Sample records for simulated textile effluent

  1. Effect of low-purity Fenton reagents on toxicity of textile dyeing effluent to Daphnia magna.

    PubMed

    Na, Joorim; Yoo, Jisu; Nam, Gwiwoong; Jung, Jinho

    2017-09-20

    This study aimed to identify the source of toxicity in textile dyeing effluent collected from February to July 2016, using Daphnia magna as a test organism. Toxicity identification evaluation (TIE) procedures were used to identify the toxicants in textile dyeing effluent, and Jar testing to simulate the Fenton process was conducted to identify the source of toxicants. Textile dyeing effluent was acutely toxic to D. magna [from 1.5 to 9.7 toxic units (TU)] during the study period. TIE results showed that Zn derived from the Fenton process was a key toxicant in textile dyeing effluent. Additionally, Jar testing revealed that low-purity Fenton reagents (FeCl 2 and FeSO 4 ), which contained large amounts of Zn (89 838 and 610 mg L -1 , respectively), were the source of toxicity. Although we were unable to conclusively identify the residual toxicity (approx. 1.4 TU of 9.71 TU) attributable to unknown toxicants in textile dyeing effluent, the findings of this study suggest that careful operation of the Fenton treatment process could contribute to eliminating its unintended toxic effects on aquatic organisms.

  2. High Laccase Expression by Trametes versicolor in a Simulated Textile Effluent with Different Carbon Sources and PHs.

    PubMed

    Ottoni, Cristiane; Simões, Marta F; Fernandes, Sara; Santos, Cledir R; Lima, Nelson

    2016-08-02

    Textile effluents are highly polluting and have variable and complex compositions. They can be extremely complex, with high salt concentrations and alkaline pHs. A fixed-bed bioreactor was used in the present study to simulate a textile effluent treatment, where the white-rot fungus, Trametes versicolor, efficiently decolourised the azo dye Reactive Black 5 over 28 days. This occurred under high alkaline conditions, which is unusual, but advantageous, for successful decolourisation processes. Active dye decolourisation was maintained by operation in continuous culture. Colour was eliminated during the course of operation and maximum laccase (Lcc) activity (80.2 U∙L(-1)) was detected after glycerol addition to the bioreactor. Lcc2 gene expression was evaluated with different carbon sources and pH values based on reverse transcriptase-PCR (polymerase chain reaction). Glycerol was shown to promote the highest lcc2 expression at pH 5.5, followed by sucrose and then glucose. The highest levels of expression occurred between three and four days, which corroborate the maximum Lcc activity observed for sucrose and glycerol on the bioreactor. These results give new insights into the use of T. versicolor in textile dye wastewater treatment with high pHs.

  3. High Laccase Expression by Trametes versicolor in a Simulated Textile Effluent with Different Carbon Sources and PHs

    PubMed Central

    Ottoni, Cristiane; Simões, Marta F.; Fernandes, Sara; Santos, Cledir R.; Lima, Nelson

    2016-01-01

    Textile effluents are highly polluting and have variable and complex compositions. They can be extremely complex, with high salt concentrations and alkaline pHs. A fixed-bed bioreactor was used in the present study to simulate a textile effluent treatment, where the white-rot fungus, Trametes versicolor, efficiently decolourised the azo dye Reactive Black 5 over 28 days. This occurred under high alkaline conditions, which is unusual, but advantageous, for successful decolourisation processes. Active dye decolourisation was maintained by operation in continuous culture. Colour was eliminated during the course of operation and maximum laccase (Lcc) activity (80.2 U∙L−1) was detected after glycerol addition to the bioreactor. Lcc2 gene expression was evaluated with different carbon sources and pH values based on reverse transcriptase-PCR (polymerase chain reaction). Glycerol was shown to promote the highest lcc2 expression at pH 5.5, followed by sucrose and then glucose. The highest levels of expression occurred between three and four days, which corroborate the maximum Lcc activity observed for sucrose and glycerol on the bioreactor. These results give new insights into the use of T. versicolor in textile dye wastewater treatment with high pHs. PMID:27490563

  4. Impact of industrial effluents on the biochemical composition of fresh water fish Labeo rohita.

    PubMed

    Muley, D V; Karanjkar, D M; Maske, S V

    2007-04-01

    In acute toxicity (96 hr) experiment the fingerlings of freshwater fish Labeo rohita was exposed to tannery, electroplating and textile mill effluents. The LC0 and LC50 concentrations were 15% and 20% for tannery effluents, 3% and 6% for electroplating effluents and 18% and 22% for textile mill effluents respectively. It was found that, electroplating effluent was more toxic than tannery and textile mill wastes. After acute toxicity experiments for different industrial effluents, various tissues viz. gill, liver, muscle and kidney were obtained separately from control, LC0 and LC50 groups. These tissues were used for biochemical estimations. The glycogen content in all the tissues decreased considerably upon acute toxicity of three industrial effluents except muscle in LC50 group of tannery effluent and kidney in LC50 group of textile mill effluent, when compared to control group. The total protein content decreased in all tissues in three effluents except gills in LC50 group of tannery effluent, kidney in LC50 group of electroplating effluent and kidney in LC0 group of textile mill effluent. In general total lipid content decreased in all tissues after acute exposure when compared to control group. The results obtained in the present study showed that, the industrial effluents from tannery, electroplating and textile mills caused marked depletion in biochemical composition in various tissues of the fish Labeo rohita after acute exposure.

  5. Characterization of fluorescent-dissolved organic matter and identification of specific fluorophores in textile effluents.

    PubMed

    Li, Wentao; Xu, Zixiao; Wu, Qian; Li, Yan; Shuang, Chendong; Li, Aimin

    2015-03-01

    This study focused on the characterization of fluorescent-dissolved organic matter and identification of specific fluorophores in textile effluents. Samples from different textile wastewater treatment plants were characterized by high-performance liquid chromatography and size exclusion chromatography as well as fluorescence excitation-emission matrix spectra. Despite the highly heterogeneous textile effluents, the fluorescent components and their physicochemical properties were found relatively invariable, which is beneficial for the combination of biological and physicochemical treatment processes. The humic-like substance with triple-excitation peaks (excitation (Ex) 250, 310, 365/emission (Em) 460 nm) presented as the specific fluorescence indicator in textile effluents. It was also the major contributor to UV absorbance at 254 nm and resulted in the brown color of biologically treated textile effluents. By spectral comparison, the specific fluorophore in textile effluents could be attributed to the intermediate structure of azo dyes 1-amino-2-naphthol, which was transferred into the special humic-like substances during biological treatment.

  6. Requalification of a Brazilian Trichoderma Collection and Screening of Its Capability to Decolourise Real Textile Effluent.

    PubMed

    Silva Lisboa, Dianny; Santos, Cledir; Barbosa, Renan N; Magalhães, Oliane; Paiva, Laura M; Moreira, Keila A; Lima, Nelson; Souza-Motta, Cristina M

    2017-04-01

    Water contamination with large amounts of industrial textile coloured effluents is an environmental concern. For the treatment of textile effluents, white-rot fungi have received extensive attention due to their powerful capability to produce oxidative (e.g., ligninolytic) enzymes. In addition, other groups of fungi, such as species of Aspergillus and Trichoderma , have also been used for textile effluents treatment. The main aim of the present study was to requalify a Brazilian Trichoderma culture collection of 51 Trichoderma strains, isolated from different sources in Brazil and preserved in the oldest Latin-American Fungal Service Culture Collection, The Micoteca URM WDCM 804 (Recife, Brazil). Fungal isolates were re-identified through a polyphasic approach including macro- and micro-morphology and molecular biology, and screened for their capability to decolourise real effluents collected directly from storage tanks of a textile manufacture. Trichoderma atroviride URM 4950 presented the best performance on the dye decolourisation in real textile effluent and can be considered in a scale-up process at industrial level. Overall, the potential of Trichoderma strains in decolourising real textile dye present in textile effluent and the production of the oxidative enzymes Lac, LiP and MnP was demonstrated. Fungal strains are available in the collection e-catalogue to be further explored from the biotechnological point of view.

  7. Requalification of a Brazilian Trichoderma Collection and Screening of Its Capability to Decolourise Real Textile Effluent

    PubMed Central

    Silva Lisboa, Dianny; Santos, Cledir; Barbosa, Renan N.; Magalhães, Oliane; Paiva, Laura M.; Moreira, Keila A.; Lima, Nelson; Souza-Motta, Cristina M.

    2017-01-01

    Water contamination with large amounts of industrial textile coloured effluents is an environmental concern. For the treatment of textile effluents, white-rot fungi have received extensive attention due to their powerful capability to produce oxidative (e.g., ligninolytic) enzymes. In addition, other groups of fungi, such as species of Aspergillus and Trichoderma, have also been used for textile effluents treatment. The main aim of the present study was to requalify a Brazilian Trichoderma culture collection of 51 Trichoderma strains, isolated from different sources in Brazil and preserved in the oldest Latin-American Fungal Service Culture Collection, The Micoteca URM WDCM 804 (Recife, Brazil). Fungal isolates were re-identified through a polyphasic approach including macro- and micro-morphology and molecular biology, and screened for their capability to decolourise real effluents collected directly from storage tanks of a textile manufacture. Trichoderma atroviride URM 4950 presented the best performance on the dye decolourisation in real textile effluent and can be considered in a scale-up process at industrial level. Overall, the potential of Trichoderma strains in decolourising real textile dye present in textile effluent and the production of the oxidative enzymes Lac, LiP and MnP was demonstrated. Fungal strains are available in the collection e-catalogue to be further explored from the biotechnological point of view. PMID:28368305

  8. Combination of physico-chemical analysis, Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay/nuclear abnormalities tests for cyto-genotoxicity assessments of treated effluents discharged from textile industries.

    PubMed

    Hemachandra, Chamini K; Pathiratne, Asoka

    2016-09-01

    Bioassays for cyto-genotoxicity assessments are generally not required in current textile industry effluent discharge management regulations. The present study applied in vivo plant and fish based toxicity tests viz. Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay and nuclear abnormalities tests in combination with physico-chemical analysis for assessing potential cytotoxic/genotoxic impacts of treated textile industry effluents reaching a major river (Kelani River) in Sri Lanka. Of the treated effluents tested from two textile industries, color in the Textile industry 1 effluents occasionally and color, biochemical oxygen demand and chemical oxygen demand in the Textile industry 2 effluents frequently exceeded the specified Sri Lankan tolerance limits for discharge of industrial effluents into inland surface waters. Exposure of A. cepa bulbs to 100% and 12.5% treated effluents from both industries resulted in statistically significant root growth retardation, mito-depression, and induction of chromosomal abnormalities in root meristematic cells in comparison to the dilution water in all cases demonstrating cyto-genotoxicity associated with the treated effluents. Exposure of O. niloticus to the 100% and 12.5% effluents, resulted in erythrocytic genetic damage as shown by elevated total comet scores and induction of nuclear abnormalities confirming the genotoxicity of the treated effluents even with 1:8 dilution. The results provide strong scientific evidence for the crucial necessity of incorporating cyto-genotoxicity impact assessment tools in textile industry effluent management regulations considering human health and ecological health of the receiving water course under chronic exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Application of chemical, biological and membrane separation processes in textile industry with recourse to zero effluent discharge--a case study.

    PubMed

    Nandy, T; Dhodapkar, R S; Pophali, G R; Kaul, S N; Devotta, S

    2005-09-01

    Environmental concerns associated with textile processing had placed the textile sector in a Southern State of India under serious threat of survival. The textile industries were closed under the orders of the Statutory Board for reason of inadequate compliance to environmental discharge norms of the State for the protection of the drinking water source of the State capital. In compliance with the direction of the Board for zero effluent discharge, advanced treatment process have been implemented for recovery of boiler feed quality water with recourse to effluent recycling/reuse. The paper describes to a case study on the adequacy assessment of the full scale effluent treatment plant comprising chemical, biological and filtration processes in a small scale textile industry. In addition, implementation of measures for discernable improvement in the performance of the existing units through effective operation & maintenance, and application of membrane separation processes leading to zero effluent discharge is also highlighted.

  10. Toxicity of textile dyes and their degradation by the enzyme horseradish peroxidase (HRP).

    PubMed

    Ulson de Souza, Selene Maria Arruda Guelli; Forgiarini, Eliane; Ulson de Souza, Antônio Augusto

    2007-08-25

    The enzyme peroxidase is known for its capacity to remove phenolic compounds and aromatic amines from aqueous solutions and also to decolorize textile effluents. This study evaluates the potential of the enzyme horseradish peroxidase (HRP) in the decolorization of textile dyes and effluents. Some factors such as pH and the amount of H(2)O(2) and the enzyme were evaluated in order to determine the optimum conditions for the enzyme performance. For the dyes tested, the results indicated that the decolorization of the dye Remazol Turquoise Blue G 133% was approximately 59%, and 94% for the Lanaset Blue 2R; for the textile effluent, the decolorization was 52%. The tests for toxicity towards Daphnia magna showed that there was a reduction in toxicity after the enzymatic treatment. However, the toxicity of the textile effluent showed no change towards Artemia salina after the enzyme treatment. This study verifies the viability of the use of the enzyme horseradish peroxidase in the biodegradation of textile dyes.

  11. Decolorization of dye-containing textile industry effluents using Ganoderma lucidum IBL-05 in still cultures.

    PubMed

    Asgher, Muhammad; Noreen, Sadia; Bhatti, Haq Nawaz

    2010-04-01

    A locally isolated white rot fungus Ganoderma lucidum IBL-05 was used for development of a bioremediation process for original textile industry effluents. Dye-containing effluents of different colors were collected from the Arzoo (maroon), Ayesha (yellow), Ittemad (green), Crescent (navy blue) and Magna (yellowish) textile industries of Faisalabad, Pakistan. G. lucidum IBL-05 was screened for its decolorization potential on all the effluents. Maximum decolorization (49.5 %) was observed in the case of the Arzoo textile industry (ART) effluent (lambda(max) = 515 nm) on the 10th day of incubation. Therefore, the ART effluent was selected for optimization of its decolorization process. Process optimization could improve color removal efficiency of the fungus to 95% within only 2 days, catalyzed by manganese peroxidase (1295 U/mL) as the main enzyme activity at pH 3 and 35 degrees C using 1% starch supplemented Kirk's basal medium. Nitrogen addition inhibited enzyme formation and effluent decolorization. The economics and effectiveness of the process can be improved by further process optimization.

  12. Effect of textile auxiliaries on the biodegradation of dyehouse effluent in activated sludge.

    PubMed

    Arslan Alaton, Idil; Insel, Güçlü; Eremektar, Gülen; Germirli Babuna, Fatos; Orhon, Derin

    2006-03-01

    The textile industry is confronted with serious environmental problems associated with its immense wastewater discharge, substantial pollution load, extremely high salinity, and alkaline, heavily coloured effluent. Particular sources of recalcitrance and toxicity in dyehouse effluent are two frequently used textile auxiliaries; i.e. dye carriers and biocidal finishing agents. The present experimental work reports the observation of scientific and practical significance related with the effect of two commercially important textile dye carriers and two biocidal finishing agents on biological activated sludge treatment at a textile preparation, dyeing and finishing plant in Istanbul. Respirometric measurements of the dyehouse effluent spiked with the selected textile chemicals were carried out for the assessment of the "readily biodegradable COD fraction" of the wastewater. The respirometric data obtained to visualize the effect of the selected textile auxiliaries on biomass activity was evaluated by an adopted activated sludge model. Results have indicated that the tested biocides did not exert any significant inhibitory effect on the treatment performance of the activated sludge reactor at the concentrations usually encountered in the final, total dyehouse effluent. The situation with the dye carriers was inherently different; one dye carrier appeared to be highly toxic and caused serious inhibition of the microbial respirometric activity, whereas the other dye carrier, also known as the more ecological alternative, i.e. the "Eco-Carrier", appeared to be biodegradable. Finally, the respirometric profile obtained for the Eco-Carrier was described by a simplified respirometric model.

  13. Treatment of a textile effluent by adsorption with cork granules and titanium dioxide nanomaterial.

    PubMed

    Castro, Margarida; Nogueira, Verónica; Lopes, Isabel; Vieira, Maria N; Rocha-Santos, Teresa; Pereira, Ruth

    2018-05-12

    This study aimed to explore the efficiency of two adsorbents, cork granules with different granulometry and titanium dioxide nanomaterial, in the removal of chemical oxygen demand (COD), colour and toxicity from a textile effluent. The adsorption assays with cork were unsatisfactory in the removal of chemical parameters however they eliminated the acute toxicity of the raw effluent to Daphnia magna. The assay with TiO 2 NM did not prove to be efficient in the removal of colour and COD even after 240 min of contact; nevertheless it also reduced the raw effluent toxicity. The best approach for complete remediation of the textile effluent has not yet been found however promising findings were achieved, which may be an asset in future adsorption assays.

  14. Decoloration and detoxification of effluents by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Borrely, Sueli I.; Morais, Aline V.; Rosa, Jorge M.; Badaró-Pedroso, Cintia; da Conceição Pereira, Maria; Higa, Marcela C.

