essential degrees of freedom. The annual net electricity output for different systems was determined in annual performance calculations at a selected location (Huelva, Spain) using the optimized values for the studied parameters. The solution with moderate regenerative feed water heating has been found the most advantageous. Furthermore, the system with moving bed heat exchanger prevails over the system with fluidized bed cooler due to a 6 % higher net electricity yield.

  6. The balance of kinetic and total energy simulated by the OSU two-level atmospheric general circulation model for January and July

    NASA Technical Reports Server (NTRS)

    Wang, J.-T.; Gates, W. L.; Kim, J.-W.

    1984-01-01

    A three-year simulation which prescribes seasonally varying solar radiation and sea surface temperature is the basis of the present study of the horizontal structure of the balances of kinetic and total energy simulated by Oregon State University's two-level atmospheric general circulation model. Mechanisms responsible for the local energy changes are identified, and the energy balance requirement's fulfilment is examined. In January, the vertical integral of the total energy shows large amounts of external heating over the North Pacific and Atlantic, together with cooling over most of the land area of the Northern Hemisphere. In July, an overall seasonal reversal is found. Both seasons are also characterized by strong energy flux divergence in the tropics, in association with the poleward transport of heat and momentum.

  7. Alternative energy sources IV; Proceedings of the Fourth Miami International Conference, Miami Beach, FL, December 14-16, 1981. Volume 1 - Solar Collectors Storage

    NASA Astrophysics Data System (ADS)

    Veziroglu, T. N.

    1982-10-01

    Aspects of solar measurements, solar collectors, selective coatings, thermal storage, phase change storage, and heat exchangers are discussed. The analysis and testing of flat-plate solar collectors are addressed. The development and uses of plastic collectors, a solar water heating system, solar energy collecting oil barrels, a glass collector panel, and a two-phase thermosyphon system are considered. Studies of stratification in thermal storage, of packed bed and fluidized bed systems, and of thermal storage in solar towers, in wall passive systems, and in reversible chemical reactions are reported. Phase change storage by direct contact processes and in residential solar space heating and cooling is examined, as are new materials and surface characteristics for solar heat storage. The use of R-11 and Freon-113 in heat exchange is discussed. No individual items are abstracted in this volume

  8. A generalized analysis of solar space heating

    NASA Astrophysics Data System (ADS)

    Clark, J. A.

    A life-cycle model is developed for solar space heating within the United States. The model consists of an analytical relationship among five dimensionless parameters that include all pertinent technical, climatological, solar, operating and economic factors that influence the performance of a solar space heating system. An important optimum condition presented is the break-even metered cost of conventional fuel at which the cost of the solar system is equal to that of a conventional heating system. The effect of Federal (1980) and State (1979) income tax credits on these costs is determined. A parameter that includes both solar availability and solar system utilization is derived and plotted on a map of the U.S. This parameter shows the most favorable present locations for solar space heating application to be in the Central and Mountain States. The data employed are related to the rehabilitated solar data recently made available by the National Climatic Center.

  9. Economical solar-heating for homes

    NASA Technical Reports Server (NTRS)

    Allred, J. W.; Shinn, J. M., Jr.; Kirby, C. E.; Barringer, S. R.

    1977-01-01

    Do-it-yourself supplementary solar-heating system is available for purchase at approximately $2,000. Report describes design, construction, testing, and economic analysis of low-cost solar heating system.

  10. Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Y.; Liou, K. N.; Lee, W. -L.

    2012-01-01

    A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to -50 to + 50 W m -2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up tomore » 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to -40 g m -2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between -12~12 W m -2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation over the Sierras show that the mountain area receives more solar insolation during early morning and late afternoon, resulting in enhanced upward sensible heat and latent heat fluxes from the surface and a corresponding increase in surface skin temperature. During the middle of the day, however, the surface insolation and heat fluxes show negative changes, indicating a cooling effect. Hence overall, the diurnal variations of surface temperature and surface fluxes in the Sierra-Nevada are reduced through the interactions of radiative transfer and mountains. Finally, the hourly differences of the surface solar insolation in higher elevated regions, however, show smaller magnitude in negative changes during the middle of the day and possibly more solar fluxes received during the whole day.« less

  11. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    NASA Astrophysics Data System (ADS)

    Harber, H.

    1981-09-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  12. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    NASA Technical Reports Server (NTRS)

    Harber, H.

    1981-01-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  13. Vacuum Pyrolysis and Related ISRU Techniques

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.; Pomeroy, Brian R.; Banks, Ian S.; Benz, Alexis

    2007-01-01

    A number of ISRU-related techniques have been developed at NASA Goddard Space Flight Center. The focus of the team has been on development of the vacuum pyrolysis technique for the production of oxygen from the lunar regolith. However, a number of related techniques have also been developed, including solar concentration, solar heating of regolith, resistive heating of regolith, sintering, regolith boiling, process modeling, parts manufacturing, and instrumentation development. An initial prototype system was developed to vaporize regolith simulants using a approx. l square meter Fresnel lens. This system was successfully used to vaporize quantities of approx. lg, and both mass spectroscopy of the gasses produced and Scanning Electron Microscopy (SEM) of the slag were done to show that oxygen was produced. Subsequent tests have demonstrated the use of a larger system With a 3.8m diameter reflective mirror to vaporize the regolith. These results and modeling of the vacuum pyrolysis reaction have indicated that the vaporization of the oxides in the regolith will occur at lower temperature for stronger vacuums. The chemical modeling was validated by testing of a resistive heating system that vaporized quantities of approx. 10g of MLS-1A. This system was also used to demonstrate the sintering of regolith simulants at reduced temperatures in high vacuum. This reduction in the required temperature prompted the development of a small-scale resistive heating system for application as a scientific instrument as well as a proof-of principle experiment for oxygen production.

  14. Heat-Transfer Fluids for Solar-Energy Systems

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1982-01-01

    43-page report investigates noncorrosive heat-transport fluids compatible with both metallic and nonmetallic solar collectors and plumbing systems. Report includes tables and figures of X-ray inspections for corrosion and schematics of solar-heat transport systems and heat rejection systems.

  15. Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2003-01-01

    The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in identifying design solutions and validating thermal performance models under a very aggressive development schedule. The test data have assisted Johns Hopkins engineers in selecting a flight solar array vendor and a thermal shield design. MESSENGER is one in a series of missions in NASA's Discovery Program. Infrared thermography provides data on the thermal gradients in the MESSENGER components during high solar insolation vacuum testing.

  16. Performance simulation of the JPL solar-powered distiller. Part 1: Quasi-steady-state conditions. [for cooling microwave equipment

    NASA Technical Reports Server (NTRS)

    Yung, C. S.; Lansing, F. L.

    1983-01-01

    A 37.85 cu m (10,000 gallons) per year (nominal) passive solar powered water distillation system was installed and is operational in the Venus Deep Space Station. The system replaced an old, electrically powered water distiller. The distilled water produced with its high electrical resistivity is used to cool the sensitive microwave equipment. A detailed thermal model was developed to simulate the performance of the distiller and study its sensitivity under varying environment and load conditions. The quasi-steady state portion of the model is presented together with the formulas for heat and mass transfer coefficients used. Initial results indicated that a daily water evaporation efficiency of 30% can be achieved. A comparison made between a full day performance simulation and the actual field measurements gave good agreement between theory and experiment, which verified the model.

  17. Modeling of a solar-assisted hybrid absorption/desiccant system for applications in Puerto Rico and the Caribbean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, H.R.; Gonzalez, J.E.; Khan, A.Y.

    1996-11-01

    This study is concerned with the feasibility of different arrangements of solar-assisted air conditioning systems for applications in Puerto Rico. The thermodynamic performance of an absorption system alone and coupled to a liquid or a solid desiccant dehumidification system was investigated under variable cooling load conditions. The dynamic modeling was based on heat and mass balances for the systems components. Simulations for climatic conditions in Puerto Rico show that average solar fractions of more than 85% can be achieved with both the absorption system and the hybrid systems for medium size cooling loads. Results indicate that higher coefficients of performancemore » are obtained when the solar assisted absorption system is not coupled to a desiccant dehumidification system.« less

  18. Interim Feasibility Assessment Method for Solar Heating and Cooling of Army Buildings

    DTIC Science & Technology

    1976-05-01

    Solar Heating and Cooling System Diagram Conventional Flat-Plate Collector ...tank. The sunlight falling on the array warms a fluid (usually glycol and water), which is pumped through the solar collectors . The heat from this...the system an SYSTEM DIAGRAM auxiliary healer capable of supplying all or part of the heating or cooling demand. Solar Collectors The function

  19. Study Guide for Fundamentals of Solar Heating: A Correspondence Course for the Airconditioning Industry.

    ERIC Educational Resources Information Center

    Sheet Metal and Air Conditioning Contractors National Association, Vienna, VA.

    This study guide groups eleven lessons into four study units. The first unit discusses the development and basic concepts of solar heating. The second unit deals with the nomenclature of the solar heating system. The third study unit covers sizing of the solar heating system to meet demand and discusses the operation of the total system. The…

  20. Survey of power tower technology

    NASA Astrophysics Data System (ADS)

    Hildebrandt, A. F.; Dasgupta, S.

    1980-05-01

    The history of the power tower programs is reviewed, and attention is given to the current state of heliostat, receiver, and storage design. Economic considerations are discussed, as are simulation studies and implications. Also dealt with are alternate applications for the power tower and some financing and energy aspects of solar electric conversion. It is noted that with a national commitment to solar energy, the power tower concept could generate 40 GW of electricity and double this amount in process heat by the year 2000. Calculations show an energy amplification factor of 20 for solar energy plants; that is, the ratio of the electric energy produced over the lifetime of a power plant to the thermal energy required to produce the plant.

  1. Coupled optical and thermal detailed simulations for the accurate evaluation and performance improvement of molten salts solar towers

    NASA Astrophysics Data System (ADS)

    García-Barberena, Javier; Mutuberria, Amaia; Palacin, Luis G.; Sanz, Javier L.; Pereira, Daniel; Bernardos, Ana; Sanchez, Marcelino; Rocha, Alberto R.

