Science.gov

Sample records for simulated supercritical water

  1. Molecular dynamics simulations of supercritical water confined within a carbon-slit pore

    NASA Astrophysics Data System (ADS)

    Martí, J.; Sala, J.; Guàrdia, E.; Gordillo, M. C.

    2009-03-01

    We report the results of a series of molecular dynamics simulations of water inside a carbon-slit pore at supercritical conditions. A range of densities corresponding from liquid (0.66gcm-3) to gas environments (0.08gcm-3) at the supercritical temperature of 673K were considered. Our findings are compared with previous studies of liquid water confined in graphene nanochannels at ambient and high temperatures, and indicate that the microscopic structure of water evolves from hydrogen bond networks characteristic of hot dense liquids to looser arrangements where the dominant units are water monomers and dimers. Water permittivity was found to be very small at low densities, with a tendency to grow with density and to reach typical values of unconfined supercritical water at 0.66gcm-3) . In supercritical conditions, the residence time of water at interfaces is roughly similar to that of water in the central regions of the slabs, if the size of the considered region is taken into account. That time span is long enough to compute dynamical properties such as diffusion or spectral densities. Water diffusion in supercritical states is much faster at low densities, and it is produced in such a way that, at interfaces, translational diffusion is mainly produced along planes parallel to the carbon walls. Spectral frequency shifts depend on several factors, being temperature and density effects the most relevant. However, we can observe corrections due to confinement, important both at the graphene interface and in the central region of the water slab.

  2. Solubility of cellulose in supercritical water studied by molecular dynamics simulations.

    PubMed

    Tolonen, Lasse K; Bergenstråhle-Wohlert, Malin; Sixta, Herbert; Wohlert, Jakob

    2015-04-02

    The insolubility of cellulose in ambient water and most aqueous systems presents a major scientific and practical challenge. Intriguingly though, the dissolution of cellulose has been reported to occur in supercritical water. In this study, cellulose solubility in ambient and supercritical water of varying density (0.2, 0.7, and 1.0 g cm(-3)) was studied by atomistic molecular dynamics simulations using the CHARMM36 force field and TIP3P water. The Gibbs energy of dissolution was determined between a nanocrystal (4 × 4 × 20 anhydroglucose residues) and a fully dissociated state using the two-phase thermodynamics model. The analysis of Gibbs energy suggested that cellulose is soluble in supercritical water at each of the studied densities and that cellulose dissolution is typically driven by the entropy gain upon the chain dissociation while simultaneously hindered by the loss of solvent entropy. Chain dissociation caused density augmentation around the cellulose chains, which improved water-water bonding in low density supercritical water whereas the opposite occurred in ambient and high density supercritical water.

  3. Molecular dynamic simulations of iron (II) hydroxide in high temperature and supercritical water

    NASA Astrophysics Data System (ADS)

    Meng, Yuanliang

    In this study, the iron (II) hydroxide -- water system has been investigated at high temperatures by using molecular dynamics (MD) simulations. The simulation results reveal that at infinite dilution both Fe2+ cation and OH- anion have 6 water molecules within their first hydration shell and both types of ionic species experience a dramatic increase in their diffusion coefficients at near and supercritical conditions. The process of iron (II) hydroxide cluster formation has been simulated. The nano-clusters of larger sizes formed in supercritical water tend to be in an amorphous state. After having been quenched by an inert gas bath, iron (II) hydroxide nano-clusters with various structures have been produced. The geometries and associated binding energies of these species are given in detail. The vibrational spectra of iron (II) hydroxide clusters are also derived and compared with the spectrum of a bulk solid. The obtained results have a practical value for the analysis of potential corrosion products in supercritical water-cooled reactor (SCWR) which is employed in the new generation nuclear power plant design (GEN IV). This work also illustrates the process of hydrothermal synthesis of oxide nano-particles.

  4. Survey: Destruction of chemical agent simulants in supercritical water oxidation. Master's thesis

    SciTech Connect

    Blank, M.R.

    1992-07-01

    The supercritical water oxidation (SCWO) process exhibits distinct advantages for destruction of toxic wastes. Examples of these wastes are two chemical agent simulants, dimethyl methylphosphonate (DMMP) and thiodiglycol (2,2'-thiodiethanol). DMMP is similar to the nerve agent GB Sarin in structure, and thiodiglycol is a hydrolysis product of the blister agent HD Sulfur Mustard. Both simulants are miscible in water and relatively non-toxic in comparison to the actual chemical agents. Using a Laboratory-scale, batch three temperatures were investigated: 425 deg C, 450 deg C, and 500 deg C with an initial concentration of one percent by volume, 11,450 mg/L for DMMP and 12,220 mg/L for thiodiglycol. Residence times investigated were: 1, 2, 3, 6, and 8 minutes. Reactor beat-up (H.U.) was determined to be one minute. Both pyrolysis and oxidation tests were conducted. Oxygen levels were uniformly set at 200% of stoichiometric requirements for the parent compounds.

  5. Molecular Dynamics Simulation of Na(+)-Cl(-) Ion-Pair in Water-Methanol Mixtures under Supercritical and Ambient Conditions.

    PubMed

    Keshri, Sonanki; Sarkar, Atanu; Tembe, B L

    2015-12-17

    Constrained molecular dynamics simulations have been performed to investigate the structure and thermodynamics of Na(+)-Cl(-) ion-pair association in water-methanol mixtures under supercritical and ambient conditions in dilute solutions. From the computed potentials of mean force (PMFs) we find that contact ion pairs (CIPs) are more stable than all other associated states of the ion pairs in both ambient and supercritical conditions. Stabilities of CIPs increase with increase in the mole fraction of methanol. In supercritical conditions, major changes in PMFs occur as we go from x(methanol) = 0.00 to x(methanol) = 0.50. The stable solvent shared ion pair (SShIP) which occurs in x(methanol) = 0.00 and 0.25, vanishes when x(methanol) is 0.50 or greater. The stabilities of these ion pairs increase with increasing temperature. Local structures around the ions are studied using the radial distribution functions, density profiles, angular distribution functions, running coordination numbers and excess coordination numbers. Preferential solvation analysis shows that both Na(+) and Cl(-) ions are preferentially solvated by water. From the calculation of enthalpies and entropies, we find that Na(+)-Cl(-) ion-pair association in water-methanol binary mixtures is endothermic and driven by entropy both in ambient as well as under supercritical conditions.

  6. ENGINEERING BULLETIN: SUPERCRITICAL WATER OXIDATION

    EPA Science Inventory

    This engineering bulletin presents a description and status of supercritical water oxidation technology, a summary of recent performance tests, and the current applicability of this emerging technology. This information is provided to assist remedial project managers, contractors...

  7. Correlated Particle Motion and THz Spectral Response of Supercritical Water

    NASA Astrophysics Data System (ADS)

    Śmiechowski, Maciej; Schran, Christoph; Forbert, Harald; Marx, Dominik

    2016-01-01

    Molecular dynamics simulations of supercritical water reveal distinctly different distance-dependent modulations of dipolar response and correlations in particle motion compared to ambient conditions. The strongly perturbed H-bond network of water at supercritical conditions allows for considerable translational and rotational freedom of individual molecules. These changes give rise to substantially different infrared spectra and vibrational density of states at THz frequencies for densities above and below the Widom line that separates percolating liquidlike and clustered gaslike supercritical water.

  8. Removing Solids From Supercritical Water

    NASA Technical Reports Server (NTRS)

    Hong, Glenn T.

    1992-01-01

    Apparatus removes precipitated inorganic salts and other solids in water-recycling process. Designed for use with oxidation in supercritical water which treats wastes and yields nearly pure water. Heating coils and insulation around vessel keep it hot. Locking bracket seals vessel but allows it to be easily opened for replacement of filled canisters.

  9. Density dependence of the entropy and the solvation shell structure in supercritical water via molecular dynamics simulation.

    PubMed

    Ma, Haibo

    2012-06-07

    We perform molecular dynamics simulations of supercritical water (SCW) with a wide range of densities along a near critical isotherm using the simple point charge extended (SPC/E) pair potential in order to study the entropy and the solvation shell structure around a central water molecule. It is shown that both the translational and orientational two-particle correlation entropy terms can serve as the metrics of the translational-orientational structural orders in water and it is revealed that the translational structural order is very sensitive to the density variation in the gas-like and liquid-like region, while the orientational structural order is much more dependent upon compression in the medium-density SCW region. The comparison of the magnitudes of the full thermodynamic excess entropy and two-particle correlation entropy confirms the recent findings that the many-body terms other than two-body ones also present significant and non-neglectable contributions to the full excess entropy for the highly anomalous fluids like water. The analysis of entropy terms as a function of intermolecular distance and the orientational distribution functions as well as the three-dimensional spatial distribution functions indicate that the structural order occurs only in a much more diffused first solvation shell due to the elongated hydrogen bonds under supercritical conditions. It is revealed that no obvious second or higher neighbor shells occur in SCW, in contrast with the feature of normal liquid water that the anomalous decrease of translational order upon compression occurs mainly in the second shell.

  10. iTOUGH2-EOS1SC. Multiphase Reservoir Simulator for Water under Sub- and Supercritical Conditions. User's Guide

    SciTech Connect

    Magnusdottir, Lilja; Finsterle, Stefan

    2015-03-01

    Supercritical fluids exist near magmatic heat sources in geothermal reservoirs, and the high enthalpy fluid is becoming more desirable for energy production with advancing technology. In geothermal modeling, the roots of the geothermal systems are normally avoided but in order to accurately predict the thermal behavior when wells are drilled close to magmatic intrusions, it is necessary to incorporate the heat sources into the modeling scheme. Modeling supercritical conditions poses a variety of challenges due to the large gradients in fluid properties near the critical zone. This work focused on using the iTOUGH2 simulator to model the extreme temperature and pressure conditions in magmatic geothermal systems.

  11. Supercritical Water Mixture (SCWM) Experiment

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.

    2012-01-01

    The subject presentation, entitled, Supercritical Water Mixture (SCWM) Experiment, was presented at the International Space Station (ISS) Increment 33/34 Science Symposium. This presentation provides an overview of an international collaboration between NASA and CNES to study the behavior of a dilute aqueous solution of Na2SO4 (5% w) at near-critical conditions. The Supercritical Water Mixture (SCWM) investigation, serves as important precursor work for subsequent Supercritical Water Oxidation (SCWO) experiments. The SCWM investigation will be performed in DECLICs High Temperature Insert (HTI) for the purpose of studying critical fluid phenomena at high temperatures and pressures. The HTI includes a completely sealed and integrated test cell (i.e., Sample Cell Unit SCU) that will contain approximately 0.3 ml of the aqueous test solution. During the sequence of tests, scheduled to be performed in FY13, temperatures and pressures will be elevated to critical conditions (i.e., Tc = 374C and Pc = 22 MPa) in order to observe salt precipitation, precipitate agglomeration and precipitate transport in the presence of a temperature gradient without the influences of gravitational forces. This presentation provides an overview of the motivation for this work, a description of the DECLIC HTI hardware, the proposed test sequences, and a brief discussion of the scientific research objectives.

  12. Lattice Boltzmann simulations of supercritical CO2-water drainage displacement in porous media: CO2 saturation and displacement mechanism.

    PubMed

    Yamabe, Hirotatsu; Tsuji, Takeshi; Liang, Yunfeng; Matsuoka, Toshifumi

    2015-01-06

    CO2 geosequestration in deep aquifers requires the displacement of water (wetting phase) from the porous media by supercritical CO2 (nonwetting phase). However, the interfacial instabilities, such as viscous and capillary fingerings, develop during the drainage displacement. Moreover, the burstlike Haines jump often occurs under conditions of low capillary number. To study these interfacial instabilities, we performed lattice Boltzmann simulations of CO2-water drainage displacement in a 3D synthetic granular rock model at a fixed viscosity ratio and at various capillary numbers. The capillary numbers are varied by changing injection pressure, which induces changes in flow velocity. It was observed that the viscous fingering was dominant at high injection pressures, whereas the crossover of viscous and capillary fingerings was observed, accompanied by Haines jumps, at low injection pressures. The Haines jumps flowing forward caused a significant drop of CO2 saturation, whereas Haines jumps flowing backward caused an increase of CO2 saturation (per injection depth). We demonstrated that the pore-scale Haines jumps remarkably influenced the flow path and therefore equilibrium CO2 saturation in crossover domain, which is in turn related to the storage efficiency in the field-scale geosequestration. The results can improve our understandings of the storage efficiency by the effects of pore-scale displacement phenomena.

  13. Supercritical Water Oxidation Data Acquisition Testing

    SciTech Connect

    K. M. Garcia

    1996-08-01

    Supercritical Water Oxidation (SCWO) is a high pressure oxidation process that blends air, water, and organic waste material in an oxidizer in which where the temperature and pressure in the oxidizer are maintained above the critical point of water. Supercritical water mixed with hydrocarbons, which would be insoluble at subcritical conditions, forms a homogeneous phase which possesses properties associated with both a gas and a liquid. Hydrocarbons in contact with oxygen and SCW are readily oxidized. These properties of SCW make it an attractive means for the destruction of waste streams containing organic materials. SCWO technology holds great promise for treating mixed wastes in an environmentally safe and efficient manner. In the spring of 1994 the U.S. Department of Energy (DOE) initiated a Supercritical Water Oxidation Data Acquisition Testing (SCWODAT) program. The SCWODAT program provided further information and operational data on the effectiveness of treating both simulated mixed waste and typical Navy hazardous waste using the SCWO technology. The program concentrated on the acquisition of data through pilot plant testing. The Phase I DOE testing used a simulated waste stream that contained a complex machine cutting oil and metals, that acted as surrogates for radionuclides. The Phase II Navy testing included pilot testing using hazardous waste materials to demonstrate the effectiveness of the SCWO technology. The SCWODAT program demonstrated that the SCWO process oxidized the simulated waste stream containing complex machine cutting oil, selected by DOE as representative of one of the most difficult of the organic waste streams for which SCWO had been applied. The simulated waste stream with surrogate metals in solution was oxidized, with a high destruction efficiency, on the order of 99.97%, in both the neutralized and unneutralized modes of operation.

  14. Kinetics of Supercritical Water Oxidation

    DTIC Science & Technology

    2007-11-02

    Donald R. Hardesty April 1 - June 30,1995 Project description: This project consists of experiments and theoretical modeling designed to improv...Washington. D.C., 4/95. D.R. Hardesty , "Kinetic Mechanisms of Supercritical Water Oxidation" presented at the FY95 In Progress Review. 5/95 Ft...McLean, 8300 MS9051 L. Rahn, 8351 MS9055 F. Tully, 8353 MS9056 G. Fisk, 8355 MS9052 D.R. Hardesty , 8361 Attn: Allendorf, S Allendorf, M

  15. Supercritical water oxidation - Microgravity solids separation

    NASA Technical Reports Server (NTRS)

    Killilea, William R.; Hong, Glenn T.; Swallow, Kathleen C.; Thomason, Terry B.

    1988-01-01

    This paper discusses the application of supercritical water oxidation (SCWO) waste treatment and water recycling technology to the problem of waste disposal in-long term manned space missions. As inorganic constituents present in the waste are not soluble in supercritical water, they must be removed from the organic-free supercritical fluid reactor effluent. Supercritical water reactor/solids separator designs capable of removing precipitated solids from the process' supercritical fluid in zero- and low- gravity environments are developed and evaluated. Preliminary experiments are then conducted to test the concepts. Feed materials for the experiments are urine, feces, and wipes with the addition of reverse osmosis brine, the rejected portion of processed hygiene water. The solid properties and their influence on the design of several oxidation-reactor/solids-separator configurations under study are presented.

  16. Fundamental kinetics and mechanistic pathways for oxidation reactions in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Tester, Jefferson W.

    1988-01-01

    Oxidation of the products of human metabolism in supercritical water has been shown to be an efficient way to accomplish the on-board water/waste recycling in future long-term space flights. Studies of the oxidation kinetics of methane to carbon dioxide in supercritical water are presented in this paper in order to enhance the fundamental understanding of the oxidation of human waste compounds in supercritical water. It is concluded that, although the elementary reaction models remain the best hope for simulating oxidation in supercritical water, several modifications to existing mechanisms need to be made to account for the role of water in the reaction mechanism.

  17. Direct numerical simulation of convective heat transfer in a zero-pressure- gradient boundary layer with supercritical water

    NASA Astrophysics Data System (ADS)

    Azih, C.; Brinkerhoff, J. R.; Yaras, M. I.

    2012-02-01

    Experimental research has long shown that forced-convective heat transfer in wall-bounded turbulent flows of fluids in the supercritical thermodynamic state is not accurately predicted by correlations that have been developed for single-phase fluids in the subcritical thermodynamic state. In the present computational study, the statistical properties of turbulent flow as well as the development of coherent flow structures in a zero-pressure-gradient flat-plate boundary layer are investigated in the absence of body forces, where the working fluid is in the supercritical thermodynamic state. The simulated boundary layers are developed to a friction Reynolds number of 250 for two heat-flux to mass-flux ratios corresponding to cases where normal heat transfer and improved heat transfer are observed. In the case where improved heat transfer is observed, spanwise spacing of the near-wall coherent flow structures is reduced due to a relatively less stable flow environment resulting from the lower magnitudes of the wall-normal viscosity-gradient profile.

  18. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  19. Simulations of Flowing Supercritical N-Decane

    DTIC Science & Technology

    2000-03-01

    Thermal Diagnostic Studies ( STDS ), located in the Air Force Research Laboratory’S Fuels Branch, is used to analyze fuels under supercritical temperatures...and pressures. Computational simulations of the STDS reactor are performed to better understand the heat transfer, fluid dynamics, and chemistry...associated with fuel flow through the STDS reactor. A simplified global chemistry model is incorporated into the computational simulation. Predictions of

  20. Molecular Dynamics Simulation of Supercritical Spray Phenomena

    DTIC Science & Technology

    2008-09-26

    Dynamics of the Rheological and Structural Properties of Linear and Branched Molecules. Simple Shear and Poiseuille Flows ; Instabilities and Slip...Michael Barrucco Publications: "Comparison of Wall Models for the Molecular Dynamics Simulation of Micro flows ," R. D. Branam and M. M...Performance 3. DATES COVERED (From - To) 1 Dec. 2003 - 31 May 2008 4. TITLE AND SUBTITLE Molecular Dynamics Simulation of Supercritical

  1. Destruction of Energetic Materials in Supercritical Water

    DTIC Science & Technology

    2002-06-25

    THERMOCHEMISTRY OF ENERGETIC MATERIALS IN SUPERCRITICAL WATER...fringe spacing is 13.5 µm and the acoustic signal period is 28.3 ns. 138 SECTION VI THERMOCHEMISTRY OF ENERGETIC MATERIALS IN...validation calculation studied the solvation free energies of alkali–chloride ion pairs in liquid water. Such information can teach us about the

  2. Thermal lensing in a supercritical water medium.

    PubMed

    Rodriguez, Rene G; Mezyk, Stephen P; Stewart, Charlynn; Rollins, Harry W; Mincher, Bruce J; Fox, Robert V; Phillips, BarJean; Brey, Richard

    2007-01-25

    A pulsed, two-beam, thermal lensing experiment was performed to determine the concentration of aqueous solutes above the critical point of water. Despite a very significant mirage effect due to thermal gradients in the cell and absorption by water itself, the thermal lensing signal strength for aqueous benzoic acid in supercritical water was found to be linear with concentration in the sub-millimolar range. Although thermal lensing experiments in aqueous media are notoriously insensitive, the sharp density gradient near the critical point considerably improves the signal intensity. In this study a short-pulse pump 266 nm YAG laser and continuous low-power probe Ar ion beam were both focused into a supercritical water cell, giving a lensing signal whose strength could be maximized by changing the overlap of the two beams.

  3. Supercritical water oxidation of landfill leachate

    SciTech Connect

    Wang Shuzhong; Guo Yang; Chen Chongming; Zhang Jie; Gong Yanmeng; Wang Yuzhen

    2011-09-15

    Highlights: > Thermal analysis of NH{sub 3} in supercritical water oxidation reaction. > Research on the catalytic reaction of landfill leachate by using response surface method. > Kinetic research of supercritical water oxidation of NH{sub 3} with and without MnO{sub 2} catalyst. - Abstract: In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N{sub 2} is the main product, and the formation of NO{sub 2} and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 deg. C, reaction time of 50-300 s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH{sub 3} conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH{sub 3} is a refractory compound in supercritical water. The conversion of COD and NH{sub 3} were higher in the presence of MnO{sub 2} than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH{sub 3} conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH{sub 3}. The activation energy with and without catalyst for NH{sub 3} oxidation were 107.07 {+-} 8.57 kJ/mol and 83.22 {+-} 15.62 kJ/mol, respectively.

  4. Supercritical water oxidation data acquisition testing. Final report, Volume II

    SciTech Connect

    1996-11-01

    Supercritical Water Oxidation (SCWO) technology holds great promise for treating mixed wastes, in an environmentally safe and efficient manner. In the spring of 1994 the US Department of Energy (DOE), Idaho Operations Office awarded Stone & Webster Engineering Corporation, of Boston Massachusetts and its sub-contractor MODAR, Inc. of Natick Massachusetts a Supercritical Water Oxidation Data Acquisition Testing (SCWODAT) program. The SCWODAT program was contracted through a Cooperative Agreement that was co-funded by the US Department of Energy and the Strategic Environmental Research and Development Program. The SCWODAT testing scope outlined by the DOE in the original Cooperative Agreement and amendments thereto was initiated in June 1994 and successfully completed in December 1995. The SCWODAT program provided further information and operational data on the effectiveness of treating both simulated mixed waste and typical Navy hazardous waste using the MODAR SCWO technology.

  5. Supercritical water oxidation of products of human metabolism

    NASA Technical Reports Server (NTRS)

    Tester, Jefferson W.; Orge A. achelling, Richard K. ADTHOMASSON; Orge A. achelling, Richard K. ADTHOMASSON

    1986-01-01

    Although the efficient destruction of organic material was demonstrated in the supercritical water oxidation process, the reaction kinetics and mechanisms are unknown. The kinetics and mechanisms of carbon monoxide and ammonia oxidation in and reaction with supercritical water were studied experimentally. Experimental oxidation of urine and feces in a microprocessor controlled system was performed. A minaturized supercritical water oxidation process for space applications was design, including preliminary mass and energy balances, power, space and weight requirements.

  6. Supercritical methanol for polyethylene terephthalate depolymerization: Observation using simulator

    SciTech Connect

    Genta, Minoru; Iwaya, Tomoko; Sasaki, Mitsuru; Goto, Motonobu

    2007-07-01

    To apply PET depolymerization in supercritical methanol to commercial recycling, the benefits of supercritical methanol usage in PET depolymerization was investigated from the viewpoint of the reaction rate and energy demands. PET was depolymerized in a batch reactor at 573 K in supercritical methanol under 14.7 MPa and in vapor methanol under 0.98 MPa in our previous work. The main products of both reactions were the PET monomers of dimethyl terephthalate (DMT) and ethylene glycol (EG). The rate of PET depolymerization in supercritical methanol was faster than that of PET depolymerization in vapor methanol. This indicates supercritical fluid is beneficial in reducing reaction time without the use of a catalyst. We depicted the simple process flow of PET depolymerization in supercritical methanol and in vapor methanol, and by simulation evaluated the total heat demand of each process. In this simulation, bis-hydroxyethyl terephthalate (BHET) was used as a model component of PET. The total heat demand of PET depolymerization in supercritical methanol was 2.35 x 10{sup 6} kJ/kmol Produced-DMT. That of PET depolymerization in vapor methanol was 2.84 x 10{sup 6} kJ/kmol Produced-DMT. The smaller total heat demand of PET depolymerization in supercritical methanol clearly reveals the advantage of using supercritical fluid in terms of energy savings.

  7. Etching of glass microchips with supercritical water.

    PubMed

    Karásek, Pavel; Grym, Jakub; Roth, Michal; Planeta, Josef; Foret, František

    2015-01-07

    A novel method of etching channels in glass microchips with the most tunable solvent, water, was tested as an alternative to common hydrogen fluoride-containing etchants. The etching properties of water strongly depend on temperature and pressure, especially in the vicinity of the water critical point. The chips were etched at the subcritical, supercritical and critical temperature of water, and the resulting channel shape, width, depth and surface morphology were studied by scanning electron microscopy and 3D laser profilometry. Channels etched with the hot water were compared with the chips etched with standard hydrogen fluoride-containing solution. Depending on the water pressure and temperature, the silicate dissolved from the glass could be re-deposited on the channel surface. This interesting phenomenon is described together with the conditions necessary for its utilization. The results illustrate the versatility of pure water as a glass etching and surface morphing agent.

  8. Polarization and spectral shift of benzophenone in supercritical water.

    PubMed

    Fonseca, T L; Georg, H C; Coutinho, K; Canuto, S

    2009-04-30

    Monte Carlo simulation and quantum mechanics calculations based on the INDO/CIS and TD-DFT methods were utilized to study the solvatochromic shift of benzophenone when changing the environment from normal water to supercritical (P = 340.2 atm and T = 673 K) condition. Solute polarization increases the dipole moment of benzophenone, compared to gas phase, by 88 and 35% in normal and supercritical conditions, giving the in-solvent dipole value of 5.8 and 4.2 D, respectively. The average number of solute-solvent hydrogen bonds was analyzed, and a large decrease of 2.3 in normal water to only 0.8 in the supercritical environment was found. By using these polarized models of benzophenone in the two different conditions of water, we performed MC simulations to generate statistically uncorrelated configurations of the solute surrounded by the solvent molecules and subsequent quantum mechanics calculations on these configurations. When changing from normal to supercritical water environment, INDO/CIS calculations explicitly considering all valence electrons of the 235 solvent water molecules resulted in a solvatochromic shift of 1425 cm(-1) for the most intense pi-pi* transition of benzophenone, that is, slightly underestimated in comparison with the experimentally inferred result of 1700 cm(-1). TD-B3LYP/6-311+G(2d,p) calculations on the same configurations but with benzophenone electrostatically embedded in the 320 water molecules resulted in a solvatochromic shift of 1715 cm(-1) for this transition, in very good agreement with the experimental result. When using the unpolarized model of the benzophenone, this calculated solvatochromic shift was only 640 cm(-1). Additional calculations were also made by using BHandHLYP/6-311+G(2d,p) to analyze the effect of the asymptotic decay of the exchange functional. This study indicates that, contrary to the general expectation, there is a sizable solute polarization even in the low-density regime of supercritical condition and

  9. Supercritical water oxidation treatment of textile sludge.

    PubMed

    Zhang, Jie; Wang, Shuzhong; Li, Yanhui; Lu, Jinling; Chen, Senlin; Luo, XingQi

    2016-10-17

    In this work, we studied the supercritical water oxidation (SCWO) of the textile sludge, the hydrothermal conversion of typical textile compounds and the corrosion properties of stainless steel 316. Moreover, the influence mechanisms of NaOH during these related processes were explored. The results show that decomposition efficiency for organic matter in liquid phase of the textile sludge was improved with the increment of reaction temperature or oxidation coefficient. However, the organic substance in solid phase can be oxidized completely in supercritical water. Serious coking occurred during the high pressure water at 250-450°C for the Reactive Orange 7, while at 300 and 350°C for the polyvinyl alcohol. The addition of NaOH not only accelerated the destruction of organic contaminants in the SCWO reactor, but effectively inhibited the dehydration conversion of textile compounds during the preheating process, which was favorable for the treatment system of textile sludge. The corrosion experiment results indicate that the stainless steel 316 could be competent for the body materials of the reactor and the heat exchangers. Furthermore, there was prominent enhancement of sodium hydroxide for the corrosion resistance of 316 in subcritical water. On the contrary the effect was almost none during SCWO.

  10. Supercritical Water Process for the Chemical Recycling of Waste Plastics

    NASA Astrophysics Data System (ADS)

    Goto, Motonobu

    2010-11-01

    The development of chemical recycling of waste plastics by decomposition reactions in sub- and supercritical water is reviewed. Decomposition reactions proceed rapidly and selectively using supercritical fluids compared to conventional processes. Condensation polymerization plastics such as PET, nylon, and polyurethane, are relatively easily depolymerized to their monomers in supercritical water. The monomer components are recovered in high yield. Addition polymerization plastics such as phenol resin, epoxy resin, and polyethylene, are also decomposed to monomer components with or without catalysts. Recycling process of fiber reinforced plastics has been studied. Pilot scale or commercial scale plants have been developed and are operating with sub- and supercritical fluids.

  11. Supercritical water oxidation technology for DWPF

    SciTech Connect

    Carter, J.T.; Gentilucci, J.A.

    1992-02-07

    At the request of Mr. H.L. Brandt and others in the Savannah River Field Office High Level Waste Division office, DWPF, and SRL personnel have reviewed two potential applications for supercritical water oxidation technology in DWPF. The first application would replace the current hydrolysis process by destroying the organic fractions of the precipitated cesium / potassium tetraphenylborate slurry. The second application pertains to liquid benzene destruction. After a thorough evaluation the first application is not recommended. The second is ready to be tested if needed.

  12. Oxidation of oily sludge in supercritical water.

    PubMed

    Cui, Baochen; Cui, Fuyi; Jing, Guolin; Xu, Shengli; Huo, Weijing; Liu, Shuzhi

    2009-06-15

    The oxidation of oily sludge in supercritical water is performed in a batch reactor at reaction temperatures between 663 and 723 K, the reaction times between 1 and 10 min and pressure between 23 and 27 MPa. Effect of reaction parameters such as reaction time, temperature, pressure, O(2) excess and initial COD on oxidation of oily sludge is investigated. The results indicate that chemical oxygen demand (COD) removal rate of 92% can be reached in 10 min. COD removal rate increases as the reaction time, temperature and initial COD increase. Pressure and O(2) excess have no remarkable affect on reaction. By taking into account the dependence of reaction rate on COD concentration, a global power-law rate expression was regressed from experimental data. The resulting pre-exponential factor was 8.99 x 10(14)(mol L(-1))(-0.405)s(-1); the activation energy was 213.13+/-1.33 kJ/mol; and the reaction order for oily sludge (based on COD) is 1.405. It was concluded that supercritical water oxidation (SCWO) is a rapidly emerging oily sludge processing technology.

  13. Computational Fluid Dynamics Analysis of Canadian Supercritical Water Reactor (SCWR)

    NASA Astrophysics Data System (ADS)

    Movassat, Mohammad; Bailey, Joanne; Yetisir, Metin

    2015-11-01

    A Computational Fluid Dynamics (CFD) simulation was performed on the proposed design for the Canadian SuperCritical Water Reactor (SCWR). The proposed Canadian SCWR is a 1200 MW(e) supercritical light-water cooled nuclear reactor with pressurized fuel channels. The reactor concept uses an inlet plenum that all fuel channels are attached to and an outlet header nested inside the inlet plenum. The coolant enters the inlet plenum at 350 C and exits the outlet header at 625 C. The operating pressure is approximately 26 MPa. The high pressure and high temperature outlet conditions result in a higher electric conversion efficiency as compared to existing light water reactors. In this work, CFD simulations were performed to model fluid flow and heat transfer in the inlet plenum, outlet header, and various parts of the fuel assembly. The ANSYS Fluent solver was used for simulations. Results showed that mass flow rate distribution in fuel channels varies radially and the inner channels achieve higher outlet temperatures. At the outlet header, zones with rotational flow were formed as the fluid from 336 fuel channels merged. Results also suggested that insulation of the outlet header should be considered to reduce the thermal stresses caused by the large temperature gradients.

  14. Widom line and dynamical crossovers as routes to understand supercritical water

    NASA Astrophysics Data System (ADS)

    Gallo, P.; Corradini, D.; Rovere, M.

    2014-12-01

    Supercritical water is fundamental in many fields of applications and a precise characterization of the supercritical state is of uttermost importance for this liquid. In a fluid, when moving from the critical point into the single-phase region, the thermodynamic response functions show maxima reminiscent of the critical divergence. Here we study the thermodynamic properties of water in the supercritical region by analysing both available experimental data and our computer simulation results. We find that the lines connecting the maxima of the response functions converge on approaching the critical point in a single line, the Widom line. We further show that the Widom line coincides with a crossover from a liquid-like to a gas-like behaviour clearly visible in the transport properties. These thermodynamic and dynamic features show that the supercritical state in water is far more complex than what was so far believed, indicating a new perspective in the characterization of the thermodynamics of this state.

  15. Widom line and dynamical crossovers as routes to understand supercritical water.

    PubMed

    Gallo, P; Corradini, D; Rovere, M

    2014-12-16

    Supercritical water is fundamental in many fields of applications and a precise characterization of the supercritical state is of uttermost importance for this liquid. In a fluid, when moving from the critical point into the single-phase region, the thermodynamic response functions show maxima reminiscent of the critical divergence. Here we study the thermodynamic properties of water in the supercritical region by analysing both available experimental data and our computer simulation results. We find that the lines connecting the maxima of the response functions converge on approaching the critical point in a single line, the Widom line. We further show that the Widom line coincides with a crossover from a liquid-like to a gas-like behaviour clearly visible in the transport properties. These thermodynamic and dynamic features show that the supercritical state in water is far more complex than what was so far believed, indicating a new perspective in the characterization of the thermodynamics of this state.

  16. Pyrite in contact with supercritical water: the desolation of steam.

    PubMed

    Stirling, András; Rozgonyi, Tamás; Krack, Matthias; Bernasconi, Marco

    2015-07-14

    The supercritical water-pyrite interface has been studied by ab initio molecular dynamics simulation. Extreme conditions are relevant in the iron-sulfur world (ISW) theory where prebiotic chemical reactions are postulated to occur at the mineral-water interface. We have investigated the properties of this interface under such conditions. We have come to the conclusion that hot-pressurized water on pyrite leads to an interface where a dry pyrite surface is in contact with the nearby SC water without significant chemical interactions. This picture is markedly different from that under ambient conditions where the surface is fully covered with adsorbed water molecules which is of relevance for the surface reactions of the ISW hypothesis.

  17. Containment system for supercritical water oxidation reactor

    DOEpatents

    Chastagner, Philippe

    1994-01-01

    A system for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary.

  18. Containment system for supercritical water oxidation reactor

    DOEpatents

    Chastagner, P.

    1994-07-05

    A system is described for containment of a supercritical water oxidation reactor in the event of a rupture of the reactor. The system includes a containment for housing the reaction vessel and a communicating chamber for holding a volume of coolant, such as water. The coolant is recirculated and sprayed to entrain and cool any reactants that might have escaped from the reaction vessel. Baffles at the entrance to the chamber prevent the sprayed coolant from contacting the reaction vessel. An impact-absorbing layer is positioned between the vessel and the containment to at least partially absorb momentum of any fragments propelled by the rupturing vessel. Remote, quick-disconnecting fittings exterior to the containment, in cooperation with shut-off valves, enable the vessel to be isolated and the system safely taken off-line. Normally-closed orifices throughout the containment and chamber enable decontamination of interior surfaces when necessary. 2 figures.

  19. Gasification of cyanobacterial in supercritical water.

    PubMed

    Zhang, Huiwen; Zhu, Wei; Xu, Zhirong; Gong, Miao

    2014-01-01

    Cyanobacterial collected from eutrophic freshwater lakes constituted intractable waste with a rich algae biomass content. Supercritical water gasification (SCWG) was proposed to treat the cyanobacterial and to produce hydrogen for energy. The H 2 yield reached 2.92 mol/kg at reaction conditions of 500 °C, 30 min and 22 MPa; this yield accounted for 26% of the total gaseous products. Abundant ammonia and dissolved reactive phosphorous were concentrated in the liquid product, which could be recovered and used as a liquid fertilizer. Solid residue, which accounted only for about 1% of the wet weight, was mainly composed of coke and ash. The efficiency of H 2 production was better than that from other biomass, because of the abundant organic matter in cyanobacterial. Thus, cyanobacterial are an ideal biomass feedstock for H 2 production from SCWG.

  20. Supercritical water oxidation of landfill leachate.

    PubMed

    Wang, Shuzhong; Guo, Yang; Chen, Chongming; Zhang, Jie; Gong, Yanmeng; Wang, Yuzhen

    2011-01-01

    In this paper, ammonia as an important ingredient in landfill leachate was mainly studied. Based on Peng-Robinson formulations and Gibbs free energy minimization method, the estimation of equilibrium composition and thermodynamic analysis for supercritical water oxidation of ammonia (SCWO) was made. As equilibrium is reached, ammonia could be totally oxidized in SCW. N(2) is the main product, and the formation of NO(2) and NO could be neglected. The investigation on SCWO of landfill leachate was conducted in a batch reactor at temperature of 380-500 °C, reaction time of 50-300s and pressure of 25 MPa. The effect of reaction parameters such as oxidant equivalent ratio, reaction time and temperature were investigated. The results showed that COD and NH(3) conversion improved as temperature, reaction time and oxygen excess increased. Compared to organics, NH(3) is a refractory compound in supercritical water. The conversion of COD and NH(3) were higher in the presence of MnO(2) than that without catalyst. The interaction between reaction temperature and time was analyzed by using response surface method (RSM) and the results showed that its influence on the NH(3) conversion was relatively insignificant in the case without catalyst. A global power-law rate expression was regressed from experimental data to estimate the reaction rate of NH(3). The activation energy with and without catalyst for NH(3) oxidation were 107.07 ± 8.57 kJ/mol and 83.22 ± 15.62 kJ/mol, respectively.

  1. Stability Analysis of a Uniformly Heated Channel with Supercritical Water

    SciTech Connect

    Ortega Gomez, T.; Class, A.; Schulenberg, T.; Lahey, R.T. Jr.

    2006-07-01

    The thermal-hydraulic stability of a uniformly heated channel at supercritical water pressure has been investigated to help understand the system instability phenomena which may occur in Supercritical Water Nuclear Reactors (SCWR). We have extended the modeling approach often used for Boiling Water Nuclear Reactor (BWR) stability analysis to supercritical pressure operation conditions. We have shown that Ledinegg excursive instabilities and pressure-drop oscillations (PDO) will not occur in supercritical water systems. The linear stability characteristics of a typical uniformly heated channel were computed by evaluating the eigenvalues of the model. An analysis of non-linear instability phenomena was also performed in the time domain and the dynamic bifurcations were evaluated. (authors)

  2. The Widom line and dynamical crossover in supercritical water: Popular water models versus experiments

    SciTech Connect

    Corradini, D.; Rovere, M.; Gallo, P.

    2015-09-21

    In a previous study [Gallo et al., Nat. Commun. 5, 5806 (2014)], we have shown an important connection between thermodynamic and dynamical properties of water in the supercritical region. In particular, by analyzing the experimental viscosity and the diffusion coefficient obtained in simulations performed using the TIP4P/2005 model, we have found that the line of response function maxima in the one phase region, the Widom line, is connected to a crossover from a liquid-like to a gas-like behavior of the transport coefficients. This is in agreement with recent experiments concerning the dynamics of supercritical simple fluids. We here show how different popular water models (TIP4P/2005, TIP4P, SPC/E, TIP5P, and TIP3P) perform in reproducing thermodynamic and dynamic experimental properties in the supercritical region. In particular, the comparison with experiments shows that all the analyzed models are able to qualitatively predict the dynamical crossover from a liquid-like to a gas-like behavior upon crossing the Widom line. Some of the models perform better in reproducing the pressure-temperature slope of the Widom line of supercritical water once a rigid shift of the phase diagram is applied to bring the critical points to coincide with the experimental ones.

  3. The Widom line and dynamical crossover in supercritical water: Popular water models versus experiments

    NASA Astrophysics Data System (ADS)

    Corradini, D.; Rovere, M.; Gallo, P.

    2015-09-01

    In a previous study [Gallo et al., Nat. Commun. 5, 5806 (2014)], we have shown an important connection between thermodynamic and dynamical properties of water in the supercritical region. In particular, by analyzing the experimental viscosity and the diffusion coefficient obtained in simulations performed using the TIP4P/2005 model, we have found that the line of response function maxima in the one phase region, the Widom line, is connected to a crossover from a liquid-like to a gas-like behavior of the transport coefficients. This is in agreement with recent experiments concerning the dynamics of supercritical simple fluids. We here show how different popular water models (TIP4P/2005, TIP4P, SPC/E, TIP5P, and TIP3P) perform in reproducing thermodynamic and dynamic experimental properties in the supercritical region. In particular, the comparison with experiments shows that all the analyzed models are able to qualitatively predict the dynamical crossover from a liquid-like to a gas-like behavior upon crossing the Widom line. Some of the models perform better in reproducing the pressure-temperature slope of the Widom line of supercritical water once a rigid shift of the phase diagram is applied to bring the critical points to coincide with the experimental ones.

  4. The Widom line and dynamical crossover in supercritical water: Popular water models versus experiments.

    PubMed

    Corradini, D; Rovere, M; Gallo, P

    2015-09-21

    In a previous study [Gallo et al., Nat. Commun. 5, 5806 (2014)], we have shown an important connection between thermodynamic and dynamical properties of water in the supercritical region. In particular, by analyzing the experimental viscosity and the diffusion coefficient obtained in simulations performed using the TIP4P/2005 model, we have found that the line of response function maxima in the one phase region, the Widom line, is connected to a crossover from a liquid-like to a gas-like behavior of the transport coefficients. This is in agreement with recent experiments concerning the dynamics of supercritical simple fluids. We here show how different popular water models (TIP4P/2005, TIP4P, SPC/E, TIP5P, and TIP3P) perform in reproducing thermodynamic and dynamic experimental properties in the supercritical region. In particular, the comparison with experiments shows that all the analyzed models are able to qualitatively predict the dynamical crossover from a liquid-like to a gas-like behavior upon crossing the Widom line. Some of the models perform better in reproducing the pressure-temperature slope of the Widom line of supercritical water once a rigid shift of the phase diagram is applied to bring the critical points to coincide with the experimental ones.

  5. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, C.M.; Shapiro, C.

    1997-11-25

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.

  6. Process for treating effluent from a supercritical water oxidation reactor

    DOEpatents

    Barnes, Charles M.; Shapiro, Carolyn

    1997-01-01

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.

  7. Near Term Application of Supercritical Water Technologies

    SciTech Connect

    Vogt, Bastian; Starflinger, Joerg; Schulenberg, Thomas

    2006-07-01

    A pressurized water reactor with a supercritical water primary loop is analyzed (PWR-SC) within this paper. It will be shown that the PWR-SC offers considerable advantages in the fields of safety, economy and efficiency compared with a conventional PWR design. A cycle analysis shows that the net plant efficiency increases by 2% compared to currently operated or built systems. In addition, the mass flow rate of the primary side is strongly decreased, which enables a reduction of the primary pump power by a factor of 4. In the secondary loop, the mass flow rate can be decreased by about 15%, which allows down-scaling of all secondary side components such as turbines, condensers and feed-water preheat systems as a consequence of the high core exit temperature. A coupled core analysis and a hot channel factor analysis are performed to demonstrate the promising safety features of the PWR-SC and to show the technical feasibility of such a system. (authors)

  8. Supercritical water pyrolysis of sewage sludge.

    PubMed

    Ma, Wenchao; Du, Guiyue; Li, Jian; Fang, Yuanhao; Hou, Li'an; Chen, Guanyi; Ma, Degang

    2017-01-01

    Municipal sewage sludge (SS) from wastewater treatment plant containing high water content (>85wt.%), lead to the difficulty of co-combustion with MSW or coal due to the high cost of drying. This study explores an alternative method by supercritical water (SCW) pyrolysis of sewage sludge (SS) in a high pressure reaction vessel. The effects of temperature and moisture content of SS on yield and composition of the products (bio-oil, bio char and non-condensable gas) were studied. A temperature of 385°C and moisture content of 85wt.% were found to be the optimum conditions for the maximum bio-oil production of 37.23wt.%, with a higher heating value of 31.08MJ/kg. In the optimum condition, the yields of aliphatic hydrocarbon and phenols were about 29.23wt.% and 12.51wt.%, respectively. The physical and chemical properties of bio-char were analyzed by using XRF and BET. Results of GC analyses of NCG showed that it has the maximum HHV of 13.39MJ/m(3) at 445°C and moisture content of 85wt.%. The reaction path from SS to bio-oil through SCW pyrolysis was given. Moreover, carbon balance was calculated for the optimal condition, and finding out that 64.27wt.% of the carbon content was transferred from SS to bio-oil. Finally, this work demonstrates that the SCW pyrolysis is a promising disposal method for SS.

  9. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    NASA Technical Reports Server (NTRS)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  10. Amination of n-hexanol in supercritical water.

    PubMed

    Tajima, Kiyohiko; Uchida, Munehiro; Minami, Kimitaka; Osada, Mitsumasa; Sue, Kiwamu; Nonaka, Toshiyuki; Hattori, Hideo; Arai, Kunio

    2005-12-15

    The amination of 1-n-hexanol followed by amidation was carried out in supercritical water at 380, 400, and 420 degrees C and water densities of 0.1, 0.3, and 0.5 g/cm3. The replacement of the hydroxyl group with the amino group was found to occur in 1-n-hexanol using ammonium acetate in supercritical water without the addition of a metal or an acid catalyst. The yield of the final product, N-n-hexylacetamide, increased by increasing the reaction temperature, water density, and the amount of ammonium acetate. The yield and the selectivity of N-n-hexylacetamide were 78.5% and 87.5%, respectively, in supercritical water at 400 degrees C, 0.5 g/cm3, for 10 min.

  11. Diffusion Limited Supercritical Water Oxidation (SCWO) in Microgravity Environments

    NASA Technical Reports Server (NTRS)

    Hicks, M. C.; Lauver, R. W.; Hegde, U. G.; Sikora, T. J.

    2006-01-01

    Tests designed to quantify the gravitational effects on thermal mixing and reactant injection in a Supercritical Water Oxidation (SCWO) reactor have recently been performed in the Zero Gravity Facility (ZGF) at NASA s Glenn Research Center. An artificial waste stream, comprising aqueous mixtures of methanol, was pressurized to approximately 250 atm and then heated to 450 C. After uniform temperatures in the reactor were verified, a controlled injection of air was initiated through a specially designed injector to simulate diffusion limited reactions typical in most continuous flow reactors. Results from a thermal mapping of the reaction zone in both 1-g and 0-g environments are compared. Additionally, results of a numerical model of the test configuration are presented to illustrate first order effects on reactant mixing and thermal transport in the absence of gravity.

  12. Destruction of energetic materials by supercritical water oxidation

    SciTech Connect

    Beulow, S.J.; Dyer, R.B.; Harradine, D.M.; Robinson, J.M.; Oldenborg, R.C.; Funk, K.A.; McInroy, R.E.; Sanchez, J.A.; Spontarelli, T.

    1993-10-01

    Supercritical water oxidation is a relatively low-temperature process that can give high destruction efficiencies for a variety of hazardous chemical wastes. Results are presented examining the destruction of high explosives and propellants in supercritical water and the use of low temperature, low pressure hydrolysis as a pretreatment process. Reactions of cyclotrimethylene trinitramine (RDX), cyclotetramethylene tetranitramine (HMX), nitroguanidine (NQ), pentaerythritol tetranitrate (PETN), and 2,4,6-trinitrotoluene (TNT) are examined in a flow reactor operated at temperatures between 400{degrees}C and 650{degrees}C. Explosives are introduced into the reactor at concentrations below the solubility limits. For each of the compounds, over 99.9% is destroyed in less than 30 seconds at temperatures above 600{degrees}C. The reactions produce primarily N{sub 2}, N{sub 2}O,CO{sub 2}, and some nitrate and nitrite ions. The distribution of reaction products depends on reactor pressure, temperature, and oxidizer concentration. Kinetics studies of the reactions of nitrate and nitrite ions with various reducing reagents in supercritical water show that they can be rapidly and completely destroyed at temperatures above 525{degrees}C. The use of slurries and hydrolysis to introduce high concentrations of explosives into a supercritical water reactor is examined. For some compounds the rate of reaction depends on particle size. The hydrolysis of explosives at low temperatures (<100{degrees}C) and low pressures (<1 atm) under basic conditions produces water soluble, non-explosive products which are easily destroyed by supercritical water oxidation. Large pieces of explosives (13 cm diameter) have been successfully hydrolyzed. The rate, extent, and products of the hydrolysis depend on the type and concentration of base. Results from the base hydrolysis of triple base propellant M31A1E1 and the subsequent supercritical water oxidation of the hydrolysis products are presented.

  13. Heat transfer research on supercritical water flow upward in tube

    SciTech Connect

    Li, H. B.; Yang, J.; Gu, H. Y.; Zhao, M.; Lu, D. H.; Zhang, J. M.; Wang, F.; Zhang, Y.

    2012-07-01

    The experimental research of heat transfer on supercritical water has been carried out on the supercritical water multipurpose test loop with a 7.6 mm upright tube. The experimental data of heat transfer is obtained. The experimental results of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: Heat transfer enhancement occurs when the fluid temperature reaches pseudo-critical point with low mass flow velocity, and peters out when the mass flow velocity increases. The heat transfer coefficient and Nusselt number decrease with the heat flux or system pressure increases, and increase with the increasing of mass flow velocity. The wall temperature increases when the mass flow velocity decreases or the system pressure increases. (authors)

  14. Supercritical water oxidation - Concept analysis for evolutionary Space Station application

    NASA Technical Reports Server (NTRS)

    Hall, John B., Jr.; Brewer, Dana A.

    1986-01-01

    The ability of a supercritical water oxidation (SCWO) concept to reduce the number of processes needed in an evolutionary Space Station design's Environmental Control and Life Support System (ECLSS), while reducing resupply requirements and enhancing the integration of separate ECLSS functions into a single Supercritical Water Oxidation process, is evaluated. While not feasible for an initial operational capability Space Station, the SCWO's application to the evolutionary Space Station configuration would aid the integration of eight ECLSS functions into a single one, thereby significantly reducing program costs.

  15. Spatial and Orientational Structure of the Hydration Shell of Benzene in Sub- and Supercritical Water.

    PubMed

    Choudhary, Ashu; Chandra, Amalendu

    2015-07-09

    The spatial and orientational structure of the solvation shell of benzene in sub- and supercritical water are investigated by means of molecular dynamics simulations. The present study reveals different local organization of water molecules at different parts of the solute. The π-hydrogen-bonding between benzene and water along the axial direction is found to exist even at supercritical conditions although to a reduced extent. The coordination number of benzene decreases substantially on increase of temperature and decrease of density. While the π-hydrogen-bonded part in the axial region shows a slight expansion, the hydrophobically solvated part in the equatorial plane shows an opposite behavior as the temperature is increased from normal to the supercritical temperature. Two other distribution functions, namely the radial/angular and spatial orientational functions (SOFs) are calculated to explore the spatially resolved angular preferences of water molecules around the benzene solute. Water molecules located axial to the benzene are found to have strong inward orientation toward the solute, however an opposite behavior is found in the equatorial region. Although at supercritical conditions, the orientational distributions of water molecules are broadened, the preferential orientations in the axial and equatorial regions remain similar to that under ambient condition on average.

  16. Treatment of sewage sludge in supercritical water and evaluation of the combined process of supercritical water gasification and oxidation.

    PubMed

    Qian, Lili; Wang, Shuzhong; Xu, Donghai; Guo, Yang; Tang, Xingying; Wang, Longfei

    2015-01-01

    Influences of temperature and oxidation coefficient (n) on sewage sludge treatment in supercritical water and its corresponding reaction mechanism were studied. Moreover, the combined process of supercritical water gasification (SCWG) and supercritical water oxidation (SCWO) was also investigated. The results show that ammonia nitrogen, phenols and pyridines are main refractory intermediates. The weight of solid products at 873K and n=4 is only 3.5wt.% of the initial weight, which is lower than that after combustion. Volatile organics in solid phase have almost released at 723K and n=0. Highest yield of combustible gases was obtained at n=0, and H2 yield can reach 11.81mol/kg at 873K. Furthermore, the combination of SCWG at 723K and SCWO at 873K with a total n=1 is feasible for its good effluent quality and low operation costs.

  17. New basis set superposition error free ab initio MO-VB interaction potential: Molecular-dynamics simulation of water at critical and supercritical conditions

    NASA Astrophysics Data System (ADS)

    Famulari, Antonino; Specchio, Roberto; Sironi, Maurizio; Raimondi, Mario

    1998-02-01

    Recently, a controversy has come to light in literature regarding the structure of water in nonambient conditions. Disagreement is evident between the site-site pair correlation functions of water derived from neutron diffraction and those obtained by computer simulations which employ effective pairwise potentials to express the intermolecular interactions. In this paper the SCFMI method (self-consistent field for molecular interaction) followed by nonorthogonal CI (configuration interaction) calculations was used to determine a new water-water interaction potential, which is BSSE (basis set superposition error) free in an a priori fashion. Extensive calculations were performed on water dimer and trimer and a new parametrization of a NCC-like (Niesar-Corongiu-Clementi) potential was accomplished. This was employed in the molecular-dynamics simulation of water. The effect of temperature and density variations was examined. Acceptable agreement between site-site correlation functions derived from neutron diffraction data and from computer simulation was reached. In particular, a weakening of the hydrogen bonded structure was observed on approaching the critical point, which reproduces the experimental behavior. The simulations were performed using the MOTECC (modern techniques in computational chemistry) suite of programs. The present results show the importance of BSSE-free nonorthogonal orbitals in an accurate description of the intermolecular potential of water.

  18. SUPERCRITICAL WATER OXIDATION MODEL DEVELOPMENT FOR SELECTED EPA PRIORITY POLLUTANTS

    EPA Science Inventory

    Supercritical Water Oxidation (SCWO) evaluated for five compounds: acetic acid, 2,4-dichlorophenol, pentachlorophenol, pyridine, 2,4-dichlorophenoxyacetic acid (methyl ester). inetic models were developed for acetic acid, 2,4-dichlorophenol, and pyridine. he test compounds were e...

  19. Supercritical water oxidation data acquisition testing. Final report, Volume I

    SciTech Connect

    1996-11-01

    This report discusses the phase one testing of a data acquisition system for a supercritical water waste oxidation system. The system is designed to destroy a wide range of organic materials in mixed wastes. The design and testing of the MODAR Oxidizer is discussed. An analysis of the optimized runs is included.

  20. Treatment of municipal sewage sludge in supercritical water: A review.

    PubMed

    Qian, Lili; Wang, Shuzhong; Xu, Donghai; Guo, Yang; Tang, Xingying; Wang, Laisheng

    2016-02-01

    With increasing construction of wastewater treatment plants and stricter policies, municipal sewage sludge (MSS) disposal has become a serious problem. Treatment of MSS in supercritical water (SCW) can avoid the pre-drying procedure and secondary pollution of conventional methods. SCW treatment methods can be divided into supercritical water gasification (SCWG), supercritical water partial oxidation (SCWPO) and supercritical water oxidation (SCWO) technologies with increasing amounts of oxidants. Hydrogen-rich gases can be generated from MSS by SCWG or SCWPO technology using oxidants less than stoichiometric ratio while organic compounds can be completely degraded by SCWO technology with using an oxidant excess. For SCWG and SCWPO technologies, this paper reviews the influences of different process variables (MSS properties, moisture content, temperature, oxidant amount and catalysts) on the production of gases. For SCWO technology, this paper reviews research regarding the removal of organics with or without hydrothermal flames and the changes in heavy metal speciation and risk. Finally, typical systems for handling MSS are summarized and research needs and challenges are proposed.

  1. Large-eddy simulation of trans- and supercritical injection

    NASA Astrophysics Data System (ADS)

    Müller, H.; Niedermeier, C. A.; Jarczyk, M.; Pfitzner, M.; Hickel, S.; Adams, N. A.

    2016-07-01

    In a joint effort to develop a robust numerical tool for the simulation of injection, mixing, and combustion in liquid rocket engines at high pressure, a real-gas thermodynamics model has been implemented into two computational fluid dynamics (CFD) codes, the density-based INCA and a pressure-based version of OpenFOAM. As a part of the validation process, both codes have been used to perform large-eddy simulations (LES) of trans- and supercritical nitrogen injection. Despite the different code architecture and the different subgrid scale turbulence modeling strategy, both codes yield similar results. The agreement with the available experimental data is good.

  2. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    SciTech Connect

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-10-03

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.

  3. Process for treating effluent from a supercritical water oxidation reactor

    SciTech Connect

    Barnes, C.M.; Shapiro, C.

    1995-12-31

    The present invention relates generally to a method for treating and recycling the effluent from a supercritical water oxidation reactor and more specifically to a method for treating and recycling the effluent by expanding the effluent without extensive cooling. Supercritical water oxidation is the oxidation of fuel, generally waste material, in a body of water under conditions above the thermodynamic critical point of water. The current state of the art in supercritical water oxidation plant effluent treatment is to cool the reactor effluent through heat exchangers or direct quench, separate the cooled liquid into a gas/vapor stream and a liquid/solid stream, expand the separated effluent, and perform additional purification on gaseous, liquid, brine and solid effluent. If acid gases are present, corrosion is likely to occur in the coolers. During expansion, part of the condensed water will revaporize. Vaporization can damage the valves due to cavitation and erosion. The present invention expands the effluent stream without condensing the stream. Radionuclides and suspended solids are more efficiently separated in the vapor phase. By preventing condensation, the acids are kept in the much less corrosive gaseous phase thereby limiting the damage to treatment equipment. The present invention also reduces the external energy consumption, by utilizing the expansion step to also cool the effluent.

  4. Solubility in supercritical solvents: A comparison of theory and simulation

    NASA Astrophysics Data System (ADS)

    Tomberli, Bruno Luca

    1998-12-01

    Solubility at supercritical conditions is studied using thermodynamics and statistical mechanics. The Redlich- Kwong equation of state, virial equation of state and fluctuation theory are used to predict the chemical potential for pure and mixed Lennard-Jones fluids. Where literature results are unavailable, Monte Carlo simulations employing the Widom particle insertion method are also carried out to determine the chemical potential at the same conditions. Several methods are shown to achieve an accuracy on the order of five percent. Based on the success of these theories, qualitative studies of cavity-interaction contributions to the chemical potential and the effect of clustering in supercritical solvation are conducted. Finally, fluctuation theory is shown to be the only available method suitable for ab initio calculations of the chemical potential involving anisotropic potentials. A suitable potential for naphthalene-carbon dioxide systems is developed from existing multi-site exp-6-1 potentials and predictions of the chemical potential of infinitely- dilute naphthalene in supercritical carbon dioxide are made as an example of a possible application of this method.

  5. Molecular dynamics simulation of the key characteristics of the supercritical CO2-pentaerythritol tetraacetate system

    NASA Astrophysics Data System (ADS)

    Lei, Peiyu; Jin, Zunlong; Liu, Hong; Wang, Dingbiao; Liu, Donglai

    2016-12-01

    Supercritical CO2 is widely used in many fields of industry. Investigation of statistical mechanics of CO2 fluid under quasi critical and supercritical state has great significance. Equilibrium molecular dynamics (EMD) simulations are carried out to investigate the statistical mechanics and macroscopic performance of CO2 fluid under the quasi critical and supercritical state. The results show that the bond length and bond angle distributions for supercritical CO2 are Gaussian distribution basically. The dimers' proportion of supercritical CO2 system changes with pressure increasing. T-type dimer has high share within the system when pressure is higher than 9MPa. It can be inferred that T-type dimer leads to CO2 physical properties changing tempestuously under supercritical state. The effect that lubricating oil has on microstructure and heat transfer of supercritical CO2 is also investigated in the present work. The results show the lubricating oil produces significant effect on the dimers' structure under low pressure.

  6. Valorization of horse manure through catalytic supercritical water gasification.

    PubMed

    Nanda, Sonil; Dalai, Ajay K; Gökalp, Iskender; Kozinski, Janusz A

    2016-06-01

    The organic wastes such as lignocellulosic biomass, municipal solid waste, sewage sludge and livestock manure have attracted attention as alternative sources of energy. Cattle manure, a waste generated in surplus amounts from the feedlot, has always been a chief environmental concern. This study is focused on identifying the candidacy of horse manure as a next generation feedstock for biofuel production through supercritical water gasification. The horse manure was gasified in supercritical water to examine the effects of temperature (400-600°C), biomass-to-water ratio (1:5 and 1:10) and reaction time (15-45min) at a pressure range of 23-25MPa. The horse manure and resulting biochar were characterized through carbon-hydrogen-nitrogen-sulfur (CHNS), inductively coupled plasma-mass spectrometry (ICP-MS), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and scanning electron microscopy (SEM). The effects of alkali catalysts such as NaOH, Na2CO3 and K2CO3 at variable concentrations (1-2wt%) were investigated to maximize the hydrogen yields. Supercritical water gasification of horse manure with 2wt% Na2CO3 at 600°C and 1:10 biomass-to-water ratio for 45min revealed maximum hydrogen yields (5.31mmol/g), total gas yields (20.8mmol/g) with greater carbon conversion efficiency (43.1%) and enhanced lower heating value of gas products (2920kJ/Nm(3)). The manure-derived biochars generated at temperatures higher than 500°C also demonstrated higher thermal stability (weight loss <34%) and larger carbon content (>70wt%) suggesting their application in enhancing soil fertility and carbon sequestration. The results propose that supercritical water gasification could be a proficient remediation technology for horse manure to generate hydrogen-rich gas products.

  7. Supercritical Hydrocarbon Impinging Injector Simulation Facility

    DTIC Science & Technology

    2006-04-01

    PC Beowulf cluster that was purchased under a previous AFOSR Grant (F49620-01-1-0432) managed by Dr. Mitat Birkan. The cluster consists of 22 Intel...computing cluster allows simulations to be conducted in a sufficiently short time period to allow investigation of the effects of operating conditions...hydrocarbon propellants are of interest to the next generation of liquid propellant rocket engines. The procured high performance computing cluster allows

  8. Expansion dynamics of supercritical water probed by picosecond time-resolved photoelectron spectroscopy.

    PubMed

    Gladytz, Thomas; Abel, Bernd; Siefermann, Katrin R

    2015-02-21

    Vibrational excitation of liquid water with femtosecond laser pulses can create extreme states of water. Yet, the dynamics directly after initial sub-picosecond delocalization of molecular vibrations remain largely unclear. We study the ultrafast expansion dynamics of an accordingly prepared supercritical water phase with a picosecond time resolution. Our experimental setup combines vacuum-compatible liquid micro-jet technology and a table top High Harmonic light source driven by a femtosecond laser system. An ultrashort laser pulse centered at a wavelength of 2900 nm excites the OH-stretch vibration of water molecules in the liquid. The deposited energy corresponds to a supercritical phase with a temperature of about 1000 K and a pressure of more than 1 GPa. We use a time-delayed extreme ultraviolet pulse centered at 38.6 eV, and obtained via High Harmonic generation (HHG), to record valence band photoelectron spectra of the expanding water sample. The series of photoelectron spectra is analyzed with noise-corrected target transform fitting (cTTF), a specifically developed multivariate method. Together with a simple fluid dynamics simulation, the following picture emerges: when a supercritical phase of water expands into vacuum, temperature and density of the first few nanometers of the expanding phase drop below the critical values within a few picoseconds. This results in a supersaturated phase, in which condensation seeds form and grow from small clusters to large clusters on a 100 picosecond timescale.

  9. Upgrading of crude algal bio-oil in supercritical water.

    PubMed

    Duan, Peigao; Savage, Phillip E

    2011-01-01

    We determined the influence of a Pt/C catalyst, high-pressure H2, and pH on the upgrading of a crude algal bio-oil in supercritical water (SCW). The SCW treatment led to a product oil with a higher heating value (∼42 MJ/kg) and lower acid number than the crude bio-oil. The product oil was also lower in O and N and essentially free of sulfur. Including the Pt/C catalyst in the reactor led to a freely flowing liquid product oil with a high abundance of hydrocarbons. Overall, many of the properties of the upgraded oil obtained from catalytic treatment in SCW are similar to those of hydrocarbon fuels derived from fossil fuel resources. Thus, this work shows that the crude bio-oil from hydrothermal liquefaction of a microalga can be effectively upgraded in supercritical water in the presence of a Pt/C catalyst.

  10. Exploration of the gasification of Spirulina algae in supercritical water.

    PubMed

    Miller, Andrew; Hendry, Doug; Wilkinson, Nikolas; Venkitasamy, Chandrasekar; Jacoby, William

    2012-09-01

    This study presents non-catalytic gasification of Spirulina algae in supercritical water using a plug flow reactor and a mechanism for feeding solid carbon streams into high pressure (>25 MPa) environments. A 2(III)(3-1) factorial experimental design explored the effect of concentration, temperature, and residence time on gasification reactions. A positive displacement pump fed algae slurries into the reactor at a temperature range of 550-600°C, and residence times between 4 and 9s. The results indicate that algae gasify efficiently in supercritical water, highlighting the potential for a high throughput process. Additional experiments determined Arrhenius parameters of Spirulina algae. This study also presents a model of the gasification reaction using the estimated activation energy (108 kJ/mol) and other Arrhenius parameters at plug flow conditions. The maximum rate of gasification under the conditions studied of 53 g/Ls is much higher than previously reported.

  11. Transpiring wall supercritical water oxidation test reactor design report

    SciTech Connect

    Haroldsen, B.L.; Ariizumi, D.Y.; Mills, B.E.; Brown, B.G.; Rousar, D.C.

    1996-02-01

    Sandia National Laboratories is working with GenCorp, Aerojet and Foster Wheeler Development Corporation to develop a transpiring wall supercritical water oxidation reactor. The transpiring wall reactor promises to mitigate problems of salt deposition and corrosion by forming a protective boundary layer of pure supercritical water. A laboratory scale test reactor has been assembled to demonstrate the concept. A 1/4 scale transpiring wall reactor was designed and fabricated by Aerojet using their platelet technology. Sandia`s Engineering Evaluation Reactor serves as a test bed to supply, pressurize and heat the waste; collect, measure and analyze the effluent; and control operation of the system. This report describes the design, test capabilities, and operation of this versatile and unique test system with the transpiring wall reactor.

  12. Salt deposition studies in a supercritical water oxidation reactor

    SciTech Connect

    LaJeunesse, C.A.; Rice, S.F.; Hanush, R.G.; Aiken, J.D.

    1993-10-01

    Supercritical water oxidation (SCWO), a method for destroying aqueous organic waste, is a relatively new technology discovered about fifteen years ago. SCWO occurs at moderate temperatures and pressures where the ability of water to dissolve hydrocarbons and other organic chemicals is greatly enhanced. Depending on the feed stream and residence time, the dissolved organic waste reacts with an oxidizer to produce innocuous combustion products. However, oxidation of organic material containing heteroatoms, such as sulfur or phosphorous, forms sulfuric or phosphoric acid in the absence of metal ions. In situ neutralization with sodium hydroxide then forms salts that are insoluble at supercritical conditions. These salts deposit in the reactor affecting the processing of the organic material. To design a system that can accommodate the formation of these salts, it is important to understand the deposition process quantitatively. This paper is an interim report on an experimental program designed to understand the salt deposition phenomena.

  13. Experimental study of choking flow of water at supercritical conditions

    NASA Astrophysics Data System (ADS)

    Muftuoglu, Altan

    Future nuclear reactors will operate at a coolant pressure close to 25 MPa and at outlet temperatures ranging from 500°C to 625°C. As a result, the outlet flow enthalpy in future Supercritical Water-Cooled Reactors (SCWR) will be much higher than those of actual ones which can increase overall nuclear plant efficiencies up to 48%. However, under such flow conditions, the thermal-hydraulic behavior of supercritical water is not fully known, e.g., pressure drop, forced convection and heat transfer deterioration, critical and blowdown flow rate, etc. Up to now, only a very limited number of studies have been performed under supercritical conditions. Moreover, these studies are conducted at conditions that are not representative of future SCWRs. In addition, existing choked flow data have been collected from experiments at atmospheric discharge pressure conditions and in most cases by using working fluids different than water which constrain researchers to analyze the data correctly. In particular, the knowledge of critical (choked) discharge of supercritical fluids is mandatory to perform nuclear reactor safety analyses and to design key mechanical components (e.g., control and safety relief valves, etc.). Hence, an experimental supercritical water facility has been built at Ecole Polytechnique de Montreal which allows researchers to perform choking flow experiments under supercritical conditions. The facility can also be used to carry out heat transfer and pressure drop experiments under supercritical conditions. In this thesis, we present the results obtained at this facility using a test section that contains a 1 mm inside diameter, 3.17 mm long orifice plate with sharp edges. Thus, 545 choking flow of water data points are obtained under supercritical conditions for flow pressures ranging from 22.1 MPa to 32.1 MPa, flow temperatures ranging from 50°C to 502°C and for discharge pressures from 0.1 MPa to 3.6 MPa. Obtained data are compared with the data given in

  14. Structural features of binary mixtures of supercritical CO2 with polar entrainers by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Gurina, D. L.; Antipova, M. L.; Petrenko, V. E.