    2016-07-01

    Three distinct textile samples were investigated for color and toxicity (S1-chemical/textile industry; S2-final textile effluent; S3 - standard textile produced effluent-untreated blue). Radiation processing of these samples were carried out at Dynamitron Electron Beam Accelerator and color and toxicity removal were determined: color removal by radiation was 96% (40 kGy, S1); 55% (2.5 kGy, S2) and 90% (2.5 kGy, S3). Concerning toxicity assays, Vibrio fischeri luminescent bacteria demonstrated higher reduction after radiation than the other systems: removal efficiencies were 33% (20 kGy, S1); 55% (2.5 kGy, S2) and 33% (2.5 kGy, S3). Daphnia similis and Brachionus plicatilis fitted well for S3 effluents. Hard toxic volumes into biological treatment plant may be avoided if radiation would be previously applied in a real plant. Results reveled how indispensable is to run toxicity to more than one living-organism.

  15. Biotreatment of textile effluent in static bioreactor by Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181.

    PubMed

    Miranda, Rita de Cássia M de; Gomes, Edelvio de Barros; Pereira, Nei; Marin-Morales, Maria Aparecida; Machado, Katia Maria Gomes; Gusmão, Norma Buarque de

    2013-08-01

    Investigations on biodegradation of textile effluent by filamentous fungi strains Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181 were performed in static bioreactors under aerated and non-aerated conditions. Spectrophotometric, HPLC/UV and LC-MS/MS analysis were performed as for to confirm, respectively, decolourisation, biodegradation and identity of compounds in the effluent. Enzymatic assays revealed higher production of enzymes laccase (Lac), lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) by P. chrysosporium URM 6181 in aerated bioreactor (2020; 39 and 392 U/l, respectively). Both strains decolourised completely the effluent after ten days and biodegradation of the most predominant indigo dye was superior in aerated bioreactor (96%). Effluent treated by P. chrysosporium URM 6181 accumulated a mutagenic metabolite derived from indigo. The C. lunata URM 6179 strain, showed to be more successful for assure the environmental quality of treated effluent. These systems were found very effective for efficient fungal treatment of textile effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effect of treatment in a constructed wetland on toxicity of textile wastewater

    USGS Publications Warehouse

    Baughman, G.L.; Perkins, W.S.; Lasier, P.J.; Winger, P.V.

    2003-01-01

    Constructed wetlands for treating wastewater have proliferated in recent years and their characteristics have been studied extensively. In most cases, constructed wetlands have been used primarily for removal of nutrients and heavy metals. Extensive literature is available concerning construction and use of wetlands for treatment of wastewater. Even so, quantitative descriptions of wetland function and processes are highly empirical and difficult to extrapolate. The processes involved in removal of pollutants by wetlands are poorly understood, especially for waste streams as complex as textile effluents. The few studies conducted on treatment of textile wastewater in constructed wetlands were cited in earlier publications. Results of a two-year study of a full-scale wetland treating textile effluent are presented here. The paper describes the effects of the wetland on aquatic toxicity of the wastewater and draws conclusions about the utility and limitations of constructed wetlands for treatment of textile effluents.

  17. Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process.

    PubMed

    Aouni, Anissa; Fersi, Cheïma; Ben Sik Ali, Mourad; Dhahbi, Mahmoud

    2009-09-15

    Untreated effluents from textile industries are usually highly coloured and contain a considerable amount of contaminants and pollutants. Stringent environmental regulation for the control of textile effluents is enforced in several countries. Previous studies showed that many techniques have been used for the treatment of textile wastewater, such as adsorption, biological treatment, oxidation, coagulation and/or flocculation, among them coagulation is one of the most commonly used techniques. Electrocoagulation is a process consisting in creating metallic hydroxide flocks within the wastewater by the electrodissolution of soluble anodes, usually made of iron or aluminium. This method has been practiced for most of the 20th century with limited success. In recent years, however, it started to regain importance with the progress of the electrochemical processes and the increase in environmental restrictions in effluent wastewater. This paper examines the use of electrocoagulation treatment process followed by nanofiltration process of a textile effluent sample. The electrocoagulation process was studied under several conditions such as various current densities and effect of experimental tense. Efficiencies of COD and turbidity reductions and colour removal were studied for each experiment. The electrochemical treatment was indented primarily to remove colour and COD of wastewater while nanofiltration was used to further improve the removal efficiency of the colour, COD, conductivity, alkalinity and total dissolved solids (TDS). The experimental results, throughout the present study, have indicated that electrocoagulation treatment followed by nanofiltration processes were very effective and were capable of elevating quality of the treated textile wastewater effluent.

  18. Decolorization and detoxification of two textile industry effluents by the laccase/1-hydroxybenzotriazole system.

    PubMed

    Benzina, Ouafa; Daâssi, Dalel; Zouari-Mechichi, Héla; Frikha, Fakher; Woodward, Steve; Belbahri, Lassaad; Rodriguez-Couto, Susana; Mechichi, Tahar

    2013-08-01

    The aim of this work was to determine the optimal conditions for the decolorization and the detoxification of two effluents from a textile industry-effluent A (the reactive dye bath Bezactive) and effluent B (the direct dye bath Tubantin)-using a laccase mediator system. Response surface methodology (RSM) was applied to optimize textile effluents decolorization. A Box-Behnken design using RSM with the four variables pH, effluent concentration, 1-hydroxybenzotriazole (HBT) concentration, and enzyme (laccase) concentration was used to determine correlations between the effects of these variables on the decolorization of the two effluents. The optimum conditions for pH and concentrations of HBT, effluent and laccase were 5, 1 mM, 50 % and 0.6 U/ml, respectively, for maximum decolorization of effluent A (68 %). For effluent B, optima were 4, 1 mM, 75 %, and 0.6 U/ml, respectively, for maximum decolorization of approximately 88 %. Both effluents were treated at 30 °C for 20 h. A quadratic model was obtained for each decolorization through this design. The experimental and predicted values were in good agreement and both models were highly significant. In addition, the toxicity of the two effluents was determined before and after laccase treatment using Saccharomyces cerevisiae, Bacillus cereus, and germination of tomato seeds.

  19. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah

    2014-09-03

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev butmore » at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.« less

  20. Remediation of textile dye waste water using a white-rot fungus Bjerkandera adusta through solid-state fermentation (SSF).

    PubMed

    Robinson, Tim; Nigam, Poonam Singh

    2008-12-01

    A strict screening strategy for microorganism selection was followed employing a number of white-rot fungi for the bioremediation of textile effluent, which was generated from one Ireland-based American textile industry. Finally, one fungus Bjerkandera adusta has been investigated in depth for its ability to simultaneously degrade and enrich the nutritional quality of highly coloured textile effluent-adsorbed barley husks through solid-state fermentation (SSF). Certain important parameters such as media requirements, moisture content, protein/biomass production and enzyme activities were examined in detail. A previously optimised method of dye desorption was employed to measure the extent of dye remediation through effluent decolorisation achieved as a result of fungal activity in SSF. B. adusta was capable of decolourising a considerable concentration of the synthetic dye effluent (up to 53%) with a moisture content of 80-85%. Protein enrichment of the fermented mass was achieved to the extent of 229 g/kg dry weight initial substrate used. Lignin peroxidase and laccase were found to be the two main enzymes produced during SSF of the dye-adsorbed lignocellulosic waste residue.

  1. Water recycle as a must: decolorization of textile wastewaters by plant-associated fungi.

    PubMed

    Tegli, Stefania; Cerboneschi, Matteo; Corsi, Massimo; Bonnanni, Marco; Bianchini, Roberto

    2014-02-01

    Textile dye effluents are among the most problematic pollutants because of their toxicity on several organisms and ecosystems. Low cost and ecocompatible bioremediation processes offer a promising alternative to the conventional and aspecific physico-chemical procedures adopted so far. Here, microorganisms resident on three real textile dyeing effluent were isolated, characterized, and tested for their decolorizing performances. Although able to survive on these real textile-dyeing wastewaters, they always showed a very low decolorizing activity. On the contrary, several plant-associated fungi (Bjerkandera adusta, Funalia trogii, Irpex lacteus, Pleurotus ostreatus, Trametes hirsuta, Trichoderma viride, and Aspergillus nidulans) were also assayed and demonstrated to be able both to survive and to decolorize to various extents the three effluents, used as such in liquid cultures. The decolorizing potential of these fungi was demonstrated to be influenced by nutrient availability and pH. Best performances were constantly obtained using B. adusta and A. nidulans, relying on two strongly different mechanisms for their decolorizing activities: degradation for B. adusta and biosorption for A. nidulans. Acute toxicity tests using Daphnia magna showed a substantial reduction in toxicity of the three textile dyeing effluents when treated with B. adusta and A. nidulans, as suggested by mass spectrometric analysis as well. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Treatment and reuse of textile wastewaters by mild solar photo-Fenton in the presence of humic-like substances.

    PubMed

    Negueroles, P G; Bou-Belda, E; Santos-Juanes, L; Amat, A M; Arques, A; Vercher, R F; Monllor, P; Vicente, R

    2017-05-01

    In this paper, the possibility of reusing textile effluents for new dyeing baths has been investigated. For this purpose, different trichromies using Direct Red 80, Direct Blue 106, and Direct Yellow 98 on cotton have been used. Effluents have been treated by means of a photo-Fenton process at pH 5. Addition of humic-like substances isolated form urban wastes is necessary in order to prevent iron deactivation because of the formation of non-active iron hydroxides. Laboratory-scale experiments carried out with synthetic effluents show that comparable results were obtained when using as solvent water treated by photo-Fenton with SBO and fresh deionized water. Experiments were scaled up to pilot plant illuminated under sunlight, using in this case a real textile effluent. Decoloration of the effluent could be achieved after moderate irradiation and cotton dyed with this water presented similar characteristics as when deionized water was used.

  3. 40 CFR 427.83 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.83 Effluent limitations guidelines...

  4. 40 CFR 427.82 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.82 Effluent limitations guidelines...

  5. 40 CFR 427.82 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.82 Effluent limitations guidelines representing...

  6. 40 CFR 427.83 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.83 Effluent limitations guidelines...

  7. 40 CFR 427.82 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.82 Effluent limitations guidelines...

  8. 40 CFR 427.83 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.83 Effluent limitations guidelines...

  9. 40 CFR 427.82 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.82 Effluent limitations guidelines...

  10. 40 CFR 427.83 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.83 Effluent limitations guidelines representing the degree...

  11. Removal of fluorescent dissolved organic matter in biologically treated textile effluents by NDMP anion exchange process: efficiency and mechanism.

    PubMed

    Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min

    2016-03-01

    The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents.

  12. Physicochemical assessment of industrial textile effluents of Punjab (India)

    NASA Astrophysics Data System (ADS)

    Bhatia, Deepika; Sharma, Neeta Raj; Kanwar, Ramesh; Singh, Joginder

    2018-06-01

    Urbanization and industrialization are generating huge quantities of untreated wastewater leading to increased water pollution and human diseases in India. The textile industry is one of the leading polluters of surface water and consumes about 200-270 tons of water to produce 1 ton of textile product. The primary objective of the present study was to investigate the pollution potential of textile industry effluent draining into Buddha Nallah stream located in Ludhiana, Punjab (India), and determine the seasonal variation in physicochemical parameters (pH, water temperature, total dissolved solids, total suspended solids, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of Buddha Nallah water. During summer months, for Site 1 and Site 2, the value of pH was in the alkaline range of 8.78 ± 0.47 and 8.51 ± 0.41, respectively. The values of pH in the rainy season were found to be in the range of 7.38 ± 0.58 and 7.11 ± 0.59 for Site 1 and Site 2, respectively. In the autumn and winter seasons, the average pH values were found to be in the range of 8.58 ± 1.40 and 8.33 ± 0.970, respectively. The maximum mean temperature in summer was recorded as 41.16 ± 4.99 °C, and lowest mean temperature in winter was recorded as 39.25 ± 2.25 °C at Site 2. The suspended solids were found to be highest (143.5 ± 75.01 and 139.66 ± 71.87 mg/L) in autumn for both the sites and lowest (86.50 + 15.10 mg/L) in the rainy season for Site 1. The values of BOD and COD of the textile effluent of both sites during all the seasons ranged from 121-580 to 240-990 mg/L, respectively, much higher than WHO water quality standard of 30 mg/L for BOD and 250 mg/L for COD. The present study deals with the collection of textile industry effluent and its characterization to find out the physicochemical load being drained by the effluent generated from textile industries, on the natural wastewater streams.

  13. 40 CFR 427.80 - Applicability; description of the coating or finishing of asbestos textiles subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability...

  14. 40 CFR 427.80 - Applicability; description of the coating or finishing of asbestos textiles subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability; description...

  15. 40 CFR 427.80 - Applicability; description of the coating or finishing of asbestos textiles subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability...

  16. 40 CFR 427.80 - Applicability; description of the coating or finishing of asbestos textiles subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability...

  17. 40 CFR 427.80 - Applicability; description of the coating or finishing of asbestos textiles subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... coating or finishing of asbestos textiles subcategory. 427.80 Section 427.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.80 Applicability; description...

  18. Decolourisation of Red 5 MB dye by microbes isolated from textile dye effluent.

    PubMed

    Subashini, P; Hiranmaiyadav, R; Premalatha, M S

    2010-07-01

    One of the major environmental problems is the presence of dye materials in textile wastewater, which need to be removed before releasing into the environment. Some dyes are toxic and carcinogenic in nature. The discharge of the textile effluent into rivers and lakes leads to higher BOD causing threat to aquatic life. Development of efficient dye degradation requires suitable strain and its use under favorable condition to realize the degradation potential. In this study, three microorganisms were isolated from the Red 5 MB dye containing textile wastewater. They were identified and tested for the dye decolourisation provided with different sugars as carbon source. The percentage of dye decolorized by Bacillus subtilis, Aspergillus flavus and Aspergillus fumigatus were found to be about 40%, 75% and 53.8% respectively.

  19. Biosorption of simulated dyed effluents by inactivated fungal biomasses.

    PubMed

    Prigione, Valeria; Varese, Giovanna Cristina; Casieri, Leonardo; Marchisio, Valeria Filipello

    2008-06-01

    Treatment of dyed effluents presents several problems mainly due to the toxicity and recalcitrance of dyestuffs. Innovative technologies, such as biosorption, are needed as alternatives to conventional methods to find inexpensive ways of removing dyes from large volumes of effluents. Inactivated biomasses do not require a continuous supply of nutrients and are not sensitive to the toxicity of dyes or toxic wastes. They can also be regenerated and reused in many cycles and are both safe and environment-friendly. The sorption capacities (SC) of autoclaved biomasses of three Mucorales fungi (Cunninghamella elegans, Rhizomucor pusillus and Rhizopus stolonifer), cultured on two different media, were evaluated against simulated effluents containing concentrations of 1000 and 5000 ppm of a single dye and a mix of 10 industrial textile dyes in batch experiments. SC values of up to 532.8 mg of dye g(-1) dry weight of biomass were coupled with high effluent decolourisation percentages (up to 100%). These biomasses may thus prove to be extremely powerful candidates for dye biosorption from industrial wastewaters. Even better results were obtained when a column system with the immobilised and inactivated biomass of one fungus was employed.

  20. Impact of textile dyeing industries effluent on groundwater quality in Karur Amaravathi River basin, Tamil Nadu (India)--a field study.

    PubMed

    Rajamanickam, R; Nagan, S

    2010-10-01

    Karur is an industrial town located on the bank of river Amaravathi. There are 487 textile processing units in operation and discharge about 14610 kilo litres per day of treated effluent into the river. The groundwater quality in the downstream is deteriorated due to continuous discharge of effluent. In order to assess the present quality of groundwater, 13 open wells were identified in the river basin around Karur and samples were collected during pre-monsoon, post monsoon and summer, and analyzed for physico-chemical parameters. TDS, total alkalinity, total hardness, calcium, chlorides and sulphates exceeded the desirable limit. Amaravathi River water samples were also colleted at the upstream and downstream of Karur and the result shows the river is polluted. During summer season, there is no flow in the river and the river acts as a drainage for the effluent. Hence, there is severe impact on the groundwater quality in the downstream. The best option to protect the groundwater quality in the river basin is that the textile processing units should adopt zero liquid discharge (ZLD) system and completely recycle the treated effluent.

  1. 40 CFR 410.32 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing... 9.0 at all times. Water Jet Weaving Pollutant or pollutant property BPT limitations Maximum for any...

  2. 40 CFR 410.42 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Woven Fabric Finishing... application of the best practicable control technology currently available (BPT). (a) Except as provided in 40...

  3. 40 CFR 410.82 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Nonwoven Manufacturing... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...

  4. 40 CFR 410.92 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Felted Fabric Processing... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...

  5. 40 CFR 410.62 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Carpet Finishing... application of the best practicable control technology currently available (BPT). (a) Except as provided in 40...

  6. 40 CFR 410.12 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Wool Scouring Subcategory... application of the best practicable control technology currently available (BPT). (a) Except as provided in 40...

  7. 40 CFR 410.22 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Wool Finishing Subcategory... application of the best practicable control technology currently available (BPT). (a) Except as provided in 40...

  8. Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems.