    2017-06-01

    The National Renewable Energy Centre of Spain, CENER, and the Technology & Innovation area of ACS Cobra, as a result of their long term expertise in the CSP field, have developed a high-quality and high level of detail optical and thermal simulation software for the accurate evaluation of Molten Salts Solar Towers. The main purpose of this software is to make a step forward in the state-of-the-art of the Solar Towers simulation programs. Generally, these programs deal with the most critical systems of such plants, i.e. the solar field and the receiver, on an independent basis. Therefore, these programs typically neglect relevant aspects in the operation of the plant as heliostat aiming strategies, solar flux shapes onto the receiver, material physical and operational limitations, transient processes as preheating and secure cloud passing operating modes, and more. The modelling approach implemented in the developed program consists on effectively coupling detailed optical simulations of the heliostat field with also detailed and full-transient thermal simulations of the molten salts tube-based external receiver. The optical model is based on an accurate Monte Carlo ray-tracing method which solves the complete solar field by simulating each of the heliostats at once according to their specific layout in the field. In the thermal side, the tube-based cylindrical external receiver of a Molten Salts Solar Tower is modelled assuming one representative tube per panel, and implementing the specific connection layout of the panels as well as the internal receiver pipes. Each tube is longitudinally discretized and the transient energy and mass balances in the temperature dependent molten salts and steel tube models are solved. For this, a one dimensional radial heat transfer model based is used. The thermal model is completed with a detailed control and operation strategy module, able to represent the appropriate operation of the plant. An integration framework has been developed, helping ACS Cobra to adequately handle the optical and thermal coupled simulations. According to current results it can be concluded that the developed model has resulted in a powerful tool to improve the design and operation of future ACS Cobra's Molten Salts Solar Towers, since historical data based on its projects have been used for validation of the final tool.

  2. Economic analysis of solar assisted absorption chiller for a commercial building

    NASA Astrophysics Data System (ADS)

    Antonyraj, Gnananesan

    Dwindling fossil fuels coupled with changes in global climate intensified the drive to make use of renewable energy resources that have negligible impact on the environment. In this attempt, the industrial community produced various devices and systems to make use of solar energy for heating and cooling of building space as well as generate electric power. The most common components employed for collection of solar energy are the flat plate and evacuated tube collectors that produce hot water that can be employed for heating the building space. In order to cool the building, the absorption chiller is commonly employed that requires hot water at high temperatures for its operation. This thesis deals with economic analysis of solar collector and absorption cooling system to meet the building loads of a commercial building located in Chattanooga, Tennessee. Computer simulations are employed to predict the hourly building loads and performance of the flat plate and evacuated tube solar collectors using the hourly weather data. The key variables affecting the economic evaluation of such system are identified and the influence of these parameters is presented. The results of this investigation show that the flat plate solar collectors yield lower payback period compared to the evacuated tube collectors and economic incentives offered by the local and federal agencies play a major role in lowering the payback period.

  3. Solar Process Heat Basics | NREL

    Science.gov Websites

    Process Heat Basics Solar Process Heat Basics Commercial and industrial buildings may use the same , black metal panel mounted on a south-facing wall to absorb the sun's heat. Air passes through the many nonresidential buildings. A typical system includes solar collectors that work along with a pump, heat exchanger

  4. Physical Processes for Driving Ionospheric Outflows in Global Simulations

    NASA Technical Reports Server (NTRS)

    Moore, Thomas Earle; Strangeway, Robert J.

    2009-01-01

    We review and assess the importance of processes thought to drive ionospheric outflows, linking them as appropriate to the solar wind and interplanetary magnetic field, and to the spatial and temporal distribution of their magnetospheric internal responses. These begin with the diffuse effects of photoionization and thermal equilibrium of the ionospheric topside, enhancing Jeans' escape, with ambipolar diffusion and acceleration. Auroral outflows begin with dayside reconnexion and resultant field-aligned currents and driven convection. These produce plasmaspheric plumes, collisional heating and wave-particle interactions, centrifugal acceleration, and auroral acceleration by parallel electric fields, including enhanced ambipolar fields from electron heating by precipitating particles. Observations and simulations show that solar wind energy dissipation into the atmosphere is concentrated by the geomagnetic field into auroral regions with an amplification factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Internal plasmas thus enable electromagnetic driving via coupling to the plasma, neutral gas and by extension, the entire body " We assess the Importance of each of these processes in terms of local escape flux production as well as global outflow, and suggest methods for their implementation within multispecies global simulation codes. We complete 'he survey with an assessment of outstanding obstacles to this objective.

  5. Solar Schematic

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The home shown at right is specially designed to accommodate solar heating units; it has roof planes in four directions, allowing placement of solar collectors for best exposure to the sun. Plans (bottom) and complete working blueprints for the solar-heated house are being marketed by Home Building Plan Service, Portland, Oregon. The company also offers an inexpensive schematic (center) showing how a homeowner only moderately skilled in the use of tools can build his own solar energy system, applicable to new or existing structures. The schematic is based upon the design of a low-cost solar home heating system built and tested by NASA's Langley Research Center; used to supplement a warm-air heating system, it can save the homeowner about 40 percent of his annual heating bill for a modest investment in materials and components. Home Building Plan Service saved considerable research time by obtaining a NASA technical report which details the Langley work. The resulting schematic includes construction plans and simplified explanations of solar heat collection, collectors and other components, passive heat factors, domestic hot water supply and how to work with local heating engineers.

  6. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.

  7. Collisionless dissipation processes in quasi-parallel shocks. [in solar wind

    NASA Technical Reports Server (NTRS)

    Quest, K. B.; Forslund, D. W.; Brackbill, J. U.; Lee, K.

    1983-01-01

    The evolution of collisionless, quasi-parallel shocks (the angle between the shock normal and the upstream magnetic field being less than 45 deg) is examined using two dimensional particle simulations. Reflected ions upstream from the shock are observed with average guiding center velocity and gyrational energy which agree well with the prediction of simple specular reflection. Strong ion heating through the shock ramp is apparently caused by large amplitude whistler turbulence. A flux of suprathermal electrons is also the magnetic field direction. Much stronger ion heating occurs in the shock than electron heating. The relevance of this work to the earth's bow shock is discussed.

  8. Solar space heating for the Visitors Center, Stephens College, Columbia, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system located at the Visitors' Center on the Stephens College Campus, Columbia, Missouri is discussed. The system is installed in a four-story, 15,000 square foot building. The solar energy system is an integral design of the building and utilizes 176 hydronic flat plate collectors which use a 50 percent water ethylene blycol solution and water-to-water heat exchanger. Solar heated water is stored in a 5,000 gallon water storage tank located in the basement equipment room. A natural gas fired hot water boiler supplies hot water when the solar energy heat supply fails to meet the demand. The designed solar contribution is 71 percent of the heating load.

  9. A generalized analysis of solar space heating in the United States

    NASA Astrophysics Data System (ADS)

    Clark, J. A.

    A life-cycle model is developed for solar space heating within the United States that is based on the solar design data from the Los Alamos Scientific Laboratory. The model consists of an analytical relationship among five dimensionless parameters that include all pertinent technical, climatological, solar, operating and economic factors that influence the performance of a Solar Space Heating System. An important optimum condition presented is the 'Breakeven' metered cost of conventional fuel at which the cost of the solar system is equal to that of a conventional heating system. The effect of Federal (1980) and State (1979) income tax credits on these costs is determined. A parameter that includes both solar availability and solar system utilization is derived and plotted on a map of the U.S. This parameter shows the most favorable present locations for solar space heating application to be in the Central and Mountain States. The data employed are related to the rehabilitated solar data recently made available by the National Climatic Center (SOLMET).

  10. Transient analysis of a molten salt central receiver (MSCR) in a solar power plant

    NASA Astrophysics Data System (ADS)

    Joshi, A.; Wang, C.; Akinjiola, O.; Lou, X.; Neuschaefer, C.; Quinn, J.

    2016-05-01

    Alstom is developing solar power tower plants utilizing molten salt as the working fluid. In solar power tower, the molten salt central receiver (MSCR) atop of the tower is constructed of banks of tubes arranged in panels creating a heat transfer surface exposed to the solar irradiation from the heliostat field. The molten salt heat transfer fluid (HTF), in this case 60/40%wt NaNO3-KNO3, flows in serpentine flow through the surface collecting sensible heat thus raising the HTF temperature from 290°C to 565°C. The hot molten salt is stored and dispatched to produce superheated steam in a steam generator, which in turn produces electricity in the steam turbine generator. The MSCR based power plant with a thermal energy storage system (TESS) is a fully dispatchable renewable power plant with a number of opportunities for operational and economic optimization. This paper presents operation and controls challenges to the MSCR and the overall power plant, and the use of dynamic model computer simulation based transient analyses applied to molten salt based solar thermal power plant. This study presents the evaluation of the current MSCR design, using a dynamic model, with emphasis on severe events affecting critical process response, such as MS temperature deviations, and recommend MSCR control design improvements based on the results. Cloud events are the scope of the transient analysis presented in this paper. The paper presents results from a comparative study to examine impacts or effects on key process variables related to controls and operation of the MSCR plant.

  11. Solar Thermal Propulsion Improvements at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P.

    2003-01-01

    Solar Thermal Propulsion (STP) is a concept which operates by transferring solar energy to a propellant, which thermally expands through a nozzle. The specific impulse performance is about twice that of chemical combustions engines, since there is no need for an oxidizer. In orbit, an inflatable concentrator mirror captures sunlight and focuses it inside an engine absorber cavity/heat exchanger, which then heats the propellant. The primary application of STP is with upperstages taking payloads from low earth orbit to geosynchronous earth orbit or earth escape velocities. STP engines are made of high temperature materials since heat exchanger operation requires temperatures greater than 2500K. Refractory metals such as tungsten and rhenium have been examined. The materials must also be compatible with hot hydrogen propellant. MSFC has three different engine designs, made of different refractory metal materials ready to test. Future engines will be made of high temperature carbide materials, which can withstand temperatures greater than 3000K, hot hydrogen, and provide higher performance. A specific impulse greater than 1000 seconds greatly reduces the amount of required propellant. A special 1 OkW solar ground test facility was made at MSFC to test various STP engine designs. The heliostat mirror, with dual-axis gear drive, tracks and reflects sunlight to the 18 ft. diameter concentrator mirror. The concentrator then focuses sunlight through a vacuum chamber window to a small focal point inside the STP engine. The facility closely simulates how the STP engine would function in orbit. The flux intensity at the focal point is equivalent to the intensity at a distance of 7 solar radii from the sun.

  12. Vlasov Simulations of Multi-ion Plasma Turbulence in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Valentini, F.; Servidio, S.; Dalena, S.; Veltri, P.