    2013-10-01

    Computer simulations of supercritical carbon dioxide and its mixtures with polar cosolvents: water, methanol, and ethanol (concentration, 0.125 mole fractions) at T = 318 K and ρ = 0.7 g/cm3 are performed. Atom-atom radial distribution functions are calculated by classical molecular dynamics, while the probability distributions of relative orientation of CO2 molecules in the first and second coordination spheres describing the geometry of the nearest environment of CO2 molecules and the trajectories of cosolvent molecules are found using Car-Parrinello molecular dynamics. Based on the latter, the conclusions regarding structure and interactions of polar entrainers in their mixtures with supercritical CO2 are made. It is shown that the microstructure of carbon dioxide varies only slightly upon the introduction of cosolvents.

  15. Conversion of hazardous materials using supercritical water oxidation

    DOEpatents

    Rofer, Cheryl K.; Buelow, Steven J.; Dyer, Richard B.; Wander, Joseph D.

    1992-01-01

    A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The harzardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

  16. Water extractable arabinoxylan aerogels prepared by supercritical CO2 drying.

    PubMed

    Marquez-Escalante, Jorge; Carvajal-Millan, Elizabeth; Miki-Yoshida, Mario; Alvarez-Contreras, Lorena; Toledo-Guillén, Alma Rosa; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustín

    2013-05-14

    Water extractable arabinoxylan (WEAX) aerogels were prepared by extracting the solvent from the alcogels (WEAX hydrogels with an alcohol as the solvent) with carbon dioxide under supercritical conditions. WEAX aerogels were characterized using scanning electron microscopy and adsorption and desorption nitrogen isotherms. The micrographs indicate a heterogeneous porous network structure in WEAX aerogel. Adsorption/desorption nitrogen isotherms of this material were type IV, which confirm that this material possess a mesoporous structure. WEAX aerogels rehydration capability was evaluated and the water absorption mechanism was determined. The WEAX aerogels water absorption mechanism was non-Fickian (n = 0.54).

  17. Simulations of solvation free energies and solubilities in supercritical solvents

    NASA Astrophysics Data System (ADS)

    Su, Zemin; Maroncelli, Mark

    2006-04-01

    Computer simulations are used to study solvation free energies and solubilities in supercritical solvents. Solvation free energies are calculated using the particle insertion method. The equilibrium solvent configurations required for these calculations are based on molecular dynamics simulations employing model solvent potentials previously tuned to reproduce liquid-vapor coexistence properties of the fluids Xe, C2H6, CO2, and CHF3. Solutes are represented by all-atom potentials based on ab initio calculations and the OPLS-AA parameter set. Without any tuning of the intermolecular potentials, such calculations are found to reproduce the solvation free energies of a variety of typical solid solutes with an average accuracy of ±2kJ /mol. Further calculations on simple model solutes are also used to explore general aspects of solvation free energies in supercritical solvents. Comparisons of solutes in Lennard-Jones and hard-sphere representations of Xe show that solvation free energies and thus solubilities are not significantly influenced by solvent density fluctuations near the critical point. The solvation enthalpy and entropy do couple to these fluctuations and diverge similarly to solute partial molar volumes. Solvation free energies are also found to be little affected by the local density augmentation characteristic of the compressible regime. In contrast to solute-solvent interaction energies, which often provide a direct measure of local solvent densities, solvation free energies are remarkably insensitive to the presence of local density augmentation.

  18. Method and apparatus for waste destruction using supercritical water oxidation

    DOEpatents

    Haroldsen, Brent Lowell; Wu, Benjamin Chiau-pin

    2000-01-01

    The invention relates to an improved apparatus and method for initiating and sustaining an oxidation reaction. A hazardous waste, is introduced into a reaction zone within a pressurized containment vessel. An oxidizer, preferably hydrogen peroxide, is mixed with a carrier fluid, preferably water, and the mixture is heated until the fluid achieves supercritical conditions of temperature and pressure. The heating means comprise cartridge heaters placed in closed-end tubes extending into the center region of the pressure vessel along the reactor longitudinal axis. A cooling jacket surrounds the pressure vessel to remove excess heat at the walls. Heating and cooling the fluid mixture in this manner creates a limited reaction zone near the center of the pressure vessel by establishing a steady state density gradient in the fluid mixture which gradually forces the fluid to circulate internally. This circulation allows the fluid mixture to oscillate between supercritical and subcritical states as it is heated and cooled.

  19. Modeling of biomass to hydrogen via the supercritical water pyrolysis process

    SciTech Connect

    Divilio, R.J.

    1998-08-01

    A heat transfer model has been developed to predict the temperature profile inside the University of Hawaii`s Supercritical Water Reactor. A series of heat transfer tests were conducted on the University of Hawaii`s apparatus to calibrate the model. Results of the model simulations are shown for several of the heat transfer tests. Tests with corn starch and wood pastes indicated that there are substantial differences between the thermal properties of the paste compared to pure water, particularly near the pseudo critical temperature. The assumption of constant thermal diffusivity in the temperature range of 250 to 450 C gave a reasonable prediction of the reactor temperatures when paste is being fed. A literature review is presented for pyrolysis of biomass in water at elevated temperatures up to the supercritical range. Based on this review, a global reaction mechanism is proposed. Equilibrium calculations were performed on the test results from the University of Hawaii`s Supercritical Water Reactor when corn starch and corn starch and wood pastes were being fed. The calculations indicate that the data from the reactor falls both below and above the equilibrium hydrogen concentrations depending on test conditions. The data also indicates that faster heating rates may be beneficial to the hydrogen yield. Equilibrium calculations were also performed to examine the impact of wood concentration on the gas mixtures produced. This calculation showed that increasing wood concentrations favors the formation of methane at the expense of hydrogen.

  20. Supercritical Water Reactor Cycle for Medium Power Applications

    SciTech Connect

    BD Middleton; J Buongiorno

    2007-04-25

    Scoping studies for a power conversion system based on a direct-cycle supercritical water reactor have been conducted. The electric power range of interest is 5-30 MWe with a design point of 20 MWe. The overall design objective is to develop a system that has minimized physical size and performs satisfactorily over a broad range of operating conditions. The design constraints are as follows: Net cycle thermal efficiency {ge}20%; Steam turbine outlet quality {ge}90%; and Pumping power {le}2500 kW (at nominal conditions). Three basic cycle configurations were analyzed. Listed in order of increased plant complexity, they are: (1) Simple supercritical Rankine cycle; (2) All-supercritical Brayton cycle; and (3) Supercritical Rankine cycle with feedwater preheating. The sensitivity of these three configurations to various parameters, such as reactor exit temperature, reactor pressure, condenser pressure, etc., was assessed. The Thermoflex software package was used for this task. The results are as follows: (a) The simple supercritical Rankine cycle offers the greatest hardware simplification, but its high reactor temperature rise and reactor outlet temperature may pose serious problems from the viewpoint of thermal stresses, stability and materials in the core. (b) The all-supercritical Brayton cycle is not a contender, due to its poor thermal efficiency. (c) The supercritical Rankine cycle with feedwater preheating affords acceptable thermal efficiency with lower reactor temperature rise and outlet temperature. (d) The use of a moisture separator improves the performance of the supercritical Rankine cycle with feedwater preheating and allows for a further reduction of the reactor outlet temperature, thus it was selected for the next step. Preliminary engineering design of the supercritical Rankine cycle with feedwater preheating and moisture separation was performed. All major components including the turbine, feedwater heater, feedwater pump, condenser, condenser pump

  1. Large Eddy Simulation of Cryogenic Injection Processes at Supercritical Pressure

    NASA Technical Reports Server (NTRS)

    Oefelein, Joseph C.; Garcia, Roberto (Technical Monitor)

    2002-01-01

    This paper highlights results from the first of a series of hierarchical simulations aimed at assessing the modeling requirements for application of the large eddy simulation technique to cryogenic injection and combustion processes in liquid rocket engines. The focus is on liquid-oxygen-hydrogen coaxial injectors at a condition where the liquid-oxygen is injected at a subcritical temperature into a supercritical environment. For this situation a diffusion dominated mode of combustion occurs in the presence of exceedingly large thermophysical property gradients. Though continuous, these gradients approach the behavior of a contact discontinuity. Significant real gas effects and transport anomalies coexist locally in colder regions of the flow, with ideal gas and transport characteristics occurring within the flame zone. The current focal point is on the interfacial region between the liquid-oxygen core and the coaxial hydrogen jet where the flame anchors itself.

  2. Thermal-Hydraulic Analysis of Supercritical Pressure Light Water Reactors

    SciTech Connect

    Cheng, X.; Schulenberg, T.; Koshizuka, S.; Oka, Y.; Souyri, A.

    2002-07-01

    In the frame of the European project HPLWR, joined by European research institutions, industrial partners and the University of Tokyo, thermal-hydraulic analysis of supercritical pressure light water reactors has been carried out. A thorough literature survey on heat transfer of supercritical fluids indicates a large deficiency in the prediction of the heat transfer coefficient and the onset of heat transfer deterioration under the reactor condition. A CFD code for analysing the thermal-hydraulic behaviour of supercritical fluids was developed. Numerical results show that the heat transfer coefficient, including the heat transfer deterioration region, can be well predicted using this CFD code, at least for circular tube geometries. Such a CFD code is well suitable for understanding the heat transfer mechanism. Based on the numerical results, a new heat transfer correlation has been proposed. For the thermal-hydraulic design of an HPLWR fuel assembly, the subchannel analysis code STAR-SC has been developed with a high numerical efficiency and a high applicability to different kinds of fuel assembly configurations. The results show clearly that design of a HPLWR fuel assembly is a highly challenging task. At the same time, sub-channel analysis provides some important guidelines for the design of a HPLWR fuel assembly. (authors)

  3. On the cluster composition of supercritical water combining molecular modeling and vibrational spectroscopic data.

    PubMed

    Tassaing, T; Garrain, P A; Bégué, D; Baraille, I

    2010-07-21

    The present study is aimed at a detailed analysis of supercritical water structure based on the combination of experimental vibrational spectra as well as molecular modeling calculations of isolated water clusters. We propose an equilibrium cluster composition model where supercritical water is considered as an ideal mixture of small water clusters (n=1-3) at the chemical equilibrium and the vibrational spectra are expected to result from the superposition of the spectra of the individual clusters, Thus, it was possible to extract from the decomposition of the midinfrared spectra the evolution of the partition of clusters in supercritical water as a function of density. The cluster composition predicted by this model was found to be quantitatively consistent with the near infrared and Raman spectra of supercritical water analyzed using the same procedure. We emphasize that such methodology could be applied to determine the portion of cluster in water in a wider thermodynamic range as well as in more complex aqueous supercritical solutions.

  4. The separation of particles from supercritical water oxidation effluents

    SciTech Connect

    Dell'Orco, P.C.

    1991-08-01

    The development of a solids separation system is essential to the implementation of supercritical water oxidation as a commercial process. Like all waste disposal processes, supercritical water oxidation produces a residue. This final ash must eventually be removed from the effluent stream. Limited studies have investigated solids separations near supercritical water conditions (374.2 {degrees}C, 3205 psi). Therefore, a ten millimeter diameter hydrocyclone with an underflow receiver was evaluated for its ability to achieve the separation of fine particles from water. Temperature was varied from 20{degrees}C to 389{degrees}C while pressure was maintained at 3600 psi (24.8 MPa). Mass flow rates varied from 0.015 to 0.049 kg/s. Particle concentrations in feed streams ranged from 400 to 1200 mg/L. Three different particulates, Min-U-Sil 5 (quartz SiO{sub 2}), zirconium dioxide (ZrO{sub 2}), and titanium dioxide (TiO{sub 2}) were studied. These particles ranged in diameter from below one micron to ten microns. Low pressure (0-200 psi), room temperature (20{degrees}C) studies were also conducted where flow rate and feed concentration were variables. Solids removal efficiencies were determined for all experiments. Solid removals were as high as 99% at elevated temperatures. Particle size distributions provided information on particle sizes separated. Particles removed with efficiencies of 50, 90, and 95 per cent (cut sizes) were determined. Ninety per cent cut sizes below one micron were reported for several elevated temperature experiments. Empirical models for use in engineering design were developed for the prediction of solid removal efficiencies and pressure drops.

  5. Hydrogen production from high moisture content biomass in supercritical water

    SciTech Connect

    Antal, M.J. Jr.; Xu, X.

    1998-08-01

    By mixing wood sawdust with a corn starch gel, a viscous paste can be produced that is easily delivered to a supercritical flow reactor by means of a cement pump. Mixtures of about 10 wt% wood sawdust with 3.65 wt% starch are employed in this work, which the authors estimate to cost about $0.043 per lb. Significant reductions in feed cost can be achieved by increasing the wood sawdust loading, but such an increase may require a more complex pump. When this feed is rapidly heated in a tubular flow reactor at pressures above the critical pressure of water (22 MPa), the sawdust paste vaporizes without the formation of char. A packed bed of carbon catalyst in the reactor operating at about 650 C causes the tarry vapors to react with water, producing hydrogen, carbon dioxide, and some methane with a trace of carbon monoxide. The temperature and history of the reactor`s wall influence the hydrogen-methane product equilibrium by catalyzing the methane steam reforming reaction. The water effluent from the reactor is clean. Other biomass feedstocks, such as the waste product of biodiesel production, behave similarly. Unfortunately, sewage sludge does not evidence favorable gasification characteristics and is not a promising feedstock for supercritical water gasification.

  6. Reactions of inorganic nitrogen species in supercritical water

    SciTech Connect

    Dell`Orco, P.C.

    1994-12-31

    Redox reactions of nitrate salts with NH3 and methanol were studied in near-critical and supercritical water at 350 to 530 C and constant pressure of 302 bar. Sodium nitrate decomposition reactions were investigated at similar conditions. Reactions were conducted in isothermal tubular reactor under plug flow. For kinetic modeling, nitrate and nitrite reactants were lumped into an NO{sub x}{sup -} reactant; kinetic expressions were developed for MNO{sub 3}/NH{sub 4}X and sodium nitrate decomposition reactions. The proposed elementary reaction mechanism for MNO{sub 3}/NH{sub 4}X reaction indicated that NO{sub 2} was the primary oxidizing species and that N{sub 2}/N{sub 2}O selectivities could be determined by the form of MNO{sub 3} used. This suggest a nitrogen control strategy for use in SCWO (supercritical water oxidation) processes; nitrate or NH3 could be used to remove the other, at reaction conditions far less severe than required by other methods. Reactions of nitrate with methanol indicated that nitrate was a better oxidant than oxygen in supercritical water. Nitrogen reaction products included NH3 and nitrite, while inorganic carbon was the major carbon reaction product. Analysis of excess experiments indicated that the reaction at 475 C was first order in methanol concentration and second order in NO{sub x}{sup -} concentration. In order to determine phase regimes for these reactions, solubility of sodium nitrate was determined for some 1:1 nitrate electrolytes. Solubilities were measured at 450 to 525 C, from 248 to 302 bar. A semi-empirical solvation model was shown to adequately describe the experimental sodium nitrate solubilities. Solubilities of Li, Na, and K nitrates revealed with cations with smaller ionic radii had greater solubilities with nitrate.

  7. Van der Waals effects in ab initio water at ambient and supercritical conditions.

    PubMed

    Jonchiere, Romain; Seitsonen, Ari P; Ferlat, Guillaume; Saitta, A Marco; Vuilleumier, Rodolphe

    2011-10-21

    Density functional theory (DFT) within the generalized gradient approximation (GGA) is known to poorly reproduce the experimental properties of liquid water. The poor description of the dispersion forces in the exchange correlation functionals is one of the possible causes. Recent studies have demonstrated an improvement in the simulated properties when they are taken into account. We present here a study of the effects on liquid water of the recently proposed semi-empirical correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The difference between standard and corrected DFT-GGA simulations is rationalized with a detailed analysis upon modifying an accurate parameterised potential. This allows an estimate of the typical range of dispersion forces in water. We also show that the structure and diffusivity of ambient-like liquid water are sensitive to the fifth neighbor position, thus highlighting the key role played by this neighbor. Our study is extended to water at supercritical conditions, where experimental and theoretical results are much more scarce. We show that the semi-empirical correction by Grimme et al. improves significantly, although somewhat counter-intuitively, both the structural and the dynamical description of supercritical water.

  8. General corrosion properties of modified PNC1520 austenitic stainless steel in supercritical water as a fuel cladding candidate material for supercritical water reactor

    NASA Astrophysics Data System (ADS)

    Nakazono, Y.; Iwai, T.; Abe, H.

    2010-03-01

    The Super-Critical Water-cooled Reactor (SCWR) has been designed and investigated because of its high thermal efficiency and plant simplification. There are some advantages including the use of a single phase coolant with high enthalpy but there are numerous potential problems, particularly with materials. As the operating temperature of supercritical water reactor will be between 280°C and 620°C with a pressure of 25MPa, the selection of materials is difficult and important. Austenitic stainless steels were selected for possible use in supercritical water systems because of their corrosion resistance and radiation resistance. The PNC1520 austenitic stainless steel developed by Japan Atomic Energy Agency (JAEA) as a nuclear fuel cladding material for a Na-cooled fast breeder reactor. The corrosion data of PNC1520 in supercritical water (SCW) is required but does not exist. The purpose of the present study is to research the corrosion properties for PNC1520 austenitic stainless steel in supercritical water. The supercritical water corrosion test was performed for the standard PNC1520 (1520S) and the Ti-additional type of PNC1520 (1520Ti) by using a supercritical water autoclave. Corrosion tests on the austenitic 1520S and 1520Ti steels in supercritical water were performed at 400, 500 and 600°C with exposures up to 1000h. The amount of weight gain, weight loss and weight of scale were evaluated after the corrosion test in supercritical water for both austenitic steels. After 1000h corrosion test performed, the weight gains of both austenitic stainless steels were less than 2 g/m2 at 400°C and 500°C . But both weight gain and weight loss of 1520Ti were larger than those of 1520S at 600°C . By increasing the temperature to 600°C, the surface of 1520Ti was covered with magnetite formed in supercritical water and dissolution of the steel alloying elements has been observed. In view of corrosion, 1520S may have larger possibility than 1520Ti to adopt a

  9. Supercritical Water as Nanomedium for Gasification of Lignite-Water Suspension

    NASA Astrophysics Data System (ADS)

    Korzh, Raisa; Bortyshevskyi, Valerii

    2016-05-01

    The gasification of an aqueous suspension of lignite from Alexandria coalfield (Ukraine) under the supercritical pressure was studied. The initial rates of the formation of hydrogen, carbon dioxide and methane were evaluated. The mutually stimulating interaction of the components of "brown coal-water-mineral matter" system was shown due to the influence of nanoscaled water medium on the formation of dipole-inductive, dispersive and ionic associates. In the temperature range of 300-450 °C, the oxygen source for gaseous products of the lignite supercritical gasification is mainly ion-associative nanoclustered water. The source of hydrogen at the subcritical temperature is the organic part of brown coal. For the supercritical water, the source of H is the nanoscale medium with ion associates. The last ones were responsible for the further transformation of coal.

  10. Supercritical Water as Nanomedium for Gasification of Lignite-Water Suspension.

    PubMed

    Korzh, Raisa; Bortyshevskyi, Valerii

    2016-12-01

    The gasification of an aqueous suspension of lignite from Alexandria coalfield (Ukraine) under the supercritical pressure was studied. The initial rates of the formation of hydrogen, carbon dioxide and methane were evaluated. The mutually stimulating interaction of the components of "brown coal-water-mineral matter" system was shown due to the influence of nanoscaled water medium on the formation of dipole-inductive, dispersive and ionic associates. In the temperature range of 300-450 °C, the oxygen source for gaseous products of the lignite supercritical gasification is mainly ion-associative nanoclustered water. The source of hydrogen at the subcritical temperature is the organic part of brown coal. For the supercritical water, the source of H is the nanoscale medium with ion associates. The last ones were responsible for the further transformation of coal.

  11. Carbon-catalyzed gasification of organic feedstocks in supercritical water

    SciTech Connect

    Xu, X.; Matsumura, Y.; Stenberg, J.; Antal, M.J. Jr.

    1996-08-01

    Spruce wood charcoal, macadamia shell charcoal, coal activated carbon, and coconut shell activated carbon catalyze the gasification of organic compounds in supercritical water. Feedstocks studied in this paper include glycerol, glucose, cellobiose, whole biomass feedstocks (depithed bagasse liquid extract and sewage sludge), and representative Department of Defense (DoD) wastes (methanol, methyl ethyl ketone, ethylene glycol, acetic acid, and phenol). The effects of temperature, pressure, reactant concentration, weight hourly space velocity, and the type of catalyst on the gasification of glucose are reported. Complete conversion of glucose (22% by weight in water) to a hydrogen-rich synthesis gas was realized at a weight hourly space velocity (WHSV) of 22.2 h{sup {minus}1} in supercritical water at 600 C, 34.5 MPa. Complete conversions of the whole biomass feeds were also achieved at the same temperature and pressure. The destruction efficiencies for the representative DoD wastes were also high. Deactivation of the carbon catalyst was observed after 4 h of operation without swirl in the entrance region of the reactor, but the carbon gasification efficiency remained near 100% for more than 6 h when a swirl generator was employed in the entrance of the reactor.

  12. Intermediates and kinetics for phenol gasification in supercritical water.

    PubMed

    Huelsman, Chad M; Savage, Phillip E

    2012-02-28

    We processed phenol with supercritical water in a series of experiments, which systematically varied the temperature, water density, reactant concentration, and reaction time. Both the gas and liquid phases were analyzed post-reaction using gas chromatographic techniques, which identified and quantified the reaction intermediates and products, including H(2), CO, CH(4), and CO(2) in the gas phase and twenty different compounds--mainly polycyclic aromatic hydrocarbons--in the liquid phase. Many of these liquid phase compounds were identified for the first time and could pose environmental risks. Higher temperatures promoted gasification and resulted in a product gas rich in H(2) and CH(4) (33% and 29%, respectively, at 700 °C), but char yields increased as well. We implicated dibenzofuran and other identified phenolic dimers as precursor molecules for char formation pathways, which can be driven by free radical polymerization at high temperatures. Examination of the trends in conversion as a function of initial water and phenol concentrations revealed competing effects, and these informed the kinetic modeling of phenol disappearance. Two different reaction pathways emerged from the kinetic modeling: one in which rate ∝ [phenol](1.73)[water](-16.60) and the other in which rate ∝ [phenol](0.92)[water](1.39). These pathways may correspond to pyrolysis, which dominates when there is abundant phenol and little water, and hydrothermal reactions, which dominate in excess water. This result confirms that supercritical water gasification of phenol does not simply follow first-order kinetics, as previous efforts to model phenol disappearance had assumed.

  13. Coal conversion wastewater treatment by catalytic oxidation in supercritical water

    SciTech Connect

    Phillip E. Savage

    1999-10-20

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, the authors examined the oxidation of phenol over a commercial catalyst and over bulk MnO{sub 2}, bulk TiO{sub 2}, and CuO supported on Al{sub 2}O{sub 3}. They used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which they can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO{sub 2} yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that the authors could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, they performed experiments with bulk transition metal oxides. The bulk MnO{sub 2} and TiO{sub 2} catalysts enhance both the phenol disappearance and CO{sub 2} formation rates during SCWO. MnO{sub 2} does not affect the selectivity to CO{sub 2}, or to the phenol dimers at a given phenol conversion. However, the selectivities to CO{sub 2} are increased and the selectivities to phenol dimers are decreased in the presence of TiO{sub 2}, which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the

  14. COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER

    SciTech Connect

    Phillip E. Savage

    1999-10-18

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO{sub 2}, bulk TiO{sub 2}, and CuO supported on Al{sub 2} O{sub 3}. We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO{sub 2} yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO{sub 2} and TiO{sub 2} catalysts enhance both the phenol disappearance and CO{sub 2} formation rates during SCWO. MnO{sub 2} does not affect the selectivity to CO{sub 2}, or to the phenol dimers at a given phenol conversion. However, the selectivities to CO{sub 2} are increased and the selectivities to phenol dimers are decreased in the presence of TiO{sub 2} , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of

  15. Catalytic gasification of wet biomass in supercritical water

    SciTech Connect

    Antal, M.J. Jr.; Matsumura, Yukihiko; Xu, Xiaodong

    1995-12-01

    A pressurized catalytic gasification process, operated at 600{degrees}C, 34.5 MPa, efficiently produces a hydrogen rich synthesis gas from high-moisture content biomass. Glucose was selected as a model compound for catalytic biomass gasification. A proprietary heterogeneous catalyst X was extremely effective for the gasification of both the model compound and whole biomass feeds. The effect of temperature, pressure, reactant concentration on the gasification of glucose with catalyst X were investigated. Complete conversion of glucose (22% by weight in water) to gas was obtained at a weight hourly space velocity of 22.2 (g/h)/g in supercritical water at 600{degrees}C, 34.5 MPa. Complete conversion of whole biomass feeds including water hyacinth, depithed bagasse liquid extract, sewage sludge, and paper sludge was also achieved at the same temperature and pressure. The propriety catalyst X is inexpensive and extremely effective.

  16. Transpiring wall supercritical water oxidation reactor salt deposition studies

    SciTech Connect

    Haroldsen, B.L.; Mills, B.E.; Ariizumi, D.Y.; Brown, B.G.

    1996-09-01

    Sandia National Laboratories has teamed with Foster Wheeler Development Corp. and GenCorp, Aerojet to develop and evaluate a new supercritical water oxidation reactor design using a transpiring wall liner. In the design, pure water is injected through small pores in the liner wall to form a protective boundary layer that inhibits salt deposition and corrosion, effects that interfere with system performance. The concept was tested at Sandia on a laboratory-scale transpiring wall reactor that is a 1/4 scale model of a prototype plant being designed for the Army to destroy colored smoke and dye at Pine Bluff Arsenal in Arkansas. During the tests, a single-phase pressurized solution of sodium sulfate (Na{sub 2}SO{sub 4}) was heated to supercritical conditions, causing the salt to precipitate out as a fine solid. On-line diagnostics and post-test observation allowed us to characterize reactor performance at different flow and temperature conditions. Tests with and without the protective boundary layer demonstrated that wall transpiration provides significant protection against salt deposition. Confirmation tests were run with one of the dyes that will be processed in the Pine Bluff facility. The experimental techniques, results, and conclusions are discussed.

  17. Ion dynamics at supercritical quasi-parallel shocks: Hybrid simulations

    NASA Astrophysics Data System (ADS)

    Su, Yanqing; Lu, Quanming; Gao, Xinliang; Huang, Can; Wang, Shui

    2012-09-01

    By separating the incident ions into directly transmitted, downstream thermalized, and diffuse ions, we perform one-dimensional (1D) hybrid simulations to investigate ion dynamics at a supercritical quasi-parallel shock. In the simulations, the angle between the upstream magnetic field and shock nominal direction is θBn=30°, and the Alfven Mach number is MA˜5.5. The shock exhibits a periodic reformation process. The ion reflection occurs at the beginning of the reformation cycle. Part of the reflected ions is trapped between the old and new shock fronts for an extended time period. These particles eventually form superthermal diffuse ions after they escape to the upstream of the new shock front at the end of the reformation cycle. The other reflected ions may return to the shock immediately or be trapped between the old and new shock fronts for a short time period. When the amplitude of the new shock front exceeds that of the old shock front and the reformation cycle is finished, these ions become thermalized ions in the downstream. No noticeable heating can be found in the directly transmitted ions. The relevance of our simulations to the satellite observations is also discussed in the paper.

  18. Computer simulation of water reclamation processors

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Hightower, T. M.; Flynn, Michael T.

    1991-01-01

    The development of detailed simulation models of water reclamation processors based on the ASPEN PLUS simulation program is discussed. Individual models have been developed for vapor compression distillation, vapor phase catalytic ammonia removal, and supercritical water oxidation. These models are used for predicting the process behavior. Particular attention is given to methodology which is used to complete this work, and the insights which are gained by this type of model development.

  19. Highly water-soluble multi-walled carbon nanotubes amine-functionalized by supercritical water oxidation.

    PubMed

    Chun, Kyoung-Yong; Moon, In-Kyu; Han, Joo-Hee; Do, Seung-Hoe; Lee, Jin-Seo; Jeon, Seong-Yun

    2013-11-07

    Multi-walled carbon nanotubes (MWNTs) have been amine-functionalized by eco-friendly supercritical water oxidation. The facilely functionalized MWNTs have high solubility (~84 mg L(-1)) in water and 78% transmittance at 30-fold dilution. The Tyndall effect is also shown for several liquids.

  20. Large-eddy simulation of supercritical fluid flow and combustion

    NASA Astrophysics Data System (ADS)

    Huo, Hongfa

    The present study focuses on the modeling and simulation of injection, mixing, and combustion of real fluids at supercritical conditions. The objectives of the study are: (1) to establish a unified theoretical framework that can be used to study the turbulent combustion of real fluids; (2) to implement the theoretical framework and conduct numerical studies with the aim of improving the understanding of the flow and combustion dynamics at conditions representative of contemporary liquid-propellant rocket engine operation; (3) to identify the key design parameters and the flow variables which dictate the dynamics characteristics of swirl- and shear- coaxial injectors. The theoretical and numerical framework is validated by simulating the Sandia Flame D. The calculated axial and radial profiles of velocity, temperature, and mass fractions of major species are in reasonably good agreement with the experimental measurements. The conditionally averaged mass fraction profiles agree very well with the experimental results at different axial locations. The validated model is first employed to examine the flow dynamics of liquid oxygen in a pressure swirl injector at supercritical conditions. Emphasis is placed on analyzing the effects of external excitations on the dynamic response of the injector. The high-frequency fluctuations do not significantly affect the flow field as they are dissipated shortly after being introduced into the flow. However, the lower-frequency fluctuations are amplified by the flow. As a result, the film thickness and the spreading angle at the nozzle exit fluctuate strongly for low-frequency external excitations. The combustion of gaseous oxygen/gaseous hydrogen in a high-pressure combustion chamber for a shear coaxial injector is simulated to assess the accuracy and the credibility of the computer program when applied to a sub-scale model of a combustor. The predicted heat flux profile is compared with the experimental and numerical studies. The

  1. Energetic approach of biomass hydrolysis in supercritical water.

    PubMed

    Cantero, Danilo A; Vaquerizo, Luis; Mato, Fidel; Bermejo, M Dolores; Cocero, M José

    2015-03-01

    Cellulose hydrolysis can be performed in supercritical water with a high selectivity of soluble sugars. The process produces high-pressure steam that can be integrated, from an energy point of view, with the whole biomass treating process. This work investigates the integration of biomass hydrolysis reactors with commercial combined heat and power (CHP) schemes, with special attention to reactor outlet streams. The innovation developed in this work allows adequate energy integration possibilities for heating and compression by using high temperature of the flue gases and direct shaft work from the turbine. The integration of biomass hydrolysis with a CHP process allows the selective conversion of biomass into sugars with low heat requirements. Integrating these two processes, the CHP scheme yield is enhanced around 10% by injecting water in the gas turbine. Furthermore, the hydrolysis reactor can be held at 400°C and 23 MPa using only the gas turbine outlet streams.

  2. Thermophysical properties of supercritical water and bond flexibility

    NASA Astrophysics Data System (ADS)

    Shvab, I.; Sadus, Richard J.

    2015-07-01

    Molecular dynamics results are reported for the thermodynamic properties of supercritical water using examples of both rigid (TIP 4 P /2005 ) and flexible (TIP 4 P /2005 f ) transferable interaction potentials. Data are reported for pressure, isochoric and isobaric heat capacities, the thermal expansion coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, speed of sound, self-diffusion coefficient, viscosities, and thermal conductivity. Many of these properties have unusual behavior in the supercritical phase such as maximum and minimum values. The effectiveness of bond flexibility on predicting these properties is determined by comparing the results to experimental data. The influence of the intermolecular potential on these properties is both variable and state point dependent. In the vicinity of the critical density, the rigid and flexible potentials yield very different values for the compressibilities, heat capacities, and thermal expansion coefficient, whereas the self-diffusion coefficient, viscosities, and thermal conductivities are much less potential dependent. Although the introduction of bond flexibility is a computationally expedient way to improve the accuracy of an intermolecular potential, it can be counterproductive in some cases and it is not an adequate replacement for incorporating the effects of polarization.

  3. Direct energy recovery from primary and secondary sludges by supercritical water oxidation.

    PubMed

    Svanström, M; Modell, M; Tester, J

    2004-01-01

    Supercritical water oxidation (SCWO) oxidizes organic and biological materials virtually completely to benign products without the need for stack gas scrubbing. Heavy metals are recovered as stabilized solid, along with the sand and clay that is present in the feed. The technology has been under development for twenty years. The major obstacle to commercialization has been developing reactors that are not clogged by inorganic solid deposits. That problem has been solved by using tubular reactors with fluid velocities that are high enough to keep solids in suspension. Recently, system designs have been created that reduce the cost of processing sewage sludges below that of incineration. At 10 wt- % dry solids, sludge can be oxidized with virtually complete recovery of the sludge heating value as hot water or high-pressure steam. Liquid carbon dioxide of high purity can be recovered from the gaseous effluent and excess oxygen can be recovered for recycle. The net effect is to reduce the stack to a harmless vent with minimal flow rate of a clean gas. Complete simulations have been developed using physical property models that accurately simulate the thermodynamic properties of sub- and supercritical water in mixtures with O2, N2, CO2, and organics. Capital and operating cost estimates are given for sewage sludge treatment, which are less costly than incineration. The scenario of direct recovery of energy from sludges has inherent benefits compared to other gasification or liquefaction options.

  4. Improvement of dissolution property of poorly water-soluble drug by supercritical freeze granulation.

    PubMed

    Sonoda, Ryoichi; Hara, Yuko; Iwasaki, Tomohiro; Watano, Satoru

    2009-10-01

    The dissolution property of the poorly water-soluble drug, flurbiprofen (FP) was improved by a novel supercritical freeze granulation using supercritical carbon dioxide. Supercritical freeze granulation was defined as a production method of the granulated substances by using the dry ice to generate intentionally for the rapid atomization of the supercritical carbon dioxide to the atmospheric pressure. This process utilized a rapid expansion of supercritical solutions (RESS) process with the mixture of the drug and lactose. In the supercritical freeze granulation, needle-like FP fine particles were obtained which adhered to the surface of lactose particles, which did not dissolve in supercritical carbon dioxide. The number of FP particles that adhered to the surface of particles decreased with an increase in the ratio of lactose added, leading to markedly improve the dissolution rate. This improvement was caused not only by the increase in the specific surface area but also the improvement of the dispersibility of FP in water. It is thus concluded that the supercritical freeze granulation is a useful technique to improve the dissolution property of the poorly water-soluble flurbiprofen.

  5. Glycerol and bioglycerol conversion in supercritical water for hydrogen production.

    PubMed

    Yu-Wu, Q M; Weiss-Hortala, E; Barna, R; Boucard, H; Bulza, S

    2012-01-01

    Catalytic transesterification of vegetable oils leads to biodiesel and an alkaline feed (bioglycerol and organic residues, such as esters, alcohols. . .). The conversion ofbioglycerol into valuable organic molecules represents a sustainable industrial process leading to the valorization of a renewable organic resource. The physicochemical properties in the supercritical domain (T > 374 degrees C, P > 22.1 MPa) transform water into a solvent for organics and a reactant favouring radical reactions. In this context, the conversion ofbioglycerol in supercritical water (SCW) into platform molecules and/or high energetic gases (hydrogen, hydrocarbons) could represent an interesting valorization process. The reported research results concern the conversion of bioglycerol compared to pure glycerol. The experiments have been done in batch autoclaves (5 ml and 500 ml stirred). Solutions of pure (5 or 10 wt%) and crude (3.5 wt%) glycerol have been processed with or without catalyst (K2CO3 1.5 wt%) in the range of 450-600 degrees C. The molecular formula of bioglycerol was determined as C4.3H9.7O1.8Na0.1Si0.08. Glycerol was partially decomposed in the batch systems during the heating (42% before reaching 420 degrees C) and some intermediates (propanediol, ethylene glycol . . .) were quantified, leading to a proposition of a reaction pathway. Acrolein, a valuable platform molecule, was mainly produced in the absence of catalyst. No solid phase was recovered after SCW conversion of pure and bioglycerol in batch reactors. The optimal parameters for gasification were 600 degrees C, 25 MPa for bioglycerol and 525 degrees C, 25 MPa, for pure glycerol. In these operating conditions, 1 kg of pure or bioglycerol leads to 15 and, respectively, 10 mol of hydrogen. Supercritical water gasification of crude glycerol favoured the generation of light hydrocarbons, while pure glycerol promoted H2 production. SCW conversion of glycerol (pure and crude) allows to obtain simultaneously energetic

  6. Investigation of Supercritical Water Phenomena for Space and Extraterrestrial Application

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.; Fisher, John W.

    2012-01-01

    The cost of carrying or resupplying life support resources for long duration manned space exploration missions such as a mission to Mars is prohibitive and requires the development of suitable recycling technologies. Supercritical Water Oxidation (SCWO) has been identified as an attractive candidate for these extended missions because (i) pre-drying of wet waste streams is not required, (ii) product streams are relatively benign, microbially inert, and easily reclaimed, (iii) waste conversion is complete and relatively fast, and (iv) with proper design and operation, reactions can be self-sustaining. Initial work in this area at NASA was carried out at the Ames Research Center in the 1990 s with a focus on understanding the linkages between feed stock preparation (i.e., particle size and distribution) of cellulosic based waste streams and destruction rates under a range of operating temperatures and pressures. More recently, work in SCWO research for space and extra-terrestrial application has been performed at NASA s Glenn Research Center where various investigations, with a particular focus in the gravitational effects on the thermo-physical processes occurring in the bulk medium, have been pursued. In 2010 a collaborative NASA/CNES (the French Space Agency) experiment on the critical transition of pure water was conducted in the long duration microgravity environment on the International Space Station (ISS). A follow-on experiment, to study the precipitation of salt in sub-critical, trans-critical and supercritical water is scheduled to be conducted on the ISS in 2013. This paper provides a brief history of NASA s earlier work in SCWO, discusses the potential for application of SCWO technology in extended space and extraterrestrial missions, describes related research conducted on the ISS, and provides a list of future research activities to advance this technology in both terrestrial and extra-terrestrial applications.

  7. Structure of hydrogen-bonded associates in supercritical water under low and high pressures

    NASA Astrophysics Data System (ADS)

    Antipova, M. L.; Gurina, D. L.; Petrenko, V. E.

    2013-03-01

    The character and structural features of hydrogen-bonded associates in sub- and supercritical water are studied by analyzing distributions of the dipole moments of water molecules at P = 40, 80, and 100 MPa and T = 373-773 K, calculated using Car-Parrinello molecular dynamics. The main types of hydrogen-bonded structures and their changes upon isobaric heating are determined. It is shown that clusters with tetrahedral configurations exist in supercritical water only under high pressure.

  8. Amino acid synthesis in a supercritical carbon dioxide - water system.

    PubMed

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-06-15

    Mars is a CO(2)-abundant planet, whereas early Earth is thought to be also CO(2)-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO(2)/liquid H(2)O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life's origin.

  9. Amino Acid Synthesis in a Supercritical Carbon Dioxide - Water System

    PubMed Central

    Fujioka, Kouki; Futamura, Yasuhiro; Shiohara, Tomoo; Hoshino, Akiyoshi; Kanaya, Fumihide; Manome, Yoshinobu; Yamamoto, Kenji

    2009-01-01

    Mars is a CO2-abundant planet, whereas early Earth is thought to be also CO2-abundant. In addition, water was also discovered on Mars in 2008. From the facts and theory, we assumed that soda fountains were present on both planets, and this affected amino acid synthesis. Here, using a supercritical CO2/liquid H2O (10:1) system which mimicked crust soda fountains, we demonstrate production of amino acids from hydroxylamine (nitrogen source) and keto acids (oxylic acid sources). In this research, several amino acids were detected with an amino acid analyzer. Moreover, alanine polymers were detected with LC-MS. Our research lights up a new pathway in the study of life’s origin. PMID:19582225

  10. Thermal decomposition of substituted phenols in supercritical water

    SciTech Connect

    Martino, C.J.; Savage, P.E.

    1997-05-01

    The thermal decomposition of cresols, hydroxybenzaldehydes, nitrophenols, and benzenediols was studied in dilute aqueous solutions and in the absence of oxygen at 460 C and 250 atm for residence times around 10 s. Thermolysis under these conditions produced conversions of less than 10% for o-, m-, and p-cresol, whereas hydroxybenzaldehydes and nitrophenols were much more reactive. Global rate expressions are reported for the thermolysis of each hydroxybenzaldehyde and nitrophenol isomer. Phenol was a major product from the decomposition of all of the substituted phenols studied. For a given substituent, ortho-substituted phenols reacted more rapidly than the other isomers. For a given substituted position, nitrophenols reacted more rapidly than hydroxybenzaldehydes, which in turn reacted more rapidly than cresols. These results demonstrate that the treatment of CHO- and NO{sub 2}-substituted phenols by oxidation in supercritical water will involve the oxidation of thermal decomposition products in addition to the oxidation of the original compounds.

  11. Density dependence of hydrogen bonding and the translational-orientational structural order in supercritical water: a molecular dynamics study.

    PubMed

    Ma, Haibo; Ma, Jing

    2011-08-07

    Molecular dynamics simulation have been performed with a wide range of densities along a near critical isotherm of supercritical water (SCW) in order to study the density dependence of the structure order and hydrogen bonding (HB). It is revealed that the translational structure order is nearly invariant while the orientational tetrahedral structure order is very sensitive to the bulk density under supercritical conditions. Meanwhile, some energetically unfavorable intermediate water dimer structures are found to appear under supercritical conditions due to the reduced energy difference and the enhanced energy fluctuation. As a consequence, a general geometrical criterion or the inclusion of a energy-based criterion instead of currently widely adopted pure r(OH)-based geometric criterion is suggested to be used in the HB statistics under supercritical conditions. It is found that the average HB number per H(2)O molecule (n(HB)) reduces with the decreasing SCW bulk density although a given pair of H(2)O molecules are shown to have a stronger ability to form a hydrogen bond under lower SCW bulk densities. Accordingly, the orientational tetrahedral structure order q decreases with the reducing bulk density under supercritical conditions. However, when the fluid is dilute with ρ ≤ 0.19ρ(c) (ρ(c) = 0.322 g/cm(3)), the energy fluctuation increases sharply and the short-range order is destroyed, signifying the supercritical fluid (SCF)-gas state transition. Accordingly, the orientational tetrahedral structure order q gets reversal around ρ = 0.19ρ(c) and approaches zero under very dilute conditions. The sensitivity of the orientational order to the density implies the microscopic origin of the significant dependence of SCF's physicochemical properties on the pressure.

  12. A kinetic study of methanol oxidation in supercritical water

    SciTech Connect

    Anitescu, G.; Zhang, Z.; Tavlarides, L.L.

    1999-06-01

    The oxidation rate of methanol in supercritical water at 253 bar and temperatures between 673 and 773 K is investigated using an isothermal, isobaric plug-flow tubular reactor and GC/FID and GC/TCD chromatographic methods. Experiments are conducted at a nominal methanol feed concentration of 0.88 mol % (1.53 wt %) using H{sub 2}O{sub 2} as an initial oxidant. In some experiments, the O{sub 2}/MeOH molar ratios are varied from 1.5 to 3.0 and show that the rate of methanol oxidation is independent of the oxygen initial feed concentration. Overall first-order rate constants calculated from the data lead to Arrhenius parameters of A = 10{sup 11.8} s{sup {minus}1} and E{sub a} = 178 kJ/mol (42.5 kcal/mol). The identified reaction products are mainly CO and CO{sub 2}. The temporal variation of the CO yield exhibits a maximum at temperatures of 723 and 748 K, whereas the CO{sub 2} yield increases monotonically over the experimental range of residence time (3--50 s). The experimental data are consistent with a set of consecutive first-order reactions CH{sub 3}OH {yields} CO {yields} CO{sub 2}. The global rate-controlling step in the complete oxidation of methanol is the conversion of CO to CO{sub 2}. The first-order rate constants calculated for CO oxidation to CO{sub 2} lead to A = 10{sup 10.8} s{sup {minus}1} and E{sub a} = 172 kJ/mol (41.0 kcal/mol). Kinetics of this system may be useful to study supercritical water oxidation (SCWO) of polychlorinated biphenyls (PCBs) dissolved in methanol.

  13. Supercritical water/CO liquefaction and a model for coal conversion

    SciTech Connect

    Ross, D.S.; Hum, G.P.; Miin, T.C.; Green, T.K.; Mansani, R.

    1985-01-01

    The studies reported here deal with research on the kinetics and mechanism of coal conversion, using supercritical water as the medium. Our work in hydrothermal conversion, in which CO provides the reducing potential has demonstrated that the conversion is promoted by base, and is a function of the pH of the starting water. The conclusion is that coal conversion is limited by the kinetics of the reduction chemistry, rather than by the coal structure. The results are consistent with a model in which coal is partitioned during conversion to char. We have successfully simulated the process, with the simulation leading to present improvements in TS (toluene soluble) yields in preliminary work. 6 refs., 5 figs.

  14. Destruction of representative submarine food waste using supercritical water oxidation.

    PubMed

    Chen, Shiying; Qu, Xuan; Zhang, Rong; Bi, Jicheng

    2015-03-01

    In this study, 13 types of organic materials were oxidized using H2O2 in a continuous flow reactor under the condition of supercritical water. The effect of the operational parameters on the conversion of total organic carbon (TOC) and total nitrogen (TN) was investigated, and the resulting quality of treated water was analyzed. It was found that these materials were easily oxidized with a TOC conversion achieving 99% at temperature of 460 °C and TN conversion reaching 94% at temperature of 500 °C. Rice decomposition was rapid, with TOC and TN decomposition rates of 99% obtained within residence of 100 s at temperature of 460 °C. At temperature of 460 °C, pressure of 24 MPa, residence time of 100 s, and excess oxygen of 100%, the quality of treated water attained levels commensurate with China's Standards for Drinking Water Quality. Reaction rate equation parameters were obtained by fitting the experimental data to the differential equation obtained using the Runge-Kutta algorithm. The decrease of the TOC in water samples exhibited reaction orders of 0.95 for the TOC concentration and 0.628 for the oxygen concentration. The activation energy was 83.018 kJ/mol.

  15. Structure and Dynamics of Confined Water and CO2 in Clays under Supercritical Conditions

    NASA Astrophysics Data System (ADS)

    Glezakou, V.; Lee, M.; Schaef, T.; Loring, J.; Davidson, C.; McGrail, P.

    2013-12-01

    Carbon dioxide (CO2) driven enhanced gas recovery (EGR) from depleted fractured shale gas reservoirs has the potential for producing economic benefits and providing long term storage options for anthropogenic derived CO2 emissions. However key scientific processes related to CO2:CH4 exchange rates, mineral volume changes, organic mobility, and mineral stability in the presence of acid gas injections are not well understood. In this paper, we conduct atomistic simulations to examine interactions occurring between model clay minerals and supercritical CO2 equilibrated with water or brines to identify parameters controlling adsorption and desorption of gases. Integrated within these simulations are results derived from a set of newly developed experimental techniques designed to characterize physico-chemical reactions at reservoir conditions. In a series of cell optimizations under pressures relevant to sequestration scenarios, molecular simulations within the NVT and NPT ensembles with varying water/CO2 ratios showed a range of interlayer expansion for specific cation-saturated smectites. In conjunction with experimental in situ high pressure x-ray diffraction (HXRD), semi-quantitative concentrations of interlayer H2O and CO2 were established. For example, Ca saturated smectites maintaining sub-single to single hydration states (<1W to 1W), expand approximately 1.7-2.0 Å when exposed to anhydrous supercritical CO2. In contrast, for single to double hydration states (1W-2W), the simulations indicate formation of a quasi-single, metastable state, leading to a reduced interlayer spacing. Partial dehydration of the interlayer spacing while in contact with CO2 is due to a reduction of the interlayer cation coordination number. Structural analysis of the intercalated species shows an increase in the hydrogen bonding between waters during CO2 intercalation coincident with a decrease in the coordination population around the cations. Power spectra reveal rotationally

  16. Destruction of nuclear organic waste by supercritical water oxidation. Scale-up of the process

    SciTech Connect

    Moussiere, S.; Roubaud, A.; Fournel, B.

    2007-07-01

    In order to design and then define appropriate dimensions for a supercritical oxidation reactor, a 2D and 3D simulation of the fluid dynamics and heat transfer during the oxidation process has been performed. The solver used is a commercial code, Fluent 6.2. The turbulent flow field in the reactor, created by the stirrer is taken into account with a k-omega model and a swirl imposed to the fluid. In the 3D case the rotation of the stirrer can be modeled thanks to the sliding mesh model. The reactivity of the system is taken into account with a classical combustion model EDC. Comparisons with experimental temperature measurements validate the ability of the CFD modeling to simulate the supercritical water oxidation process. Simulation results provide us a view inside the reactor on the flow, temperature fields and the oxidation localization and development. Results indicate that the flow can be considered as piston-like, heat transfers are strongly enhanced by the stirring. Hence the scaling up of the reactor volume, to reach a treatment capacity of 1 Kg/h of pure organics, can be done regarding the necessary residence times and temperature distribution needed for a complete destruction of the organic matter. (authors)

  17. Catalytic gasification of wet biomass in supercritical water

    SciTech Connect

    Antal, M.J. Jr.; Matsumura, Yukihiko; Xu, Xiaodong

    1995-12-31

    Wet biomass (water hyacinth, banana trees, cattails, green algae, kelp, etc.) grows rapidly and abundantly around the world. As a biomass crop, aquatic species are particularly attractive because their cultivation does not compete with land-based agricultural activities designed to produce food for consumption or export. However, wet biomass is not regarded as a promising feed for conventional thermochemical conversion processes because the cost associated with drying it is too high. This research seeks to address this problem by employing water as the gasification medium. Prior work has shown that low concentrations of glucose (a model compound for whole biomass) can be completely gasified in supercritical water at 600{degrees}C and 34.5 Wa after a 30 s reaction time. Higher concentrations of glucose (up to 22% by weight in water) resulted in incomplete conversion under these conditions. The gas contained hydrogen, carbon dioxide, carbon monoxide, methane, ethane, propane, and traces of other hydrocarbons. The carbon monoxide and hydrocarbons are easily converted to hydrogen by commercial technology available in most refineries. This prior work utilized capillary tube reactors with no catalyst. A larger reactor system was fabricated and the heterogeneous catalytic gasification of glucose and wet biomass slurry of higher concentration was studied to attain higher conversions.

  18. Effects of supercritical water and mechanochemical grinding treatments on physicochemical properties of chitin.

    PubMed

    Osada, Mitsumasa; Miura, Chika; Nakagawa, Yuko S; Kaihara, Mikio; Nikaido, Mitsuru; Totani, Kazuhide

    2013-02-15

    This study examined the effects of a combined pretreatment with supercritical water and mechanochemical grinding with a ball mill on the physicochemical properties of chitin and its enzymatic degradation. Following pretreatment with a combination of supercritical water and grinding, chitin had a lower mean molecular weight, a lower crystallinity index, a lower crystallite size, greater d-spacing, weaker hydrogen bonds, and the amide group was more exposed compared with untreated chitin. These properties increased the hydrophilicity of the chitin and enhanced its enzymatic degradation. The N,N'-diacetylchitobiose (GlcNAc)(2) yield after enzymatic degradation of chitin following pretreatment with supercritical water (400 °C, 1 min) and grinding (800 rpm, 10 min) was 93%, compared with 5% without any treatment, 37% with supercritical water pretreatment alone (400 °C, 1 min), and 60% with grinding alone (800 rpm, 30 min).

  19. Assessment of black liquor gasification in supercritical water.

    PubMed

    Sricharoenchaikul, V

    2009-01-01

    Supercritical water gasification of black liquor (waste pulping chemicals) has been examined. The aim was to evaluate the feasibility of using this technique to convert such bio-based waste to value added fuel products, as well as recovery of pulping materials. Supercritical gasification may improve overall process efficiency by eliminating the energy intensive evaporation step necessary in conventional process and product gas obtained at high pressure may be ready for utilization without any compression requirement. Appropriate operating parameters, including pressure, temperature, feed concentration, and reaction time, which would yield the highest conversion and energy efficiency were determined. Reaction was performed in a quartz capillary heated in a fluidized bed reactor. Results indicated that pressure between 220 and 400 atm has insignificant influence on the gas products and extent of carbon conversion. Increasing temperature and residence time between 375-650 degrees C and 5-120 s resulted in greater gas production, overall carbon conversion, and energy efficiency. Maximum conversion to H(2), CO, CH(4), and C(2)H(X) was achieved at the highest temperature and longest residence time tested showing an overall carbon conversion of 84.8%, gas energy content of 9.4 MJ/m(3) and energy conversion ratio of 1.2. Though higher carbon conversion and energy conversion ratio were obtained with more dilute liquor, energy content was lower than for those with higher solid contents. Due to anticipated complex design and high initial investment cost of this operation, further studies on overall feasibility should be carried out in order to identify the optimum operating window for this novel process.

  20. Development of Theoretical Methods for Predicting Solvent Effects on Reaction Rates in Supercritical Water Oxidation Processes

    DTIC Science & Technology

    2007-11-02

    Tucker, manuscript in preparation. “Examination of Nonequilibrium Solvent Effects on an SN2 Reaction in Supercritical Water,” R. Behera, B...DATES COVERED Final: 7/1/99 - 12/31/02 4. TITLE AND SUBTITLE Development of theoretical methods for predicting solvent effects on reactions ...computational methods for predicting how reaction rate constants will vary with thermodynamic condition in supercritical water (SCW). Towards this

  1. Generation and integration of NaOH into NaCl clusters in supercritical water: a molecular dynamics study on hydrolysis product partitioning.

    PubMed

    Nahtigal, Istok G; Svishchev, Igor M

    2009-11-05

    The interaction of water with NaCl nanoparticles at supercritical conditions has been studied by molecular dynamics (MD) simulation. During the nanoparticle nucleation process, water is not only physically adsorbed to the periphery of the NaCl cluster but also exists in a confined state within subsurface regions for several picoseconds. Electrostatic fields generated by the coalescing ions are shown to be on the order of 10(10) V/m, which can drive the hydrolysis of confined water molecules. A molecular mechanism for the sodium chloride hydrolysis reaction at supercritical conditions is suggested. It involves proton transfer from water to chloride ions, followed by hydrolysis product partitioning. We provide MD results displaying the subsurface hydroxide localization in amorphous NaCl clusters, as well as the partitioning of the HCl into the supercritical water phase.

  2. Destruction of explosives and rocket fuels by supercritical water oxidation

    SciTech Connect

    Dyer, R.B.; Buelow, S.J.; Harradine, D.M.; Robinson, J.M.; Foy, B.R.; Atencio, J.H.; Dell'Orco, P.C.; Funk, K.A.; McInroy, R.E.; Rofer, C.K.; Counce, D.A.; Trujillo, P.E. Jr. ); Wander, J.D. )

    1992-01-01

    Traditional methods for disposing of PEPs have been open burning or open detonation (OB/OD); however, regulatory agencies are likely to prohibit OB/OD because of the uncontrolled air emissions and soil contaminations. Likewise, controlled incineration carries a liability for air pollution because large quantities of NO{sub x} are produced in the conventional combustion chemistry of PEPS. Soil and ground water have already been contaminated with PEPs through normal operations at manufacturing plants and military bases. Incineration can be used for decontamination of these soils, with the associated liability for air pollution, but few satisfactory and economic methods exist for ground water decontamination. A clear need exists for improved disposal and destruction methods. The destruction of energetic materials, including propellants, explosives and pyrotechnics (PEPS) by oxidation in supercritical water is described. The focus is on the chemistry of the process. The destruction efficiencies and products of reaction contained in the aqueous and gaseous effluents of several representative PEPs are reported.

  3. Subcritical and supercritical water oxidation of CELSS model wastes

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Wydeven, T.; Koo, C.

    1989-01-01

    A mixture of ammonium hydroxide with acetic acid and a slurry of human feces, urine, and wipes were used as CELSS model wastes to be wet-oxidized at temperatures from 250 to 500 C, i.e. below and above the critical point of water (374 C and 218 kg/sq cm or 21.4 MPa). The effects of oxidation temperature ( 250-500 C) and residence time (0-120 mn) on carbon and nitrogen and on metal corrosion from the reactor material were studied. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 C, above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. A substantial amount of nitrogen remained in solution in the form of ammonia at temperatures ranging from 350 to 450 C suggesting that, around 400 C, organic carbon is completely oxidized and most of the nitrogen is retained in solution. The Hastelloy C-276 alloy reactor corroded during subcritical and supercritical water oxidation.

  4. Governing chemistry of cellulose hydrolysis in supercritical water.

    PubMed

    Cantero, Danilo A; Bermejo, M Dolores; Cocero, M José

    2015-03-01

    At extremely low reaction times (0.02 s), cellulose was hydrolyzed in supercritical water (T=400 °C and P=25 MPa) to obtain a sugar yield higher than 95 wt%, whereas the 5-hydroxymethylfurfural (5-HMF) yield was lower than 0.01 wt %. If the reaction time was increased to 1 s, the main product was glycolaldehyde (60 wt%). Independently of the reaction time, the yield of 5-HMF was always lower than 0.01 wt%. To evaluate the reaction mechanism of biomass hydrolysis in pressurized water, several parameters (temperature, pressure, reaction time, and reaction medium) were studied for different biomasses (cellulose, glucose, fructose, and wheat bran). It was found that the H(+) and OH(-) ion concentration in the reaction medium as a result of water dissociation is the determining factor in the selectivity. The reaction of glucose isomerization to fructose and the further dehydration to 5-HMF are highly dependent on the ion concentration. By an increase in the pOH/pH value, these reactions were minimized to allow control of 5-HMF production. Under these conditions, the retroaldol condensation pathway was enhanced, instead of the isomerization/dehydration pathway.

  5. Experiments and numerical simulation of mixing under supercritical conditions

    NASA Astrophysics Data System (ADS)

    Schmitt, T.; Rodriguez, J.; Leyva, I. A.; Candel, S.

    2012-05-01

    Supercritical pressure conditions designate a situation where the working fluid pressure is above the critical point. Among these conditions, it is interesting to identify a transcritical range which corresponds to cases where the pressure is above the critical point, but the injection temperature is below the critical value. This situation is of special interest because it raises fundamental issues which have technological relevance in the analysis of flows in liquid rocket engines. This situation is here envisaged by analyzing the behavior of a nitrogen shear coaxial jet comprising an inner stream injected at temperatures close to the critical temperature and a coaxial flow at a higher temperature. Experiments are carried out both in the absence of external modulation and by imposing a large amplitude transverse acoustic field. Real gas large eddy simulations are performed for selected experiments. The combination of experiments and calculations is used to evaluate effects of injector geometry and operating parameters. Calculations retrieve what is observed experimentally when the momentum flux ratio of the outer to the inner stream J= (ρ _eu_e^2)/(ρ _iu_i^2) is varied. Results exhibit the change in flow structure and the development of a recirculation region when this parameter exceeds a critical value. The instantaneous flow patterns for different momentum flux ratios are used in a second stage to characterize the dynamical behavior of the flow in terms of power spectral density of velocity and density fluctuations. Results obtained under acoustic modulation provide insight into mixing enhancement of coaxial streams with a view of its possible consequences in high frequency combustion instabilities. It is shown in particular that the presence of strong acoustic modulations notably reduces the high density jet core length, indicating an increased mixing efficiency. This behavior is more pronounced when the jet is placed at the location of maximum transverse

  6. Hazard classification for the supercritical water oxidation test bed. Revision 1

    SciTech Connect

    Ramos, A.G.

    1994-10-01

    A hazard classification of ``routinely accepted by the public`` has been determined for the operation of the supercritical water oxidation test bed at the Idaho National Engineering Laboratory. This determination is based on the fact that the design and proposed operation meet or exceed appropriate national standards so that the risks are equivalent to those present in similar activities conducted in private industry. Each of the 17 criteria for hazards ``routinely accepted by the public,`` identified in the EG and G Idaho, Inc., Safety Manual, were analyzed. The supercritical water oxidation (SCWO) test bed will treat simulated mixed waste without the radioactive component. It will be designed to operate with eight test wastes. These test wastes have been chosen to represent a broad cross-section of candidate mixed wastes anticipated for storage or generation by DOE. In particular, the test bed will generate data to evaluate the ability of the technology to treat chlorinated waste and other wastes that have in the past caused severe corrosion and deposition in SCWO reactors.

  7. EGS rock reactions with Supercritical CO2 saturated with water and water saturated with Supercritical CO2

    SciTech Connect

    Earl D. Mattson; Travis L. McLing; William Smith; Carl Palmer

    2013-02-01

    EGS using CO2 as a working fluid will likely involve hydro-shearing low-permeability hot rock reservoirs with a water solution. After that process, the fractures will be flushed with CO2 that is maintained under supercritical conditions (> 70 bars). Much of the injected water in the main fracture will be flushed out with the initial CO2 injection; however side fractures, micro fractures, and the lower portion of the fracture will contain connate water that will interact with the rock and the injected CO2. Dissolution/precipitation reactions in the resulting scCO2/brine/rock systems have the potential to significantly alter reservoir permeability, so it is important to understand where these precipitates form and how are they related to the evolving ‘free’ connate water in the system. To examine dissolution / precipitation behavior in such systems over time, we have conducted non-stirred batch experiments in the laboratory with pure minerals, sandstone, and basalt coupons with brine solution spiked with MnCl2 and scCO2. The coupons are exposed to liquid water saturated with scCO2 and extend above the water surface allowing the upper portion of the coupons to be exposed to scCO2 saturated with water. The coupons were subsequently analyzed using SEM to determine the location of reactions in both in and out of the liquid water. Results of these will be summarized with regard to significance for EGS with CO2 as a working fluid.

  8. Physical properties of rocks and aqueous fluids at conditions simulating near- and supercritical reservoirs

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Raab, Siegfried

    2016-04-01

    The growing interest in exploiting supercritical geothermal reservoirs calls for a thorough identification and understanding of physico-chemical processes occuring in geological settings with a high heat flow. In reservoir engineering, electrical sounding methods are common geophysical exploration and monitoring tools. However, a realistic interpretation of field measurements is based on the knowledge of both, the physical properties of the rock and those of the interacting fluid at defined temperature and pressure conditions. Thus, laboratory studies at simulated in-situ conditions provide a link between the field data and the material properties in the depth. The physico-chemical properties of fluids change dramatically above the critical point, which is for pure water 374.21 °C and 221.2 bar. In supercritical fluids mass transfer and diffusion-controlled chemical reactions are enhanced and cause mineral alterations. Also, ion mobility and ion concentration are affected by the change of physical state. All this cause changes in the electrical resistivity of supercritical fluids and may have considerable effects on the porosity and hydraulic properties of the rocks they are in contact with. While there are some datasets available for physical and chemical properties of water and single component salt solutions above their critical points, there exist nearly no data for electrical properties of mixed brines, representing the composition of natural geothermal fluids. Also, the impact of fluid-rock interactions on the electrical properties of multicomponent fluids in a supercritical region is scarcely investigated. For a better understanding of fluid-driven processes in a near- and supercritical geological environment, in the framework of the EU-funded FP7 program IMAGE we have measured (1) the electrical resistivity of geothermal fluids and (2) physical properties of fluid saturated rock samples at simulated in-situ conditions. The permeability and electrical

  9. Supercritical Water Nuclear Steam Supply System: Innovations In Materials, Neutronics & Thermal-Hydraulics

    SciTech Connect

    Mark Anderson; M.L. Corradini; K. Sridharan; P. WIlson; D. Cho; T.K. Kim; S. Lomperski

    2004-09-02

    In the 1990's supercritical light-water reactors were considered in conceptual designs. A nuclear reactor cooled by supercritical waster would have a much higher thermal efficiency with a once-through direct power cycle, and could be based on standardized water reactor components (light water or heavy water). The theoretical efficiency could be improved by more than 33% over that of other water reactors and could be simplified with higher reliability; e.g., a boiling water reactor without steam separators or dryers.

  10. Corrosion and stress corrosion cracking in supercritical water

    NASA Astrophysics Data System (ADS)

    Was, G. S.; Ampornrat, P.; Gupta, G.; Teysseyre, S.; West, E. A.; Allen, T. R.; Sridharan, K.; Tan, L.; Chen, Y.; Ren, X.; Pister, C.

    2007-09-01

    Supercritical water (SCW) has attracted increasing attention since SCW boiler power plants were implemented to increase the efficiency of fossil-based power plants. The SCW reactor (SCWR) design has been selected as one of the Generation IV reactor concepts because of its higher thermal efficiency and plant simplification as compared to current light water reactors (LWRs). Reactor operating conditions call for a core coolant temperature between 280 °C and 620 °C at a pressure of 25 MPa and maximum expected neutron damage levels to any replaceable or permanent core component of 15 dpa (thermal reactor design) and 100 dpa (fast reactor design). Irradiation-induced changes in microstructure (swelling, radiation-induced segregation (RIS), hardening, phase stability) and mechanical properties (strength, thermal and irradiation-induced creep, fatigue) are also major concerns. Throughout the core, corrosion, stress corrosion cracking, and the effect of irradiation on these degradation modes are critical issues. This paper reviews the current understanding of the response of candidate materials for SCWR systems, focusing on the corrosion and stress corrosion cracking response, and highlights the design trade-offs associated with certain alloy systems. Ferritic-martensitic steels generally have the best resistance to stress corrosion cracking, but suffer from the worst oxidation. Austenitic stainless steels and Ni-base alloys have better oxidation resistance but are more susceptible to stress corrosion cracking. The promise of grain boundary engineering and surface modification in addressing corrosion and stress corrosion cracking performance is discussed.