    PubMed

    Garcia, J C; Oliveira, J L; Silva, A E C; Oliveira, C C; Nozaki, J; de Souza, N E

    2007-08-17

    This work investigated the treatability of real textile effluents using several systems involving advanced oxidation processes (AOPs) such as UV/H2O2, UV/TiO2, UV/TiO2/H2O2, and UV/Fe2+/H2O2. The efficiency of each technique was evaluated according to the reduction levels observed in the UV absorbance of the effluents, COD, and organic nitrogen reduction, as well as mineralization as indicated by the formation of ammonium, nitrate, and sulfate ions. The results indicate the association of TiO2 and H2O2 as the most efficient treatment for removing organic pollutants from textile effluents. In spite of their efficiency, Fenton reactions based treatment proved to be slower and exhibited more complicated kinetics than the ones using TiO2, which are pseudo-first-order reactions. Decolorization was fast and effective in all the experiments despite the fact that only H2O2 was used.

  9. Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu

    NASA Astrophysics Data System (ADS)

    Prabha, Shashi; Gogoi, Anindita; Mazumder, Payal; Ramanathan, AL.; Kumar, Manish

    2017-09-01

    The expedited advent of urbanization and industrialization for economic growth has adversely affected the biological diversity, which is one of the major concerns of the developing countries. Microbes play a crucial role in decontaminating polluted sites and degrades pollution load of textile effluent. The present study was based on identification of microbial diversity along the Noyaal river of Tirupur area. River water samples from industrial and non-industrial sites and effluent samples of before and after treatment were tested and it was found that microbial diversity was higher in the river water at the industrial site (Kasipalayam) as compared to the non-industrial site (Perur). Similarly, the microbial populations were found to be high in the untreated effluent as compared to the treated one by conventional treatment systems. Similar trends were observed for MBR treatment systems as well. Pseudomonas sp ., Achromobacter sp. (bacterial species) and Aspergillus fumigates (fungal species), found exclusively at the industrial site have been reported to possess decolorization potential of dye effluent, thus can be used for treatment of dye effluent. The comparison of different microbial communities from different dye wastewater sources and textile effluents was done, which showed that the microbes degrade dyestuffs, reduce toxicity of wastewaters, etc. From the study, it can be concluded that the microbial community helps to check on the pollutants and minimize their affect. Therefore, there is a need to understand the systematic variation in microbial diversity with the accumulation of pollution load through monitoring.

  10. Anodic oxidation of textile wastewaters on boron-doped diamond electrodes.

    PubMed

    Abdessamad, NourElHouda; Akrout, Hanene; Bousselmi, Latifa

    2015-01-01

    The objective of this study is to investigate the potential application of the anodic oxidation (AO) on two electrolytic cells (monopolar (Cell 1) and bipolar (Cell 2)) containing boron-doped diamond electrodes on the treatment of real textile effluents to study the reuse possibility of treated wastewater in the textile industry process. AO is applied in the flocculation coagulation pretreatment of both upstream (BH) and downstream (BS) effluents. The chemical oxygen demand (COD) results show that the final COD removal obtained for the BH effluent in the case of Cell 1 and Cell 2 is 800 and 150 mg O₂L⁻¹ after 5 and 6 h of electrolysis, respectively. The treatments of the BS effluent allow for obtaining a final COD of 76 mg L⁻¹ for Cell 1 and a total mineralization for Cell 2. The obtained results demonstrate that the apparent mineralization kinetics of both effluents when using Cell 2 are about four times faster than the one obtained by Cell 1 and highlight the important contribution of the bipolar cell. Besides, the energy consumption values show that the treatment of the BH effluent by Cell 1 consumes 865 kWh kg COD⁻¹ against 411 kWh kg COD(-1) by Cell 2. Therefore, the use of Cell 2 decreases the energy cost by 2.1-6.65 times when compared to Cell 1 in the case of the BH and BS effluent treatment, respectively.

  11. Degradation of textile dyes by cyanobacteria.

    PubMed

    Dellamatrice, Priscila Maria; Silva-Stenico, Maria Estela; Moraes, Luiz Alberto Beraldo de; Fiore, Marli Fátima; Monteiro, Regina Teresa Rosim

    Dyes are recalcitrant compounds that resist conventional biological treatments. The degradation of three textile dyes (Indigo, RBBR and Sulphur Black), and the dye-containing liquid effluent and solid waste from the Municipal Treatment Station, Americana, São Paulo, Brazil, by the cyanobacteria Anabaena flos-aquae UTCC64, Phormidium autumnale UTEX1580 and Synechococcus sp. PCC7942 was evaluated. The dye degradation efficiency of the cyanobacteria was compared with anaerobic and anaerobic-aerobic systems in terms of discolouration and toxicity evaluations. The discoloration was evaluated by absorption spectroscopy. Toxicity was measured using the organisms Hydra attenuata, the alga Selenastrum capricornutum and lettuce seeds. The three cyanobacteria showed the potential to remediate textile effluent by removing the colour and reducing the toxicity. However, the growth of cyanobacteria on sludge was slow and discoloration was not efficient. The cyanobacteria P. autumnale UTEX1580 was the only strain that completely degraded the indigo dye. An evaluation of the mutagenicity potential was performed by use of the micronucleus assay using Allium sp. No mutagenicity was observed after the treatment. Two metabolites were produced during the degradation, anthranilic acid and isatin, but toxicity did not increase after the treatment. The cyanobacteria showed the ability to degrade the dyes present in a textile effluent; therefore, they can be used in a tertiary treatment of effluents with recalcitrant compounds. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. Comparative study on the treatment of raw and biologically treated textile effluents through submerged nanofiltration.

    PubMed

    Chen, Qing; Yang, Ying; Zhou, Mengsi; Liu, Meihong; Yu, Sanchuan; Gao, Congjie

    2015-03-02

    Raw and biologically treated textile effluents were submerged filtrated using lab-fabricated hollow fiber nanofiltration membrane with a molecular weight cut-off of about 650 g/mol. Permeate flux, chemical oxygen demand (COD) reduction, color removal, membrane fouling, and cleaning were investigated and compared by varying the trans-membrane pressure (TMP) and volume concentrating factor (VCF). It was found that both raw and biologically treated textile effluents could be efficiently treated through submerged nanofiltration. The increase of TMP resulted in a decline in water permeability, COD reduction, color removal, and flux recovery ratio, while the increase of VCF resulted in both increased COD reduction and color removal. Under the TMP of 0.4 bar and VCF of 5.0, fluxes of 1.96 and 2.59 l/m(2)h, COD reductions of 95.7 and 94.2%, color removals of 99.0, and 97.3% and flux recovery ratios of 91.1 and 92.9% could be obtained in filtration of raw and biologically treated effluents, respectively. After filtration, the COD and color contents of the raw effluent declined sharply from 1780 to 325 mg/l and 1.200 to 0.060 Abs/cm, respectively, while for the biologically treated effluent, they decreased from 780 to 180 mg/l and 0.370 to 0.045 Abs/cm, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. 40 CFR 410.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Stock and Yarn Finishing... application of the best practicable control technology currently available (BPT). (a) Except as provided in 40...

  14. Electrocoagulation for the treatment of textile industry effluent--a review.

    PubMed

    Khandegar, V; Saroha, Anil K

    2013-10-15

    Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical are used for the treatment of industrial effluent. The commonly used conventional biological treatment processes are time consuming, need large operational area and are not effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation has recently attracted attention as a potential technique for treating industrial effluent due to its versatility and environmental compatibility. This technique uses direct current source between metal electrodes immersed in the effluent, which causes the dissolution of electrode plates into the effluent. The metal ions, at an appropriate pH, can form wide range of coagulated species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb the dissolved contaminants. Therefore, the objective of the present manuscript is to review the potential of electrocoagulation for the treatment of industrial effluents, mainly removal of dyes from textile effluent. © 2013 Elsevier Ltd. All rights reserved.

  15. Assessing acute toxicity of effluent from a textile industry and nearby river waters using sulfur-oxidizing bacteria in continuous mode.

    PubMed

    Gurung, Anup; Hassan, Sedky H A; Oh, Sang-Eun

    2011-10-01

    Bioassays are becoming an important tool for assessing the toxicity of complex mixtures of substances in aquatic environments in which Daphnia magna is routinely used as a test organism. Bioassays outweigh physicochemical analyses and are valuable in the decision-making process pertaining to the final discharge of effluents from wastewater treatment plants as they measure the total effect of the discharge which is ecologically relevant. In this study, the aquatic toxicity of a textile plant effluent and river water downstream from the plant were evaluated with sulfur-oxidizing bacterial biosensors in continuous mode. Collected samples were analysed for different physicochemical parameters and 1,4-dioxane was detected in the effluent. The effluent contained a relatively high chemical oxygen demand of 60 mg L(-1), which exceeded the limit set by the Korean government for industrial effluent discharges. Results showed that both the effluent and river waters were toxic to sulfur-oxidizing bacteria. These results show the importance of incorporating bioassays to detect toxicity in wastewater effluents for the sustainable management of water resources.

  16. Photo-Electrochemical Treatment of Reactive Dyes in Wastewater and Reuse of the Effluent: Method Optimization

    PubMed Central

    Sala, Mireia; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-01-01

    In this work, the efficiency of a photo-electrochemical method to remove color in textile dyeing effluents is discussed. The decolorization of a synthetic effluent containing a bi-functional reactive dye was carried out by applying an electrochemical treatment at different intensities (2 A, 5 A and 10 A), followed by ultraviolet irradiation. The combination of both treatments was optimized. The final percentage of effluent decolorization, the reduction of halogenated organic volatile compound and the total organic carbon removal were the determinant factors in the selection of the best treatment conditions. The optimized method was applied to the treatment of nine simulated dyeing effluents prepared with different reactive dyes in order to compare the behavior of mono, bi, and tri-reactive dyes. Finally, the nine treated effluents were reused in new dyeing processes and the color differences (DECMC (2:1)) with respect to a reference were evaluated. The influence of the effluent organic matter removal on the color differences was also studied. The reuse of the treated effluents provides satisfactory dyeing results, and an important reduction in water consumption and salt discharge is achieved. PMID:28788251

  17. Effect of textile industrial effluent on tree plantation and soil chemistry.

    PubMed

    Singh, G; Bala, N; Rathod, T R; Singh, B

    2001-01-01

    A field study was conducted at Arid Forest Research Institute to study the effect of textile industrial effluent on the growth of forest trees and associated soil properties. The effluent has high pH, electrical conductivity (EC), sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) whereas the bivalent cations were in traces. Eight months old seedlings of Acacia nilotica, Acacia tortilis, Albizia lebbeck, Azadirachta indica, Parkinsonia aculeata and Prosopis juliflora were planted in July 1993. Various treatment regimes followed were; irrigation with effluent only (W1), effluent mixed with canal water in 1:1 ratio (W2), irrigation with gypsum treated effluent (W3), gypsum treated soil irrigated with effluent (W4) and wood ash treated soil irrigated with effluent (W5). Treatment regime W5 was found the best where plants attained (mean of six species) 173 cm height, 138 cm crown diameter and 9.2 cm collar girth at the age of 28 months. The poorest growth was observed under treatment regime of W3. The growth of the species varied significantly and the maximum growth was recorded for P. juliflora (188 cm height, 198 cm crown diameter and 10.0 cm collar girth). The minimum growth was recorded for A. lebbeck. Irrigation with effluent resulted in increase in percent organic matter as well as in EC. In most of the cases there were no changes in soil pH except in W5 where it was due to the effect of wood ash. Addition of wood ash influenced plant growth. These results suggest that tree species studied (except A. lebbeck) can be established successfully using textile industrial wastewater in arid region.

  18. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.

    2010-01-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.

  19. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system.

    PubMed

    Conn, Kathleen E; Siegrist, Robert L; Barber, Larry B; Meyer, Michael T

    2010-02-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. Copyright 2009 SETAC.

  20. Decolorization of adsorbed textile dyes by developed consortium of Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 under solid state fermentation.

    PubMed

    Kadam, Avinash A; Telke, Amar A; Jagtap, Sujit S; Govindwar, Sanjay P

    2011-05-15

    The objective of this study was to develop consortium using Pseudomonas sp. SUK1 and Aspergillus ochraceus NCIM-1146 to decolorize adsorbed dyes from textile effluent wastewater under solid state fermentation. Among various agricultural wastes rice bran showed dye adsorption up to 90, 62 and 80% from textile dye reactive navy blue HE2R (RNB HE2R) solution, mixture of textile dyes and textile industry wastewater, respectively. Pseudomonas sp. SUK1 and A. ochraceus NCIM-1146 showed 62 and 38% decolorization of RNB HE2R adsorbed on rice bran in 24h under solid state fermentation. However, the consortium of Pseudomonas sp. SUK1 and A. ochraceus NCIM-1146 (consortium-PA) showed 80% decolorization in 24h. The consortium-PA showed effective ADMI removal ratio of adsorbed dyes from textile industry wastewater (77%), mixture of textile dyes (82%) and chemical precipitate of textile dye effluent (CPTDE) (86%). Secretion of extracellular enzymes such as laccase, azoreductase, tyrosinase and NADH-DCIP reductase and their significant induction in the presence of adsorbed dye suggests their role in the decolorization of RNB HE2R. GCMS and HPLC analysis of product suggests the different fates of biodegradation of RNB HE2R when used Pseudomonas sp. SUK1, A. ochraceus NCIM-1146 and consortium PA. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. 40 CFR 410.52 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing... attributable to the finishing of knit fabrics through simple manufacturing operations employing a natural and..., controlled by this section and attributable to the finishing of knit fabrics through complex manufacturing...

  2. 40 CFR 410.52 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing... attributable to the finishing of knit fabrics through simple manufacturing operations employing a natural and..., controlled by this section and attributable to the finishing of knit fabrics through complex manufacturing...

  3. Textile dye degradation using nano zero valent iron: A review.

    PubMed

    Raman, Chandra Devi; Kanmani, S

    2016-07-15

    Water soluble unfixed dyes and inorganic salts are the major pollutants in textile dyeing industry wastewater. Existing treatment methods fail to degrade textile dyes and have limitations too. The inadequate treatment of textile dyeing wastewater is a major concern when effluent is directly discharged into the nearby environment. Long term disposal threatens the environment, which needs reclamation. This article reviews the current knowledge of nano zero valent iron (nZVI) technique in the degradation of textile dyes. The application of nZVI on textile dye degradation is receiving great attention in the recent years because nZVI particles are highly reactive towards the pollutant, less toxic, and economical. The nZVI particles aggregate quickly with respect to time and the addition of supports such as resin, nickel, zinc, bentonite, biopolymer, kaolin, rectorite, nickel-montmorillonite, bamboo, cellulose, biochar, graphene, and clinoptilolite enhanced the stability of iron nanoparticles. Inclusion of supports may in turn introduce additional toxic pollutants, hence green supports are recommended. The majority of investigations concluded dye color removal as textile dye compound removal, which is not factual. Very few studies monitored the removal of total organic carbon and observed the products formed. The results revealed that partial mineralization of the textile dye compound was achieved. Instead of stand alone technique, nZVI can be integrated with other suitable technique to achieve complete degradation of textile dye and also to treat multiple pollutants in the real textile dyeing wastewater. It is highly recommended to perform more bench-scale and pilot-scale studies to apply this technique to the textile effluent contaminated sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Study of decolorisation of binary dye mixture by response surface methodology.

    PubMed

    Khamparia, Shraddha; Jaspal, Dipika

    2017-10-01

    Decolorisation of a complex mixture of two different classes of textile dyes Direct Red 81 (DR81) and Rhodamine B (RHB), simulating one of the most important condition in real textile effluent was investigated onto deoiled Argemone Mexicana seeds (A. Mexicana). The adsorption behaviour of DR81 and RHB dyes was simultaneously analyzed in the mixture using derivative spectrophotometric method. Central composite design (CCD) was employed for designing the experiments for this complex binary mixture where significance of important parameters and possible interactions were analyzed by response surface methodology (RSM). Maximum adsorption of DR81 and RHB by A. Mexicana was obtained at 53 °C after 63.33 min with 0.1 g of adsorbent and 8 × 10 -6  M DR81, 12 × 10 -6  M RHB with composite desirability of 0.99. The predicted values for percentage removal of dyes from the mixture were in good agreement with the experimental values with R 2 > 96% for both the dyes. CCD superimposed RSM confirmed that presence of different dyes in a solution created a competition for the adsorbent sites and hence interaction of dyes was one of the most important factor to be studied to simulate the real effluent. The adsorbent showed remarkable adsorption capacities for both the dyes in the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Application of the removal of pollutants from textile industry wastewater in constructed wetlands using fuzzy logic.

    PubMed

    Dogdu, Gamze; Yalcuk, Arda; Postalcioglu, Seda

    2017-02-01

    There are more than a hundred textile industries in Turkey that discharge large quantities of dye-rich wastewater, resulting in water pollution. Such effluents must be treated to meet discharge limits imposed by the Water Framework Directive in Turkey. Industrial treatment facilities must be required to monitor operations, keep them cost-effective, prevent operational faults, discharge-limit infringements, and water pollution. This paper proposes the treatment of actual textile wastewater by vertical flow constructed wetland (VFCW) systems operation and monitoring effluent wastewater quality using fuzzy logic with a graphical user interface. The treatment performance of VFCW is investigated in terms of chemical oxygen demand and ammonium nitrogen (NH4-N) content, color, and pH parameters during a 75-day period of operation. A computer program was developed with a fuzzy logic system (a decision- making tool) to graphically present (via a status analysis chart) the quality of treated textile effluent in relation to the Turkish Water Pollution Control Regulation. Fuzzy logic is used in the evaluation of data obtained from the VFCW systems and for notification of critical states exceeding the discharge limits. This creates a warning chart that reports any errors encountered in a reactor during the collection of any sample to the concerned party.