    2013-01-01

    Hybrid Vlasov-Maxwell simulations are employed to investigate the role of kinetic effects in a two-dimensional turbulent multi-ion plasma, composed of protons, alpha particles, and fluid electrons. In the typical conditions of the solar-wind environment, and in situations of decaying turbulence, the numerical results show that the velocity distribution functions of both ion species depart from the typical configuration of thermal equilibrium. These non-Maxwellian features are quantified through the statistical analysis of the temperature anisotropy, for both protons and alpha particles, in the reference frame given by the local magnetic field. Anisotropy is found to be higher in regions of high magnetic stress. Both ion species manifest a preferentially perpendicular heating, although the anisotropy is more pronounced for the alpha particles, according to solar wind observations. The anisotropy of the alpha particle, moreover, is correlated to the proton anisotropy and also depends on the local differential flow between the two species. Evident distortions of the particle distribution functions are present, with the production of bumps along the direction of the local magnetic field. The physical phenomenology recovered in these numerical simulations reproduces very common measurements in the turbulent solar wind, suggesting that the multi-ion Vlasov model constitutes a valid approach to understanding the nature of complex kinetic effects in astrophysical plasmas.

  13. The development of a solar-powered residential heating and cooling system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Efforts to demonstrate the engineering feasibility of utilizing solar power for residential heating and cooling are described. These efforts were concentrated on the analysis, design, and test of a full-scale demonstration system which is currently under construction at the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama. The basic solar heating and cooling system under development utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating and water heating, and an absorption cycle air conditioner for space cooling.

  14. Experimental validation and model development for thermal transmittances of porous window screens and horizontal louvred blind systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Robert; Goudey, Howdy; Curcija, D. Charlie

    Virtually every home in the US has some form of shades, blinds, drapes, or other window attachment, but few have been designed for energy savings. In order to provide a common basis of comparison for thermal performance it is important to have validated simulation tools. This study outlines a review and validation of the ISO 15099 centre-of-glass thermal transmittance correlations for naturally ventilated cavities through measurement and detailed simulations. The focus is on the impacts of room-side ventilated cavities, such as those found with solar screens and horizontal louvred blinds. The thermal transmittance of these systems is measured experimentally, simulatedmore » using computational fluid dynamics analysis, and simulated utilizing simplified correlations from ISO 15099. Finally, correlation coefficients are proposed for the ISO 15099 algorithm that reduces the mean error between measured and simulated heat flux for typical solar screens from 16% to 3.5% and from 13% to 1% for horizontal blinds.« less

  15. Experimental validation and model development for thermal transmittances of porous window screens and horizontal louvred blind systems

    DOE PAGES

    Hart, Robert; Goudey, Howdy; Curcija, D. Charlie

    2017-05-16

    Virtually every home in the US has some form of shades, blinds, drapes, or other window attachment, but few have been designed for energy savings. In order to provide a common basis of comparison for thermal performance it is important to have validated simulation tools. This study outlines a review and validation of the ISO 15099 centre-of-glass thermal transmittance correlations for naturally ventilated cavities through measurement and detailed simulations. The focus is on the impacts of room-side ventilated cavities, such as those found with solar screens and horizontal louvred blinds. The thermal transmittance of these systems is measured experimentally, simulatedmore » using computational fluid dynamics analysis, and simulated utilizing simplified correlations from ISO 15099. Finally, correlation coefficients are proposed for the ISO 15099 algorithm that reduces the mean error between measured and simulated heat flux for typical solar screens from 16% to 3.5% and from 13% to 1% for horizontal blinds.« less

  16. Numerical simulation of the world ocean circulation

    NASA Technical Reports Server (NTRS)

    Takano, K.; Mintz, Y.; Han, Y. J.

    1973-01-01

    A multi-level model, based on the primitive equations, is developed for simulating the temperature and velocity fields produced in the world ocean by differential heating and surface wind stress. The model ocean has constant depth, free slip at the lower boundary, and neglects momentum advection; so that there is no energy exchange between the barotropic and baroclinic components of the motion, although the former influences the latter through temperature advection. The ocean model was designed to be coupled to the UCLA atmospheric general circulation model, for the study of the dynamics of climate and climate changes. But here, the model is tested by prescribing the observed seasonally varying surface wind stress and the incident solar radiation, the surface air temperature and humidity, cloudiness and the surface wind speed, which, together with the predicted ocean surface temperature, determine the surface flux of radiant energy, sensible heat and latent heat.

  17. Thermally induced vibrations of smart solar panel in a low-orbit satellite

    NASA Astrophysics Data System (ADS)

    Azadi, E.; Fazelzadeh, S. Ahmad; Azadi, M.

    2017-03-01

    In this paper, a smart flexible satellite moving in a circular orbit with two flexible panels are studied. The panels have been modeled as clamped-free-free-free rectangular plates with attached piezoelectric actuators. It is assumed that the satellite has a pitch angle rotation maneuver. Rapid temperature changes at day-night transitions in orbit generate time dependent bending moments. Satellite maneuver and temperature varying induce vibrations in the appendages. So, to simulate the system, heat radiation effects on the appendages have been considered. The nonlinear equations of motion and the heat transfer equations are coupled and solved simultaneously. So, the governing equations of motion are nonlinear and very complicated ones. Finally, the whole system is simulated and the effects of the heat radiation, radius of the orbit, piezoelectric voltages, and piezoelectric locations on the response of the system are studied.

  18. Study of a two-bed silica gel-water adsorption chiller: performance analysis

    NASA Astrophysics Data System (ADS)

    Sah, Ramesh P.; Choudhury, Biplab; Das, Ranadip K.

    2018-01-01

    In this study, a lumped parameter simulation model has been developed for analysis of the thermal performance of a single-stage two-bed adsorption chiller. Since silica gel has low regeneration temperature and water has high latent heat of vaporisation, silica gel-water pair has been chosen as the working pair of the adsorption chiller. Low-grade waste heat or solar heat at around 70-80°C can be used to run this adsorption chiller. In this model, the effects of operating parameters on the performance of the chiller have been studied. The simulated results show that the cooling capacity of the chiller has an optimum value of 5.95 kW for a cycle time of 1600 s with the hot, cooling, and chilled water inlet temperatures at 85°C, 25°C, and 14°C, respectively. The present model can be utilised to investigate and optimise adsorption chillers.

  19. Impact of air-sea drag coefficient for latent heat flux on large scale climate in coupled and atmosphere stand-alone simulations

    NASA Astrophysics Data System (ADS)

    Torres, Olivier; Braconnot, Pascale; Marti, Olivier; Gential, Luc

    2018-05-01

    The turbulent fluxes across the ocean/atmosphere interface represent one of the principal driving forces of the global atmospheric and oceanic circulation. Despite decades of effort and improvements, representation of these fluxes still presents a challenge due to the small-scale acting turbulent processes compared to the resolved scales of the models. Beyond this subgrid parameterization issue, a comprehensive understanding of the impact of air-sea interactions on the climate system is still lacking. In this paper we investigates the large-scale impacts of the transfer coefficient used to compute turbulent heat fluxes with the IPSL-CM4 climate model in which the surface bulk formula is modified. Analyzing both atmosphere and coupled ocean-atmosphere general circulation model (AGCM, OAGCM) simulations allows us to study the direct effect and the mechanisms of adjustment to this modification. We focus on the representation of latent heat flux in the tropics. We show that the heat transfer coefficients are highly similar for a given parameterization between AGCM and OAGCM simulations. Although the same areas are impacted in both kind of simulations, the differences in surface heat fluxes are substantial. A regional modification of heat transfer coefficient has more impact than uniform modification in AGCM simulations while in OAGCM simulations, the opposite is observed. By studying the global energetics and the atmospheric circulation response to the modification, we highlight the role of the ocean in dampening a large part of the disturbance. Modification of the heat exchange coefficient modifies the way the coupled system works due to the link between atmospheric circulation and SST, and the different feedbacks between ocean and atmosphere. The adjustment that takes place implies a balance of net incoming solar radiation that is the same in all simulations. As there is no change in model physics other than drag coefficient, we obtain similar latent heat flux between coupled simulations with different atmospheric circulations. Finally, we analyze the impact of model tuning and show that it can offset part of the feedbacks.

  20. Solar heating and cooling.

    PubMed

    Duffie, J A

    1976-01-01

    Solar energy is discussed as an energy resource that can be converted into useful energy forms to meet a variety of energy needs. The review briefly explains the nature of this energy resource, the kinds of applications that can be made useful, and the status of several systems to which it has been applied. More specifically, information on solar collectors, solar water heating, solar heating of buildings, solar cooling plus other applications, are included.

  1. Experimental and numerical study of latent heat thermal energy storage systems assisted by heat pipes for concentrated solar power application

    NASA Astrophysics Data System (ADS)

    Tiari, Saeed

    A desirable feature of concentrated solar power (CSP) with integrated thermal energy storage (TES) unit is to provide electricity in a dispatchable manner during cloud transient and non-daylight hours. Latent heat thermal energy storage (LHTES) offers many advantages such as higher energy storage density, wider range of operating temperature and nearly isothermal heat transfer relative to sensible heat thermal energy storage (SHTES), which is the current standard for trough and tower CSP systems. Despite the advantages mentioned above, LHTES systems performance is often limited by low thermal conductivity of commonly used, low cost phase change materials (PCMs). Research and development of passive heat transfer devices, such as heat pipes (HPs) to enhance the heat transfer in the PCM has received considerable attention. Due to its high effective thermal conductivity, heat pipe can transport large amounts of heat with relatively small temperature difference. The objective of this research is to study the charging and discharging processes of heat pipe-assisted LHTES systems using computational fluid dynamics (CFD) and experimental testing to develop a method for more efficient energy storage system design. The results revealed that the heat pipe network configurations and the quantities of heat pipes integrated in a thermal energy storage system have a profound effect on the thermal response of the system. The optimal placement of heat pipes in the system can significantly enhance the thermal performance. It was also found that the inclusion of natural convection heat transfer in the CFD simulation of the system is necessary to have a realistic prediction of a latent heat thermal storage system performance. In addition, the effects of geometrical features and quantity of fins attached to the HPs have been studied.

  2. Temperature and color management of silicon solar cells for building integrated photovoltaic

    NASA Astrophysics Data System (ADS)

    Amara, Mohamed; Mandorlo, Fabien; Couderc, Romain; Gerenton, Félix; Lemiti, Mustapha

    2018-01-01

    Color management of integrated photovoltaics must meet two criteria of performance: provide maximum conversion efficiency and allow getting the chosen colors with an appropriate brightness, more particularly when using side by side solar cells of different colors. As the cooling conditions are not necessarily optimal, we need to take into account the influence of the heat transfer and temperature. In this article, we focus on the color space and brightness achieved by varying the antireflective properties of flat silicon solar cells. We demonstrate that taking into account the thermal effects allows freely choosing the color and adapting the brightness with a small impact on the conversion efficiency, except for dark blue solar cells. This behavior is especially true when heat exchange by convection is low. Our optical simulations show that the perceived color, for single layer ARC, is not varying with the position of the observer, whatever the chosen color. The use of a double layer ARC adds flexibility to tune the wanted color since the color space is greatly increased in the green and yellow directions. Last, choosing the accurate material allows both bright colors and high conversion efficiency at the same time.