  11. Hot and cold water as a supercritical solvent

    NASA Astrophysics Data System (ADS)

    Fuentevilla, Daphne Anne

    This dissertation addresses the anomalous properties of water at high temperatures near the vapor-liquid critical point and at low temperatures in the supercooled liquid region. The first part of the dissertation is concerned with the concentration dependence of the critical temperature, density, and pressure of an aqueous sodium chloride solution. Because of the practical importance of an accurate knowledge of critical parameters for industrial, geochemical, and biological applications, an empirical equation for the critical locus of aqueous sodium chloride solutions was adopted in 1999 by the International Association for the Properties of Water and Steam (IAPWS) as a guideline. However, since this original Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride was developed, two new theoretical developments occurred, motivating the first part of this dissertation. Here, I present a theory-based formulation for the critical parameters of aqueous sodium chloride solutions as a proposed replacement for the empirical formulation currently in use. This formulation has been published in the International Journal of Thermophysics and recommended by the Executive Committee of IAPWS for adoption as a Revised Guideline on the Critical Locus of Aqueous Solutions of Sodium Chloride. The second part of the dissertation addresses a new concept, considering cold water as a supercritical solvent. Based on the idea of a second, liquid-liquid, critical point in supercooled water, we explore the possibility of supercooled water as a novel supercooled solvent through the thermodynamics of critical phenomena. In 2006, I published a Physical Review letter presenting a parametric scaled equation of state for supercooled-water. Further developments based on this work led to a phenomenological mean-field "two-state" model, clarifying the nature of the phase separation in a polyamorphic single-component liquid. In this dissertation, I modify this two-state model to

  12. Mixing coefficients for subchannel analyses with supercritical water

    SciTech Connect

    Vogt, Bastian; Laurien, Eckart; Class, Andreas G.; Schulenberg, Thomas

    2007-07-01

    This paper is related to pressure drop and mixing correlations which are used in subchannel codes. The commercial CFD code STAR-CD has been applied for central subchannels of a supercritical water reactor fuel assembly design. First, pressure drop coefficients for cross flow have been evaluated for this geometry using steady state calculations. Different from established correlations for cross flow in rod bundles, the effects of strong axial flow in the bundle have been taken into account for the presented geometry, flow conditions and fluid properties. In the second part of the paper the unsteady RANS CFD-method is applied and assessed with respect to the prediction of flow pulsation phenomena and turbulent mixing. The results are compared with experimental correlations for the turbulent mixing coefficient and the flow pulsation frequency. It is found that the applied unsteady RANS method is able to predict the flow pulsation frequency but over-predicts the turbulent mixing by a factor of around 3.5. (authors)

  13. Treatment of pulp mill sludges by supercritical water oxidation

    SciTech Connect

    Modell, M.

    1990-07-01

    Supercritical water oxidation (SCWO) is new process that can oxidize organics very effectively at moderate temperatures (400 to 650{degree}C) and high pressure (3700 psi). It is an environmentally acceptable alternative for sludge treatment. In bench scale tests, total organic carbon (TOC) and total organic halide (TOX) reductions of 99 to 99.9% were obtained; dioxin reductions were 95 to 99.9%. A conceptual design for commercial systems has been completed and preliminary economics have been estimated. Comparisons confirm that SCWO is less costly than dewatering plus incineration for treating pulp mill sludges. SCWO can also compete effectively with dewatering plus landfilling where tipping fees exceed $35/yd{sup 3}. In some regions of the US, tipping fees are now $75/yd{sup 3} and rising steadily. In the 1995 to 2000 time frame, SCWO has a good chance of becoming the method of choice. MODEC's objective is to bring the technology to commercial availability by 1993. 10 refs., 6 figs., 19 tabs.

  14. Supercritical water oxidation of oil-based drill cuttings.

    PubMed

    Chen, Zhong; Chen, Zeliang; Yin, Fengjun; Wang, Guangwei; Chen, Hongzhen; He, Chunlan; Xu, Yuanjian

    2017-03-09

    Oil-based drill cuttings (OBDC) are a typical hazardous solid waste that arises from drilling operations in oil and gas fields. The supercritical water oxidation (SCWO) of OBDC was comprehensively investigated in a batch reactor under the conditions of various oxygen coefficients (OC, 1.5-3.5), temperatures (T, 400-500°C) and reaction times (t, 0.5-10min). Preheating experiments indicated that most of the organic compounds in the initial OBDC sample were distributed within gaseous, oil, aqueous and solid phases, with no more than 9.8% of organic compounds converted into inorganic carbon. All tested variables, i.e., OC, T and t, positively affect the transformation of carbon compounds from the oil and solid phases to the aqueous phase and, ultimately, to CO2. Carbon monoxide is the primary stable intermediate. The total organic carbon (TOC) removal efficiency can reach up to 89.2% within 10min at 500°C. Analysis of the reaction pathways suggests both homogeneous and heterogeneous reactions exist in the reactor. The homogeneous reaction is a typical SCWO reaction that is governed by a free radical mechanism, and the heterogeneous reaction is dominated by mass transfer. The information obtained in this study is useful for further investigation and development of hydrothermal treatment procedures for OBDC.

  15. Insights into Silicate Carbonation Processes in Water-Bearing Supercritical CO2 Fluids

    SciTech Connect

    Miller, Quin RS; Thompson, Christopher J.; Loring, John S.; Windisch, Charles F.; Bowden, Mark E.; Hoyt, David W.; Hu, Jian Z.; Arey, Bruce W.; Rosso, Kevin M.; Schaef, Herbert T.

    2013-07-01

    Long-term geologic storage of carbon dioxide (CO2) is considered an integral part to moderating CO2 concentrations in the atmosphere and subsequently minimizing effects of global climate change. Although subsurface injection of CO2 is common place in certain industries, deployment at the scale required for emission reduction is unprecedented and therefore requires a high degree of predictability. Accurately modeling geochemical processes in the subsurface requires experimental derived data for mineral reactions occurring between the CO2, water, and rocks. Most work in this area has focused on aqueous-dominated systems in which dissolved CO2 reacts to form crystalline carbonate minerals. Comparatively little laboratory research has been conducted on reactions occurring between minerals in the host rock and the wet supercritical fluid phase. In this work, we studied the carbonation of wollastonite [CaSiO3] exposed to variably hydrated supercritical CO2 (scCO2) at a range of temperatures (50, 55 and 70 °C) and pressures (90,120 and 160 bar) that simulate conditions in geologic repositories. Mineral transformation reactions were followed by three novel in situ high pressure techniques, including x-ray diffraction that tracked the rate and extents of wollastonite conversion to calcite. Increased dissolved water concentrations in the supercritical CO2 resulted in increased silicate carbonation approaching ~50 wt. %. Development of thin water films on the mineral surface were directly observed with infrared spectroscopy and determined to be critical for facilitating carbonation processes. Even in extreme low water conditions, magic angle spinning nuclear magnetic resonance detected formation of Q3 [Si(OSi)3OH] and Q4 [Si(OSi)4] amorphous silica species. Unlike the thick (<10 μm) passivating silica layers observed in the fully water saturated scCO2 experiments, images obtained from a focused ion beam sectioned sample indicted these coatings were chemically wollastonite

  16. Design requirements for the supercritical water oxidation test bed

    SciTech Connect

    Svoboda, J.M.; Valentich, D.J.

    1994-05-01

    This report describes the design requirements for the supercritical water oxidation (SCWO) test bed that will be located at the Idaho National Engineering Laboratory (INEL). The test bed will process a maximum of 50 gph of waste plus the required volume of cooling water. The test bed will evaluate the performance of a number of SCWO reactor designs. The goal of the project is to select a reactor that can be scaled up for use in a full-size waste treatment facility to process US Department of Energy mixed wastes. EG&G Idaho, Inc. will design and construct the SCWO test bed at the Water Reactor Research Test Facility (WRRTF), located in the northern region of the INEL. Private industry partners will develop and provide SCWO reactors to interface with the test bed. A number of reactor designs will be tested, including a transpiring wall, tube, and vessel-type reactor. The initial SCWO reactor evaluated will be a transpiring wall design. This design requirements report identifies parameters needed to proceed with preliminary and final design work for the SCWO test bed. A flow sheet and Process and Instrumentation Diagrams define the overall process and conditions of service and delineate equipment, piping, and instrumentation sizes and configuration Codes and standards that govern the safe engineering and design of systems and guidance that locates and interfaces test bed hardware are provided. Detailed technical requirements are addressed for design of piping, valves, instrumentation and control, vessels, tanks, pumps, electrical systems, and structural steel. The approach for conducting the preliminary and final designs and environmental and quality issues influencing the design are provided.

  17. Supercritical water oxidation for wastewater treatment Preliminary study of urea destruction

    NASA Technical Reports Server (NTRS)

    Timberlake, S. H.; Hong, G. T.; Simson, M.; Modell, M.

    1982-01-01

    Supercritical water oxidation is being investigated as a method of treating spacecraft wastewater for recycle. In this process, oxidation is conducted in an aqueous phase maintained above the critical temperature (374 C) and pressure (215 bar) of water. Organic materials are oxidized with efficiencies greater than 99.99 percent in residence times of less than 1 minute. This paper presents preliminary results for urea destruction. Above 650 C, urea can be completely broken down to nitrogen gas, carbon dioxide and water by supercritical water oxidation, without the use of a specific catalyst.

  18. Simulation and optimization of a supercritical extraction process for recovering provitamin A.

    PubMed

    de Moraes, Elenise Bannwart; Alvarez, Mario Eusebio Torres; Maciel, Maria Regina Wolf; Maciel Filho, Rubens

    2006-01-01

    In this work, a simulation procedure of a supercritical extraction process was developed through the use of the commercial simulator HYSYS (Hyprotech Ltd.), adapting the existing units to the operating conditions typical of the supercritical extraction process. The objective is to recover provitamin A (beta-carotene) from palm oil (esterified) using carbon dioxide/ethanol as the supercritical mixed solvent. This example characterizes the problem for recovering high added value product from natural sources, as the palm oil, which is desired by the market. Owing to the fact that esterified palm oil is a complex mixture, made by several components, in order to characterize this system in the simulator, it was necessary to create hypothetical components using the UNIFAC (universal function-group activity coefficients model) group contribution, because they are not present in a conventional database and, then, their physical properties must be estimated and/or predicted before the simulation. The optimization was carried out in each simulation for each equipment, in terms of operating conditions (temperature and pressure), in order to obtain the maximum recovery of carotenes. According to the results, it was possible to concentrate carotenes through two cycles of supercritical extraction with high yield. Furthermore, ethyl esters (biodiesel) were also obtained, as a byproduct of the proposed process, which can also be used as an alternative fuel, with the important characteristic that it is renewable.

  19. Supercritical water oxidation of a model fecal sludge without the use of a co-fuel.

    PubMed

    Miller, A; Espanani, R; Junker, A; Hendry, D; Wilkinson, N; Bollinger, D; Abelleira-Pereira, J M; Deshusses, M A; Inniss, E; Jacoby, W

    2015-12-01

    A continuous supercritical water oxidation reactor was designed and constructed to investigate the conversion of a feces simulant without the use of a co-fuel. The maximum reactor temperature and waste conversion was determined as a function of stoichiometric excess of oxygen in order to determine factor levels for subsequent investigation. 48% oxygen excess showed the highest temperature with full conversion. Factorial analysis was then used to determine the effects of feed concentration, oxygen excess, inlet temperature, and operating pressure on the increase in the temperature of the reacting fluid as well as a newly defined non-dimensional number, NJa representing heat transfer efficiency. Operating pressure and stoichiometric excess oxygen were found to have the most significant impacts on NJa. Feed concentration had a significant impact on fluid temperature increase showing an average difference of 46.4°C between the factorial levels.

  20. Current and foreseeable applications of supercritical water for energy and the environment.

    PubMed

    Loppinet-Serani, Anne; Aymonier, Cyril; Cansell, François

    2008-01-01

    It is crucial to develop economical and energy-efficient processes for the sustainable transformation of biomass into fuels and chemicals. In this context, supercritical water biomass valorization (SCBV) processes are an alternative way to produce biogas, biofuels, and valuable chemicals. Supercritical water technology has seen much progress over the last fifteen years and an industrial application has merged: the supercritical water oxidation of wastes. The evolution from lab-scale to pilot-scale facilities has provided data on reaction mechanisms, kinetics, modeling, and reactor technology as well as an important know-how, which can now be exploited to use the reactivity in supercritical water to transform biomass into gases (CO, H(2), CO(2), CH(4), and N(2)) or into liquids (liquid fuel and valuable chemicals) with the supercritical water biomass gasification and liquefaction processes, respectively. This Review highlights the potential of SCBV processes to transform biomass into gas and liquid energy sources and highlights the developments that are still necessary to push this technology onto the market.

  1. Supercritical water oxidation of acrylic acid production wastewater.

    PubMed

    Gong, Y M; Wang, S Z; Tang, X Y; Xu, D H; Ma, H H

    2014-01-01

    Supercritical water oxidation (SCWO) of wastewater from an acrylic acid manufacturing plant has been studied on a continuous flow experimental system, whose reactor was made of Hastelloy C-276. Experimental conditions included a reaction temperature (T) ranging from 673 to 773K, a residence time (t) ranging from 72.7 to 339s, a constant pressure (P) of 25 MPa and a fixed oxidation coefficient (alpha) of 2.0. Experimental results indicated that reaction temperature and residence time had significant influences on the oxidation reaction, and increasing the two operation parameters could improve both degradation of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N). The COD removal efficiency could reach up to 98.73% at 25 MPa, 773 K and 180.1 s, whereas the destruction efficiency of NH3-N was only 43.71%. We further carried out a kinetic analysis considering the induction period through free radical chain mechanism. It confirms that the power-law rate equation for COD removal was 345 exp(-52200/RT)[COD]1.98[O2]0.17 and for NH3-N removal was 500 exp(-64492.19/RT)[NH3-N]1.87 [O2]0.03. Moreover, the induction time formulations for COD and NH3-N were suspected to be exp(38250/RT)/173 and exp(55690/RT)/15231, respectively. Correspondingly, induction time changed from 2.22 to 5.38 s for COD and 0.38 to 1.38 s for NH3-N. Owing to the catalysis of reactor inner wall surface, more than 97% COD removal was achieved in all samples.

  2. Transport Processes in Reacting Hydrothermal Flames with Applications to Military Waste Destruction in Supercritical Water and Geotechnical Rock Excavation

    DTIC Science & Technology

    2009-01-01

    Transport Processes in Reacting Hydrothermal Flames with Applications to Military Waste Destruction in Supercritical Water and... Hydrothermal Burner Reactor System ...................................................... 2  3. Hydrothermal flame experiments... Hydrothermal Flames with Applications to Military Waste Destruction in Supercritical Water and Geotechnical Rock Excavation 5a. CONTRACT NUMBER W911NF-05

  3. Structure and Performance of a 600MWe Supercritical CFB Boiler with Water Cooled Panels

    NASA Astrophysics Data System (ADS)

    Li, Y.; Nie, L.; Hu, X. K.; Yue, G. X.; Li, W. K.; We, Y. X.; Lu, J. F.; Che, D. F.

    The circulating fluidized bed (CFB) combustion technology is one of the approved clean combustion technologies, and the power supply efficiency can be improved combining with the supercritical technology. A 600MWe supercritical CFB boiler is introduced in this paper. This boiler is designed based on the success of 300 MWe CFB boilers, which has a single furnace with three cyclones without external heat exchangers. There are twin furnaces and twin air distributors in the boiler. The water walls of the twin furnace above dense bed combines to a common fence wall with some channels to balance the pressure of the two furnaces. The smooth tubes are adopted in membrane water wall with mixing header. Six cyclones are located beside the furnace as well as six loopseals and six external heat exchangers. The hydrodynamic characteristic of water wall is available with the modeling prediction. And the performance of the 600MWe supercritical CFB boiler is also investigated.

  4. Rate determination of supercritical water gasification of primary sewage sludge as a replacement for anaerobic digestion.

    PubMed

    Wilkinson, Nikolas; Wickramathilaka, Malithi; Hendry, Doug; Miller, Andrew; Espanani, Reza; Jacoby, William

    2012-11-01

    Supercritical water gasification of primary sewage sludge sampled from a local facility was undertaken at different solids content. The performance of the process was compared with the anaerobic digestion system in use at the facility where the samples were taken. The mass and composition of the vapor products documented showed that the process generates more energy per gram of feed while rapidly destroying more volatile solids relative to the anaerobic digestion process. However, the energy input requirements are greater for supercritical water gasification. This study defines parameters for a model of the gasification reaction using the power law and Arrhenius equation. The activation energy was estimated to be 15 kJ/mol, and the reaction order was estimated to be 0.586. This model allows estimation of the size of a supercritical water reactor needed to replace the anaerobic digesters that are currently used at the wastewater treatment plant.

  5. Numerical analysis of flow instability in the water wall of a supercritical CFB boiler with annular furnace

    NASA Astrophysics Data System (ADS)

    Xie, Beibei; Yang, Dong; Xie, Haiyan; Nie, Xin; Liu, Wanyu

    2016-08-01

    In order to expand the study on flow instability of supercritical circulating fluidized bed (CFB) boiler, a new numerical computational model considering the heat storage of the tube wall metal was presented in this paper. The lumped parameter method was proposed for wall temperature calculation and the single channel model was adopted for the analysis of flow instability. Based on the time-domain method, a new numerical computational program suitable for the analysis of flow instability in the water wall of supercritical CFB boiler with annular furnace was established. To verify the code, calculation results were respectively compared with data of commercial software. According to the comparisons, the new code was proved to be reasonable and accurate for practical engineering application in analysis of flow instability. Based on the new program, the flow instability of supercritical CFB boiler with annular furnace was simulated by time-domain method. When 1.2 times heat load disturbance was applied on the loop, results showed that the inlet flow rate, outlet flow rate and wall temperature fluctuated with time eventually remained at constant values, suggesting that the hydrodynamic flow was stable. The results also showed that in the case of considering the heat storage, the flow in the water wall is easier to return to stable state than without considering heat storage.

  6. Implementing supercritical water oxidation technology in a lunar base environmental control/life support system

    NASA Technical Reports Server (NTRS)

    Meyer Sedej, M.

    1985-01-01

    A supercritical water oxidation system (SCWOS) offers several advantages for a lunar base environmental control/life support system (ECLSS) compared to an ECLSS based on Space Station technology. In supercritically heated water (630 K, 250 atm) organic materials mix freely with oxygen and undergo complete combustion. Inorganic salts lose solubility and precipitate out. Implementation of SCWOS can make an ECLSS more efficient and reliable by elimination of several subsystems and by reduction in potential losses of life support consumables. More complete closure of the total system reduces resupply requirements from the earth, a crucial cost item in maintaining a lunar base.

  7. Partitioning of Organic Compounds between Crude Oil and Water under Supercritical CO2 Condition

    NASA Astrophysics Data System (ADS)

    Rod, K. A.; Wang, G.

    2015-12-01

    In recent years depleted oil reservoirs have received special interest as carbon storage reservoirs because of their potential to offset costs through collaboration with enhanced oil recovery projects. Leakage of the injected CO2 may occur either as supercritical CO2 or CO2-saturated (brine) water. The injected supercritical CO2 is a nonpolar solvent that can potentially mobilize the residual oil compounds into supercritical CO2 and brine water through phase partitioning. For detailed risk assessment of CO2 leakage, various models can be used to quantify the mass of organic contaminants transported from carbon storage sites to potential receptors such as potable aquifers, in which the partition coefficients of crude oil hydrocarbons between CO2/crude oil/brines for subsurface CO2 sequestration scenarios are the key parameters controlling the fate and transport of organic contaminants along the CO2 leakage pathways. However, the solubilities of many of the oil organic compounds in brines under supercritical CO2 condition have not been yet fully determined. In this study, we developed a novel method to accurately measure the partitioning of crude oil organic compounds (BTEX, PAHs, etc.) between supercritical CO2 and brines and to study the effects of temperature, pressure, salinity, and compound's cosolvency (solubility enhancement) on the partitioning behavior of oil organic compounds along the various CO2 leakage paths in the subsurface.

  8. Gasification characteristics of an activated carbon catalyst during the decomposition of hazardous waste materials in supercritical water

    SciTech Connect

    Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr.

    1996-10-01

    Recently, carbonaceous materials were proved to be effective catalysts for hazardous waste decomposition in supercritical water. Gasification of the carbonaceous catalyst itself is also expected, however, under supercritical conditions. Thus, it is essential to determine the gasification rate of the carbonaceous materials during this process to determine the active lifetime of the catalysts. For this purpose, the gasification characteristics of granular coconut shell activated carbon in supercritical water alone (600-650{degrees}C, 25.5-34.5 MPa) were investigated. The gasification rate at subatmospheric pressure agreed well with the gasification rate at supercritical conditions, indicating the same reaction mechanism. Methane generation under these conditions is via pyrolysis, and thus is not affected by the water pressure. An iodine number increase of 25% was observed as a result of the supercritical water gasification.

  9. Water-in-Supercritical CO2 Microemulsion Stabilized by a Metal Complex.

    PubMed

    Luo, Tian; Zhang, Jianling; Tan, Xiuniang; Liu, Chengcheng; Wu, Tianbin; Li, Wei; Sang, Xinxin; Han, Buxing; Li, Zhihong; Mo, Guang; Xing, Xueqing; Wu, Zhonghua

    2016-10-17

    Herein we propose for the first time the utilization of a metal complex for forming water-in-supercritical CO2 (scCO2 ) microemulsions. The water solubility in the metal-complex-stabilized microemulsion is significantly improved compared with the conventional water-in-scCO2 microemulsions stabilized by hydrocarbons. Such a microemulsion provides a promising route for the in situ CO2 reduction catalyzed by a metal complex at the water/scCO2 interface.

  10. Ionic Effects on Supercritical CO2-Brine Interfacial Tensions: Molecular Dynamics Simulations and a Universal Correlation with Ionic Strength, Temperature, and Pressure.

    PubMed

    Zhao, Lingling; Ji, Jiayuan; Tao, Lu; Lin, Shangchao

    2016-09-13

    For geological CO2 storage in deep saline aquifers, the interfacial tension (IFT) between supercritical CO2 and brine is critical for the storage security and design of the storage capacitance. However, currently, no predictive model exists to determine the IFT of supercritical CO2 against complex electrolyte solutions involving various mixed salt species at different concentrations and compositions. In this paper, we use molecular dynamics (MD) simulations to investigate the effect of salt ions on the incremental IFT at the supercritical CO2-brine interface with respect to that at the reference supercritical CO2-water interface. Supercritical CO2-NaCl solution, CO2-CaCl2 solution and CO2-(NaCl+CaCl2) mixed solution systems are simulated at 343 K and 20 MPa under different salinities and salt compositions. We find that the valence of the cations is the primary contributor to the variation in IFT, while the Lennard-Jones potentials for the cations pose a smaller impact on the IFT. Interestingly, the incremental IFT exhibits a general linear correlation with the ionic strength in the above three electrolyte systems, and the slopes are almost identical and independent of the solution types. Based on this finding, a universal predictive formula for IFTs of CO2-complex electrolyte solution systems is established, as a function of ionic strength, temperature, and pressure. The predicted IFTs using the established formula agree perfectly (with a high statistical confidence level of ∼96%) with a wide range of experimental data for CO2 interfacing with different electrolyte solutions, such as those involving MgCl2 and Na2SO4. This work provides an efficient and accurate route to directly predict IFTs in supercritical CO2-complex electrolyte solution systems for practical engineering applications, such as geological CO2 sequestration in deep saline aquifers and other interfacial systems involving complex electrolyte solutions.

  11. Numerical Analysis of Heat Transfer Test of Supercritical Water in a Tube Using the Three-Dimensional Two-Fluid Model Code

    NASA Astrophysics Data System (ADS)

    Misawa, Takeharu; Yoshida, Hiroyuki; Tamai, Hidesada; Takase, Kazuyuki

    The three-dimensional two-fluid model analysis code ACE-3D is developed in Japan Atomic Energy Agency for the thermal design procedure on two-phase flow thermal-hydraulics of light water-cooled reactors. In order to perform thermal hydraulic analysis of SCWR, ACE-3D is enhanced to supercritical pressure region. As a result, it is confirmed that transient change in subcritical and supercritical pressure region can be simulated smoothly using ACE-3D, that ACE-3D can predict the results of the past heat transfer experiment in the supercritical pressure condition, and that introduction of thermal conductivity effect of the wall restrains fluctuation of wall temperature.

  12. Separation of saturated hydrocarbons from coal by treatment with water at supercritical parameters

    SciTech Connect

    M.R. Predtechenskiy; M.V. Pukhovoy

    2008-10-15

    The treatment of coals of various degrees of metamorphism in supercritical water (SCW) over the temperature region 380-800{sup o}C was studied. The yields and compositions of liquid products obtained by treatment in SCW were determined. These data were compared with the results of the semicoking of the above coals.

  13. Oxidation of Alloy 600 and Alloy 690: Experimentally Accelerated Study in Hydrogenated Supercritical Water

    NASA Astrophysics Data System (ADS)

    Moss, Tyler; Cao, Guoping; Was, Gary S.

    2017-02-01

    The objective of this study is to determine whether the oxidation of Alloys 600 and 690 in supercritical water occurs by the same mechanism in subcritical water. Coupons of Alloys 690 and 600 were exposed to hydrogenated subcritical and supercritical water from 633 K to 673 K (360 °C to 400 °C) and the oxidation behavior was observed. By all measures of oxide character and behavior, the oxidation process is the same above and below the supercritical line. Similar oxide morphologies, structures, and chemistries were observed for each alloy across the critical point, indicating that the oxidation mechanism is the same in both subcritical and supercritical water. Oxidation results in a multi-layer oxide structure composed of particles of NiO and NiFe2O4 formed by precipitation on the outer surface and a chromium-rich inner oxide layer formed by diffusion of oxygen to the metal-oxide interface. The inner oxide on Alloy 600 is less chromium rich than that observed on Alloy 690 and is accompanied by preferential oxidation of grain boundaries. The inner oxide on Alloy 690 initially forms by internal oxidation before a protective layer of chromium-rich MO is formed with Cr2O3 at the metal-oxide interface. Grain boundaries in Alloy 690 act as fast diffusion paths for chromium that forms a protective Cr2O3 layer at the surface, preventing grain boundary oxidation from occurring.

  14. Case study on the destruction of organic dyes in supercritical water

    SciTech Connect

    LaJeunesse, C.A.; Rice, S.F.

    1994-11-01

    Organic dyes, which were used in Navy shells to mark ships and structures, need to be disposed of without burning. A study was undertaken to assess the feasibility of using supercritical water oxidation to destroy organic dyes. Experimental destruction efficiencies, product analyses, and process configuration are reported.

  15. Treatment of coal and formic acid mixtures with water at supercritical parameters

    SciTech Connect

    M.R. Predtechenskii; M.V. Pukhovoi; A.N. Smal; A.O. Uuemaa

    2007-08-15

    The treatment of coals of various degrees of metamorphism in supercritical water (SCW) over the temperature region 380-800{sup o}C was studied. The possibility of obtaining strong agglomerates from the powders of long-flame and oxidized fat noncoking coals by treatment in SCW was demonstrated. The strength of agglomerates was commensurable with the strength of lump coal.

  16. Coal extraction with toluene and water under supercritical conditions (Short Communication)

    SciTech Connect

    S.M. Kolesnikova; P.N. Kuznetsov

    2008-04-15

    The results of the extraction of brown and sapropelic coals in a toluene solution at supercritical parameters are reported. It was found that the use of mechanochemical activation and small additives of hydrogen donors and water as a polar cosolvent provides an opportunity to perform a deep degradation of the organic matter of coal at a low pressure of hydrogen.

  17. Accelerated Stress Corrosion Crack Initiation of Alloys 600 and 690 in Hydrogenated Supercritical Water

    NASA Astrophysics Data System (ADS)

    Moss, Tyler; Was, Gary S.

    2017-01-01

    The objective of this study is to determine whether stress corrosion crack initiation of Alloys 600 and 690 occurs by the same mechanism in subcritical and supercritical water. Tensile bars of Alloys 690 and 600 were strained in constant extension rate tensile experiments in hydrogenated subcritical and supercritical water from 593 K to 723 K (320 °C to 450 °C), and the crack initiation behavior was characterized by high-resolution electron microscopy. Intergranular cracking was observed across the entire temperature range, and the morphology, structure, composition, and temperature dependence of initiated cracks in Alloy 690 were consistent between hydrogenated subcritical and supercritical water. Crack initiation of Alloy 600 followed an Arrhenius relationship and did not exhibit a discontinuity or change in slope after crossing the critical temperature. The measured activation energy was 121 ± 13 kJ/mol. Stress corrosion crack initiation in Alloy 690 was fit with a single activation energy of 92 ± 12 kJ/mol across the entire temperature range. Cracks were observed to propagate along grain boundaries adjacent to chromium-depleted metal, with Cr2O3 observed ahead of crack tips. All measures of the SCC behavior indicate that the mechanism for stress corrosion crack initiation of Alloy 600 and Alloy 690 is consistent between hydrogenated subcritical and supercritical water.

  18. Oxidation of Alloy 600 and Alloy 690: Experimentally Accelerated Study in Hydrogenated Supercritical Water

    NASA Astrophysics Data System (ADS)

    Moss, Tyler; Cao, Guoping; Was, Gary S.

    2017-04-01

    The objective of this study is to determine whether the oxidation of Alloys 600 and 690 in supercritical water occurs by the same mechanism in subcritical water. Coupons of Alloys 690 and 600 were exposed to hydrogenated subcritical and supercritical water from 633 K to 673 K (360 °C to 400 °C) and the oxidation behavior was observed. By all measures of oxide character and behavior, the oxidation process is the same above and below the supercritical line. Similar oxide morphologies, structures, and chemistries were observed for each alloy across the critical point, indicating that the oxidation mechanism is the same in both subcritical and supercritical water. Oxidation results in a multi-layer oxide structure composed of particles of NiO and NiFe2O4 formed by precipitation on the outer surface and a chromium-rich inner oxide layer formed by diffusion of oxygen to the metal-oxide interface. The inner oxide on Alloy 600 is less chromium rich than that observed on Alloy 690 and is accompanied by preferential oxidation of grain boundaries. The inner oxide on Alloy 690 initially forms by internal oxidation before a protective layer of chromium-rich MO is formed with Cr2O3 at the metal-oxide interface. Grain boundaries in Alloy 690 act as fast diffusion paths for chromium that forms a protective Cr2O3 layer at the surface, preventing grain boundary oxidation from occurring.

  19. Accelerated Stress Corrosion Crack Initiation of Alloys 600 and 690 in Hydrogenated Supercritical Water

    NASA Astrophysics Data System (ADS)

    Moss, Tyler; Was, Gary S.

    2017-04-01

    The objective of this study is to determine whether stress corrosion crack initiation of Alloys 600 and 690 occurs by the same mechanism in subcritical and supercritical water. Tensile bars of Alloys 690 and 600 were strained in constant extension rate tensile experiments in hydrogenated subcritical and supercritical water from 593 K to 723 K (320 °C to 450 °C), and the crack initiation behavior was characterized by high-resolution electron microscopy. Intergranular cracking was observed across the entire temperature range, and the morphology, structure, composition, and temperature dependence of initiated cracks in Alloy 690 were consistent between hydrogenated subcritical and supercritical water. Crack initiation of Alloy 600 followed an Arrhenius relationship and did not exhibit a discontinuity or change in slope after crossing the critical temperature. The measured activation energy was 121 ± 13 kJ/mol. Stress corrosion crack initiation in Alloy 690 was fit with a single activation energy of 92 ± 12 kJ/mol across the entire temperature range. Cracks were observed to propagate along grain boundaries adjacent to chromium-depleted metal, with Cr2O3 observed ahead of crack tips. All measures of the SCC behavior indicate that the mechanism for stress corrosion crack initiation of Alloy 600 and Alloy 690 is consistent between hydrogenated subcritical and supercritical water.

  20. First Principles Simulations fo the Supercritical Behavior of Ore Forming Fluids

    SciTech Connect

    Weare, John H

    2013-04-19

    measured directly. However, the number of 2nd shell water molecules predicted by the simulation is consistent with experimental estimates. Tetrahedral bulk water coordination reappears just after the 2nd shell. Simulations with 128 waters are close to the maximum size that can effectively be performed with present day methods. While the time scale of our simulation are not long enough to observe transfers of waters from the 1st to the 2nd shell, we do see transfers occurring on a picosecond time scale between the 2nd shell and 3rd shell via an associative mechanism. This is faster than, but consistent with, the results of measurements on the more tightly bound Cr3+ system. For high temperature simulations, proton transfers occur in the solvation shells leading to transient hydrolysis species. The reaction coordinate for proton transfer involves the coordinates of neighboring solvent waters as in the Grotis mechanism for proton transfer in bulk water. Directly removing a proton from the hexaqua Al3+ ion leads to a much more labile solvation shell and to a five coordinated Al3+ ion. This is consistent with very recent rate measurements of ligand exchange and the conjugate base labilization effect. For the Al3+-H2O system results for high but subcritical temperatures are qualitatively similar to room temperature simulations. However, preliminary simulations for supercritical temperatures (750K) suggest that there may be a dramatic change in behavior in the hydration structure of ions for these temperatures. For transition metal ions the presence of d valence electrons plays a significant role in the behavior of the system. Our preliminary results for the Fe3+ ion suggest that this ion which is larger radius than the Al3+ ion has somewhat less rigid 1st and 2nd solvation shell. II. Gibbs Ensemble Monte Carlo Simulation of Vapor/Liquid and Metastable Liquid/Liquid Phase Equilibria in the CO2-CH4-N2 System Many fluid inclusions have compositions in the system CO2-CH4-N2

  1. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production

    SciTech Connect

    Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

    2005-02-13

    The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

  2. Oxidation Chemistry and Kinetics of Model Compounds in Supercritical Water: Glucose, Acetic Acid, and Methylene Chloride

    DTIC Science & Technology

    1993-06-01

    246 iv *AbstracI bar, and 8-second reactor residence time.1 Methylene Chloride (CH2CI2) hydrolysis and oxidation in supercritical water was examined...particular, Adel Sarofim and Klavs Jensen, who gave extra effort in helping me attain the level of understanding expected of a graduate of this...generally poor (50 -70%). I Coloring of liquid effluent occurred any time pure water was fed to the reactor, following oxidation experiments. This

  3. Extending the range of supercritical fluid chromatography by use of water-rich modifiers.

    PubMed

    Liu, Jinchu; Regalado, Erik L; Mergelsberg, Ingrid; Welch, Christopher J

    2013-08-14

    In this study we investigate the recently reported use of water-containing modifiers for separation and purification of hydrophilic compounds by supercritical fluid chromatography. Improved peak shape is obtained for a variety of glycosides and otherwise hydrophilic compounds when 5% water is added to the methanol co-solvent used in SFC separations, and examples of the use of this approach in preparative SFC purifications are presented.

  4. Combining experiment and theory to elucidate the role of supercritical water in sulfide decomposition.

    PubMed

    Kida, Yuko; Class, Caleb A; Concepcion, Anthony J; Timko, Michael T; Green, William H

    2014-05-28

    The cleavage of C-S linkages plays a key role in fuel processing and organic geochemistry. Water is known to affect these processes, and several hypotheses have been proposed, but the mechanism has been elusive. Here we use both experiment and theory to demonstrate that supercritical water reacts with intermediates formed during alkyl sulfide decomposition. During hexyl sulfide decomposition in supercritical water, pentane and CO + CO2 were detected in addition to the expected six carbon products. A multi-step reaction sequence for hexyl sulfide reacting with supercritical water is proposed which explains the surprising products, and quantum chemical calculations provide quantitative rates that support the proposed mechanism. The key sequence is cleavage of one C-S bond to form a thioaldehyde via radical reactions, followed by a pericyclic addition of water to the C[double bond, length as m-dash]S bond to form a geminal mercaptoalcohol. The mercaptoalcohol decomposes into an aldehyde and H2S either directly or via a water-catalyzed 6-membered ring transition state. The aldehyde quickly decomposes into CO plus pentane by radical reactions. The time is ripe for quantitative modelling of organosulfur reaction kinetics based on modern quantum chemistry.

  5. Code Development in Coupled PARCS/RELAP5 for Supercritical Water Reactor

    DOE PAGES

    Hu, Po; Wilson, Paul

    2014-01-01

    The new capability is added to the existing coupled code package PARCS/RELAP5, in order to analyze SCWR design under supercritical pressure with the separated water coolant and moderator channels. This expansion is carried out on both codes. In PARCS, modification is focused on extending the water property tables to supercritical pressure, modifying the variable mapping input file and related code module for processing thermal-hydraulic information from separated coolant/moderator channels, and modifying neutronics feedback module to deal with the separated coolant/moderator channels. In RELAP5, modification is focused on incorporating more accurate water properties near SCWR operation/transient pressure and temperature in themore » code. Confirming tests of the modifications is presented and the major analyzing results from the extended codes package are summarized.« less

  6. Evolution of the core physics concept for the Canadian supercritical water reactor

    SciTech Connect

    Pencer, J.; Colton, A.; Wang, X.; Gaudet, M.; Hamilton, H.; Yetisir, M.

    2013-07-01

    The supercritical water cooled reactor (SCWR) is one of the advanced reactor concepts chosen by the GEN-IV International Forum (GIF) for research and development efforts. Canada's contribution is the Canadian SCWR, a heavy water moderated, pressure tube supercritical light water cooled reactor. Recent developments in the SCWR lattice and core concepts, primarily the introduction of a large central flow tube filled with coolant combined with a two-ring fuel assembly, have enabled significant improvements compared to earlier concepts. These improvements include a reduction in coolant void reactivity (CVR) by more than 10 mk, and an almost 40% increase in fuel exit burnup, which is achieved via balanced power distribution between the fuel pins in the fuel assembly. In this paper the evolution of the physics concept is reviewed, and the present lattice and core physics concepts are presented.

  7. Synthesis of siliceous hollow spheres with large mesopore wall structure by supercritical CO2-in-water interface templating.

    PubMed

    Wang, Jiawei; Xia, Yongde; Wang, Wenxin; Mokaya, Robert; Poliakoff, Martyn

    2005-01-14

    Hollow silica spheres with large mesopore wall structures have been synthesized via CO(2)-in-water emulsion templating in the presence of PEO-PPO-PEO block copolymers under supercritical fluid conditions.

  8. RPCSIM-SCO2 (Reactor Power and Control SIMulator for Supercritical CO2)

    SciTech Connect

    Wright, Steven A.

    2012-09-12

    The RPCSIM-SCO2 code performs a dynamic simulation of a supercritical CO2 (carbon dioxide) Brayton cycle loop. The code is based on the MathLabTM program SimulinkTM from Mathworks. The Supercritical CO2 (S-CO2) model uses direct calls to the National Institute of Standards Refprop 9.0 Fortran library for the Equation-of-State (EOS) model for the CO2 working fluid (Lemmon, 2010). The calls to Refprop are made in the form of Simulink s-Functions that use a C interface to directly call the compiled Refprop fortran program library functions. Minor changes to the code can be made to use other working fluids. The code is intended to be used to perform many different types of dynamic cycle analysis for supercritical CO2 power producing systems. The code will calculate the transient temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component given user supplied inputs such as rotor shaft speed, and heater power.

  9. Supercritical water gasification of biomass for H2 production: process design.

    PubMed

    Fiori, Luca; Valbusa, Michele; Castello, Daniele

    2012-10-01

    The supercritical water gasification (SCWG) of biomass for H(2) production is analyzed in terms of process development and energetic self-sustainability. The conceptual design of a plant is proposed and the SCWG process involving several substrates (glycerol, microalgae, sewage sludge, grape marc, phenol) is simulated by means of AspenPlus™. The influence of various parameters - biomass concentration and typology, reaction pressure and temperature - is analyzed. The process accounts for the possibility of exploiting the mechanical energy of compressed syngas (later burned to sustain the SCWG reaction) through expansion in turbines, while purified H(2) is fed to fuel cells. Results show that the SCWG reaction can be energetically self-sustained if minimum feed biomass concentrations of 15-25% are adopted. Interestingly, the H(2) yields are found to be maximal at similar feed concentrations. Finally, an energy balance is performed showing that the whole process could provide a net power of about 150 kW(e)/(1000 kg(feed)/h).

  10. Supercritical Water Mixture (SCWM) Experiment in the High Temperature Insert-Reflight (HTI-R)

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.; Garrabos, Yves; Lecoutre, Carole; Zappoli, Bernard

    2013-01-01

    Current research on supercritical water processes on board the International Space Station (ISS) focuses on salt precipitation and transport in a test cell designed for supercritical water. This study, known as the Supercritical Water Mixture Experiment (SCWM) serves as a precursor experiment for developing a better understanding of inorganic salt precipitation and transport during supercritical water oxidation (SCWO) processes for the eventual application of this technology for waste management and resource reclamation in microgravity conditions. During typical SCWO reactions any inorganic salts present in the reactant stream will precipitate and begin to coat reactor surfaces and control mechanisms (e.g., valves) often severely impacting the systems performance. The SCWM experiment employs a Sample Cell Unit (SCU) filled with an aqueous solution of Na2SO4 0.5-w at the critical density and uses a refurbished High Temperature Insert, which was used in an earlier ISS experiment designed to study pure water at near-critical conditions. The insert, designated as the HTI-Reflight (HTI-R) will be deployed in the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on the International Space Station (ISS). Objectives of the study include measurement of the shift in critical temperature due to the presence of the inorganic salt, assessment of the predominant mode of precipitation (i.e., heterogeneously on SCU surfaces or homogeneously in the bulk fluid), determination of the salt morphology including size and shapes of particulate clusters, and the determination of the dominant mode of transport of salt particles in the presence of an imposed temperature gradient. Initial results from the ISS experiments will be presented and compared to findings from laboratory experiments on the ground.

  11. Prospects for development of an innovative water-cooled nuclear reactor for supercritical parameters of coolant

    NASA Astrophysics Data System (ADS)

    Kalyakin, S. G.; Kirillov, P. L.; Baranaev, Yu. D.; Glebov, A. P.; Bogoslovskaya, G. P.; Nikitenko, M. P.; Makhin, V. M.; Churkin, A. N.

    2014-08-01

    The state of nuclear power engineering as of February 1, 2014 and the accomplished elaborations of a supercritical-pressure water-cooled reactor are briefly reviewed, and the prospects of this new project are discussed based on this review. The new project rests on the experience gained from the development and operation of stationary water-cooled reactor plants, including VVERs, PWRs, BWRs, and RBMKs (their combined service life totals more than 15 000 reactor-years), and long-term experience gained around the world with operation of thermal power plants the turbines of which are driven by steam with supercritical and ultrasupercritical parameters. The advantages of such reactor are pointed out together with the scientific-technical problems that need to be solved during further development of such installations. The knowledge gained for the last decade makes it possible to refine the concept and to commence the work on designing an experimental small-capacity reactor.

  12. Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol-Water Solutions.

    PubMed

    Yang, Lisha; Yang, Xiaokun; Tian, Elli; Lin, Hongfei

    2016-01-08

    Biomass-derived ethyl lactate is a green solvent with a growing market as the replacement for petroleum-derived toxic organic solvents. Here we report, for the first time, the production of ethyl lactate directly from cellulose with the mesoporous Zr-SBA-15 silicate catalyst in a supercritical mixture of ethanol and water. The relatively strong Lewis and weak Brønsted acid sites on the catalyst, as well as the surface hydrophobicity, were beneficial to the reaction and led to synergy during consecutive reactions, such as depolymerization, retro-aldol condensation, and esterification. Under the optimum reaction conditions, ∼33 % yield of ethyl lactate was produced from cellulose with the Zr-SBA-15 catalyst at 260 °C in supercritical 95:5 (w/w) ethanol/water.

  13. On the local environment surrounding pyrene in near- and supercritical water

    SciTech Connect

    Niemeyer, E.D.; Dunbar, R.A.; Bright, F.V.

    1997-10-01

    We use steady-state and time-resolved fluorescence spectroscopy to probe local solvent{endash}solute interactions between pyrene (the solute) and supercritical water (SCW). Toward this end, we have developed a new fiber-optic-based titanium high-pressure optical cell which can withstand the temperatures and pressure needed to generate supercritical water. Static fluorescence measurements indicate that there is an increase in the local water density surrounding the pyrene molecules (clustering) up to five times the bulk fluid density. This extent of clustering is most prevalent at about one-half the critical density. Consistent with previous work on more mild supercritical fluids (e.g., CO{sub 2}, CF{sub 3}H, C{sub 2}H{sub 6}), the extent of this solute-fluid clustering decreases as the system temperature and pressure are increased. Time-resolved fluorescence measurements show that the excited-state decay kinetics are exponentially activated and not themselves affected by this solute-fluid clustering process. {copyright} {ital 1997} {ital Society for Applied Spectroscopy}

  14. Experiments and Numerical Simulation of Mixing under Supercritical Conditions (PREPRINT)

    DTIC Science & Technology

    2011-02-08

    where accurate descriptions of the fluid state are derived from various types of equations [1, 71]. The present simulations rely on the Peng - Robinson equation of... Robinson equation of state cp Constant pressure specific heat cv Constant volume specific heat Cw WALE model constant di Inner jet diameter E Total energy...density ρe Outer jet injection density ρi Inner jet injection density τ Viscous-stress tensor τ t SGS stress tensor a, b, c Coefficients for the Peng

  15. Numerical simulation of supercritical heat transfer under severe axial density gradient in a narrow vertical tube

    SciTech Connect

    Bae, Y. Y.; Hong, S. D.; Kim, Y. W.

    2012-07-01

    A number of computational works have been performed so far for the simulation of heat transfer in a supercritical fluid. The simulations, however, faced a lot of difficulties when heat transfer deteriorates due either to buoyancy or by acceleration. When the bulk temperature approaches the pseudo-critical temperature the fluid experiences a severe axial density gradient on top of a severe radial one. Earlier numerical calculations showed, without exception, unrealistic over-predictions, as soon as the bulk temperature exceeded the pseudo-critical temperature. The over-predictions might have been resulted from an inapplicability of widely-used turbulence models. One of the major causes for the difficulties may probably be an assumption of a constant turbulent Prandtl number. Recent research, both numerical and experimental, indicates that the turbulent Prandtl number is never a constant when the gradient of physical properties is significant. This paper describes the applicability of a variable turbulent Prandtl number to the numerical simulation of heat transfer in supercritical fluids flowing in narrow vertical tubes. (authors)

  16. Real gas CFD simulations of hydrogen/oxygen supercritical combustion

    NASA Astrophysics Data System (ADS)

    Pohl, S.; Jarczyk, M.; Pfitzner, M.; Rogg, B.

    2013-03-01

    A comprehensive numerical framework has been established to simulate reacting flows under conditions typically encountered in rocket combustion chambers. The model implemented into the commercial CFD Code ANSYS CFX includes appropriate real gas relations based on the volume-corrected Peng-Robinson (PR) equation of state (EOS) for the flow field and a real gas extension of the laminar flamelet combustion model. The results indicate that the real gas relations have a considerably larger impact on the flow field than on the detailed flame structure. Generally, a realistic flame shape could be achieved for the real gas approach compared to experimental data from the Mascotte test rig V03 operated at ONERA when the differential diffusion processes were only considered within the flame zone.

  17. Gasification Mechanism of Carbon with Supercritical Water at Very High Pressures: Effects on H2 Production.

    PubMed

    Martin-Sanchez, Nicolas; Salvador, Francisco; Sanchez-Montero, M Jesus; Izquierdo, Carmen

    2014-08-07

    The scarce data concerning the gasification of carbonaceous solids with supercritical water (SCW) suggest the great potential of this method to produce a valuable green fuel such as H2. However, the extraordinary properties of SCW have not been properly applied to H2 production because the mechanism that governs gasification under these conditions remains unclear. Here, we present a study in which this reaction is explored within the largest pressure range ever assayed in this field, from 1 to 1000 bar. The amplitude of the experimental conditions investigated highlights the various pathways that govern gasification with steam and SCW. Under supercritical conditions, the clusters formed around the superficial groups of the solid reduce the energetic requirements for gasification and generate CO2 as a primary product of the reaction. Consequently, gasification with SCW is significantly faster than that using steam, and the produced gases are richer and more appropriate to obtain pure H2.

  18. Investigation of supercritical organic Rankine cycle using slag-washing water

    NASA Astrophysics Data System (ADS)

    Li, Ziao; Chen, Xiaoyu; Liu, Yanna; Xiao, Song

    2017-03-01

    In this paper, the feasibility of supercritical organic Rankine cycle using slag-washing water (SWW) of blast furnace is studied. The organic fluid R125 was selected as candidate working fluid to investigate the 100kW system. The results showed that the 100kW supercritical organic Rankine cycle system can effective use of SWW 33.38 t/h, and produce net generation 68kW, the generation efficiency of the system is equal into 5% when the temperature of work fluid is at 80°C. With the temperature of the work fluid temperature increasing, both net generation and generation efficiency increase, however, both recovering heat and the total consumption of power decrease.

  19. Water hammer simulator

    SciTech Connect

    Sinha, S.K.; Madia, J.; Dixon, S.

    1995-11-01

    The Consolidated Edison Company of New York, Inc. (Con Edison) has constructed a first-of-a-kind water hammer events simulator for use at its training center. The Learning Center, Con Edison`s central training facility, intends to use the simulator as an educational tool to demonstrate the various mechanisms of the water hammer phenomenon to power plant designers, engineers and operators. The water hammer phenomenon has been studied extensively for the past 15 years for the nuclear industry. However, the acknowledge of the various water hammer mechanisms and the measures to prevent or mitigate water hammer have not been widely disseminated among the operators of fossil-fueled power plants. Con Edison personnel who operate the various generation stations and the New York City steam distribution systems are expected to benefit from the new simulator. Knowledge gained from interacting with the simulator will be very important in helping the Con Edison prevent, mitigate, or accommodate water hammer at its facilities. The water hammer simulator was fabricated in Con Edison`s central machine shop. Details of the design and construction of the simulator were finalized in consultation with Creare, Inc., an engineering research firm, located in Hanover, New Hampshire. The simulator seeks to recreate the essential features of water hammer in steam mines following the buildup of cold (subcooled) water by condensation and steam-water interaction. This paper describes the fabrication, design, testing, and operation of the Con Edison water hammer simulator. A discussion of how Con Edison plans to use the facility at The Learning Center is included.

  20. Two-dimensional numerical simulations of supercritical accretion flows revisited

    SciTech Connect

    Yang, Xiao-Hong; Yuan, Feng; Bu, De-Fu; Ohsuga, Ken E-mail: fyuan@shao.ac.cn

    2014-01-01

    We study the dynamics of super-Eddington accretion flows by performing two-dimensional radiation-hydrodynamic simulations. Compared with previous works, in this paper we include the T {sub θφ} component of the viscous stress and consider various values of the viscous parameter α. We find that when T {sub θφ} is included, the rotational speed of the high-latitude flow decreases, while the density increases and decreases at the high and low latitudes, respectively. We calculate the radial profiles of inflow and outflow rates. We find that the inflow rate decreases inward, following a power law form of M-dot {sub in}∝r{sup s}. The value of s depends on the magnitude of α and is within the range of ∼0.4-1.0. Correspondingly, the radial profile of density becomes flatter compared with the case of a constant M-dot (r). We find that the density profile can be described by ρ(r)∝r {sup –p} and the value of p is almost same for a wide range of α ranging from α = 0.1 to 0.005. The inward decrease of inflow accretion rate is very similar to hot accretion flows, which is attributed to the mass loss in outflows. To study the origin of outflow, we analyze the convective stability of the slim disk. We find that depending on the value of α, the flow is marginally stable (when α is small) or unstable (when α is large). This is different from the case of hydrodynamical hot accretion flow, where radiation is dynamically unimportant and the flow is always convectively unstable. We speculate that the reason for the difference is because radiation can stabilize convection. The origin of outflow is thus likely because of the joint function of convection and radiation, but further investigation is required.

  1. Dynamics of supercritical methanol of varying density from first principles simulations: hydrogen bond fluctuations, vibrational spectral diffusion, and orientational relaxation.

    PubMed

    Yadav, Vivek Kumar; Chandra, Amalendu

    2013-06-14

    A first principles study of the dynamics of supercritical methanol is carried out by means of ab initio molecular dynamics simulations. In particular, the fluctuation dynamics of hydroxyl stretch frequencies, hydrogen bonds, dangling hydroxyl groups, and orientation of methanol molecules are investigated for three different densities at 523 K. Apart from the dynamical properties, various equilibrium properties of supercritical methanol such as the local density distributions and structural correlations, hydrogen bonding aspects, frequency-structure correlations, and dipole distributions of methanol molecules are also investigated. In addition to the density dependence of various equilibrium and dynamical properties, their dependencies on dispersion interactions are also studied by carrying out additional simulations using a dispersion corrected density functional for all the systems. It is found that the hydrogen bonding between methanol molecules decreases significantly as we move to the supercritical state from the ambient one. The inclusion of dispersion interactions is found to increase the number of hydrogen bonds to some extent. Calculations of the frequency-structure correlation coefficient reveal that a statistical correlation between the hydroxyl stretch frequency and the nearest hydrogen-oxygen distance continues to exist even at supercritical states of methanol, although it is weakened with increase of temperature and decrease of density. In the supercritical state, the frequency time correlation function is found to decay with two time scales: One around or less than 100 fs and the other in the region of 250-700 fs. It is found that, for supercritical methanol, the times scales of vibrational spectral diffusion are determined by an interplay between the dynamics of hydrogen bonds, dangling OD groups, and inertial rotation of methanol molecules and the roles of these various components are found to vary with density of the supercritical solvent. Effects

  2. Large-eddy simulation of nitrogen injection at trans- and supercritical conditions

    NASA Astrophysics Data System (ADS)

    Müller, Hagen; Niedermeier, Christoph A.; Matheis, Jan; Pfitzner, Michael; Hickel, Stefan

    2016-01-01

    Large-eddy simulations (LESs) of cryogenic nitrogen injection into a warm environment at supercritical pressure are performed and real-gas thermodynamics models and subgrid-scale (SGS) turbulence models are evaluated. The comparison of different SGS models — the Smagorinsky model, the Vreman model, and the adaptive local deconvolution method — shows that the representation of turbulence on the resolved scales has a notable effect on the location of jet break-up, whereas the particular modeling of unresolved scales is less important for the overall mean flow field evolution. More important are the models for the fluid's thermodynamic state. The injected fluid is either in a supercritical or in a transcritical state and undergoes a pseudo-boiling process during mixing. Such flows typically exhibit strong density gradients that delay the instability growth and can lead to a redistribution of turbulence kinetic energy from the radial to the axial flow direction. We evaluate novel volume-translation methods on the basis of the cubic Peng-Robinson equation of state in the framework of LES. At small extra computational cost, their application considerably improves the simulation results compared to the standard formulation. Furthermore, we found that the choice of inflow temperature is crucial for the reproduction of the experimental results and that heat addition within the injector can affect the mean flow field in comparison to results with an adiabatic injector.

  3. Large-eddy simulation of nitrogen injection at trans- and supercritical conditions

    SciTech Connect

    Müller, Hagen; Pfitzner, Michael; Niedermeier, Christoph A.; Matheis, Jan; Hickel, Stefan

    2016-01-15

    Large-eddy simulations (LESs) of cryogenic nitrogen injection into a warm environment at supercritical pressure are performed and real-gas thermodynamics models and subgrid-scale (SGS) turbulence models are evaluated. The comparison of different SGS models — the Smagorinsky model, the Vreman model, and the adaptive local deconvolution method — shows that the representation of turbulence on the resolved scales has a notable effect on the location of jet break-up, whereas the particular modeling of unresolved scales is less important for the overall mean flow field evolution. More important are the models for the fluid’s thermodynamic state. The injected fluid is either in a supercritical or in a transcritical state and undergoes a pseudo-boiling process during mixing. Such flows typically exhibit strong density gradients that delay the instability growth and can lead to a redistribution of turbulence kinetic energy from the radial to the axial flow direction. We evaluate novel volume-translation methods on the basis of the cubic Peng-Robinson equation of state in the framework of LES. At small extra computational cost, their application considerably improves the simulation results compared to the standard formulation. Furthermore, we found that the choice of inflow temperature is crucial for the reproduction of the experimental results and that heat addition within the injector can affect the mean flow field in comparison to results with an adiabatic injector.

  4. Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol-water.

    PubMed

    Chen, Yu; Wu, Yulong; Zhang, Peiling; Hua, Derun; Yang, Mingde; Li, Chun; Chen, Zhen; Liu, Ji

    2012-11-01

    This paper presents bio-oil preparation by direct liquefaction of Dunaliella tertiolecta (D. tertiolecta) with sub/supercritical ethanol-water as the medium in a batch autoclave with high temperature and high pressure. The results indicated that ethanol and water showed synergistic effects on direct liquefaction of D. tertiolecta. The maximum bio-oil yield was 64.68%, with an optimal D. tertiolecta conversion of 98.24% in sub/supercritical ethanol-water. The detailed chemical compositional analysis of the bio-oil was performed using an EA, FT-IR, and GC-MS. The empirical formulas of the bio-oil obtained using the ethanol-water co-solvent (40%, v/v) and sole water as the reaction medium were CH(1.52)O(0.14)N(0.06) and CH(1.43)O(0.23)N(0.09), with calorific values of 34.96 and 29.80 MJ kg(-1), respectively. XPS and SEM results showed that ethanol-water is a very effective reaction medium in the liquefaction. A plausible reaction mechanism of the main chemical component in D. tertiolecta is proposed based on our results and the literatures.

  5. Effect of sub- and supercritical water treatments on the physicochemical properties of crab shell chitin and its enzymatic degradation.

    PubMed

    Osada, Mitsumasa; Miura, Chika; Nakagawa, Yuko S; Kaihara, Mikio; Nikaido, Mitsuru; Totani, Kazuhide

    2015-12-10

    This study examined the effects of sub- and supercritical water pretreatments on the physicochemical properties of crab shell α-chitin and its enzymatic degradation to obtain N,N'-diacetylchitobiose (GlcNAc)2. Following sub- and supercritical water pretreatments, the protein in the crab shell was removed and the residue of crab shell contained α-chitin and CaCO3. Prolonged pretreatment led to α-chitin decomposition. The reaction of pure α-chitin in sub- and supercritical water pretreatments was investigated separately; we observed lower mean molecular weight and weaker hydrogen bonds compared with untreated α-chitin. (GlcNAc)2 yields from enzymatic degradation of subcritical (350 °C, 7 min) and supercritical water (400 °C, 2.5 min) pretreated crab shell were 8% and 6%, compared with 0% without any pretreatment. This study shows that sub- and supercritical water pretreatments of crab shell provide to an alternative method to the use of acid and base for decalcification and deproteinization of crab shell required for (GlcNAc)2 production.

  6. Supercritical water oxidation of polyvinyl alcohol and desizing wastewater: influence of NaOH on the organic decomposition.

    PubMed

    Zhang, Jie; Wang, Shuzhong; Guo, Yang; Xu, Donghai; Gong, Yanmeng; Tang, Xingying

    2013-08-01

    Polyvinyl alcohol is a refractory compound widely used in industry. Here we report supercritical water oxidation of polyvinyl alcohol solution and desizing wastewater with and without sodium hydroxide addition. However, it is difficult to implement complete degradation of organics even though polyvinyl alcohol can readily crack under supercritical water treatment. Sodium hydroxide had a significant catalytic effect during the supercritical water oxidation of polyvinyl alcohol. It appears that the OH- ion participated in the C-C bond cleavage of polyvinyl alcohol molecules, the CO2-capture reaction and the neutralization of intermediate organic acids, promoting the overall reactions moving in the forward direction. Acetaldehyde was a typical intermediate product during reaction. For supercritical water oxidation of desizing wastewater, a high destruction rate (98.25%) based on total organic carbon was achieved. In addition, cases where initial wastewater was alkaline were favorable for supercritical water oxidation treatment, but salt precipitation and blockage issues arising during the process need to be taken into account seriously.

  7. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    NASA Astrophysics Data System (ADS)

    Knight, Chase C.

    complete recycling loop. After showing the feasibility and power of this technology, the third phase of the study was focused on the fundamentals on the degradation of highly cross-linked polymer network by sub- and near-critical water. A methodology framework was established to study the apparent kinetics of the degradation of epoxy in sub-critical water. The reaction rate was modeled by a phenomenological rate model of nth order, and the rate constant was modeled by taking into account of the contributions of important physical parameters, e.g., pressure, temperature and dielectric constants. The applicability of the established model to describe the degradation kinetics was confirmed by the validation runs. This model is a suitable starting point to gain the knowledge required for eventual industrial process design. The final phase of this research consisted of a preliminary foray into investigating the economic feasibility of this technology. A process model was designed around a reactor which was sized according to considerations of industrial relevancy. The simulation of the process was done using Aspen Plus, powerful and comprehensive process simulation software. Economic analysis of this pseudo-realistic process suggested that such technology was economically viable and competitive comparing to other recycling technologies. In summary, this dissertation work represents the first comprehensive investigation on recycling aerospace-grade, multilayer woven fabric composites using supercritical and sub-critical water. The fundamental knowledge gained and process technology developed during this research is anticipated to play an important role in advancing this recycling technology toward potential adoption and implementation by the recycling and composite industry.

  8. Burst wait time simulation of CALIBAN reactor at delayed super-critical state

    SciTech Connect

    Humbert, P.; Authier, N.; Richard, B.; Grivot, P.; Casoli, P.

    2012-07-01

    In the past, the super prompt critical wait time probability distribution was measured on CALIBAN fast burst reactor [4]. Afterwards, these experiments were simulated with a very good agreement by solving the non-extinction probability equation [5]. Recently, the burst wait time probability distribution has been measured at CEA-Valduc on CALIBAN at different delayed super-critical states [6]. However, in the delayed super-critical case the non-extinction probability does not give access to the wait time distribution. In this case it is necessary to compute the time dependent evolution of the full neutron count number probability distribution. In this paper we present the point model deterministic method used to calculate the probability distribution of the wait time before a prescribed count level taking into account prompt neutrons and delayed neutron precursors. This method is based on the solution of the time dependent adjoint Kolmogorov master equations for the number of detections using the generating function methodology [8,9,10] and inverse discrete Fourier transforms. The obtained results are then compared to the measurements and Monte-Carlo calculations based on the algorithm presented in [7]. (authors)

  9. Applications of supercritical fluids.

    PubMed

    Brunner, Gerd

    2010-01-01

    This review discusses supercritical fluids in industrial and near-to-industry applications. Supercritical fluids are flexible tools for processing materials. Supercritical fluids have been applied to mass-transfer processes, phase-transition processes, reactive systems, materials-related processes, and nanostructured materials. Some applications are already at industrial capacity, whereas others remain under development. In addition to extraction, application areas include impregnation and cleaning, multistage countercurrent separation, particle formation, coating, and reactive systems such as hydrogenation, biomass gasification, and supercritical water oxidation. Polymers are modified with supercritical fluids, and colloids and emulsions as well as nanostructured materials exhibit interesting phenomena when in contact with supercritical fluids that can be industrially exploited. For these applications to succeed, the properties of supercritical fluids in combination with the materials processed must be clearly determined and fundamental knowledge of the complex behavior must be made readily available.

  10. Hydrolysis of vegetable oils in sub- and supercritical water

    SciTech Connect

    Holliday, R.L.; King, J.W.; List, G.R.

    1997-03-01

    Water, in its subcritical state, can be used as both a solvent and reactant for the hydrolysis of triglycerides. In this study, soybean, linseed, and coconut oils were successfully and reproducibly hydrolyzed to free fatty acids with water at a density of 0.7 g/mL and temperatures of 260--280 C. Under these conditions the reaction proceeds quickly, with conversion of greater than 97% after 15--20 min. Some geometric isomerization of the linolenic acids was observed at reaction temperatures as low as 250 C. Reactions carried out at higher temperatures and pressures, up to the critical point of water, produced either/or degradation, pyrolysis, and polymerization, of the oils and resultant fatty acids.

  11. Hydrogen production from high-moisture content biomass in supercritical water

    SciTech Connect

    Antal, M.J. Jr.; Adschiri, T.; Ekbom, T.

    1996-10-01

    Most hydrogen is produced by steam reforming methane at elevated pressures. The goal of this research is to develop commercial processes for the catalytic steam reforming of biomass and other organic wastes at high pressures. This approach avoids the high cost of gas compression and takes advantage of the unique properties of water at high pressures. Prior to this year the authors reported the ability of carbon to catalyze the decomposition of biomass and related model compounds in supercritical water. The product gas consists of hydrogen, carbon dioxide, carbon monoxide, methane, and traces of higher hydrocarbons. During the past year the authors have: (a) developed a method to extend the catalyst life, (b) begun studies of the role of the shift reaction, (c) completed studies of carbon dioxide absorption from the product effluent by high pressure water, (d) measured the rate of carbon catalyst gasification in supercritical water, (e) discovered the pumpability of oil-biomass slurries, and (f) completed the design and begun fabrication of a flow reactor that will steam reform whole biomass feedstocks (i.e. sewage sludge) and produce a hydrogen rich synthesis gas at very high pressure (>22 MPa).

  12. Water Reactivity in the Liquid and Supercritical CO2 Phase: Has Half the Story Been Neglected?

    SciTech Connect

    McGrail, B. Peter; Schaef, Herbert T.; Glezakou, Vassiliki Alexandra; Dang, Liem X.; Owen, Antionette T.

    2009-02-01

    Aqueous-phase mediated chemical reactions with dissolved CO2 have long been considered the principal if not only reactive process supporting mineralization reactions with basalt and other reactive reservoir rocks and caprocks in deep geologic sequestration systems. This is not surprising given the quite high solubility of CO2 in the aqueous phase and ample evidence from natural systems of the reactivity of CO2-charged waters with a variety of silicate minerals. In contrast, comparatively scant attention has been directed at reactivity of water solvated in liquid and supercritical CO2, with the exception of interest in the impacts of water in CO2 on the corrosion of pipeline steels. The results presented in this paper show that the most interesting and important aspects of water reactivity with metal and oxide surfaces of interest in geologic sequestration systems actually occurs in the liquid or supercritical CO2 phase. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  13. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    SciTech Connect

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  14. Corrosion behavior of oxide dispersion strengthened ferritic steels in supercritical water

    NASA Astrophysics Data System (ADS)

    Gao, Wenhua; Guo, Xianglong; Shen, Zhao; Zhang, Lefu

    2017-04-01

    The corrosion resistance of three different Cr content oxide dispersion strengthened (ODS) ferritic steels in supercritical water (SCW) and their passive films formed on the surface have been investigated. The results show that the dissolved oxygen (DO) and chemical composition have significant influence on the corrosion behavior of the ODS ferritic steels. In 2000 ppb DO SCW at 650 °C, the 14Cr-4Al ODS steel forms a tri-layer oxide film and the surface morphologies have experienced four structures. For the tri-layer oxide film, the middle layer is mainly Fe-Cr spinel and the Al is gradually enriched in the inner layer.

  15. Methane and Methanol Oxidation in Supercritical Water: Chemical Kinetics and Hydrothermal Flame Studies

    DTIC Science & Technology

    1996-01-01

    8208 , UC-1409 Albuquerque, NM 87185 and Livermore, CA 94551 19980710 104 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING...01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102 rVn QUALITY IN8?, CTED 1 108-1996 SANDIA REPORT SAND96- 8208 - UC-1...SAND96- 8208 Unlimited Release Printed January 1996 Methane and Methanol Oxidation in Supercritical Water: Chemical Kinetics and Hydrothermal Flame

  16. Final report on the oxidation of energetic materials in supercritical water. Final Air Force report

    SciTech Connect

    Buelow, S.J.; Allen, D.; Anderson, G.K.

    1995-04-03

    The objective of this project was to determine the suitability of oxidation in supercritical fluids (SCO), particularly water (SCWO), for disposal of propellants, explosives, and pyrotechnics (PEPs). The SCO studies of PEPs addressed the following issues: The efficiency of destruction of the substrate. The products of destruction contained in the effluents. Whether the process can be conducted safely on a large scale. Whether energy recovery from the process is economically practicable. The information essential for process development and equipment design was also investigated, including issues such as practical throughput of explosives through a SCWO reactor, reactor materials and corrosion, and models for process design and optimization.

  17. Supercritical water oxidation technology for DWPF. [Defense Waste Processing Facility (DWPF)

    SciTech Connect

    Carter, J.T.; Gentilucci, J.A.

    1992-02-07

    At the request of Mr. H.L. Brandt and others in the Savannah River Field Office High Level Waste Division office, DWPF, and SRL personnel have reviewed two potential applications for supercritical water oxidation technology in DWPF. The first application would replace the current hydrolysis process by destroying the organic fractions of the precipitated cesium / potassium tetraphenylborate slurry. The second application pertains to liquid benzene destruction. After a thorough evaluation the first application is not recommended. The second is ready to be tested if needed.