  6. The effect of surfactant on pollutant biosorption of Trametes versicolor

    NASA Astrophysics Data System (ADS)

    Gül, Ülküye Dudu; Silah, Hülya; Akbaş, Halide; Has, Merve

    2016-04-01

    The major problem concerning industrial wastewater is treatment of dye and heavy metal containing effluents. Industrial effluents are also contained surfactants that are used as levelling, dispersing and wetting agents. The purpose of this study was to investigate the effect of surfactant on textile dye biosorption properties of a white rot fungus named Trametes versicolor. Reactive dyes are commonly used in textile industry because of their advantages such as brightness and excellent color fastness. A recative textile dye, called Everzol Black, was used in this study. The low-cost mollasses medium is used for fungal growth. The usage of mollases, the sugar refinery effluent as a source of energy and nutrients, gained importance because of reducing the cost and also reusing another waste. In biosorption process the effect of surfactant on dye removal properties of T. versicolor was examined as a function of pH, dye consentration and surfactant concentration. The results of this study showed that the surfactant enhanced the dye removal capacity of Trametes versicolor. The dye and surfactant molecules were interacted electrostatically and these electrostatic interactions improved dye removal properties of filamentous fungus T. versicolor. The results of this study recommended the use of surfactants as an inducer in textile wastewater treatment technologies.

  7. Necessity of toxicity assessment in Turkish industrial discharges (examples from metal and textile industry effluents).

    PubMed

    Sponza, Delia Teresa

    2002-01-01

    Toxicity of some organic and inorganic chemicals to microorganisms is an important consideration in assessing their environmental impact against their economic benefits. Microorganisms play an important role in several environmental processes, both natural and engineered. Some organic and inorganics at toxic levels have been detected in industrial discharges resulting in plant upsets and discharge permit violations. In addition to this, even though in some cases the effluent wastewater does not exceed the discharge limits, the results of toxicity tests show potential toxicity. Toxicity knowledge of effluents can benefit treatment plant operators in optimising plant operation, setting pre-treatment standards, and protecting receiving water quality and in establishing sewer discharge permits to safeguard the plant. In the Turkish regulations only toxicity dilution factor (TDF) with fish is part of the toxicity monitoring program of permissible wastewater discharge. In various countries, laboratory studies involving the use of different organisms and protocol for toxicity assessment was conducted involving a number of discharges. In this study, it was aimed to investigate the acute toxicity of textile and metal industry wastewaters by traditional and enrichment toxicity tests and emphasize the importance of toxicity tests in wastewater discharge regulations. The enrichment toxicity tests are novel applications and give an idea whether there is potential toxicity or growth limiting and stimulation conditions. Different organisms were used such as bacteria (Floc and Coliform bacteria) algae (Chlorella sp.). fish (Lepistes sp.) and protozoan (Vorticella sp.) to represent four tropic levels. The textile industry results showed acute toxicity for at least one organism in 8 out of 23 effluent samples. Acute toxicity for at least two organisms in 7 out of 23 effluent sampling was observed for the metal industry. The toxicity test results were assessed with chemical analyses such as COD, BOD, color and heavy metals. It was observed that the toxicity of the effluents could not be explained by using physicochemical analyses in 5 cases for metal and 4 cases for the textile industries. The results clearly showed that the use of bioassay tests produce additional information about the toxicity potential of industrial discharges and effluents.

  8. Use of submerged anaerobic membrane bioreactor (SAMBR) containing powdered activated carbon (PAC) for the treatment of textile effluents.

    PubMed

    Baêta, B E L; Ramos, R L; Lima, D R S; Aquino, S F

    2012-01-01

    This work investigated the use of submerged anaerobic membrane bioreactors (SAMBRs) in the presence and absence of powdered activated carbon (PAC) for the treatment of genuine textile wastewater. The reactors were operated at 35 °C with an HRT of 24 h and the textile effluent was diluted (1:10) with nutrient solution containing yeast extract as the source of the redox mediation riboflavin. The results showed that although both SAMBRs exhibited an excellent performance, the presence of PAC inside SAMBR-1 enhanced reactor stability and removal efficiency of chemical oxygen demand (COD), volatile fatty acids (VFA), turbidity and color. The median removal efficiencies of COD and color in SAMBR-1 were, 90 and 94% respectively; whereas for SAMBR-2 (without PAC) these values were 79 and 86%, In addition, the median values of turbidity and VFA were 8 NTU and 8 mg/L for SAMBR-1 and 14 NTU and 26 mg/L for SAMBR-2, indicating that the presence of PAC inside SAMBR-1 led to the production of an anaerobic effluent of high quality regarding such parameters.

  9. Asparagus densiflorus in a vertical subsurface flow phytoreactor for treatment of real textile effluent: A lab to land approach for in situ soil remediation.

    PubMed

    Watharkar, Anuprita D; Kadam, Suhas K; Khandare, Rahul V; Kolekar, Parag D; Jeon, Byong-Hun; Jadhav, Jyoti P; Govindwar, Sanjay P

    2018-05-30

    This study explores the potential of Asparagus densiflorus to treat disperse Rubin GFL (RGFL) dye and a real textile effluent in constructed vertical subsurface flow (VSbF) phytoreactor; its field cultivation for soil remediation offers a real green and economic way of environmental management. A. densiflorus decolorized RGFL (40 gm L -1 ) up to 91% within 48 h. VSbF phytoreactor successfully reduced American dye manufacture institute (ADMI), BOD, COD, Total Dissolved Solids (TDS) and Total Suspended Solids (TSS) of real textile effluent by 65%, 61%, 66%, 48% and 66%, respectively within 6 d. Oxidoreductive enzymes such as laccase (138%), lignin peroxidase (129%), riboflavin reductase (111%) were significantly expressed during RGFL degradation in A. densiflorus roots, while effluent transformation caused noteworthy induction of enzymes like, tyrosinase (205%), laccase (178%), veratryl oxidase (52%). Based on enzyme activities, UV-vis spectroscopy, FTIR and GC-MS results; RGFL was proposed to be transformed to 4-amino-3- methylphenyl (hydroxy) oxoammonium and N, N-diethyl aniline. Anatomical study of the advanced root tissue of A. densiflorus exhibited the progressive dye accumulation and removal during phytoremediation. HepG2 cell line and phytotoxicity study demonstrated reduced toxicity of biotransformed RGFL and treated effluent by A. densiflorus, respectively. On field remediation study revealed a noteworthy removal (67%) from polluted soil within 30 d. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Evaluation of cytotoxicity and inflammatory activity of wastewater collected from a textile factory before and after treatment by coagulation-flocculation methods.

    PubMed

    Makene, Vedastus W; Tijani, Jimoh O; Petrik, Leslie F; Pool, Edmund J

    2016-08-01

    Effective treatment of textile effluent prior to discharge is necessary in order to avert the associated adverse health impacts on human and aquatic life. In the present investigation, coagulation/flocculation processes were evaluated for the effectiveness of the individual treatment. Effectiveness of the treatment was evaluated based on the physicochemical characteristics. The quality of the pre-treated and post-flocculation treated effluent was further evaluated by determination of cytotoxicity and inflammatory activity using RAW264.7 cell cultures. Cytotoxicity was determined using WST-1 assay. Nitric oxide (NO) and interleukin 6 (IL-6) were used as biomarkers of inflammation. NO was determined in cell culture supernatant using the Griess reaction assay. The IL-6 secretion was determined using double antibody sandwich enzyme linked immunoassay (DAS ELISA). Cytotoxicity results show that raw effluent reduced the cell viability significantly (P < 0.001) compared to the negative control. All effluent samples treated by coagulation/flocculation processes at 1 in 100 dilutions had no cytotoxic effects on RAW264.7 cells. The results on inflammatory activities show that the raw effluent and effluent treated with 1.6 g/L of Fe-Mn oxide induced significantly (P < 0.001) higher NO production than the negative control. The inflammatory results further show that the raw effluent induced significantly (P < 0.001) higher production of IL-6 than the negative control. Among the coagulants/flocculants evaluated Al2(SO4)3.14H2O at a dosage of 1.6 g/L was the most effective to remove both toxic and inflammatory pollutants. In conclusion, the inflammatory responses in RAW264.7 cells can be used as sensitive biomarkers for monitoring the effectiveness of coagulation/flocculation processes used for textile effluent treatment.

  11. Decolorization of complex dyes and textile effluent by extracellular enzymes of Cyathus bulleri cultivated on agro-residues/domestic wastes and proposed pathway of degradation of Kiton blue A and reactive orange 16.

    PubMed

    Vats, Arpita; Mishra, Saroj

    2017-04-01

    In this study, the white-rot fungus Cyathus bulleri was cultivated on low-cost agro-residues, namely wheat bran (WB), wheat straw (WS), and domestic waste orange peel (OP) for production of ligninolytic enzymes. Of the three substrates, WB and OP served as good materials for the production of laccase with no requirement of additional carbon or nitrogen source. Specific laccase activity of 94.4 U mg -1 extracellular protein and 21.01 U mg -1 protein was obtained on WB and OP, respectively. Maximum decolorization rate of 13.6 μmol h -1  U -1 laccase for reactive black 5 and 22.68 μmol h -1  U -1 laccase for reactive orange 16 (RO) was obtained with the WB culture filtrate, and 11.7 μmol h -1  U -1 laccase for reactive violet 5 was observed with OP culture filtrate. Importantly, Kiton blue A (KB), reported not to be amenable to enzymatic degradation, was degraded by culture filtrate borne activities. Products of degradation of KB and RO were identified by mass spectrometry, and a pathway of degradation proposed. WB-grown culture filtrate decolorized and detoxified real and simulated textile effluents by about 40%. The study highlights the use of inexpensive materials for the production of enzymes effective on dyes and effluents.

  12. Environmental and health impacts of effluents from textile industries in Ethiopia: the case of Gelan and Dukem, Oromia Regional State.

    PubMed

    Dadi, Diriba; Stellmacher, Till; Senbeta, Feyera; Van Passel, Steven; Azadi, Hossein

    2017-01-01

    This study focuses on four textile industries (DH-GEDA, NOYA, ALMHADI, and ALSAR) established between 2005 and 2008 in the peri-urban areas of Dukem and Gelan. The objectives of the study were to generate baseline information regarding the concentration levels of selected pollutants and to analyze their effects on biophysical environments. This study also attempts to explore the level of exposure that humans and livestock have to polluted effluents and the effects thereof. The findings of this study are based on data empirically collected from two sources: laboratory analysis of sample effluents from the four selected textile plants and quantitative as well as qualitative socioeconomic data collection. As part of the latter, a household survey and focus group discussions (FGDs) with elderly and other focal persons were employed in the towns of Dukem and Gelan. The results of the study show that large concentrations of biological oxygen demand (BOD 5 ), chemical oxygen demand (COD), total suspended solids (TSS), and pH were found in all the observed textile industries, at levels beyond the permissible discharge limit set by the national Environmental Protection Authority (EPA). Furthermore, sulfide (S 2) , R-phosphate (R-PO 4 3 ), and Zn were found in large concentrations in DH-GEDA and ALMHADI, while high concentrations were also identified in samples taken from ALSAR and ALMHADI. In spite of the clear-cut legal tools, this study shows that the local environment, people, and their livestock are exposed to highly contaminated effluents. We therefore recommend that the respective federal and regional government bodies should reexamine the compliance to and actual implementation of the existing legal procedures and regulations and respond appropriately.

  13. Reuse of textile effluent treatment plant sludge in building materials.

    PubMed

    Balasubramanian, J; Sabumon, P C; Lazar, John U; Ilangovan, R

    2006-01-01

    This study examines the potential reuse of textile effluent treatment plant (ETP) sludge in building materials. The physico-chemical and engineering properties of a composite textile sludge sample from the southern part of India have been studied. The tests were conducted as per Bureau of Indian Standards (BIS) specification codes to evaluate the suitability of the sludge for structural and non-structural application by partial replacement of up to 30% of cement. The cement-sludge samples failed to meet the required strength for structural applications. The strength and other properties met the Bureau of Indian Standards for non-structural materials such as flooring tiles, solid and pavement blocks, and bricks. Results generally meet most ASTM standards for non-structural materials, except that the sludge-amended bricks do not meet the Grade NW brick standard. It is concluded that the substitution of textile ETP sludge for cement, up to a maximum of 30%, may be possible in the manufacturing of non-structural building materials. Detailed leachability and economic feasibility studies need to be carried out as the next step of research.

  14. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    PubMed

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Analysis and treatment of industrial wastewater through chemical coagulation-adsorption process-A case study of Clariant Pakistan limited

    NASA Astrophysics Data System (ADS)

    Ali Shah, Syed Farman; Shah, Abdul Karim; Mehdi, Ahmad; Memon, Aziza Aftab; Harijan, Khanji; Ali, Zeenat M.

    2012-05-01

    Textile dye manufacture processes are known as the most polluting chemical processes of industrial sectors of the world. Colored wastewaters along with many polluting agents are troublesome. They are heavily polluted with dyes, textile auxiliaries and chemicals. Current study applies a coupled technology for wastewater treatment. Combined coagulation-adsorption process was utilized for treatment of complex nature effluents of dyes, binder emulsion, pigments and textile chemicals plants at Clariant Pakistan. Cost effective coagulant and adsorbent was selected by using waste material from a power generation unit of Water and Power Development Authority (WAPDA), Pakistan. The treated effluent could be reused. Alum+ Activated Carbon, Ferrous sulfate+ Activated Carbon, Ferric chloride + Activated Carbon. Almost complete decolourization was achieved along with reduction in COD up to 65%. Pre and post treatment, TDS, COD, Turbidity and suspended solids were improved.

  16. Gamma irradiation and steam pretreatment of jute stick powder for the enhancement of dye adsorption efficiency

    NASA Astrophysics Data System (ADS)

    Parvin, Fahmida; Sultana, Nargis; Habib, S. M. Ahsan; Bhoumik, Nikhil Chandra

    2017-11-01

    The aim of this study is to find out the facile and effective pretreatment technique to enhance the capacity of jute stick powder (JSP) in adsorbing dye from raw textile effluent. Hence, different pretreatment techniques, i.e., radiation treatment, alkali treatment, ammonia treatment, steam treatment and CaCl2 treatment were applied to JSP and the adsorbing performance were examined for synthetic dye solutions (Blue FCL and Red RL dye). Different gamma radiation doses were applied on JSP and optimum dye removal efficiency was found at 500 krad in removing these two dyes (50 ppm) from solutions. Among the different pretreatment techniques, gamma irradiated JSP (500 Krad) exhibits highest dye uptake capacity for RED RL dye, whereas steam-treated JSP shows highest performance in adsorbing blue FCL dye. Subsequently, we applied the gamma irradiated and steam-treated JSP on real textile effluent (RTE) and these two techniques shows potentiality in adsorbing dye from raw textile effluent and in reducing BOD5, COD load and TOC to some extent as well. Fourier transform infrared spectroscopy (FTIR) analysis also proved that dye has been adsorbed on pretreated JSP.

  17. Estrogenic and anti-estrogenic activity of 23 commercial textile dyes.

    PubMed

    Bazin, Ingrid; Ibn Hadj Hassine, Aziza; Haj Hamouda, Yosra; Mnif, Wissem; Bartegi, Ahgleb; Lopez-Ferber, Miguel; De Waard, Michel; Gonzalez, Catherine

    2012-11-01

    The presence of dyes in wastewater effluent of textile industry is well documented. In contrast, the endocrine disrupting effects of these dyes and wastewater effluent have been poorly investigated. Herein, we studied twenty-three commercial dyes, usually used in the textile industry, and extracts of blue jean textile wastewater samples were evaluated for their agonistic and antagonistic estrogen activity. Total estrogenic and anti-estrogenic activities were measured using the Yeast Estrogen Screen bioassay (YES) that evaluates estrogen receptor binding-dependent transcriptional and translational activities. The estrogenic potencies of the dyes and wastewater samples were evaluated by dose-response curves and compared to the dose-response curve of 17β-estradiol (E2), the reference compound. The dose-dependent anti-estrogenic activities of the dyes and wastewater samples were normalized to the known antagonistic effect of 4-hydroxytamoxifen (4-OHT) on the induction of the lac Z reporter gene by E2. About half azo textile dyes have anti-estrogenic activity with the most active being Blue HFRL. Most azo dyes however have no or weak estrogenic activity. E2/dye or E2/waste water ER competitive binding assays show activity of Blue HFRL, benzopurpurine 4B, Everzol Navy Blue FBN, direct red 89 BNL 200% and waste water samples indicating a mechanism of action common to E2. Our results indicate that several textile dyes are potential endocrine disrupting agents. The presence of some of these dyes in textile industry wastewater may thus impact the aquatic ecosystem. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. The use of a natural coagulant (Opuntia ficus-indica) in the removal for organic materials of textile effluents.