  3. Magnetic pumping of the solar wind

    NASA Astrophysics Data System (ADS)

    Egedal, Jan; Lichko, Emily; Daughton, William

    2015-11-01

    The transport of matter and radiation in the solar wind and terrestrial magnetosphere is a complicated problem involving competing processes of charged particles interacting with electric and magnetic fields. Given the rapid expansion of the solar wind, it would be expected that superthermal electrons originating in the corona would cool rapidly as a function of distance to the Sun. However, this is not observed, and various models have been proposed as candidates for heating the solar wind. In the compressional pumping mechanism explored by Fisk and Gloeckler particles are accelerated by random compressions by the interplanetary wave turbulence. This theory explores diffusion due to spatial non-uniformities and provides a mechanism for redistributing particle. For investigation of a related but different heating mechanism, magnetic pumping, in our work we include diffusion of anisotropic features that develops in velocity space. The mechanism allows energy to be transferred to the particles directly from the turbulence. Guided by kinetic simulations a theory is derived for magnetic pumping. At the heart of this work is a generalization of the Parker Equation to capture the role of the pressure anisotropy during the pumping process. Supported by NASA grant NNX15AJ73G.

  4. Solar energy system performance evaluation: Seasonal report for Contemporary Newman, Newman, Georgia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A hot solar heating and hot water system's operational performance from June 1979 through April 1980 is evaluated. Solar energy satisfied 42 percent of the total measure load (hot water plus space heating), which was somewhat higher than the solar fraction of 32 percent. When system losses into the heating space from duct leaks and storage are included, the heating solar fraction increases from 42 to 64 percent. Net electrical energy savings were 5.47 million BTUs.

  5. 38 CFR 36.4301 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... improvement. An improvement to an existing dwelling or farm residence through the installation of a solar heating system, a solar heating and cooling system, or a combined solar heating and cooling system or...

  6. Solar-heated municipal swimming pools, a case study: Dade County, Florida

    NASA Astrophysics Data System (ADS)

    Levin, M.

    1981-09-01

    The installation of a solar energy system to heat the water in the swimming pool in one of Dade County, Florida's major parks is described. The mechanics of solar heated swimming pools are explained. The solar heating system consists of 216 unglazed polypropylene tube collectors, a differential thermostat, and the distribution system. The systems performance and economics as well as future plants are discussed.

  7. Storage systems for solar thermal power

    NASA Technical Reports Server (NTRS)

    Calogeras, J. E.; Gordon, L. H.

    1978-01-01

    The development status is reviewed of some thermal energy storage technologies specifically oriented towards providing diurnal heat storage for solar central power systems and solar total energy systems. These technologies include sensible heat storage in caverns and latent heat storage using both active and passive heat exchange processes. In addition, selected thermal storage concepts which appear promising to a variety of advanced solar thermal system applications are discussed.

  8. Performance analysis of a solar still coupled with evacuated heat pipes

    NASA Astrophysics Data System (ADS)

    Pramod, B. V. N.; Prudhvi Raj, J.; Krishnan, S. S. Hari; Kotebavi, Vinod

    2018-02-01

    In developing countries the need for better quality drinking water is increasing steadily. We can overcome this need by using solar energy for desalination purpose. This process includes fabrication and analysis of a pyramid type solar still coupled with evacuated heat pipes. This experiment using evacuated heat pipes are carried in mainly three modes namely 1) Still alone 2) Using heat pipe with evacuated tubes 3)Using evacuated heat pipe. For this work single basin pyramid type solar still with 1m2 basin area is fabricated. Black stones and Black paint are utilised in solar still to increase evaporation rate of water in basin. The heat pipe’s evaporator section is placed inside evacuated tube and the heat pipe’s condenser section is connected directly to the pyramid type solar still’s lower portion. The output of distillate water from still with evacuated heat pipe is found to be 40% more than the still using only evacuated tubes.

  9. Discussion on the solar concentrating thermoelectric generation using micro-channel heat pipe array

    NASA Astrophysics Data System (ADS)

    Li, Guiqiang; Feng, Wei; Jin, Yi; Chen, Xiao; Ji, Jie

    2017-11-01

    Heat pipe is a high efficient tool in solar energy applications. In this paper, a novel solar concentrating thermoelectric generation using micro-channel heat pipe array (STEG-MCHP) was presented. The flat-plate micro-channel heat pipe array not only has a higher heat transfer performance than the common heat pipe, but also can be placed on the surface of TEG closely, which can further reduce the thermal resistance between the heat pipe and the TEG. A preliminary comparison experiment was also conducted to indicate the advantages of the STEG-MCHP. The optimization based on the model verified by the experiment was demonstrated, and the concentration ratio and selective absorbing coating area were also discussed. In addition, the cost analysis was also performed to compare between the STEG-MCHP and the common solar concentrating TEGs in series. The outcome showed that the solar concentrating thermoelectric generation using micro-channel heat pipe array has the higher electrical efficiency and lower cost, which may provide a suitable way for solar TEG applications.

  10. Summer Thermal Performance of Ventilated Roofs with Tiled Coverings

    NASA Astrophysics Data System (ADS)

    Bortoloni, M.; Bottarelli, M.; Piva, S.

    2017-01-01

    The thermal performance of a ventilated pitched roof with tiled coverings is analysed and compared with unventilated roofs. The analysis is carried out by means of a finite element numerical code, by solving both the fluid and thermal problems in steady-state. A whole one-floor building with a pitched roof is schematized as a 2D computational domain including the air-permeability of tiled covering. Realistic data sets for wind, temperature and solar radiation are used to simulate summer conditions at different times of the day. The results demonstrate that the batten space in pitched roofs is an effective solution for reducing the solar heat gain in summer and thus for achieving better indoor comfort conditions. The efficiency of the ventilation is strictly linked to the external wind conditions and to buoyancy forces occurring due to the heating of the tiles.

  11. Two-tiered design analysis of a radiator for a solar dynamic powered Stirling engine

    NASA Technical Reports Server (NTRS)

    Hainley, Donald C.

    1989-01-01

    Two separate design approaches for a pumped loop radiator used to transfer heat from the cold end of a solar dynamic powered Stirling engine are described. The first approach uses a standard method to determine radiator requirements to meet specified end of mission conditions. Trade-off studies conducted for the analysis are included. Justification of this concept within the specified parameters of the analysis is provided. The second design approach determines the life performance of the radiator/Stirling system. In this approach, the system performance was altered by reducing the radiator heat transfer area. Performance effects and equilibrium points were determined as radiator segments were removed. This simulates the effect of loss of radiator sections due to micro-meteoroid and space debris penetration. The two designs were compared on the basis of overall system requirements and goals.

  12. Two-tiered design analysis of a radiator for a solar dynamic powered Stirling engine

    NASA Technical Reports Server (NTRS)

    Hainley, Donald C.

    1989-01-01

    Two separate design approaches for a pumped loop radiator used to transfer heat from the cold end of a solar dynamic powered Stirling engine are described. The first approach uses a standard method to determine radiator requirements to meet specified end of mission conditions. Trade-off studies conducted for the analysis are included. Justification of this concept within the specified parameters of the analysis is provided. The second design approach determines the life performance of the radiator/Stirling system. In this approach, the system performance was altered by reducing the radiator heat transfer area. Performance effects and equilibrium points were determined as radiator segments were removed. This simulates the effect of loss of radiator sections due to micro-meteoroid and space debris penetration. The two designs are compared on the basis of overall system requirements and goals.

  13. Numerical and experimental validation for the thermal transmittance of windows with cellular shades

    DOE PAGES

    Hart, Robert

    2018-02-21

    Some highly energy efficient window attachment products are available today, but more rapid market adoption would be facilitated by fair performance metrics. It is important to have validated simulation tools to provide a basis for this analysis. This paper outlines a review and validation of the ISO 15099 center-of-glass zero-solar-load heat transfer correlations for windows with cellular shades. Thermal transmittance was measured experimentally, simulated using computational fluid dynamics (CFD) analysis, and simulated utilizing correlations from ISO 15099 as implemented in Berkeley Lab WINDOW and THERM software. CFD analysis showed ISO 15099 underestimates heat flux of rectangular cavities by up tomore » 60% when aspect ratio (AR) = 1 and overestimates heat flux up to 20% when AR = 0.5. CFD analysis also showed that wave-type surfaces of cellular shades have less than 2% impact on heat flux through the cavities and less than 5% for natural convection of room-side surface. WINDOW was shown to accurately represent heat flux of the measured configurations to a mean relative error of 0.5% and standard deviation of 3.8%. Finally, several shade parameters showed significant influence on correlation accuracy, including distance between shade and glass, inconsistency in cell stretch, size of perimeter gaps, and the mounting hardware.« less

  14. Numerical and experimental validation for the thermal transmittance of windows with cellular shades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Robert

    Some highly energy efficient window attachment products are available today, but more rapid market adoption would be facilitated by fair performance metrics. It is important to have validated simulation tools to provide a basis for this analysis. This paper outlines a review and validation of the ISO 15099 center-of-glass zero-solar-load heat transfer correlations for windows with cellular shades. Thermal transmittance was measured experimentally, simulated using computational fluid dynamics (CFD) analysis, and simulated utilizing correlations from ISO 15099 as implemented in Berkeley Lab WINDOW and THERM software. CFD analysis showed ISO 15099 underestimates heat flux of rectangular cavities by up tomore » 60% when aspect ratio (AR) = 1 and overestimates heat flux up to 20% when AR = 0.5. CFD analysis also showed that wave-type surfaces of cellular shades have less than 2% impact on heat flux through the cavities and less than 5% for natural convection of room-side surface. WINDOW was shown to accurately represent heat flux of the measured configurations to a mean relative error of 0.5% and standard deviation of 3.8%. Finally, several shade parameters showed significant influence on correlation accuracy, including distance between shade and glass, inconsistency in cell stretch, size of perimeter gaps, and the mounting hardware.« less

  15. Bright Idea: Solar Energy Primer.

    ERIC Educational Resources Information Center

    Missouri State Dept. of Natural Resources, Jefferson City.