  18. Superior Corrosion Resistance Properties of TiN-Based Coatings on Zircaloy Tubes in Supercritical Water

    SciTech Connect

    Fauzia Khatkhatay; Liang Jiao; Jie Jian; Zhijie Jiao; Hongbin Zhang; Jian Gan; Haiyan Wang; Wenrui Zhang; Xinghang Zhang

    2014-08-01

    Thin films of TiN and Ti0.35Al0.65N nanocomposite were deposited on polished Zircaloy-4 tubes. After exposure to supercritical water for 48 h, the coated tubes are remarkably intact, while the bare uncoated tube shows severe oxidation and breakaway corrosion. X-ray diffraction patterns, secondary electron images, backscattered electron images, and energy dispersive X-ray spectroscopy data from the tube surfaces and cross-sections show that a protective oxide, formed on the film surface, effectively prevents further oxidation and corrosion to the Zircaloy-4 tubes. This result demonstrates the effectiveness of thin film ceramics as protective coatings under extreme environments.

  19. Molecular simulation of CO chemisorption on Co(0001) in presence of supercritical fluid solvent: A potential of mean force study.

    PubMed

    Asiaee, Alireza; Benjamin, Kenneth M

    2016-08-28

    For several decades, heterogeneous catalytic processes have been improved through utilizing supercritical fluids (SCFs) as solvents. While numerous experimental studies have been established across a range of chemistries, such as oxidation, pyrolysis, amination, and Fischer-Tropsch synthesis, still there is little fundamental, molecular-level information regarding the role of the SCF on elementary heterogeneous catalytic steps. In this study, the influence of hexane solvent on the adsorption of carbon monoxide on Co(0001), as the first step in the reaction mechanism of many processes involving syngas conversion, is probed. Simulations are performed at various bulk hexane densities, ranging from ideal gas conditions (no SCF hexane) to various near- and super-critical hexane densities. For this purpose, both density functional theory and molecular dynamics simulations are employed to determine the adsorption energy and free energy change during CO chemisorption. Potential of mean force calculations, utilizing umbrella sampling and the weighted histogram analysis method, provide the first commentary on SCF solvent effects on the energetic aspects of the chemisorption process. Simulation results indicate an enhanced stability of CO adsorption on the catalyst surface in the presence of supercritical hexane within the reduced pressure range of 1.0-1.5 at a constant temperature of 523 K. Furthermore, it is shown that the maximum stability of CO in the adsorbed state as a function of supercritical hexane density at 523 K nearly coincides with the maximum isothermal compressibility of bulk hexane at this temperature.

  20. Molecular simulation of CO chemisorption on Co(0001) in presence of supercritical fluid solvent: A potential of mean force study

    NASA Astrophysics Data System (ADS)

    Asiaee, Alireza; Benjamin, Kenneth M.

    2016-08-01

    For several decades, heterogeneous catalytic processes have been improved through utilizing supercritical fluids (SCFs) as solvents. While numerous experimental studies have been established across a range of chemistries, such as oxidation, pyrolysis, amination, and Fischer-Tropsch synthesis, still there is little fundamental, molecular-level information regarding the role of the SCF on elementary heterogeneous catalytic steps. In this study, the influence of hexane solvent on the adsorption of carbon monoxide on Co(0001), as the first step in the reaction mechanism of many processes involving syngas conversion, is probed. Simulations are performed at various bulk hexane densities, ranging from ideal gas conditions (no SCF hexane) to various near- and super-critical hexane densities. For this purpose, both density functional theory and molecular dynamics simulations are employed to determine the adsorption energy and free energy change during CO chemisorption. Potential of mean force calculations, utilizing umbrella sampling and the weighted histogram analysis method, provide the first commentary on SCF solvent effects on the energetic aspects of the chemisorption process. Simulation results indicate an enhanced stability of CO adsorption on the catalyst surface in the presence of supercritical hexane within the reduced pressure range of 1.0-1.5 at a constant temperature of 523 K. Furthermore, it is shown that the maximum stability of CO in the adsorbed state as a function of supercritical hexane density at 523 K nearly coincides with the maximum isothermal compressibility of bulk hexane at this temperature.

  1. Evaluation of pretreatment processes for supercritical water oxidation

    SciTech Connect

    Barnes, C.M.

    1994-01-01

    This report evaluates processes to chemically treat US Department of Energy wastes to remove organic halogens, phosphorus, and sulfur. Chemical equilibrium calculations, process simulations, and responses from developers and licensors form the basis for comparisons. Gas-phase catalytic hydrogenation processes, strong base and base catalyzed processes, high pressure hydrolysis, and other emerging or commercial dehalogenation processes (both liquid and mixed phase) were considered. Cost estimates for full-scale processes and demonstration testing are given. Based on the evaluation, testing of a hydrogenation process and a strong base process are recommended.

  2. Supercritical water oxidation of Quinazoline: Effects of conversion parameters and reaction mechanism.

    PubMed

    Gong, Yanmeng; Guo, Yang; Wang, Shuzhong; Song, Wenhan

    2016-09-01

    The supercritical water oxidation reaction of quinazoline and a set of related reaction products were investigated in batch reactors by varying the temperature (T, 400-600 °C), time (t, 0-400 s), water density (ρ, 70.79-166.28  kg m(-3)) and oxidation coefficient (OC, 0-4.0). The TOC removal efficiency (CRE) increased significantly as the OC increased, whereas this effect was very limited at high OC (>2.0). Lack of oxygen resulted in low CRE and TN removal efficiency (NRE), also cause coke-formation, and giving high yield of NH3 and nitrogenous organic intermediates. Prolonging reaction time did not provide an appreciable improvement on CRE but remarkably increased NRE at temperature higher than 500 °C. Pyrimidines and pyridines as the nitrogenous intermediates were largely found in GC-MS spectrum. Polymerization among benzene, phenyl radical and benzyl radical played important roles in the formation of PAHs, such as naphthalene, biphenyl, phenanthrene. These collective results showed how the yield of intermediate products responded to changes in the process variables, which permitted the development of a potential reaction network for supercritical water oxidation of quinazoline.

  3. Coating properties of a novel water stationary phase in capillary supercritical fluid chromatography.

    PubMed

    Murakami, Jillian N; Thurbide, Kevin B

    2015-05-01

    The coating properties of a novel water stationary phase used in capillary supercritical fluid chromatography were investigated. The findings confirm that increasing the length or internal diameter of the type 316 stainless-steel column used provides a linear increase in the volume of stationary phase present. Under normal operating conditions, results indicate that about 4.9 ± 0.5 μL/m of water phase is deposited uniformly inside of a typical 250 μm internal diameter 316 stainless-steel column, which translates to an area coverage of about 6.3 ± 0.5 nL/mm(2) regardless of dimension. Efforts to increase the stationary phase volume present showed that etching the stainless-steel capillary wall using hydrofluoric acid was very effective for this. For instance, after five etching cycles, this volume doubled inside of both the type 304 and the type 316 stainless-steel columns examined. This in turn doubled analyte retention, while maintaining good peak shape and column efficiency. Overall, 316 stainless-steel columns were more resistant to etching than 304 stainless-steel columns. Results indicate that this approach could be useful to employ as a means of controlling the volume of water stationary phase that can be established inside of the stainless-steel columns used with this supercritical fluid chromatography technique.

  4. Oxidation of Aroclor 1248 in supercritical water: A global kinetic study

    SciTech Connect

    Anitescu, G.; Tavlarides, L.L.

    2000-03-01

    Supercritical water oxidation of extracted contaminants is the second step of a two-stage supercritical fluid technology proposed to remediate soils and sediments contaminated with polychlorinated biphenyls (PCBs) and/or polyaromatic hydrocarbons. In connection with the second step, the supercritical water oxidation rate of Aroclor 1248 (A1248), a mixture of {approximately}76 PCB congeners, is investigated at 25.3 MPa and temperatures of 723, 748, 773, and 823 K. The reactions are conducted in an isothermal, isobaric plug-flow tubular reactor, and GC/ECD, GC/FID, GC/TCD, and GC/MS chromatographic methods are employed for product analysis. Experiments are conducted at a nominal A1248 feed concentration of 5.75 x 10{sup {minus}5} mol/L (reaction conditions) using a methanol solution of 5.245 g/L (5,245 ppm) and H{sub 2}O{sub 2} as an initial oxidant (providing {approximately}20 mol +ACU- excess of O{sub 2}). Molar global conversion of A1248 varies from 36.06% (for residence time equal to 6.29 s at 723 K) to 99.95% (54.4 s at 823 K). The overall conversion follows apparent second order, and the rate constant calculated from the data leads to Arrhenius parameters of frequency factor A = 10{sup 17.0{+-}0.1} s{sup {minus}1} (mol/L){sup {minus}1} and energy of activation E{sub a} = 186 {+-} 2 kJ/mol (44.43 {+-} 0.51 kcal/mol). The congener specific analysis indicates a buildup of intermediate congener byproducts, which also undergo oxidation decomposition. The identified reaction products are mainly biphenyl, low-chlorinated PCB congeners such as 2-chlorobiphenyl and 2,2{prime}-dichlorobiphenyl, CO, and CO{sub 2}.

  5. New Class of Amphiphiles Designed for Use in Water-in-Supercritical CO2 Microemulsions.

    PubMed

    Sagisaka, Masanobu; Ogiwara, Shunsuke; Ono, Shinji; James, Craig; Yoshizawa, Atsushi; Mohamed, Azmi; Rogers, Sarah E; Heenan, Richard K; Yan, Ci; Peach, Jocelyn Alice; Eastoe, Julian

    2016-11-29

    Water-in-supercritical CO2 microemulsions formed using the hybrid F-H surfactant sodium 1-oxo-1-[4-(perfluorohexyl)phenyl]hexane-2-sulfonate, FC6-HC4, have recently been shown to have the highest water-solubilizing power ever reported. FC6-HC4 demonstrated the ability to outperform not only other surfactants but also other FCm-HCn analogues containing different fluorocarbon and hydrocarbon chain lengths (Sagisaka, M. et al. Langmuir 2015, 31, 7479-7487). With the aim of clarifying the key structural features of this surfactant, this study examined the phase behavior and water/supercritical CO2 aggregate formation of 1-oxo-1-[4-(perfluorohexyl)phenyl]hexane (Nohead FC6-HC4), which is an FC6-HC4 analogue but now, interestingly, without the sulfonate headgroup. Surprisingly, Nohead FC6-HC4, which would not normally be identified as a classic surfactant, yielded transparent single-phase W/CO2 microemulsions with polar cores able to solubilize a water-soluble dye, even at pressures and temperatures so low as to approach the critical point of CO2 (e.g., ∼100 bar at 35 °C). High-pressure small-angle scattering (SANS) measurements revealed the transparent phases to consist of ellipsoidal nanodroplets of water. The morphology of these droplets was shown to be dependent on the pressure, Nohead FC6-HC4 concentration, and water-to-surfactant molar ratio. Despite having almost the same structure as Nohead FC6-HC4, analogues containing both shorter and longer hydrocarbons were unable to form W/CO2 microemulsion droplets. This shows the importance of the role of the hydrocarbon chain in the stabilization of W/CO2 microemulsions. A detailed examination of the mechanism of Nohead FC6-HC4 adsorption onto the water surface suggests that the hexanoyl group protrudes into the aqueous core, allowing for association between the carbonyl group and water.

  6. Precise simulation of the freezing transition of supercritical Lennard-Jones.

    PubMed

    Nayhouse, Michael; Amlani, Ankur M; Orkoulas, G

    2011-10-21

    The fluid-solid transition of the Lennard-Jones model is analyzed along a supercritical isotherm. The analysis is implemented via a simulation method which is based on a modification of the constrained cell model of Hoover and Ree. In the context of hard-sphere freezing, Hoover and Ree simulated the solid phase using a constrained cell model in which each particle is confined within its own Wigner-Seitz cell. Hoover and Ree also proposed a modified cell model by considering the effect of an external field of variable strength. High-field values favor configurations with a single particle per Wigner-Seitz cell and thus stabilize the solid phase. In previous work, a simulation method for freezing transitions, based on constant-pressure simulations of the modified cell model, was developed and tested on a system of hard spheres. In the present work, this method is used to determine the freezing transition of a Lennard-Jones model system on a supercritical isotherm at a reduced temperature of 2. As in the case of hard spheres, constant-pressure simulations of the fully occupied constrained cell model of a system of Lennard-Jones particles indicate a point of mechanical instability at a density which is approximately 70% of the density at close packing. Furthermore, constant-pressure simulations of the modified cell model indicate that as the strength of the field is reduced, the transition from the solid to the fluid is continuous below the mechanical instability point and discontinuous above. The fluid-solid transition of the Lennard-Jones system is obtained by analyzing the field-induced fluid-solid transition of the modified cell model in the high-pressure, zero-field limit. The simulations are implemented under constant pressure using tempering and histogram reweighting techniques. The coexistence pressure and densities are determined through finite-size scaling techniques for first-order phase transitions which are based on analyzing the size-dependent behavior of

  7. The first commercial supercritical water oxidation sludge processing plant.

    PubMed

    Griffith, James W; Raymond, Dennis H

    2002-01-01

    Final disposal of sludge continues to be one of the more pressing problems for the wastewater treatment industry. Present regulations for municipal sludge have favored beneficial use, primarily in land application. However, several agencies and entities have warned of potential health risks associated with these methods. Hydrothermal oxidation provides an alternative method that addresses the health concerns associated with sludge disposal by completely converting all organic matter in the sludge to carbon dioxide, water, and other innocuous materials. A hydrothermal oxidation system using HydroProcessing, L.L.C.'s HydroSolids process has been installed at Harlingen, Texas to process up to 9.8 dry tons per day of sludge. Based on a literature review, this system is the largest hydrothermal oxidation system in the world, and the only one built specifically to process a sludge. Start up of Unit 1 of two units of the HTO system began in April 2001. Early results have indicated COD conversion rates in excess of 99.9%. Harlingen Waterworks System estimates that the HydroSolids system will cost less than other alternatives such as autothermal thermophilic aerobic digestion and more traditional forms of digestion that still require dewatering and final disposal. The Waterworks intends to generate income from the sale of energy in the form of hot water and the use of carbon dioxide from the HydroSolids process for neutralization of high pH industrial effluent. The Waterworks also expects to generate income from the treatment of septage and grease trap wastes.

  8. Effects of water on reactions for waste treatment, organic synthesis, and bio-refinery in sub- and supercritical water.

    PubMed

    Akizuki, Makoto; Fujii, Tatsuya; Hayashi, Rumiko; Oshima, Yoshito

    2014-01-01

    Current research analyzing the effects of water in the field of homogeneous and heterogeneous reactions of organics in sub- and supercritical water are reviewed in this article. Since the physical properties of water (e.g., density, ion product and dielectric constants) can affect the reaction rates and mechanisms of various reactions, understanding the effects that water can have is important in controlling reactions. For homogeneous reactions, the effects of water on oxidation, hydrolysis, aldol condensation, Beckman rearrangement and biomass refining were introduced including recent experimental results up to 100 MPa using special pressure-resistance equipment. For heterogeneous reactions, the effects of ion product on acid/base-catalyzed reactions, such as hydrothermal conversion of biomass-related compounds, organic synthesis in the context of bio-refinery, and hydration of olefins were described and how the reaction paths are controlled by the concentration of water and hydrogen ions was summarized.

  9. Supercritical water oxidation of tannery sludge: stabilization of chromium and destruction of organics.

    PubMed

    Zou, Daoan; Chi, Yong; Dong, Jun; Fu, Chao; Wang, Fei; Ni, Mingjiang

    2013-10-01

    The supercritical water oxidation (SCWO) of industrial tannery sludge was investigated to understand the simultaneous destruction of organic pollutants and recovery of high content chromium. Experiments were performed in a batch reactor at temperatures of 350-500 °C, reaction time of 150-300 s and different oxygen ratios, to exhibit the effect of operation conditions. Results showed that removal efficiency of chemical oxygen demand (COD) increased with higher temperature, larger oxidant amount and reaction time; a maximum value of 96% was obtained. Meanwhile, destruction yield was much higher under supercritical conditions than that in subcritical water. In addition, removal efficiency of Cr from sludge reached more than 98% under all conditions; higher temperature played a positive role. Further, leaching toxicity tests of heavy metals in solid products were conducted based on toxicity characteristic leaching procedure. All heavy metals except nickel showed a greatly reduced leaching toxicity through their stabilization. The chromium oxide recovered in ash was amorphous below 550 °C, so that the structure of Cr could not be identified by X-ray diffraction pattern. Special attention should be paid on nickel as its leaching toxicity increased due to the corrosion of reactor surface under severe reaction conditions.

  10. SCC and corrosion evaluations of the F/M steels for a supercritical water reactor

    NASA Astrophysics Data System (ADS)

    Hwang, Seong Sik; Lee, Byung Hak; Kim, Jung Gu; Jang, Jinsung

    2008-01-01

    As one of the Generation IV nuclear reactors, a supercritical water cooled reactor (SCWR) is being considered as a candidate reactor due to its high thermal efficiency and simple reactor design without steam generators and steam separators. For the application of a structural material to a core's internals and a fuel cladding, the material should be evaluated in terms of its corrosion and stress corrosion cracking susceptibility. Stress corrosion cracking and general corrosion tests of ferritic-martensitic (F/M) steels, high Ni alloys and an oxide dispersion strengthened (ODS) alloy were performed. Stress corrosion cracking (SCC) was not observed on the fractured surface of the T 91 steel in the supercritical water at 500, 550 and 600 °C. As the test temperature increased, the ultimate tensile strength (UTS) and yield strength (YS) of T 91 decreased, and a high dissolved oxygen level induced corrosion and low ductility. The F/M steels showed a high corrosion rate whereas the Ni base alloys showed a little corrosion at 500 and 550 °C. Corrosion rate of the F/M steels at 600 °C test was up to three times larger than that at 500 °C. A thin layer composed of Mo and Ni seems to retard the Cr diffusion into the out layer of the corrosion product of T 92 and T 122.

  11. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    SciTech Connect

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella; Indira Jayaweera; Palitha Jayaweera; Petri Kinnunen; Martin Bojinov; Timo Saario

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties and susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.

  12. Destruction of Representative Navy Wastes Using Supercritical Water Oxidation. Final report

    SciTech Connect

    Rice, S.F.; Steeper, R.R.; LaJeunesse, C.A.

    1993-10-01

    Supercritical water oxidation (SCWO) is a rapidly emerging technology that presents potential as a hazardous waste treatment method for a wide variety of industrial chemicals ranging from common organic solvents to complex formulations such as paints, lubricating oils, and degreasers. The Naval Civil Engineering Laboratory is contributing to the development of this technology for application to waste materials generated at naval shipyards and bases. These wastes include paint stripping and changeout fluids generated from equipment service procedures as well as herbicides, pesticides, paint, and numerous other materials associated with base facility maintenance. An important design consideration in the development of SCWO systems centers on choosing a reactor operating temperature such that the destruction of the waste organic is sufficiently complete. This report examines the temperature dependence of the oxidation in supercritical water of seven common organic compounds and three industrial commercial materials over the temperature range of 430{degree}C to 585{degree}C and reaction times ranging from seven to thirty seconds at a pressure of 27.5 MPa (4000 psi). The materials studies are methanol, phenol, methyl ethyl ketone, ethylene glycol, acetic acid, methylene chloride, 1,1,1-tichloroethane (TCA), latex paint, motor oil, and Roundup, a commercial general purpose herbicide. The results indicate that for most materials, temperatures over 530{degree}C and residence times near 20 seconds afford destruction efficiencies of greater than 99.95%

  13. Supercritical Water Reactor (SCWR) - Survey of Materials Research and Development Needs to Assess Viability

    SciTech Connect

    Philip E. MacDonald

    2003-09-01

    Supercritical water-cooled reactors (SCWRs) are among the most promising advanced nuclear systems because of their high thermal efficiency [i.e., about 45% vs. 33% of current light water reactors (LWRs)] and considerable plant simplification. SCWRs achieve this with superior thermodynamic conditions (i.e., high operating pressure and temperature), and by reducing the containment volume and eliminating the need for recirculation and jet pumps, pressurizer, steam generators, steam separators and dryers. The reference SCWR design in the U.S. is a direct cycle, thermal spectrum, light-water-cooled and moderated reactor with an operating pressure of 25 MPa and inlet/outlet coolant temperature of 280/500 °C. The inlet flow splits, partly to a down-comer and partly to a plenum at the top of the reactor pressure vessel to flow downward through the core in special water rods to the inlet plenum. This strategy is employed to provide good moderation at the top of the core, where the coolant density is only about 15-20% that of liquid water. The SCWR uses a power conversion cycle similar to that used in supercritical fossil-fired plants: high- intermediate- and low-pressure turbines are employed with one moisture-separator re-heater and up to eight feedwater heaters. The reference power is 3575 MWt, the net electric power is 1600 MWe and the thermal efficiency is 44.8%. The fuel is low-enriched uranium oxide fuel and the plant is designed primarily for base load operation. The purpose of this report is to survey existing materials for fossil, fission and fusion applications and identify the materials research and development needed to establish the SCWR viabilitya with regard to possible materials of construction. The two most significant materials related factors in going from the current LWR designs to the SCWR are the increase in outlet coolant temperature from 300 to 500 °C and the possible compatibility issues associated with the supercritical water environment.

  14. Gasification characteristics of an activated carbon catalyst during the decomposition of hazardous waste material in supercritical water

    SciTech Connect

    Matsumura, Yukihiko; Nuessle, F.W.; Antal, M.J. Jr.

    1996-12-31

    Recently, carbonaceous materials including activated carbon were proven to be effective catalysts for hazardous waste gasification in supercritical water. Using coconut shell activated carbon catalyst, complete decomposition of industrial organic wastes including methanol and acetic acid was achieved. During this process, the total mass of the activated carbon catalyst changes by two competing processes: a decrease in weight via gasification of the carbon by supercritical water, or an increase in weight by deposition of carbonaceous materials generated by incomplete gasification of the biomass feedstocks. The deposition of carbonaceous materials does not occur when complete gasification is realized. Gasification of the activated carbon in supercritical water is often favored, resulting in changes in the quality and quantity of the catalyst. To thoroughly understand the hazardous waste decomposition process, a more complete understanding of the behavior of activated carbon in pure supercritical water is needed. The gasification rate of carbon by water vapor at subcritical pressures was studied in relation to coal gasification and generating activated carbon.

  15. Migration behavior of supercritical and liquid CO2 in a stratified system: Experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Oh, Junho; Kim, Kue-Young; Han, Weon Shik; Park, Eungyu; Kim, Jeong-Chan

    2015-10-01

    Multiple scenarios of upward CO2 migration driven by both injection-induced pressure and buoyancy force were investigated in a horizontally and vertically stratified core utilizing a core-flooding system with a 2-D X-ray scanner. Two reservoir-type scenarios were considered: (1) the terrestrial reservoir scenario (10 MPa and 50°C), where CO2 exists in a supercritical state and (2) the deep-sea sediment reservoir scenario (28 MPa and 25°C), where CO2 is stored in the liquid phase. The core-flooding experiments showed a 36% increase in migration rate in the vertical core setting compared with the horizontal setting, indicating the significance of the buoyancy force under the terrestrial reservoir scenario. Under both reservoir conditions, the injected CO2 tended to find a preferential flow path (low capillary entry pressure and high-permeability (high-k) path) and bypass the unfavorable pathways, leaving low CO2 saturation in the low-permeability (low-k) layers. No distinctive fingering was observed as the CO2 moved upward, and the CO2 movement was primarily controlled by media heterogeneity. The CO2 saturation in the low-k layers exhibited a more sensitive response to injection rates, implying that the increase in CO2 injection rates could be more effective in terms of storage capacity in the low-k layers in a stratified reservoir. Under the deep-sea sediment condition, the storage potential of liquid CO2 was more than twice as high as that of supercritical CO2 under the terrestrial reservoir scenario. In the end, multiphase transport simulations were conducted to assess the effects of heterogeneity on the spatial variation of pressure buildup, CO2 saturation, and CO2 flux. Finally, we showed that a high gravity number (Ngr) tended to be more influenced by the heterogeneity of the porous media.

  16. Supercritical carbon dioxide interpolymer complexes improve survival of B. longum Bb-46 in simulated gastrointestinal fluids.

    PubMed

    Thantsha, Mapitsi S; Cloete, Thomas E; Moolman, Francis S; Labuschagne, Philip W

    2009-01-31

    Gastric acidity is the main factor affecting viability of probiotics in the gastrointestinal tract (GIT). This study investigated the survival in simulated gastrointestinal fluids of Bifidobacterium longum Bb-46 encapsulated in interpolymer complexes formed in supercritical carbon dioxide (scCO(2)). Bacteria were exposed sequentially to simulated gastric fluid (SGF, pH 2) for 2 h and simulated intestinal fluid (SIF, pH 6.8) for 6 or 24 h. Total encapsulated bacteria were determined by suspending 1 g of product in SIF for 6 h at 37 degrees C prior to plating out. Plates were incubated anaerobically at 37 degrees C for 72 h. The interpolymer complex displayed pH-responsive release properties, with little to no release in SGF and substantial release in SIF. There was a limited reduction in viable counts at the end of exposure period due to encapsulation. Protection efficiency of the interpolymer complex was improved by addition of glyceryl monostearate (GMS). Gelatine capsules delayed release of bacteria from the interpolymer complex thus minimizing time of exposure to the detrimental conditions. Use of poly(caprolactone) (PCL), ethylene oxide-propylene oxide triblock copolymer (PEO-PPO-PEO) decreased the protection efficiency of the matrix. Interpolymer complex encapsulation showed potential for protection of probiotics and therefore for application in food and pharmaceuticals.

  17. Numerical Simulations Studies of the Convective Instability Onset in a Supercritical Fluid

    NASA Technical Reports Server (NTRS)

    Furukawa, A.; Meyer, H.; Onuki, A.

    2004-01-01

    Numerical simulation studies are reported for the convection of a supercritical fluid, He-3, in a Rayleigh-Benard cell. The calculations provide the temporal profile DeltaT(t) of the temperature drop across the fluid layer. In a previous article, systematic delays in the onset of the convective instability in simulations relative to experiments were reported, as seen from the DeltaT(t) profiles. They were attributed to the smallness of the noise which is needed to start the instability. Therefore i) homogeneous temperature noise and ii) spatial lateral periodic temperature variations in the top plate were programmed into the simulations, and DeltaT(t) compared with that of an experiment with the same fluid parameters. An effective speed-up in the instability onset was obtained, with the best results obtained through the spatial temperature variations with a period of 2L, close to the wavelength of a pair of convections rolls. For a small amplitude of 0.5 micro-K, this perturbation gave a semiquantitative agreement with experimental observations. Results for various noise amplitudes are presented and discussed in relation to predictions by El Khouri and Carl es.

  18. Effect of impurities on the corrosion behavior of CO2 transmission pipeline steel in supercritical CO2-water environments.

    PubMed

    Choi, Yoon-Seok; Nesic, Srdjan; Young, David

    2010-12-01

    The corrosion property of carbon steel was evaluated using an autoclave under CO(2)-saturated water phase and water-saturated CO(2) phase with impurities (O(2) and SO(2)) at 80 bar CO(2) and 50 °C to simulate the condition of CO(2) transmission pipeline in the carbon capture and storage (CCS) applications. The results showed that the corrosion rate of carbon steel in CO(2)-saturated water was very high and it increased with adding O(2) in the system due to the inhibition effect of O(2) on the formation of protective FeCO(3). It is noteworthy that corrosion took place in the water-saturated CO(2) phase under supercritical condition when no free water is present. The addition of O(2) increased the corrosion rates of carbon steel in water-saturated CO(2) phase. The addition of 0.8 bar SO(2) (1%) in the gas phase dramatically increased the corrosion rate of carbon steel from 0.38 to 5.6 mm/y. This then increased to more than 7 mm/y with addition of both O(2) and SO(2). SO(2) can promote the formation of iron sulfite hydrate (FeSO(3)·3H(2)O) on the steel surface which is less protective than iron carbonate (FeCO(3)), and it is further oxidized to become FeSO(4) and FeOOH when O(2) is present with SO(2) in the CO(2)-rich phase. The corrosion rates of 13Cr steel were very low compared with carbon steel in CO(2)-saturated water environments with O(2), whereas it was as high as carbon steel in a water-saturated CO(2) phase with O(2) and SO(2).

  19. Supercritical water gasification of microalga Nannochloropsis over supported Ni and Ru catalysts

    NASA Astrophysics Data System (ADS)

    Wijenayake, A. G. B. S. P.; Hassan, M.; Komiyama, M.

    2016-11-01

    Supercritical water gasification (SCWG) of a marine microalga Nannochloropsis was performed in the presence and the absence of supported Ru and Ni catalysts at 385 °C and 26 MPa using a batch reactor. The product gas of the non-catalytic reaction mainly comprised of CO2 while that of catalytic reaction produced CH4, CO2, H2 and some C2-C4 compounds. The addition of catalysts enhanced the decomposition and conversion (water-gas shift and methanation) reactions, consequently increasing the total gasification efficiency up to 92% for 60 min reaction time. Between the supported Ru and Ni catalysts, Ru resulted in higher gasification efficiency than Ni. Catalyst deactivation during SCWG of Nannochloropsis was also examined.

  20. Phosphate recovery from sewage sludge in combination with supercritical water oxidation.

    PubMed

    Stendahl, K; Jäfverström, S

    2003-01-01

    Supercritical Water Oxidation (SCWO) is an innovative and effective destruction method for organics in sewage sludge. The SCWO process leaves a slurry of inorganic ash in a pure water phase free from organic contaminants, which opens possibilities for a simple process to recover components like phosphates from the sewage sludge. In a continuous pilot plant for the SCWO process digested sludge has been treated. The ash has been extracted in lab scale with both caustic and acids in order to recover phosphates. By leaching the ash with caustic, 90% of the phosphorus could be separated as a sodium phosphate solution. By treating the sodium phosphate solution with lime, calcium phosphate was precipitated and caustic recovered and circulated back to the leaching process.

  1. Synthesizing and dispersing silver nanoparticles in a water-in-supercritical carbon dioxide microemulsion

    SciTech Connect

    Ji, M.; Chen, X.; Wai, C.M.; Fulton, J.L.

    1999-03-24

    Reverse micelles and microemulsions formed in liquid and supercritical carbon dioxide (CO{sub 2}) allow highly polar or polarizable compounds to be dispersed in this nonpolar fluid. However, since the polarizability per unit volume of dense CO{sub 2} is quite low, it is difficult to overcome the strong van der Waals attractive interactions between particles in order to stably suspend macromolecular species. Conventional surfactants by themselves do not form reverse micelles or microemulsions in CO{sub 2} because the van der Waals interdroplet attractions are too high. The use of surfactants or cosurfactants with fluorinated tails provides a layer of a weakly attractive compound covering the highly attractive droplet cores, thus preventing their short-range interactions that would destabilize the system. Using this strategy, the authors describe a method to synthesize and stabilize metallic silver nanoparticles having diameters from 5 to 15 nm in supercritical CO{sub 2} using an optically transparent, water-in-CO{sub 2} microemulsion.

  2. Recycling of woven carbon-fibre-reinforced polymer composites using supercritical water.

    PubMed

    Knight, Chase C; Zeng, Changchun; Zhang, Chuck; Wang, Ben

    2012-01-01

    Over the past few years, there has been great deal of interest in recycling carbon-fibre-reinforced polymer composites. One method that has shown promising results involves the use of supercritical fluids to achieve separation between matrix and fibres by effectively degrading the resin into lower molecular weight compounds. In addition, the solvents used are environmentally benign and can also be recovered and reused. In this study, supercritical water with 0.05 M KOH as the catalyst was used for the recycling of an aerospace-grade high-performance epoxy carbon fibre composite (Hexcel 8552/IM7). The morphology of the reclaimed fibres was observed by scanning electron microscopy, and the tensile properties of the fibres were measured by single filament testing. The effects of processing time on the resin elimination efficiency and fibre property retention were investigated. With the process developed in this research, as much as 99.2 wt% resin elimination was achieved, resulting in the recovery of clean, undamaged fibres. The reclaimed fibres retained the original tensile strength. The feasibility of recycling multiple layer composites was also explored.

  3. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals.

    PubMed

    Gosselink, Richard J A; Teunissen, Wouter; van Dam, Jan E G; de Jong, Ed; Gellerstedt, Göran; Scott, Elinor L; Sanders, Johan P M

    2012-02-01

    Valorisation of lignin plays a key role in further development of lignocellulosic biorefinery processes the production of biofuels and bio-based materials. In the present study, organosolv hardwood and wheat straw lignins were converted in a supercritical fluid consisting of carbon dioxide/acetone/water (300-370°C, 100bar) to a phenolic oil consisting of oligomeric fragments and monomeric aromatic compounds with a total yield of 10-12% based on lignin. These yields are similar to the state-of-the-art technologies such as base-catalysed thermal processes applied for lignin depolymerisation. Addition of formic acid increases the yield of monomeric aromatic species by stabilizing aromatic radicals. Supercritical depolymerisation of wheat straw and hardwood lignin yielded monomeric compounds in different compositions with a maximum yield of 2.0% for syringic acid and 3.6% for syringol, respectively. The results of the present study showed that under the applied conditions competition occurred between lignin depolymerisation and recondensation of fragments.

  4. Hydrogen production from high-moisture content biomass in supercritical water

    SciTech Connect

    Antal, M.J. Jr.; Matsumura, Y.; Onuma, M.T.

    1995-09-01

    Wet biomass (water hyacinth, banana trees, cattails, green algae, kelp, etc.) grows rapidly and abundantly around the world. However, wet biomass is not regarded as a promising feedstock for conventional thermochemical conversion processes because the cost of drying the material is too high. Prior work has shown that low concentrations of glucose (a model compound for whole biomass) and various wet biomass species (water hyacinth, algae) can be completely gasified in supercritical water at 600{degrees}C and 34.5 MPa after a 30 s residence time. But higher concentrations of glucose evidenced incomplete conversion. For this reason, flow reactors were fabricated which could accommodate packed beds of catalyst, and studies were initiated of the steam reforming (gasification) reactions in the presence of various candidate heterogeneous catalysts. The goal is to identify active catalysts for steam reforming biomass slurries in supercritical water. Soon after tests began, a suitable class of carbon-based catalysts was discovered. These catalysts effect complete (>99%) conversion of high-concentration glucose (up to 22% by weight) to a hydrogen-rich synthesis gas. High space velocities are realized [>20 (g/hr)/g], and the catalyst is stable over a period of several hours. The carbon catalyst is not expensive, and exists in a wide variety of forms and compositions. After this discovery, work has focused on four interrelated tasks: (1) tests to identify the most active form and composition of the catalyst; (2) tests employing the preferred catalyst to study the effect of feedstock composition on carbon conversion and gas composition; (3) studies of catalyst deactivation and subsequent reactivation, including the in-house synthesis of bifunctional catalysts which incorporate promoters and stabilizers; and (4) the design and fabrication of a larger, new reactor with a slurry feeder intended to handle high-concentration, wet biomass feeds.

  5. Simulation of Oxygen Disintegration and Mixing With Hydrogen or Helium at Supercritical Pressure

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Taskinoglu, Ezgi

    2012-01-01

    The simulation of high-pressure turbulent flows, where the pressure, p, is larger than the critical value, p(sub c), for the species under consideration, is relevant to a wide array of propulsion systems, e.g. gas turbine, diesel, and liquid rocket engines. Most turbulence models, however, have been developed for atmospheric-p turbulent flows. The difference between atmospheric-p and supercritical-p turbulence is that, in the former situation, the coupling between dynamics and thermodynamics is moderate to negligible, but for the latter it is very significant, and can dominate the flow characteristics. The reason for this stems from the mathematical form of the equation of state (EOS), which is the perfect-gas EOS in the former case, and the real-gas EOS in the latter case. For flows at supercritical pressure, p, the large eddy simulation (LES) equations consist of the differential conservation equations coupled with a real-gas EOS. The equations use transport properties that depend on the thermodynamic variables. Compared to previous LES models, the differential equations contain not only the subgrid scale (SGS) fluxes, but also new SGS terms, each denoted as a correction. These additional terms, typically assumed null for atmospheric pressure flows, stem from filtering the differential governing equations, and represent differences between a filtered term and the same term computed as a function of the filtered flow field. In particular, the energy equation contains a heat-flux correction (q-correction) that is the difference between the filtered divergence of the heat flux and the divergence of the heat flux computed as a function of the filtered flow field. In a previous study, there was only partial success in modeling the q-correction term, but in this innovation, success has been achieved by using a different modeling approach. This analysis, based on a temporal mixing layer Direct Numerical Simulation database, shows that the focus in modeling the q

  6. Magnetic ramp scale at supercritical perpendicular collisionless shocks: Full particle electromagnetic simulations

    SciTech Connect

    Yang, Zhongwei; Lu, Quanming; Gao, Xinliang; Huang, Can; Yang, Huigen; Hu, Hongqiao; Han, Desheng; Liu, Ying

    2013-09-15

    Supercritical perpendicular collisionless shocks are known to exhibit foot, ramp, and overshoot structures. The shock ramp structure is in a smaller scale in contrast to other microstructures (foot and overshoot) within the shock front. One-dimensional full particle simulations of strictly perpendicular shocks over wide ranges of ion beta β{sub i}, Alfvén Mach number M{sub A}, and ion-to-electron mass ratio m{sub i}/m{sub e} are presented to investigate the impact of plasma parameters on the shock ramp scale. Main results are (1) the ramp scale can be as small as several electron inertial length. (2) The simulations suggest that in a regime below the critical ion beta value, the shock front undergoes a periodic self-reformation and the shock ramp scale is time-varying. At higher ion beta values, the shock front self-reformation is smeared. At still higher ion beta value, the motion of reflected ions is quite diffuse so that they can lead to a quasi-steady shock ramp. Throughout the above three conditions, the shock ramp thickness increases with β{sub i}. (3) The increase (decrease) in Mach number and the decrease (increase) in the beta value have almost equivalent impact on the state (i.e., stationary or nonstationary) of the shock ramp. Both of front and ramp thicknesses are increased with M{sub A}.

  7. Modeling wave processes at the outflowing of a water coolant with supercritical initial parameters

    NASA Astrophysics Data System (ADS)

    Vozhakov, I. S.; Alekseev, M. V.; Lezhnin, S. I.; Pribaturin, N. A.

    2016-10-01

    Numerical simulation of the outflow of a coolant with supercritical initial parameters at a butt-break of high-pressure pipeline is carried out. The results of calculation of the outflow dynamics on a PV-diagram, as well as the pressure evolution are presented. It is shown that the flow rate weakly depends on temperature at its low values (up to 0, 9 Tc ). In the second region (from 0, 9 Tc to Tc ), the coolant boiling occurs inside the channel, which leads to a sharp drop in the flow rate with increasing temperature. And the third area (above Tc ) is typical for the gas coolant outflow, in which the density strongly depends on pressure and temperature.

  8. Supercritical water gasification of an aqueous by-product from biomass hydrothermal liquefaction with novel Ru modified Ni catalysts.

    PubMed

    Zhang, Linghong; Champagne, Pascale; Charles Xu, Chunbao

    2011-09-01

    Supercritical water gasification (SCWG) of glucose solution (50-200 g/L), a simulated aqueous organic waste (composed of glucose, acetic acid and guaiacol) and a real aqueous organic waste stream generated from a sludge hydrothermal liquefaction process was performed in a bench-scale continuous down-flow tubular reactor with novel 0.1 RuNi/γ-Al(2)O(3) or 0.1 RuNi/activated carbon (AC) catalyst (10 wt.% Ni with a Ru-to-Ni molar ratio of 0.1). 0.1 RuNi/γ-Al(2)O(3) was very effective in catalyzing SCWG of glucose solution and the simulated aqueous organic waste, attaining an H(2) yield of 53.9 mol/kg dried feedstock at 750°C, 24 MPa and a WHSV of 6h(-1). However, the γ-Al(2)O(3)-supported catalyst was not resistant to the attack of alkali and nitrogen compounds in the real waste during the SCWG of the real aqueous organic waste, whereas the AC-based catalyst exhibited higher stability. This research provides a promising approach to the treatment and valorization of aqueous organic waste via SCWG.

  9. Experimental study of crossover from capillary to viscous fingering for supercritical CO2-water displacement in a homogeneous pore network.

    PubMed

    Wang, Ying; Zhang, Changyong; Wei, Ning; Oostrom, Mart; Wietsma, Thomas W; Li, Xiaochun; Bonneville, Alain

    2013-01-02

    Carbon sequestration in saline aquifers involves displacing brine from the pore space by supercritical CO(2) (scCO(2)). The displacement process is considered unstable due to the unfavorable viscosity ratio between the invading scCO(2) and the resident brine. The mechanisms that affect scCO(2)-water displacement under reservoir conditions (41 °C, 9 MPa) were investigated in a homogeneous micromodel. A large range of injection rates, expressed as the dimensionless capillary number (Ca), was studied in two sets of experiments: discontinuous-rate injection, where the micromodel was saturated with water before each injection rate was imposed, and continuous-rate injection, where the rate was increased after quasi-steady conditions were reached for a certain rate. For the discontinuous-rate experiments, capillary fingering and viscous fingering are the dominant mechanisms for low (logCa ≤ -6.61) and high injection rates (logCa ≥ -5.21), respectively. Crossover from capillary to viscous fingering was observed for logCa = -5.91 to -5.21, resulting in a large decrease in scCO(2) saturation. The discontinuous-rate experimental results confirmed the decrease in nonwetting fluid saturation during crossover from capillary to viscous fingering predicted by numerical simulations by Lenormand et al. (J. Fluid Mech.1988, 189, 165-187). Capillary fingering was the dominant mechanism for all injection rates in the continuous-rate experiment, resulting in monotonic increase in scCO(2) saturation.

  10. Bond cleavage of lignin model compounds into aromatic monomers using supported metal catalysts in supercritical water

    PubMed Central

    Yamaguchi, Aritomo; Mimura, Naoki; Shirai, Masayuki; Sato, Osamu

    2017-01-01

    More efficient use of lignin carbon is necessary for carbon-efficient utilization of lignocellulosic biomass. Conversion of lignin into valuable aromatic compounds requires the cleavage of C–O ether bonds and C–C bonds between lignin monomer units. The catalytic cleavage of C–O bonds is still challenging, and cleavage of C–C bonds is even more difficult. Here, we report cleavage of the aromatic C–O bonds in lignin model compounds using supported metal catalysts in supercritical water without adding hydrogen gas and without causing hydrogenation of the aromatic rings. The cleavage of the C–C bond in bibenzyl was also achieved with Rh/C as a catalyst. Use of this technique may greatly facilitate the conversion of lignin into valuable aromatic compounds. PMID:28387304

  11. SCC susceptibility of type 316Ti stainless steel in supercritical water

    NASA Astrophysics Data System (ADS)

    Shen, Zhao; Zhang, Lefu; Tang, Rui; Zhang, Qiang

    2015-03-01

    Stress corrosion cracking (SCC) susceptibility of 316Ti SS in supercritical water (SCW) was evaluated by Slow Strain Rate Tensile (SSRT) testing at four different temperatures from 380 °C up to 650 °C, at a pressure of 25 MPa and a strain rate of 9.2 × 10-7 s-1. The effect of dissolved oxygen (DO) on the SCC of 316Ti was investigated by changing the DO concentration from 0 up to 2000 ppb. High purity argon was chosen as the comparative blank test environment. The results obviously revealed the effect of temperature and DO on the SCC susceptibility of 316Ti SS. Transgranular cracking was found on both fracture and gauge surfaces on the specimens.

  12. Catalysis of CuSO4 for total organic carbon detection based on supercritical water oxidation.

    PubMed

    Hui, Zhang; Dongdong, Han; Yi, Chen; Chunmian, Lin

    The catalytic effects of CuSO4 in total organic carbon (TOC) detecting processes based on supercritical water oxidation have been investigated. Using benzoic acid as a model pollutant, the presence of a CuSO4 catalyst can significantly decrease the reaction temperature and H2O2 multiple during the TOC detection processes. A better TOC conversion efficiency was obtained at a much lower temperature in the catalytic system compared with the non-catalytic condition. The use of the catalyst effectively lowered the necessary H2O2 multiple from 20.0 without catalyst to 3.0 in the catalytic system. The established device could detect the TOC concentration precisely in model wastewater without inorganic carbon (IC). Moreover, the detection of the practical wastewater was studied. Detection results were total carbon of wastewater rather than TOC of practical wastewater. A detection or removal unit of IC is necessary before it can be practically utilized.

  13. Supercritical water gasification of sewage sludge: gas production and phosphorus recovery.

    PubMed

    Acelas, Nancy Y; López, Diana P; Brilman, D W F Wim; Kersten, Sascha R A; Kootstra, A Maarten J

    2014-12-01

    In this study, the feasibility of the gasification of dewatered sewage sludge in supercritical water (SCW) for energy recovery combined with P-recovery from the solid residue generated in this process was investigated. SCWG temperature (400°C, 500°C, 600°C) and residence time (15min, 30min, 60min) were varied to investigate their effects on gas production and the P recovery by acid leaching. The results show that the dry gas composition for this uncatalyzed gasification of sewage sludge in SCW mainly comprised of CO2, CO, CH4, H2, and some C2-C3 compounds. Higher temperatures and longer residence times favored the production of H2 and CH4. After SCWG, more than 95% of the P could be recovered from the solid residue by leaching with acids. SCWG combined with acid leaching seems an effective method for both energy recovery and high P recovery from sewage sludge.

  14. A parametric study on supercritical water gasification of Laminaria hyperborea: a carbohydrate-rich macroalga.

    PubMed

    Cherad, Ramzi; Onwudili, Jude A; Williams, Paul T; Ross, Andrew B

    2014-10-01

    The potential of supercritical water gasification (SCWG) of macroalgae for hydrogen and methane production has been investigated in view of the growing interest in a future macroalgae biorefinery concept. The compositions of syngas from the catalytic SCWG of Laminaria hyperborea under varying parameters including catalyst loading, feed concentration, hold time and temperature have been investigated. Their effects on gas yields, gasification efficiency and energy recovery are presented. Results show that the carbon gasification efficiencies increased with reaction temperature, reaction hold time and catalyst loading but decreased with increasing feed concentrations. In addition, the selectivity towards hydrogen and/or methane production from the SCWG tests could be controlled by the combination of catalysts and varying reaction conditions. For instance, Ru/Al2O3 gave highest carbon conversion and highest methane yield of up to 11 mol/kg, whilst NaOH produced highest hydrogen yield of nearly 30 mol/kg under certain gasification conditions.

  15. Oxidation kinetics of model compounds of metabolic waste in supercritical water

    NASA Technical Reports Server (NTRS)

    Webley, Paul A.; Holgate, Henry R.; Stevenson, David M.; Tester, Jefferson W.

    1990-01-01

    In this NASA-funded study, the oxidation kinetics of methanol and ammonia in supercritical water have been experimentally determined in an isothermal plug flow reactor. Theoretical studies have also been carried out to characterize key reaction pathways. Methanol oxidation rates were found to be proportional to the first power of methanol concentration and independent of oxygen concentration and were highly activated with an activation energy of approximately 98 kcal/mole over the temperature range 480 to 540 C at 246 bar. The oxidation of ammonia was found to be catalytic with an activation energy of 38 kcal/mole over temperatures ranging from 640 to 700 C. An elementary reaction model for methanol oxidation was applied after correction for the effect of high pressure on the rate constants. The conversion of methanol predicted by the model was in good agreement with experimental data.

  16. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    SciTech Connect

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-09-15

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY{sub H2}, TRE and CR could exhibit up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H{sub 2} yield (GY{sub H2}), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY{sub H2}, CR and TRE were established with Box–Behnken design. GY{sub H2}, CR and TRE reached up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO{sub 2} and H{sub 2} were the most abundant gaseous products. As a product of nitrogen-containing organics, NH{sub 3} has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient.

  17. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING / FEASIBILITY STUDIES FINAL REPORT

    SciTech Connect

    SPRITZER,M; HONG,G

    2005-01-01

    Under Cooperative Agreement No. DE-FC36-00GO10529 for the Department of Energy, General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The Key potential advantages of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reaching and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carreid out at the University of Hawaii at Manoa (UHM) as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an acitvated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low

  18. Behavior of water in supercritical CO2: adsorption and capillary condensation in porous media

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Bryan, C. R.; Dewers, T. A.; Wang, Y.

    2011-12-01

    The chemical potential of water in supercritical CO2 (scCO2) may play an important role in water adsorption, capillary condensation, and evaporation under partially saturated conditions at geologic CO2 storage sites, especially if initially anhydrous CO2 is injected. Such processes may affect residual water saturations, relative permeability, shrink/swell of clays, and colloidal transport. We have developed a thermodynamic model of water or brine film thickness as a function of water relative humidity in scCO2. The model is based on investigations of liquid water configuration in the vadose zone and uses the augmented Young-Laplace equation, which incorporates both adsorptive and capillary components. The adsorptive component is based on the concept of disjoining pressure, which reflects force per area normal to the solid and water/brine-scCO2 interfaces. The disjoining pressure includes van der Waals, electrostatic, and structural interactions. The van der Waals term includes the effects of mutual dissolution of CO2 and water in the two fluid phases on partial molar volumes, dielectric coefficients, and refractive indices. Our approach treats the two interfaces as asymmetric surfaces in terms of charge densities and electrostatic potentials. We use the disjoining pressure isotherm to evaluate the type of wetting (e.g., total or partial wetting) for common reservoir and caprock minerals and kerogen. The capillary component incorporates water activity and is applied to simple pore geometries with slits and corners. Finally, we compare results of the model to a companion study by the coauthors on measurement of water adsorption to mineral phases using a quartz-crystal microbalance. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Experimental investigation of inclination effect on subcritical and supercritical water flows heat transfer in an internally ribbed tube

    NASA Astrophysics Data System (ADS)

    Taklifi, Alireza; Akhavan-Behabadi, Mohammad Ali; Hanafizadeh, Pedram; Aliabadi, Abbas

    2017-02-01

    The effect of various inclination angles on heat transfer of water at subcritical and supercritical operating pressures is investigated experimentally. The test section was a SA213T12 steel six-headed internally ribbed tube with minimum inner diameter of 19.5 mm. The operating test pressures were 15, 21.5, 22.5, 25 and 28 MPa, the mass flux was 800 kg/m2 s and the heat flux was 400 kW/m2. To keep the mass flux to heat flux ratio equal to 2 kg/kJ. These operating conditions covered subcritical, near critical and supercritical water flows and also refers to low mass flux conditions. The inclination angles were 5, 20, 30, 45 and 90 (vertical) degrees respecting to horizontal plane. The heat flux was kept constant along the test tube by controlling of electric heating. As a result the inner wall temperature and convective heat transfer coefficient variations with respect to heated length and bulk enthalpy of fluid were considered in order to study the heat transfer characteristics of various flows at different inclinations. The corresponding correlation for heat transfer coefficient was developed which is applicable for wide range of inclination angles. The heat transfer enhancement was obvious for inclination angles other than 90°, however, this effect was more obvious in 5° and 20° in some operating conditions. It was also concluded that the effect of inclination on heat transfer of water was more considerable in subcritical flow conditions than supercritical ones. Also, it was observed that angle of 20° seems to be the best for subcritical flows from heat transfer point of view, but for supercritical flows 5 or 45 seem to be more advantageous. These differences could be related to different heat transfer mechanisms of subcritical and supercritical flows.

  20. Direct numerical simulation of a transitional supercritical binary mixing layer: heptane and nitrogen

    NASA Astrophysics Data System (ADS)

    Okong'o, Nora A.; Bellan, Josette

    2002-08-01

    Direct numerical simulations (DNS) of a supercritical temporal mixing layer are conducted for the purpose of exploring the characteristics of high-pressure transitional mixing behaviour. The conservation equations are formulated according to fluctuation-dissipation (FD) theory, which is consistent with non-equilibrium thermodynamics and converges to kinetic theory in the low-pressure limit. According to FD theory, complementing the low-pressure typical transport properties (viscosity, diffusivity and thermal conductivity), the thermal diffusion factor is an additional transport property which may play an increasingly important role with increasing pressure. The Peng Robinson equation of state with appropriate mixing rules is coupled to the dynamic conservation equations to obtain a closed system. The boundary conditions are periodic in the streamwise and spanwise directions, and of non-reflecting outflow type in the cross-stream direction. Due to the strong density stratification, the layer is considerably more difficult to entrain than equivalent gaseous or droplet-laden layers, and exhibits regions of high density gradient magnitude that become very convoluted at the transitional state. Conditional averages demonstrate that these regions contain predominantly the higher-density, entrained fluid, with small amounts of the lighter, entraining fluid, and that in these regions the mixing is hindered by the thermodynamic properties of the fluids. During the entire evolution of the layer, the dissipation is overwhelmingly due to species mass flux followed by heat flux effects with minimal viscous contribution, and there is a considerable amount of backscatter in the flow. Most of the species mass flux dissipation is due to the molecular diffusion term with significant contributions from the cross-term proportional to molecular and thermal diffusion. These results indicate that turbulence models for supercritical fluids should primarily focus on duplicating the species

  1. Direct numerical simulations of supercritical fluid mixing layers applied to heptane nitrogen

    NASA Astrophysics Data System (ADS)

    Miller, Richard S.; Harstad, Kenneth G.; Bellan, Josette

    2001-06-01

    Direct numerical simulations (DNS) are conducted of a model hydrocarbon nitrogen mixing layer under supercritical conditions. The temporally developing mixing layer configuration is studied using heptane and nitrogen supercritical fluid streams at a pressure of 60 atm as a model system related to practical hydrocarbon-fuel/air systems. An entirely self-consistent cubic Peng Robinson equation of state is used to describe all thermodynamic mixture variables, including the pressure, internal energy, enthalpy, heat capacity, and speed of sound along with additional terms associated with the generalized heat and mass transport vectors. The Peng Robinson formulation is based on pure-species reference states accurate to better than 1% relative error through comparisons with highly accurate state equations over the range of variables used in this study (600 [less-than-or-eq, slant] T [less-than-or-eq, slant] 1100 K, 40 [less-than-or-eq, slant] p [less-than-or-eq, slant] 80 atm) and is augmented by an accurate curve fit to the internal energy so as not to require iterative solutions. The DNS results of two-dimensional and three-dimensional layers elucidate the unique thermodynamic and mixing features associated with supercritical conditions. Departures from the perfect gas and ideal mixture conditions are quantified by the compression factor and by the mass diffusion factor, both of which show reductions from the unity value. It is found that the qualitative aspects of the mixing layer may be different according to the specification of the thermal diffusion factors whose value is generally unknown, and the reason for this difference is identified by examining the second-order statistics: the constant Bearman Kirkwood (BK) thermal diffusion factor excites fluctuations that the constant Irwing Kirkwood (IK) one does not, and thus enhances overall mixing. Combined with the effect of the mass diffusion factor, constant positive large BK thermal diffusion factors retard

  2. Effect of Sub- and Super-critical Water Treatment on Physicochemical Properties of Porcine Skin

    PubMed Central

    2015-01-01

    Super- and sub-critical water treatments have been of interest as novel methods for protein hydrolysis. In the present study, we studied the effect of sub-critical water (Sub-H2O, 300℃, 80 bar) treatment as well as super-critical water (Super-H2O, 400℃, 280 bar) treatment on the physicochemical properties of porcine skin (PS), which has abundant collagen. Porcine skin was subjected to pre-thermal treatment by immersion in water at 70℃, and then treated with sub- or super-critical water. Physicochemical properties of the hydrolysates, such as molecular weight distribution, free amino acid content, amino acid profile, pH, color, and water content were determined. For the molecular weight distribution analysis, 1 kDa hydrolyzed porcine skin (H-PS) was produced by Super-H2O or Sub-H2O treatment. The free amino acid content was 57.18 mM and 30.13 mM after Sub-H2O and Super-H2O treatment, respectively. Determination of amino acid profile revealed that the content of Glu (22.5%) and Pro (30%) was higher after Super-H2O treatment than after Sub-H2O treatment, whereas the content of Gly (28%) and Ala (13.1%) was higher after Sub-H2O treatment. Super-H2O or Sub-H2O treatment affected the pH of PS, which changed from 7.29 (Raw) to 9.22 (after Sub-H2O treatment) and 9.49 (after Super-H2O treatment). Taken together, these results showed that Sub-H2O treatment was slightly more effective for hydrolysis than Super-H2O was. However, both Sub-H2O and Super-H2O treatments were effective processing methods for hydrolysis of PS collagen in a short time and can be regarded as a green chemistry technology. PMID:26761798

  3. Water under Hydrothermal, Supercritical, and High Pressure Conditions as Key to Developing Green Processes and New Technologies

    NASA Astrophysics Data System (ADS)

    Smith, Richard L.

    2010-11-01

    In this work, an overview of research and activity in the hydrothermal and supercritical fields is given. Properties and characteristics of water are reviewed in relation to separations, materials, and chemical conversion processes. Examples that are discussed include biomass fractionation, natural product extraction, material formation, biomass oxidation, biomass conversions, waste treatment, flames, and hydrocarbon upgrading. In the field of chromatography, water under hydrothermal conditions can be used to replace many organic solvents. As a solvent for separation processes, hot water can be used to achieve rapid and efficient fractionation of biomass or isolation of chemical compounds. In the field of materials, water in its supercritical state can be used to synthesize practical materials and to develop processes with low environmental burden. In the field of chemical processing, water can be used under oxidizing conditions to generate clean and renewable energy and to reduce the number of chemical steps for producing chemical products. A few other technological applications such as flames and hydrocarbon upgrading will be discussed. Water under hydrothermal, supercritical and high pressure conditions has many favorable properties that allow the development of green chemical processes and new technologies.

  4. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    NASA Astrophysics Data System (ADS)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ and ‘salt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a

  5. Limestone-particle-stabilized macroemulsion of liquid and supercritical carbon dioxide in water for ocean sequestration.

    PubMed

    Golomb, D; Barry, E; Ryan, D; Lawton, C; Swett, P

    2004-08-15

    When liquid or supercritical CO2 is mixed with an aqueous slurry of finely pulverized (1-20 microm) limestone (CaCO3) in a high-pressure reactor, a macroemulsion is formed consisting of droplets of CO2 coated with a sheath of CaCO3 particles dispersed in water. The coated droplets are called globules. Depending on the globule diameter and the CaCO3 sheath thickness, the globules sink to the bottom of the water column, are neutrally buoyant, or float on top of the water. The CaCO3 particles are lodged at the CO2/ H2O interface, preventing the coalescence of the CO2 droplets, and thus stabilizing the CO2-in-water emulsion. We describe the expected behavior of a CO2/H2O/CaCO3 emulsion plume released in the deep ocean for sequestration of CO2 in the ocean to ameliorate global warming. Depending on the amount of CO2 injected, the dense plume will descend a few hundred meters while entraining ambient seawater until it acquires neutral buoyancy in the stratified ocean. After equilibration, the globules will rain out from the plume toward the ocean bottom. This mode of CO2 release will prevent acidification of the seawater around the release point, which is a major environmental drawback of ocean sequestration of liquid, unemulsified CO2.

  6. Packed column supercritical fluid chromatography of hydrophilic analytes via water-rich modifiers.

    PubMed

    Taylor, Larry T

    2012-08-10

    The use of additives to dramatically extend the range of solute polarity amenable to CO(2) based supercritical fluid chromatography (pcSFC) was predicted over 20 years ago. At that time additives were predicted to have multiple functions such as enhancement of mobile phase solvating power, ion suppression, and ion pairing. The adsorption of mobile phase components on the stationary phase causing a modification of its surface was predicted, but the implications for separations were not defined. Reports published in the late 1980s showed that while water could not function as a primary modifier due to it poor solubility in carbon dioxide, its use as an additive was more promising. The past decade has seen very little published work concerning water and pcSFC. Now reports are beginning to appear that demonstrate enhanced selectivity with water, and application of the technology to polypeptide salts, drug molecules, and nucleobases. This review attempts to bridge the past with the present. As evidenced by the studies described in this review, water may offer much potential as an additive in that it could (a) enhance the solvating power of the mobile phase, (b) introduce HILIC-like analyte partitioning, (c) simplify preparative purifications, and (d) offer a more mass spectrometrically compatible interface.

  7. Exploration of the effect of process variables on the production of high-value fuel gas from glucose via supercritical water gasification.

    PubMed

    Hendry, Doug; Venkitasamy, Chandrasekar; Wilkinson, Nikolas; Jacoby, William

    2011-02-01

    A new continuous supercritical water gasification reactor was designed to investigate glucose gasification in supercritical water at high temperatures and low residence times. A 2(3) full factorial experiment was performed to determine the effects of feed concentration, temperature, and residence time on glucose gasification. The temperature levels (750°C and 800°C) were higher than ever used, while the residence times (4 and 6.5s) were shorter than ever used in previous supercritical water gasification studies. The reactor proved capable of attaining higher gasification rates than previously shown with high efficiencies and yields. In addition, the glucose gasification reaction was modeled by estimating activation energy and reaction order of glucose gasification in supercritical water.

  8. Evaluation of tubular reactor designs for supercritical water oxidation of U.S. Department of Energy mixed waste

    SciTech Connect

    Barnes, C.M.

    1994-12-01

    Supercritical water oxidation (SCWO) is an emerging technology for industrial waste treatment and is being developed for treatment of the US Department of Energy (DOE) mixed hazardous and radioactive wastes. In the SCWO process, wastes containing organic material are oxidized in the presence of water at conditions of temperature and pressure above the critical point of water, 374 C and 22.1 MPa. DOE mixed wastes consist of a broad spectrum of liquids, sludges, and solids containing a wide variety of organic components plus inorganic components including radionuclides. This report is a review and evaluation of tubular reactor designs for supercritical water oxidation of US Department of Energy mixed waste. Tubular reactors are evaluated against requirements for treatment of US Department of Energy mixed waste. Requirements that play major roles in the evaluation include achieving acceptable corrosion, deposition, and heat removal rates. A general evaluation is made of tubular reactors and specific reactors are discussed. Based on the evaluations, recommendations are made regarding continued development of supercritical water oxidation reactors for US Department of Energy mixed waste.

  9. Nickel removal from nickel-5,10,15,20-tetraphenylporphine using supercritical water in absence of catalyst: a basic study.

    PubMed

    Mandal, Pradip Chandra; Wahyudiono; Sasaki, Mitsuru; Goto, Motonobu

    2011-03-15

    Reactions of nickel-5,10,15,20-tetraphenylporphine (Ni-TPP) were studied in supercritical water in the presence of toluene without the addition of any catalyst, H(2) or H(2)S that is called a green process. The objective of this study was to remove nickel from Ni-TPP, the most common metal compound present in heavy crude, in high extent at low reaction time. All experiments were carried out in an 8.8 mL batch reactor fabricated from hastelloy C-276. The ability of supercritical water (SCW) to remove nickel from Ni-TPP was studied at temperatures of 450-490 °C and water partial pressures of 25-35 MPa. Water partial pressure had no effect on overall conversion at temperatures of 450 °C and a reaction time of 60 min. The overall Ni-TPP conversion was 89.80%, a figure above that of previous catalytic studies. The percentage of nickel removal was estimated as a function of reaction time and temperature. It were temperature 490 °C and pressure 25 MPa at reaction time 90 min where 65.68% nickel were removed by the action of SCW and toluene, as a co-solvent. It was determined that Ni-TPP undergoes a series of reactions, ending in demetallation and ring fragmentation. The obtained results suggest that supercritical water has a capability to remove nickel from Ni-TPP.

  10. Supercritical Carbon Dioxide Regeneration of Activated Carbon Loaded with Contaminants from Rocky Mountain Arsenal Well Water.

    DTIC Science & Technology

    1982-05-01

    15 111-7 GRANULAR ACTIVATED CARBON ADSORPTION ISOTHERMS THERMALLY REACTIVATED CARBON .............. 16 I IV-1 PROCESS FLOW DIAGRAM FOR... PROCESSING COST OF ACTIVATED CHARCOAL REGENERATION BY SUPERCRITICAL CARBON DIOXIDE PROCESS ........................... 25 l IV-4 SENSITIVITY OF GAC...regenerate adsorbents such as granular activated carbon loaded with a broad variety of organic adsorbates. This regeneration process uses a supercritical

  11. Supercritical fluid particle design for poorly water-soluble drugs (review).

    PubMed

    Sun, Yongda

    2014-01-01

    Supercritical fluid particle design (SCF PD) offers a number of routes to improve solubility and dissolution rate for enhancing the bioavailability of poorly water-soluble drugs, which can be adopted through an in-depth knowledge of SCF PD processes and the molecular properties of active pharmaceutical ingredients (API) and drug delivery system (DDS). Combining with research experiences in our laboratory, this review focuses on the most recent development of different routes (nano-micron particles, polymorphic particles, composite particles and bio-drug particles) to improve solubility and dissolution rate of poorly water-soluble drugs, covering the fundamental concept of SCF and the principle of SCF PD processes which are typically used to control particle size, shape, morphology and particle form and hence enable notable improvement in the dissolution rate of the poorly water-soluble drugs. The progress of the industrialization of SCF PD processes in pharmaceutical manufacturing environment with scaled-up plant under current good manufacturing process (GMP) specification is also considered in this review.

  12. Energy conversion of biomass with supercritical and subcritical water using large-scale plants.

    PubMed

    Okajima, Idzumi; Sako, Takeshi

    2014-01-01

    Exploiting unused or waste biomass as an alternative fuel is currently receiving much attention because of the potential reductions in CO2 emissions and the lower cost in comparison to expensive fossil fuels. If we are to use biomass domestically or industrially, we must be able to convert biomass to high-quality and easy-to-use liquid, gas, or solid fuels that have high-calorific values, low moisture and ash contents, uniform composition, and suitable for stored over long periods. In biomass treatment, hot and high-pressure water including supercritical and subcritical water is an excellent solvent, as it is clean and safe and its action on biomass can be optimized by varying the temperature and pressure. In this article, the conversion of waste biomass to fuel using hot and high-pressure water is reviewed, and the following examples are presented: the production of large amounts of hydrogen from waste biomass, the production of cheap bioethanol from non-food raw materials, and the production of composite powder fuel from refractory waste biomass in the rubble from the Great East Japan Earthquake. Several promising techniques for the conversion of biomass have been demonstrated in large-scale plants and commercial deployment is expected in the near future.

  13. Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions.

    PubMed

    Toor, Saqib S; Reddy, Harvind; Deng, Shuguang; Hoffmann, Jessica; Spangsmark, Dorte; Madsen, Linda B; Holm-Nielsen, Jens Bo; Rosendahl, Lasse A

    2013-03-01

    Six hydrothermal liquefaction experiments on Nannochloropsis salina and Spirulina platensis at subcritical and supercritical water conditions (220–375 °C, 20–255 bar) were carried out to explore the feasibility of extracting lipids from wet algae, preserving nutrients in lipid-extracted algae solid residue, and recycling process water for algae cultivation. GC–MS, elemental analyzer, FT-IR, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-crude yield of 46% was obtained on N. salina at 350 °C and 175 bar. For S. platensis algae sample, the optimal hydrothermal liquefaction condition appears to be at 310 °C and 115 bar, while the optimal condition for N. salina is at 350 °C and 175 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins.

  14. Supercritical water treatment for cello-oligosaccharide production from microcrystalline cellulose.

    PubMed

    Tolonen, Lasse K; Juvonen, Minna; Niemelä, Klaus; Mikkelson, Atte; Tenkanen, Maija; Sixta, Herbert

    2015-01-12

    Microcrystalline cellulose was treated in supercritical water at 380 °C and at a pressure of 250 bar for 0.2, 0.4, and 0.6s. The yield of the ambient-water-insoluble precipitate and its average molar mass decreased with an extended treatment time. The highest yield of 42 wt% for DP2-9 cello-oligosaccharides was achieved after the 0.4s treatment. The reaction products included also 11 wt% ambient-water-insoluble precipitate with a DP(w) of 16, and 6.1 wt% monomeric sugars, and 37 wt% unidentified degradation products. Oligo- and monosaccharide-derived dehydration and retro-aldol fragmentation products were analyzed via a combination of HPAEC-PAD-MS, ESI-MS/MS, and GC-MS techniques. The total amount of degradation products increased with treatment time, and fragmented (glucosyl(n)-erythrose, glucosyl(n)-glycolaldehyde), and dehydrated (glucosyl(n)-levoglucosan) were identified as the main oligomeric degradation products from the cello-oligosaccharides.