    PubMed

    de Souza, Maísa Tatiane Ferreira; Ambrosio, Elizangela; de Almeida, Cibele Andrade; de Souza Freitas, Thábata Karoliny Formicoli; Santos, Lídia Brizola; de Cinque Almeida, Vitor; Garcia, Juliana Carla

    2014-08-01

    The goal of this study was to investigate the activity of the coagulant extracted from the cactus Opuntia ficus-indica (OFI) in the process of coagulation/flocculation of textile effluents. Preliminary tests of a kaolinite suspension achieved maximum turbidity removal of 95 % using an NaCl extraction solution. Optimization assays were conducted with actual effluents using the response surface methodology (RSM) based on the Box-Behnken experimental design. The responses of the variables FeCl3, dosage, cactus dosage, and pH in the removal of COD and turbidity from both effluents were investigated. The optimum conditions determined for jeans washing laundry effluent were the following: FeCl3 160 mg L(-1), cactus dosage 2.60 mg L(-1), and pH 5.0. For the fabric dyeing effluent, the optimum conditions were the following: FeCl3 640 mg L(-1), cactus dosage 160 mg L(-1), and pH 6.0. Investigation of the effects of the storage time and temperature of the cactus O. ficus-indica showed that coagulation efficiency was not significantly affected for storage at room temperature for up to 4 days.

  19. Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing Basidiomycetes strains.

    PubMed

    Moreira-Neto, S L; Mussatto, S I; Machado, K M G; Milagres, A M F

    2013-04-01

    The discharge of highly coloured synthetic dye effluents into rivers and lakes is harmful to the water bodies, and therefore, intensive researches have been focussed on the decolorization of wastewater by biological, physical or chemical treatments. In the present study, 12 basidiomycetes strains from the genus Pleurotus, Trametes, Lentinus, Peniophora, Pycnoporus, Rigidoporus, Hygrocybe and Psilocybe were evaluated for decolorization of the reactive dyes Cibacron Brilliant Blue H-GR and Cibacron Red FN-2BL, both in solid and liquid media. Among the evaluated fungi, seven showed great ability to decolorize the synthetic textile effluent, both in vivo (74-77%) or in vitro (60-74%), and laccase was the main ligninolytic enzyme involved on dyes decolorization. Pleurotus ostreatus, Trametes villosa and Peniophora cinerea reduced near to 60% of the effluent colour after only 1 h of treatment. The decolorization results were still improved by establishing the nitrogen source and amount to be used during the fungal strains cultivation in synthetic medium previous their action on the textile effluent, with yeast extract being a better nitrogen source than ammonium tartarate. These results contribute for the development of an effective microbiological process for decolorization of dye effluents with reduced time of treatment. © 2013 The Society for Applied Microbiology.

  20. THE CASE FOR THE CONTRIBUTION OF CRISTAIS RIVER NITRO-AMINOBENZENE DYES TO THE MUTAGENICITY OF AMBIENT SAMPLES

    EPA Science Inventory

    In order to verify if dyestuffs within an effluent of a textile industry was contributing to the systematic mutagenicity detected in the Cristais River, within the metropolitan region of Sao Paulo, mutagenic samples of the industrial effluent, crude water, and treated silt of the...

  1. Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale.

    PubMed

    Sun, Faqian; Sun, Bin; Hu, Jian; He, Yangyang; Wu, Weixiang

    2015-04-09

    The removal of organic compounds and nitrogen in an anaerobic-anoxic-aerobic membrane bioreactor process (A(2)O-MBR) for treatment of textile auxiliaries (TA) wastewater was investigated. The results show that the average effluent concentrations of chemical oxygen demand (COD), ammonium nitrogen (NH4(+)-N) and total nitrogen (TN) were about 119, 3 and 48 mg/L under an internal recycle ratio of 1.5. The average removal efficiency of COD, NH4(+)-N and TN were 87%, 96% and 55%, respectively. Gas chromatograph-mass spectrometer analysis indicated that, although as much as 121 different types of organic compounds were present in the TA wastewater, only 20 kinds of refractory organic compounds were found in the MBR effluent, which could be used as indicators of effluents from this kind of industrial wastewater. Scanning electron microscopy analysis revealed that bacterial foulants were significant contributors to membrane fouling. An examination of foulants components by wavelength dispersive X-ray fluorescence showed that the combination of organic foulants and inorganic compounds enhanced the formation of gel layer and thus caused membrane fouling. The results will provide valuable information for optimizing the design and operation of wastewater treatment system in the textile industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Biodegradation of the textile dye Mordant Black 17 (Calcon) by Moraxella osloensis isolated from textile effluent-contaminated site.

    PubMed

    Karunya, A; Rose, C; Valli Nachiyar, C

    2014-03-01

    The bacterium with dye degrading ability was isolated from effluent disposal sites of textile industries, Tirupur and was identified as Moraxella osloensis based on the biochemical and morphological characterization as well as 16S rRNA sequencing. This organism was found to decolorize 87 % of Mordant Black 17 at 100 mg l⁻¹ under shake culture condition compared to 92 % under stationary culture condition. Maximum degradation of the dye by M. osloensis was achieved when the mineral salt medium was supplemented with 0.5 % glucose and 0.1 % ammonium nitrate at 35 °C. Degradation of dye was found to follow first order kinetics with the k value of 0.06282 h⁻¹ and a R² value of 0.955. Analyses for the identification of intermediate compounds confirmed the presence of naphthalene, naphthol, naphthoquinone, salicylic acid and catechol. Based on this finding a probable pathway for the degradation of Mordant Black 17 by M. osloensis has been proposed.

  3. Genotoxicity evaluation of effluents from textile industries of the region Fez-Boulmane, Morocco: a case study.

    PubMed

    Giorgetti, Lucia; Talouizte, Hakima; Merzouki, Mohammed; Caltavuturo, Leonardo; Geri, Chiara; Frassinetti, Stefania

    2011-11-01

    In order to investigate the biological hazard of effluents from textile industries of Fez-Boulmane region in Morocco, mutagenicity and phytotoxicity tests were performed on different biological systems. Moreover, the efficiency of a Sequencing Batch Reactor (SBR) system, working by activated sludge on a laboratory scale, was estimated by comparing the ecotoxicity results observed before and after wastewater treatment. Evaluation of the genotoxic potential was investigated by means of classic mutagenicity tests on D7 strain of Saccharomyces cerevisiae and by phytotoxicity tests on Allium sativum L., Vicia faba L. and Lactuca sativa L., estimating micronuclei presence, mitotic index and cytogenetic anomalies. The results obtained by testing untreated wastewater demonstrated major genotoxicity effects in S. cerevisiae and various levels of phytotoxicity in the three plant systems, while after SBR treatment no more ecotoxicological consequences were observed. These data confirm the effectiveness of the SBR system in removing toxic substances from textile wastewaters in Fez-Boulmane region. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Colour removal and carbonyl by-production in high dose ozonation for effluent polishing.

    PubMed

    Mezzanotte, V; Fornaroli, R; Canobbio, S; Zoia, L; Orlandi, M

    2013-04-01

    Experimental tests have been conducted to investigate the efficiency and the by-product generation of high dose ozonation (10-60 mg O3 L(-1)) for complete colour removal from a treated effluent with an important component of textile dyeing wastewater. The effluent is discharged into an effluent-dominated stream where no dilution takes place, and, thus, the quality requirement for the effluents is particularly strict. 30, 60 and 90 min contact times were adopted. Colour was measured as absorbance at 426, 558 and 660 nm wavelengths. pH was monitored throughout the experiments. The experimental work showed that at 50 mg L(-1) colour removal was complete and at 60 mg O3 L(-1) the final aldehyde concentration ranged between 0.72 and 1.02 mg L(-1). Glyoxal and methylglyoxal concentrations were directly related to colour removal, whereas formaldehyde, acetaldehyde, acetone and acrolein were not. Thus, the extent of colour removal can be used to predict the increase in glyoxal and methylglyoxal concentrations. As colour removal can be assessed by a simple absorbance measurement, in contrast to the analysis of specific carbonyl compounds, which is much longer and complex, the possibility of using colour removal as an indicator for predicting the toxic potential of ozone by-products for textile effluents is of great value. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Decolorization and Degradation of Batik Dye Effluent using Ganoderma lucidum

    NASA Astrophysics Data System (ADS)

    Pratiwi, Diah; Indrianingsih, A. W.; Darsih, Cici; Hernawan

    2017-12-01

    Batik is product of traditional Indonesia culture that developed into a large textile industry. Synthetic dyes which widely used in textile industries including batik. Colour can be removed from wastewater effluent by chemical, physical, and biology methods. Bioremediation is one of the methods that used for processing colored effluent. Isolated White-rot fungi Ganoderma lucidum was used for bioremediation process for batik effluent. G. lucidum was developed by G. lucidum cultivation on centers of mushroom farmer Media Agro Merapi Kaliurang, Yogyakarta. The batik effluent was collected from a private small and medium Batik enterprises located at Petir, Rongkop, Gunungkidul Regency. The aim of the study were to optimize decolorization of Naphtol Black (NB) using G. lucidum. The effect of process parameters like incubation time and dye concentration on dye decolorization and COD degradation was studied. G. lucidum were growth at pH 5-6 and temperature 25°C at various Naphtol Black dye with concentration 20 ppm, 50 ppm, and 100 ppm for 30 day incubation time. The result from this study increased decolorization in line with the increasing of COD degradation. Increasing percentage of decolorization and COD degradation gradually increased with incubation time and dye concentration. The maximum decolorization and COD reduction were found to be 60,53% and 81,03%. G. lucidum had potential to decolorized and degraded COD for NB dye effluent on higher concentration.

  6. Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater.

    PubMed

    Aravind, Priyadharshini; Subramanyan, Vasudevan; Ferro, Sergio; Gopalakrishnan, Rajagopal

    2016-04-15

    The present article reports an integrated treatment method viz biodegradation followed by photo-assisted electrooxidation, as a new approach, for the abatement of textile wastewater. In the first stage of the integrated treatment scheme, the chemical oxygen demand (COD) of the real textile effluent was reduced by a biodegradation process using hydrogels of cellulose-degrading Bacillus cereus. The bio-treated effluent was then subjected to the second stage of the integrated scheme viz indirect electrooxidation (InDEO) as well as photo-assisted indirect electro oxidation (P-InDEO) process using Ti/IrO2-RuO2-TiO2 and Ti as electrodes and applying a current density of 20 mA cm(-2). The influence of cellulose in InDEO has been reported here, for the first time. UV-Visible light of 280-800 nm has been irradiated toward the anode/electrolyte interface in P-InDEO. The effectiveness of this combined treatment process in textile effluent degradation has been probed by chemical oxygen demand (COD) measurements and (1)H - nuclear magnetic resonance spectroscopy (NMR). The obtained results indicate that the biological treatment allows obtaining a 93% of cellulose degradation and 47% of COD removal, increasing the efficiency of the subsequent InDEO by a 33%. In silico molecular docking analysis ascertained that cellulose fibers affect the InDEO process by interacting with the dyes that are responsible of the COD. On the other hand, P-InDEO resulted in both 95% of decolorization and 68% of COD removal, as a result of radical mediators. Free radicals generated during P-InDEO were characterized as oxychloride (OCl) by electron paramagnetic resonance spectroscopy (EPR). This form of coupled approach is especially suggested for the treatment of textile wastewater containing cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Production of sludge-incorporated paver blocks for efficient waste management.

    PubMed

    Velumani, P; Senthilkumar, S

    2018-06-01

    Waste management plays a vital role in the reuse of industry wastes in to useful conversions. The treatment of effluents from the combined textile effluent treatment plant and hypo sludge from the paper industry results in sludge generation, which poses a huge challenge for its disposal. Therefore, an eco-friendly attempt is made to utilize them in the production of paver blocks. Paver blocks are construction units that have vast applications in street roads, walking paths, fuel stations, and so on. In this study, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge, to utilize them in suitable proportions. The effect of adding silica fume and polypropylene fibre in paver blocks has also been studied. Paver blocks containing sludge with different proportions were cast based on the recommendations in Indian Standards (IS) 15658, and the test results were compared with the nominal M20 grade and M30 grade paver blocks. The outcomes of the paver block combinations were studied and found to be an effective utilization of sludge with substantial cement replacement of up to 35%, resulting in effective waste management for specific industries. Presently, paver blocks are construction units that have vast application in street roads and other constructions like walking paths, fuel stations, and so on. Also, paver blocks possess easy maintenance during breakages. Based on this application, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge to utilize them in suitable proportions.

  8. Evaluation of starch-based flocculants for the flocculation of dissolved organic matter from textile dyeing secondary wastewater.

    PubMed

    Wu, Hu; Liu, Zhouzhou; Li, Aimin; Yang, Hu

    2017-05-01

    China is a major textile manufacturer in the world; as a result, large quantities of dyeing effluents are generated every year in the country. In this study, the performances of two cationic starch-based flocculants with different chain architectures, i.e., starch-graft-poly[(2-methacryloyloxyethyl) trimethyl ammonium chloride] (STC-g-PDMC) and starch-3-chloro-2-hydroxypropyl trimethyl ammonium chloride (STC-CTA), in flocculating dissolved organic matter (DOM) in dyeing secondary effluents were investigated and compared with that of polyaluminum chloride (PAC). In the exploration of the flocculation mechanisms, humic acid (HA) and bovine serum albumin (BSA) were selected as main representatives of DOM in textile dyeing secondary effluents, which were humic/fulvic acid-like and protein-like extracellular matters according to the studied wastewater's characteristics based on its three-dimensional excitation-emission matrix spectrum. According to experimental results of the flocculation of both the real and synthetic wastewaters, STC-g-PDMC with cationic branches had remarkable advantages over STC-CTA and PAC because of the more efficient charge neutralization and bridging flocculation effects of STC-g-PDMC. Another interesting finding in this study was the reaggregation phenomenon after restabilization at an overdose during the flocculation of BSA effluents by STC-g-PDMC at a very narrow pH range under a nearly neutral condition. This phenomenon might be ascribed to the formation of STC-g-PDMC/BSA complexes induced by some local charge interactions between starch-based flocculant and the amino acid fragments of protein due to charge patch effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Simultaneously bio treatment of textiles and food industries effluent at difference ratios with the aid of e-beam radiation

    NASA Astrophysics Data System (ADS)

    Bakar, Khomsaton Abu; Selambakkannu, Sarala; Ting, Teo Ming; Shariff, Jamaliah

    2012-09-01

    The combination of irradiation and biological technique was used to study COD, BOD5 and colour removal of textiles effluent in the presence of food industry wastewater at two different ratios. Two biological treatment system, the first consisting a mix of unirradiated textile and food industry wastewater and the second a mix of irradiated textile wastewater and food industry wastewater were operated in parallel. The experiment was conducted by batch. For the first batch the ratio was use for textile wastewater and food industry wastewater in biological treatment was 1:1. Meanwhile, for the second batch the ratio used for textile wastewater and food industry wastewater in biological treatment was 1:2. The results obtained for the first and second batch varies from each other. After irradiation, COD reduce in textile wastewater for the both batches are roughly 29% - 33% from the unirradiated wastewater. But after undergoing the biological treatment the percentage of COD reduction for first batch and second batch was 62.1% and 80.7% respectively. After irradiation the BOD5 of textile wastewater reduced by 22.2% for the first batch and 55.1% for the second batch. But after biological treatment, the BOD5 value for the first batch was same as its initial, 36mg/l and 40.4mg/l for the second batch. Colour had decreased from 899.5 ADMI to 379.3 ADMI after irradiation and decrease to 109.3 after undergoes biological treatment for the first batch. Meantime for the batch two, colour had decreased from 1000.44 ADMI to 363.40 ADMI after irradiation and dropped to 79.20 ADMI after biological treatment. The experiment show that 1:2 ratio show better reduction on COD, BOD5 and colour, compared to the ratio of 1:1.

  10. Identification of the potential of microbial combinations obtained from spent mushroom cultivation substrates for use in textile effluent decolorization.