    This booklet is intended to address questions most frequently asked about solar energy. It provides basic information and a starting point for prospective solar energy users. Information includes discussion of solar space heating, solar water heating, and solar greenhouses. (Author/RE)

  16. A Method to Assess Flux Hazards at CSP Plants to Reduce Avian Mortality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Clifford K.; Wendelin, Timothy; Horstman, Luke

    A method to evaluate avian flux hazards at concentrating solar power plants (CSP) has been developed. A heat-transfer model has been coupled to simulations of the irradiance in the airspace above a CSP plant to determine the feather temperature along prescribed bird flight paths. Probabilistic modeling results show that the irradiance and assumed feather properties (thickness, absorptance, heat capacity) have the most significant impact on the simulated feather temperature, which can increase rapidly (hundreds of degrees Celsius in seconds) depending on the parameter values. The avian flux hazard model is being combined with a plant performance model to identify alternativemore » heliostat standby aiming strategies that minimize both avian flux hazards and negative impacts on plant performance.« less

  17. Spatially Localized Particle Energization by Landau Damping in Current Sheets

    NASA Astrophysics Data System (ADS)

    Howes, G. G.; Klein, K. G.; McCubbin, A. J.

    2017-12-01

    Understanding the mechanisms of particle energization through the removal of energy from turbulent fluctuations in heliospheric plasmas is a grand challenge problem in heliophysics. Under the weakly collisional conditions typical of heliospheric plasma, kinetic mechanisms must be responsible for this energization, but the nature of those mechanisms remains elusive. In recent years, the spatial localization of plasma heating near current sheets in the solar wind and numerical simulations has gained much attention. Here we show, using the innovative and new field-particle correlation technique, that the spatially localized particle energization occurring in a nonlinear gyrokinetic simulation has the velocity space signature of Landau damping, suggesting that this well-known collisionless damping mechanism indeed actively leads to spatially localized heating in the vicinity of current sheets.

  18. A method to assess flux hazards at CSP plants to reduce avian mortality

    NASA Astrophysics Data System (ADS)

    Ho, Clifford K.; Wendelin, Timothy; Horstman, Luke; Yellowhair, Julius

    2017-06-01

    A method to evaluate avian flux hazards at concentrating solar power plants (CSP) has been developed. A heat-transfer model has been coupled to simulations of the irradiance in the airspace above a CSP plant to determine the feather temperature along prescribed bird flight paths. Probabilistic modeling results show that the irradiance and assumed feather properties (thickness, absorptance, heat capacity) have the most significant impact on the simulated feather temperature, which can increase rapidly (hundreds of degrees Celsius in seconds) depending on the parameter values. The avian flux hazard model is being combined with a plant performance model to identify alternative heliostat standby aiming strategies that minimize both avian flux hazards and negative impacts on plant performance.

  19. Long-period comet impact risk mitigation with Earth-based laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Lubin, Philip M.; Hughes, Gary B.

    2017-09-01

    Long-period comets (LPCs) frequently transit the inner solar system, and like near-Earth asteroids (NEAs), pose a continued risk of impact with Earth. Unlike NEAs, LPCs follow nearly parabolic trajectories and approach from the distant outer solar system where they cannot be observed. An LPC on an Earth-impact trajectory is unlikely to be discovered more than a few years in advance of its arrival, even with significant advancements in sky survey detection capabilities, likely leaving insufficient time to develop and deliver an interception mission to deflect the comet. However, recent proposals have called for the development of one or more large ˜ 1 km laser arrays placed on or near Earth primarily as a means for photon propulsion of low-mass spacecraft at delta-v above what would be feasible by traditional chemical or ion propulsion methods. Such a laser array can also be directed to target and heat a threatening comet, sublimating its ices and activating jets of dust and vapor which alter the comet's trajectory in a manner similar to rocket propulsion. Simulations of directed energy comet deflection were previously developed from astrometric models of nongravitational orbital perturbations from solar heating, an analogous process that has been observed in numerous comets. These simulations are used together with the distribution of known LPC trajectories to evaluate the effect of an operational Earth-based laser array on the LPC impact risk.

  20. New Thin-Film Solar Cells Compared to Normal Solar Cells

    NASA Image and Video Library

    1966-06-21

    Adolph Spakowski, head of the Photovoltaic Fundamentals Section at the National Aeronautics and Space Administration (NASA) Lewis Research Center, illustrated the difference between conventional silicon solar cells (rear panel) and the new thin-film cells. The larger, flexible thin-film cells in the foreground were evaluated by Lewis energy conversion specialists for possible future space use. The conventional solar cells used on most spacecraft at the time were both delicate and heavy. For example, the Mariner IV spacecraft required 28,000 these solar cells for its flyby of Mars in 1964. NASA Lewis began investigating cadmium sulfide thin-film solar cells in 1961. The thin-film cells were made by heating semiconductor material until it evaporated. The vapor was then condensed onto an electricity-producing film only one-thousandth of an inch thick. The physical flexibility of the new thin-film cells allowed them to be furled, or rolled up, during launch. Spakowski led an 18-month test program at Lewis to investigate the application of cadmium sulfide semiconductors on a light metallized substrate. The new thin-film solar cells were tested in a space simulation chamber at a simulated altitude of 200 miles. Sunlight was recreated by a 5000-watt xenon light. Two dozen cells were exposed to 15 minutes of light followed by 15 minutes of darkness to test their durability in the constantly changing illumination of Earth orbit.

  1. 38 CFR 36.4501 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a solar heating system, a solar heating and cooling system, or a combined solar heating and cooling system, or through application of a residential energy conservation measure as prescribed in 38 U.S.C...

  2. 38 CFR 36.4501 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a solar heating system, a solar heating and cooling system, or a combined solar heating and cooling system, or through application of a residential energy conservation measure as prescribed in 38 U.S.C...

  3. Urban air pollution and solar energy

    NASA Technical Reports Server (NTRS)

    Gammon, R. B.; Huning, J. R.; Reid, M. S.; Smith, J. H.

    1981-01-01

    The design and performance of solar energy systems for many potential applications (industrial/residential heat, electricity generation by solar concentration and photovoltaics) will be critically affected by local insolation conditions. The effects of urban air pollution are considered and reviewed. A study of insolation data for Alhambra, California (9 km south of Pasadena) shows that, during a recent second-stage photochemical smog alert (greater than or equal to 0.35 ppm ozone), the direct-beam insolation at solar noon was reduced by 40%, and the total global by 15%, from clean air values. Similar effects have been observed in Pasadena, and are attributable primarily to air pollution. Effects due to advecting smog have been detected 200 km away, in the Mojave Desert. Preliminary performance and economic simulations of solar thermal and photovoltaic power systems indicate increasing nonlinear sensitivity of life cycle plant cost to reductions in insolation levels due to pollution.

  4. The energy impacts of solar heating.

    PubMed

    Whipple, C

    1980-04-18

    The energy required to build and install solar space- and water-heating equipment is compared to the energy it saves under two solar growth paths corresponding to high and low rates of implementation projected by the Domestic Policy Review of Solar Energy. For the rapid growth case, the cumulative energy invested to the year 2000 is calculated to be (1/2) to 1(1/2) times the amount saved. An impact of rapid solar heating implementation is to shift energy demand from premium heating fuels (natural gas and oil) to coal and nuclear power use in the industries that provide materials for solar equipment.

  5. Thermal/Dynamic Characterization Test of the Solar Array Panel for Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Jenkins, Kathleen; Hershfeld, Donald J.

    1999-01-01

    The Hubble Space Telescope has experienced a problem maintaining pointing accuracy during emergence of the spacecraft from the Earth's shadow. The problem has been attributed to the rapid thermal gradient that develops when the heat from the Sun strikes the cold solar arrays. The thermal gradient causes the solar arrays to deflect or bend and this motion is sufficient to disturb the pointing control system. In order to alleviate this problem, a new design for the solar arrays has been fabricated. These new solar arrays will replace the current solar arrays during a future Hubble servicing mission. The new solar arrays have been designed so that the effective net motion of the center of mass of each panel is essentially zero. Although the solar array thermal deflection problem has been studied extensively over a period of years, a full scale test of the actual flight panels was required in order to establish confidence in the analyses. This test was conducted in the JPL Solar Simulation Facility in April, 1999. This presentation will discuss the objectives and methods of the test and present some typical test data.

  6. Self-pressurizing Stirling engine

    DOEpatents

    Bennett, Charles L.

    2010-10-12

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  7. Installation guidelines for solar heating system, single-family residence at William OBrien State Park, Stillwater, Minnesota

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Installation procedures for the single family residential solar heating system at the William O'Brien State Park, Stillwater, Minnesota, are presented. The system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Installer guidelines are provided for each subsystem and includes testing and filling the system. Information is also given on the operating procedures, controls, caution requirements and routine and schedule maintenance.

  8. Solar-powered Rankine heat pump for heating and cooling

    NASA Technical Reports Server (NTRS)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  9. Space radiator simulation system analysis

    NASA Technical Reports Server (NTRS)

    Black, W. Z.; Wulff, W.

    1972-01-01

    A transient heat transfer analysis was carried out on a space radiator heat rejection system exposed to an arbitrarily prescribed combination of aerodynamic heating, solar, albedo, and planetary radiation. A rigorous analysis was carried out for the radiation panel and tubes lying in one plane and an approximate analysis was used to extend the rigorous analysis to the case of a curved panel. The analysis permits the consideration of both gaseous and liquid coolant fluids, including liquid metals, under prescribed, time dependent inlet conditions. The analysis provided a method for predicting: (1) transient and steady-state, two dimensional temperature profiles, (2) local and total heat rejection rates, (3) coolant flow pressure in the flow channel, and (4) total system weight and protection layer thickness.

  10. Hard X-Ray Constraints on Small-Scale Coronal Heating Events

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Smith, David M.; Glesener, Lindsay; Klimchuk, James A.; Bradshaw, Stephen; Hannah, Iain; Vievering, Juliana; Ishikawa, Shin-Nosuke; Krucker, Sam; Christe, Steven

    2017-08-01

    A large body of evidence suggests that the solar corona is heated impulsively. Small-scale heating events known as nanoflares may be ubiquitous in quiet and active regions of the Sun. Hard X-ray (HXR) observations with unprecedented sensitivity >3 keV have recently been enabled through the use of focusing optics. We analyze active region spectra from the FOXSI-2 sounding rocket and the NuSTAR satellite to constrain the physical properties of nanoflares simulated with the EBTEL field-line-averaged hydrodynamics code. We model a wide range of X-ray spectra by varying the nanoflare heating amplitude, duration, delay time, and filling factor. Additional constraints on the nanoflare parameter space are determined from energy constraints and EUV/SXR data.