  15. Oxidation behavior of ferritic-martensitic and ODS steels in supercritical water

    NASA Astrophysics Data System (ADS)

    Bischoff, Jeremy

    Ferritic-martensitic and ODS alloys are primary candidates for application as cladding and structural material in Generation IV nuclear power plants, especially the supercritical water reactor. One of the main in-service degradation mechanisms for these alloys is uniform corrosion, thus this project focuses on understanding the oxidation behavior of these alloys in the supercritical water (SCW) environment. This understanding is acquired through the analysis of the oxide microstructure using microbeam synchrotron radiation diffraction and fluorescence associated with electron microscopy (both SEM and TEM). The microbeam synchrotron radiation diffraction and fluorescence technique provides unique microstructural data of the oxide. This technique simultaneously probes elemental and phase information step by step with a sub-micron spatial resolution throughout the oxide layers. Thus we were able to locate specific phases, such as Cr2O3, at specific locations in the oxide layer, mainly the interfaces. The electron microscopy complemented this analysis by imaging the oxide layers, to yield detailed information on the oxide morphology. All the alloys studied exhibited the same three-layer structure with an outer layer containing only Fe3O4, an inner layer containing a mixture of Fe3O4 and FeCr2O 4, and a diffusion layer containing a mixture of chromium-rich precipitates (Cr2O3 and FeCr2O4) and metal grains. By analyzing samples with various exposure times, we were able to follow the evolution of the oxide microstructure with exposure time. To obtain the corroded samples, several corrosion experiments were performed: some in supercritical water (at 500°C and 600°C) and one experiment in 500°C steam. The test in steam was undertaken to obtain more data points in the kinetic curves, because we thought the corrosion in steam and supercritical water at the same temperature would result in similar kinetics. This turned out not to be the case and the samples in supercritical

  16. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    SciTech Connect

    Anderson, Mark; Sienicki, James; Moisseytsev, Anton; Nellis, Gregory; Klein, Sanford

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO2 (S-CO2) or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see

  17. Decomposition of prepolymers and molding materials of phenol resin in subcritical and supercritical water under an Ar atmosphere

    SciTech Connect

    Suzuki, Yuichi; Tagaya, Hideyuki; Kadokawa, Junichi; Chiba, Koji; Asou, Tetsuo

    1999-04-01

    Seven prepolymers of phenol resin were decomposed into their monomers such as phenol, cresols, and p-isopropylphenol by reactions at 523--703 K under an Ar atmosphere in subcritical and supercritical water. The total yield of identified products depended on the kind of prepolymers, and the maximum yield reached 78% in the reaction at 703 K for 0.5 h. The decomposition reactions were accelerated by the addition of Na{sub 2}CO{sub 3}, and the yields of identified monomers reached more than 90%. Two kinds of molding materials of phenol resin whose content of phenol resin was less than 50% were also decomposed mainly into phenol and cresols by the reaction in supercritical water.

  18. Stereoselective Determination of Tebuconazole in Water and Zebrafish by Supercritical Fluid Chromatography Tandem Mass Spectrometry.

    PubMed

    Liu, Na; Dong, Fengshou; Xu, Jun; Liu, Xingang; Chen, Zenglong; Tao, Yan; Pan, Xinglu; Chen, XiXi; Zheng, Yongquan

    2015-07-22

    A simple and sensitive method for the enantioselective determination of tebuconazole enantiomers in water and zebrafish has been established using supercritical fluid chromatography (SFC)-MS/MS. The effects of the chiral stationary phases, mobile phase, auto back pressure regulator (ABPR) pressure, column temperature, flow rate of the mobile phase, and compensation pump solvent were evaluated. Finally, the optimal SFC-MS/MS working conditions were determined to include a CO2/MeOH mobile phase (87:13, v/v), 2.0 mL/min flow rate, 2200 psi ABPR, and 30 °C column temperature using a Chiralpak IA-3 chiral column under electrospray ionization positive mode. The modified QuEChERS method was applied to water and zebrafish samples. The mean recoveries for the tebuconazole enantiomers were 79.8-108.4% with RSDs ≤ 7.0% in both matrices. The LOQs ranged from 0.24 to 1.20 μg/kg. The developed analytical method was further validated by application to the analysis of authentic samples.

  19. Recovery of metals from waste printed circuit boards by supercritical water pre-treatment combined with acid leaching process.

    PubMed

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2013-05-01

    Waste printed circuit boards (PCBs) contain a large number of metals such as Cu, Sn, Pb, Cd, Cr, Zn, and Mn. In this work, an efficient and environmentally friendly process for metals recovery from waste PCBs by supercritical water (SCW) pre-treatment combined with acid leaching was developed. In the proposed process, waste PCBs were pre-treated by SCW, then the separated solid phase product with concentrated metals was subjected to an acid leaching process for metals recovery. The effect of SCW pre-treatment on the recovery of different metals from waste PCBs was investigated. Two methods of SCW pre-treatment were studied: supercritical water oxidation (SCWO) and supercritical water depolymerization (SCWD). Experimental results indicated that SCWO and SCWD pre-treatment had significant effect on the recovery of different metals. SCWO pre-treatment was highly efficient for enhancing the recovery of Cu and Pb, and the recovery efficiency increased significantly with increasing pre-treatment temperature. The recovery efficiency of Cu and Pb for SCWO pre-treatment at 420°C was 99.8% and 80%, respectively, whereas most of the Sn and Cr were immobilized in the residue. The recovery of all studied metals was enhanced by SCWD pre-treatment and increased along with pre-treatment temperature. Up to 90% of Sn, Zn, Cr, Cd, and Mn could be recovered for SCWD pre-treatment at 440°C.

  20. Oxidation of phenolics in supercritical water. Combined quarterly technical progress report, December 1, 1995--May 31, 1996

    SciTech Connect

    1996-11-01

    Over the past two quarters, our work has focused on three main areas. The first area of interest involved a reexamination of the rate laws that were formed in past quarters. A possible error was discovered for the analytical methods used in the o-cresol oxidation study and the data were corrected, yielding a new rate equation. The data for hydroxybenzaldehydes were studied again, this time as a system of parallel oxidation and thermolysis reactions. The second area in which progress was made was the study of the thermolysis of nitrophenols and dihydroxybenzenes in supercritical water. These investigations were needed to determine the effect that pyrolysis or hydrolysis had on our previous supercritical water oxidation experiments. Thirdly, we have continued to investigate the use of molecular orbital theory in the determination reactivity indices. A reactivity index, such as the enthalpy of formation, may be used in a structure-reactivity relationship to summarize the kinetics for the oxidation of phenolics in supercritical water. Progress in each of these areas is summarized.

  1. Water-gas shift reaction on alumina-supported Pt-CeOx catalysts prepared by supercritical fluid deposition

    DOE PAGES

    Deal, Jacob W.; Le, Phong; Corey, C. Blake; ...

    2016-08-25

    Alumina-supported platinum catalysts, both with and without ceria, were prepared by supercritical fluid deposition and evaluated for activity for water-gas shift reaction. The organometallic precursor, platinum(II) acetylacetonate, was deposited from solution in supercritical carbon dioxide. Analysis of the catalysts by high resolution scanning transmission electron microscopy indicated that platinum was present in the form of highly dispersed metal nanoparticles. Pretreatment of the alumina-supported ceria in hydrogen prior to the deposition of the platinum precursor resulted in more platinum nucleated on ceria than non-pretreated alumina-supported ceria but varied in both particle size and structure. The ceria-containing catalyst that was not pretreatedmore » exhibited a more uniform particle size, and the Pt particles were encapsulated in crystalline ceria. Reaction rate measurements showed that the catalyst was more active for water-gas shift, with reaction rates per mass of platinum that exceeded most literature values for water-gas shift reaction on Pt-CeOx catalysts. The high activity was attributed to the significant fraction of platinum/ceria interfacial contact. We found that these results show the promise of supercritical fluid deposition as a scalable means of synthesizing highly active supported metal catalysts that offer efficient utilization of precious metals.« less

  2. Comparison between integral equation method and molecular dynamics simulation for three-body forces: Application to supercritical argon

    NASA Astrophysics Data System (ADS)

    Bomont, Jean-Marc; Bretonnet, Jean-Louis; van der Hoef, Martin A.

    2001-04-01

    The prediction of the structural and thermodynamic properties of supercritical argon has been carried out by two independent routes: semianalytical calculations and numerical simulations. The first one is based on the hybridized mean spherical approximation (HMSA) conjugated with an effective pair potential that incorporates multipole dispersion interactions. The second one uses a very recent numerical simulation technique, inspired by the Car-Parrinello method [van der Hoef et al., J. Chem. Phys. 111, 1520 (1999)], which contains an effective quantum-mechanical representation of the underlying electronic structure. The latter approach allows us to treat the contribution of the three-body effects as well, and to validate the use of an effective pair potential for them in the framework of the self-consistent integral equation method. For all the supercritical argon states studied, the results obtained with the semianalytical approach are in good agreement with the predictions of the numerical simulation. Here it is shown that HMSA remains competitive with molecular dynamics simulation when the triple-dipole and the dipole-dipole-quadrupole three-body terms are taken into account.

  3. Gibbs ensemble Monte Carlo simulation of supercritical CO2 adsorption on NaA and NaX zeolites

    NASA Astrophysics Data System (ADS)

    Liu, Shanshan; Yang, Xiaoning

    2006-06-01

    Adsorption of supercritical carbon dioxide on two kinds of zeolites with identical chemical composition but different pore structure (NaA and NaX) was studied using the Gibbs ensemble Monte Carlo simulation. The model frameworks for the two zeolites with Si /Al ratio being unity have been chosen as the solid structures in the simulation. The adsorption behaviors of supercritical CO2 on the NaA and NaX zeolites, based on the adsorption isotherms and isosteric heats of adsorption, were discussed in detail and were compared with the available experimental results. A good agreement between the simulated and experimental results is obtained for both the adsorbed amount and the bulk phase density. The intermediate configurational snapshots and the radial distribution functions between zeolite and adsorbed CO2 molecules were collected in order to investigate the preferable adsorption locations and the confined structure behavior of CO2. The structure behaviors of the adsorbed CO2 molecules show various performances, as compared with the bulk phase, due to the confined effect in the zeolite pores.

  4. Processing of high level waste: Spectroscopic characterization of redox reactions in supercritical water. 1998 annual progress report

    SciTech Connect

    Arrington, C.A. Jr.

    1998-06-01

    'The author is engaged in a collaborative research effort with Los Alamos staff scientists Steven Buelow, Jeanne Robinson, and Bernie Foy all staff members in group CST-6. The work proposed by these LANL staff scientists is directed towards the destruction of complexants and oxidation of chromium and technetium by hydrothermal processing in near critical or supercritical aqueous solutions. The work addresses two areas of investigation related to ongoing efforts at LANL: (1) kinetic studies of oxidation-reduction reactions in supercritical water; (2) measurement of physical properties of ionic solutes in supercritical water. All of the work during this first year was carried out at Los Alamos National Lab. During the Summer program at LANL all equipment and supplies were provided through Dr. Buelow''s program at LANL. The author has now set up a Raman spectroscopy lab at Furman. Using departmental funds he purchased an optical bench, a laser, and a CCD detector, and a grant from the Dreyfus Foundation assisted in the purchase of a Raman spectrometer. He is now able to carry out experiments using the Raman system at Furman. The plan is to continue the Summer collaboration at LANL and carry out experiments at Furman during the academic year.'

  5. Environmental assessment of supercritical water oxidation and other sewage sludge handling options.

    PubMed

    Svanström, Magdalena; Fröling, Morgan; Olofsson, Mattias; Lundin, Margareta

    2005-08-01

    Sustainable development relies on the eco-efficient use of all flows in society; more value created out of each resource unit. Supercritical water oxidation (SCWO) can be used for treatment of wet organic waste. The technology has been under development for over 20 years but has not yet been fully commercialized. SCWO allows for complete oxidation of all organics in sewage sludge and almost complete recovery of the inherent energy, essentially without harmful emissions. In this paper, a life-cycle assessment (LCA) of sewage sludge SCWO (Aqua-Critox) is presented and the results are compared with LCA results for other sludge handling options: agricultural use, co-incineration with municipal solid waste, incineration with subsequent phosphorus extraction (Bio-Con) and sludge fractionation with phosphorus recovery (Cambi-KREPRO). For SCWO, beneficial utilization of the heat of reaction is of crucial importance for the outcome. The electricity consumed by pumping and the nitrous oxide produced are other important parameters. The best sludge handling option from an environmental point of view depends on what aspect is considered more important in the impact assessment. Regarding global warming, the energy recovery methods perform better than agricultural use.

  6. Fabrication of water-repellent cellulose fiber coated with magnetic nanoparticles under supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Xu, Shengjie; Shen, Danping; Wu, Peiyi

    2013-04-01

    Hematite nanoparticle-coated magnetic composite fiber was prepared in supercritical carbon dioxide (scCO2). With the help of scCO2, cellulose did not need to be dissolved and regenerated and it could be in any form (e.g., cotton wool, filter paper, textile, etc.). The penetrating and swelling effect of scCO2, the slowing reaction rate of weak alkalis, and the template effect of cellulose fibers were discovered to be the key factors for the fabrication of ordered cellulose/Fe2O3 composite fibers. The structures of the composite fibers as well as the layers of Fe2O3 particles were characterized by means of scanning/transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman investigation. It was found that α-Fe2O3 granules which ranged from 30 to 85 nm with average diameter around 55 nm would be generated on the surface of cellulose fibers via potassium acetate, while irregular square prisms (ranged from 200 to 600 nm) which were composed of smaller nanoparticles ( 10 nm) would be fabricated via urea. And, the obtained composite was highly water repellent with superparamagnetic or ferromagnetic properties.

  7. Extraction of weakly reductive and reductive coals with sub- and supercritical water

    SciTech Connect

    Bo Wu; Haoquan Hu; Shiping Huang; Yunming Fang; Xian Li; Meng Meng

    2008-11-15

    On a semi-continuous apparatus, a weakly reductive Shenfu-Dongsheng (SD) coal and a reductive Pingshuo (PS) coal were non-isothermally extracted with sub- and supercritical water to explore the differences between the two coals. The effect of the temperature on the extract formation rate, conversion, and product composition under different pressures was investigated. The extraction results of two coal samples indicate that the extract formation rate has a maximum in the studied temperature range between room temperature and 500{degree}C. The temperature corresponding to the maximum extract formation rate, changing with the pressure, is between 390 and 410{degree}C. The gas yield, extract yield, and conversion of two coals increase with the increasing pressure. In comparison to PS coal, SD coal has a low temperature corresponding to the maximum extract formation rate under the same pressure. Both coals have a main fraction of asphaltene, but SD coal has a higher fraction of oil than PS coal. The main gas components are CO{sub 2}, CH{sub 4}, and H{sub 2}. The gas from PS coal has a higher CH{sub 4} content and lower CO{sub 2} content than that from SD coal. The analysis results of the extraction residue indicated that SD coal has a low residue yield and the residue shows a large surface area and small average pore diameter compared to PS coal. 17 refs., 4 figs., 8 tabs.

  8. Recovery of phosphorus from sewage sludge in combination with the supercritical water process.

    PubMed

    Zhai, Yunbo; Xiang, Bobin; Chen, Hongmei; Xu, Bibo; Zhu, Lu; Li, Caiting; Zeng, Guangming

    2014-01-01

    In this paper, the fraction transformation and recovering of phosphorus (P) from sewage sludge (SS) residues, derived from supercritical water process, was investigated by extraction and precipitation processes. In addition, the form of heavy metals existing during the recovery process is also discussed. First, P in the solid residues was recovered by acid leaching with HCl, and then the derived P was adsorbed by activated alumina (Al(2)O(3)). Finally, the Al2O3 was desorbed with low concentration of NaOH. Results showed that 80% organic P was converted into HCl-P. The total P (the chief ingredient of HCl-P) in solid residue increased from 86.1 to 95.6% as temperature increased from 350 to 400 °C. The amount of P in the solid residue that was dissolved by 1 M HCl was 97.8%, and over 95% of P in the leaching solution (15 mg/L for P concentration) was adsorbed after 5.0 g of Al(2)O(3) powder was added. The amount of P desorbed from Al(2)O(3) with 0.1 M NaOH was 98.7%. Ultimately, over 85% of TP in SS was recovered. Moreover, the proportion of Cu, Zn and Pb in the extracted P products was lower than 5%.

  9. Experimental study of the supercritical water oxidation of recalcitrant compounds under hydrothermal flames using tubular reactors.

    PubMed

    Cabeza, Pablo; Bermejo, M Dolores; Jiménez, Cristina; Cocero, M José

    2011-04-01

    The hydrothermal flame is a new method of combustion that takes place in supercritical water oxidation reactions when the temperature is higher than the autoignition temperature. In these conditions, waste can be completely mineralized in residence times of milliseconds without the formation of by-products typical of conventional combustion. The object of this work is to study the hydrothermal flame formation in aqueous streams with high concentrations of recalcitrant compounds: an industrial waste with a high concentration of acetic acid and various concentrated solutions of ammonia. A tubular reactor with a residence time of 0.7 s was used. Oxygen was used as the oxidant and isopropyl alcohol (IPA) as co-fuel to reach the operation temperature required. The increase of IPA concentrations in the feeds resulted in a better TOC removal. For mixtures containing acetic acid, 99% elimination of TOC was achieved at temperatures higher than 750 °C. In the case of mixtures containing ammonia, TOC removals reached 99% while maximum total nitrogen removals were never higher than 94%, even for reaction temperatures higher than 710 °C. Ignition was observed at concentrations as high as 6% wt NH(3) with 2% wt IPA while at IPA concentrations below 2% wt IPA, the ammonia did not ignite.

  10. Effect of ultrasonic impact peening on the corrosion of ferritic-martensitic steels in supercritical water

    NASA Astrophysics Data System (ADS)

    Dong, Ziqiang; Liu, Zhe; Li, Ming; Luo, Jing-Li; Chen, Weixing; Zheng, Wenyue; Guzonas, Dave

    2015-02-01

    Ferritic-Martensitic (F/M) steels are important candidate alloys to be used in the next generation (Generation-IV) SCWRs. In this work, two F/M steels with the same Cr content of around 12 wt.% and varied Si content from 0.6 wt.% to 2.2 wt.% were evaluated in supercritical water (SCW) at 500 °C and 25 MPa for up to 1000 h. The effect of ultrasonic shot peening on the oxidation behavior of these F/M steels have been investigated. The results showed that the oxidation was affected by the Si content as well as the surface modification. The F/M steel with low Si concentration exhibited higher corrosion resistance than that of the alloy with high Si content. Shot peening, which could modify the microstructure at the surface, showed significantly beneficial effect to improving the oxidation resistance. A thin, uniform oxide layer formed on the peened sample could be attributed to the enhanced diffusion of Cr induced by the surface modification.

  11. Computational Thermodynamics for Interpreting Oxidation of Structural Materials in Supercritical Water

    SciTech Connect

    Tan, Lizhen; Yang, Ying; Allen, Todd R.; Busby, Jeremy T

    2011-01-01

    Supercritical water-cooled reactor (SCWR) is one of the advanced nuclear reactors being developed to meet the soaring energy demand. The corrosion resistance of structural materials used in SCWR becomes one of the major concerns as the operation conditions being raised up to {approx}600 C and {approx}25 MPa. Oxidation has been observed as the major corrosion behavior. To mitigate the oxidation corrosion, stabilities of metals and oxides need to be understood with respect to environmental temperature and oxygen partial pressure. Computational thermodynamics provides a practical approach to assess phase stabilities of such multi-component multi-variable systems. In this study, calculated phase stability diagrams of alloys and corresponding oxides were used to guide the interpretation of oxidation behaviors of SCW-exposed structural materials. Examples include ferritic-martensitic steel, austenitic steels and Ni-base alloy, e.g., HCM12A (Fe-12Cr), D9 (Fe-15Cr-15Ni), 800H (Fe-21Cr-32Ni), and 690 (Ni-30Cr-10Fe). Calculated results are in good overall consistence with the experimental data.

  12. Noble-metal-free bimetallic alloy nanoparticle-catalytic gasification of phenol in supercritical water

    DOE PAGES

    Jia, Lijuan; Yu, Jiangdong; Chen, Yuan; ...

    2017-02-27

    The exploration of non-noble-metal catalysts for high efficiency gasification of biomass in supercritical water (SCW) is of great significance for the sustainable development. A series of Ni–M (M = Co or Zn) bimetallic nanoparticles supported on graphitized carbon black were synthesized and examined as catalysts for gasification of phenol in SCW. We found that a nearly complete gasification of phenol can be achieved even at a low temperature of 450 °C with the bimetallic nanoparticles catalysts. Kinetic study indicated the activation energy for phenol gasification were 20.4 ± 2.6 and 43.6 ± 2.6 kJ/mol for Ni20Zn15 and Ni20Co15 catalyst, respectively.more » Furthermore, XRD, XPS and TEM were performed to characterize the catalysts and the results showed the formation of NiCo and NiZn alloy phase. Catalyst recycling experiments were also conducted to evaluate the stability of the catalysts. The characterization of used catalysts suggest that the severe agglomeration of nanoparticles leads to the decrease in catalytic activity.« less

  13. Supercritical water oxidation of colored smoke, dye, and pyrotechnic compositions. Phase 1, Final report

    SciTech Connect

    Rice, S.F.; LaJeunesse, C.A.; Hanush, R.G.; Aiken, J.D.; Johnston, S.C.

    1994-01-01

    The US military stockpile has large quantities of obsolete munitions awaiting disposal. Although suitable means for the safe dismantlement of much of this stockpile have been identified, there are still considerable quantities of specialty materials for which existing methods have been deemed inappropriate from an environmental standpoint. Among these munitions are colored spotting dyes and a wide assortment of pyrotechnics, including colored smokes and flares. In open bum or incineration treatment processes these materials produce large quantities of toxic, and possibly carcinogenic, gases and particulate matter. The U.S Army Armament Research, Development and Engineering Center at Picatinny Arsenal, NJ is interested in developing a method of treatment that will dispose of these munitions without the difficulties identified above. This report examines the feasibility of supercritical water oxidation, an emerging waste treatment technology, to process these materials. Four colored dyes and one pyrotechnic smoke composition were processed in a flow reactor, and the effluent was analyzed to determine the effectiveness of the processing. The tests showed that all of these materials could by oxidized to much less hazardous compounds in less than 10 seconds with a destruction and removal efficiency (DRE) typically > 99.5%. Two technical issues were identified as needing more attention in Phase II of this project: formation of sulfate and chloride salt deposits within the flow reactor and corrosion of the materials of construction.

  14. Supercritical water oxidation of quinazoline: Reaction kinetics and modeling.

    PubMed

    Gong, Yanmeng; Guo, Yang; Wang, Shuzhong; Song, Wenhan; Xu, Donghai

    2017-03-01

    This paper presents a first quantitative kinetic model for supercritical water oxidation (SCWO) of quinazoline that describes the formation and interconversion of intermediates and final products at 673-873 K. The set of 11 reaction pathways for phenol, pyrimidine, naphthalene, NH3, etc, involved in the simplified reaction network proved sufficient for fitting the experimental results satisfactorily. We validated the model prediction ability on CO2 yields at initial quinazoline loading not used in the parameter estimation. Reaction rate analysis and sensitivity analysis indicate that nearly all reactions reach their thermodynamic equilibrium within 300 s. The pyrimidine yielding from quinazoline is the dominant ring-opening pathway and provides a significant contribution to CO2 formation. Low sensitivity of NH3 decomposition rate to concentration confirms its refractory nature in SCWO. Nitrogen content in liquid products decreases whereas that in gaseous phase increases as reaction time prolonged. The nitrogen predicted by the model in gaseous phase combined with the experimental nitrogen in liquid products gives an accurate nitrogen balance of conversion process.

  15. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology.

    PubMed

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-09-01

    To achieve the maximum H2 yield (GYH2), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GYH2, CR and TRE were established with Box-Behnken design. GYH2, CR and TRE reached up to 14.32mmol·gTOC(-1), 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO2 and H2 were the most abundant gaseous products. As a product of nitrogen-containing organics, NH3 has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient.

  16. Supercritical water gasification of Eucalyptus grandis and related pyrolysis char: Effect of feedstock composition.

    PubMed

    Louw, Jeanne; Schwarz, Cara E; Burger, Andries J

    2016-09-01

    Eucalyptus grandis (E. grandis) wood and char products derived from pyrolysis of E. grandis wood, were gasified in supercritical water at 450°C - with and without the use of a homogeneous (K2CO3) and heterogeneous (Ni/Al2O3-SiO2) catalyst. Gas yields and gasification efficiencies were measured experimentally and compared to calculated thermodynamic equilibrium values, specifically considering the effects of the O/C ratio and volatile matter content of the feed material. Thermodynamically, feed material with lower O/C ratios (0.22) typically resulted in higher CH4 yields (30mol/kgfeed,dry) and gasification efficiencies (188%). However, experimentally, feed material with lower O/C ratios and lower volatile matter resulted in the lowest CH4 yields and gasification efficiencies. Furthermore, a linear relationship between the carbon efficiency (CE) and both the volatile matter content and O/C ratio of the feed material was found to hold true in both catalytic and non-catalytic experiments.

  17. Silicate Carbonation Processes in Water-Bearing Supercritical CO2 Fluids: Implications for Geologic Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Miller, Q. R.; Schaef, T.; Thompson, C.; Loring, J. S.; Windisch, C. F.; Bowden, M. E.; Arey, B. W.; McGrail, P.

    2012-12-01

    Global climate change is viewed by many as an anthropogenic phenomenon that could be mitigated through a combination of conservation efforts, alternative energy sources, and the development of technologies capable of reducing carbon dioxide (CO2) emissions. Continued increases of atmospheric CO2 concentrations are projected over the next decade, due to developing nations and growing populations. One economically favorable option for managing CO2 involves subsurface storage in deep basalt formations. The silicate minerals and glassy mesostasis basalt components act as metal cation sources, reacting with the CO2 to form carbonate minerals. Most prior work on mineral reactivity in geologic carbon sequestration settings involves only aqueous dominated reactions. However, in most sequestration scenarios, injected CO2 will reside as a buoyant fluid in contact with the sealing formation (caprock) and slowly become water bearing. Comparatively little laboratory research has been conducted on reactions occurring between minerals in the host rock and the wet scCO2. In this work, we studied the carbonation of wollastonite [CaSiO3] exposed to variably wet supercritical CO2 (scCO2) at a range of temperatures (50, 55 and 70 °C) and pressures (90,120 and 160 bar) in order to gain insight into reaction processes. Mineral transformation reactions were followed by two novel in situ high pressure techniques, including x-ray diffraction that tracked the rate and extents of wollastonite conversion to calcite. Increased dissolved water concentrations in the scCO2 resulted in increased carbonation approaching ~50 wt. %. Development of thin water films on the mineral surface were directly observed with infrared (IR) spectroscopy and indirectly with 18O isotopic labeling techniques (Raman spectroscopy). The thin water films were determined to be critical for facilitating carbonation processes in wet scCO2. Even in extreme low water conditions, the IR technique detected the formation of

  18. Water structure and dynamics in phosphate fluorosurfactant based reverse micelle: A computer simulation study

    NASA Astrophysics Data System (ADS)

    Senapati, Sanjib; Berkowitz, Max L.

    2003-01-01

    We performed a molecular dynamics simulation on a system containing a water pool inside the reverse micelle made up of an assembly of phosphate fluorosurfactant molecules dissolved in supercritical carbon dioxide. The water molecules in the first solvation shell of the headgroup lose the water to water tetrahedral hydrogen bonded network but are strongly bonded to the surfactant headgroups. This change in inter-water hydrogen bonding in connection with the confined geometry of the reverse micelle slows down the translational and especially the rotational dynamics of water.

  19. Analysis and generalization of experimental data on heat transfer to supercritical pressure water flow in annular channels and rod bundles

    NASA Astrophysics Data System (ADS)

    Deev, V. I.; Kharitonov, V. S.; Churkin, A. N.

    2017-02-01

    Experimental data on heat transfer to supercritical pressure water presented at ISSCWR-5, 6, and 7 international symposiums—which took place in 2011-2015 in Canada, China, and Finland—and data printed in recent periodical scientific publications were analyzed. Results of experiments with annular channels and three- and four-rod bundles of heating elements positioned in square or triangular grids were examined. Methodology used for round pipes was applied at generalization of experimental data and establishing of correlations suitable for engineering analysis of heat exchange coefficient in conditions of strongly changing water properties in the near-critical pressure region. Empiric formulas describing normal heat transfer to supercritical pressure water mowing in annular channels and rod bundles were obtained. As compared to existing recommendations, suggested correlations are distinguished by specified dependency of heat exchange coefficient on density of heat flux and mass flow velocity of water near pseudo-critical temperature. Differences between computed values of heat exchange coefficient and experimental data usually do not exceed ±25%. Detailed statistical analysis of deviations between computed and experimental results at different states of supercritical pressure water flow was carried out. Peculiarities of deteriorated heat exchange were considered and their existence boundaries were defined. Experimental results obtained for these regimes were generalized using criteria by J.D. Jackson that take the influence of thermal acceleration and Archimedes forces on heat exchange processes into account. Satisfactory agreement between experimental data on heat exchange at flowing of water in annular channels and rod bundles and data for round pipes was shown.

  20. Near-infrared spectroscopic study of a water-in-supercritical CO2 microemulsion as a function of the water content.

    PubMed

    Takebayashi, Yoshihiro; Sagisaka, Masanobu; Sue, Kiwamu; Yoda, Satoshi; Hakuta, Yukiya; Furuya, Takeshi

    2011-05-19

    A water-in-supercritical CO(2) microemulsion is a reverse micelle encapsulating a nanometer-size water droplet dispersed in supercritical CO(2). In the microemulsion solution, water exists not only in the reverse micelle but also in the solvent CO(2). For quantitative analysis of the water distribution, near-infrared spectra of water + CO(2) and water + surfactant + CO(2) mixtures were measured over a wide range of water/CO(2) ratios from 0.1 to 1.0 wt% at 60 °C and 30.0 MPa. The stretching combination band of water was decomposed into two components, a sharp one peaked at 7194 cm(-1) assigned to monomeric water dissolved in CO(2) and a broad one around 7000 cm(-1) corresponding to aggregated water in the microemulsion. Integrated molar absorptivities of these types of water were negligibly different from each other, despite the different hydrogen-bonding environments. The spectral decomposition revealed that water is distributed mainly into CO(2) at water contents smaller than 0.5 wt% and then is introduced into the microemulsion after saturation of water in CO(2) and full hydration of the surfactant headgroup.

  1. Fayalite Dissolution and Siderite Formation in Water-Saturated Supercritical CO2

    SciTech Connect

    Qafoku, Odeta; Kovarik, Libor; Kukkadapu, Ravi K.; Ilton, Eugene S.; Arey, Bruce W.; Tucek, Jiri; Felmy, Andrew R.

    2012-11-25

    Olivines, a significant constituent of basaltic rocks, have the potential to immobilize permanently CO2 after it is injected in the deep subsurface, due to carbonation reactions occurring between CO2 and the host rock. To investigate the reactions of fayalitic olivine with supercritical CO2 (scCO2) and formation of mineral carbonates, experiments were conducted at temperatures of 35 °C to 80 °C, 90 atm pressure and anoxic conditions. For every temperature, the dissolution of fayalite was examined both in the presence of liquid water and H2O-saturated scCO2. The experiments were conducted in a high pressure batch reactor at reaction time extending up to 85 days. The newly formed products were characterized using a comprehensive suite of bulk and surface characterization techniques X-ray diffraction, Transmission/Emission Mössbauer Spectroscopy, Scanning Electron Microscopy coupled with Focused Ion Beam, and High Resolution Transmission Electron Microscopy. Siderite with rhombohedral morphology was formed at 35 °C, 50 °C, and 80 °C in the presence of liquid water and scCO2. In H2O-saturated scCO2, the formation of siderite was confirmed only at high temperature (80 °C). Characterization of reacted samples in H2O-saturated scCO2 with high resolution TEM indicated that siderite formation initiated inside voids created during the initial steps of fayalite dissolution. Later stages of fayalite dissolution result in the formation of siderite in layered vertical structures, columns or pyramids with a rhombus base morphology.

  2. Supercritical Propanol-Water Synthesis and Comprehensive Size Characterisation of Highly Crystalline anatase TiO 2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hald, Peter; Becker, Jacob; Bremholm, Martin; Pedersen, Jan S.; Chevallier, Jacques; Iversen, Steen B.; Iversen, Bo B.

    2006-08-01

    Highly crystalline anatase TiO 2 nanoparticles have been synthesised in less than 1 min in a supercritical propanol-water mixture using a continuous flow reactor. The synthesis parameter space ( T, P, concentration) has been explored and the average particle size can be accurately controlled within 10-18 nm with narrow size distributions (2-3 nm). At subcritical conditions amorphous products are obtained, whereas a broad range of T and P in the supercritical regime gives 11-14 nm particles. At high temperature and pressure, the particles size increase to 18 nm. The nanoparticles have been extensively characterised with powder X-ray diffraction (PXRD), transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) with excellent agreement on size and size distribution parameters. The SAXS analysis suggests disk-shaped particles with diameters that are approximately double the height. For comparison, a series of conventional autoclave sol-gel syntheses have been carried out. These also produce phase-pure anatase nanoparticles, but with much broader size distributions and at much longer synthesis times (hours). The study demonstrates that synthesis in supercritical fluids is a very promising method for manipulating the size and size distribution of nanoparticles, thus removing one of the key limitations in many applications of nanomaterials.

  3. Utilization of geopressured resources in the oxidation of organic waste in supercritical water. Phase I, Final report

    SciTech Connect

    Diaz, Alexander F.; Herzog, Howard J.; Tester, Jefferson W.

    1992-11-01

    that concept, the waste, brine and oxidant (air or oxygen) are introduced into the SCWO reactor at the system pressure of 234 bar (3400 psia). The heat of oxidation raises the temperature of the system to about 600 C (1100 F). Due to the low solubility of inorganic salts in supercritical water (about 200 ppm or less) (Armellini and Tester, 1990, 1991a, 1991b), solid salt forms and falls to the lower section of the reactor, where it is cooled and quenched with water, creating a concentrated (organic-free) brine that would be mixed with brackish water and reinjected back to the geopressured well. Power is generated by the expansion of the products of the SCWO process through a series of multi-stage turboexpanden. A processing capacity of 100,000 gallons per day (gpd) was initially taken as the design basis, following some investigations carried out at the Idaho National Engineering Laboratory (Propp et al., 1990). The process was modeled using the ASPEN PLUS{trademark} process flowsheet simulator and material and energy balances were determined. Both the cases of using air and oxygen as oxidant were investigated. Toluene was chosen as the model compound to represent the organic waste. Turbine design calculations based on the volumetric flowrates obtained for a 100,000 gpd capacity resulted in unrealistically high rotor rotational speeds and small wheel pitch diameters to achieve optimum efficiencies. Higher SCWO effluent flowrates would lower rotor rotational speeds and increase wheel pitch diameters to more practical levels. Thus, a 42-fold larger design capacity of 100,000 barrels per day (bpd) was adopted as the basis for an above-ground base case. The results for the material and energy balances for a processing capacity of 100,000 bpd using air and oxygen as oxidant scale up linearly from the results for the 100,000 gpd case. The best case flowsheet corresponding to a 100,000 bpi case using oxygen as oxidant is given in Figure 1. Our conceptual design study suggests

  4. Investigation of parameter estimation and impact of injection rate on relative permeability measurements for supercritical CO2 and water by unsteady-state method

    NASA Astrophysics Data System (ADS)

    Hiratsuka, Y.; Yamamoto, H.

    2014-12-01

    CCS (Carbon dioxide Capture and Storage) is a promising option for mitigating climate changes. To predict the behavior of injected CO2 in a deep reservoir, relative permeability of supercritical CO2 and water of the reservoir rock is one of the most fundamental and influential properties. For determining the relative permeability, we employed the unsteady state method, in which the relative permeability is determined based on history matching of transient monitoring data with a multi-phase flow model. The unsteady-state method is relatively simple and short, but obviously its accuracy strongly depends on the flow model assumed in the history matching. In this study, we conducted relative permeability measurements of supercritical CO2-water system for Berea sandstone with the unsteady-state method under a reservoir condition at a 1km depth (P= 9.5MPa, T = 44˚C). Automatic history matching was performed with an inversion simulator iTOUGH2/ECO2N for multi-phase flow system of supercritical CO2, NaCl, and water. A sensitivity analysis of relative permeability parameters for CO2 and water was carried out to better understand the uniqueness and the uncertainty of the optimum solution estimated by the history matching. Among the parameters of the Corey-type curve employed in this study, while the end-point permeability could be optimized in a limited range, the other parameters were correlated and their combinations were not unique. However it was found that any combination of these parameters results in nearly identical shapes of the curve in the range of CO2 saturation in this study (0 to 60%). The optimally estimated curve from the unsteady-method was well comparable with those from the steady-state method acquired in the previous studies. Our experiment also focuses on the impact of injection rate on the estimates of relative permeability, as it is known that the injection rate could have a significant effect on fluid distribution such as viscous fingering with

  5. Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions.

    PubMed

    Saraji, Soheil; Goual, Lamia; Piri, Mohammad; Plancher, Henry

    2013-06-11

    Injection of carbon dioxide in deep saline aquifers is considered as a method of carbon sequestration. The efficiency of this process is dependent on the fluid-fluid and rock-fluid interactions inside the porous media. For instance, the final storage capacity and total amount of capillary-trapped CO2 inside an aquifer are affected by the interfacial tension between the fluids and the contact angle between the fluids and the rock mineral surface. A thorough study of these parameters and their variations with temperature and pressure will provide a better understanding of the carbon sequestration process and thus improve predictions of the sequestration efficiency. In this study, the controversial concept of wettability alteration of quartz surfaces in the presence of supercritical carbon dioxide (sc-CO2) was investigated. A novel apparatus for measuring interfacial tension and contact angle at high temperatures and pressures based on Axisymmetric Drop Shape Analysis with no-Apex (ADSA-NA) method was developed and validated with a simple system. Densities, interfacial tensions, and dynamic contact angles of CO2/water/quartz systems were determined for a wide range of pressures and temperatures relevant to geological sequestration of CO2 in the subcritical and supercritical states. Image analysis was performed with ADSA-NA method that allows the determination of both interfacial tensions and contact angles with high accuracy. The results show that supercritical CO2 alters the wettability of quartz surface toward less water-wet conditions compared to subcritical CO2. Also we observed an increase in the water advancing contact angles with increasing temperature indicating less water-wet quartz surfaces at higher temperatures.

  6. Efficient decomposition of a new fluorochemical surfactant: perfluoroalkane disulfonate to fluoride ions in subcritical and supercritical water.

    PubMed

    Hori, Hisao; Saito, Hiroki; Sakai, Hidenori; Kitahara, Toshiyuki; Sakamoto, Takehiko

    2015-06-01

    Decomposition of (-)O3SC3F6SO3(-) in subcritical and supercritical water was investigated, and the results were compared with the results for C3F7SO3(-). This is the first report on the decomposition of perfluoroalkane disulfonates, which are being introduced in electronics industry as greener alternatives to environmentally persistent and bioaccumulative perfluoroalkyl surfactants. Addition of zerovalent iron to the reaction system dramatically increased the yield of F(-) in the reaction solution: when the reaction of (-)O3SC3F6SO3(-) was carried out in subcritical water at 350°C for 6h, the F(-) yield was 70%, which was 23times the yield without zerovalent iron. Prolonged reaction increased the F(-) formation: after 18h, the F(-) yield from the reaction of (-)O3SC3F6SO3(-) reached 81%, which was 2.1times the F(-) yield from the reaction of C3F7SO3(-). Although the reactivity of FeO toward these substrates was lower than zerovalent iron in subcritical water, the reactivity was enhanced when the reaction temperature was elevated to supercritical state, at which temperature FeO underwent in situ disproportionation to form zerovalent iron, which acted as the reducing agent. When the reaction of (-)O3SC3F6SO3(-) was carried out in the presence of FeO in supercritical water at 380°C for 18h, the F(-) yield reached 92%, which was the highest yield among tested.

  7. A Priori Analysis of Subgrid-Scale Models for Large Eddy Simulations of Supercritical Binary-Species Mixing Layers

    NASA Technical Reports Server (NTRS)

    Okong'o, Nora; Bellan, Josette

    2005-01-01

    Models for large eddy simulation (LES) are assessed on a database obtained from direct numerical simulations (DNS) of supercritical binary-species temporal mixing layers. The analysis is performed at the DNS transitional states for heptane/nitrogen, oxygen/hydrogen and oxygen/helium mixing layers. The incorporation of simplifying assumptions that are validated on the DNS database leads to a set of LES equations that requires only models for the subgrid scale (SGS) fluxes, which arise from filtering the convective terms in the DNS equations. Constant-coefficient versions of three different models for the SGS fluxes are assessed and calibrated. The Smagorinsky SGS-flux model shows poor correlations with the SGS fluxes, while the Gradient and Similarity models have high correlations, as well as good quantitative agreement with the SGS fluxes when the calibrated coefficients are used.

  8. Solubilization of the poorly water soluble drug, telmisartan, using supercritical anti-solvent (SAS) process.

    PubMed

    Park, Junsung; Cho, Wonkyung; Cha, Kwang-Ho; Ahn, Junhyun; Han, Kang; Hwang, Sung-Joo

    2013-01-30

    Telmisartan is a biopharmaceutical classification system (BCS) class II drug that has extremely low water solubility but is freely soluble in highly alkalized solutions. Few organic solvents can dissolve telmisartan. This solubility problem is the main obstacle achieving the desired bioavailability. Because of its unique characteristics, the supercritical anti-solvent (SAS) process was used to BCS class II drug in a variety of ways including micronization, amorphization and solid dispersion. Solid dispersions were prepared using hydroxypropylmethylcellulose/polyvinylpyrrolidone (HPMC/PVP) at 1:0.5, 1:1, and 1:2 weight ratios of drug to polymer, and pure telmisartan was also treated using the SAS process. Processed samples were characterized for morphology, particle size, crystallinity, solubility, dissolution rate and polymorphic stability. After the SAS process, all samples were converted to the amorphous form and were confirmed to be hundreds nm in size. Solubility and dissolution rate were increased compared to the raw material. Solubility tended to increase with increases in the amount of polymer used. However, unlike the solubility results, the dissolution rate decreased with increases in polymer concentration due to gel layer formation of the polymer. Processed pure telmisartan showed the best drug release even though it had lower solubility compared to other solid dispersions; however, because there were no stabilizers in processed pure telmisartan, it recrystallized after 1 month under severe conditions, while the other solid dispersion samples remained amorphous form. We conclude that after controlling the formulation of solid dispersion, the SAS process could be a promising approach for improving the solubility and dissolution rate of telmisartan.

  9. Oxidation and thermolysis of methoxy-, nitro-, and hydroxy-substituted phenols in supercritical water

    SciTech Connect

    Martino, C.J.; Savage, P.E.

    1999-05-01

    The authors have examined the oxidative decomposition of m- and p-methoxyphenol, m-, and p-nitrophenol, and resorcinol and the nonoxidative decomposition of o-, m- and p-methoxyphenol in dilute aqueous solutions at 460 C and 25.3 MPa for residence times on the order of 5 s. The major products from methoxyphenol decomposition in the absence of added oxygen are phenol and hydroxyphenols. The thermolysis kinetics can be described by a power-law rate equation with a reaction order between 0.5 and 1.0, which is consistent with previous studies done at different reaction conditions. Comparing the thermolysis rates for methoxyphenols with those of other substituted phenols showed that the rates are sensitive to both the identity and the location of the substituent. For a given substituent location, NO{sub 2}-substituted phenols reacted more rapidly than either CHO- or OCH{sub 3}-substituted phenols. Additionally, the ortho isomer was always the most reactive. Phenol is a product of incomplete oxidation from the methoxy-phenols and nitrophenols, but no phenol was observed when resorcinol was oxidized. The oxidation kinetics were correlated with power-law rate expressions. The experiments and subsequent kinetics analysis allowed them to separate and quantify the rates of thermolysis and oxidation individually. A comparison of these reactant disappearance rates shows that thermolysis accounts for about 5% of the total rate for m- and p-methoxyphenol during oxidation in supercritical water. Thermolysis accounts for up to 25% of the total rate for m- and p-nitrophenols.

  10. Numerical simulation of the solvate structures of acetylsalicylic acid in supercritical carbon dioxide containing polar co-solvents

    NASA Astrophysics Data System (ADS)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.; Kumeev, R. S.; Golubev, V. A.

    2016-07-01

    Hydrogen-bonded complexes of acetylsalicylic acid with polar co-solvents in supercritical carbon dioxide, modified by methanol, ethanol, and acetone of 0.03 mole fraction concentration, are studied by numerical methods of classical molecular dynamics simulation and quantum chemical calculations. The structure, energy of formation, and lifetime of hydrogen-bonded complexes are determined, along with their temperature dependences (from 318 to 388 K at constant density of 0.7 g cm-3). It is shown that the hydrogen bonds between acetylsalicylic acid and methanol are most stable at 318 K and are characterized by the highest value of absolute energy. At higher supercritical temperatures, however, the longest lifetime is observed for acetylsalicylic acid-ethanol complexes. These results correlate with the known literature experimental data showing that the maximum solubility of acetylsalicylic acid at density values close to those considered in this work and at temperatures of 318 and 328 K is achieved when using methanol and ethanol as co-solvents, respectively.

  11. Mass transfer of SCWO processes: Molecular diffusion and mass transfer coefficients of inorganic nitrate species in sub- and supercritical water

    SciTech Connect

    Goemans, M.G.E.; Gloyna, E.F.; Buelow, S.J.

    1996-04-01

    Molecular diffusion coefficients of lithium-, sodium-, potassium-, cesium-, calcium-, and strontium nitrate in subcritical water were determined by analysis of Taylor dispersion profiles. Pressures ranged from 300 to 500 bar at temperatures ranging from 25{degrees}C to 300{degrees}C. The reported diffusion values were determined at infinite dilution. Molecular diffusion coefficients were 10 to 20 times faster in near-critical subcritical water than in water at ambient temperature and pressure (ATP). These findings implied that the diffusion rates were more liquid like than they were gas like, hence experimental results were correlated with diffusion models for liquids. The subcritical diffusion data presented in this work, and supercritical diffusion results published elsewhere were correlated with hydrodynamic diffusion equations. Both the Wilke-Chang correlation and the Stokes-Einstein equation yielded predictions within 10% of the experimental results if the structure of the diffusing species could be estimated. The effect of the increased diffusion rates on mass transfer rates in supercritical water oxidation applications was quantified, with emphasis on heterogeneous oxidation processes. This study and results published elsewhere showed that diffusion limited conditions are much more likely to be encountered in SCWO processes than commonly acknowledged.

  12. Micro-PIV measurements of multiphase flow of water and supercritical CO2 in 2D heterogeneous porous micromodels

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kazemifar, F.; Blois, G.; Christensen, K. T.

    2015-12-01

    Multiphase flow of water and supercritical carbon dioxide (CO2) in porous media is central to geological sequestration of CO2 into saline aquifers. However, our fundamental understanding of the coupled flow dynamics of CO2 and water in complex geologic media still remains limited, especially at the pore scale. Recently, studies have been carried out in 2D homogeneous models with the micro-PIV technique, yielding very interesting observations of pore-scale flow transport. The primary aim of this work is to leverage this experimental protocol to quantify the pore-scale flow of water and liquid/supercritical CO2 in 2D heterogeneous porous micromodels under reservoir-relevant conditions. The goal is to capture the dynamics of this multi-phase flow in a porous matrix that mimics the heterogeneity of natural rock. Fluorescent microscopy and the micro-PIV technique are employed to simultaneously measure the spatially-resolved instantaneous velocity field in the water and quantify the instantaneous spatial configuration of both phases. The results for heterogeneous micromodels will be presented and compared with those for homogeneous micromodels, yielding valuable insight into flow processes at the pore scale in natural rock.

  13. Simple water analysis of golf link pesticides by means of batch-wise adsorption and supercritical fluid extraction.

    PubMed

    Chikushi, Hiroaki; Hirota, Kazutoshi; Yoshida, Natsuko; Edamura, Takuya; Toda, Kei

    2009-12-15

    Here, a simple new method is proposed to evaluate water for the presence of pesticides. Specifically, pesticides for golf link maintenance were used as the targets for this investigation. Water samples containing the pesticides were mixed with particulate adsorbent, after which the pesticides were extracted from the adsorbents using supercritical fluid carbon dioxide and then analyzed by gas chromatography-mass spectrometry. The recoveries of pesticides were examined with several types of adsorbents and found to be related to their octanol/water partition coefficients (K(ow)) for most of the adsorbents. Good recoveries were obtained when the water samples were mixed with octadecylsilane (ODS) and stylene-divinylbenzene copolymer (XAD) resins for 15 and 30 min, respectively. In the supercritical fluid extraction, extraction pressure affected the efficiency of extraction from XAD while a little effect on extraction from ODS, probably due to the internal structure of the adsorbents. The limit of detection ranged from 0.002 to 2.3 microg L(-1) and the method is suitable for the measurement of golf link pesticides in microg L(-1) order to 100 microg L(-1). The procedure of the proposed method was simpler than the conventional solid-phase extraction method. Finally, the method presented here was used to identify pesticides present in actual wastewater from golf links.

  14. Solvatochromic shifts of polar and non-polar molecules in ambient and supercritical water: a sequential quantum mechanics/molecular mechanics study including solute-solvent electron exchange-correlation.

    PubMed

    Ma, Haibo; Ma, Yingjin

    2012-12-07

    Polar and non-polar solutes (acetone and benzene) dissolved in ambient water and supercritical water are investigated theoretically using a sequential quantum mechanics (QM)/molecular mechanics (MM) method which combines classical molecular dynamics simulations and QM/MM calculations. From the detailed analysis of the dependence of the QM region size and point charge background region size as well as the different functionals, it is found that the inclusion of the solvent molecules within the first solvation shell into the QM region to account for the exchange-correlation between a solute and neighboring solvent molecules is important for the highly accurate spectral shift calculations, especially vital for the non-polar solutes whose interactions with the solvents are dominated by the quantum dispersions. At the same time, sufficiently large surrounding partial charge region (r(cutoff) ≥15 Å) as well as the functional corrections to describe the long-range dispersion-corrections are also essential for the study of the electronic excited states in condensed phase. Our calculated solvatochromic shift values and their density dependencies at ambient and high temperature conditions are found to be in good agreements with experimental observations. This indicates that sound theoretical studies of solvatochromic shift can be achieved provided that a reasonable computational scheme with sufficiently large N(water) (QM) and r(cutoff) values is implemented. We also find both of aqueous acetone and aqueous benzene under high temperatures present three distinctive regions: low-density gas-like region, supercritical region, and high-density liquid-like region. The plateau behavior of solvatochromic shift in the supercritical region can be ascribed to the solvent clustering around the solute, which is a fundamental phenomenon of supercritical fluids (SCFs). The density dependence of our calculated coordination number of the first solvation shell nicely reproduces the trend

  15. SUPERCRITICAL WATER PARTIAL OXIDATION PHASE I - PILOT-SCALE TESTING/FEASIBILTY SUDIES FINAL REPORT

    SciTech Connect

    SPRITZER.M; HONG,G

    2005-01-01

    General Atomics (GA) is developing Supercritical Water Partial Oxidation (SWPO) as a means of producing hydrogen from low-grade biomass and other waste feeds. The Phase I Pilot-scale Testing/Feasibility Studies have been successfully completed and the results of that effort are described in this report. The key potential advantage of the SWPO process is the use of partial oxidation in-situ to rapidly heat the gasification medium, resulting in less char formation and improved hydrogen yield. Another major advantage is that the high-pressure, high-density aqueous environment is ideal for reacting and gasifying organics of all types. The high water content of the medium encourages formation of hydrogen and hydrogen-rich products and is especially compatible with high water content feeds such as biomass materials. The high water content of the medium is also effective for gasification of hydrogen-poor materials such as coal. A versatile pilot plant for exploring gasification in supercritical water has been established at GA's facilities in San Diego. The Phase I testing of the SWPO process with wood and ethanol mixtures demonstrated gasification efficiencies of about 90%, comparable to those found in prior laboratory-scale SCW gasification work carried out at the University of Hawaii at Manoa (UHM), as well as other biomass gasification experience with conventional gasifiers. As in the prior work at UHM, a significant amount of the hydrogen found in the gas phase products is derived from the water/steam matrix. The studies at UHM utilized an indirectly heated gasifier with an activated carbon catalyst. In contrast, the GA studies utilized a directly heated gasifier without catalyst, plus a surrogate waste fuel. Attainment of comparable gasification efficiencies without catalysis is an important advancement for the GA process, and opens the way for efficient hydrogen production from low-value, dirty feed materials. The Phase I results indicate that a practical means to

  16. Nonthermal inactivation of Escherichia coli K12 in buffered peptone water using a pilot-plant scale supercritical carbon dioxide system with gas-liquid porous metal contractor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effectiveness of a supercritical carbon dioxide (SCCO2) system, with a gas-liquid CO2 contactor, for reducing Escherichia coli K12 in diluted buffered peptone water. 0.1% (w/v) buffered peptone water inoculated with E. coli K12 was processed using the SCCO2 system at CO2 con...

  17. Vacuum Ultraviolet Spectroscopy of the Lowest-Lying Electronic State in Sub-Critical and Supercritical Water

    NASA Astrophysics Data System (ADS)

    Marin, Timothy W.; Janik, Ireneusz; Bartels, David M.; Chipman, Dan

    2016-06-01

    We report vacuum ultraviolet absorption spectra for the lowest-lying electronic state of high-temperature and supercritical water, where spectra were measured from room temperature up to the critical temperature, and as a function of density above the critical temperature. Spectra are seen to redshift with increasing temperature, demonstrating gradual breakdown of the hydrogen bond network. Above the critical temperature, tuning the density gives direct insight into the extent of hydrogen bonding in the supercritical regime. The known gas-phase monomer spectrum can be duplicated in the low-density limit, with negligible contribution from hydrogen bonding. With increasing density, the spectrum blue shifts as small water clusters form, increasing the number of hydrogen bonds lowering the ground-state energy. The presence of vibrational structure inherent to the lowest-density gas-phase limit spectrum gradually diminishes with increasing density, giving a reasonable measure of the extent of water monomers having unperturbed electronic structure as a function of density.

  18. Enhanced removal of sodium salts supported by in-situ catalyst synthesis in a supercritical water oxidation process.

    PubMed

    Takahashi, F; Sun, Z R; Fukushi, K; Oshima, Y; Yamamoto, K

    2012-01-01

    For practical applications of supercritical water oxidation to wastewater treatment, the deposition of inorganic salts in supercritical phase must be controlled to prevent a reactor from clogging. This study investigated enhanced removal of sodium salts with titanium particles, serving as a salt trapper and a catalyst precursor, and sodium recovery by sub-critical water. When Na(2)CO(3) was tested as a model salt, sodium removal efficiency was higher than theoretically maximum efficiency defined by Na(2)CO(3) solubility. The enhanced sodium removal resulted from in-situ synthesis of sodium titanate, which could catalyse acetic acid oxidation. The kinetics of sodium removal was described well by a diffusion mass-transfer model combined with a power law-type rate model of sodium titanate synthesis. Titanium particles showed positive effect on sodium removal in the case of NaOH, Na(2)SO(4) and Na(3)PO(4). However, they had negligible effect for NaCl and negative effect for Na(2)CrO(4), respectively. More than 99% of trapped sodium was recovered by sub-critical water except for Na(2)CrO(4). In contrast, sodium recovery efficiency remained less than 50% in the case of Na(2)CrO(4). Reused titanium particles showed the same performance for enhanced sodium removal. Enhanced salt removal supported by in-situ catalyst synthesis has great potential to enable both salt removal control and catalytic oxidation.

  19. Corrosion of ferritic-martensitic steels and nickel-based alloys in supercritical water

    NASA Astrophysics Data System (ADS)

    Ren, Xiaowei

    The corrosion behavior of ferritic/martensitic (F/M) steels and Ni-based alloys in supercritical water (SCW) has been studied due to their potential applications in future nuclear reactor systems, fossil fuel power plants and waste treatment processes. 9˜12% chromium ferritic/martensitic steels exhibit good radiation resistance and stress corrosion cracking resistance. Ni-based alloys with an austenitic face-centered cubic (FCC) structure are designed to retain good mechanical strength and corrosion/oxidation resistance at elevated temperatures. Corrosion tests were carried out at three temperatures, 360°C, 500°C and 600°C, with two dissolved oxygen contents, 25 ppb and 2 ppm for up to 3000 hours. Alloys modified by grain refinement and reactive element addition were also investigated to determine their ability to improve the corrosion resistance in SCW. A duplex oxide structure was observed in the F/M steels after exposure to 25 ppb oxygen SCW, including an outer oxide layer with columnar magnetite grains and an inner oxide layer constituted of a mixture of spinel and ferrite phases in an equiaxed grain structure. An additional outermost hematite layer formed in the SCW-exposed samples when the oxygen content was increased to 2 ppm. Weight gain in the F/M steels increased with exposure temperatures and times, and followed parabolic growth kinetics in most of the samples. In Ni-based alloys after exposure to SCW, general corrosion and pitting corrosion were observed, and intergranular corrosion was found when exposed at 600°C due to formation of a local healing layer. The general oxide structure on the Ni-based alloys was characterized as NiO/Spinel/(CrxFe 1-x)2O3/(Fe,Ni). No change in oxidation mechanism was observed in crossing the critical point despite the large change in water properties. Corrosion resistance of the F/M steels was significantly improved by plasma-based yttrium surface treatment because of restrained outward diffusion of iron by the

  20. Hydration of Volcanic Glass with Super-Critical Water and its Effect on Permeability of Volcanic Rocks

    NASA Astrophysics Data System (ADS)

    Isobe, H.

    2006-12-01

    Behavior of high-temperature, high-pressure fluid flow in volcanoes depends on permeability of rocks in fluid paths. High pressure fluids or vapors in volcanoes, which are in super-critical states, are essential factors of volcanic eruptions. Especially, phreatomagmatic eruptions are caused by excess pressures of the fluid degassed from magma body or heated water contacted with magma or high temperature rocks in volcanoes. Alteration processes of rocks and minerals with super-critical fluid can change permeability of rocks by spreading of the fluid path or obstruction with precipitated minerals. In this study, experimental reproduction on the hydration and alteration processes of rocks and minerals with super-critical fluid flow were carried out with a fluid flow apparatus. Starting materials of the experiments are powdered rhyolitic obsidian and dacite. Approximately 55g of the starting material are placed in a SUS316 sample tube. Inner diameter and length of the sample tube are 9.4mm and 572mm, respectively. Temperature gradient of the pressure vessel is controlled by triple electric furnaces. Run products are retrieved by cutting off the sample tube and observed by SEM. Permeability of run products are also measured by gas flow method. Experimental pressure is 50MPa. Flow rate of distilled water at room temperature is 0.1ml / minute pumped by a low speed high-pressure pump. Temperature of the sample is approximately 450°C for rhyolitic glass powder or 420°C for dacite powder at the first half of the sample tube, then decreased to approximately 310°C at the outlet of the sample tube. Run durations are 3 to 8 days. Obsidian grains and groundmass glass of dacite partially dissolved and changed to porous at higher than approximately 400°C. Alteration products of the volcanic glass including clay minerals, cristobalite and plagioclase occur in grain boundaries and cemented grains within a few centimeters from the outlet of the sample tube. Volcanic glass

  1. Monte Carlo simulations of the pressure dependence of the water-acid gas interfacial tensions.

    PubMed

    Biscay, F; Ghoufi, A; Lachet, V; Malfreyt, P

    2009-10-29

    We report two-phase Monte Carlo (MC) simulations of the binary water-acid gas mixtures at high temperature and high pressure. Simulations are performed in the Np(N)AT ensemble in order to reproduce the pressure dependence of the interfacial tensions of the water-CO(2) and water-H(2)S mixtures. The interfacial tension of the binary water-CO(2) mixture is determined from 5 to 45 MPa along the isotherm T = 383 K. Water-H(2)S interfacial tensions are computed along one supercritical isotherm (T = 393 K) in a pressure range of 1-15 MPa. The temperature and pressure conditions investigated here by the MC simulations are typical of the geological storage conditions of these acid gases. The coexisting densities and the compositions of the water-rich and acid-gas-rich phases are compared with experiments and with data calculated from Gibbs ensemble Monte Carlo (GEMC) simulations.

  2. Numerical simulation and comparison of symmetrical/supercritical airfoils for the near tip region of a helicopter in forward flight

    NASA Technical Reports Server (NTRS)

    Badavi, F. F.

    1989-01-01

    Aerodynamic loads on a multi-bladed helicopter rotor in forward flight at transonic tip conditions are calculated. The unsteady, three-dimensional, time-accurate compressible Reynolds-averaged thin layer Navier-Stokes equations are solved in a rotating coordinate system on a body-conformed, curvilinear grid of C-H topology. Detailed boundary layer and global numerical comparisons of NACA-0012 symmetrical and CAST7-158 supercritical airfoils are made under identical forward flight conditions. The rotor wake effects are modeled by applying a correction to the geometric angle of attack of the blade. This correction is obtained by computing the local induced downwash velocity with a free wake analysis program. The calculations are performed on the Numerical Aerodynamic Simulation Cray 2 and the VPS32 (a derivative of a Cyber 205 at the Langley Research Center) for a model helicopter rotor in forward flight.

  3. Novel quantum mechanical/molecular mechanical method combined with the theory of energy representation: Free energy calculation for the Beckmann rearrangement promoted by proton transfers in the supercritical water

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideaki; Tanabe, Kohsuke; Aketa, Masataka; Kishi, Ryohei; Furukawa, Shin-ichi; Nakano, Masayoshi

    2007-02-01

    The Beckmann rearrangement of acetone oxime promoted by proton transfers in the supercritical water has been investigated by means of the hybrid quantum mechanical/molecular mechanical approach combined with the theory of energy representation (QM/MM-ER) recently developed. The transition state (TS) structures have been explored by ab initio calculations for the reaction of hydrated acetone oxime on the assumption that the reaction is catalyzed by proton transfers along the hydrogen bonds connecting the solute and the solvent water molecules. Up to two water molecules have been considered as reactants that take part in the proton transfers. As a result of the density functional theory calculations with B3LYP functional and aug-cc-pVDZ basis set, it has been found that participation of two water molecules in the reaction reduces the activation free energy by -12.3kcal/mol. Furthermore, the QM/MM-ER simulations have revealed that the TS is more stabilized than the reactant state in the supercritical water by 2.7kcal/mol when two water molecules are involved in the reaction. Solvation free energies of the reactant and the TS have been decomposed into terms due to the electronic polarization of the solute, electron density fluctuation, and others to elucidate the origin of the stabilization of the TS as compared with the reactant. It has been revealed that the promotion of the chemical reaction due to the hydration mainly originates from the interaction between the nonpolarized solute and the solvent water molecules at the supercritical state.

  4. Molecular dynamics simulation of diffusion coefficients and structural properties of some alkylbenzenes in supercritical carbon dioxide at infinite dilution

    SciTech Connect

    Wang, Jinyang; Zhong, Haimin; Qiu, Wenda; Chen, Liuping; Feng, Huajie

    2014-03-14

    The binary infinite dilute diffusion coefficients, D{sub 12}{sup ∞}, of some alkylbenzenes (Ph-C{sub n}, from Ph-H to Ph-C{sub 12}) from 313 K to 333 K at 15 MPa in supercritical carbon dioxide (scCO{sub 2}) have been studied by molecular dynamics (MD) simulation. The MD values agree well with the experimental ones, which indicate MD simulation technique is a powerful way to predict and obtain diffusion coefficients of solutes in supercritical fluids. Besides, the local structures of Ph-C{sub n}/CO{sub 2} fluids are further investigated by calculating radial distribution functions and coordination numbers. It qualitatively convinces that the first solvation shell of Ph-C{sub n} in scCO{sub 2} is significantly influenced by the structure of Ph-C{sub n} solute. Meanwhile, the mean end-to-end distance, the mean radius of gyration and dihedral angle distribution are calculated to gain an insight into the structural properties of Ph-C{sub n} in scCO{sub 2}. The abnormal trends of radial distribution functions and coordination numbers can be reasonably explained in term of molecular flexibility. Moreover, the computed results of dihedral angle clarify that flexibility of long-chain Ph-C{sub n} is the result of internal rotation of C-C single bond (σ{sub c-c}) in alkyl chain. It is interesting that compared with n-alkane, because of the existence of benzene ring, the flexibility of alkyl chain in Ph-C{sub n} with same carbon atom number is significantly reduced, as a result, the carbon chain dependence of diffusion behaviors for long-chain n-alkane (n ≥ 5) and long-chain Ph-C{sub n} (n ≥ 4) in scCO{sub 2} are different.

  5. Molecular dynamics simulation of diffusion coefficients and structural properties of some alkylbenzenes in supercritical carbon dioxide at infinite dilution.

    PubMed

    Wang, Jinyang; Zhong, Haimin; Feng, Huajie; Qiu, Wenda; Chen, Liuping

    2014-03-14

    The binary infinite dilute diffusion coefficients, D₁₂(∞), of some alkylbenzenes (Ph-C(n), from Ph-H to Ph-C12) from 313 K to 333 K at 15 MPa in supercritical carbon dioxide (scCO2) have been studied by molecular dynamics (MD) simulation. The MD values agree well with the experimental ones, which indicate MD simulation technique is a powerful way to predict and obtain diffusion coefficients of solutes in supercritical fluids. Besides, the local structures of Ph-C(n)/CO2 fluids are further investigated by calculating radial distribution functions and coordination numbers. It qualitatively convinces that the first solvation shell of Ph-C(n) in scCO2 is significantly influenced by the structure of Ph-C(n) solute. Meanwhile, the mean end-to-end distance, the mean radius of gyration and dihedral angle distribution are calculated to gain an insight into the structural properties of Ph-C(n) in scCO2. The abnormal trends of radial distribution functions and coordination numbers can be reasonably explained in term of molecular flexibility. Moreover, the computed results of dihedral angle clarify that flexibility of long-chain Ph-C(n) is the result of internal rotation of C-C single bond (σ(c-c)) in alkyl chain. It is interesting that compared with n-alkane, because of the existence of benzene ring, the flexibility of alkyl chain in Ph-C(n) with same carbon atom number is significantly reduced, as a result, the carbon chain dependence of diffusion behaviors for long-chain n-alkane (n ≥ 5) and long-chain Ph-C(n) (n ≥ 4) in scCO2 are different.

  6. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report

    SciTech Connect

    Mac Donald, Philip Elsworth

    2002-06-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  7. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process.