    PubMed

    Singh, Rajender; Ahlawat, O P; Rajor, Anita

    2012-12-01

    The study presents variation in microbial population of Agaricus bisporus, Pleurotus sajor-caju and Volvariella volvacea spent substrates (SMS) along with ligninolytic enzymes activity and textile effluent decolorization potential of microorganisms isolated from these. The effect of temperature, pH, carbon sources and immobilizing agents on effluent decolorization using different combinations of these microorganisms has also been studied. SMS of P. sajor-caju harbored highest population and diversity of bacteria and fungi compared to other SMSs. Schizophyllum commune and Pezizomycotina sp. from P. sajor-caju SMS, exhibited highest activities of laccase (11.8 and 8.32U mL(-1)) and lignin peroxidase (339 and 318 UL(-1)), while Pseudomonas fluorescens of Manganese peroxidase. Highest decolorization was in presence of glucose and sucrose at 30°C, and microbial consortium comprised of the immobilized forms of S. commune and Pezizomycotina sp. on wheat straw and broth cultures of P. fluorescens, Bacillus licheniformis and Bacillus pumilus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Reuse of Textile Dyeing Effluents Treated with Coupled Nanofiltration and Electrochemical Processes

    PubMed Central

    Buscio, Valentina; García-Jiménez, María; Vilaseca, Mercè; López-Grimau, Victor; Crespi, Martí; Gutiérrez-Bouzán, Carmen

    2016-01-01

    The reactive dye Cibacron Yellow S-3R was selected to evaluate the feasibility of combining nanofiltration membranes with electrochemical processes to treat textile wastewater. Synthetic dyeing effluents were treated by means of two nanofiltration membranes, Hydracore10 and Hydracore50. Up to 98% of dye removal was achieved. The influence of salt concentration and pH on membrane treatment was studied. The best dye removal yield was achieved at pH 3 in the presence of 60 g/L of NaCl. After the membrane filtration, the concentrate containing high dye concentration was treated by means of an electrochemical process at three different current densities: 33, 83, and 166 mA/cm2. Results showed a lineal relationship between treatment time and applied current density. Both permeates and electrochemically-decoloured effluents were reused in new dyeing processes (100% of permeate and 70% of decoloured concentrates). Dyed fabrics were evaluated with respect to original dyeing. Colour differences were found to be into the acceptance range. PMID:28773614

  12. Biological treatment of model dyes and textile wastewaters.

    PubMed

    Paz, Alicia; Carballo, Julia; Pérez, María José; Domínguez, José Manuel

    2017-08-01

    Previous works conducted in our laboratory, reveled that Bacillus aryabhattai DC100 produce ligninolytic enzymes such as laccases and/or peroxidases, opening new applications in different bioprocesses, including the treatment of disposal residues such as dyestuffs from textile processing industries. This work described the degradation of three commercial model dyes Coomassie Brilliant Blue G-250 (CBB), Indigo Carmine (IC) and Remazol Brilliant Blue R (RBBR) under different culture media and operational conditions. The process was optimized using a Central Composite Rotatable Design, and the desirability predicted complete decolorization of 150 mg/L CBB at 37 °C, 304.09 rpm and salt concentration of 19.204 g/L. The model was validated with concentrations up to 180 mg/L CBB and IC, not being able to remove high amount of RBBR. The procedure here developed also allowed Chemical Oxygen Demands (COD) reductions in CBB of about 42%, meanwhile tests on real effluents from a local textile industry involved COD reductions of 50% in a liquid wastewater and 14% in semi-liquid sludge. Thus, allow the authorized discharge of wastewater into the corresponding treatment plant. Decolorization efficiencies and COD reductions open on the potential application of B. aryabhattai DC100 on the bioremediation of real effluents from textile industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Assessment on the decolourization of textile dye (Reactive Yellow) using Pseudomonas sp. immobilized on fly ash: Response surface methodology optimization and toxicity evaluation.

    PubMed

    Roy, Uttariya; Sengupta, Shubhalakshmi; Banerjee, Priya; Das, Papita; Bhowal, Avijit; Datta, Siddhartha

    2018-06-18

    This study focuses on the investigation of removal of textile dye (Reactive Yellow) by a combined approach of sorption integrated with biodegradation using low cost adsorbent fly ash immobilized with Pseudomonas sp. To ensure immobilization of bacterial species on treated fly ash, fly ash with immobilized bacterial cells was characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and fluorescence microscopy. Comparative batch studies were carried out using Pseudomonas sp, fly ash and immobilized Pseudomonas sp on flyash and were observed that immobilized Pseudomonas sp on flyash acted as better decolourizing agent. The optimized pH, temperature, and immobilized adsorbent dosage for highest percentage of dye removal were observed to be pH 6, 303 K, 1.2 g/L in all the cases. At optimum condition, the highest percentage of dye removal was found to be 88.51%, 92.62% and 98.72% for sorption (flyash), biodegradation (Pseudomonas sp) and integral approach (Pseudomonas sp on flyash) respectively. Optimization of operating parameters of textile dye decolourization was done by response surface methodology (RSM) using Design Expert 7 software. Phytotoxicity evaluation with Cicer arietinum revealed that seeds exposed to untreated dye effluents showed considerably lower growth, inhibited biochemical, and enzyme parameters with compared to those exposed to treated textile effluents. Thus this immobilized inexpensive technique could be used for removal of synthetic dyes present in textile wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Electroadsorption of acilan blau dye from textile effluents by using activated carbon-perlite mixtures.

    PubMed

    Koparal, A S; Yavuz, Y; Bakir Ogütveren, U

    2002-01-01

    The feasibility of the removal of dye stuffs from textile effluents by electroadsorption has been investigated. An activated carbon-perlite mixture with a ratio of 8:1 for bipolarity has been used as the adsorbent. Conventional adsorption experiments have also been conducted for comparison. A bipolar trickle reactor has been used in the electroadsorption experiments. The model wastewater has been prepared by using acilan blau dye. Initial dye concentration, bed height between the electrodes, applied potential, flowrate, and the supporting electrolyte concentration have been examined as the parameters affecting the removal efficiency. A local textile plant effluent has been treated in the optimum values of these parameters obtained from the experimental studies. Adsorption kinetics and the amount of adsorbent required to reach the maximum removal efficiency have also been investigated and mass-transfer coefficients have been calculated for adsorption and electroadsorption. The results showed that a removal efficiency of up to 100% can be achieved with energy consumption values of 1.58 kWh/m3 of wastewater treated. However, energy consumption decreases to 0.09 kWh/m3 if an exit dye concentration of 4.65 mg/L is accepted. It can be concluded from this work that this method combines all of the advantages of the activated-carbon adsorption and electrolytic methods for the removal of dyes from wastewater.

  15. Arsenic Hyper-tolerance in Four Microbacterium Species Isolated from Soil Contaminated with Textile Effluent

    PubMed Central

    Kaushik, Pallavi; Rawat, Neha; Mathur, Megha; Raghuvanshi, Priyanka; Bhatnagar, Pradeep; Swarnkar, Harimohan; Flora, Swaran

    2012-01-01

    Arsenic-contaminated areas of Sanganer, Jaipur, Rajasthan, India were surveyed for the presence of metal resistant bacteria contaminated with textile effluent. Samples were collected from soil receiving regular effluent from the textile industries located at Sanganer area. The properties like pH, electrical conductivity, organic carbon, organic matter, exchangeable calcium, water holding capacity and metals like arsenic, iron, magnesium, lead and zinc were estimated in the contaminated soil. In total, nine bacterial strains were isolated which exhibited minimum inhibitory concentration (MIC) of arsenic ranging between 23.09 and 69.2mM. Four out of nine arsenic contaminated soil samples exhibited the presence of arsenite hyper-tolerant bacteria. Four high arsenite tolerant bacteria were characterized by 16S rDNA gene sequencing which revealed their similarity to Microbacterium paraoxydans strain 3109, Microbacterium paraoxydans strain CF36, Microbacterium sp. CQ0110Y, Microbacterium sp. GE1017. The above results were confirmed as per Bergey's Manual of Determinative Bacteriology. All the four Microbacterium strains were found to be resistant to 100μg/ml concentration of cobalt, nickel, zinc, chromium selenium and stannous and also exhibited variable sensitivity to mercury, cadmium, lead and antimony. These results indicate that the arsenic polluted soil harbors arsenite hyper-tolerant bacteria like Microbacterium which might play a role in bioremediation of the soil. PMID:22778519

  16. Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater.

    PubMed

    Raghu, S; Ahmed Basha, C

    2007-10-22

    This paper examines the use of chemical or electrocoagulation treatment process followed by ion-exchange process of the textile dye effluent. The dye effluent was treated using polymeric coagulant (cationic dye-fixing agent) or electrocoagulation (iron and aluminum electrode) process under various conditions such as various current densities and effect of pH. Efficiencies of COD reduction, colour removal and power consumption were studied for each process. The chemical or electrochemical treatment are indented primarily to remove colour and COD of wastewater while ion exchange is used to further improve the removal efficiency of the colour, COD, Fe concentration, conductivity, alkalinity and total dissolved solids (TDS). From the results chemical coagulation, maximum COD reduction of about 81.3% was obtained at 300 mg/l of coagulant whereas in electrocoagulation process, maximum COD removal of about 92.31% (0.25 A/dm2) was achieved with energy consumption of about 19.29 k Wh/kg of COD and 80% (1A/dm(2)) COD removal was obtained with energy consumption of about 130.095 k Wh/kg of COD at iron and aluminum electrodes, respectively. All the experimental results, throughout the present study, have indicated that chemical or electrocoagulation treatment followed by ion-exchange methods were very effective and were capable of elevating quality of the treated wastewater effluent to the reuse standard of the textile industry.

  17. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor.

    PubMed

    Lade, Harshad; Govindwar, Sanjay; Paul, Diby

    2015-06-16

    A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L-1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L-1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h-l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents.

  18. Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor

    PubMed Central

    Lade, Harshad; Govindwar, Sanjay; Paul, Diby

    2015-01-01

    A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L−1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L−1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h−l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents. PMID:26086710

  19. Heterogeneous photocatalysis using TiO2 modified with hydrotalcite and iron oxide under UV-visible irradiation for color and toxicity reduction in secondary textile mill effluent.

    PubMed

    Arcanjo, Gemima Santos; Mounteer, Ann H; Bellato, Carlos Roberto; Silva, Laís Miguelina Marçal da; Brant Dias, Santos Henrique; Silva, Priscila Romana da

    2018-04-01

    The objective of this study was to evaluate ADMI color removal from a biologically treated textile mill effluent by heterogeneous photocatalysis with UV-visible irradiation (UV-vis) using a novel catalyst composed of TiO 2 supported on hydrotalcite and doped with iron oxide (HT/Fe/TiO 2 ). Simulated biological treatment of solutions of the dyes (50 mg/L) used in the greatest amounts at the mill where the textile effluent was collected resulted in no color removal in reactive dye solutions and about 50% color removal in vat dye solutions, after 96 h, indicating that the secondary effluent still contained a large proportion of anionic reactive dyes. Photocatalytic treatments were carried out with TiO 2 and HT/Fe/TiO 2 of Fe:Ti molar ratios of 0.25, 0.5, 0.75 and 1, with varying catalyst doses (0-3 mg/L), initial pH values (4-10) and UV-vis times (0-6 h). The highest ADMI color removal with unmodified TiO 2 was found at a dose of 2 g/L and pH 4, an impractical pH value for industrial application. The most efficient composite was HT/Fe/TiO 2 1 at pH 10, also at a dose of 2 g/L, which provided more complete ADMI color removal, from 303 to 9 ADMI color units (96%), than unmodified TiO 2 , from 303 to 37 ADMI color units (88%), under the same conditions. Hydroxyl radicals were responsible for the color reduction, since when 2-propanol, an OH scavenger, was added color removal was very low. For this reason, the HT/Fe/TiO 2 1 composite performed better at pH 10, because the higher concentration of hydroxide ions present at higher pH favored hydroxyl radical formation. COD reductions were relatively low and similar, approximately 20% for both catalysts after 6 h under UV-vis, because of the low initial COD (78 mg/L). Secondary effluent toxicity to Daphnia similis (EC 50  = 70.7%) was reduced by photocatalysis with TiO 2 (EC 50  = 95.0%) and the HT/Fe/TiO 2 1 composite (EC 50  = 78.6%). HT/Fe/TiO 2 1 was reused five times and still lowered secondary effluent ADMI color below local discharge limits. Benefits of the HT/Fe/TiO 2 1 catalyst compared to TiO 2 include its lower bandgap energy (2.34 eV vs 3.25 eV), higher ADMI color removal and its magnetic nature that facilitated its recovery and would reduce treatment costs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Influence of operating conditions on ceramic ultrafiltration membrane performance when treating textile effluents.

    PubMed

    Barredo-Damas, S; Alcaina-Miranda, M I; Gemma, M; Iborra-Clar, M I; Mendoza-Roca, J A

    2011-01-01

    This work studies the performance of three commercial ceramic ultrafiltration membranes (ZrO(2)-TiO(2)) treating raw effluent from a textile industry. The effect of crossflow velocity at 3, 4 and 5 m s(-1) as well as membrane characteristics, such as molecular weight cut-off (30, 50 and 150 kDa), on process performance were studied. Experiments were carried out in concentration mode in order to observe the effect of volume reduction factor simultaneously. Results showed a combined influence of both crossflow velocity and molecular weight cut-off on flux performance. TOC and COD removals up to 70% and 84% respectively were reached. On the other hand, almost complete color (>97%) and turbidity (>99%) removals were achieved for all the membranes and operating conditions.

  1. Current technologies for biological treatment of textile wastewater--a review.

    PubMed

    Sarayu, K; Sandhya, S

    2012-06-01

    The release of colored wastewater represents a serious environmental problem and public health concern. Color removal from textile wastewater has become a big challenge over the last decades, and up to now, there is no single and economically attractive treatment method that can effectively decolorize the wastewater. Effluents from textile manufacturing, dyeing, and finishing processes contain high concentrations of biologically difficult-to-degrade or even inert auxiliaries, chemicals like acids, waxes, fats, salts, binders, thickeners, urea, surfactants, reducing agents, etc. The various chemicals such as biocides and stain repellents used for brightening, sequestering, anticreasing, sizing, softening, and wetting of the yarn or fabric are also present in wastewater. Therefore, the textile wastewater needs environmental friendly, effective treatment process. This paper provides a critical review on the current technology available for decolorization and degradation of textile wastewater and also suggests effective and economically attractive alternatives.

  2. 40 CFR 427.85 - Standards of performance for new sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.85 Standards of performance for new sources. The following...

  3. 40 CFR 427.85 - Standards of performance for new sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.85 Standards of performance for new sources. The following...

  4. 40 CFR 427.85 - Standards of performance for new sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.85 Standards of performance for new sources. The following...

  5. 40 CFR 427.85 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.85 Standards of performance for new sources. The following standards of...

  6. Textile dye decolorization using cyanobacteria.

    PubMed

    Parikh, Amit; Madamwar, Datta

    2005-03-01

    Cyanobacterial cultures isolated from sites polluted by industrial textile effluents were screened for their ability to decolorize cyclic azo dyes. Gloeocapsa pleurocapsoides and Phormidium ceylanicum decolorized Acid Red 97 and FF Sky Blue dyes by more than 80% after 26 days. Chroococcus minutus was the only culture which decolorized Amido Black 10B (55%). Chlorophyll a synthesis in all cultures was strongly inhibited by the dyes. Visible spectroscopy and TLC confirmed that color removal was due to degradation of the dyes.

  7. Biodegradable sizing agents from soy protein via controlled hydrolysis and dis-entanglement for remediation of textile effluents.

    PubMed

    Yang, Maiping; Xu, Helan; Hou, Xiuliang; Zhang, Jie; Yang, Yiqi

    2017-03-01

    Fully biodegradable textile sizes with satisfactory performance properties were developed from soy protein with controlled hydrolysis and dis-entanglement to tackle the intractable environmental issues associated with the non-biodegradable polyvinyl alcohol (PVA) in textile effluents. PVA derived from petroleum is the primary sizing agent due to its excellent sizing performance on polyester-containing yarns, especially in increasingly prevailing high-speed weaving. However, due to the poor biodegradability, PVA causes serious environmental pollution, and thus, should be substituted with more environmentally friendly polymers. Soy protein treated with high amount of triethanolamine was found with acceptable sizing properties. However, triethanolamine is also non-biodegradable and originated from petroleum, therefore, is not an ideal additive. In this research, soy sizes were developed from soy protein treated with glycerol, the biodegradable triol that could also be obtained from soy. The soy sizes had good film properties, adhesion to polyester and abrasion resistance close to PVA, rendering them qualified for sizing applications. Regarding desizing, consumption of water and energy for removal of soy size could be remarkably decreased, comparing to removal of PVA. Moreover, with satisfactory degradability, the wastewater containing soy sizes was readily dischargeable after treated in activated sludge for two days. In summary, the fully biodegradable soy sizes had potential to substitute PVA for sustainable textile processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents.

    PubMed

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-09-12

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%-75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl₃ and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.

  9. Valorization of Waste Obtained from Oil Extraction in Moringa Oleifera Seeds: Coagulation of Reactive Dyes in Textile Effluents

    PubMed Central

    Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen

    2014-01-01

    Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results. PMID:28788199

  10. Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts.

    PubMed

    Nahar, Kamrun; Chowdhury, Md Abul Khair; Chowdhury, Md Akhter Hossain; Rahman, Afzal; Mohiuddin, K M

    2018-03-01

    The Madhabdi municipality in the Narsingdi district of Bangladesh is a well-known area for textile, handloom weaving, and dyeing industries. These textile industries produce a considerable amount of effluents, sewage sludge, and solid waste materials every day that they directly discharge into surrounding water bodies and agricultural fields. This disposal poses a serious threat to the overall epidemic and socio-economic pattern of the locality. This research entailed the collection of 34 handloom-dyeing effluent samples from different handloom-dyeing industries of Madhabdi, which were then analyzed to determine the contents of the heavy metals iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), lead (Pb), and cadmium (Cd). Average concentrations of Fe, Cr, Cu, Pb, Mn, and Zn were 3.81, 1.35, 1.70, 0.17, 0.75, and 0.73 mg L -1 , respectively, whereas Cd content was below the detectable limit of the atomic adsorption spectrophotometer. The concentrations of Fe, Cr, Cu, Pb, and Mn exceed the industrial effluent discharge standards (IEDS) for inland surface water and irrigation water guideline values. A biosorption experiment of the heavy metals (Fe, Cr, Cu, Mn, and Zn) was conducted without controlling for any experimental parameters (e.g., pH, temperature, or other compounds present in the effluent samples) by using four agricultural wastes or byproducts, namely rice husk, sawdust, lemon peel, and eggshell. Twenty grams of each biosorbent was added to 1 L of effluent samples and stored for 7 days. The biosorption capacity of each biosorbent is ranked as follows: eggshell, sawdust, rice husk, and lemon peel. Furthermore, the biosorption affinity of each metal ion was found in the following order: Cu and Cr (both had similar biosorption affinity), Zn, Fe, Mn. The effluents should not be discharged before treatment, and efficient treatment of effluents is possible with eggshell powder or sawdust at a rate of 20 g of biosorbent per liter of effluents.