  11. The effects of solar radiation and black body re-radiation on thermal comfort.

    PubMed

    Hodder, Simon; Parsons, Ken

    2008-04-01

    When the sun shines on people in enclosed spaces, such as in buildings or vehicles, it directly affects thermal comfort. There is also an indirect effect as surrounding surfaces are heated exposing a person to re-radiation. This laboratory study investigated the effects of long wave re-radiation on thermal comfort, individually and when combined with direct solar radiation. Nine male participants (26.0 +/- 4.7 years) took part in three experimental sessions where they were exposed to radiation from a hot black panel heated to 100 degrees C; direct simulated solar radiation of 600 Wm(-2) and the combined simulated solar radiation and black panel radiation. Exposures were for 30 min, during which subjective responses and mean skin temperatures were recorded. The results showed that, at a surface temperature of 100 degrees C (close to maximum in practice), radiation from the flat black panel provided thermal discomfort but that this was relatively small when compared with the effects of direct solar radiation. It was concluded that re-radiation, from a dashboard in a vehicle, for example, will not have a major direct influence on thermal comfort and that existing models of thermal comfort do not require a specific modification. These results showed that, for the conditions investigated, the addition of re-radiation from internal components has an effect on thermal sensation when combined with direct solar radiation. However, it is not considered that it will be a major factor in a real world situation. This is because, in practice, dashboards are unlikely to maintain very high surface temperatures in vehicles without an unacceptably high air temperature. This study quantifies the contribution of short- and long-wave radiation to thermal comfort. The results will aid vehicle designers to have a better understanding of the complex radiation environment. These include direct radiation from the sun as well as re-radiation from the dashboard and other internal surfaces.

  12. Systems and applications analysis for concentrating photovoltaic-thermal systems

    NASA Astrophysics Data System (ADS)

    Schwinkendorf, W. E.

    Numerical simulations were carried out of the performance, costs, and land use requirements of five commercial and six residential applications of combined photovoltaic-thermal (PVT) power plants. Line focus Fresnel concentrators (LFF) systems were selected after a simulated comparison of different PVT systems. Load profiles were configured from industrial data and ASHRAE and building codes. Assumptions included costs of $1/Wp, 0.15 efficiency, and a cost of $275/sq m, as well as a 25 percent solar tax credit. The calculations showed that a significant low temperature thermal load must be available, but no heat recovery system. Industrial situations were identified which favor solar thermal energy alone rather than a combined system. The thermal energy displacement was determined to be the critical factor in assessing the economics of the PVT systems.

  13. Design Calculation Procedure for Passive Solar Houses at Navy Installations in Warm California Climates. Volume V.

    DTIC Science & Technology

    1981-10-01

    Storage Locations . . .. 7 2.3 Heat Transfer Mechanisms of Thermal Storage Walls ......... 11 2.4 Heating of Living Space with Solar Greenhouse ...12 2.5 Schematic of North-Side Greenhouse Retrofit ........... . .. 12 2.6 The Roof Pond in Warm Climate . . . . . . . . . . . . . . . . 14 2.7...Profile .......... ... 47 5 Calculation of Solar Heating Contribution ............. .. 51 5A Adjusted Net Solar Greenhouse Heat Gain

  14. A numerical study of three-dimensional diurnal variations within the thermosphere.

    NASA Technical Reports Server (NTRS)

    Volland, H.; Mayr, H. G.

    1973-01-01

    A thermosphere model with a realistic temperature profile is assumed. Heat conduction waves are introduced in addition to gravity waves. The temporal and spatial distribution of ion-neutral collisions is taken into account. However, the influence of viscosity waves is neglected. Viscosity-wave effects are simulated by an effective height-dependent collision number. Numerical calculations are conducted of the generation and propagation of two of the most important symmetric tidal waves at thermospheric heights. The influence of the solar EUV-heat upon the generation of the two tidal modes is investigated.

  15. A methodology for mapping forest latent heat flux densities using remote sensing

    NASA Technical Reports Server (NTRS)

    Pierce, Lars L.; Congalton, Russell G.

    1988-01-01

    Surface temperatures and reflectances of an upper elevation Sierran mixed conifer forest were monitored using the Thematic Mapper Simulator sensor during the summer of 1985 in order to explore the possibility of using remote sensing to determine the distribution of solar energy on forested watersheds. The results show that the method is capable of quantifying the relative energy allocation relationships between the two cover types defined in the study. It is noted that the method also has the potential to map forest latent heat flux densities.

  16. Adaptability of solar energy conversion systems on ships

    NASA Astrophysics Data System (ADS)

    Visa, I.; Cotorcea, A.; Neagoe, M.; Moldovan, M.

    2016-08-01

    International trade of goods largely uses maritime/transoceanic ships driven by engines using fossil fuels. This two centuries tradition is technologically mature but significantly adds to the CO2 emissions; therefore, recent trends focus on on-board implementation of systems converting the solar energy into power (photovoltaic systems) or heat (solar-thermal systems). These systems are carbon-emissions free but are still under research and plenty of effort is devoted to fast reach maturity and feasibility. Unlike the systems implemented in a specific continental location, the design of solar energy conversion systems installed on shipboard has to face the problem generated by the system base motion along with the ship travelling on routes at different latitudes: the navigation direction and sense and roll-pitch combined motion with reduced amplitude, but with relatively high frequency. These raise highly interesting challenges in the design and development of mechanical systems that support the maximal output in terms of electricity or heat. The paper addresses the modelling of the relative position of a solar energy conversion surface installed on a ship according to the current position of the sun; the model is based on the navigation trajectory/route, ship motion generated by waves and the relative sun-earth motion. The model describes the incidence angle of the sunray on the conversion surface through five characteristic angles: three used to define the ship orientation and two for the solar angles; based on, their influence on the efficiency in solar energy collection is analyzed by numerical simulations and appropriate recommendations are formulated for increasing the solar energy conversion systems adaptability on ships.

  17. Past, present and future of passive homes in solar village 3, Athens

    NASA Astrophysics Data System (ADS)

    Kalogridis, Achilles

    Solar village 3 in Pefki, Athens, was part of an ambitious program for the promotion of solar technology, applied to a large scale social housing scheme, designed in mid 80's and firstly inhabited in the early 1990's. Among the aims of the project was the demonstration of the latest of technology in active solar systems and passive techniques, incorporated in a new settlement's layout and houses' building envelop, in order to create an energy saving, comfortable environment. More than fifteen years later, the housing complex remains the largest residential development of bioclimatic "solar" architecture in Athens, with the active and passive solar systems providing space and water heating for about 1750 inhabitants. The study focuses in the passive solar systems that have been applied to a number of the buildings of the settlement. The systems provide space heating with no need of any active mechanism, however with demand of the participation of the end users for their proper operation. The essay reviews various previous studies, monitoring reports and criticisms that have appeared throughout the past years, and identifies how the houses perform today, through a recent survey, sample monitoring and thermal comfort simulation. The report records things that have changed, features which worked well or others that did not and comments on the residents' behaviour. Interesting findings come into question, regarding the passive solar systems, their integration into the building's design, their current condition and their contribution to energy savings and thermal comfort conditions. Finally, current plans concerning the future of the settlement are highlighted, and considerations about the houses sustainability are suggested.

  18. Performance evaluation of the Solar Building Test Facility

    NASA Technical Reports Server (NTRS)

    Jensen, R. N.

    1981-01-01

    The general performance of the NASA Solar Building Test Facility (SBTF) and its subsystems and components over a four year operational period is discussed, and data are provided for a typical one year period. The facility consists of a 4645 sq office building modified to accept solar heated water for operation of an absorption air conditioner and a baseboard heating system. An adjoining 1176 sq solar flat plate collector field with a 114 cu tank provides the solar heated water. The solar system provided 57 percent of the energy required for heating and cooling on an annual basis. The average efficiency of the solar collectors was 26 percent over a one year period.

  19. Changing transport processes in the stratosphere by radiative heating of sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Niemeier, Ulrike; Schmidt, Hauke

    2017-12-01

    The injection of sulfur dioxide (SO2) into the stratosphere to form an artificial stratospheric aerosol layer is discussed as an option for solar radiation management. Sulfate aerosol scatters solar radiation and absorbs infrared radiation, which warms the stratospheric sulfur layer. Simulations with the general circulation model ECHAM5-HAM, including aerosol microphysics, show consequences of this warming, including changes of the quasi-biennial oscillation (QBO) in the tropics. The QBO slows down after an injection of 4 Tg(S) yr-1 and completely shuts down after an injection of 8 Tg(S) yr-1. Transport of species in the tropics and sub-tropics depends on the phase of the QBO. Consequently, the heated aerosol layer not only impacts the oscillation of the QBO but also the meridional transport of the sulfate aerosols. The stronger the injection, the stronger the heating and the simulated impact on the QBO and equatorial wind systems. With increasing injection rate the velocity of the equatorial jet streams increases, and the less sulfate is transported out of the tropics. This reduces the global distribution of sulfate and decreases the radiative forcing efficiency of the aerosol layer by 10 to 14 % compared to simulations with low vertical resolution and without generated QBO. Increasing the height of the injection increases the radiative forcing only for injection rates below 10 Tg(S) yr-1 (8-18 %), a much smaller value than the 50 % calculated previously. Stronger injection rates at higher levels even result in smaller forcing than the injections at lower levels.

  20. Solar Water-Heater Design and Installation

    NASA Technical Reports Server (NTRS)

    Harlamert, P.; Kennard, J.; Ciriunas, J.

    1982-01-01

    Solar/Water heater system works as follows: Solar--heated air is pumped from collectors through rock bin from top to bottom. Air handler circulates heated air through an air-to-water heat exchanger, which transfers heat to incoming well water. In one application, it may reduce oil use by 40 percent.