    PubMed

    Xiu, Fu-Rong; Zhang, Fu-Shen

    2009-06-15

    An effective and benign process for copper and lead recovery from waste printed circuit boards (PCBs) was developed. In the process, the PCBs was pre-treated in supercritical water, then subjected to electrokinetic (EK) process. Experimental results showed that supercritical water oxidation (SCWO) process was strong enough to decompose the organic compounds of PCBs, and XRD spectra indicated that copper and lead were oxidized into CuO, Cu(2)O and beta-PbO(2) in the process. The optimum SCWO treatment conditions were 60 min, 713 K, 30 MPa, and EK treatment time, constant current density were 11h, 20 mA cm(-2), respectively. The recovery percentages of copper and lead under optimum SCWO+EK treatment conditions were around 84.2% and 89.4%, respectively. In the optimized EK treatment, 74% of Cu was recovered as a deposit on the cathode with a purity of 97.6%, while Pb was recovered as concentrated solutions in either anode (23.1%) or cathode (66.3%) compartments but little was deposited on the electrodes. It is believed that the process is effective and practical for Cu and Pb recovery from waste electric and electronic equipments.

  8. Hydrogen production by supercritical water gasification of biomass. Phase 1 -- Technical and business feasibility study, technical progress report

    SciTech Connect

    1997-12-01

    The nine-month Phase 1 feasibility study was directed toward the application of supercritical water gasification (SCWG) for the economical production and end use of hydrogen from renewable energy sources such as sewage sludge, pulp waste, agricultural wastes, and ultimately the combustible portion of municipal solid waste. Unique in comparison to other gasifier systems, the properties of supercritical water (SCW) are ideal for processing biowastes with high moisture content or contain toxic or hazardous contaminants. During Phase I, an end-to-end SCWG system was evaluated. A range of process options was initially considered for each of the key subsystems. This was followed by tests of sewage sludge feed preparation, pumping and gasification in the SCW pilot plant facility. Based on the initial process review and successful pilot-scale testing, engineering evaluations were performed that defined a baseline system for the production, storage and end use of hydrogen. The results compare favorably with alternative biomass gasifiers currently being developed. The results were then discussed with regional wastewater treatment facility operators to gain their perspective on the proposed commercial SCWG systems and to help define the potential market. Finally, the technical and business plans were developed based on perceived market needs and the projected capital and operating costs of SCWG units. The result is a three-year plan for further development, culminating in a follow-on demonstration test of a 5 MT/day system at a local wastewater treatment plant.

  9. Application of the GRI 1.2 methane oxidation model to methane and methanol oxidation in supercritical water

    SciTech Connect

    Rice, S.F.

    1996-05-01

    The GRI 1.2 mechanism is used to predict the oxidation rates of methane and methanol by oxygen in supercritical water at 250 bar and temperatures ranging from 420--630 C. Using the Chemkin II computational package which assumes an ideal gas equation of state, the GRI model does very well in representing the available experimental results on methane over a wide temperature and concentration rate. However, the model may lack key CH{sub 3}O{sub 2} reactions needed for a complete description in the < 450 C region. The oxidation of methanol and formation of formaldehyde is not well represented by the GRI mechanism when left unchanged. If two important modifications are made to the reactivity of HO{sub 2}, good agreement with the methanol oxidation results is achieved. This paper illustrates that the carefully-assembled GRI 1.2 mechanism, although designed for conventional combustion conditions, can be successfully extended with very little modification to much lower temperature and extreme pressure conditions. The purpose of this study is to understand the operative chemical kinetics of supercritical water oxidation required for the more efficient application of this technology to treatment of hazardous wastes, obsolete munitions, rocket motors, and chemical warfare agents.

  10. Supercritical water oxidation of dioxins and furans in waste incinerator fly ash, sewage sludge and industrial soil.

    PubMed

    Zainal, Safari; Onwudili, Jude A; Williams, Paul T

    2014-08-01

    Three environmental samples containing dioxins and furans have been oxidized in the presence of hydrogen peroxide under supercritical water oxidation conditions. The samples consisted of a waste incinerator fly ash, sewage sludge and contaminated industrial soil. The reactor system was a batch, autoclave reactor operated at temperatures between 350 degrees C and 450degrees C, corresponding to pressures of approximately 20-33.5 MPa and with hydrogen peroxide concentrations from 0.0 to 11.25 vol%. Hydrogen peroxide concentration and temperature/pressure had a strong positive effect on the oxidation of dioxins and furans. At the highest temperatures and pressure of supercritical water oxidation of 4500C and 33.5 MPa and with 11.25 vol% of hydrogen peroxide, the destruction efficiencies of the individual polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDF) isomers were between 90% and 99%. There did not appear to be any significant differences in the PCDD/PCDF destruction efficiencies in relation to the different sample matrices of the waste incinerator fly ash, sewage sludge and contaminated industrial soil.

  11. Recycling acetic acid from polarizing film of waste liquid crystal display panels by sub/supercritical water treatments.

    PubMed

    Wang, Ruixue; Chen, Ya; Xu, Zhenming

    2015-05-19

    Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate) and organic materials (polarizing film and liquid crystal). The organic materials should be removed first since containing polarizing film and liquid crystal is to the disadvantage of the indium recycling process. In the present study, an efficient and environmentally friendly process to obtain acetic acid from waste LCD panels by sub/supercritical water treatments is investigated. Furthermore, a well-founded reaction mechanism is proposed. Several highlights of this study are summarized as follows: (i) 99.77% of organic matters are removed, which means the present technology is quite efficient to recycle the organic matters; (ii) a yield of 78.23% acetic acid, a quite important fossil energy based chemical product is obtained, which can reduce the consumption of fossil energy for producing acetic acid; (iii) supercritical water acts as an ideal solvent, a requisite reactant as well as an efficient acid-base catalyst, and this is quite significant in accordance with the "Principles of Green Chemistry". In a word, the organic matters of waste LCD panels are recycled without environmental pollution. Meanwhile, this study provides new opportunities for alternating fossil-based chemical products for sustainable development, converting "waste" into "fossil-based chemicals".

  12. Processing High Level Waste: Spectroscopic Characterization of Redox Reactions in Supercritical Water

    SciTech Connect

    Arrington, Jr., Charles A.

    2000-06-01

    We are engaged in a collaborative research effort with Los Alamos staff scientists Steven Buelow and Jeanne Robinson, staff members in group CST-6. The work proposed by these LANL staff scientists is directed towards the destruction of complexants and oxidation of chromium and technetium by hydrothermal processing in near critical or supercritical aqueous solutions. Our own work has been focused on a careful kinetic study of oxidation reactions of hydrogen peroxide with chromium hydroxide. This reaction occurs readily at ambient temperatures.

  13. Measuring water adsorption on mineral surfaces in air, CO2, and supercritical CO2 with a quartz-crystal microbalance

    NASA Astrophysics Data System (ADS)

    Bryan, C. R.; Wells, R. K.; Burton, P. D.; Heath, J. E.; Dewers, T. A.; Wang, Y.

    2011-12-01

    Carbon sequestration via underground storage in geologic formations is a proposed approach for reducing industrial CO2 emissions. However, current models for carbon injection and long-term storage of supercritical CO2 (scCO2) do not consider the development and stability of adsorbed water films at the scCO2-hydrophilic mineral interface. The thickness and properties of the water films control the surface tension and wettability of the mineral surface, and on the core scale, affect rock permeability, saturation, and capillary properties. The film thickness is strongly dependent upon the activity of water in the supercritical fluid, which will change as initially anhydrous scCO2 absorbs water from formation brine. As described in a companion paper by the coauthors, the thickness of the adsorbed water layer is controlled by the disjoining pressure; structural and van der Waals components dominate at low water activity, while electrostatic forces become more important with increasing film thickness (higher water activities). As scCO2 water activity and water layer thickness increase, concomitant changes in mineral surface properties and reservoir/caprock hydrologic properties will affect the mobility of the aqueous phase and of scCO2. Moreover, the development of a water layer may be critical to mineral dissolution reactions in scCO2. Here, we describe the use of a quartz-crystal microbalance (QCM) to monitor adsorption of water by mineral surfaces. QCMs utilize a piezoelectrically-stimulated quartz wafer to measure adsorbed or deposited mass via changes in vibrational frequency. When used to measure the mass of adsorbed liquid films, the frequency response of the crystal must be corrected for the viscoelastic, rather than elastic, response of the adsorbed layer. Results are presented for adsorption to silica in N2 and CO2 at one bar, and in scCO2. Additional data are presented for water uptake by clays deposited on a QCM wafer. In this case, water uptake occurs by the

  14. In situ infrared spectroscopic study of brucite carbonation in dry to water-saturated supercritical carbon dioxide.

    PubMed

    Loring, John S; Thompson, Christopher J; Zhang, Changyong; Wang, Zheming; Schaef, Herbert T; Rosso, Kevin M

    2012-05-17

    In geologic carbon sequestration, whereas part of the injected carbon dioxide will dissolve into host brine, some will remain as neat to water saturated supercritical CO(2) (scCO(2)) near the well bore and at the caprock, especially in the short term life cycle of the sequestration site. Little is known about the reactivity of minerals with scCO(2) containing variable concentrations of water. In this study, we used high-pressure infrared spectroscopy to examine the carbonation of brucite (Mg(OH)(2)) in situ over a 24 h reaction period with scCO(2) containing water concentrations between 0% and 100% saturation, at temperatures of 35, 50, and 70 °C, and at a pressure of 100 bar. Little or no detectable carbonation was observed when brucite was reacted with neat scCO(2). Higher water concentrations and higher temperatures led to greater brucite carbonation rates and larger extents of conversion to magnesium carbonate products. The only observed carbonation product at 35 °C was nesquehonite (MgCO(3)·3H(2)O). Mixtures of nesquehonite and magnesite (MgCO(3)) were detected at 50 °C, but magnesite was more prevalent with increasing water concentration. Both an amorphous hydrated magnesium carbonate solid and magnesite were detected at 70 °C, but magnesite predominated with increasing water concentration. The identity of the magnesium carbonate products appears strongly linked to magnesium water exchange kinetics through temperature and water availability effects.

  15. Solar Hot Water Hourly Simulation

    SciTech Connect

    Walker, Howard Andrew

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  16. Clay hydration/dehydration in dry to water-saturated supercritical CO2: Implications for caprock integrity

    SciTech Connect

    Loring, John S.; Schaef, Herbert T.; Thompson, Christopher J.; Turcu, Romulus VF; Miller, Quin R.; Chen, Jeffrey; Hu, Jian Z.; Hoyt, David W.; Martin, Paul F.; Ilton, Eugene S.; Felmy, Andrew R.; Rosso, Kevin M.

    2013-01-01

    Injection of supercritical CO2 (scCO2) for the geologic storage of carbon dioxide will displace formation water, and the pore space adjacent to overlying caprocks could eventually be dominated by dry to water-saturated scCO2. Wet scCO2 is highly reactive and capable of carbonating and hydrating certain minerals, whereas anhydrous scCO2 can dehydrate water-containing minerals. Because these geochemical processes affect solid volume and thus porosity and permeability, they have the potential to affect the long-term integrity of the caprock seal. In this study, we investigate the swelling and shrinkage of an expandable clay found in caprock formations, montmorillonite (Ca-STx-1), when exposed to variable water-content scCO2 at 50 °C and 90 bar using a combination of in situ probes, including X-ray diffraction (XRD), in situ magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), and in situ attenuated total reflection infrared spectroscopy (ATR-IR). We show that the extent of montmorillonite clay swelling/shrinkage is dependent not only on water hydration/dehydration, but also on CO2 intercalation reactions. Our results also suggest a competition between water and CO2 for interlayer residency where increasing concentrations of intercalated water lead to decreasing concentrations of intercalated CO2. Overall, this paper demonstrates the types of measurements required to develop fundamental knowledge that will enhance modeling efforts and reduce risks associated with subsurface storage of CO2.

  17. Comparison of supercritical fluid extraction (SFE), Soxhlet and shaking methods for pendimethalin extraction from soils: effect of soil properties and water content

    NASA Astrophysics Data System (ADS)

    Spack, Lionel; Alvarez, Cristina; Martins, Jean M. F.; Tarradellas, Joseph

    1998-09-01

    Supercritical fluid extraction with CO 2 was applied to the analysis of traces of pendimethalin, a herbicide of the dinitroanilines group, in four different natural soils. The Supercritical Fluid Extraction (SFE) method was compared with the classical Soxhlet and shaking methods in terms of ease to run, extraction efficiency, selectivity and reproducibility. The influence of the physico-chemical properties of the soil matrix on herbicide extraction was then evaluated with the SFE method. The supercritical fluid extraction system used in the present study was found to be much easier to run than the other two methods, less time consuming and requires fewer operations as it was optimized for on-line sample clean up. SFE is the most selective of the three tested methods as fewer co-extracts are obtained in the final samples. SFE with CO 2 is particularly powerful because pendimethalin is highly hydrophobic. However, this makes pendimethalin a poor choice for a selectivity study of SFE as it is very rapidly extracted at any CO 2 density. Pendimethalin extraction with supercritical CO 2 was found to be almost complete with average recoveries of 96-99%, similarly to Soxhlet but with a much lower standard deviation (8-10%). The performance of SFE was shown to be unaffected by soil parameters except soil water content. It is demonstrated indeed that extraction efficiency is not linearly related to soil water content, and optimal recovery was found for water contents ranging from 2 to 15% depending on the type of soil. Soil water increases extraction efficiency because water acts as a modifier of the supercritical fluid and increases the penetration of the fluid inside the soil particles (clay swelling). In contrast to SFE and Soxhlet, the efficiency of the shaking method appeared to be partial and strongly dependent on soil properties. Although initial developments should be needed, the various benefits of SFE-CO 2 make this method attractive compared to traditional methods.

  18. Microemulsions of water in supercritical carbon dioxide : an in-situ NMR investigation of micelle formation and structure.

    SciTech Connect

    Fremgen, D. E.; Smotkin, E. S.; Gerald, R. E.; Klingler, R. J.; Rathke, J. W.; Chemical Engineering; IIT

    2001-04-01

    High-pressure NMR spectroscopy was used for the first time to investigate microemulsions of water in supercritical carbon dioxide. The emulsions were formed using a family of anionic perfluoropolyether ammonium carboxylate surfactants. This system holds promise as a reaction medium for conducting homogeneous catalytic reactions within the aqueous micellular cores while, at the same time, exploiting the facile mass transfer properties of the supercritical fluid. Ammonium hexafluorophosphate was used as a water-soluble ionic guest to investigate micelle formation and structure. Under micelle-forming conditions, the PF{sub 6}{sup -} guest, surfactant, and water were uniformly dispersed throughout the CO{sub 2} phase, as demonstrated by in situ NMR imaging. In addition, the micelles were observed to form even in the absence of mechanical stirring. This spontaneous formation of micelles demonstrates that the NMR spectral properties were obtained under conditions that result in the production of thermodynamically stable microemulsions. The nuclear overhauser effect (NOE) was used to probe the micellular structure through dipole-dipole interactions between the PF{sub 6}{sup -} anion and the fluorinated backbone of the surfactant. A strong negative homonuclear NoE was observed between the PF{sub 6}{sup -} guest and the fluorine moiety that is located directly adjacent to the surfactant's carboxylate head group. This highly specific negative NOE indicates an ordered arrangement, where the PF{sub 6}{sup -} anion and carboxylate ion are located in close proximity to one another. This close association of two negatively charged ionic groups in an aqueous environment is unusual and suggests that the PF{sub 6}{sup -} guest is concentrated within the electric double layer that forms at the micellular interface.

  19. Processing of High Level Waste: Spectroscopic Characterization of Redox Reactions in Supercritical Water - Final Report

    SciTech Connect

    Arrington Jr., C. A.

    2000-11-15

    Current efforts are focused on the oxidative dissolution of chromium compounds found in Hanford tank waste sludge. Samples of chromium oxides and hydroxides with varying degrees of hydration are being characterized using Raman, FTIR, and XPS spectroscopic techniques. Kinetics of oxidation reactions at subcritical and supercritical temperatures are being followed by Raman spectroscopy using a high temperature stainless steel cell with diamond windows. In these reactions both hydrogen peroxide and nitrate anions are used as the oxidizing species with Cr(III) compounds and organic compounds as reducing agents.

  20. Optimization and simulation of tandem column supercritical fluid chromatography separations using column back pressure as a unique parameter.

    PubMed

    Wang, Chunlei; Tymiak, Adrienne A; Zhang, Yingru

    2014-04-15

    Tandem column supercritical fluid chromatography (SFC) has demonstrated to be a useful technique to resolve complex mixtures by serially coupling two columns of different selectivity. The overall selectivity of a tandem column separation is the retention time weighted average of selectivity from each coupled column. Currently, the method development merely relies on extensive screenings and is often a hit-or-miss process. No attention is paid to independently adjust retention and selectivity contributions from individual columns. In this study, we show how tandem column SFC selectivity can be optimized by changing relative dimensions (length or inner diameter) of the coupled columns. Moreover, we apply column back pressure as a unique parameter for SFC optimization. Continuous tuning of tandem column SFC selectivity is illustrated through column back pressure adjustments of the upstream column, for the first time. In addition, we show how and why changing coupling order of the columns can produce dramatically different separations. Using the empirical mathematical equation derived in our previous study, we also demonstrate a simulation of tandem column separations based on a single retention time measurement on each column. The simulation compares well with experimental results and correctly predicts column order and back pressure effects on the separations. Finally, considerations on instrument and column hardware requirements are discussed.

  1. Understanding electrofreezing in water simulations

    NASA Astrophysics Data System (ADS)

    Yan, J. Y.; Overduin, S. D.; Patey, G. N.

    2014-08-01

    Molecular dynamics simulations are used to investigate why external electric fields promote the freezing of liquid water models. It is shown that the melting point of water at a pressure of 1 bar increases significantly when water is polarized by a uniform field. Fields of 1 V/nm and 2 V/nm increase the melting point by 24 K and 44 K, respectively. The increased melting point is mainly due to the favorable interaction of near perfectly polarized cubic ice with the applied field. For a fixed temperature, we demonstrate that the size of the critical ice nucleus decreases with field strength, mostly because the melting point, and hence the true degree of supercooling, is increasing with field. On simulation timescales, ice nucleation is observed at ˜40 K below the field-dependent melting point, independent of the particular value of the field applied. Indeed, we find that even quite highly polarized liquid water retains the characteristic local structures, and the related anomalous properties of water. Our results are obviously relevant to the mechanism of heterogeneous ice nucleation by local surface fields. Local fields will effectively increase the degree of supercooling of locally polarized liquid, decreasing the size of the critical nucleus in the region influenced by the field, hence facilitating ice nucleation.

  2. The corrosion and stress corrosion cracking behavior of a novel alumina-forming austenitic stainless steel in supercritical water

    NASA Astrophysics Data System (ADS)

    Sun, Hongying; Yang, Haijie; Wang, Man; Giron-Palomares, Benjamin; Zhou, Zhangjian; Zhang, Lefu; Zhang, Guangming

    2017-02-01

    The general corrosion and stress corrosion behavior of Fe-27Ni-15Cr-5Al-2Mo-0.4Nb alumina-forming austenitic (AFA) steel were investigated in supercritical water under different conditions. A double layer oxide structure was formed: a Fe-rich outer layer (Fe2O3 and Fe3O4) and an Al-Cr-rich inner layer. And the inner layer has a low growth rate with exposing time, which is good for improvement of corrosion resistance. Additionally, some internal nodular Al-Cr-rich oxides were also observed, which resulted in a local absence of inner layer. Stress corrosion specimens exhibited a combination of high strength, good ductility and low susceptibility. The stress strength and elongation was reduced by increasing temperature and amount of dissolved oxygen. In addition, the corresponding susceptibility was increased with decreased temperatures and increased oxygen contents.

  3. Mechanisms and kinetics of noncatalytic ether reaction in supercritical water. 2. Proton-transferred fragmentation of dimethyl ether to formaldehyde in competition with hydrolysis.

    PubMed

    Nagai, Yasuharu; Matubayasi, Nobuyuki; Nakahara, Masaru

    2005-04-28

    Noncatalytic reaction pathways and rates of dimethyl ether (DME) in supercritical water are determined in a tube reactor made of quartz according to liquid- and gas-phase 1H and 13C NMR observations. The reaction is studied at two concentrations (0.1 and 0.5 M) in supercritical water at 400 degrees C and over a water-density range of 0.1-0.6 g/cm3. The supercritical water reaction is compared with the neat one (in the absence of solvent) at 0.1 M and 400 degrees C. DME is found to decompose through (i) the proton-transferred fragmentation to methane and formaldehyde and (ii) the hydrolysis to methanol. Formaldehyde from reaction (i) is consecutively subjected to four types of redox reactions. Two of them proceed even without solvent: (iii) the unimolecular proton-transferred decarbonylation forming hydrogen and carbon monoxide and (iv) the bimolecular self-disproportionation generating methanol and carbon monoxide. When the solvent water is present, two additional paths are open: (v) the bimolecular self-disproportionation of formaldehyde with reactant water, producing methanol and formic acid, and (vi) the bimolecular cross-disproportionation between formaldehyde and formic acid, yielding methanol and carbonic acid. Methanol is produced through the three types of disproportionations (iv)-(vi) as well as the hydrolysis (ii). The presence of solvent water decelerates the proton-transferred fragmentation of DME; the rate constant is reduced by 40% at 0.5 g/cm3. This is caused by the suppression of low-frequency concerted motion corresponding to the reaction coordinate for the simultaneous C-O bond scission and proton transfer from one methyl carbon to the other. In contrast to the proton-transferred fragmentation, the hydrolysis of DME is markedly accelerated by increasing the water density. The latter becomes more important than the former in supercritical water at densities greater than 0.5 g/cm3.

  4. Synergetic effect of copper-plating wastewater as a catalyst for the destruction of acrylonitrile wastewater in supercritical water oxidation.

    PubMed

    Shin, Young Ho; Lee, Hong-shik; Lee, Young-Ho; Kim, Jaehoon; Kim, Jae-Duck; Lee, Youn-Woo

    2009-08-15

    A new supercritical water oxidation process for the simultaneous treatment of mixed wastewater containing wastewater from acrylonitrile manufacturing processes and copper-plating processes was investigated using a continuous tubular reactor system. Experiments were carried out at temperatures ranging from 400 to 600 degrees C and a pressure of 25 MPa. The residence time was fixed at 2s by changing the flow rates of feeds, depending on reaction temperature. The initial total organic carbon (TOC) concentration of the wastewaters and the O(2) concentration at the reactor inlet were kept constant at 0.49 and 0.74 mol/L. It was confirmed that the copper-plating wastewater accelerated the TOC conversion of acrylonitrile wastewater from 17.6% to 67.3% at a temperature of 450 degrees C. Moreover, copper and copper oxide nanoparticles were generated in the process of supercritical water oxidation (SCWO) of mixed wastewater. 99.8% of copper in mixed wastewater was recovered as solid copper and copper oxides at a temperature of 600 degrees C, with their average sizes ranging from 150 to 160 nm. Our study showed that SCWO provides a synergetic effect for simultaneous treatment of acrylonitrile and copper-plating wastewater. During the reaction, the oxidation rate of acrylonitrile wastewater was enhanced due to the in situ formation of nano-catalysts of copper and/or copper oxides, while the exothermic decomposition of acrylonitrile wastewater supplied enough heat for the recovery of solid copper and copper oxides from copper-plating wastewater. The synergetic effect of wastewater treatment by the newly proposed SCWO process leads to full TOC conversion, color removal, detoxification, and odor elimination, as well as full recovery of copper.

  5. Density dependence of the yield of hydrated electrons in the low-LET radiolysis of supercritical water at 400 °C: influence of the geminate recombination of subexcitation-energy electrons prior to thermalization.

    PubMed

    Meesungnoen, Jintana; Sanguanmith, Sunuchakan; Jay-Gerin, Jean-Paul

    2013-10-21

    Monte Carlo simulations were used to calculate the yield of hydrated electrons (eaq(-)) in the low-linear energy transfer radiolysis of supercritical water at 400 °C as a function of water density over the range of ~0.15 to 0.6 g cm(-3). Very good agreement was found between our calculations and picosecond pulse radiolysis experimental data at ~60 ps and 1 ns at high density (>0.35 g cm(-3)). At densities lower than ~0.35 g cm(-3), our eaq(-) yields were lower than the experimental data, especially at ~60 ps. However, if we incorporated into the simulations a prompt geminate electron-cation (H2O˙(+)) recombination (prior thermalization of the electron) that decreased as the density decreased, our computed eaq(-) yields at ~60 ps and 1 ns compared fairly well with the experimental data for the entire density range studied.

  6. Water Quality Analysis Simulation Program (WASP)

    EPA Pesticide Factsheets

    The Water Quality Analysis Simulation Program (WASP7) model helps users interpret and predict water quality responses to natural phenomena and manmade pollution for various pollution management decisions.

  7. Micro-PIV Study of Supercritical CO2-Water Interactions in Porous Micromodels

    NASA Astrophysics Data System (ADS)

    Kazemifar, Farzan; Blois, Gianluca; Christensen, Kenneth T.

    2015-11-01

    Multiphase flow of immiscible fluids in porous media is encountered in numerous natural systems and engineering applications such as enhanced oil recovery (EOR), and CO2 sequestration among others. Geological sequestration of CO2 in saline aquifers has emerged as a viable option for reducing CO2 emissions, and thus it has been the subject of numerous studies in recent years. A key objective is improving the accuracy of numerical models used for field-scale simulations by incorporation/better representation of the pore-scale flow physics. This necessitates experimental data for developing, testing and validating such models. We have studied drainage and imbibition processes in a homogeneous, two-dimensional porous micromodel with CO2 and water at reservoir-relevant conditions. Microscopic particle image velocimetry (micro-PIV) technique was applied to obtain spatially- and temporally-resolved velocity vector fields in the aqueous phase. The results provide new insight into the flow processes at the pore scale.

  8. New Linear Partitioning Models Based on Experimental Water: Supercritical CO 2 Partitioning Data of Selected Organic Compounds

    SciTech Connect

    Burant, Aniela; Thompson, Christopher; Lowry, Gregory V.; Karamalidis, Athanasios K.

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch reactor system with dual spectroscopic detectors: a near infrared spectrometer for measuring the organic analyte in the CO2 phase, and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly-parameter linear free energy relationship and to develop five new linear free energy relationships for predicting water-sc-CO2 partitioning coefficients. Four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than the model built for the entire dataset.

  9. Co-detoxification of transformer oil-contained PCBs and heavy metals in medical waste incinerator fly ash under sub- and supercritical water.

    PubMed

    Wang, Chunfeng; Zhu, Nengmin; Wang, Yanmin; Zhang, Fushen

    2012-01-17

    The simultaneous detoxification processes of transformer oil-contained PCBs and heavy metals in medical waste incinerator (MWI) fly ash were developed under sub- and supercritical water. The addition of MWI fly ash to transformer oil-contained PCBs was found to increase the destruction efficiency of PCBs, at the same time, it facilitated reducing the leaching concentration of toxic metals from residues (obtained after reaction) for harmless disposal. In this study, we elucidated primarily the catalysis possibility of heavy metals in raw MWI fly ash for PCBs degradation by adopting the sequential extraction procedure. For both MWI fly ashes, more than 90% destruction efficiency of PCBs was achieved at ≥375 °C for 30 min, and trichlorobenzene (TCB) existing in the transformer oil was also completely decomposed. The correlation of catalytic performance to PCBs degradation was discussed based on structural characteristics and dechlorinated products. Likewise, such process rendered residues innocuous through supercritical water treatment for reuse or disposal in landfill.

  10. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Progress Report for Work Through September 2003, 2nd Annual/8th Quarterly Report

    SciTech Connect

    Philip E. MacDonald

    2003-09-01

    The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation-IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% vs. about 33% efficiency for current Light Water Reactors, LWRs) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus the need for recirculation and jet pumps, a pressurizer, steam generators, steam separators and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies, LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which is also in use around the world.

  11. Near-infrared spectroscopic investigation of water in supercritical CO2 and the effect of CaCl2

    SciTech Connect

    Wang, Zheming; Felmy, Andrew R.; Thompson, Christopher J.; Loring, John S.; Joly, Alan G.; Rosso, Kevin M.; Schaef, Herbert T.; Dixon, David A.

    2013-01-01

    Near-infrared (NIR) spectroscopy was applied to investigate the dissolution and chemical interaction of water dissolved into supercritical carbon dioxide (scCO2) and the influence of CaCl2 in the co-existing aqueous phase at fo empe e : 40 50 75 nd 100 C at 90 atm. Consistent with the trend of the vapor pressure of water, the solubility of pure water in scCO2 inc e ed f om 40 °C (0.32 mole%) o 100 °C (1.61 mole%). The presence of CaCl2 negatively affects the solubility of water in scCO2: at a given temperature and pressure the solubility of water decreased as the concentration of CaCl2 in the aqueous phase increased, following the trend of the activity of water. A 40 °C, the water concentration in scCO2 in contact with saturated CaCl2 aqueous solution was only 0.16 mole%, a drop of more than 50% as compared to pure water while that a 100 °C was 1.12 mole%, a drop of over 30% as compared to pure water, under otherwise the same conditions. Analysis of the spectral profiles suggested that water dissolved into scCO2 exists in the monomeric form under the evaluated temperature and pressure conditions, for both neat water and CaCl2 solutions. However, its rotational degrees of freedom decrease at lower temperatures due to higher fluid densities, leading to formation of weak H2O:CO2 Lewis acid-base complexes. Similarly, the nearly invariant spectral profiles of dissolved water in the presence and absence of saturated CaCl2 under the same experimental conditions was taken as evidence that CaCl2 dissolution in scCO2 was limited as the dissolved Ca2+/CaCl2 would likely be highly hydrated and would alter the overall spectra of waters in the scCO2 phase.

  12. Modeling the radiolysis of supercritical water by fast neutrons: density dependence of the yields of primary species at 400°c.

    PubMed

    Butarbutar, Sofia Loren; Meesungnoen, Jintana; Guzonas, David A; Stuart, Craig R; Jay-Gerin, Jean-Paul

    2014-12-01

    A reliable understanding of radiolysis processes in supercritical water (SCW)-cooled reactors is crucial to developing chemistry control strategies that minimize the corrosion and degradation of materials. However, directly measuring the chemistry in reactor cores is difficult due to the extreme conditions of high temperature and pressure and mixed neutron and gamma-radiation fields, which are incompatible with normal chemical instrumentation. Thus, chemical models and computer simulations are an important route of investigation for predicting the detailed radiation chemistry of the coolant in a SCW reactor and the consequences for materials. Surprisingly, information on the fast neutron radiolysis of water at high temperatures is limited, and even more so for fast neutron irradiation of SCW. In this work, Monte Carlo simulations were used to predict the G values for the primary species e(-)aq, H(•), H2, (•)OH and H2O2 formed from the radiolysis of pure, deaerated SCW (H2O) by 2 MeV monoenergetic neutrons at 400°C as a function of water density in the range of ∼0.15-0.6 g/cm(3). The 2 MeV neutron was taken as representative of a fast neutron flux in a reactor. For light water, the moderation of these neutrons after knock-on collisions with water molecules generated mostly recoil protons of 1.264, 0.465, 0.171 and 0.063 MeV. Neglecting oxygen ion recoils and assuming that the most significant contribution to the radiolysis came from these first four recoil protons, the fast neutron yields were estimated as the sum of the G values for these protons after appropriate weightings were applied according to their energy. Calculated yields were compared with available experimental data and with data obtained for low-LET radiation. Most interestingly, the reaction of H(•) atoms with water was found to play a critical role in the formation yields of H2 and (•)OH at 400°C. Recent work has underscored the potential importance of this reaction above 200°C, but its

  13. Micellar and bicontinuous microemulsions formed in both near-critical and supercritical propane with didodecyldimethylammonium bromide and water

    SciTech Connect

    Tingey, J.M.; Fulton, J.L.; Matson, D.W.; Smith, R.D. )

    1991-02-07

    Bicontinuous microemulsions readily form in liquid propane at 25C and pressures from 10 to 500 bar with the addition of the surfactant didodecyldimethylammonium bromide (DDAB) and water. The phase behavior of this system is much like that of the normal liquid alkanes, C{sub 6}-C{sub 10}, but with unusual and dramatic effects due to pressure. When the pressure of the solution is increased from 80 to 400 bar with the addition of pure propane, the conductivity is observed to decrease by 3 orders of magnitude. In accord with existing structural models of conventional liquid microemulsion systems, these changes in the conductivity are ascribed to changes in the interface region as the propane solvent penetrates and solvates the hydrocarbon tails of the surfactant. The corresponding supercritical propane system studied at 100C is best explained as a micellar microemulsion with an oil-continuous phase in which the structure is also affected by the amount of water or the pressure of the system.

  14. Deoxy-liquefaction of switchgrass in supercritical water with calcium formate as an in-situ hydrogen donor.

    PubMed

    Ramsurn, Hema; Gupta, Ram B

    2013-09-01

    Switchgrass was liquefied in supercritical water (SCW) using Ca(HCOO)2 as an in-situ source of hydrogen to enhance deoxygenation and the quality of the biocrude obtained. In SCW, Ca(HCOO)2 produces hydrogen via decomposition and hydrolysis reactions, and simultaneously switchgrass hydrolyzes to form oxygenated hydrocarbon compounds. Because of the close proximity of the newly-formed hydrogen and active hydrocarbons, hydrodeoxygenation occurred whereby some of the oxygenated compounds were upgraded by the removal of oxygen in the form of water. The analysis of the so-formed biocrude revealed the presence of benzene, polyaromatic hydrocarbons, and alkyl phenolics. The benzene formation is attributed to the hydrogenation of phenols but also due to the Diels-Alder alkene addition, followed by dehydrogenation. The addition of Ca(HCOO)2 doubled the yield of biocrude (10 wt%) and increased the heating value from 28 to 34 kJ/g. Formic acid amount increased in the aqueous biocrude due to the enhanced decomposition of xylose and glucose.

  15. A nanosystem for water-insoluble drugs prepared by a new technology, nanoparticulation using a solid lipid and supercritical fluid.

    PubMed

    Park, Joo Won; Yun, Jeong Min; Lee, Eun Seong; Youn, Yu Seok; Kim, Kab Sig; Oh, Young Taik; Oh, Kyung Teak

    2013-11-01

    While the number and diversity of lead compounds has increased with the development of science technologies, ca. 90 % of new chemical entities under development have shown low aqueous solubility, classified as class II or IV of the biopharmaceutics classification system (BCS). The low aqueous solubility hinders their clinical translations due to low bioavailability and dissolution-limited absorption of orally-administered drugs. Several technologies have been employed to improve the solubility of poorly water-soluble drugs. In this paper, a new method of nanoparticulation using fat and a supercritical fluid (NUFS) for the formulation of hydrophobic drugs was applied to solve the low solubility problem. A typical BCS class II drug, itraconazole, was selected and formulated with hydroxypropyl methylcellulose, emulsification, and anticoagulating agents for NUFS. The non-spherical itraconazole nanoparticles prepared by NUFS were ~300-500 nm in size with a ~15-fold improved dissolution rate compared to non-nanoparticles of itraconazole (i.e., raw itraconazole). In addition, a high drug content of ~46 % by weight and a drug loading efficiency greater than 85 % were achieved. Therefore, the new technology for nano-platforms could be a promising solution for solubilization of poorly water-soluble drugs, resulting in improved bioavailability.

  16. Highly methyl-branched hydrocarbon surfactant as a CO₂-philic solubilizer for water/supercritical CO₂ microemulsion.

    PubMed

    Sagisaka, Masanobu; Kudo, Kotaro; Nagoya, Shota; Yoshizawa, Atsushi

    2013-01-01

    To develop an efficient and fluorine-free solubilizer for a water/supercritical CO₂ microemulsion (W/CO₂ μE), in this study, a highly methyl-branched alkyl, isostearyl group was focused on as a CO₂-philic tail, and the custom-made isostearyl surfactant, sodium 2-(4,4-dimethylpentan-2-yl)-5,7,7-trimethyloctyl sulfate (SIS1) was synthesized. The surface tension (γ) of an aqueous SIS1 solution was measured at ambient pressure as a function of surfactant concentration, and it was found to be 25 mN/m at concentrations of > 1.5 mM. A low γ value can generally be reached only by a fluorocarbon surfactant, which implies that SIS1 has an excellent solubilizing power for the W/CO₂ μE, similar to some fluorocarbon surfactants reported previously. Visual observations of the SIS1/W/CO₂ mixtures revealed the formation of transparent single phases without separated water, identified as W/CO₂ μE. The μE was well-stabilized at pressures > 210 bar and temperatures > 55 °C. At 75 °C and 370 bar, SIS1 was found by spectral measurements using a water-soluble UV-light absorber to solubilize water contents up to a maximum water-to-surfactant molar ratio (W0) = 50. The achievement of W0 = 50 in a W/CO₂ μE system has not been reported previously in similar hydrocarbon surfactant/W/CO₂ systems, and this demonstrates that a highly methyl-branched alkyl group can act as a good CO₂-philic group for a W/CO₂ -type surfactant.

  17. Water-gas shift reaction on alumina-supported Pt-CeOx catalysts prepared by supercritical fluid deposition

    SciTech Connect

    Deal, Jacob W.; Le, Phong; Corey, C. Blake; More, Karren; West, Christy Wheeler

    2016-08-25

    Alumina-supported platinum catalysts, both with and without ceria, were prepared by supercritical fluid deposition and evaluated for activity for water-gas shift reaction. The organometallic precursor, platinum(II) acetylacetonate, was deposited from solution in supercritical carbon dioxide. Analysis of the catalysts by high resolution scanning transmission electron microscopy indicated that platinum was present in the form of highly dispersed metal nanoparticles. Pretreatment of the alumina-supported ceria in hydrogen prior to the deposition of the platinum precursor resulted in more platinum nucleated on ceria than non-pretreated alumina-supported ceria but varied in both particle size and structure. The ceria-containing catalyst that was not pretreated exhibited a more uniform particle size, and the Pt particles were encapsulated in crystalline ceria. Reaction rate measurements showed that the catalyst was more active for water-gas shift, with reaction rates per mass of platinum that exceeded most literature values for water-gas shift reaction on Pt-CeOx catalysts. The high activity was attributed to the significant fraction of platinum/ceria interfacial contact. We found that these results show the promise of supercritical fluid deposition as a scalable means of synthesizing highly active supported metal catalysts that offer efficient utilization of precious metals.

  18. Simulation and theory of vibrational phase relaxation in the critical and supercritical nitrogen: Origin of observed anomalies

    NASA Astrophysics Data System (ADS)

    Roychowdhury, Swapan; Bagchi, Biman

    2003-08-01

    We present results of extensive computer simulations and theoretical analysis of vibrational phase relaxation of a nitrogen molecule along the critical isochore and also along the gas-liquid coexistence. The simulation includes all the different contributions [atom-atom (AA), vibration- rotation (VR), and resonant transfer] and their cross-correlations. Following Everitt and Skinner, we have included the vibrational coordinate (q) dependence of the interatomic potential. It is found that the latter makes an important contribution. The simulated results are in good agreement with the experiments. Dephasing time (τv) and the root mean square frequency fluctuation (Δ) in the supercritical region are calculated. The principal important results are: (a) a crossover from a Lorentzian-type to a Gaussian lineshape is observed as the critical point is approached along the isochore (from above), (b) the root mean square frequency fluctuation shows nonmonotonic dependence on the temperature along critical isochore, (c) along the coexistence line and the critical isochore the temperature dependent linewidth shows a divergence-like λ-shape behavior, and (d) the value of the critical exponents along the coexistence and along the isochore are obtained by fitting. It is found that the linewidths (directly proportional to the rate of vibrational phase relaxation) calculated from the time integral of the normal coordinate time correlation function [CQ(t)] are in good agreement with the known experimental results. The origin of the anomalous temperature dependence of linewidth can be traced to simultaneous occurrence of several factors, (i) the enhancement of negative cross-correlations between AA and VR contributions and (ii) the large density fluctuations as the critical point (CP) is approached. The former makes the decay faster so that local density fluctuations are probed on a femtosecond time scale. The reason for the negative cross-correlation between AA and VR is explored

  19. Investigation of binary and ternary systems of ionic liquids with water and/or supercritical CO2 by in situ attenuated total reflection infrared spectroscopy.

    PubMed

    Andanson, Jean-Michel; Jutz, Fabian; Baiker, Alfons

    2010-02-18

    Two commonly used ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]), as well as binary and ternary mixtures of them with water and/or supercritical CO(2) (scCO(2)) were investigated by means of infrared spectroscopy at high pressure. The experiments were performed using attenuated total reflection (ATR) infrared spectroscopy on dry and wet ILs at 40 degrees C and pressures up to 150 bar of scCO(2). The studies indicate that the content of water does not change significantly the solubility of CO(2) in the ionic liquids tested. Furthermore, the presence of water does not change significantly the interaction between the IL anion and CO(2), which explains why the presence of water in IL does not modify the solubility of CO(2) in the system, even in the case of an initial molar ratio of approximately 50/50 of water in [bmim][BF(4)]. We show that despite the limited solubility of water in supercritical CO(2) an ionic liquid can be efficiently dried using scCO(2) extraction even in the case of a hydrophilic ionic liquid (e.g., [bmim][BF(4)]). During the scCO(2) extraction, the concentration of water was followed in situ using attenuated total reflection (ATR) infrared spectroscopy. After extraction, no residual water could be detected by this technique, which corresponds approximately to a water concentration of below 320 ppm.

  20. Geologic controls on supercritical geothermal resources above magmatic intrusions.

    PubMed

    Scott, Samuel; Driesner, Thomas; Weis, Philipp

    2015-07-27

    A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle-ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg(-1), depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems.

  1. Geologic controls on supercritical geothermal resources above magmatic intrusions

    PubMed Central

    Scott, Samuel; Driesner, Thomas; Weis, Philipp

    2015-01-01

    A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle–ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg−1, depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems. PMID:26211617

  2. 2D PIC simulations of a curved supercritical shock: dynamics of the whistler precursor

    NASA Astrophysics Data System (ADS)

    Stienlet, Joël.; Savoini, Philippe; Lembege, Bertrand

    2010-05-01

    The whistler precursor emitted from the curved terrestrial shock front plays an important role in pre-decelerating and heating the incoming solar wind. Most previous works have mainly analyzed the features of the whistler precursor emission for a 1D planar shock where it is forced to propagate along the shock normal (Liewer and al, 1991) or to propagate obliquely with respect to a fixed shock normal direction in 2D planar shock simulation (Krauss-Varban et al., 1995). In the present case, the dynamics of the precursor is analyzed with the help of a 2D full particle simulation for a continuously curved shock within the angular range 90o ≥ ?Bn ≥ 45o where ?Bn is the angle between the shock normal and the upstream magnetostatic field. Both electrons and ions dynamics are described by a self consistent approach. Our results show that (i) the whistler precursor extends far from the shock front mainly along the magnetostatic field (projected on the simulation plane) and not along the shock normal; (ii) the width of these curved wave fronts (precursor) strongly decreases when moving far from the shock front; (iii) at the shock front, the precursor is emitted within an angular range much larger than that predicted by linear theory; (iv) the damping rate of the whistler precursor is analyzed for different directions of the shock normal. Wave particle energy transfer is analysed, and these results will be discussed and compared with previous 1D and 2D simulations of planar shocks; (v) the whistler precursor is not monochromatic, and interferences between modes are evidenced by beats and wave-packets in front of the shock. The impact of this effect on damping rate measurements will be discussed.

  3. Experimental study of crossover from capillary to viscous fingering for supercritical CO2 - water displacement in a homogeneous pore network

    SciTech Connect

    Wang, Ying; Zhang, Changyong; Wei, Ning; Oostrom, Martinus; Wietsma, Thomas W.; Li, Xiaochun; Bonneville, Alain

    2012-06-05

    Carbon sequestration in saline aquifers involves displacing resident brine from the pore space by supercritical CO2 (scCO2 ). The displacement process is considered unstable due to the unfavorable viscosity ratio (logM < 0). The unstable mechanisms that affect scCO2 - water displacement under reservoir conditions (i.e., 41 °C, 9 MPa) were investigated in a homogeneous micromodel. A wide range of injection rates (logCa = -7.61~-4.73) was studied in two sets of experiments: discontinuous-rate injection, where the micromodel was first cleaned and saturated with water before each injection rate was imposed, and continuous-rate injection, where the rate was increased after quasi-steady conditions were reached for a certain rate. For the discontinuous-rate experiments, capillary fingering and viscous fingering are the dominant mechanisms for low (logCa <= -6.61) and high injection rates (logCa >= -5.21), respectively. Crossover from capillary to viscous fingering was observed for logCa = -5.91~-5.21, resulting in a large decrease in scCO2 saturation. The discontinuous-rate experimental results confirmed the decrease in nonwetting fluid saturation during crossover from capillary to viscous fingering predicted by numerical simulations by Lenormand et al. (1988).1 Capillary fingering was the only mechanism that dominates all injection rates in the continuous-rate experiment, and resulted in monotonic increase in scCO2 saturation.

  4. Catalytic supercritical water gasification of primary paper sludge using a homogeneous and heterogeneous catalyst: Experimental vs thermodynamic equilibrium results.

    PubMed

    Louw, Jeanne; Schwarz, Cara E; Burger, Andries J

    2016-02-01

    H2, CH4, CO and CO2 yields were measured during supercritical water gasification (SCWG) of primary paper waste sludge (PWS) at 450°C. Comparing these yields with calculated thermodynamic equilibrium values offer an improved understanding of conditions required to produce near-equilibrium yields. Experiments were conducted at different catalyst loads (0-1g/gPWS) and different reaction times (15-120min) in a batch reactor, using either K2CO3 or Ni/Al2O3-SiO2 as catalyst. K2CO3 up to 1g/gPWS increased the H2 yield significantly to 7.5mol/kgPWS. However, these yields and composition were far from equilibrium values, with carbon efficiency (CE) and energy recovery (ER) of only 29% and 20%, respectively. Addition of 0.5-1g/gPWS Ni/Al2O3-SiO2 resulted in high H2 and CH4 yields (6.8 and 14.8mol/kgPWS), CE of 84-90%, ER of 83% and a gas composition relatively close to the equilibrium values (at hold times of 60-120min).

  5. Application of supercritical water to decompose brominated epoxy resin and environmental friendly recovery of metals from waste memory module.

    PubMed

    Li, Kuo; Xu, Zhenming

    2015-02-03

    Waste Memory Modules (WMMs), a particular kind of waste printed circuit board (WPCB), contain a high amount of brominated epoxy resin (BER), which may bring a series of environmental and health problems. On the other hand, metals like gold and copper are very valuable and are important to recover from WMMs. In the present study, an effective and environmental friendly method using supercritical water (SCW) to decompose BER and recover metals from WMMs was developed instead of hydrometallurgy or pyrometallurgy simultaneously. Experiments were conducted under external-catalyst-free conditions with temperatures ranging from 350 to 550 °C, pressures from 25 to 40 MPa, and reaction times from 120 to 360 min in a semibatch-type reactor. The results showed that BER could be quickly and efficiently decomposed under SCW condition, and the mechanism was possibly free radical reaction. After the SCW treatments, the glass fibers and metal foils in the solid residue could be easily liberated and recovered, respectively. The metal recovery rate reached 99.80%. The optimal parameters were determined as 495 °C, 33 MPa, and 305 min on the basis of response surface methodology (RSM). This study provides an efficient and environmental friendly approach for WMMs recycling compared with electrolysis, pyrometallurgy, and hydrometallurgy.

  6. 2D PIC simulations of a curved supercritical shock: dynamics of the whistler precursor

    NASA Astrophysics Data System (ADS)

    Stienlet, J.; Lembege, B.; Savoini, P.

    2009-12-01

    The whistler precursor emitted from the curved terrestrial shock front plays an important role in pre-decelerating and heating the incoming solar wind. Most previous works have mainly analyzed the features of the whistler precursor emission for a 1D planar shock where it is forced to propagate along the shock normal (Liewer and al, 1991) or to propagate obliquely with respect to a fixed shock normal direction in 2D planar shock simulation (Krauss-Varban et al., 1995). In the present case, the dynamics of the precursor is analyzed for a full curved shock with the help of a 2D full particle simulation where full curvature effects and both electrons and ions dynamics are described by a self consistent approach. Curvature effects continously cover all shock normal directions within the angular range 90° ≤ θBn ≤ 45° where θBn is the angle between the shock normal and the upstream magnetostatic field. This approach allows a free accessibility of the whistler precursor to a large angular range without any constraint. Preliminary results show that : (i) the whistler precursor strongly extends far from the shock front mainly along the magnetostatic field (projected on the simulation plane) but this extension is progressively reduced outside this privileged direction; (ii) wave fronts of the whistler precursor have a curvature similar to that of the main curved shock front but the width of these curved wave fronts strongly decreases when moving far from the shock front; (iii) near the shock front, the precursor is emitted within an angular range much larger than that predicted by linear theory; (iv) the critical angle of occurrence of the precursor fits with the theoretical value expected from Krasnoselskikh et al. (2002) model but this angle is not associated to a transition between stationary and non-stationary shocks in contrast with a statement announced by this theoretical model; and (v) the damping rate of the whistler precursor is analyzed for different

  7. Simulation of Europa's water plume .

    NASA Astrophysics Data System (ADS)

    Lucchetti, A.; Cremonese, G.; Schneider, N. M.; Plainaki, C.; Mazzotta Epifani, E.; Zusi, M.; Palumbo, P.

    Plumes on Europa would be extremely interesting science and mission targets, particularly due to the unique opportunity to obtain direct information on the subsurface composition, thereby addressing Europa's potential habitability. The existence of water plume on the Jupiter's moon Europa has been long speculated until the recent discover. HST imaged surpluses of hydrogen Lyman alpha and oxygen emissions above the southern hemisphere in December 2012 that are consistent with two 200 km high plumes of water vapor (Roth et al. 2013). In previous works ballistic cryovolcanism has been considered and modeled as a possible mechanism for the formation of low-albedo features on Europa's surface (Fagents et al. 2000). Our simulation agrees with the model of Fagents et al. (2000) and consists of icy particles that follow ballistic trajectories. The goal of such an analysis is to define the height, the distribution and the extension of the icy particles falling on the moon's surface as well as the thickness of the deposited layer. We expect to observe high albedo regions in contrast with the background albedo of Europa surface since we consider that material falling after a cryovolcanic plume consists of snow. In order to understand if this phenomenon is detectable we convert the particles deposit in a pixel image of albedo data. We consider also the limb view of the plume because, even if this detection requires optimal viewing geometry, it is easier detectable in principle against sky. Furthermore, we are studying the loss rates due to impact electron dissociation and ionization to understand how these reactions decrease the intensity of the phenomenon. We expect to obtain constraints on imaging requirements necessary to detect potential plumes that could be useful for ESA's JUICE mission, and in particular for the JANUS camera (Palumbo et al. 2014).

  8. In situ mid-infrared spectroscopic titration of forsterite with water in supercritical CO2: Dependence of mineral carbonation on quantitative water speciation

    NASA Astrophysics Data System (ADS)

    Loring, J. S.; Thompson, C. J.; Wang, Z.; Schaef, H. T.; Martin, P.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.

    2011-12-01

    Geologic sequestration of carbon dioxide holds promise for helping mitigate CO2 emissions generated from the burning of fossil fuels. Supercritical CO2 (scCO2) plumes containing variable water concentrations (wet scCO2) will displace aqueous solution and dominate the pore space adjacent to caprocks. It is important to understand possible mineral reactions with wet scCO2 to better predict long-term caprock integrity. We introduce novel in situ instrumentation that enables quantitative titrations of reactant minerals with water in scCO2 at temperatures and pressures relevant to target geologic reservoirs. The system includes both transmission and attenuated total reflection mid-infrared optics. Transmission infrared spectroscopy is used to measure concentrations of water dissolved in the scCO2, adsorbed on mineral surfaces, and incorporated into precipitated carbonates. Single-reflection attenuated total reflection infrared spectroscopy is used to monitor water adsorption, mineral dissolution, and carbonate precipitation reactions. Results are presented for the infrared spectroscopic titration of forsterite (Mg2SiO4), a model divalent metal silicate, with water in scCO2 at 100 bar and at both 50 and 75°C. The spectral data demonstrate that the quantitative speciation of water as either dissolved or adsorbed is important for understanding the types, growth rates, and amounts of carbonate precipitates formed. Relationships between dissolved/adsorbed water, water concentrations, and the role of liquid-like adsorbed water are discussed. Our results unify previous in situ studies from our laboratory based on infrared spectroscopy, nuclear magnetic resonance spectroscopy and X-ray diffraction.

  9. Atomistic molecular dynamics simulations of H2O diffusivity in liquid and supercritical CO2

    NASA Astrophysics Data System (ADS)

    Moultos, Othonas A.; Orozco, Gustavo A.; Tsimpanogiannis, Ioannis N.; Panagiotopoulos, Athanassios Z.; Economou, Ioannis G.

    2015-09-01

    Molecular dynamics simulations were employed for the calculation of diffusion coefficients of pure CO2 and of H2O in CO2 over a wide range of temperatures (298.15 K < T < 523.15 K) and pressures (5.0 MPa < P < 100.0 MPa), that are of interest to CO2 capture-and-sequestration processes. Various combinations of existing fixed-point-charge force-fields for H2O (TIP4P/2005 and Exponential-6) and CO2 (elementary physical model 2 [EPM2], transferable potentials for phase equilibria [TraPPE], and Exponential-6) were tested. All force-field combinations qualitatively reproduce the trends of the experimental data for infinitely diluted H2O in CO2; however, TIP4P/2005-EPM2, TIP4P/2005-TraPPE and Exponential-6-Exponential-6 were found to be the most consistent. Additionally, for H2O compositions ranging from infinite dilution to ?, the Maxwell-Stefan diffusion coefficient is shown to have a weak non-linear composition dependence.

  10. Water Conservation Education with a Rainfall Simulator.

    ERIC Educational Resources Information Center

    Kok, Hans; Kessen, Shelly

    1997-01-01

    Describes a program in which a rainfall simulator was used to promote water conservation by showing water infiltration, water runoff, and soil erosion. The demonstrations provided a good background for the discussion of issues such as water conservation, crop rotation, and conservation tillage practices. The program raised awareness of…

  11. Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography.

    PubMed

    Taguchi, Kaori; Fukusaki, Eiichiro; Bamba, Takeshi

    2014-10-03

    Chromatography techniques usually use a single state in the mobile phase, such as liquid, gas, or supercritical fluid. Chromatographers manage one of these techniques for their purpose but are sometimes required to use multiple methods, or even worse, multiple techniques when the target compounds have a wide range of chemical properties. To overcome this challenge, we developed a single method covering a diverse compound range by means of a "unified" chromatography which completely bridges supercritical fluid chromatography and liquid chromatography. In our method, the phase state was continuously changed in the following order; supercritical, subcritical and liquid. Moreover, the gradient of the mobile phase starting at almost 100% CO2 was replaced with 100% methanol at the end completely. As a result, this approach achieved further extension of the polarity range of the mobile phase in a single run, and successfully enabled the simultaneous analysis of fat- and water-soluble vitamins with a wide logP range of -2.11 to 10.12. Furthermore, the 17 vitamins were exceptionally separated in 4min. Our results indicated that the use of dense CO2 and the replacement of CO2 by methanol are practical approaches in unified chromatography covering diverse compounds. Additionally, this is a first report to apply the novel approach to unified chromatography, and can open another door for diverse compound analysis in a single chromatographic technique with single injection, single column and single system.

  12. Comparison of large scale purification processes of naproxen enantiomers by chromatography using methanol-water and methanol-supercritical carbon dioxide mobile phases.

    PubMed

    Kamarei, Fahimeh; Vajda, Péter; Guiochon, Georges

    2013-09-20

    This paper compares two methods used for the preparative purification of a mixture of (S)-, and (R)-naproxen on a Whelk-O1 column, using either high performance liquid chromatography or supercritical fluid chromatography. The adsorption properties of both enantiomers were measured by frontal analysis, using methanol-water and methanol-supercritical carbon dioxide mixtures as the mobile phases. The measured adsorption data were modeled, providing the adsorption isotherms and their parameters, which were derived from the nonlinear fit of the isotherm models to the experimental data points. The model used was a Bi-Langmuir isotherm, similar to the model used in many enantiomeric separations. These isotherms were used to calculate the elution profiles of overloaded elution bands, assuming competitive Bi-Langmuir behavior of the two enantiomers. The analysis of these profiles provides the basis for a comparison between supercritical fluid chromatographic and high performance liquid chromatographic preparative scale separations. It permits an illustration of the advantages and disadvantages of these methods and a discussion of their potential performance.

  13. Investigation of Wyoming Bentonite Hydration in Dry to Water-Saturated Supercritical CO2: Implications for Caprock Integrity

    NASA Astrophysics Data System (ADS)

    Loring, J. S.; Chen, J.; Thompson, C.; Schaef, T.; Miller, Q. R.; Martin, P. F.; Ilton, E. S.; Qafoku, O.; Felmy, A. R.; Rosso, K. M.

    2012-12-01

    The effectiveness of geologic sequestration as an enterprise for CO2 storage depends partly on the reactivity of supercritical CO2 (scCO2) with caprock minerals. Injection of scCO2 will displace formation water, and the pore space adjacent to overlying caprocks could eventually be dominated by dry to water-saturated scCO2. Caprock formations have high concentrations of clay minerals, including expandable montmorillonites. Water-bearing scCO2 is highly reactive and capable of hydrating or dehydrating clays, possibly leading to porosity and permeability changes that directly impact caprock performance. Dehydration will cause montmorillonite clay minerals in caprocks to contract, thereby decreasing solid volume and possibly increasing caprock permeability and porosity. On the other hand, water intercalation will cause these clays to expand, thereby increasing solid volume and possibly leading to self-sealing of caprock fractures. Pacific Northwest National Laboratory's Carbon Sequestration Initiative is developing capabilities for studying wet scCO2-mineral reactions in situ. Here, we introduce novel in situ infrared (IR) spectroscopic instrumentation that enables quantitative titrations of reactant minerals with water in scCO2. Results are presented for the infrared spectroscopic titrations of Na-, Ca-, and Mg-saturated Wyoming betonites with water over concentrations ranging from zero to scCO2 saturated. These experiments were carried out at 50°C and 90 bar. Transmission IR spectroscopy was used to measure concentrations of water dissolved in the scCO2 or intercalated into the clays. The titration curves evaluated from the transmission-IR data are compared between the three types of clays to assess the effects of the cation on water partitioning. Single-reflection attenuated total reflection (ATR) IR spectroscopy was used to collect the spectrum of the clays as they hydrate at every total water concentration during the titration. Clay hydration is evidenced by

  14. A subchannel analysis code for supercritical-pressure LWR with downward-flowing water rods

    SciTech Connect

    Tanabe, T.; Koshizuka, S.; Oka, Y.; Kitou, K.

    2004-07-01

    This paper describes development of a subchannel analysis code for the square fuel assembly with downward-flowing water rods, which is the new design of high temperature thermal reactor (SCLWR-H) in Univ. Tokyo. PLANDTL experiment for liquid metal cooled fast breeder reactor and ASFRE-III code analysis are used to verify the present code. Subchannel analysis for SCLWR-H, which considers the effect of water rods, is executed. Since the hydraulic diameters of the subchannels are almost constant in the square fuel assembly, the flow and temperature distributions are more uniform than those in the hexagonal assembly. However, coolant temperature slightly depends on the subchannel types. The temperature in the corner subchannels is the lowest. This is because flow area is small against the contact length with the water rod and heat transfer to the water rod is larger than that in other subchannels. The coolant temperature in the corner subchannels is 17 deg. C lower than the average temperature (500 deg. C). The temperature distributions in the water rods are also evaluated. The water rods outside the channel box have a higher temperature distribution than that in the inside water rods. The temperature in the outside water rods increases up to 378 deg. C which is close to pseudo-critical temperature. It can be reduced by increasing the flow rate in the outside water rods. (authors)

  15. First identification of sub- and supercritical convection patterns from ‘GeoFlow’, the geophysical flow simulation experiment integrated in Fluid Science Laboratory

    NASA Astrophysics Data System (ADS)

    Futterer, B.; Egbers, C.; Dahley, N.; Koch, S.; Jehring, L.

    2010-01-01

    Physical mechanisms of thermally driven rotating fluids are important for a large number of geophysical problems, e.g. to explain the convection of the Earth's liquid outer core. Objective of the 'GeoFlow' experiment is to study stability, pattern formation, and transition to chaos of thermal convection in fluid-filled concentric, co-axially rotating spheres. This experiment is integrated in the Fluid Science Laboratory of the European COLUMBUS module on International Space Station. Fluid dynamics of the experiment was predicted with numerical simulations by means of a spectral code. In the non-rotating case the onset of convection bifurcated into steady fluid flow. Here patterns of convection showed co-existing states with axisymmetric, cubic and pentagonal modes. Transition to chaos was in the form of sudden onset. For the thermal convection in rotating spheres the onset of first instability showed an increase of modes for higher parameter regime. Transition was from steady via periodic to chaotic behaviour. Convection patterns of the experiment are observed with the Wollaston shearing interferometry. Images are in terms of interferograms with fringe patterns corresponding to special convective flows. A first glance at the images showed the classification of sub- and supercritical flow regimes. Aligned with numerical data a shift between experiment and numerical simulation was identified. Identification of convection patterns in interferograms was demonstrated for the example of a supercritical flow.

  16. Subcritical and supercritical water oxidation of organic, wet wastes for carbon cycling in regenerative life support systems

    NASA Astrophysics Data System (ADS)

    Ronsse, Frederik; Lasseur, Christophe; Rebeyre, Pierre; Clauwaert, Peter; Luther, Amanda; Rabaey, Korneel; Zhang, Dong Dong; López Barreiro, Diego; Prins, Wolter; Brilman, Wim

    2016-07-01

    For long-term human spaceflight missions, one of the major requirements is the regenerative life support system which has to be capable of recycling carbon, nutrients and water from both solid and liquid wastes generated by the crew and by the local production of food through living organisms (higher plants, fungi, algae, bacteria, …). The European Space Agency's Life Support System, envisioned by the MELiSSA project, consists of a 5 compartment artificial ecosystem, in which the waste receiving compartment (so-called compartment I or briefly 'CI') is based on thermophilic fermentation. However, as the waste generated by the crew compartment and food production compartment contain typical plant fibres (lignin, cellulose and hemicellulose), these recalcitrant fibres end up largely unaffected in the digestate (sludge) generated in the C-I compartment. Therefore, the C-I compartment has to be supplemented with a so-called fibre degradation unit (in short, FDU) for further oxidation or degradation of said plant fibres. A potential solution to degrading these plant fibres and other recalcitrant organics is their oxidation, by means of subcritical or supercritical water, into reusable CO2 while retaining the nutrients in an organic-free liquid effluent. By taking advantage of the altered physicochemical properties of water above or near its critical point (647 K, 22.1 MPa) - including increased solubility of non-polar compounds and oxygen, ion product and diffusivity - process conditions can be created for rapid oxidation of C into CO2. In this research, the oxidizer is provided as a hydrogen peroxide solution which, at elevated temperature, will dissociated into O2. The purpose of this study is to identify ideal process conditions which (a) ensure complete oxidation of carbon, (b) retaining the nutrients other than C in the liquid effluent and (c) require as little oxidizer as possible. Experiments were conducted on a continuous, tubular heated reactor and on batch

  17. Hydrogen production via supercritical water gasification of bagasse using Ni-Cu/γ-Al2O3 nano-catalysts.

    PubMed

    Mehrani, Reza; Barati, Mohammad; Tavasoli, Ahmad; Karimi, Ali

    2015-01-01

    Biomass gasification in supercritical water media is a promising method for the production of hydrogen. In this research, Cu-promoted Ni/γ-Al2O3 nano-catalysts were prepared with 2.5-30 wt% Ni and 0.6-7.5 wt% Cu loadings via the microemulsion method. Nano-catalysts were characterized by inductively coupled plasma (ICP), Brunauer Emmett Teller (BET) technique, X-Ray Diffraction (XRD), H2 chemisorption and Transmission Electron Microscopy (TEM) technique, as well as Carbon-Hydrogen-Nitrogen-Sulfur (CHNS) analysis was carried out for elemental analysis of bagasse. Nano-catalysts were assessed in a batch micro-reactor under 400°C and 240 bar. The microemulsion method decreased the catalyst average particle size and increased the percentage dispersion and reduction of the catalysts. The total gas yield increased with an increase in Ni and Cu loadings up to 20 wt% Ni and 5 wt% Cu and then started to decrease. Using the microemulsion technique for the preparation of Ni-Cu/γ-Al2O3 nano-catalyst, increased the hydrogen yield to 11.76 (mmol of H2/g of bagasse), CO yield to 2.67 (mmol of CO/g of bagasse) and light gaseous hydrocarbons to 0.6 (mmol of light gaseous hydrocarbons/g of bagasse). Promotion of Ni/γ-Al2O3 with copper increased the mole fraction of hydrogen in the final gasification products to 58.1 mol%.

  18. Reaction of water-saturated supercritical CO2 with forsterite: Evidence for magnesite formation at low temperatures

    NASA Astrophysics Data System (ADS)

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Hu, Jian Zhi; Hu, Mary; Todd Schaef, H.; Ilton, Eugene S.; Hess, Nancy J.; Pearce, Carolyn I.; Feng, Ju; Rosso, Kevin M.

    2012-08-01

    The nature of the reaction products that form on the surfaces of nanometer-sized forsterite particles during reaction with H2O-saturated supercritical CO2 (scCO2) at 35 °C and 50 °C were examined under in situ conditions and ex situ following reaction. The in situ analysis was conducted by X-ray diffraction (XRD). Ex situ analysis consisted of scanning electron microscopy (SEM) examination of the surface phases and chemical characterization of precipitates using a combination of confocal Raman spectroscopy, 13C and 29Si NMR spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). The results show that the forsterite surface is highly reactive with the primary reaction products being a mixture of nesquehonite (MgCO3·3H2O) and magnesite (MgCO3) at short reaction times (˜3-4 days) and then magnesite (MgCO3) and a highly porous amorphous silica phase at longer reaction times (14 days). After 14 days of reaction most of the original forsterite transformed to reaction products. Importantly, the formation of magnesite was observed at temperatures much lower (35 °C) than previously thought needed to overcome its well-known sluggish precipitation kinetics. The conversion of nesquehonite to magnesite liberates H2O which can potentially facilitate further metal carbonation, as postulated by previous investigators, based upon studies at higher temperature (80 °C). The observation that magnesite can form at lower temperatures implies that water recycling may also be important in determining the rate and extent of mineral carbonation in a wide range of potential CO2 storage reservoirs.

  19. Reaction of Water-Saturated Supercritical CO2 with Forsterite: Evidence for Magnesite Formation at Low Temperatures

    SciTech Connect

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Hu, Jian Z.; Hu, Mary Y.; Schaef, Herbert T.; Ilton, Eugene S.; Hess, Nancy J.; Pearce, Carolyn I.; Feng, Ju; Rosso, Kevin M.

    2012-08-01

    The nature of the reaction products that form on the surfaces of nanometer-sized forsterite particles during reaction with H2O saturated supercritical CO2 (scCO2) at 35 C and 50 C were examined under in situ conditions and ex situ following reaction. The in situ analysis was conducted by X-ray diffraction (XRD). Ex situ analysis consisted of scanning electron microscopy (SEM) examination of the surface phases and chemical characterization of precipitates using a combination of confocal Raman spectroscopy, 13C and 29Si NMR spectroscopy, and energy-dispersive X-ray Spectroscopy (EDS). The results show that the forsterite surface is highly reactive with the primary reaction products being a mixture of nesquehonite (MgCO3.3H2O) and magnesite (MgCO3) at short reaction times ({approx}3-4 days) and then magnesite (MgCO3) and a highly porous amorphous silica phase at longer reaction times (14 days). After 14 days of reaction most of the original forsterite transformed to reaction products. Importantly, the formation of magnesite was observed at temperatures much lower (35 C) than previously thought needed to overcome its well known sluggish precipitation kinetics. The conversion of nesquehonite to magnesite liberates H2O which can potentially facilitate further metal carbonation, as postulated by previous investigators, based upon studies at higher temperature (80 C). The observation that magnesite can form at lower temperatures implies that water recycling may also be important in determining the rate and extent of mineral carbonation in a wide range of potential CO2 storage reservoirs.