  11. A critical review on textile wastewater treatments: Possible approaches.

    PubMed

    Holkar, Chandrakant R; Jadhav, Ananda J; Pinjari, Dipak V; Mahamuni, Naresh M; Pandit, Aniruddha B

    2016-11-01

    Waste water is a major environmental impediment for the growth of the textile industry besides the other minor issues like solid waste and resource waste management. Textile industry uses many kinds of synthetic dyes and discharge large amounts of highly colored wastewater as the uptake of these dyes by fabrics is very poor. This highly colored textile wastewater severely affects photosynthetic function in plant. It also has an impact on aquatic life due to low light penetration and oxygen consumption. It may also be lethal to certain forms of marine life due to the occurrence of component metals and chlorine present in the synthetic dyes. So, this textile wastewater must be treated before their discharge. In this article, different treatment methods to treat the textile wastewater have been presented along with cost per unit volume of treated water. Treatment methods discussed in this paper involve oxidation methods (cavitation, photocatalytic oxidation, ozone, H2O2, fentons process), physical methods (adsorption and filtration), biological methods (fungi, algae, bacteria, microbial fuel cell). This review article will also recommend the possible remedial measures to treat different types of effluent generated from each textile operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. 454-Pyrosequencing analysis of highly adapted azo dye-degrading microbial communities in a two-stage anaerobic-aerobic bioreactor treating textile effluent.

    PubMed

    Köchling, Thorsten; Ferraz, Antônio Djalma Nunes; Florencio, Lourdinha; Kato, Mario Takayuki; Gavazza, Sávia

    2017-03-01

    Azo dyes, which are widely used in the textile industry, exhibit significant toxic characteristics for the environment and the human population. Sequential anaerobic-aerobic reactor systems are efficient for the degradation of dyes and the mineralization of intermediate compounds; however, little is known about the composition of the microbial communities responsible for dye degradation in these systems. 454-Pyrosequencing of the 16S rRNA gene was employed to assess the bacterial biodiversity and composition of a two-stage (anaerobic-aerobic) pilot-scale reactor that treats effluent from a denim factory. The anaerobic reactor was inoculated with anaerobic sludge from a domestic sewage treatment plant. Due to the selective composition of the textile wastewater, after 210 days of operation, the anaerobic reactor was dominated by the single genus Clostridium, affiliated with the Firmicutes phylum. The aerobic biofilter harbored a diverse bacterial community. The most abundant phylum in the aerobic biofilter was Proteobacteria, which was primarily represented by the Gamma, Delta and Epsilon classes followed by Firmicutes and other phyla. Several bacterial genera were identified that most likely played an essential role in azo dye degradation in the investigated system.

  13. Particle-Based Geometric and Mechanical Modelling of Woven Technical Textiles and Reinforcements for Composites

    NASA Astrophysics Data System (ADS)

    Samadi, Reza

    Technical textiles are increasingly being engineered and used in challenging applications, in areas such as safety, biomedical devices, architecture and others, where they must meet stringent demands including excellent and predictable load bearing capabilities. They also form the bases for one of the most widespread group of composite materials, fibre reinforced polymer-matrix composites (PMCs), which comprise materials made of stiff and strong fibres generally available in textile form and selected for their structural potential, combined with a polymer matrix that gives parts their shape. Manufacturing processes for PMCs and technical textiles, as well as parts and advanced textile structures must be engineered, ideally through simulation, and therefore diverse properties of the textiles, textile reinforcements and PMC materials must be available for predictive simulation. Knowing the detailed geometry of technical textiles is essential to predicting accurately the processing and performance properties of textiles and PMC parts. In turn, the geometry taken by a textile or a reinforcement textile is linked in an intricate manner to its constitutive behaviour. This thesis proposes, investigates and validates a general numerical tool for the integrated and comprehensive analysis of textile geometry and constitutive behaviour as required toward engineering applications featuring technical textiles and textile reinforcements. The tool shall be general with regards to the textiles modelled and the loading cases applied. Specifically, the work aims at fulfilling the following objectives: 1) developing and implementing dedicated simulation software for modelling textiles subjected to various load cases; 2) providing, through simulation, geometric descriptions for different textiles subjected to different load cases namely compaction, relaxation and shear; 3) predicting the constitutive behaviour of the textiles undergoing said load cases; 4) identifying parameters affecting the textile geometry and constitutive behaviour under evolving loading; 5) validating simulation results with experimental trials; and 6) demonstrating the applicability of the simulation procedure to textile reinforcements featuring large numbers of small fibres as used in PMCs. As a starting point, the effects of reinforcement configuration on the in-plane permeability of textile reinforcements, through-thickness thermal conductivity of PMCs and in-plane stiffness of unidirectional and bidirectional PMCs were quantified systematically and correlated with specific geometric parameters. Variability was quantified for each property at a constant fibre volume fraction. It was observed that variability differed strongly between properties; as such, the simulated behaviour can be related to variability levels seen in experimental measurements. The effects of the geometry of textile reinforcements on the aforementioned processing and performance properties of the textiles and PMCs made from these textiles was demonstrated and validated, but only for simple cases as thorough and credible geometric models were not available at the onset of this work. Outcomes of this work were published in a peer-reviewed journal [101]. Through this thesis it was demonstrated that predicting changes in textile geometry prior and during loading is feasible using the proposed particle-based modelling method. The particle-based modelling method relies on discrete mechanics and offers an alternative to more traditional methods based on continuum mechanics. Specifically it alleviates issues caused by large strains and management of intricate, evolving contact present in finite element simulations. The particle-based modelling method enables credible, intricate modelling of the geometry of textiles at the mesoscopic scale as well as faithful mechanical modelling under load. Changes to textile geometry and configuration due to the normal compaction pressure, stress relaxation, in-plane shear and other types of loads were successfully predicted.

  14. Integration of chemical and biological treatments for textile industry wastewater: a possible zero-discharge system.

    PubMed

    Lee, H H; Chen, G; Yue, P L

    2001-01-01

    Theoretical and experimental studies have established that integrated treatment systems (mostly chemical and biological) for various industrial wastewaters can achieve better quality of treatment and can be cost-effective. In the present study, the objective is to minimize the use of process water in the textile industry by an economical recycle and reuse scheme. The textile wastewater was first characterized in terms of COD, BOD5, salinity and color. In order to recycle such wastewater, the contaminants should be mineralized and/or removed according to the reusable textile water quality standards. Typical results show that this is achievable. An economic analysis has been conducted on the proposed integrated system. The economic analysis shows that the integrated system is economically more attractive than any of the single treatment technologies for achieving the same target of treatment. The information presented in this paper provides a feasible option for the reduction of effluent discharges in the textile industry.

  15. Comparison of static and shake culture in the decolorization of textile dyes and dye effluents by Phanerochaete chrysoporium.

    PubMed

    Sani, R K; Azmi, W; Banerjee, U C

    1998-01-01

    Decolorization of several dyes (Red HE-8B, Malachite Green, Navy Blue HE-2R, Magenta, Crystal Violet) and an industrial effluent with growing cells of Phanerochaete chrysosporium in shake and static culture was demonstrated. All the dyes and the industrial effluent were decolorized to some extent with varying percentages of decolorization (20-100%). The rate of decolorization was very rapid with Red HE-8B, an industrial dye. Decolorization rates for all the dyes in static condition were found to be less than the shake culture and also dependent on biomass concentration.

  16. Aerated treatment pond technology with biofilm promoting mats for the bioremediation of benzene, MTBE and ammonium contaminated groundwater.

    PubMed

    Jechalke, Sven; Vogt, Carsten; Reiche, Nils; Franchini, Alessandro G; Borsdorf, Helko; Neu, Thomas R; Richnow, Hans H

    2010-03-01

    A novel aerated treatment pond for enhanced biodegradation of groundwater contaminants was tested under field conditions. Coconut fibre and polypropylene textiles were used to encourage the development of contaminant-degrading biofilms. Groundwater contaminants targeted for removal were benzene, methyl tert-butyl ether (MTBE) and ammonium. Here, we present data from the first 14 months of operation and compare contaminant removal rates, volatilization losses, and biofilm development in one pond equipped with coconut fibre to another pond with polypropylene textiles. Oxygen concentrations were constantly monitored and adjusted by automated aeration modules. A natural transition from anoxic to oxic zones was simulated to minimize the volatilization rate of volatile organic contaminants. Both ponds showed constant reductions in benzene concentrations from 20 mg/L at the inflow to about 1 microg/L at the outflow of the system. A dynamic air chamber (DAC) measurement revealed that only 1% of benzene loss was due to volatilization, and suggests that benzene loss was predominantly due to aerobic mineralization. MTBE concentration was reduced from around 4 mg/L at the inflow to 3.4-2.4 mg/L in the system effluent during the first 8 months of operation, and was further reduced to 1.2 mg/L during the subsequent 6 months of operation. Ammonium concentrations decreased only slightly from around 59 mg/L at the inflow to 56 mg/L in the outflow, indicating no significant nitrification during the first 14 months of continuous operation. Confocal laser scanning microscopy (CLSM) demonstrated that microorganisms rapidly colonized both the coconut fibre and polypropylene textiles. Microbial community structure analysis performed using denaturing gradient gel electrophoresis (DGGE) revealed little similarity between patterns from water and textile samples. Coconut textiles were shown to be more effective than polypropylene fibre textiles for promoting the recruitment and development of MTBE-degrading biofilms. Biofilms of both textiles contained high numbers of benzene metabolizing bacteria suggesting that these materials provide favourable growth conditions for benzene degrading microorganisms. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. 40 CFR 60.751 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; organic chemicals; plastics and resins manufacturing; pulp and paper industry; rubber and miscellaneous plastic products; stone, glass, clay, and concrete products; textile manufacturing; transportation..., water supply treatment plant, or air pollution control facility, exclusive of the treated effluent from...

  18. Study on ground water characteristics and the effects of discharged effluents from textile units at Karur District.

    PubMed

    Kannan, V; Ramesh, R; Sasikumar, C

    2005-04-01

    A study was made on the physico-chemical characteristics of water samples mixed with effluent discharged from textile industries at Chellandipalayam (Site--I), Senaparatti (Site--II) and Pasupathipalayam (Sites--III and IV) revealed the elevated levels of Ca, Mg, Na, Cr, K, Ni, Cu, Zn, CO3, SO4, NO3 and Cl- . The concentrations of these ions exceeded the limit prescribed by ISI. The increase in the concentrations of ions was revealed by higher values of electrical conductivity (EC). Water at these sites was found to be hard, brackish and unsuitable for drinking purpose. In all these sites, the seed germination of rice alone was significantly affected among the other crops tested. Irrigation of crops with ground water notably lowered the quantity of reserve food in rice, wheat (starch), and sugarcane (sugar), indicating the interference of their metabolic pathway by polluted ground water.

  19. 40 CFR 427.81 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Specialized definitions. 427.81 Section 427.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles...

  20. 40 CFR 427.84 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false [Reserved] 427.84 Section 427.84 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles...

  1. 40 CFR 427.84 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false [Reserved] 427.84 Section 427.84 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles...

  2. 40 CFR 427.84 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false [Reserved] 427.84 Section 427.84 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles...

  3. Combined electrochemical, sunlight-induced oxidation and biological process for the treatment of chloride containing textile effluent.

    PubMed

    Santhanam, Manikandan; Selvaraj, Rajeswari; Annamalai, Sivasankar; Sundaram, Maruthamuthu

    2017-11-01

    This study presents a combined electrochemical, sunlight-induced oxidation and biological process for the treatment of textile effluent. In the first step, RuO 2 -TiO 2 /Ti and Titanium were used as the electrodes in EO process and color removal was achieved in 40 min at an applied current density of 20 mA cm -2 . The EO process generated about 250 mg L -1 of active chlorine which hampered the subsequent biological treatment process. Thus, in the second step, sun light-induced photolysis (SLIP) is explored to remove hypochlorite present in the EO treated effluent. In the third step, the SLIP treated effluent was fed to laccase positive bacterial consortium for biological process. To assess the effect of SLIP in the overall process, experiments were carried out with and without SLIP process. In experiments without SLIP, sodium thiosulfate was used to remove active chlorine. HPLC analysis showed that SLIP integrated experiments achieved an overall dye component degradation of 71%, where as only 22% degradation was achieved in the absence of SLIP process. The improvement in degradation with SLIP process is attributed to the presence of ClO radicals which detected by EPR analysis. The oxidation of organic molecules during process was confirmed by FT-IR and GC-MS analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 40 CFR 427.84 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false [Reserved] 427.84 Section 427.84 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Coating or Finishing of Asbestos Textiles Subcategory § 427.84...

  5. A Decolorization Technique with Spent “Greek Coffee” Grounds as Zero-Cost Adsorbents for Industrial Textile Wastewaters

    PubMed Central

    Kyzas, George Z.

    2012-01-01

    In this study, the decolorization of industrial textile wastewaters was studied in batch mode using spent “Greek coffee” grounds (COF) as low-cost adsorbents. In this attempt, there is a cost-saving potential given that there was no further modification of COF (just washed with distilled water to remove dirt and color, then dried in an oven). Furthermore, tests were realized both in synthetic and real textile wastewaters for comparative reasons. The optimum pH of adsorption was acidic (pH = 2) for synthetic effluents, while experiments in free pH (non-adjusted) were carried out for real effluents. Equilibrium data were fitted to the Langmuir, Freundlich and Langmuir-Freundlich (L-F) models. The calculated maximum adsorption capacities (Qmax) for total dye (reactive) removal at 25 °C was 241 mg/g (pH = 2) and 179 mg/g (pH = 10). Thermodynamic parameters were also calculated (ΔH0, ΔG0, ΔS0). Kinetic data were fitted to the pseudo-first, -second and -third order model. The optimum pH for desorption was determined, in line with desorption and reuse analysis. Experiments dealing the increase of mass of adsorbent showed a strong increase in total dye removal.

  6. Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode.

    PubMed

    Vidal, Jorge; Villegas, Loreto; Peralta-Hernández, Juan M; Salazar González, Ricardo

    2016-01-01

    Application of an electrocoagulation process (EC) for the elimination of AB194 textile dye from synthetic and textile wastewater (effluent) contaminated with AB194 dye, was carried out using aluminum anodes at two different initial pH values. Tafel studies in the presence and absence of the dye were performed. The aluminum species formed during the electrolysis were quantified by atomic absorption, and the flocs formed in the process were analyzed by HPLC-MS. Complete removal of AB194 from 1.0 L of solution was achieved applying low densities current at initial pH values of 4.0 and 8.0. The removal of AB194 by EC was possible with a short electrolysis time, removing practically 100% of the total organic carbon content and chemical oxygen demand. The final result was completely discolored water lacking dye and organic matter. An effluent contaminated with 126 mg L(-1) AB194 dye from a Chilean textile industry was also treated by EC under optimized experimental conditions, yielding discolored water and considerably decreasing the presence of organic compounds (dye + dyeing additives), with very low concentrations of dissolved Al(3+). Analysis of flocs showed the presence of the original dye without changes in its chemical structure.

  7. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents.

    PubMed

    He, Yaozhong; Wang, Xiaojun; Xu, Jinling; Yan, Jinli; Ge, Qilong; Gu, Xiaoyang; Jian, Lei

    2013-04-01

    A combined process including integrated ozone-BAFs (ozone biological aerated filters) and membrane filtration was first applied for recycling textile effluents in a cotton textile mill with capacity of 5000 m(3)/d. Influent COD (chemical oxygen demand) in the range of 82-120 mg/L, BOD5 (5-day biochemical oxygen demand) of 12.6-23.1 mg/L, suspended solids (SSs) of 38-52 mg/L and color of 32-64° were observed during operation. Outflows with COD≤45 mg/L, BOD5≤7.6 mg/L, SS≤15 mg/L, color≤8° were obtained after being decontaminated by ozone-BAF with ozone dosage of 20-25 mg/L. Besides, the average removal rates of PVA (polyvinyl alcohol) and UV254 were 100% and 73.4% respectively. Permeate water produced by RO (reverse osmosis) could be reused in dyeing and finishing processes, while the RO concentrates could be discharged directly under local regulations with COD≤100 mg/L, BOD5≤21 mg/L, SS≤52 mg/L, color≤32°. Results showed that the combined process could guarantee water reuse with high quality, and solve the problem of RO concentrate disposal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Improvement of methyl orange dye biotreatment by a novel isolated strain, Aeromonas veronii GRI, by SPB1 biosurfactant addition.