  1. Energy Transport Effects in Flaring Atmospheres Heated by Mixed Particle Beams

    NASA Astrophysics Data System (ADS)

    Zharkova, Valentina; Zharkov, Sergei; Macrae, Connor; Druett, Malcolm; Scullion, Eamon

    2016-07-01

    We investigate energy and particle transport in the whole flaring atmosphere from the corona to the photosphere and interior for the flaring events on the 1st July 2012, 6 and 7 September 2011 by using the RHESSI and SDO instruments as well as high-resolution observations from the Swedish 1-metre Solar Telescope (SST3) CRISP4 (CRisp Imaging Spectro-polarimeter). The observations include hard and soft X-ray emission, chromospheric emission in both H-alpha 656.3 nm core and continuum, as well as, in the near infra-red triplet Ca II 854.2 nm core and continuum channels and local helioseismic responses (sunquakes). The observations are compared with the simulations of hard X-ray emission and tested by hydrodynamic simulations of flaring atmospheres of the Sun heated by mixed particle beams. The temperature, density and macro-velocity variations of the ambient atmospheres are calculated for heating by mixed beams and the seismic response of the solar interior to generation of supersonic shocks moving into the solar interior. We investigate the termination depths of these shocks beneath the quiet photosphere levels and compare them with the parameters of seismic responses in the interior, or sunquakes (Zharkova and Zharkov, 2015). We also present an investigation of radiative conditions modelled in a full non-LTE approach for hydrogen during flare onsets with particular focus on Balmer and Paschen emission in the visible, near UV and near IR ranges and compare them with observations. The links between different observational features derived from HXR, optical and seismic emission are interpreted by different particle transport models that will allow independent evaluation of the particle transport scenarios.

  2. Become One In A Million: Partnership Updates. Million Solar Roofs and Interstate Renewable Energy Council Annual Meeting, Washington, D.C., October 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tombari, C.

    2005-09-01

    The U.S. Department of Energy's Million Solar Roofs Initiative (MSR) is a unique public-private partnership aimed at overcoming market barriers for photovoltaics (PV), solar water heating, transpired solar collectors, solar space heating and cooling, and pool heating. This report contains annual progress reports from 866 partners across the United States.

  3. Simulated O VI Doppler dimming measurements of coronal outflow velocities

    NASA Technical Reports Server (NTRS)

    Strachan, Leonard; Gardner, L. D.; Kohl, John L.

    1992-01-01

    The possibility of determining O(5+) outflow velocities by using a Doppler dimming analysis of the resonantly scattered intensities of O VI lambda 1031.9 and lambda 1037.6 is addressed. The technique is sensitive to outflow velocities, W, in the range W greater than 30 and less than 250 km/s and can be used for probing regions of the inner solar corona, where significant coronal heating and solar wind acceleration may be occurring. These velocity measurements, when combined with measurements of other plasma parameters (temperatures and densities of ions and electrons) can be used to estimate the energy and mass flux of O(5+). In particular, it may be possible to locate where the flow changes from subsonic to supersonic and to identify source regions for the high and low speed solar wind. The velocity diagnostic technique is discussed with emphasis placed on the requirements needed for accurate outflow velocity determinations. Model determinations of outflow velocities based on simulated Doppler observations are presented.

  4. Solar project description for Design Construction Association single family dwelling, Big Fork, Montana

    NASA Astrophysics Data System (ADS)

    1980-04-01

    A solar energy system was installed in a 2100 sq ft house located in Big Fork, Montana. The system is designed to provide solar energy for heating and domestic hot water. Solar energy is collected by flat plate collectors with a gross area of 792 square feet. The collector banks are mounted on the roof of the house and face due south at an angle of 45 deg to the horizontal optimizing solar energy collection. Solar energy is transferred from the collector array to a 1500 gallon storage tank. Water is used as the heat collection, transfer and storage medium. Freeze protection is provided by use of a drain down system. Space heating demands are met by circulating hot water from storage through baseboard units in the distribution system of the house. Auxiliary space heating is provided by an electrical heating element in the boiler. Similarly, an electrical heating element in the DHW tank provides energy for water heating. The dwelling was fully instrumented for performance evaluation since October 1977 and the data is integrated into the National Solar Data Network.

  5. Projected Impact of Climate Change on the Energy Budget of the Arctic Ocean by a Global Climate Model

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    The annual energy budget of the Arctic Ocean is characterized by a net heat loss at the air-sea interface that is balanced by oceanic heat transport into the Arctic. The energy loss at the air-sea interface is due to the combined effects of radiative, sensible, and latent heat fluxes. The inflow of heat by the ocean can be divided into two components: the transport of water masses of different temperatures between the Arctic and the Atlantic and Pacific Oceans and the export of sea ice, primarily through Fram Strait. Two 150-year simulations (1950-2099) of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. One is a control simulation for the present climate with constant 1950 atmospheric composition, and the other is a transient experiment with observed GHGs from 1950 to 1990 and 0.5% annual compounded increases of CO2 after 1990. For the present climate the model agrees well with observations of radiative fluxes at the top of the atmosphere, atmospheric advective energy transport into the Arctic, and surface air temperature. It also simulates the seasonal cycle and summer increase of cloud cover and the seasonal cycle of sea-ice cover. In addition, the changes in high-latitude surface air temperature and sea-ice cover in the GHG experiment are consistent with observed changes during the last 40 and 20 years, respectively. Relative to the control, the last 50-year period of the GHG experiment indicates that even though the net annual incident solar radiation at the surface decreases by 4.6 W(per square meters) (because of greater cloud cover and increased cloud optical depth), the absorbed solar radiation increases by 2.8 W(per square meters) (because of less sea ice). Increased cloud cover and warmer air also cause increased downward thermal radiation at the surface so that the net radiation into the ocean increases by 5.0 Wm-2. The annual increase in radiation into the ocean, however, is compensated by larger increases in sensible and latent heat fluxes out of the ocean. Although the net energy loss from the ocean surface increases by 0.8 W (per square meters), this is less than the interannual variability, and the increase may not indicate a long-term trend. The seasonal cycle of heat fluxes is significantly enhanced. The downward surface heat flux increases in summer (maximum 2 of 19 W per square meters or 23% in June) while the upward heat flux increases in winter (maximum of 16 W per square meters or 28% in November). The increased downward flux in summer is due to a combination of increases in absorbed solar and thermal radiation and smaller losses of sensible and latent heat. The increased heat loss in winter is due to increased sensible and latent heat fluxes, which in turn are due to reduced sea-ice cover. On the other hand, the seasonal cycle of surface air temperature is damped, as there is a large increase in winter temperature but little change in summer.

  6. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.

  7. Near-term viability of solar heat applications for the federal sector

    NASA Astrophysics Data System (ADS)

    Williams, T. A.

    1991-12-01

    Solar thermal technologies are capable of providing heat across a wide range of temperatures, making them potentially attractive for meeting energy requirements for industrial process heat applications and institutional heating. The energy savings that could be realized by solar thermal heat are quite large, potentially several quads annually. Although technologies for delivering heat at temperatures above 100 C currently exist within industry, only a fairly small number of commercial systems have been installed to date. The objective of this paper is to investigate and discuss the prospects for near term solar heat sales to federal facilities as a mechanism for providing an early market niche to the aid the widespread development and implementation of the technology. The specific technical focus is on mid-temperature (100 to 350 C) heat demands that could be met with parabolic trough systems. Federal facilities have several features relative to private industry that may make them attractive for solar heat applications relative to other sectors. Key features are specific policy mandates for conserving energy, a long term planning horizon with well defined decision criteria, and prescribed economic return criteria for conservation and solar investments that are generally less stringent than the investment criteria used by private industry. Federal facilities also have specific difficulties in the sale of solar heat technologies that are different from those of other sectors, and strategies to mitigate these difficulties will be important. For the baseline scenario developed in this paper, the solar heat application was economically competitive with heat provided by natural gas. The system levelized energy cost was $5.9/MBtu for the solar heat case, compared to $6.8/MBtu for the life cycle fuel cost of a natural gas case. A third-party ownership would also be attractive to federal users, since it would guarantee energy savings and would not need initial federal funds.

  8. Basics of Solar Heating & Hot Water Systems.

    ERIC Educational Resources Information Center

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  9. A Practical Application of Microcomputers to Control an Active Solar System.

    ERIC Educational Resources Information Center

    Goldman, David S.; Warren, William

    1984-01-01

    Describes the design and implementation of a microcomputer-based model active solar heating system. Includes discussions of: (1) the active solar components (solar collector, heat exchanger, pump, and fan necessary to provide forced air heating); (2) software components; and (3) hardware components (in the form of sensors and actuators). (JN)

  10. 40 CFR 1066.845 - AC17 air conditioning efficiency test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... solar heating is disabled for certain test intervals as described in this section. (d) Interior air... vehicle's windows and operate the vehicle over a preconditioning UDDS with no solar heating and with the... cooling fans. (3) Turn on solar heating within one minute after turning off the engine. Once the solar...

  11. Thermal Mechanical Stability of Single-Crystal-Oxide Refractive Concentrators Evaluated for High-Temperature Solar-Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Jacobson, Nathan S.; Miller, Robert A.

    1999-01-01

    Recently, refractive secondary solar concentrator systems were developed for solar thermal power and propulsion (ref. 1). Single-crystal oxides-such as yttria-stabilized zirconia (Y2O3-ZrO2), yttrium aluminum garnet (Y3Al5O12, or YAG), magnesium oxide (MgO), and sapphire (Al2O3)-are candidate refractive secondary concentrator materials. However, the refractive concentrator system will experience high-temperature thermal cycling in the solar thermal engine during the sun/shade transition of a space mission. The thermal mechanical reliability of these components in severe thermal environments is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions. In this research at the NASA Lewis Research Center, a controlled heat flux test approach was developed for investigating the thermal mechanical stability of the candidate oxide. This approach used a 3.0-kW continuous-wave (wavelength, 10.6 mm) carbon dioxide (CO2) laser (ref. 2). The CO2 laser is especially well-suited for single-crystal thermal shock tests because it can directly deliver well-characterized heat energy to the oxide surfaces. Since the oxides are opaque at the 10.6-mm wavelength of the laser beam, the light energy is absorbed at the surfaces rather than transmitting into the crystals, and thus generates the required temperature gradients within the specimens. The following figure is a schematic diagram of the test rig.