  20. Microemulsions in supercritical hydrochlorofluorocarbons

    SciTech Connect

    Jackson, K.; Fulton, J.L.

    1996-10-30

    We report the properties of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) microemulsions formed in supercritical hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons, and flourocarbons. The fluids used in this study include compounds that are of low toxicity and flammability and that are expected to remain environmentally acceptable well into the next century (e.g., 1,1,1, 2-tetrafluoroethane (R134a) and chlorodifluoromethane (R22)). We show that it is possible to form a water-in-oil type of microemulsion in a low molecular weight HCFC (R22). In addition to these HCFCs, We also review the ability to form microemulsions in 14 other fluids (ethane, propene, propane, n-butane, n-pentane, n-haxane, isobutane, isooctane, difluoromethane, trifluoromethane, hexafluoroethane, sulfur haxafluoride, xenon, and carbon dioxide) at conditions just above or below the critical point (0.75 < T/T{sub c} <1.1) of the solvent. We report extensively the phase behavior of AOT and didodecyldimethylammonium bromide microemulsions formed in a supercritical HCFC, R22. We show that microemulsions in HCFCs are practical alternatives to other fluids, such as supercritical carbon dioxide. 56 refs., 7 figs., 1 tab.

  1. Quantifying the flow dynamics of supercritical CO2-water displacement in a 2D porous micromodel using fluorescent microscopy and microscopic PIV

    NASA Astrophysics Data System (ADS)

    Kazemifar, Farzan; Blois, Gianluca; Kyritsis, Dimitrios C.; Christensen, Kenneth T.

    2016-09-01

    The multi-phase flow of liquid/supercritical CO2 and water (non-wetting and wetting phases, respectively) in a two-dimensional silicon micromodel was investigated at reservoir conditions (80 bar, 24 °C and 40 °C). The fluorescent microscopy and microscopic particle image velocimetry (micro-PIV) techniques were combined to quantify the flow dynamics associated with displacement of water by CO2 (drainage) in the porous matrix. To this end, water was seeded with fluorescent tracer particles, CO2 was tagged with a fluorescent dye and each phase was imaged independently using spectral separation in conjunction with microscopic imaging. This approach allowed simultaneous measurement of the spatially-resolved instantaneous velocity field in the water and quantification of the spatial configuration of the two fluid phases. The results, acquired with sufficient time resolution to follow the dynamic progression of both phases, provide a comprehensive picture of the flow physics during the migration of the CO2 front, the temporal evolution of individual menisci, and the growth of fingers within the porous microstructure. During that growth process, velocity jumps 20-25 times larger in magnitude than the bulk velocity were measured in the water phase and these bursts of water flow occurred both in-line with and against the bulk flow direction. These unsteady velocity events support the notion of pressure bursts and Haines jumps during pore drainage events as previously reported in the literature [1-3]. After passage of the CO2 front, shear-induced flow was detected in the trapped water ganglia in the form of circulation zones near the CO2-water interfaces as well as in the thin water films wetting the surfaces of the silicon micromodel. To our knowledge, the results presented herein represent the first quantitative spatially and temporally resolved velocity-field measurements at high pressure for water displacement by liquid/supercritical CO2 injection in a porous micromodel.

  2. Simulation of high-temperature water-CO2 flows in porous media

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey

    2010-05-01

    Coupled water and carbon dioxide flows in porous media can take place both in natural volcanic environments and in industrial processes, for example, underground carbon dioxide storage or geothermal energy recovery. Pressures and temperatures in these flows can considerably exceed their values in critical point of water. Nowadays there are no adequate mathematical models that can in aggregate describe both water and water-carbon dioxide mixture properties in sub- and supercritical regions and the dynamics of their flows in such conditions. Thereby the influence of critical conditions on water flows in porous media is not well understood. In the paper cubic equation of state is used to describe water-carbon dioxide mixture in wide range of conditions including critical conditions for mixture. The equation generalizes well known Peng-Robinson equation and can be used to describe properties not only of hydrocarbons but also of carbon-dioxide and water. The real mixture properties measurements are used to determine the equation coefficients. Comparison between experimental measurements and data calculated via the equation of state shows a good agreement between the data. For example the error in water density calculation is less than 10% in the whole range of pressure-enthalpy conditions. Effective and fast algorithms for phase equilibrium calculation via pressure, enthalpy and mixture composition where developed. These thermodynamic variables are the most suitable for trans-critical flow simulations. The developed numerical model that is based on mass and energy conservation laws was used to study hydrothermal system in Solfatara volcano (Campi Flegrei). The flows in porous media that take place in the system are forced by presence of magmatic chamber located at depth of 9 km. Magma degassing makes a hot supercritical plume of water-carbon dioxide mixture that ascends to shallow layers where magmatic fluid mixes with cold meteoric water. The model assumes a source of

  3. In-situ Optical Spectroscopy Investigation of Water and Its influence on Forsterite Transformation in Supercritical CO2

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Thompson, C. J.; Joly, A. G.; Sklarew, D. S.; Poindexter, L.; Rosso, K. M.

    2009-12-01

    Carbon capture and sequestration (CCS) from coal/gas-burning power plants is currently viewed as one of the most promising technologies for mitigating green house gas emissions. This strategy involves injection of supercritical CO2 (scCO2) into deep geological formations such as depleted oil and gas reservoirs and deep saline aquifers. The feasibility of this approach and the ultimate fate of the stored CO2 are determined by the interactions between scCO2, various minerals in the rock formations, and the host fluids. Currently, there is only limited knowledge about both the thermodynamic and kinetic aspects of the physical and chemical processes that occur between scCO2 and relevant minerals, such as metal silicates and metal aluminosilicates, and the role of water activity for catalyzing mineral transformation reactions. In this work, we have developed a modular in situ optical spectroscopic platform that integrates a scCO2 generation and manipulation system with an array of optical and laser spectroscopies including UV-visible, IR, Raman and laser fluorescence spectroscopy. We have used the system to study i) the dissolution and quantification of H2O/D2O in scCO2 and ii) interaction between scCO2 and a model metal silicate, forsterite (Mg2SiO4), and the effects of the presence of water under variable pressure, temperature and water content. Our results showed that H2O and D2O have unique IR spectral features over a broad spectral range from 700 cm-1 to ~ 2900 cm-1 in scCO2 and their concentrations are directly proportional to the characteristic IR bands that correspond to their stretching (D2O) and bending frequencies (both D2O and H2O). These bands offer a unique spectroscopic signature useful for qualitative and quantitative analysis of the properties and reactivity of small amounts of H2O in scCO2.

  4. Helicity in supercritical temporal mixing layers

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Okong'o, N.

    2003-01-01

    Databases of transitional states obtained from Direct Numerical Simulations (DNS) of temporal, supercritical mixing layers for two species systems, 02/H2 and C7Hle/N2, are analyzed to elucidate species-specific turbulence aspects.

  5. Supercritical fluid chromatographic resolution of water soluble isomeric carboxyl/amine terminated peptides facilitated via mobile phase water and ion pair formation.

    PubMed

    Patel, M A; Riley, F; Ashraf-Khorassani, M; Taylor, L T

    2012-04-13

    Both analytical scale and preparative scale packed column supercritical fluid chromatography (SFC) have found widespread applicability for chiral separations of multiple polar pharmaceutical candidates. However, SFC is rapidly becoming an achiral technique. More specifically, ion pair SFC is finding greater utility for separation of ionic analytes such as amine salts and organic sulfonates. The key to this success is, in part, the incorporation of additives such as trifluoroacetic acid and ammonium acetate into the mobile phase in association with a wide variety of both bonded silica stationary phases and high purity bare silica. Ion pairing SFC coupled with evaporative light scattering detection and mass spectrometric detection is presented here for the separation of water soluble, uncapped, isomeric peptide pairs that differ in amino acid arrangement. The separation is best achieved on either diol-bonded silica or bare silica with 1-5% (w/w) water as a significant ingredient in the mobile phase. Nitrogenous stationary phases such as 2-ethylpyridine, which had been very successful for the separation of capped peptides failed to yield the desired separation regardless of the mobile phase composition. A HILIC type retention mechanism is postulated for the separation of both isomeric uncapped peptide pairs.

  6. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment

    PubMed Central

    Ruiz, A.; Timke, T.; van de Sande, A.; Heftrich, T.; Novotny, R.; Austin, T.

    2016-01-01

    This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C) with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure. PMID:27158647

  7. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment.

    PubMed

    Ruiz, A; Timke, T; van de Sande, A; Heftrich, T; Novotny, R; Austin, T

    2016-06-01

    This article presents corrosion data and microstructural analysis data of austenitic stainless steels AISI 316L and AISI 347H exposed to supercritical water (25 MPa, 550 °C) with 2000 ppb of dissolved oxygen. The corrosion tests lasted a total of 1200 h but were interrupted at 600 h to allow measurements to be made. The microstructural data have been collected in the grain interior and at grain boundaries of the bulk of the materials and at the superficial oxide layer developed during the corrosion exposure.

  8. Characteristics of supercritical turbulence from Direct Numerical Simulations of C(sub 7)H(sub 16)/N(sub 2) and O(sub 2)/H(sub 2)

    NASA Technical Reports Server (NTRS)

    Okong'o, N. A.; Bellan, J.

    2003-01-01

    Analysis of Direct Numerical Simulations (DNS) transitional states of temporal, supercritical mixing layers for C7H16/N2 and O2/H2 shows that the evolution of all layers is characterized by the formation of high-density-gradient magnitude (HDGM) regions.

  9. Water system modeling for dispatcher training simulators

    SciTech Connect

    Rajagopal, S.; Sigari, P.G. ); Allen, J.E.; Assadian, M. )

    1993-08-01

    This paper addresses the existing need for training dispatchers in the operation of power systems where it involves managing large water systems. The problem formulation and implementation of water system modeling for the Dispatcher Training Simulators (DTS) are presented in this paper. The method systematically builds the water network descriptions. The model periodically calculates the water system flows, storage values, and currently available hydro generation capacities. The model is controllable by the instructor and provides the simulated telemetry of water system data to the control center functions in the DTS. The water system modeling enhances the power system modeling subsystem of the DTS. The method is validated on a large water system and power system data. The results and the benefits of water system modeling are discussed.

  10. Dynamic transition in supercritical iron

    PubMed Central

    Fomin, Yu. D.; Ryzhov, V. N.; Tsiok, E. N.; Brazhkin, V. V.; Trachenko, K.

    2014-01-01

    Recent advance in understanding the supercritical state posits the existence of a new line above the critical point separating two physically distinct states of matter: rigid liquid and non-rigid gas-like fluid. The location of this line, the Frenkel line, remains unknown for important real systems. Here, we map the Frenkel line on the phase diagram of supercritical iron using molecular dynamics simulations. On the basis of our data, we propose a general recipe to locate the Frenkel line for any system, the recipe that importantly does not involve system-specific detailed calculations and relies on the knowledge of the melting line only. We further discuss the relationship between the Frenkel line and the metal-insulator transition in supercritical liquid metals. Our results enable predicting the state of supercritical iron in several conditions of interest. In particular, we predict that liquid iron in the Jupiter core is in the “rigid liquid” state and is highly conducting. We finally analyse the evolution of iron conductivity in the core of smaller planets such as Earth and Venus as well as exoplanets: as planets cool off, the supercritical core undergoes the transition to the rigid-liquid conducting state at the Frenkel line. PMID:25424664

  11. Dynamic transition in supercritical iron.

    PubMed

    Fomin, Yu D; Ryzhov, V N; Tsiok, E N; Brazhkin, V V; Trachenko, K

    2014-11-26

    Recent advance in understanding the supercritical state posits the existence of a new line above the critical point separating two physically distinct states of matter: rigid liquid and non-rigid gas-like fluid. The location of this line, the Frenkel line, remains unknown for important real systems. Here, we map the Frenkel line on the phase diagram of supercritical iron using molecular dynamics simulations. On the basis of our data, we propose a general recipe to locate the Frenkel line for any system, the recipe that importantly does not involve system-specific detailed calculations and relies on the knowledge of the melting line only. We further discuss the relationship between the Frenkel line and the metal-insulator transition in supercritical liquid metals. Our results enable predicting the state of supercritical iron in several conditions of interest. In particular, we predict that liquid iron in the Jupiter core is in the "rigid liquid" state and is highly conducting. We finally analyse the evolution of iron conductivity in the core of smaller planets such as Earth and Venus as well as exoplanets: as planets cool off, the supercritical core undergoes the transition to the rigid-liquid conducting state at the Frenkel line.

  12. Dynamic transition in supercritical iron

    NASA Astrophysics Data System (ADS)

    Fomin, Yu. D.; Ryzhov, V. N.; Tsiok, E. N.; Brazhkin, V. V.; Trachenko, K.

    2014-11-01

    Recent advance in understanding the supercritical state posits the existence of a new line above the critical point separating two physically distinct states of matter: rigid liquid and non-rigid gas-like fluid. The location of this line, the Frenkel line, remains unknown for important real systems. Here, we map the Frenkel line on the phase diagram of supercritical iron using molecular dynamics simulations. On the basis of our data, we propose a general recipe to locate the Frenkel line for any system, the recipe that importantly does not involve system-specific detailed calculations and relies on the knowledge of the melting line only. We further discuss the relationship between the Frenkel line and the metal-insulator transition in supercritical liquid metals. Our results enable predicting the state of supercritical iron in several conditions of interest. In particular, we predict that liquid iron in the Jupiter core is in the ``rigid liquid'' state and is highly conducting. We finally analyse the evolution of iron conductivity in the core of smaller planets such as Earth and Venus as well as exoplanets: as planets cool off, the supercritical core undergoes the transition to the rigid-liquid conducting state at the Frenkel line.

  13. Simulated water productivity in Gansu Province, China

    NASA Astrophysics Data System (ADS)

    Zhan, Jinyan; Sun, Zhongxiao; Wang, Zhan; Chen, Jiancheng; Li, Zhaohua

    Economic value of water and economic analysis of water use management in Gansu Province of China have attracted widespread public attention. With the socioeconomic development, research on water resources has become more important than before. In this study, we define "water productivity" as the changes of economic production outputs of sectoral activities in every cubic meter of water input, which is also the technical coefficient of water resource use in each sector. According to Computable General Equilibrium (CGE) framework, based on the Input-Output Table 2007 and water resources bulletin of Gansu Province, we introduced the water into the ORANI-G (A Generic Single-Country Computable General Equilibrium model) model through the nested constant elasticity of substitution (CES) production function to analyze the changes of economic productions caused by water supply changes. We then examined water productivity in different sectors. Empirical results showed that current water productivity is underestimated. Agricultural water productivity is lower than that of the secondary and tertiary industries, even although agricultural water use is the largest part of water use in Gansu Province, and therefore improving agricultural water productivity can greatly mitigate the water shortage. Simulation results indicate that industrial transformation and development of water-saving industries will also mitigate water scarcity. Moreover, sensitivity analysis shows that the empirical results are robust under different scenarios. The results also show that higher constant elasticity of substitution rate (CES) between water and other production factors will contribute to sustainable development.

  14. Determination of Organic Partitioning Coefficients in Water-Supercritical CO 2 Systems by Simultaneous in Situ UV and Near-Infrared Spectroscopies

    SciTech Connect

    Bryce, David A.; Shao, Hongbo; Cantrell, Kirk J.; Thompson, Christopher J.

    2016-06-07

    CO2 injected into depleted oil or gas reservoirs for long-term storage has the potential to mobilize organic compounds and distribute them between sediments and reservoir brines. Understanding this process is important when considering health and environmental risks, but little quantitative data currently exists on the partitioning of organics between supercritical CO2 and water. In this work, a high-pressure, in situ measurement capability was developed to assess the distribution of organics between CO2 and water at conditions relevant to deep underground storage of CO2. The apparatus consists of a titanium reactor with quartz windows, near-infrared and UV spectroscopic detectors, and switching valves that facilitate quantitative injection of organic reagents into the pressurized reactor. To demonstrate the utility of the system, partitioning coefficients were determined for benzene in water/supercritical CO2 over the range 35-65 °C and approximately 25-150 bar. Density changes in the CO2 phase with increasing pressure were shown to have dramatic impacts on benzene's partitioning behavior. Our partitioning coefficients were approximately 5-15 times lower than values previously determined by ex situ techniques that are prone to sampling losses. The in situ methodology reported here could be applied to quantify the distribution behavior of a wide range of organic compounds that may be present in geologic CO2 storage scenarios.

  15. Corrosion behavior of alloy 800H (Fe-21Cr-32Ni) in supercritical water

    SciTech Connect

    Tan, Lizhen; Allen, Todd R.; Yang, Ying

    2011-01-01

    The effect of testing conditions (temperature, time, and oxygen content) and material's microstructure (the as-received and the grain boundary engineered conditions) on the corrosion behavior of alloy 800H in high-temperature pressurized water was studied using a variety of characterization techniques. Oxidation was observed as the primary corrosion behavior on the samples. Oxide exfoliation was significantly mitigated on the grain boundary engineered samples compared to the as-received ones. The oxide formation, including some 'mushroom-shaped oxidation', is predicted via a combination of thermodynamics and kinetics influenced by the preferential diffusion of specific species using short-cut diffusion paths.

  16. Thermodynamic Analysis of the Use a Chemical Heat Pump to Link a Supercritical Water-Cooled Nuclear Reactor and a Thermochemical Water-Splitting Cycle for Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted

  17. Process for the oxidation of materials in water at supercritical temperatures utilizing reaction rate enhancers

    SciTech Connect

    Swallow, K.C.; Killilea, W.R.; Hong, G.T.; Bourhis, A.L.

    1993-08-03

    A method is described for substantially completely oxidizing combustible materials in which an aqueous stream bearing the combustible materials is reacted in the presence of an oxidant comprising diatomic oxygen and at a temperature greater than the critical temperature of water and at a pressure greater than about 25 bar, within a reactor for a period of less than about 5 minutes to produce a reaction product stream, wherein the reaction is initiated in the presence of a rate enhancer comprising at least one oxidizing agent in addition to said oxidant selected from the group consisting of ozone, hydrogen peroxide, salts containing persulfate, salts containing permanganate, nitric acid, salts containing nitrate, oxyacids of chlorine and their corresponding salts, hypochlorous acid, salts containing hypochlorite, chlorous acid, salts containing chlorite, chloric acid, salts containing chlorate, perchloric acid, and salts containing perchlorate.

  18. The application of preparative batch HPLC, supercritical fluid chromatography, steady-state recycling, and simulated moving bed for the resolution of a racemic pharmaceutical intermediate.

    PubMed

    Yan, Tony Q; Orihuela, Carlos; Swanson, David

    2008-02-01

    This article discusses the chromatographic resolution of a racemic pharmaceutical intermediate. Preparative batch high performance liquid chromatography (HPLC), supercritical fluid chromatography (SFC), steady-state recycling (SSR), and simulated moving bed (SMB) were used to resolve a total of 12.2 kg of a racemic pharmaceutical intermediate. In this study, a first batch of 0.8 kg of racemate was separated on the preparative batch HPLC and SFC, and subsequently another 5.9 kg of racemate was separated on the SSR. Lastly, a third batch of 5.5 kg was separated on the SMB. The separation conditions and results of these techniques are discussed. The productivities and solvent costs of SFC versus HPLC are compared. The productivities and solvent costs of SMB, SSR, and HPLC are also compared. The analytical method development and process optimization of these processes are also discussed in this article.

  19. Reaction enthalpies along the two channels of geminate electron recombination in liquid-to-supercritical water

    NASA Astrophysics Data System (ADS)

    Schiller, Robert; Horváth, Ákos

    2013-11-01

    Ionizing radiation or UV light produces electrons and H2O+ ions in water. These species transform into hydrated electron, e-aq, hydrated H3O+ ion, and ·OH radical in each other's neighborhood much faster than any forthcoming chemical transformation. Part of the electrons escapes their geminate partners. There exists two possible paths for the remaining fraction to react: H3O++e-aq=H3O· [channel (A)] and ·OH+e-aq=OH- [channel (B)]. We devised two thermodynamic cycles for the computation of the reaction enthalpies of both channels. Channel (A) was found to be endothermic with an enthalpy of 3.61 eV at room temperature. The enthalpy is seen to be almost constant up to 500 K, to increase at 600 K and to drop abruptly around 650 K, i.e. in the region where the dielectric constant is below 20. Channel (B) was found to be exothermic with an enthalpy of -2.33 eV at room temperature. It is becoming gradually less exothermic with increasing temperature the variation becoming fast around 650 K. The tendency of these thermochemical results parallel with recent kinetic calculations by Torres-Alacan et al. (J. Torres-Alacan, S. Kratz, P. Vöhringer, 2011. Phys. Chem. Chem. Phys. 13, 20806-20819)

  20. Pulse radiolysis of supercritical water II. Reaction of nitrobenzene with hydrated electrons and hydroxyl radicals.

    SciTech Connect

    Marin, T. W.; Cline, J. A.; Bartels, D. M.; Jonah, C. D.; Takahashi, K.; Chemistry; Hakkaido Univ.

    2003-12-26

    The rate constants for the reactions of nitrobenzene with the hydroxyl radical (OH{sup {sm_bullet}}) and hydrated electron ((e{sup -}){sub aq}) in water have been measured from room temperature to 400 {sup o}C using electron pulse radiolysis and transient absorption spectroscopy. The diffusion-limited reaction of nitrobenzene with (e{sup 0}){sub aq} exhibits temperature-insensitive activation energy up to 300 {sup o}C, indicating that the activation energy for electron diffusion remains high over this range. The (e{sup -}){sub aq} reactivity is explained as a long-range electron transfer, and the results are interpreted in terms of extended Marcus theory and Smoluchowski relationships. At 380 {sup o}C, the rate constant has a density dependence similar to that previously reported for other (e{sup -}){sub aq} scavenging reactions. The reaction rate of nitrobenzene with OH{sup {sm_bullet}} is very insensitive to temperature from room temperature up to 300 {sup o}C, in agreement with previous studies. Above 300 {sup o}C, the rate constant increases as the critical temperature is approached and exceeded. Time-resolved electronic absorption spectra of the nitrobenzene radiolysis transients reveal complex kinetics involving multiple absorbing species.

  1. Microstructure of supercritical CO2-in-water microemulsions: a systematic contrast variation study.

    PubMed

    Klostermann, Michael; Foster, Tobias; Schweins, Ralf; Lindner, Peter; Glatter, Otto; Strey, Reinhard; Sottmann, Thomas

    2011-12-07

    Microemulsions of the type H(2)O-scCO(2)-surfactant are potential candidates for novel solvent mixtures in the field of green chemistry. Furthermore, scCO(2)-microemulsions are highly interesting from a fundamental point of view since their properties such as the bending elastic constants can be strongly influenced solely by varying the pressure without changing the components. With this motivation we studied the phase behavior and the microstructure of water-rich scCO(2)-microemulsions. Such microemulsions were formulated using the technical grade non-ionic surfactants Zonyl FSO 100 and Zonyl FSN 100. At elevated pressures the temperature dependent phase behavior of these systems follows the general patterns of non-ionic microemulsions. Small angle neutron scattering experiments were conducted to determine the length scales and the topology of the microstructure of these systems. Having determined the exact scattering length densities and the composition of the respective sub-phases by a systematic contrast variation we could show that these systems consist of CO(2)-swollen microemulsion droplets that are dispersed in a continuous aqueous-phase. The scattering data were analyzed using a newly derived form factor for polydisperse, spherical core/shell particles with diffuse interfaces. The underlying analytical density profiles could be confirmed applying the model-free Generalized Indirect Fourier Transformation (GIFT) to the scattering data. Following the general patterns of non-ionic microemulsions the radius of the microemulsion droplets is found to increase almost linearly upon the addition of CO(2).

  2. Influence of the reactant carbon-hydrogen-oxygen composition on the key products of the direct gasification of dewatered sewage sludge in supercritical water.

    PubMed

    Gong, Miao; Zhu, Wei; Fan, Yujie; Zhang, Huiwen; Su, Ying

    2016-05-01

    The supercritical water gasification of ten different types of dewatered sewage sludges was investigated to understand the relationship between sludge properties and gasification products. Experiments were performed in a high-pressure autoclave at 400°C for 60 min. Results showed that gasification of sewage sludge in supercritical water consists mainly of a gasification reaction, a carbonization reaction and a persistent organic pollutants synthesis reaction. Changes in the reactant C/H/O composition have significant effects on the key gasification products. Total gas production increased with increasing C/H2O of the reactant. The char/coke content increased with increasing C/H ratio of the reactant. A decrease in the C/O ratio of the reactant led to a reduction in polycyclic aromatic hydrocarbon formation. This means that we can adjust the reactant C/H/O composition by adding carbon-, hydrogen-, and oxygen-containing substances such as coal, algae and H2O2 to optimize hydrogen production and to inhibit an undesired by-product formation.

  3. Pulsed supercritical synthesis of anatase TiO₂ nanoparticles in a water-isopropanol mixture studied by in situ powder X-ray diffraction.

    PubMed

    Rostgaard Eltzholtz, Jakob; Tyrsted, Christoffer; Ørnsbjerg Jensen, Kirsten Marie; Bremholm, Martin; Christensen, Mogens; Becker-Christensen, Jacob; Brummerstedt Iversen, Bo

    2013-03-21

    A new step in supercritical nanoparticle synthesis, the pulsed supercritical synthesis reactor, is investigated in situ using synchrotron powder X-ray diffraction (PXRD) to understand the formation of nanoparticles in real time. This eliminates the common problem of transferring information gained during in situ studies to subsequent laboratory reactor conditions. As a proof of principle, anatase titania nanoparticles were synthesized in a 50/50 mixture of water and isopropanol near and above the critical point of water (P = 250 bar, T = 300, 350, 400, 450, 500 and 550 °C). The evolution of the reaction product was followed by sequentially recording PXRD patterns with a time resolution of less than two seconds. The crystallite size of titania is found to depend on both temperature and residence time, and increasing either parameter leads to larger crystallites. A simple adjustment of either temperature or residence time provides a direct method for gram scale production of anatase nanoparticles of average crystallite sizes between 7 and 35 nm, thus giving the option of synthesizing tailor-made nanoparticles. Modeling of the in situ growth curves using an Avrami growth model gave an activation energy of 66(19) kJ mol(-1) for the initial crystallization. The in situ PXRD data also provide direct information about the size dependent macrostrain in the nanoparticles and with decreasing crystallite size the unit cell contracts, especially along the c-direction. This agrees well with previous ex situ results obtained for hydrothermal synthesis of titania nanoparticles.

  4. A comparison of chilled DI water/ozone and CO{sub 2}-based supercritical fluids as replacements for photoresist-stripping solvents

    SciTech Connect

    Rubin, J.B.; Davenhall, L.B.; Barton, J.; Taylor, C.M.V.; Tiefert, K.

    1998-12-31

    Part of the Hewlett Packard Components Group`s Product Stewardship program is the ongoing effort to investigate ways to eliminate or reduce as much as possible the use of chemical substances from manufacturing processes. Currently used techniques to remove hard-baked photoresists from semiconductor wafers require the use of inorganic chemicals or organic strippers and associated organic solvents. Environmental, health and safety, as well as cost considerations prompted the search for alternative, more environmentally-benign, and cost-effective solutions. Two promising, emerging technologies were selected for evaluation: the chilled DI water/ozone technique and supercritical fluids based on carbon dioxide (CO{sub 2}). Evaluating chilled DI water/ozone shows this process to be effective for positive photoresist removal, but may not be compatible with all metallization systems. Testing of a closed-loop CO{sub 2}-based supercritical CO{sub 2} Resist Remover, or SCORR, at Los Alamos, on behalf of Hewlett-packard, shows that this treatment process is effective in removing photoresists, and is fully compatible with commonly used metallization systems. In this paper, the authors present details on the testing programs conducted with both the chilled DI H{sub 2}O/ozone and SCORR treatment processes.

  5. Corrosion in supercritical fluids

    SciTech Connect

    Propp, W.A.; Carleson, T.E.; Wai, Chen M.; Taylor, P.R.; Daehling, K.W.; Huang, Shaoping; Abdel-Latif, M.

    1996-05-01

    Integrated studies were carried out in the areas of corrosion, thermodynamic modeling, and electrochemistry under pressure and temperature conditions appropriate for potential applications of supercritical fluid (SCF) extractive metallurgy. Carbon dioxide and water were the primary fluids studied. Modifiers were used in some tests; these consisted of 1 wt% water and 10 wt% methanol for carbon dioxide and of sulfuric acid, sodium sulfate, ammonium sulfate, and ammonium nitrate at concentrations ranging from 0.00517 to 0.010 M for the aqueous fluids. The materials studied were Types 304 and 316 (UNS S30400 and S31600) stainless steel, iron, and AISI-SAE 1080 (UNS G10800) carbon steel. The thermodynamic modeling consisted of development of a personal computer-based program for generating Pourbaix diagrams at supercritical conditions in aqueous systems. As part of the model, a general method for extrapolating entropies and related thermodynamic properties from ambient to SCF conditions was developed. The experimental work was used as a tool to evaluate the predictions of the model for these systems. The model predicted a general loss of passivation in iron-based alloys at SCF conditions that was consistent with experimentally measured corrosion rates and open circuit potentials. For carbon-dioxide-based SCFs, measured corrosion rates were low, indicating that carbon steel would be suitable for use with unmodified carbon dioxide, while Type 304 stainless steel would be suitable for use with water or methanol as modifiers.

  6. Simulations of lensless imaging in water window

    NASA Astrophysics Data System (ADS)

    Sveda, L.; Pina, L.

    2016-11-01

    A number of soft x-ray / water window laboratory sources is being developed by many groups including the group at CTU. This paper presents simulations and critical parameter estimates for lensless imaging using the laboratory sources, especially the capillary discharge source being developed by our group.1 Water window lensless imaging is demonstrated to be generally feasible with high repetition laboratory sources.

  7. Kinetic investigation of the oxidation of naval excess hazardous materials in supercritical water for the design of a transpiration-wall reactor

    SciTech Connect

    Rice, S.F.; Hanush, R.G.; Hunter, T.B.

    1997-01-01

    Experiments were conducted in Sandia`s supercritical fluids reactor (SFR) to generate data for the design of a transpiration-wall supercritical water oxidation (SCWO) reactor. The reactor is intended for the disposal of hazardous material generated on naval vessels. The design parameters for the system require an accurate knowledge of destruction efficiency vs. time and temperature. Three candidate materials were selected for testing. The experiments consisted of oxidizing these materials in the SFR at isothermal conditions over the temperature range of 400-550C at 24.1 MPa. A small extrapolation of the results shows that these materials can be adequately destroyed (to 99.9% destruction removal efficiency, DRE, based on total organic carbon (TOC) in the effluent) in approximately 5 seconds at 600C. The results vary smoothly and predictably with temperature such that extrapolation to higher temperatures beyond the experimental capabilities of the SFR can be made with reasonable confidence. The preliminary design of the transpiration-wall reactor has a rapid heat-up section within the reactor vessel that requires the addition of a fuel capable of quickly reacting with oxygen at temperatures below 500C. Candidate alcohols and JP-5 jet fuel were evaluated in this context. Oxidation rates for the alcohols were examined using in situ Raman spectroscopy. In addition, the potential utility of supplying the oxidizer line with hydrogen peroxide as an additive to enhance rapid initiation of the feed at unusually low temperatures was investigated. Experiments were conducted in the Supercritical Constant Volume Reactor (SCVR) using hydrogen peroxide as the initial oxidizing species. The results show that this concept as a method of enhancing low temperature reactivity appears to fail because thermal decomposition of the hydrogen peroxide is more rapid than the fuel oxidation rate at low temperatures. 8 refs., 16 figs., 5 tabs.

  8. Simulating farmer behaviour under water markets

    NASA Astrophysics Data System (ADS)

    Padula, SIlvia; Erfani, Tohid; Henriques, Catarina; Maziotis, Alexandros; Garbe, Jennifer; Swinscoe, Thomas; Harou, Julien; Weatherhead, Keith; Beevers, Lindsay; Fleskens, Luuk

    2015-04-01

    Increasing water scarcity may lead water managers to consider alternative approaches to water allocation including water markets. One concern with markets is how will specific sectors interact with a potential water market, when will they gain or loose water and will they benefit economically - why, when and how? The behaviours of different individual abstractors or institutional actors under water markets is of interest to regulators who seek to design effective market policies which satisfy multiple stakeholder groups. In this study we consider two dozen agricultural water users in eastern England (Nar basin). Using partially synthetic but regionally representative cropping and irrigation data we simulate the buying and selling behaviour of farmers on a weekly basis over multiple years. The impact of on-farm water storage is assessed for farmers who own a reservoir. A river-basin-scale hydro-economic multi-agent model is used that represents individual abstractors and can simulate a spot market under various licensing regimes. Weekly varying economic demand curves for water are calibrated based on historical climate and water use data. The model represents the trade-off between current use value and expected gains from trade to reach weekly decisions. Early results are discussed and model limitations and possible extensions are presented.

  9. Advanced degradation of brominated epoxy resin and simultaneous transformation of glass fiber from waste printed circuit boards by improved supercritical water oxidation processes.

    PubMed

    Liu, Kang; Zhang, Zhiyuan; Zhang, Fu-Shen

    2016-10-01

    This work investigated various supercritical water oxidation (SCWO) systems, i.e. SCWO1 (only water), SCWO2 (water+H2O2) and SCWO3 (water+H2O2/NaOH), for waste printed circuit boards (PCBs) detoxification and recycling. Response surface methodology (RSM) was applied to optimize the operating conditions of the optimal SCWO3 systems. The optimal reaction conditions for debromination were found to be the NaOH of 0.21g, the H2O2 volume of 9.04mL, the time of 39.7min, maximum debromination efficiency of 95.14%. Variance analysis indicated that the factors influencing debromination efficiency was in the sequence of NaOH>H2O2>time. Mechanism studies indicated that the dissociated ions from NaOH in supercritical water promoted the debromination of brominated epoxy resins (BERs) through an elimination reaction and nucleophilic substitution. HO2, produced by H2O2 could induce the oxidation of phenol ring to open (intermediates of BERs), which were thoroughly degraded to form hydrocarbons, CO2, H2O and NaBr. In addition, the alkali-silica reaction between OH(-) and SiO2 induced the phase transformation of glass fibers, which were simultaneously converted into anorthite and albite. Waste PCBs in H2O2/NaOH improved SCWO system were fully degraded into useful products and simultaneously transformed into functional materials. These findings are helpful for efficient recycling of waste PCBs.

  10. Simulating water markets with transaction costs

    PubMed Central

    Erfani, Tohid; Binions, Olga; Harou, Julien J

    2014-01-01

    This paper presents an optimization model to simulate short-term pair-wise spot-market trading of surface water abstraction licenses (water rights). The approach uses a node-arc multicommodity formulation that tracks individual supplier-receiver transactions in a water resource network. This enables accounting for transaction costs between individual buyer-seller pairs and abstractor-specific rules and behaviors using constraints. Trades are driven by economic demand curves that represent each abstractor's time-varying water demand. The purpose of the proposed model is to assess potential hydrologic and economic outcomes of water markets and aid policy makers in designing water market regulations. The model is applied to the Great Ouse River basin in Eastern England. The model assesses the potential weekly water trades and abstractions that could occur in a normal and a dry year. Four sectors (public water supply, energy, agriculture, and industrial) are included in the 94 active licensed water diversions. Each license's unique environmental restrictions are represented and weekly economic water demand curves are estimated. Rules encoded as constraints represent current water management realities and plausible stakeholder-informed water market behaviors. Results show buyers favor sellers who can supply large volumes to minimize transactions. The energy plant cooling and agricultural licenses, often restricted from obtaining water at times when it generates benefits, benefit most from trades. Assumptions and model limitations are discussed. Key Points Transaction tracking hydro-economic optimization models simulate water markets Proposed model formulation incorporates transaction costs and trading behavior Water markets benefit users with the most restricted water access PMID:25598558

  11. Ion association in concentrated NaCI brines from ambient to supercritical conditions: results from classical molecular dynamics simulations

    PubMed Central

    Sherman, David M; Collings, Matthew D

    2002-01-01

    Highly concentrated NaCl brines are important geothermal fluids; chloride complexation of metals in such brines increases the solubility of minerals and plays a fundamental role in the genesis of hydrothermal ore deposits. There is experimental evidence that the molecular nature of the NaCl–water system changes over the pressure–temperature range of the Earth's crust. A transition of concentrated NaCl–H2O brines to a "hydrous molten salt" at high P and T has been argued to stabilize an aqueous fluid phase in the deep crust. In this work, we have done molecular dynamic simulations using classical potentials to determine the nature of concentrated (0.5–16 m) NaCl–water mixtures under ambient (25°C, 1 bar), hydrothermal (325°C, 1 kbar) and deep crustal (625°C, 15 kbar) conditions. We used the well-established SPCE model for water together with the Smith and Dang Lennard-Jones potentials for the ions (J. Chem. Phys., 1994, 100, 3757). With increasing temperature at 1 kbar, the dielectric constant of water decreases to give extensive ion-association and the formation of polyatomic (NanClm)n-m clusters in addition to simple NaCl ion pairs. Large polyatomic (NanClm)n-m clusters resemble what would be expected in a hydrous NaCl melt in which water and NaCl were completely miscible. Although ion association decreases with pressure, temperatures of 625°C are not enough to overcome pressures of 15 kbar; consequently, there is still enhanced Na–Cl association in brines under deep crustal conditions.

  12. Global Cloud Liquid Water Path Simulations(.

    NASA Astrophysics Data System (ADS)

    Lemus, Lilia; Rikus, Lawrie; Martin, C.; Platt, R.

    1997-01-01

    A new parameterization of cloud liquid water and ice content has been included in the Bureau of Meteorology Global Assimilation and Prediction System. The cloud liquid water content is derived from the mean cloud temperatures in the model using an empirical relationship based on observations. The results from perpetual January and July simulations are presented and show that the total cloud water path steadily decreases toward high latitudes, with two relative maxima at midlatitudes and a peak at low latitudes. To validate the scheme, the simulated fields need to be processed to produce liquid water paths that can be directly compared with the corresponding field derived from Special Sensor Microwave/Imager (SSM/I) data. This requires the identification of cloud ice water content within the parameterization and a prescription to account for the treatment of strongly precipitating subgrid-scale cloud. The resultant cloud liquid water paths agree qualitatively with the SSM/I data but show some systematic errors that are attributed to corresponding errors in the model's simulation of cloud amounts. Given that a more quantitative validation requires substantial improvement in the model's diagnostic cloud scheme, the comparison with the SSM/I data indicates that the cloud water path, derived from the cloud liquid water content parameterization introduced in this paper, is consistent with the observations and can be usefully incorporated in the prediction system.

  13. Effect of residence time on two-step liquefaction of rice straw in a CO2 atmosphere: Differences between subcritical water and supercritical ethanol.

    PubMed

    Yang, Tianhua; Wang, Jian; Li, Bingshuo; Kai, Xingping; Li, Rundong

    2017-04-01

    This study investigated the influence of temperature and residence time on liquefaction of rice straw in subcritical CO2-subcritical water (subCO2-subH2O) and in subcritical CO2-supercritical ethanol (subCO2-scEtOH), considering the final reaction temperatures (270-345°C) and residence times (15 and 30min). Residence time was identified as a crucial parameter in the subCO2-subH2O liquefaction, whereas residence time had a marginal influence on subCO2-scEtOH liquefaction. When reaction conditions were 320°C and 15min, solvents have weak impact on the quality of bio-oil, HHV 28.57MJ/kg and 28.62MJ/kg, respectively. There was an obvious difference between the subCO2-subH2O and subCO2-scEtOH liquefaction mechanisms. In subCO2-subH2O, CO2 promoted the carbonyl reaction. In subCO2-scEtOH, supercritical ethanol have the function of donating hydrogen and promoting the reaction of hydroxyl-alkylation.

  14. Simulating water markets with transaction costs

    NASA Astrophysics Data System (ADS)

    Erfani, Tohid; Binions, Olga; Harou, Julien J.

    2014-06-01

    This paper presents an optimization model to simulate short-term pair-wise spot-market trading of surface water abstraction licenses (water rights). The approach uses a node-arc multicommodity formulation that tracks individual supplier-receiver transactions in a water resource network. This enables accounting for transaction costs between individual buyer-seller pairs and abstractor-specific rules and behaviors using constraints. Trades are driven by economic demand curves that represent each abstractor's time-varying water demand. The purpose of the proposed model is to assess potential hydrologic and economic outcomes of water markets and aid policy makers in designing water market regulations. The model is applied to the Great Ouse River basin in Eastern England. The model assesses the potential weekly water trades and abstractions that could occur in a normal and a dry year. Four sectors (public water supply, energy, agriculture, and industrial) are included in the 94 active licensed water diversions. Each license's unique environmental restrictions are represented and weekly economic water demand curves are estimated. Rules encoded as constraints represent current water management realities and plausible stakeholder-informed water market behaviors. Results show buyers favor sellers who can supply large volumes to minimize transactions. The energy plant cooling and agricultural licenses, often restricted from obtaining water at times when it generates benefits, benefit most from trades. Assumptions and model limitations are discussed. This article was corrected on 13 JUN 2014. See the end of the full text for details.

  15. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, Progress Report for Work Through September 2002, 4th Quarterly Report

    SciTech Connect

    Mac Donald, Philip Elsworth

    2002-09-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed. If no additional moderator is added to the fuel rod lattice, it is possible to attain fast neutron energy spectrum conditions in a supercritical water-cooled reactor (SCWR). This type of core can make use of either fertile or fertile-free fuel and retain a hard spectrum to effectively burn plutonium and minor actinides from LWR spent fuel while efficiently generating electricity. One can also add moderation and design a thermal spectrum SCWR. The Generation IV Roadmap effort has identified the thermal spectrum SCWR (followed by the fast spectrum SCWR) as one of the advanced concepts that should be developed for future use. Therefore, the work in this NERI project is addressing both types of SCWRs.

  16. Recovery of Minerals in Martian Soils Via Supercritical Fluid Extraction

    NASA Astrophysics Data System (ADS)

    Debelak, Kenneth A.; Roth, John A.

    2001-03-01

    We are investigating the use of supercritical fluids to extract mineral and/or carbonaceous material from Martian surface soils and its igneous crust. Two candidate supercritical fluids are carbon dioxide and water. The Martian atmosphere is composed mostly of carbon dioxide (approx. 95.3%) and could therefore provide an in-situ source of carbon dioxide. Water, although present in the Martian atmosphere at only approx. 0.03%, is also a candidate supercritical solvent. Previous work done with supercritical fluids has focused primarily on their solvating properties with organic compounds. Interestingly, the first work reported by Hannay and Hogarth at a meeting of the Royal Society of London in 1879 observed that increasing or decreasing the pressure caused several inorganic salts e.g., cobalt chloride, potassium iodide, and potassium bromide, to dissolve or precipitate in supercritical ethanol. In high-pressure boilers, silica, present in most boiler feed waters, is dissolved in supercritical steam and transported as dissolved silica to the turbine blades. As the pressure is reduced the silica precipitates onto the turbine blades eventually requiring the shutdown of the generator. In supercritical water oxidation processes for waste treatment, dissolved salts present a similar problem. The solubility of silicon dioxide (SiO2) in supercritical water is shown. The solubility curve has a shape characteristic of supercritical systems. At a high pressure (greater than 1750 atmospheres) increasing the temperature results in an increase in solubility of silica, while at low pressures, less than 400 atm., the solubility decreases as temperature increases. There are only a few studies in the literature where supercritical fluids are used in extractive metallurgy. Bolt modified the Mond process in which supercritical carbon monoxide was used to produce nickel carbonyl (Ni(CO)4). Tolley and Tester studied the solubility of titanium tetrachloride (TiCl4) in supercritical CO2

  17. Pulsed supercritical synthesis of anatase TiO2 nanoparticles in a water-isopropanol mixture studied by in situ powder X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Eltzholtz, Jakob Rostgaard; Tyrsted, Christoffer; Jensen, Kirsten Marie Ørnsbjerg; Bremholm, Martin; Christensen, Mogens; Becker-Christensen, Jacob; Iversen, Bo Brummerstedt

    2013-02-01

    A new step in supercritical nanoparticle synthesis, the pulsed supercritical synthesis reactor, is investigated in situ using synchrotron powder X-ray diffraction (PXRD) to understand the formation of nanoparticles in real time. This eliminates the common problem of transferring information gained during in situ studies to subsequent laboratory reactor conditions. As a proof of principle, anatase titania nanoparticles were synthesized in a 50/50 mixture of water and isopropanol near and above the critical point of water (P = 250 bar, T = 300, 350, 400, 450, 500 and 550 °C). The evolution of the reaction product was followed by sequentially recording PXRD patterns with a time resolution of less than two seconds. The crystallite size of titania is found to depend on both temperature and residence time, and increasing either parameter leads to larger crystallites. A simple adjustment of either temperature or residence time provides a direct method for gram scale production of anatase nanoparticles of average crystallite sizes between 7 and 35 nm, thus giving the option of synthesizing tailor-made nanoparticles. Modeling of the in situ growth curves using an Avrami growth model gave an activation energy of 66(19) kJ mol-1 for the initial crystallization. The in situ PXRD data also provide direct information about the size dependent macrostrain in the nanoparticles and with decreasing crystallite size the unit cell contracts, especially along the c-direction. This agrees well with previous ex situ results obtained for hydrothermal synthesis of titania nanoparticles.A new step in supercritical nanoparticle synthesis, the pulsed supercritical synthesis reactor, is investigated in situ using synchrotron powder X-ray diffraction (PXRD) to understand the formation of nanoparticles in real time. This eliminates the common problem of transferring information gained during in situ studies to subsequent laboratory reactor conditions. As a proof of principle, anatase titania

  18. Co-destruction of organic pollutants in municipal solid waste leachate and dioxins in fly ash under supercritical water using H2O2 as oxidant.

    PubMed

    Zou, Daoan; Chi, Yong; Fu, Chao; Dong, Jun; Wang, Fei; Ni, Mingjiang

    2013-03-15

    Supercritical water oxidation (SCWO), with hydrogen peroxide as oxidant, is applied to the co-disposal of two distinct waste streams: municipal solid waste leachate and incineration fly ash. The chemical oxygen demand (COD) removal efficiency increases rapidly with rising temperature and excess oxygen. Rising residence time from 1 to 2 min has surprisingly little effect. The addition of fly ash accelerates COD conversion markedly and also polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs, dioxins) in the original fly ash are efficiently destroyed. High-chlorinated PCDD/Fs are more likely to be destroyed than low-chlorinated PCDD/Fs, at all experimental conditions. In addition, PCDDs are much more reactive than PCDFs, since the PCDDs/PCDFs ratio declines from 0.17 to 0.12 as excess oxygen rises from 0% to 300%.

  19. Thermodynamic modelling of supercritical water gasification: investigating the effect of biomass composition to aid in the selection of appropriate feedstock material.

    PubMed

    Louw, Jeanne; Schwarz, Cara E; Knoetze, Johannes H; Burger, Andries J

    2014-12-01

    A process model developed in Aspen Plus®, was used for the thermodynamic modelling of supercritical water gasification (SCWG) using a wide variety of biomass materials as feedstock. The influence of the composition of the biomass material (in terms of carbon, hydrogen and oxygen content) on various performance indicators (such as gas yields, cold gas efficiency, calorific value of product gas and heat of reaction), were determined at various temperatures (600, 700 and 800°C) and biomass feed concentrations (5, 15 and 25wt.%). Generalised contour plots, based on the biomass composition, were developed for these performance indicators to provide the thermodynamic limits at various operating conditions. These plots can aid in the selection or screening of potential biomass materials and appropriate operating conditions for SCWG prior to conducting experimental work.

  20. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment.

    PubMed

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-07-01

    Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine-iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine-iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO+HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420°C and 60min for Au and Pd, and 410°C and 30min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO+HL)-treated PCBs with iodine-iodide system were leaching time of 120min (90min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10g/mL (1:8g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine-iodide leaching process.

  1. Hydrogenous Gas Production through Reactions among Supercritical Water, Ironmaking Sludge, and Steelmaking Slag and Recycling of Wastes from Integrated Steel Mills

    NASA Astrophysics Data System (ADS)

    Hayashi, Shoji

    Automobile Shredder Residue (ASR) and Refuse derived fuels (not carbonized and carbonized: YRDF and RDF) as carbonaceous wastes were reacted isothermally with sub-supercritical water (600-695°C, 200 atm) together with a CO2 fixation reagent Ca(OH)2 inside a closed metallic tube reactor (7cm3). Product gas mainly consisted of hydrogen gas and a little methane gas except YRDF. As a whole, gas generated more in order ASR, YRDF, and RDF. Addition of catalysis NaOH or KOH made product gas increase more. KOH was more effective to product gas than NaOH. X-ray diffraction followed that Ca(OH)2 and CaCO3 existed mainly in residues after reaction tests with a CO2 fixation reagent Ca(OH)2 or CaO. Therefore, it was supposed that an overall chemical reaction took place as shown below. BOF steelmaking slag for CO2 fixation provided maximum gas generation 1.42 times as much as molar carbon in a RDF sample with KOH. C + H2O + Ca(OH)2 = CaCO3 + 2H2 Two kinds of wastes from integrated steel mills (sludge from mill scale and activated sludge) were each reacted with supercritical water (600-650°C, 200 atm). Both sludges were effective to generate hydrogenous gas. It was found that harmful cyan in the latter sludge mostly decomposed after reaction. Also, the crushing strength after curing the steelmaking slag bearing residue briquette was not as high as that from Portland cement.

  2. Supercritical fluid extraction

    DOEpatents

    Wai, Chien M.; Laintz, Kenneth

    1994-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  3. Ab Initio Quantum Simulations of Liquid Water

    NASA Astrophysics Data System (ADS)

    Gergely, John; Ceperley, David; Gygi, Francois

    2007-03-01

    Some recent efforts at simulating liquid water have employed ``ab initio'' molecular dynamics (AIMD) methods with forces from a version of density functional theory (DFT) and, in some cases, imaginary-time path integrals (PI) to study quantum effects of the protons. Although AIMD methods have met with many successes, errors introduced by the approximations and choices of simulation parameters are not fully understood. We report on path integral Monte Carlo (PIMC) studies of liquid water using DFT energies that provide quantitative benchmarks for PI-AIMD work. Specifically, we present convergence studies of the path integrals and address whether the Trotter number can be reduced by improving the form of the (approximate) action. Also, we assess 1) whether typical AIMD simulations are sufficiently converged in simulation time, i.e., if there is reason to suspect that nonergodic behavior in PI-AIMD methods leads to poor convergence, and 2) the relative efficiency of the methods. E. Schwegler, J.C. Grossman, F. Gygi, G. Galli, J. Chem. Phys 121, 5400 (2004).

  4. Investigation of Wyoming Bentonite Hydration in Dry to Water-Saturated Supercritical CH4 and CH4/CO2 Mixtures: Implications for CO2-Enhanced Gas Production

    NASA Astrophysics Data System (ADS)

    Loring, J.; Thompson, C.; Ilton, E. S.; McGrail, B. P.; Schaef, T.

    2014-12-01

    Injection of CO2 into low permeability shale formations leads to additional gas recovery and reduces the flux of CO2 into the atmosphere, thus combining a strong economic incentive with a permanent storage option for CO2. Reduced formation transmissivity due to clay swelling is a concern in CO2 -enhanced gas production. Clay minerals partly determine the physical (i.e. permeability, brittleness) and certain chemical properties (i.e. wetting ability, gas adsorption) of shales, and montmorillonites are of particular interest because they swell by the uptake of species in their interlayer. In this study, the hydration and expansion of a Na-saturated montmorillonite (Na-SWy-2) in high-pressure (90 bar) and moderate temperature (50 °C) methane and mixtures of methane and carbon dioxide were investigated usingCH4 IR spectroscopic titrations andCH4 XRD. The goals were to (1) determine if the hydration/expansion behavior of the clay in supercritical methane is different than in supercritical CO2, (2) determine if methane intercalates the clay, and (3) probe the effects of increasing CO2 concentrations. IR spectra were collected as Na-SWy-2 was titrated with water under several fluid exposures: pure methane, 25, 50, and 75 mole% CO2 in methane, and pure CO2. ComplementaryCH4 XRD experiments were conducted in the same fluids at discrete dissolved water concentrations to measure the d001 values of the clay and thus its volume change on hydration and CH4 and/or CO2 intercalation. In pure methane, no direct evidence of CH4 intercalation was detected in CH bending or stretching regions of the IR spectra. Similarly, in situ XRD indicated the montmorillonite structure was stable in the presence of CH4 and no measurable changes to the basal spacing were observed. However, under low water conditions where the montmorillonite structure was partially expanded (~sub 1W), the IR data indicated a rapid intercalation of CO2 into the interlayer, even with fluid mixtures containing the

  5. Hydrogen-bonded clusters and solvate structures in the supercritical CO2-water- o-hydroxybenzoic acid system: the car-parrinello molecular dynamics

    NASA Astrophysics Data System (ADS)

    Antipova, M. L.; Gurina, D. L.; Petrenko, V. E.

    2014-02-01

    Hydrogen-bonded clusters and solvate structures formed by o-hydroxybenzoic acid ( o-HBA) and water in supercritical CO2 were studied ( T = 318 K, 348 K, ρ = 0.7 g/cm3). The atom-atom radial distribution functions, coordination numbers, average numbers of hydrogen bonds for individual atomic groups, and power spectrum were calculated by the Car-Parrinello molecular dynamics. Despite the high polarity of the cosolvent, the hydroxyl group of o-HBA predominantly forms intramolecular hydrogen bond, while hydrogen bonds with water involve only the atoms of carboxyl groups. The temperature effect on the stability of these bonds showed itself in different ways. The intermolecular interactions of o-HBA with carbon dioxide were found to be weaker than those with water. It was established that the Lewis acid-Lewis base interactions between CO2 and the hydroxyl group of the solute increase with increasing temperature. Instantaneous configurations illustrating the temperature effects on the molecular structures were obtained.

  6. Determination of Kamlet-Taft solvent parameters pi* of high pressure and supercritical water by the UV-Vis absorption spectral shift of 4-nitroanisole.

    PubMed

    Minami, Kimitaka; Mizuta, Masamichi; Suzuki, Muneyuki; Aizawa, Takafumi; Arai, Kunio

    2006-05-21

    Kamlet-Taft solvent parameters, pi*, of high pressure and supercritical water were determined from 16-420 degrees C based on solvatochromic measurements of 4-nitroanisole. For the measurements, an optical cell that could be used at high temperatures and pressures was developed with the specification of minimal dead space. The low dead space cell allowed us to measure the absorption spectra of 4-nitroanisole at high temperature conditions before appreciable decomposition occurred. The behavior of pi* in terms of water density (pi* = 1.77rho- 0.71) was found to be linear, except in the near critical region, in which deviations were observed that could be attributed to local density augmentation. Excess density, which was defined as the difference between local density and bulk density, showed a maximum near the critical density of water. The frequencies of UV-Vis spectra of 4-(dimethylamino)benzonitrile and N,N-dimethyl-4-nitroaniline were correlated with pi* based on a linear solvation energy relationship (LSER) theory. Local density augmentation around 4-nitroanisole and that around 4-(dimethylamino)benzonitrile were similar but the augmentation observed around N,N-dimethyl-4-nitroaniline was larger.

  7. An open source simulator for water management

    NASA Astrophysics Data System (ADS)

    Knox, Stephen; Meier, Philipp; Selby, Philip; Mohammed, Khaled; Khadem, Majed; Padula, Silvia; Harou, Julien; Rosenberg, David; Rheinheimer, David

    2015-04-01

    Descriptive modelling of water resource systems requires the representation of different aspects in one model: the physical system including hydrological inputs and engineered infrastructure, and human management, including social, economic and institutional behaviours and constraints. Although most water resource systems share some characteristics such as the ability to represent them as a network of nodes and links, geographical, institutional and other differences mean that invariably each water system functions in a unique way. A diverse group is developing an open source simulation framework which will allow model developers to build generalised water management models that are customised to the institutional, physical and economical components they are seeking to model. The framework will allow the simulation of complex individual and institutional behaviour required for the assessment of real-world resource systems. It supports the spatial and hierarchical structures commonly found in water resource systems. The individual infrastructures can be operated by different actors while policies are defined at a regional level by one or more institutional actors. The framework enables building multi-agent system simulators in which developers can define their own agent types and add their own decision making code. Developers using the framework have two main tasks: (i) Extend the core classes to represent the aspects of their particular system, and (ii) write model structure files. Both are done in Python. For task one, users must either write new decision making code for each class or link to an existing code base to provide functionality to each of these extension classes. The model structure file links these extension classes in a standardised way to the network topology. The framework will be open-source and written in Python and is to be available directly for download through standard installer packages. Many water management model developers are unfamiliar

  8. Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations.

    PubMed

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas; Wierzchowski, Scott; Walsh, Matthew R; Koh, Carolyn A; Sloan, E Dendy; Wu, David T; Sum, Amadeu K

    2010-05-06

    Monte Carlo simulation methods for determining fluid- and crystal-phase chemical potentials are used for the first time to calculate liquid water-methane hydrate-methane vapor phase equilibria from knowledge of atomistic interaction potentials alone. The water and methane molecules are modeled using the TIP4P/ice potential and a united-atom Lennard-Jones potential, respectively. The equilibrium calculation method for this system has three components, (i) thermodynamic integration from a supercritical ideal gas to obtain the fluid-phase chemical potentials, (ii) calculation of the chemical potential of the zero-occupancy hydrate system using thermodynamic integration from an Einstein crystal reference state, and (iii) thermodynamic integration to obtain the water and guest molecules' chemical potentials as a function of the hydrate occupancy. The three-phase equilibrium curve is calculated for pressures ranging from 20 to 500 bar and is shown to follow the Clapeyron behavior, in agreement with experiment; coexistence temperatures differ from the latter by 4-16 K in the pressure range studied. The enthalpy of dissociation extracted from the calculated P-T curve is within 2% of the experimental value at corresponding conditions. While computationally intensive, simulations such as these are essential to map the thermodynamically stable conditions for hydrate systems.

  9. Multimodel simulation of water flow: uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Guber, A. K.; Pachepsky, Y. A.; van Genuchten, T. M.; Rowland, R. A.; Nicholson, T. J.; Cady, R. E.

    2009-04-01

    Simulations of soil water flow require measurements of soil hydraulic properties which are particularly difficult at field scale. Laboratory measurements provide hydraulic properties at scales finer than the field scale, whereas pedotransfer functions (PTFs) integrate information on hydraulic properties at larger scales. One way of downscaling large-scale data is to use several PTFs to generate hydraulic properties with each of the PTFs and to obtain the multimodel prediction of soil water flow by using weighted averages of the simulations results obtained with individual PTFs. Since its introduction, the multimodel prediction has been subject to much debates: whether a multimodel prediction is better than the single best forecast and what is the best method to weigh predictions obtained with the different models. The objective of this work was to evaluate errors and uncertainty of different weighting methods in multimodel prediction of soil water content. Data on soil water contents were collected at four locations at the USDA-ARS Beltsville OPE3 field site from January to November 2007. The locations were instrumented with Multisensor Capacitance Probes (SENTEK) to measure soil water content at depths from 10 to 100 cm with 10 cm increment. Standard meteorological data were measured in the vicinity of the site. Undisturbed soil samples were taken from the same depths to measure soil bulk density (BD), organic carbon content (OC) and soil texture in all locations. Fourteen PTFs, that had been developed from relatively large datasets (>200), were used to calculate soil hydraulic properties for each individual depth from measured BD, OC and soil texture. Thus, 14 sets of hydraulic parameters were obtained for each location. Then we solved the Richards equation with each set of hydraulic parameters for each location. The following multimodel prediction methods were compared in our study: (i) using only the best model; (ii) assigning equal weights to all models; (iii

  10. Comparisons of soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix.

    PubMed

    Hawthorne, S B; Grabanski, C B; Martin, E; Miller, D J

    2000-09-15

    Extractions of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former manufactured gas plant site were performed with a Soxhlet apparatus (18 h), by pressurized liquid extraction (PLE) (50 min at 100 degrees C), supercritical fluid extraction (SFE) (1 h at 150 degrees C with pure CO2), and subcritical water (1 h at 250 degrees C, or 30 min at 300 degrees C). Although minor differences in recoveries for some PAHs resulted from the different methods, quantitative agreement between all of the methods was generally good. However, the extract quality differed greatly. The organic solvent extracts (Soxhlet and PLE) were much darker, while the extracts from subcritical water (collected in toluene) were orange, and the extracts from SFE (collected in CH2Cl2) were light yellow. The organic solvent extracts also yielded more artifact peaks in the gas chromatography (GC)-mass spectrometry and GC-flame ionization detection chromatograms, especially compared to supercritical CO2. Based on elemental analysis (carbon and nitrogen) of the soil residues after each extraction, subcritical water, PLE, and Soxhlet extraction had poor selectivity for PAHs versus bulk soil organic matter (approximately 1/4 to 1/3 of the bulk soil organic matter was extracted along with the PAHs), while SFE with pure CO2 removed only 8% of the bulk organic matrix. Selectivities for different compound classes also vary with extraction method. Extraction of urban air particulate matter with organic solvents yields very high concentrations of n- and branched alkanes (approximately C18 to C30) from diesel exhaust as well as lower levels of PAHs, and no selectivity between the bulk alkanes and PAHs is obtained during organic solvent extraction. Some moderate selectivity with supercritical CO2 can be achieved by first extracting the bulk alkanes at mild conditions, followed by stronger conditions to extract the remaining PAHs, i.e., the least polar organics are the easiest organics to extract

  11. Resilience Simulation for Water, Power & Road Networks

    NASA Astrophysics Data System (ADS)

    Clark, S. S.; Seager, T. P.; Chester, M.; Eisenberg, D. A.; Sweet, D.; Linkov, I.

    2014-12-01

    The increasing frequency, scale, and damages associated with recent catastrophic events has called for a shift in focus from evading losses through risk analysis to improving threat preparation, planning, absorption, recovery, and adaptation through resilience. However, neither underlying theory nor analytic tools have kept pace with resilience rhetoric. As a consequence, current approaches to engineering resilience analysis often conflate resilience and robustness or collapse into a deeper commitment to the risk analytic paradigm proven problematic in the first place. This research seeks a generalizable understanding of resilience that is applicable in multiple disciplinary contexts. We adopt a unique investigative perspective by coupling social and technical analysis with human subjects research to discover the adaptive actions, ideas and decisions that contribute to resilience in three socio-technical infrastructure systems: electric power, water, and roadways. Our research integrates physical models representing network objects with examination of the knowledge systems and social interactions revealed by human subjects making decisions in a simulated crisis environment. To ensure a diversity of contexts, we model electric power, water, roadway and knowledge networks for Phoenix AZ and Indianapolis IN. We synthesize this in a new computer-based Resilient Infrastructure Simulation Environment (RISE) to allow individuals, groups (including students) and experts to test different network design configurations and crisis response approaches. By observing simulated failures and best performances, we expect a generalizable understanding of resilience may emerge that yields a measureable understanding of the sensing, anticipating, adapting, and learning processes that are essential to resilient organizations.

  12. DNS of High Pressure Supercritical Combustion

    NASA Astrophysics Data System (ADS)

    Chong, Shao Teng; Raman, Venkatramanan

    2016-11-01

    Supercritical flows have always been important to rocket motors, and more recently to aircraft engines and stationary gas turbines. The purpose of the present study is to understand effects of differential diffusion on reacting scalars using supercritical isotropic turbulence. Focus is on fuel and oxidant reacting in the transcritical region where density, heat capacity and transport properties are highly sensitive to variations in temperature and pressure. Reynolds and Damkohler number vary as a result and although it is common to neglect differential diffusion effects if Re is sufficiently large, this large variation in temperature with heat release can accentuate molecular transport differences. Direct numerical simulations (DNS) for one step chemistry reaction between fuel and oxidizer are used to examine the differential diffusion effects. A key issue investigated in this paper is if the flamelet progress variable approach, where the Lewis number is usually assumed to be unity and constant for all species, can be accurately applied to simulate supercritical combustion.

  13. The interplay between the paracetamol polymorphism and its molecular structures dissolved in supercritical CO2 in contact with the solid phase: In situ vibration spectroscopy and molecular dynamics simulation analysis.

    PubMed

    Oparin, Roman D; Moreau, Myriam; De Walle, Isabelle; Paolantoni, Marco; Idrissi, Abdenacer; Kiselev, Michael G

    2015-09-18

    The aim of this paper is to characterize the distribution of paracetamol conformers which are dissolved in a supercritical CO2 phase being in equilibrium with their corresponding crystalline form. The quantum calculations and molecular dynamics simulations were used in order to characterize the structure and analyze the vibration spectra of the paracetamol conformers in vacuum and in a mixture with CO2 at various thermodynamic state parameters (p,T). The metadynamics approach was applied to efficiently sample the various conformers of paracetamol. Furthermore, using in situ IR spectroscopy, the conformers that are dissolved in supercritical CO2 were identified and the evolution of the probability of their presence as a functions of thermodynamic condition was quantified while the change in the crystalline form of paracetamol have been monitored by DSC, micro IR and Raman techniques. The DSC analysis as well as micro IR and Raman spectroscopic studies of the crystalline paracetamol show that the subsequent heating up above the melting temperature of the polymorph I of paracetamol and the cooling down to room temperature in the presence of supercritical CO2 induces the formation of polymorph II. The in situ IR investigation shows that two conformers (Conf. 1 and Conf. 2) are present in the phase of CO2 while conformer 3 (Conf. 3) has a high probability to be present after re-crystallization.

  14. Analytical method development for the determination of emerging contaminants in water using supercritical-fluid chromatography coupled with diode-array detection.

    PubMed

    Del Carmen Salvatierra-Stamp, Vilma; Ceballos-Magaña, Silvia G; Gonzalez, Jorge; Ibarra-Galván, Valentin; Muñiz-Valencia, Roberto

    2015-05-01

    An analytical method using supercritical-fluid chromatography coupled with diode-array detection for the determination of seven emerging contaminants-two pharmaceuticals (carbamazepine and glyburide), three endocrine disruptors (17α-ethinyl estradiol, bisphenol A, and 17β-estradiol), one bactericide (triclosan), and one pesticide (diuron)-was developed and validated. These contaminants were chosen because of their frequency of use and their toxic effects on both humans and the environment. The optimized chromatographic separation on a Viridis BEH 2-EP column achieved baseline resolution for all compounds in less than 10 min. This separation was applied to environmental water samples after sample preparation. The optimized sample treatment involved a preconcentration step by means of solid-phase extraction using C18-OH cartridges. The proposed method was validated, finding recoveries higher than 94 % and limits of detection and limits of quantification in the range of 0.10-1.59 μg L(-1) and 0.31-4.83 μg L(-1), respectively. Method validation established the proposed method to be selective, linear, accurate, and precise. Finally, the method was successfully applied to environmental water samples.

  15. Development of a Novel Milling System Using Supercritical Carbon Dioxide for Improvement of Dissolution Characteristics of Water-Poorly Soluble Drugs.

    PubMed

    Fern, Jennifer Chia Wee; Nakamura, Hideya; Watano, Satoru

    2016-01-01

    The aim of this study is to develop a novel milling system using supercritical carbon dioxide (SC-CO2) for the improvement of dissolution characteristics of water-poorly soluble drugs. SC-CO2 possesses high potential in the application of nanotechnology, due to the attractive properties of SC-CO2 fluid such as cheap, inert and non-polluting. In addition, SC-CO2 has density comparable to a liquid, viscosity similar to a gas, and high diffusion capacity. Most of all, carbon dioxide exists as gas in room temperature and pressure, which enables the removal of fluid instantaneously. In this study, a novel method of milling using SC-CO2 was proposed to produce fine-drug particles. SC-CO2 milling was conducted and its performance was compared with the ones by various milling methods such as jet milling, dry milling and wet milling. A comparison on the effect of each milling medium on its milling performance, drug size distribution, and particle morphology was conducted. Operating variables of the SC-CO2 milling system were also investigated to clarify the factors affecting the milling properties and to improve drug release characteristics of water-poorly soluble drugs.

  16. Leaching of Au, Ag, and Pd from waste printed circuit boards of mobile phone by iodide lixiviant after supercritical water pre-treatment

    SciTech Connect

    Xiu, Fu-Rong; Qi, Yingying; Zhang, Fu-Shen

    2015-07-15

    Highlights: • We report a novel process for recovering Au, Ag, and Pd from waste PCBs. • The effect of SCWO on the leaching of Au, Ag, and Pd in waste PCBs was studied. • SCWO was highly efficient for enhancing the leaching of Au, Ag, and Pd. • The optimum leaching parameters for Au, Ag, and Pd in iodine–iodide were studied. - Abstract: Precious metals are the most attractive resources in waste printed circuit boards (PCBs) of mobile phones. In this work, an alternative process for recovering Au, Ag, and Pd from waste PCBs of mobile phones by supercritical water oxidation (SCWO) pre-treatment combined with iodine–iodide leaching process was developed. In the process, the waste PCBs of mobile phones were pre-treated in supercritical water, then a diluted hydrochloric acid leaching (HL) process was used to recovery the Cu, whose leaching efficiency was approximately 100%, finally the resulting residue was subjected to the iodine–iodide leaching process for recovering the Au, Ag, and Pd. Experimental results indicated that SCWO pre-treatment temperature, time, and pressure had significant influence on the Au, Ag, and Pd leaching from (SCWO + HL)-treated waste PCBs. The optimal SCWO pre-treatment conditions were 420 °C and 60 min for Au and Pd, and 410 °C and 30 min for Ag. The optimum dissolution parameters for Au, Pd, and Ag in (SCWO + HL)-treated PCBs with iodine–iodide system were leaching time of 120 min (90 min for Ag), iodine/iodide mole ratio of 1:5 (1:6 for Ag), solid-to-liquid ratio (S/L) of 1:10 g/mL (1:8 g/mL for Ag), and pH of 9, respectively. It is believed that the process developed in this study is environment friendly for the recovery of Au, Ag, and Pd from waste PCBs of mobile phones by SCWO pre-treatment combined with iodine–iodide leaching process.

  17. Crew Exploration Vehicle (CEV) Water Landing Simulation

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Lawrence, Charles; Carney, Kelly S.

    2007-01-01

    Crew Exploration Vehicle (CEV) water splashdowns were simulated in order to find maximum acceleration loads on the astronauts and spacecraft under various landing conditions. The acceleration loads were used in a Dynamic Risk Index (DRI) program to find the potential risk for injury posed on the astronauts for a range of landing conditions. The DRI results showed that greater risks for injury occurred for two landing conditions; when the vertical velocity was large and the contact angle between the spacecraft and the water impact surface was zero, and when the spacecraft was in a toe down configuration and both the vertical and horizontal landing velocities were large. Rollover was also predicted to occur for cases where there is high horizontal velocity and low contact angles in a toe up configuration, and cases where there was a high horizontal velocity with high contact angles in a toe down configuration.

  18. Reactivity of Forsterite, Lizardite, and Antigorite in Dry to Water-Saturated Supercritical CO2 - An In Situ Infrared Spectroscopic Investigation

    NASA Astrophysics Data System (ADS)

    Loring, J. S.; Thompson, C. J.; Wang, Z.; Schaef, H. T.; Felmy, A. R.; Rosso, K. M.

    2010-12-01

    Geologic carbon sequestration (GCS) is a promising technology for reducing anthropogenic emissions of CO2 into the atmosphere. Olivines and serpentines are potentially important mineral phases in GCS because they are widespread in basalt formations and caprocks, are rich in Ca, Mg, and Fe, and react exothermically with CO2 to form carbonate solids. Previous work in aqueous systems has shown that carbonation rates of serpentines are lower than those of olivines, unless heat or acid pretreatments are applied. To the best of our knowledge, the comparative reactivities of olivines and serpentines have not yet been explored in dry to water saturated supercritical CO2 (scCO2) under conditions relevant to geologic sequestration. In this study, we used in situ infrared spectroscopy to investigate the carbonation of forsterite (Mg2SiO4), a representative of the olivine group and two serpentine polymorphs, antigorite and lizardite (Mg3Si2O5(OH)4). Experiments were carried out at 35 °C and 100 bar using a flow-through system equipped with a high-pressure mid-infrared cell. One ZnSe window of the transmission cell was coated with a thin overlayer of the mineral under investigation. Absorbance spectra were recorded as a function of time for 24 hours after exposing the overlayer to scCO2 containing water at concentrations corresponding to 0%, 50% and 95% saturation. Experiments were also performed with an approximately 2-fold excess concentration of water. In these latter experiments, a controlled temperature gradient was used to intentionally condense a liquid water film on the mineral surfaces. Little reaction was observed for the minerals exposed to dry scCO2. At water concentrations of 50% and 95% saturation, a very thin, liquid-like water film was detected on the mineral surface. A relatively minor extent of reaction occurred, and most of the transformation was observed during the first three hours of the experiments. Much greater reactivity was evident when a thicker

  19. Evidence for very tight sequestration of BTEX compounds in manufactured gas plant soils based on selective supercritical fluid extraction and soil/water partitioning.

    PubMed

    Hawthorne, Steven B; Miller, David J

    2003-08-15

    Benzene, toluene, ethylbenzene, o-, m-, and p-xylenes (BTEX), and polycyclic aromatic hydrocarbons (PAHs) were extracted from eight manufactured gas plant (MGP) soils from sites that had been abandoned for several decades. Supercritical fluid extraction (SFE) with pure carbon dioxide demonstrated the presence of BTEX compounds that were highly sequestered in both coal gas and oil gas MGP soils and soots. Benzene was generally the slowest compound to extract from all samples and was even more difficult to extract than most two- to five-ring PAHs found on the same samples. Since the solubility of benzene in carbon dioxide is 2-5 orders of magnitude higher than the solubilities of PAHs, these results demonstrate that benzene was more tightly sequestered than toluene, ethylbenzene, xylenes, or the multi-ring PAHs. Additional evidence for very tight binding was based on the fact that BTEX concentrations determined using either SFE or with methylene chloride sonication were much higher than those obtained by the U.S. EPA purge-and-trap method, especially for benzene (whose concentration was underestimated by as much as 1000-fold by the EPA method). However, soil/water desorption showed little benzene mobility, and Kd values for benzene were 1-2 orders of magnitude higher than those calculated based on literature sorption K(OC) values. These results indicate that environmentally relevant concentrations of benzene may be better represented by mild extraction methods than by methods capable of extracting tightly bound benzene.

  20. Evolution of strategies to achieve baseline separation of ten anionic, water-soluble sulfated estrogens via achiral packed column supercritical fluid chromatography.

    PubMed

    Patel, M A; Hardink, M A; Wrisely, L; Riley, F W; Hudalla, C J; Ashraf-Khorassani, M; Taylor, L T

    2014-11-28

    Near baseline separation of ten sulfated sodium salts of various structurally related estrogens employing a variety of bonded stationary phase packed columns was obtained using a conventional supercritical fluid chromatograph coupled with UV detection. Critical pairs 2/3 (8,9-dehydroestrone/17β-dihydroequilin) and 6/7 (17α-estradiol or 17α-dihydroequilin/estrone), however, failed to baseline separate. In all preliminary separations, 10mM ammonium acetate and variable percentages of H2O were initially used as co-additives in conjunction with methanol as a modifier. Different modifier programs and temperatures were employed to optimize the separation in a timely manner. A 2-ethylpyridine column provided the best separation compared to bare silica, diol, and cyano-based bonded phase columns. The employment of both salt and water as additives to the methanol-modified CO2 mobile phase suggested a mixed mode separation mechanism involving both ion pairing of each anionic sulfated estrogen with ammonium ion and hydrophilic interaction facilitated by partitioning of analyte between the aqueous solvated stationary phase and the aqueous component of the mobile phase. Upon more extensive study with either iso-propylamine or formic acid-ammonium formate buffer, the critical anionic pairs were 95% baseline resolved.

  1. Corrosion of alumina-forming austenitic steel Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti in supercritical water

    NASA Astrophysics Data System (ADS)

    Nie, S. H.; Chen, Y.; Ren, X.; Sridharan, K.; Allen, T. R.

    2010-04-01

    The oxidation behavior of alumina-forming austenitic (AFA) steel Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti has been examined after exposure to supercritical water (SCW) at 500 °C and 25 MPa pressure and with a dissolved oxygen content of 25 wppb, for exposure periods of 1300 h, 1700 h and 3000 h. A double layer oxide structure developed on all samples, consisting specifically of a Fe-rich outer hematite layer and an inner layer of Al-Cr-Fe-rich oxide containing a small fraction of FCC Ni-rich metal. Additionally, a thin Ni-rich layer in the bulk alloy close to the oxide/metal interface was also observed. Based on weight gain measurements, the oxidation resistance of the AFA steel was superior to other austenitic alloys, 800H, D9, and 316 stainless steel, tested under similar conditions. The formation of the protective Al-Cr-Fe-rich oxide layer may provide good long-term protection against corrosion in SCW environment.

  2. Electrochemistry in supercritical fluids

    PubMed Central

    Branch, Jack A.; Bartlett, Philip N.

    2015-01-01

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide–acetonitrile and supercritical HFCs. PMID:26574527

  3. Electrochemistry in supercritical fluids.

    PubMed

    Branch, Jack A; Bartlett, Philip N

    2015-12-28

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide-acetonitrile and supercritical HFCs.

  4. Simulating Water Markets to Help Design Water Rights Regimes

    NASA Astrophysics Data System (ADS)

    Harou, J. J.; Erfani, T.; Huskova, I.; Binions, O.

    2012-12-01

    In many catchments in England no further licenses are available from the Environmental regulator that provides them. The possibility of trading water between license holders has been recognized as a potentially effective and economically efficient strategy to mitigate increasing scarcity. Although trading licenses has been possible since several years, it very rarely happens (roughly 50 trades in 8 years). Several barriers to trade exist including lack of sufficient and prolonged scarcity, license-holder unwillingness to risk future renewal, likelihood license will be downgraded during a trade, duration of time required for approving a trade, etc. Regulators seek to make policy changes so that their inability to grant new licenses will not harm the local and national economy. What policy changes will most cost-effectively increase trading and allow it to effectively reduce the economic cost of scarcity events? A screening tool that could help evaluate problems and advantages of different regulatory solutions, and that could serve to test, assuming transaction costs can be quantified, their effect on trading under specific conditions would be useful. We propose such a water market simulator that predicts economically efficient pair-wise trade (between willing buyers and sellers) and represents the interaction of trades with natural hydrological flows, engineered infrastructure and a particular regulatory regime. The model emulates license-holders' willingness to engage in short-term trade transactions. In their initial form different 'agents' (license holders) are represented using an economic benefit function of water use which is supplemented by rules to represent behavioral or other characteristics of realistic system behavior. A case study based on the river Ouse basin (UK) is made to test the model. The model simulates the catchment weekly over several years considering reservoirs and pair-wise specific transaction costs. Several regulatory policies are tested

  5. Supercritical fluid mixing in Diesel Engine Applications

    NASA Astrophysics Data System (ADS)

    Bravo, Luis; Ma, Peter; Kurman, Matthew; Tess, Michael; Ihme, Matthias; Kweon, Chol-Bum

    2014-11-01

    A numerical framework for simulating supercritical fluids mixing with large density ratios is presented in the context of diesel sprays. Accurate modeling of real fluid effects on the fuel air mixture formation process is critical in characterizing engine combustion. Recent work (Dahms, 2013) has suggested that liquid fuel enters the chamber in a transcritical state and rapidly evolves to supercritical regime where the interface transitions from a distinct liquid/gas interface into a continuous turbulent mixing layer. In this work, the Peng Robinson EoS is invoked as the real fluid model due to an acceptable compromise between accuracy and computational tractability. Measurements at supercritical conditions are reported from the Constant Pressure Flow (CPF) chamber facility at the Army Research Laboratory. Mie and Schlieren optical spray diagnostics are utilized to provide time resolved liquid and vapor penetration length measurement. The quantitative comparison presented is discussed. Oak Ridge Associated Universities (ORAU).

  6. The Water Budget of a Simulated Hurricane

    NASA Technical Reports Server (NTRS)

    Braun, S.

    2005-01-01

    The Pennsylvania State University-National Center for Atmospheric Research mesoscale model MM5 is used to simulate Hurricane Bonnie at high resolution (2-km spacing) in order to examine budgets of water vapor, cloud condensate, and precipitation. Virtually all budget terms are derived directly from the model (except for the effects of storm motion). The water vapor budget reveals that a majority of the condensation in the eyewall occurs in convective hot towers, while outside of the eyewall most of the condensation occurs in weaker updrafts, indicative of a larger role of stratiform precipitation processes. The ocean source of water vapor in the eyewall region is only a very small fraction of that transported inward in the boundary layer inflow or that condensed in the updrafts. In contrast, in the outer regions, the ocean vapor source is larger owing to the larger area, counters the drying effect of low-level subsidence, and enhances the moisture transported in toward the eyewall. In this mature storm, cloud condensate is consumed as rapidly as it is produced. Cloud water peaks at the top of the boundary layer and within the melting layer, where cooling from melting enhances condensation. Unlike in squall lines, in the hurricane, very little condensate produced in the eyewall convection is transported outward into the surrounding precipitation area. Most of the mass ejected outward is likely in the form of small snow particles that seed the outer regions and enhance in situ stratiform precipitation development through additional growth by vapor deposition and aggregation. We examine artificial source terms for cloud and precipitation mass associated with setting to zero negative mixing ratios that arise from numerical advection errors. Although small at any given point and time, the cumulative effect of these terms contributes an amount of mass equivalent to 13% of the total condensation and 15-20% of the precipitation. Thus, these terms must be accounted for to

  7. A supercritical airfoil experiment

    NASA Technical Reports Server (NTRS)

    Mateer, G. G.; Seegmiller, H. L.; Hand, L. A.; Szodruck, J.

    1994-01-01

    The purpose of this investigation is to provide a comprehensive data base for the validation of numerical simulations. The objective of the present paper is to provide a tabulation of the experimental data. The data were obtained in the two-dimensional, transonic flowfield surrounding a supercritical airfoil. A variety of flows were studied in which the boundary layer at the trailing edge of the model was either attached or separated. Unsteady flows were avoided by controlling the Mach number and angle of attack. Surface pressures were measured on both the model and wind tunnel walls, and the flowfield surrounding the model was documented using a laser Doppler velocimeter (LDV). Although wall interference could not be completely eliminated, its effect was minimized by employing the following techniques. Sidewall boundary layers were reduced by aspiration, and upper and lower walls were contoured to accommodate the flow around the model and the boundary-layer growth on the tunnel walls. A data base with minimal interference from a tunnel with solid walls provides an ideal basis for evaluating the development of codes for the transonic speed range because the codes can include the wall boundary conditions more precisely than interference connections can be made to the data sets.

  8. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    SciTech Connect

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    such as blade cooling. The overall technical readiness of the supercritical oxy-combustion cycle is TRL 2, Technology Concept, due to the maturity level of the supercritical oxy-combustor for solid fuels, and several critical supporting components, as identified in the Technical Gap Analysis. The supercritical oxycombustor for solid fuels operating at pressures near 100 atm is a unique component of the supercritical oxy-combustion cycle. In addition to the low TRL supercritical oxy-combustor, secondary systems were identified that would require adaptation for use with the supercritical oxycombustion cycle. These secondary systems include the high pressure pulverized coal feed, high temperature cyclone, removal of post-combustion particulates from the high pressure cyclone underflow stream, and micro-channel heat exchangers tolerant of particulate loading. Bench scale testing was utilized to measure coal combustion properties at elevated pressures in a CO{sub 2} environment. This testing included coal slurry preparation, visualization of coal injection into a high pressure fluid, and modification of existing test equipment to facilitate the combustion properties testing. Additional bench scale testing evaluated the effectiveness of a rotary atomizer for injecting a coal-water slurry into a fluid with similar densities, as opposed to the typical application where the high density fluid is injected into a low density fluid. The swirl type supercritical oxy-combustor was developed from initial concept to an advanced design stage through numerical simulation using FLUENT and Chemkin to model the flow through the combustor and provide initial assessment of the coal combustion reactions in the flow path. This effort enabled the initial combustor mechanical layout, initial pressure vessel design, and the conceptual layout of a pilot scale test loop. A pilot scale demonstration of the supercritical oxy-combustion cycle is proposed as the next step in the technology development

  9. Pore-scale Simulations of Capillary Trapping of Supercritical CO2 after Multiple Drainage and Imbibition Cycles

    NASA Astrophysics Data System (ADS)

    Schaap, M. G.

    2015-12-01

    Carbon capture and storage (CCS) of carbon dioxide emissions generated by production or combustion of fossil fuels is a technologically viable means to reduce the build-up of CO2 in the atmosphere and oceans. On a fundamental level, capillary trapping of scCO2 is a pore-scale process that shares mechanisms that are relevant, for example in oil recovery and remediation of NAPL-contaminated aquifers. Capillary trapping of scCO2 differs rather significantly from trapping of oil recovery and NAPL remediation in that the goal is to maximize the amount of NWP storage, whereas the objective of the other applications is to minimize the amount of residual NWP. This difference makes research into capillary trapping of scCO2 unique, but also complex because scCO2 phase properties (e.g. viscosity, density, and interfacial tension) exhibit large shifts with pressure and temperature which can strongly alter the trapping potential and efficiency. In this presentation we compare direct pore-scale observations of the Brine-CO2 drainage and imbibition process with lattice Boltzmann model simulations. The observations were conducted with the synchrotron-based x-ray microtomography facility at the Advanced Photon Source (APS) at Argonne National Laboratory using a novel x-ray compatible, high-pressure, elevated temperature setup. The "large" volumes (~1200 mm3; 6.3 mm diameter and 40 mm in length) were segmented into solid phase (Bentheimer Sandstone), Brine (KI, 1140 kg/m3) and scCO2. We will present LB simulations of small (64^3 voxels) and large sections of the scanned cores with a simple Shan-Chen-type model and a more advanced Equation of State-type model and compare model results to pressure and CO2 saturation levels that were observed for the CO2 invasion and Brine re-imbibition process. We will present results for the smaller sections under multiple drainage and imbibition cycles to investigate whether this will lead to enhanced trapping of scCO2 as found in earlier research.

  10. Analysis of the terrestrial ion foreshock: 2D Full-Particle simulation of a curved supercritical shock

    NASA Astrophysics Data System (ADS)

    Lembege, B.; Savoini, P.; Stienlet, J.

    2013-05-01

    Two distinct ion populations backstreaming into the solar wind have been clearly evidenced by various space missions within the quasi-perpendicular region of the ion foreshock located upstream of the Earth's Bow shock (i.e. for 45° ≤ Theta_Bn ≤ 90°, where Theta_Bn is the angle between the shock normal and the upstream magnetostatic field): (i) field-aligned ion beams (« FAB ») characterized by a gyrotropic distribution, and (ii) gyro-phase bunched ions («GPB »), characterized by a NON gyrotropic distribution. The origin of these backstreaming ions has not been clearly identified and is presently analyzed with the help of 2D PIC simulation of a curved shock, where full curvature effects, time of flight effects and both electrons and ions dynamics are fully described within a self consistent approach. Present simulations evidence that these two populations can be effectively created directly by the shock front without invoking microinstabilities. The analysis of both individual and statistical ion trajectories evidences that: (i) two new parameters, namely the interaction time DT_inter and distance of penetration L_depth into the shock wave, play a key role and allow to discriminate these two populations. "GPB" population is characterized by a very short interaction time (DT_inter = 1 to 2 Tci) in comparison to the "FAB" population (DT_inter = 2 Tci to 10 Tci) which moves back and forth between the upstream edge of the shock front and the overshoot, where tci is the upstream ion gyroperiod. (ii) the importance of the injection angle (i.e. the angle between the normal of the shock front and the gyration velocity when ions reach the shock) to understand how the reflection process takes place. (iii) "FAB" population drifts along the curved shock front scanning a large Theta_Bn range from 90°. (iv) "GPB" population is embedded within the "FAB" population near the shock front which explains the difficulty to identify such a population in the experimental

  11. An efficient cleavage of the aryl ether C-O bond in supercritical carbon dioxide-water.

    PubMed

    Chatterjee, Maya; Ishizaka, Takayuki; Suzuki, Akira; Kawanami, Hajime

    2013-05-18

    A simple and highly efficient Rh/C catalyzed route for the cleavage of the C-O bond of aromatic ether at 80 °C in the presence of 0.5 MPa of H2 in the scCO2-water medium is reported; CO2 pressure and water play a key role under the tested conditions.

  12. Integrated Water Resources Simulation Model for Rural Community

    NASA Astrophysics Data System (ADS)

    Li, Y.-H.; Liao, W.-T.; Tung, C.-P.

    2012-04-01

    The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a

  13. Supercritical waste oxidation of aqueous wastes

    NASA Technical Reports Server (NTRS)

    Modell, M.

    1986-01-01

    For aqueous wastes containing 1 to 20 wt% organics, supercritical water oxidation is less costly than controlled incineration or activated carbon treatment and far more efficient than wet oxidation. Above the critical temperature (374 C) and pressure (218 atm) of water, organic materials and gases are completely miscible with water. In supercritical water oxidation, organics, air and water are brought together in a mixture at 250 atm and temperatures above 400 C. Organic oxidation is initiated spontaneously at these conditions. The heat of combustion is released within the fluid and results in a rise in temperature 600 to 650 C. Under these conditions, organics are destroyed rapidly with efficiencies in excess of 99.999%. Heteroatoms are oxidized to acids, which can be precipitated out as salts by adding a base to the feed. Examples are given for process configurations to treat aqueous wastes with 10 and 2 wt% organics.

  14. Evaluation of the pressure-volume-temperature (PVT) data of water from experiments and molecular simulations since 1990

    NASA Astrophysics Data System (ADS)

    Guo, Tao; Hu, Jiawen; Mao, Shide; Zhang, Zhigang

    2015-08-01

    Since 1990, many groups of pressure-volume-temperature (PVT) data from experiments and molecular dynamics (MD) or Monte Carlo (MC) simulations have been reported for supercritical and subcritical water. In this work, fifteen groups of PVT data (253.15-4356 K and 0-90.5 GPa) are evaluated in detail with the aid of the highly accurate IAPWS-95 formulation. The evaluation gives the following results: (1) Six datasets are found to be of good accuracy. They include the simulated results based on SPCE potential above 100 MPa and those derived from sound velocity measurements, but the simulated results below 100 MPa have large uncertainties. (2) The data from measurements with a piston cylinder apparatus and simulations with an exp-6 potential contain large uncertainties and systematic deviations. (3) The other seven datasets show obvious systematic deviations. They include those from experiments with synthesized fluid inclusion techniques (three groups), measured velocities of sound (one group), and automated high-pressure dilatometer (one group) and simulations with TIP4P potential (two groups), where the simulated data based on TIP4P potential below 200 MPa have large uncertainties. (4) The simulated data but those below 1 GPa agree with each other within 2-3%, and mostly within 2%. The data from fluid inclusions show similar systematic deviations, which are less than 2-5%. The data obtained with automated high-pressure dilatometer and those derived from sound velocity measurements agree with each other within 0.3-0.6% in most cases, except for those above 10 GPa. In principle, the systematic deviations mentioned above, except for those of the simulated data below 1 GPa, can be largely eliminated or significantly reduced by appropriate corrections, and then the accuracy of the relevant data can be improved significantly. These are very important for the improvement of experiments or simulations and the refinement and correct use of the PVT data in developing

  15. Fused silica capillaries with two segments of different internal diameters and inner surface roughnesses prepared by etching with supercritical water and used for volume coupling electrophoresis.

    PubMed

    Horká, Marie; Karásek, Pavel; Roth, Michal; Šlais, Karel

    2017-02-22

    In this work, single-piece fused silica capillaries with two different internal diameter segments featuring different inner surface roughness were prepared by new etching technology with supercritical water and used for volume coupling electrophoresis. The concept of separation and online pre-concentration of analytes in high conductivity matrix is based on the online large-volume sample pre-concentration by the combination of transient isotachophoretic stacking and sweeping of charged proteins in micellar electrokinetic chromatography using non-ionogenic surfactant. The modified surface roughness step helped to the significant narrowing of the zones of examined analytes. The sweeping and separating steps were accomplished simultaneously by the use of phosphate buffer (pH 7) containing ethanol, non-ionogenic surfactant Brij 35, and polyethylene glycol (PEG 10000) after sample injection. Sample solution of a large volume (maximum 3.7 μL) dissolved in physiological saline solution was injected into the wider end of capillary with inlet inner diameter from 150, 185 or 218 μm. The calibration plots were linear (R(2) ∼ 0.9993) over a 0.060-1 μg/mL range for the proteins used, albumin and cytochrome c. The peak area RSDs from at least 20 independent measuremens were below 3.2%. This online pre-concentration technique produced a more than 196-fold increase in sensitivity, and it can be applied for detection of, e.g. the presence of albumin in urine (0.060 μg/mL).

  16. High Density Thermal Energy Storage with Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  17. DSMC simulation of Europa water vapor plumes

    NASA Astrophysics Data System (ADS)

    Berg, J. J.; Goldstein, D. B.; Varghese, P. L.; Trafton, L. M.

    2016-10-01

    A computational investigation of the physics of water vapor plumes on Europa was performed with a focus on characteristics relevant to observation and spacecraft mission operations. The direct simulation Monte Carlo (DSMC) method was used to model the plume expansion assuming a supersonic vent source. The structure of the plume was determined, including the number density, temperature, and velocity fields. The possibility of ice grain growth above the vent was considered and deemed probable for large (diameter > ∼20 m) vents at certain Mach numbers. Additionally, preexisting grains of three diameters (0.1, 1, 50 μm) were included and their trajectories examined. A preliminary study of photodissociation of H2O into OH and H was performed to demonstrate the behavior of daughter species. A set of vent parameters was evaluated including Mach number (Mach 2, 3, 5), reduced temperature as a proxy for flow energy loss to the region surrounding the vent, and mass flow rate. Plume behavior was relatively insensitive to these factors, with the notable exception of mass flow rate. With an assumed mass flow rate of ∼1000 kg/s, a canopy shock occurred and a maximum integrated line of sight column density of ∼1020 H2O molecules/m2 was calculated, comparing favorably with observation (Roth et al., 2014a).

  18. Numerical Modeling of a Thermal-Hydraulic Loop and Test Section Design for Heat Transfer Studies in Supercritical Fluids

    NASA Astrophysics Data System (ADS)

    McGuire, Daniel

    A numerical tool for the simulation of the thermal dynamics of pipe networks with heat transfer has been developed with the novel capability of modeling supercritical fluids. The tool was developed to support the design and deployment of two thermal-hydraulic loops at Carleton University for the purpose of heat transfer studies in supercritical and near-critical fluids. First, the system was characterized based on its defining features; the characteristic length of the flow path is orders of magnitude larger than the other characteristic lengths that define the system's geometry; the behaviour of the working fluid in the supercritical thermodynamic state. An analysis of the transient thermal behaviour of the model's domains is then performed to determine the accuracy and range of validity of the modeling approach for simulating the transient thermal behaviour of a thermal-hydraulic loop. Preliminary designs of three test section geometries, for the purpose of heat transfer studies, are presented in support of the overall design of the Carleton supercritical thermal-hydraulic loops. A 7-rod-bundle, annular and tubular geometries are developed with support from the new numerical tool. Materials capable of meeting the experimental requirements while operating in supercritical water are determined. The necessary geometries to satisfy the experimental goals are then developed based on the material characteristics and predicted heat transfer behaviour from previous simulation results. An initial safety analysis is performed on the test section designs, where they are evaluated against the ASME Boiler, Pressure Vessel, and Pressure Piping Code standard, required for safe operation and certification.

  19. Formulation and make-up of simulated cement modified water

    SciTech Connect

    Gdowski, G.

    1997-09-12

    This procedure describes the formulation and make-up of Simulated Cement-Modified Waters (SCMW), which are aqueous solutions to be used for Activity E-20-50 Long-Term Corrosion Studies. These solutions simulate the changes to representative Yucca Mountain water chemistry because of prolonged contact with aged cement. The representative water was chosen as J-13 well water [Harrar, 1990]. J-13 well water is obtained from ground water that is in contact with the Topopah Spring tuff, which is the repository horizon rock.

  20. Launch Environment Water Flow Simulations Using Smoothed Particle Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Berg, Jared J.; Harris, Michael F.; Crespo, Alejandro C.

    2015-01-01

    This paper describes the use of Smoothed Particle Hydrodynamics (SPH) to simulate the water flow from the rainbird nozzle system used in the sound suppression system during pad abort and nominal launch. The simulations help determine if water from rainbird nozzles will impinge on the rocket nozzles and other sensitive ground support elements.

  1. Computer simulation of the NASA water vapor electrolysis reactor

    NASA Technical Reports Server (NTRS)

    Bloom, A. M.

    1974-01-01

    The water vapor electrolysis (WVE) reactor is a spacecraft waste reclamation system for extended-mission manned spacecraft. The WVE reactor's raw material is water, its product oxygen. A computer simulation of the WVE operational processes provided the data required for an optimal design of the WVE unit. The simulation process was implemented with the aid of a FORTRAN IV routine.

  2. COMPARISONS OF SOXHLET EXTRACTION, PRESSURIZED LIQUID EXTRACTION, SUPERCRITICAL FLUID EXTRACTION, AND SUBCRITICAL WATER EXTRACTION FOR ENVIRONMENTAL SOLIDS: RECOVERY, SELECTIVITY, AND EFFECTS ON SAMPLE MATRIX. (R825394)

    EPA Science Inventory

    Extractions of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former manufactured gas plant site were performed with a Soxhlet apparatus (18 h), by pressurized liquid extraction (PLE) (50 min at 100°C), supercritical fluid extraction (SFE) (1 h at 150°...

  3. Inactivation of E. coli K12 in buffered peptone water and apple cider by pilot-plant scale supercritical carbon dioxide system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is increasing interest in non-thermal processing to inactivate foodborne pathogens and background microflora in juice products. Non-thermal pasteurization ensures safety and may offer better quality products than thermal pasteurization. Of non-thermal technologies, use of supercritical carbon ...

  4. Hydraulic studies of drilling microbores with supercritical steam, nitrogen and carbon dioxide

    DOE Data Explorer

    Ken Oglesby

    2010-01-01

    Hydraulic studies of drilling microbores at various depths and with various hole sizes, tubing, fluids and rates showed theoretical feasibility. WELLFLO SIMULATIONS REPORT STEP 4: DRILLING 10,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 5: DRILLING 20,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 6: DRILLING 30,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE Mehmet Karaaslan, MSI

  5. Supercritical synthesis of biodiesel.

    PubMed

    Bernal, Juana M; Lozano, Pedro; García-Verdugo, Eduardo; Burguete, M Isabel; Sánchez-Gómez, Gregorio; López-López, Gregorio; Pucheault, Mathieu; Vaultier, Michel; Luis, Santiago V

    2012-07-23

    The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats) has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF) technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs) for biodiesel synthesis.

  6. Chemical Characterization of Simulated Boiling Water Reactor Coolant

    DTIC Science & Technology

    1990-05-01

    industry to reduce personnel radiation exposure and down-time associated with the operation, mainte- nance and refueling of Light Water Reactor (LWR...AD-A226 654 t t-FILL UIY C CHEMICAL CHARACTERIZATION OF SIMULATED , .BOILING WATER REACTOR COOLANt by Li . . , . , - VERRDON HOLBROOK MASON f ; B.S...CHARACTERIZATION OF SIMULATED BOILING WATER REACTOR COOLANT by VERRDON HOLBROOK MASON Submitted to the Department of Nuclear Engineering on May 9, 1988 in

  7. Supercritical gasification for the treatment of o-cresol wastewater.

    PubMed

    Wei, Chao-hai; Hu, Cheng-sheng; Wu, Chao-fei; Yan, Bo

    2006-01-01

    The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650 degrees C and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650 degrees C and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CH4 and CO, among which the total molar percentage of H2 and CH4 was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.

  8. Petrophysical core characterization at supercritical geothermal conditions

    NASA Astrophysics Data System (ADS)

    Kummerow, Juliane; Raab, Siegfried

    2015-04-01

    There is a growing scientific interest in the exploitation of supercritical geothermal reservoirs to increase the efficiency of geothermal power plants. The utilisation of geothermal energy requires in any case the detailed knowledge of the reservoir. In reservoir engineering, the characterisation of the geothermal system by electrical resistivity tomography (ERT) is a common geophysical exploration and monitoring strategy. For a realistic interpretation of the field measurements it is necessary to know both, the physical properties of the rock and those of the interacting fluid at defined temperature and pressure conditions. While there have been made great effort in determine the physical and chemical properties of water above its critical point (Tcritical = 374.21° C and pcritical = 221.2 bar), the influence of fluid-rock interactions on petrophysical properties in supercritical aqueous systems is nearly unknown. At supercritical conditions the viscosity of the fluid is low, which enhances the mass transfer and diffusion-controlled chemical reactions. This may have considerable effects on the porosity and hydraulic properties of a rock. To investigate high-enthalpy fluid-rock systems, in the framework of the EU-funded project IMAGE we have built a new percolation set-up, which allows for the measurement of electrical resistivity and permeability of rock samples at controlled supercritical conditions of aqueous fluids (pore pressure = 400 bar and a temperature = 400° C). First results will be presented.

  9. Water Clarity Simulant for K East Basin Filtration Testing

    SciTech Connect

    Schmidt, Andrew J.

    2006-01-20

    This document provides a simulant formulation intended to mimic the behavior of the suspended solids in the K East (KE) Basin fuel storage pool. The simulant will be used to evaluate alternative filtration apparatus to improve Basin water clarity and to possibly replace the existing sandfilter. The simulant was formulated based on the simulant objectives, the key identified parameters important to filtration, the composition and character of the KE Basin suspended sludge particles, and consideration of properties of surrogate materials.

  10. Optimization of Polycyclic Aromatic Hydrocarbon (PAH) Extraction Efficiency Parameters for Sub- and Supercritical Water Extraction (SCWE) Instrument

    NASA Technical Reports Server (NTRS)

    Okada, Asahi A.

    2005-01-01

    Polycyclic aromatic hydrocarbons are a class of molecules composed of multiple, bonded benzene rings. As PAHS are believed to be present on Mars, positive confirmation of their presence on Mars is highly desirable. To extract PAHS, which have low volatility, a fluid extraction method is ideal, and one that does not utilize organic solvents is especially ideal for in situ instrumental analysis. The use of water as a solvent, which at subcritical pressures and temperatures is relatively non-Polar, has significant potential. As SCWE instruments have not yet been commercialized, all instruments are individually-built research prototypes: thus, initial efforts were intended to determine if extraction efficiencies on the JPL-built laboratory-scale SCWE instrument are comparable to differing designs built elsewhere. Samples of soil with certified reference concentrations of PAHs were extracted using SCWE as well as conventional Soxhlet extraction. Continuation of the work would involve extractions on JPL'S newer, portable SCWE instrument prototype to determine its efficiency in extracting PAHs.

  11. Water and heat fluxes in desert soils: 2. Numerical simulations

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Milly, P. C. D.

    1994-03-01

    Transient one-dimensional fluxes of soil water (liquid and vapor) and heat in response to 1 year of atmospheric forcing were simulated numerically for a site in the Chihuahuan Desert of Texas. The model was initialized and evaluated using the monitoring data presented in a companion paper (Scanlon, this issue). Soil hydraulic and thermal properties were estimated a priori from a combination of laboratory measurements, models, and other published information. In the first simulation, the main drying curves were used to describe soil water retention, and hysteresis was ignored. Remarkable consistency was found between computed and measured water potentials and temperatures. Attenuation and phase shift of the seasonal cycle of water potentials below the shallow subsurface active zone (0.0- to 0.3-m depth) were similar to those of temperatures, suggesting that water potential fluctuations were driven primarily by temperature changes. Water fluxes in the upper 0.3 m of soil were dominated by downward and upward liquid fluxes that resulted from infiltration of rain and subsequent evaporation from the surface. Upward flux was vapor dominated only in the top several millimeters of the soil during periods of evaporation. Below a depth of 0.3 m, water fluxes varied slowly and were dominated by downward thermal vapor flux that decreased with depth, causing a net accumulation of water. In a second simulation, nonhysteretic water retention was instead described by the estimated main wetting curves; the resulting differences in fluxes were attributed to lower initial water contents (given fixed initial water potential) and unsaturated hydraulic conductivities that were lower than they were in the first simulation. Below a depth of 0.3 m, the thermal vapor fluxes dominated and were similar to those in the first simulation. Two other simulations were performed, differing from the first only in the prescription of different (wetter) initial water potentials. These three simulations

  12. Water vapor permeabilities through polymers: diffusivities from experiments and simulations

    NASA Astrophysics Data System (ADS)

    Seethamraju, Sindhu; Chandrashekarapura Ramamurthy, Praveen; Madras, Giridhar

    2014-09-01

    This study experimentally determines water vapor permeabilities, which are subsequently correlated with the diffusivities obtained from simulations. Molecular dynamics (MD) simulations were used for determining the diffusion of water vapor in various polymeric systems such as polyethylene, polypropylene, poly (vinyl alcohol), poly (vinyl acetate), poly (vinyl butyral), poly (vinylidene chloride), poly (vinyl chloride) and poly (methyl methacrylate). Cavity ring down spectroscopy (CRDS) based methodology has been used to determine the water vapor transmission rates. These values were then used to calculate the diffusion coefficients for water vapor through these polymers. A comparative analysis is provided for diffusivities calculated from CRDS and MD based results by correlating the free volumes.

  13. MICROBIOLOGICAL CHARACTERIZATION OF BACTERIA INHABITING A WATER DISTRIBUTION SYSTEM SIMULATOR

    EPA Science Inventory

    The impact of chlorination and chloramination treatments on heterotrophic bacteria (HB) and ammonia oxidizing bacteria (AOB) inhabiting a water distribution system simulator was investigated. Notable changes in bacterial densities were observed during this monitoring study. For e...

  14. Molecular Dynamics Simulations of Carbon Nanotubes in Water

    NASA Technical Reports Server (NTRS)

    Walther, J. H.; Jaffe, R.; Halicioglu, T.; Koumoutsakos, P.

    2000-01-01

    We study the hydrophobic/hydrophilic behavior of carbon nanotubes using molecular dynamics simulations. The energetics of the carbon-water interface are mainly dispersive but in the present study augmented with a carbon quadrupole term acting on the charge sites of the water. The simulations indicate that this contribution is negligible in terms of modifying the structural properties of water at the interface. Simulations of two carbon nanotubes in water display a wetting and drying of the interface between the nanotubes depending on their initial spacing. Thus, initial tube spacings of 7 and 8 A resulted in a drying of the interface whereas spacing of > 9 A remain wet during the course of the simulation. Finally, we present a novel particle-particle-particle-mesh algorithm for long range potentials which allows for general (curvilinear) meshes and "black-box" fast solvers by adopting an influence matrix technique.

  15. Continuum simulations of water flow past fullerene molecules

    NASA Astrophysics Data System (ADS)

    Popadić, A.; Praprotnik, M.; Koumoutsakos, P.; Walther, J. H.

    2015-09-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow solvers, allowing for investigations into spatiotemporal scales inaccessible to atomistic simulations.

  16. Current Water Deficit Stress Simulations in Selected Agricultural System Simulation Models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    System models, which adequately simulate plant water stress effects, are valuable tools for developing management practices with improved water use efficiency in agriculture. Plants experience water stress when its supply in the soil fails to meet the demand. Although it is easy to define the conc...

  17. Experimental study of heat transfer in a 7-element bundle cooled with supercritical Freon-12

    SciTech Connect

    Richards, G.; Shelegov, A. S.; Kirillov, P. L.; Pioro, I. L.; Harvel, G.

    2012-07-01

    Experimental data on Supercritical-Water (SCW) cooled bundles are very limited. Major problems with performing such experiments are technical difficulties in testing and experimental costs at high pressures, temperatures and heat fluxes. Also, there are only a few SCW experimental setups currently in the world capable of providing data. Supercritical Water-cooled nuclear Reactors (SCWRs), as one of the six concepts of Generation IV reactors, cannot be designed without such data. Therefore, a preliminary approach uses modeling fluids such as carbon dioxide and refrigerants instead of water is practical. In particularly, experiments in supercritical refrigerant-cooled bundles can be used. One of the SC modeling fluids typically used is Freon-12 (R-12) with the critical pressure of 4.136 MPa and the critical temperature of 111.97 deg. C. These conditions correspond to the critical pressure of 22.064 MPa and critical temperature of 373.95 deg. C in water. A set of experimental data obtained at the Inst. of Physics and Power Engineering (IPPE, Obninsk, Russia) in a vertically-oriented bundle cooled with supercritical R-12 was analyzed. This dataset consisted of 20 runs. The test section was 7-element bundle installed in a hexagonal flow channel with 3 grid spacers. Data was collected at pressures of approximately 4.65 MPa for several different combinations of wall and bulk-fluid temperatures that were below, at, or above the pseudo-critical temperature. The values of mass flux were ranged from 400 to 1320 kg/m{sup 2}s and inlet temperatures ranged from 72 to 120 deg. C. The test section consisted of fuel-element simulators that were 9.5 mm in OD with the total heated length of about 1 m. Bulk-fluid and wall temperature profiles were recorded using a combination of 8 different thermocouples. Analysis of the data has confirmed that there are three distinct heat-transfer regimes for forced convention in supercritical fluids: 1) Normal heat transfer; 2) Deteriorated heat

  18. Kinetics of Supercritical Water Oxidation

    DTIC Science & Technology

    1995-12-31

    are in mole/1 and the pre-exponential-factor units are chosen so the rate is in mole/l-s. The dashed line marked as 0.003 mole/1 is from a... marked "Raman" are determined using keff (the 1/e effective time constant) described in this report, based on the experiments in Ref. 6. The other data...Miller, , 3.0 ed. (Combustion Chemistry Division, Sandia National Laboratories, Livermore, CA, 1986). 6 S. F. Rice, T. B. Hunter, Ä. C. Ryden , and

  19. Ultra Supercritical Steamside Oxidation

    SciTech Connect

    Holcomb, Gordon R.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, Malgorzata

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions, which are goals of the U.S. Department of Energy's Advanced Power Systems Initiatives. Most current coal power plants in the U.S. operate at a maximum steam temperature of 538 C. However, new supercritical plants worldwide are being brought into service with steam temperatures of up to 620 C. Current Advanced Power Systems goals include coal generation at 60% efficiency, which require steam temperatures of up to 760 C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections. Initial results of this research are presented.

  20. Simulating continental surface waters: An application to Holocene northern Africa

    SciTech Connect

    Coe, M.T.

    1997-07-01

    A model (SWAM) to predict surface waters (lakes and wetlands) on the scale of atmospheric general circulation models is developed. SWAM is based on a linear reservoir hydrologic model and is driven by runoff, precipitation, evaporation, topography, and water transport directions. SWAM is applied to the modern climate using observed estimates of the hydrologic variables and a 5{prime} {times} 5{prime} digital terrain model to represent topography. It simulates the surface water area of northern Africa (about 1% of the land area) in reasonable agreement with observed estimates (0.65%). A middle Holocene (6000 yr BP) simulation using the results of the GENESIS atmospheric general circulation model (AGCM) illustrates the sensitivity of the simulated surface waters to climatic changes and the model`s utility as a diagnostic tool for AGCMs. SWAM and GENESIS capture the general pattern of climate change 6000 yr BP. There is an increase in the simulated surface water area from about 1% to about 3% of the land area, including an increase in the area of Lake Chad by about five times and extensive surface water throughout northern Mali, consistent with observed patterns of surface water change during the Holocene. Limitations in the modeling of surface waters appear to result from the relatively coarse resolution of global elevation data. 73 refs., 6 figs., 2 tabs.

  1. GROWTH OF HETROTROPHIC BIOFILMS IN A WATER DISTRIBUTION SYSTEM SIMULATOR

    EPA Science Inventory

    The U.S. EPA has designed and constructed a distribution system simulator (DSS) to evaluate factors which influence water quality within water distribution systems. Six individual 25 meter lengths of 15 cm diameter ductile iron pipe are arranged into loop configurations. Each lo...

  2. SUPERCRITICAL FLUID EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBON MIXTURES FROM CONTAMINATED SOILS

    EPA Science Inventory

    Highly contaminated (with PAHs) topsoils were extracted with supercritical CO2 to determine the feasibility and mechanism of supercritical fluid extraction (SFE). Effect of SCF density, temperature, cosolvent type and amount, and of slurrying the soil with water were ...

  3. Supercritical Fuel Pyrolysis

    DTIC Science & Technology

    2010-05-30

    experiments are conducted in the isothermal , isobaric reactor designed expressly for such purposes by Davis [22] and used by Stewart [11,12] in the AFOSR... isothermal , isobaric reactor specially designed for such purposes, we have conducted supercritical pyrolysis experiments with three model fuels: 1...prevalent understanding of how these different component groups behave under pyrolysis conditions. Clearly we need to know more about the pyrolysis

  4. Supercritical solvent coal extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  5. Simulation of salt water-fresh water interface motion

    SciTech Connect

    Ferrer Polo, J.; Ramos, F.J.

    1983-02-01

    A mathematic model is presented which describes the salt water-fresh water motion with a sharp interface, assuming the validity of the Dupuit approximation. This model is used as a base to derive a numeric-model (finite difference method) which is unconditionally convergent and stable. A method for solving the equations is selected together with a convergence accelerating procedure. The treatment of the boundary conditions in the interface is discussed, and a general and automatic solution for that problem is presented. Several tests with analytic solutions have been performed with good results. 13 references.

  6. Supercritical fluids cleaning

    SciTech Connect

    Butner, S.; Hjeresen, D.; Silva, L.; Spall, D.; Stephenson, R.

    1991-01-01

    This paper discusses a proposed multi-party research and development program which seeks to develop supercritical fluid cleaning technology as an alternative to existing solvent cleaning applications. While SCF extraction technology has been in commercial use for several years, the use of these fluids as cleaning agents poses several new technical challenges. Problems inherent in the commercialization of SCF technology include: the cleaning efficacy and compatibility of supercritical working fluids with the parts to be cleaned must be assessed for a variety of materials and components; process parameters and equipment design Have been optimized for extractive applications and must be reconsidered for application to cleaning; and co-solvents and entrainers must be identified to facilitate the removal of polar inorganic and organic contaminants, which are often not well solvated in supercritical systems. The proposed research and development program would address these issues and lead to the development and commercialization of viable SCF-based technology for precision cleaning applications. This paper provides the technical background, program scope, and delineates the responsibilities of each principal participant in the program.

  7. Molecular dynamic simulations of the water absorbency of hydrogels.

    PubMed

    Ou, Xiang; Han, Qiang; Dai, Hui-Hui; Wang, Jiong

    2015-09-01

    A polymer gel can imbibe solvent molecules through surface tension effect. When the solvent happens to be water, the gel can swell to a large extent and forms an aggregate called hydrogel. The large deformation caused by such swelling makes it difficult to study the behaviors of hydrogels. Currently, few molecular dynamic simulation works have been reported on the water absorbing mechanism of hydrogels. In this paper, we first use molecular dynamic simulation to study the water absorbing mechanism of hydrogels and propose a hydrogel-water interface model to study the water absorbency of the hydrogel surface. Also, the saturated water content and volume expansion rate of the hydrogel are investigated by building a hydrogel model with different cross-linking degree and by comparing the water absorption curves under different temperatures. The sample hydrogel model used consists of Polyethylene glycol diglycidyl ether (PEGDGE) as epoxy and the Jeffamine, poly-oxy-alkylene-amines, as curing agent. The conclusions obtained are useful for further investigation on PEGDGE/Jeffamine hydrogel. Moreover, the simulation methods, including hydrogel-water interface modeling, we first propose are also suitable to study the water absorbing mechanism of other hydrogels.

  8. A simulation model of water depth in mangrove basin forests.

    PubMed

    Ritchie, S A

    1990-06-01

    The construction and validation of a model simulating the water depth within mangrove basin forests is described. Rainfall, water table, water depth and tide data collected from a red mangrove basin forest on Marco Island, FL, was used to estimate model parameters. These included the basin spillover height, evapotranspiration-infiltration rate and the functional relationship of water depth change to rainfall, tide and basin spillover. The model was constructed with LOTUS 123 and calibrated from staff gauge water depth records. The model proved accurate and adaptable. Water depths from the model and staff gauge were correlated highly (r = 0.98). Data from an adjacent black mangrove forest featuring complex wet-dry cycling were used to modify the model. After calibration, the model provided an accurate record of water depths at the site (r = 0.89). This model will provide water depths used in a model of Aedes taeniorhynchus population dynamics.

  9. Simulation of Multiphase Water-Carbon Dioxide Mixture Flows in Porous Media

    NASA Astrophysics Data System (ADS)

    Afanasyev, A. A.

    2012-04-01

    Two-phase models are widely used for simulation of CO2 storage in saline aquifers. These models support gaseous phase mainly saturated with CO2 and liquid phase mainly saturated with H2O (e.g. TOUGH2 code). For deep aquifers where CO2 injection may result a plume of supercritical CO2 compositional simulation approach must be applied. This approach originated from petrol reservoir simulation studies is based on a cubic equation of state and is also capable only of single-phase states and two-phase states of liquid-gas type. The goal of the present study lies in development of a new mathematical approach for compositional simulation of carbon sequestration processes. The approach is supposed to be capable both of single-phase and two-phase states of liquid-gas type as in classical models and also of two-phase states of liquid-liquid type and three-phase states at high pressure. The liquid-liquid states are formed by two liquids. The first liquid is mainly saturated with water while the second is mainly saturated with CO2. These thermodynamic equilibriums with liquefied CO2 phase can be detected experimentally (Takenouchi et. al., 1964). The three-phase states represent a composition of the two-phase states of liquid-gas and liquid-liquid types. The three phases are water and CO2 in liquid and gaseous states. As liquefied CO2 is negatively buoyant at high pressure the described states can result in non-classical hydrodynamic effects in the aquifer with CO2 sinking and consequently in non-classical structural trapping scenarios. The distinctive feature of the proposed approach lies in the methodology for mixture properties determination. Transport equations and Darcy law are solved together with calculation of the entropy maximum that is reached in thermodynamic equilibrium and determines the mixture composition. To define and solve the problem only one function - mixture thermodynamic potential - is required. The proposed approach was implemented in MUFITS (Multiphase

  10. Water in hydrated orthorhombic lysozyme crystal: Insight from atomistic simulations.

    PubMed

    Hu, Zhongqiao; Jiang, Jianwen; Sandler, Stanley I

    2008-08-21

    Biologically important water in orthorhombic lysozyme crystal is investigated using atomistic simulations. A distinct hydration shell surrounding lysozyme molecules is found from the number distribution of water molecules. While the number of water molecules in the hydration shell increases, the percentage decreases as the hydration level rises. Adsorption of water in the lysozyme crystal shows type-IV behavior. At low hydration levels, water molecules primarily intercalate the minor pores and cavity in the crystal due to the strong affinity between protein and water. At high hydration levels, the major pores are filled with liquidlike water as capillary condensation occurs. A type-H4 hysteresis loop is observed in the adsorption and desorption isotherms. The locations of the water molecules identified from simulation match fairly well with the experimentally determined crystallographic hydration sites. As observed in experiment, water exhibits anomalous subdiffusion because of the geometric restrictions and interactions of protein. With increasing hydration level, this anomaly is reduced and the diffusion of water tends to progressively approach normal Brownian diffusion. The flexibility of protein framework slightly enhances water mobility, but this enhancement decreases with increasing hydration level.

  11. Water in hydrated orthorhombic lysozyme crystal: Insight from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Hu, Zhongqiao; Jiang, Jianwen; Sandler, Stanley I.

    2008-08-01

    Biologically important water in orthorhombic lysozyme crystal is investigated using atomistic simulations. A distinct hydration shell surrounding lysozyme molecules is found from the number distribution of water molecules. While the number of water molecules in the hydration shell increases, the percentage decreases as the hydration level rises. Adsorption of water in the lysozyme crystal shows type-IV behavior. At low hydration levels, water molecules primarily intercalate the minor pores and cavity in the crystal due to the strong affinity between protein and water. At high hydration levels, the major pores are filled with liquidlike water as capillary condensation occurs. A type-H4 hysteresis loop is observed in the adsorption and desorption isotherms. The locations of the water molecules identified from simulation match fairly well with the experimentally determined crystallographic hydration sites. As observed in experiment, water exhibits anomalous subdiffusion because of the geometric restrictions and interactions of protein. With increasing hydration level, this anomaly is reduced and the diffusion of water tends to progressively approach normal Brownian diffusion. The flexibility of protein framework slightly enhances water mobility, but this enhancement decreases with increasing hydration level.

  12. Water management simulation games and the construction of knowledge

    NASA Astrophysics Data System (ADS)

    Rusca, M.; Heun, J.; Schwartz, K.

    2012-03-01

    In recent years simulations have become an important part of teaching activities. The reasons behind the popularity of simulation games are twofold. On the one hand, emerging theories on how people learn have called for an experienced-based learning approach. On the other hand, the demand for water management professionals has changed. Three important developments are having considerable consequences for water management programmes, which educate and train these professionals. These developments are the increasing emphasis on integration in water management, the characteristics and speed of reforms in the public sector and the shifting state-society relations in many countries. In response to these developments, demand from the labour market is oriented toward water professionals who need to have both a specialist in-depth knowledge in their own field, as well as the ability to understand and interact with other disciplines and interests. In this context, skills in negotiating, consensus building and working in teams are considered essential for all professionals. In this paper we argue that simulation games have an important role to play in (actively) educating students and training the new generation of water professionals to respond to the above-mentioned challenges. At the same time, simulations are not a panacea for learners and teachers. Challenges of using simulations games include the demands it places on the teacher. Setting up the simulation game, facilitating the delivery and ensuring that learning objectives are achieved requires considerable knowledge and experience as well as considerable time-inputs of the teacher. Moreover, simulation games usually incorporate a case-based learning model, which may neglect or underemphasize theories and conceptualization. For simulations to be effective they have to be embedded in this larger theoretical and conceptual framework. Simulations, therefore, complement rather than substitute traditional teaching methods.

  13. Water management simulation games and the construction of knowledge

    NASA Astrophysics Data System (ADS)

    Rusca, M.; Heun, J.; Schwartz, K.

    2012-08-01

    In recent years, simulations have become an important part of teaching activities. The reasons behind the popularity of simulation games are twofold. On the one hand, emerging theories on how people learn have called for an experienced-based learning approach. On the other hand, the demand for water management professionals has changed. Three important developments are having considerable consequences for water management programmes, which educate and train these professionals. These developments are the increasing emphasis on integration in water management, the characteristics and speed of reforms in the public sector and the shifting state-society relations in many countries. In response to these developments, demand from the labour market is oriented toward water professionals who need to have both a specialist in-depth knowledge in their own field, as well as the ability to understand and interact with other disciplines and interests. In this context, skills in negotiating, consensus building and working in teams are considered essential for all professionals. In this paper, we argue that simulation games have an important role to play in (actively) educating students and training the new generation of water professionals to respond to the above-mentioned challenges. At the same time, simulations are not a panacea for learners and teachers. Challenges of using simulation games include the demands it places on the teacher. Setting up the simulation game, facilitating the delivery and ensuring that learning objectives are achieved require considerable knowledge and experience as well as considerable time-inputs of the teacher. Moreover, simulation games usually incorporate a case-based learning model, which may neglect or underemphasize theories and conceptualizations. For simulations to be effective, they have to be embedded in this larger theoretical and conceptual framework. Simulations, therefore, complement rather than substitute traditional teaching

  14. Coiled tubing drilling with supercritical carbon dioxide

    DOEpatents

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  15. Water balance measurements and simulations of maize plants on lysimeters

    NASA Astrophysics Data System (ADS)

    Heinlein, Florian; Biernath, Christian; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2016-04-01

    In Central Europe expected major aspects of climate change are a shift of precipitation events and amounts towards winter months, and the general increase of extreme weather events like heat waves or summer droughts. This will lead to strongly changing regional water availability and will have an impact on future crop growth, water use efficiency and yields. Therefore, to estimate future crop yields by growth models accurate descriptions of transpiration as part of the water balance is important. In this study, maize was grown on weighing lysimeters (sowdate: 24 April 2013). Transpiration was determined by sap flow measurement devices (ICT International Pty Ltd, Australia) using the Heat-Ratio-Method: two temperature probes, 0.5 cm above and below a heater, detect a heat pulse and its speed which allows the calculation of sap flow. Water balance simulations were executed with different applications of the model framework Expert-N. The same pedotransfer and hydraulic functions and the same modules to simulate soil water flow, soil heat and nitrogen transport, nitrification, denitrification and mineralization were used. Differences occur in the chosen potential evapotranspiration ETpot (Penman-Monteith ASCE, Penman-Monteith FAO, Haude) and plant modules (SPASS, CERES). In all simulations ETpot is separated into a soil and a plant part using the leaf are index (LAI). In a next step, these parts are reduced by soil water availability. The sum of these parts is the actual evapotranspiration ETact which is compared to the lysimeter measurements. The results were analyzed from Mid-August to Mid-September 2013. The measured sap flow rates show clear diurnal cycles except on rainy days. The SPASS model is able to simulate these diurnal cycles, overestimates the measurements on rainy days and at the beginning of the analyzed period, and underestimates transpiration on the other days. The main reason is an overestimation of potential transpiration Tpot due to too high

  16. Observed and simulated movement of bank-storage water

    USGS Publications Warehouse

    Squillace, P.J.

    1996-01-01

    Detailed hydrologic and water-chemistry data were collected that document the movement of bank-storage water during March 7-April 17, 1990, in an alluvial aquifer adjacent to the Cedar River, Iowa. Hydrologic data included 745 daily ground-water-level measurements from 27 observation wells. Water-chemistry data indicate that bank-storage water had smaller specific conductance and larger concentration of atrazine than ambient ground water. To quantify the movement of the bank-storage water, a two-dimensional ground-water flow model was constructed, and the resulting calibrated model accurately simulated observed conditions. Analysis of water chemistry and model results indicate that a 2-meter rise in the river stage caused bank-storage water to move horizontally at least 30 meters into the aquifer and vertically about 4 meters below the river bottom, whereas the remaining 30 percent moved laterally through the riverbank. The model also showed that bank storage caused the ground-water flux to the river to increase by a factor of five during the first three weeks of base flow after runoff and that it required about five weeks for bank-storage water to discharge from the alluvial aquifer after the peak river stage. These results quantitatively demonstrate the importance of bank storage as a source of recharge to the alluvial aquifer and as a source of water to the river during early base-flow conditions.

  17. Chemical durability of simulated nuclear glasses containing water

    SciTech Connect

    Li, H.; Tomozawa, M.

    1995-04-01

    The chemical durability of simulated nuclear waste glasses having different water contents was studied. Results from the product consistency test (PCT) showed that glass dissolution increased with water content in the glass. This trend was not observed during MCC-1 testing. This difference was attributed to the differences in reactions between glass and water. In the PCT, the glass network dissolution controlled the elemental releases, and water in the glass accelerated the reaction rate. On the other hand, alkali ion exchange with hydronium played an important role in the MCC-1. For the latter, the amount of water introduced into a leached layer from ion-exchange was found to be much greater than that of initially incorporated water in the glass. Hence, the initial water content has no effect on glass dissolution as measured by the MCC-1 test.

  18. Effects of Natural Osmolytes on the Protein Structure in Supercritical CO2: Molecular Level Evidence.

    PubMed

    Monhemi, Hassan; Housaindokht, Mohammad Reza; Nakhaei Pour, Ali

    2015-08-20

    Protein instability in supercritical CO2 limits the application of this green solvent in enzyme-catalyzed reactions. CO2 molecules act as a protein denaturant at high pressure under supercritical conditions. Here, for the first time, we show that natural osmolytes could stabilize protein conformation in supercritical CO2. Molecular dynamics simulation is used to monitor the effects of adding different natural osmolytes on the conformation and dynamics of chymotrypsin inhibitor 2 (CI2) in supercritical CO2. Simulations showed that CI2 is denatured at 200 bar in supercritical CO2, which is in agreement with experimental observations. Interestingly, the protein conformation remains native after addition of ∼1 M amino acid- and sugar-based osmolyte models. These molecules stabilize protein through the formation of supramolecular self-assemblies resulting from macromolecule-osmolyte hydrogen bonds. Nevertheless, trimethylamine N-oxide, which is known as a potent osmolyte for protein stabilization in aqueous solutions, amplifies protein denaturation in supercritical CO2. On the basis of our structural analysis, we introduce a new mechanism for the osmolyte effect in supercritical CO2, an "inclusion mechanism". To the best of our knowledge, this is the first study that introduces the application of natural osmolytes in a supercritical fluid and describes mechanistic insights into osmolyte action in nonaqueous media.

  19. Basic Engineering Research for D and D of R Reactor Storage Pond Sludge: Electrokinetics, Carbon Dioxide Extraction, and Supercritical Water Oxidation

    SciTech Connect

    Michael A. Matthews; David A. Bruce,; Thomas A. Davis; Mark C. Thies; John W. Weidner; Ralph E. White

    2002-04-01

    Large quantities of mixed low level waste (MLLW) that fall under the Toxic Substances Control Act (TSCA) exist and will continue to be generated during D and D operations at DOE sites across the country. The standard process for destruction of MLLW is incineration, which has an uncertain future. The extraction and destruction of PCBs from MLLW was the subject of this research Supercritical Fluid Extraction (SFE) with carbon dioxide with 5% ethanol as cosolvent and Supercritical Waster Oxidation (SCWO) were the processes studied in depth. The solid matrix for experimental extraction studies was Toxi-dry, a commonly used absorbent made from plant material. PCB surrogates were 1.2,4-trichlorobenzene (TCB) and 2-chlorobiphenyl (2CBP). Extraction pressures of 2,000 and 4,000 psi and temperatures of 40 and 80 C were studied. Higher extraction efficiencies were observed with cosolvent and at high temperature, but pressure little effect. SCWO treatment of the treatment of the PCB surrogates resulted in their destruction below detection limits.

  20. Thermodynamics and kinetics of ion speciation in supercritical aqueous solutions: A molecular based study

    SciTech Connect

    Chialvo, A.A.; Cummings, P.T. |; Simonson, J.M.; Mesmer, R.E.

    1997-05-01

    Molecular simulation of infinitely dilute NaCl aqueous solutions are performed to study the Na{sup +}/Cl{sup -} ion pairing in a polarizable and a nonpolarizable solvent at supercritical conditions. The Simple Point Charge, Pettitt-Rossky, and Fumi-Tosi models for the water-water, ion-water, and ion-ion interactions are used in determining the degree of dissociation, its temperature and density dependence, and the kinetics of the interconversion between ion-pair configurations in a nonpolarizable medium. To assess the effect of the solvent polarizability on the stability of the ion-pair configurations, we replace the Simple Point Charge by the Polarizable Point Charge water model and determine the anion-cation potential of mean force at T{sub r}=1.20 and {rho}{sub r}=1.5.

  1. How processing digital elevation models can affect simulated water budgets.

    PubMed

    Kuniansky, Eve L; Lowery, Mark A; Campbell, Bruce G

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  2. Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin

    SciTech Connect

    Wei Gu; Garcia, A.E.; Schoenborn, B.P.

    1994-12-31

    Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies.

  3. Adaptive resolution simulation of an atomistic protein in MARTINI water

    NASA Astrophysics Data System (ADS)

    Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J.; Praprotnik, Matej

    2014-02-01

    We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecular dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations.

  4. Systematic evaluation of bundled SPC water for biomolecular simulations.

    PubMed

    Gopal, Srinivasa M; Kuhn, Alexander B; Schäfer, Lars V

    2015-04-07

    In bundled SPC water models, the relative motion of groups of four water molecules is restrained by distance-dependent potentials. Bundled SPC models have been used in hybrid all-atom/coarse-grained (AA/CG) multiscale simulations, since they enable to couple atomistic SPC water with supra-molecular CG water models that effectively represent more than a single water molecule. In the present work, we systematically validated and critically tested bundled SPC water models as solvent for biomolecular simulations. To that aim, we investigated both thermodynamic and structural properties of various biomolecular systems through molecular dynamics (MD) simulations. Potentials of mean force of dimerization of pairs of amino acid side chains as well as hydration free energies of single side chains obtained with bundled SPC and standard (unrestrained) SPC water agree closely with each other and with experimental data. Decomposition of the hydration free energies into enthalpic and entropic contributions reveals that in bundled SPC, this favorable agreement of the free energies is due to a larger degree of error compensation between hydration enthalpy and entropy. The Ramachandran maps of Ala3, Ala5, and Ala7 peptides are similar in bundled and unrestrained SPC, whereas for the (GS)2 peptide, bundled water leads to a slight overpopulation of extended conformations. Analysis of the end-to-end distance autocorrelation times of the Ala5 and (GS)2 peptides shows that sampling in more viscous bundled SPC water is about two times slower. Pronounced differences between the water models were found for the structure of a coiled-coil dimer, which is instable in bundled SPC but not in standard SPC. In addition, the hydration of the active site of the serine protease α-chymotrypsin depends on the water model. Bundled SPC leads to an increased hydration of the active site region, more hydrogen bonds between water and catalytic triad residues, and a significantly slower exchange of water

  5. Simulations of Water Migration in the Lunar Exosphere

    NASA Astrophysics Data System (ADS)

    Hurley, D.; Benna, M.; Mahaffy, P. R.; Elphic, R. C.; Goldstein, D. B.

    2014-12-01

    We perform modeling and analysis of water in the lunar exosphere. There were two controlled experiments of water interactions with the surface of the Moon observed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS). The Chang'e 3 landing on the Moon on 14 Dec 2013 putatively sprayed ~120 kg of water on the surface on the Moon at a mid-morning local time. Observations by LADEE near the noon meridian on six of the orbits in the 24 hours following the landing constrain the propagation of water vapor. Further, on 4 Apr 2014, LADEE's Orbital Maintenance Manuever (OMM) #21 sprayed the surface of the Moon with an estimated 0.73 kg of water in the pre-dawn sector. Observations of this maneuver and later in the day constrain the adsorption and release at dawn of adsorbed materials. Using the Chang'e 3 exhaust plume and LADEE's OMM-21 as control experiments, we set limits to the adsorption and thermalization of water with lunar regolith. This enables us to predict the efficiency of the migration of water as a delivery mechanism to the lunar poles. Then we simulate the migration of water through the lunar exosphere using the rate of sporadic inputs from meteoritic sources (Benna et al., this session). Simulations predict the amount of water adsorbed to the surface of the Moon and the effective delivery rate to the lunar polar cold traps.

  6. Supercritical Fuel Pyrolysis

    DTIC Science & Technology

    2007-05-28

    aircraft will have to operate under very high pressures and will have to sustain very high heat loads (e.g., > 30,000 BTU/min) in order to meet aircraft...inability to predict solids formation tendencies of fuels under supercritical conditions has been brought to our attention by Dr. Tim Edwards (of the Air...introduce auto-oxidative effects [21]. The sparged fuel is then loaded into a high-pressure pump, which delivers the fuel to the reactor, as shown in Figure

  7. Cycle Simulation of HotWater Fired Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Esaki, Shuji; Iramina, Kazuyasu; Kobayashi, Takahiro; Ohnou, Masayuki; Kaneko, Toshiyuki; Soga, Takashi

    The design limits were examined to determine the lowest temperature for hot water that can be used as a heat source to drive a hot water