  12. Impact of the GeoMIP G1 sunshade geoengineering experiment on the Atlantic meridional overturning circulation

    NASA Astrophysics Data System (ADS)

    Hong, Yu; Moore, John C.; Jevrejeva, Svetlana; Ji, Duoying; Phipps, Steven J.; Lenton, Andrew; Tilmes, Simone; Watanabe, Shingo; Zhao, Liyun

    2017-03-01

    We analyze the multi-earth system model responses of ocean temperatures and the Atlantic Meridional Overturning Circulation (AMOC) under an idealized solar radiation management scenario (G1) from the Geoengineering Model Intercomparison Project. All models simulate warming of the northern North Atlantic relative to no geoengineering, despite geoengineering substantially offsetting the increases in mean global ocean temperatures. Increases in the temperature of the North Atlantic Ocean at the surface (˜0.25 K) and at a depth of 500 m (˜0.10 K) are mainly due to a 10 Wm-2 reduction of total heat flux from ocean to atmosphere. Although the AMOC is slightly reduced under the solar dimming scenario, G1, relative to piControl, it is about 37% stronger than under abrupt4 × CO2 . The reduction of the AMOC under G1 is mainly a response to the heat flux change at the northern North Atlantic rather than to changes in the water flux and the wind stress. The AMOC transfers heat from tropics to high latitudes, helping to warm the high latitudes, and its strength is maintained under solar dimming rather than weakened by greenhouse gas forcing acting alone. Hence the relative reduction in high latitude ocean temperatures provided by solar radiation geoengineering, would tend to be counteracted by the correspondingly active AMOC circulation which furthermore transports warm surface waters towards the Greenland ice sheet, warming Arctic sea ice and permafrost.

  13. Predictive performance modeling framework for a novel enclosed particle receiver configuration and application for thermochemical energy storage

    DOE PAGES

    Martinek, Janna; Wendelin, Timothy; Ma, Zhiwen

    2018-04-05

    Concentrating solar power (CSP) plants can provide dispatchable power with a thermal energy storage capability for increased renewable-energy grid penetration. Particle-based CSP systems permit higher temperatures, and thus, potentially higher solar-to-electric efficiency than state-of-the-art molten-salt heat-transfer systems. This paper describes a detailed numerical analysis framework for estimating the performance of a novel, geometrically complex, enclosed particle receiver design. The receiver configuration uses arrays of small tubular absorbers to collect and subsequently transfer solar energy to a flowing particulate medium. The enclosed nature of the receiver design renders it amenable to either an inert heat-transfer medium, or a reactive heat-transfer medium that requires a controllable ambient environment. The numerical analysis framework described in this study is demonstrated for the case of thermal reduction of CaCr 0.1Mn 0.9O 3-more » $$\\delta$$ for thermochemical energy storage. The modeling strategy consists of Monte Carlo ray tracing for absorbed solar-energy distributions from a surround heliostat field, computational fluid dynamics modeling of small-scale local tubular arrays, surrogate response surfaces that approximately capture simulated tubular array performance, a quasi-two-dimensional reduced-order description of counter-flow reactive solids and purge gas, and a radiative exchange model applied to embedded-cavity structures at the size scale of the full receiver. In this work we apply the numerical analysis strategy to a single receiver configuration, but the framework can be generically applicable to alternative enclosed designs. In conclusion, we assess sensitivity of receiver performance to surface optical properties, heat-transfer coefficients, solids outlet temperature, and purge-gas feed rates, and discuss the significance of model assumptions and results for future receiver development.« less

  14. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    NASA Astrophysics Data System (ADS)

    Norwood, Zack; Kammen, Daniel

    2012-12-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of 0.25 kWh-1 electricity and 0.03 kWh-1 thermal, for a system with a life cycle global warming potential of ˜80 gCO2eq kWh-1 of electricity and ˜10 gCO2eq kWh-1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of 1.40 m-3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that 0.40-1.90 m-3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

  15. Predictive performance modeling framework for a novel enclosed particle receiver configuration and application for thermochemical energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinek, Janna; Wendelin, Timothy; Ma, Zhiwen

    Concentrating solar power (CSP) plants can provide dispatchable power with a thermal energy storage capability for increased renewable-energy grid penetration. Particle-based CSP systems permit higher temperatures, and thus, potentially higher solar-to-electric efficiency than state-of-the-art molten-salt heat-transfer systems. This paper describes a detailed numerical analysis framework for estimating the performance of a novel, geometrically complex, enclosed particle receiver design. The receiver configuration uses arrays of small tubular absorbers to collect and subsequently transfer solar energy to a flowing particulate medium. The enclosed nature of the receiver design renders it amenable to either an inert heat-transfer medium, or a reactive heat-transfer medium that requires a controllable ambient environment. The numerical analysis framework described in this study is demonstrated for the case of thermal reduction of CaCr 0.1Mn 0.9O 3-more » $$\\delta$$ for thermochemical energy storage. The modeling strategy consists of Monte Carlo ray tracing for absorbed solar-energy distributions from a surround heliostat field, computational fluid dynamics modeling of small-scale local tubular arrays, surrogate response surfaces that approximately capture simulated tubular array performance, a quasi-two-dimensional reduced-order description of counter-flow reactive solids and purge gas, and a radiative exchange model applied to embedded-cavity structures at the size scale of the full receiver. In this work we apply the numerical analysis strategy to a single receiver configuration, but the framework can be generically applicable to alternative enclosed designs. In conclusion, we assess sensitivity of receiver performance to surface optical properties, heat-transfer coefficients, solids outlet temperature, and purge-gas feed rates, and discuss the significance of model assumptions and results for future receiver development.« less

  16. Quantifying uncertainties of climate signals related to the 11-year solar cycle

    NASA Astrophysics Data System (ADS)

    Kruschke, T.; Kunze, M.; Matthes, K. B.; Langematz, U.; Wahl, S.

    2017-12-01

    Although state-of-the-art reconstructions based on proxies and (semi-)empirical models converge in terms of total solar irradiance, they still significantly differ in terms of spectral solar irradiance (SSI) with respect to the mean spectral distribution of energy input and temporal variability. This study aims at quantifying uncertainties for the Earth's climate related to the 11-year solar cycle by forcing two chemistry-climate models (CCMs) - CESM1(WACCM) and EMAC - with five different SSI reconstructions (NRLSSI1, NRLSSI2, SATIRE-T, SATIRE-S, CMIP6-SSI) and the reference spectrum RSSV1-ATLAS3, derived from observations. We conduct a unique set of timeslice experiments. External forcings and boundary conditions are fixed and identical for all experiments, except for the solar forcing. The set of analyzed simulations consists of one solar minimum simulation, employing RSSV1-ATLAS3 and five solar maximum experiments. The latter are a result of adding the amplitude of solar cycle 22 according to the five reconstructions to RSSV1-ATLAS3. Our results show that the climate response to the 11y solar cycle is generally robust across CCMs and SSI forcings. However, analyzing the variance of the solar maximum ensemble by means of ANOVA-statistics reveals additional information on the uncertainties of the mean climate signals. The annual mean response agrees very well between the two CCMs for most parts of the lower and middle atmosphere. Only the upper mesosphere is subject to significant differences related to the choice of the model. However, the different SSI forcings lead to significant differences in ozone concentrations, shortwave heating rates, and temperature throughout large parts of the mesosphere and upper stratosphere. Regarding the seasonal evolution of the climate signals, our findings for short wave heating rates, and temperature are similar to the annual means with respect to the relative importance of the choice of the model or the SSI forcing for the respective atmospheric layer. On the other hand, the predominantly dynamically driven signal in zonal wind is quite dependent on the choice of a CCM, mainly due to spatio-temporal shifts of similar responses. Within a given "model world" dynamical signals related to the different SSI forcings agree very well even under this monthly perspective.

  17. Space-based Solar Power: Possible Defense Applications and Opportunities for NRL Contributions

    DTIC Science & Technology

    2009-10-23

    missions. At the spacecraft system level, a two-phase system can be used to transfer heat from a heat source (such as solar collectors and power...The solar arrays’ position allows them to radiate waste heat from both faces, as in conventional spacecraft practice. Both the antenna structure...Brayton cycle engine heated by a point-focus solar concentrator. NRL worked with NASA Glenn Research Center in developing means to integrate their

  18. Design Calculation Procedure for Passive Solar Houses at Navy Installations in Regions with Warm, Humid Climate. Volume III.

    DTIC Science & Technology

    1981-10-01

    and Storage Locations . ... 7 2.3 Heat Transfer Mechanisms of Thermal Storage Walls ...... ... 11 2.4 Heating of Living Space with Solar Greenhouse ...12 2.5 Schematic of North-Side Greenhouse Retrofit .... ......... 12 2.6 The Roof Pond in Warm Climate ................... ... 14 2.7...Building Thermal Load Profile ... ........ 48 5 Calculation of Solar Heating Contribution ............. 52 5A Adjusted Net Solar Greenhouse Heat Gain

  19. The development of a residential heating and cooling system using NASA derived technology

    NASA Technical Reports Server (NTRS)

    Oneill, M. J.; Mcdanal, A. J.; Sims, W. H.

    1972-01-01

    A study to determine the technical and economic feasibility of a solar-powered space heating, air-conditioning, and hot water heating system for residential applications is presented. The basic system utilizes a flat-plate solar collector to process incident solar radiation, a thermal energy storage system to store the collected energy for use during night and heavily overcast periods, and an absorption cycle heat pump for actually heating and cooling the residence. In addition, heat from the energy storage system is used to provide domestic hot water. The analyses of the three major components of the system (the solar collector, the energy storage system, and the heat pump package) are discussed and results are presented. The total system analysis is discussed in detail, including the technical performance of the solar-powered system and a cost comparison between the solar-powered system and a conventional system. The projected applicability of the system to different regions of the nation is described.

  20. Analysis of Plume Impingement Effects from Orion Crew Service Module Dual Reaction Control System Engine Firings

    NASA Technical Reports Server (NTRS)

    Prisbell, Andrew; Marichalar, J.; Lumpkin, F.; LeBeau, G.

    2010-01-01

    Plume impingement effects on the Orion Crew Service Module (CSM) were analyzed for various dual Reaction Control System (RCS) engine firings and various configurations of the solar arrays. The study was performed using a decoupled computational fluid dynamics (CFD) and Direct Simulation Monte Carlo (DSMC) approach. This approach included a single jet plume solution for the R1E RCS engine computed with the General Aerodynamic Simulation Program (GASP) CFD code. The CFD solution was used to create an inflow surface for the DSMC solution based on the Bird continuum breakdown parameter. The DSMC solution was then used to model the dual RCS plume impingement effects on the entire CSM geometry with deployed solar arrays. However, because the continuum breakdown parameter of 0.5 could not be achieved due to geometrical constraints and because high resolution in the plume shock interaction region is desired, a focused DSMC simulation modeling only the plumes and the shock interaction region was performed. This high resolution intermediate solution was then used as the inflow to the larger DSMC solution to obtain plume impingement heating, forces, and moments on the CSM and the solar arrays for a total of 21 cases that were analyzed. The results of these simulations were used to populate the Orion CSM Aerothermal Database.

Top