    PubMed

    Mnif, Inès; Maktouf, Sameh; Fendri, Raouia; Kriaa, Mouna; Ellouze, Semia; Ghribi, Dhouha

    2016-01-01

    Aeromonas veronii GRI (KF964486), isolated from acclimated textile effluent after selective enrichment on azo dye, was assessed for methyl orange biodegradation potency. Results suggested the potential of this bacterium for use in effective treatment of azo-dye-contaminated wastewaters under static conditions at neutral and alkaline pH value, characteristic of typical textile effluents. The strain could tolerate higher doses of dyes as it was able to decolorize up to 1000 mg/l. When used as microbial surfactant to enhance methyl orange biodecolorization, Bacillus subtilis SPB1-derived lipopeptide accelerated the decolorization rate and maximized slightly the decolorization efficiency at an optimal concentration of about 0.025%. In order to enhance the process efficiency, a Taguchi design was conducted. Phytotoxicity bioassay using sesame and radish seeds were carried out to assess the biotreatment effectiveness. The bacterium was able to effectively decolorize the azo dye when inoculated with an initial optical density of about 0.5 with 0.25% sucrose, 0.125% yeast extract, 0.01% SPB1 biosurfactant, and when conducting an agitation phase of about 24 h after static incubation. Germination potency showed an increase toward the nonoptimized conditions indicating an improvement of the biotreatment. When comparing with synthetic surfactants, a drastic decrease and an inhibition of orange methyl decolorization were observed in the presence of CTAB and SDS. The nonionic surfactant Tween 80 had a positive effect on methyl orange biodecolorization. Also, studies ensured that methyl orange removal by this strain could be due to endocellular enzymatic activities. To conclude, the addition of SPB1 bioemulsifier reduced energy costs by reducing effective decolorization period, biosurfactant stimulated bacterial decolorization method may provide highly efficient, inexpensive, and time-saving procedure in treatment of textile effluents.

  9. 40 CFR 410.54 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Pretreatment standards for existing sources (PSES). 410.54 Section 410.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory...

  10. 40 CFR 410.56 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Pretreatment standards for new sources (PSNS). 410.56 Section 410.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory...

  11. 40 CFR 410.54 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources (PSES). 410.54 Section 410.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory...

  12. 40 CFR 410.56 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources (PSNS). 410.56 Section 410.56 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory...

  13. Renewable hybrid nanocatalyst from magnetite and cellulose fortreatment of textile effluents

    USDA-ARS?s Scientific Manuscript database

    A hybrid catalyst was prepared using cellulose nanofibrils and magnetite to degrade organic compounds. Cellulose nanofibrils were isolated by mechanical defibrillation producing a suspension used as a matrixfor magnetite particles. The solution of nanofibrils and magnetite was dried and milled resul...

  14. The toxicity of textile reactive azo dyes after hydrolysis and decolourisation.

    PubMed

    Gottlieb, Anna; Shaw, Chris; Smith, Alan; Wheatley, Andrew; Forsythe, Stephen

    2003-02-27

    The toxicity of C.I. Reactive Black 5 and three Procion dyes, as found in textile effluents, was determined using the bioluminescent bacterium Vibrio fischeri. Hydrolysed Reactive Black had a slightly greater toxicity than the parent form (EC(50) 11.4+/-3.68 and 27.5+/-4.01 mg l(-1), respectively). A baffled bioreactor with anaerobic and aerobic compartments was used to decolourise hydrolysed Reactive Black 5 in a synthetic effluent. Decolourisation of hydrolysed Reactive Black resulted in an increased toxicity (EC(50) 0.2+/-0.03 mg l(-1)). Toxicity was not detectable when decolourised Reactive Black 5 was metabolised under aerobic conditions. No genotoxicity was detected after the decolourisation of either the parent or the hydrolysed reactive dyes, either in vitro or in the bioreactor. The toxicity and genotoxicity of decolourised C.I. Acid Orange 7 was due to the production of 1-amino-2-naphthol (EC(50) 0.1+/-0.03 mg l(-1)).

  15. Integration of biotechnological wastewater treatment units in textile finishing factories: from end of the pipe solutions to combined production and wastewater treatment units.

    PubMed

    Feitkenhauer, H; Meyer, U

    2001-08-23

    Increasing costs for water, wastewater and energy put pressure on textile finishing plants to increase the efficiency of wet processing. An improved water management can decrease the use of these resources and is a prerequisite for the integration of an efficient, anaerobic on-site pretreatment of effluents that will further cut wastewater costs. A two-phase anaerobic treatment is proposed, and successful laboratory experiments with model effluents from the cotton finishing industry are reported. The chemical oxygen demand of this wastewater was reduced by over 88% at retention times of 1 day or longer. The next step to boost the efficiency is to combine the production and wastewater treatment. The example of cotton fabric desizing (removing size from the fabric) illustrates how this final step of integration uses the acidic phase bioreactor as a part of the production and allows to close the water cycle of the system.

  16. Dye removal from textile industrial effluents by adsorption on exfoliated graphite nanoplatelets: kinetic and equilibrium studies.

    PubMed

    Carvallho, Marilda N; da Silva, Karolyne S; Sales, Deivson C S; Freire, Eleonora M P L; Sobrinho, Maurício A M; Ghislandi, Marcos G

    2016-01-01

    The concept of physical adsorption was applied for the removal of direct and reactive blue textile dyes from industrial effluents. Commercial graphite nanoplatelets were used as substrate, and the quality of the material was characterized by atomic force and transmission electron microscopies. Dye/graphite nanoplatelets water solutions were prepared varying their pH and initial dye concentration. Exceptionally high values (beyond 100 mg/L) for adsorptive capacity of graphite nanoplatelets could be achieved without complicated chemical modifications, and equilibrium and kinetic experiments were performed. Our findings were compared with the state of the art, and compared with theoretical models. Agreement between them was satisfactory, and allowed us to propose novel considerations describing the interactions of the dyes and the graphene planar structure. The work highlights the important role of these interactions, which can govern the mobility of the dye molecules and the amount of layers that can be stacked on the graphite nanoplatelets surface.

  17. Photocatalytic activity of CuO/Cu(OH)2 nanostructures in the degradation of Reactive Green 19A and textile effluent, phytotoxicity studies and their biogenic properties (antibacterial and anticancer).

    PubMed

    Saratale, Rijuta Ganesh; Ghodake, Gajanan S; Shinde, Surendra K; Cho, Si-Kyung; Saratale, Ganesh Dattatraya; Pugazhendhi, Arivalagan; Bharagava, Ram Naresh

    2018-05-05

    In this study, CuO/Cu(OH) 2 (denoted as CuONs) nanostructures were synthesized relying to a cheap and rapid chemical co-precipitation method using copper sulfate and liquid ammonia as precursors. Results obtained from X-ray diffraction, and field emission scanning electron microscopy analysis revealed the crystalline nature of synthesized CuONs. Fourier transform infrared spectroscopy and energy dispersive spectroscopy studies showed interactions between copper and oxygen atoms. Synthesized CuONs showed the size in the range of 20-30 nm using high resolution transmission electron microscopy analysis. The photocatalytic degradation performance of Reactive Green 19A (RG19A) dye using CuONs was evaluated. The results showed that CuONs exhibited 98% degradation efficiency after 12 h and also complete mineralization in form of reducing chemical oxygen demand (COD) (84%) and total organic carbon (TOC) (80%). The nanocatalyst was recovered from the dye containing solution and its catalytic activity can be reused up to four times efficiently. CuONs was also able to decolorize actual textile effluent (80% in terms of the American Dye Manufacturers' Institute (ADMI) value) with significant reductions in COD (72%) and TOC (69%). Phytotoxicity studies revealed that the degradation products of RG19A and textile effluent were scarcely toxic in nature, thereby increasing the applicability of CuONs for the treatment of textile wastewater. Additionally, the CuONs showed a maximum antibacterial effect against human pathogens which also displayed synergistic antibacterial potential related to commercial antibiotics. Moreover, CuONs displayed strong antioxidant activity in terms of ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (IC 50 : 51 μg/mL) and DPPH (1,1-diphenyl-2-picrylhydrazyl) (IC 50 : 60 μg/mL) radical scavenging. The CuONs exhibited dose dependent response against tumor rat C6 cell line (IC 50 : 60 μg/mL) and may serve as anticancer agents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Biosorption of synthetic dyes (Direct Red 89 and Reactive Green 12) as an ecological refining step in textile effluent treatment.

    PubMed

    Guendouz, Samira; Khellaf, Nabila; Zerdaoui, Mostefa; Ouchefoun, Moussa

    2013-06-01

    With the use of cost-effective natural materials, biosorption is considered as an ecological tool that is applied worldwide for the remediation of pollution. In this study, we proposed Lemna gibba biomass (LGB), a lignocellulosic sorbent material, for the removal of two textile dyes, Direct Red 89 (DR-89) and Reactive Green 12 (RG-12). These azo dyes commonly used in dying operations of natural and synthetic fibres are the most important pollutants produced in textile industry effluents. For this purpose, batch biosorption experiments were carried out to assess the efficacy of LGB on dye treatment by evaluating the effect of contact time, biomass dosage, and initial dye concentration. The results indicated that the bioremoval efficiency of 5 mg L(-1) DR-89 and RG-12 reached approximately 100 % after 20 min of the exposure time; however, the maximum biosorption of 50 mg L(-1) DR-89 and 15 mg L(-1) RG-12 was determined to be about 60 and 47 %, respectively. Fourier transform infrared spectroscopy used to explain the sorption mechanism showed that the functional groups of carboxylic acid and hydroxyl played a major role in the retention of these pollutants on the biomass surface. The modelling results using Freundlich, Langmuir, Temkin, Elovich, and Dubini Radushkevich (D-R) isotherms demonstrated that the DR-89 biosorption process was better described with the Langmuir theory (R (2) =0.992) while the RG-12 biosorption process fitted well by the D-R isotherm equation (R (2) =0.988). The maximum biosorption capacity was found to be 20.0 and 115.5 mg g(-1) for DR-89 and RG-12, respectively, showing a higher ability of duckweed biomass for the bioremoval of the green dye. The thermodynamic study showed that the dye biosorption was a spontaneous and endothermic process. The efficacy of using duckweed biomass for the bioremoval of the two dyes was limited to concentrations ≤50 mg L(-1), indicating that L. gibba biomass may be suitable in the refining step of textile effluent treatment.

  19. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process.

    PubMed

    Mohd Nasir, Norlirubayah; Teo Ming, Ting; Ahmadun, Fakhru'l-Razi; Sobri, Shafreeza

    2010-01-01

    The research conducted a study on decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process. The purposes of this research are to remove pollutant through decomposition and to enhance the biodegradability of textile wastewater. The wastewater is treated using electron beam irradiation as a pre-treatment before undergo an activated sludge process. As a result, for non-irradiated wastewater, the COD removal was achieved to be between 70% and 79% after activated sludge process. The improvement of COD removal efficiency increased to 94% after irradiation of treated effluent at the dose of 50 kGy. Meanwhile, the BOD(5) removal efficiencies of non-irradiated and irradiated textile wastewater were reported to be between 80 and 87%, and 82 and 99.2%, respectively. The maximum BOD(5) removal efficiency was achieved at day 1 (HRT 5 days) of the process of an irradiated textile wastewater which is 99.2%. The biodegradability ratio of non-irradiated wastewater was reported to be between 0.34 and 0.61, while the value of biodegradability ratio of an irradiated wastewater increased to be between 0.87 and 0.96. The biodegradability enhancement of textile wastewater is increased with increasing the doses. Therefore, an electron beam radiation holds a greatest application of removing pollutants and also on enhancing the biodegradability of textile wastewater.

  1. In-plant control applications and their effect on treatability of a textile mill wastewater.

    PubMed

    Dulkadiroglu, H; Eremektar, G; Dogruel, S; Uner, H; Germirli-Babuna, F; Orhon, D

    2002-01-01

    Water minimization and exploration of the potential for wastewater recovery and reuse are priority issues of industrial wastewater management. They are extremely significant for the textile industry commonly characterized with a high water demand. The study presents a detailed in-plant control survey for a wool finishing plant. A comprehensive process profile and wastewater characterization indicate that process water consumption can be reduced by 34%, and 23% of the wastewater volume can be recovered for reuse. Treatability of reusable wastewater fraction and the effect of in-plant control applications on effluent treatability were also investigated.

  2. Iron and manganese removal from textile effluents in anaerobic attached-growth bioreactor filled with coirfibres.

    PubMed

    Jayaweera, M W; Gomes, P I A; Wijeyekoon, S L J

    2007-01-01

    A laboratory scale study on Fe and Mn removal in upflow anaerobic bioreactor of a working volume of 20 L with coir fibre as the filter medium was investigated for a period of 312 days. The maximum Fe and Mn levels considered were 10 and 5 mg/L respectively, which are the typical average values of textile effluents subsequent to the primary and secondary treatments. Ten sub-experimental runs were conducted with varying HRTs (5 days to 1 day), ratios of COD:SO42- (20 to 3.5), Fe levels (0.005 to 10 mg/L) and Mn levels (0 to 5 mg/L). COD:SO2 of 3.5 was identified as the optimum point at which sulphate reducing bacteria (SRBs) out competed methane producing bacteria (MPBs) and further reduction of this ratio caused total and/or significant inhibition of MPBs, thus building sulphate reducing conditions. The effluent contained Fe and Mn below the permissible levels (1.6 and 1.1 mg/L for Fe and Mn, respectively) stipulated by US National Pollution Discharge Elimination System (NPDES) for inland surface waters at HRTs higher than 3 days. Results of the mass balance showed more Fe accumulation (60%) in sediments whereas 27% in the filter media. An opposite observation was noticed for Mn.

  3. Exploiting the efficacy of Lysinibacillus sp. RGS for decolorization and detoxification of industrial dyes, textile effluent and bioreactor studies.

    PubMed

    Saratale, Rijuta G; Saratale, Ganesh D; Govindwar, Sanjay P; Kim, Dong S

    2015-01-01

    Complete decolorization and detoxification of Reactive Orange 4 within 5 h (pH 6.6, at 30°C) by isolated Lysinibacillus sp. RGS was observed. Significant reduction in TOC (93%) and COD (90%) was indicative of conversion of complex dye into simple products, which were identified as naphthalene moieties by various analytical techniques (HPLC, FTIR, and GC-MS). Supplementation of agricultural waste extract considered as better option to make the process cost effective. Oxido-reductive enzymes were found to be involved in the degradation mechanism. Finally Loofa immobilized Lysinibacillus sp. cells in a fixed-bed bioreactor showed significant decolorization with reduction in TOC (51 and 64%) and COD (54 and 66%) for synthetic and textile effluent at 30 and 35 mL h(-1) feeding rate, respectively. The degraded metabolites showed non-toxic nature revealed by phytotoxicity and photosynthetic pigments content study for Sorghum vulgare and Phaseolus mungo. In addition nitrogen fixing and phosphate solubilizing microbes were less affected in treated wastewater and thus the treated effluent can be used for the irrigation purpose. This work could be useful for the development of efficient and ecofriendly technologies to reduce dye content in the wastewater to permissible levels at affordable cost.

  4. 40 CFR 410.55 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true New source performance standards (NSPS). 410.55 Section 410.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory § 410.55 New...

  5. 40 CFR 410.55 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true New source performance standards (NSPS). 410.55 Section 410.55 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory § 410.55 New...

  6. 40 CFR 410.30 - Applicability; description of the low water use processing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... water use processing subcategory. 410.30 Section 410.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing Subcategory § 410.30 Applicability; description of the low water use processing...

  7. 40 CFR 410.34 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Pretreatment standards for existing sources (PSES). 410.34 Section 410.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing Subcategory...

  8. 40 CFR 410.34 - Pretreatment standards for existing sources (PSES).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for existing sources (PSES). 410.34 Section 410.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing Subcategory...

  9. 40 CFR 410.36 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Pretreatment standards for new sources (PSNS). 410.36 Section 410.36 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing Subcategory...

  10. 40 CFR 410.36 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Pretreatment standards for new sources (PSNS). 410.36 Section 410.36 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing Subcategory...

  11. Optimization of process variables for decolorization of Disperse Yellow 211 by Bacillus subtilis using Box-Behnken design.

    PubMed

    Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj

    2009-05-30

    Decolorization of textile azo dye Disperse Yellow 211 (DY 211) was carried out from simulated aqueous solution by bacterial strain Bacillus subtilis. Response surface methodology (RSM), involving Box-Behnken design matrix in three most important operating variables; temperature, pH and initial dye concentration was successfully employed for the study and optimization of decolorization process. The total 17 experiments were conducted in the study towards the construction of a quadratic model. According to analysis of variance (ANOVA) results, the proposed model can be used to navigate the design space. Under optimized conditions the bacterial strain was able to decolorize DY 211 up to 80%. Model indicated that initial dye concentration of 100 mgl(-1), pH 7 and a temperature of 32.5 degrees C were found optimum for maximum % decolorization. Very high regression coefficient between the variables and the response (R(2)=0.9930) indicated excellent evaluation of experimental data by polynomial regression model. The combination of the three variables predicted through RSM was confirmed through confirmatory experiments, hence the bacterial strain holds a great potential for the treatment of colored textile effluents.

  12. Electrochemical oxidation of bio-refractory dye in a simulated textile industry effluent using DSA electrodes in a filter-press type FM01-LC reactor.

    PubMed

    Rodríguez, Francisca A; Mateo, María N; Aceves, Juan M; Rivero, Eligio P; González, Ignacio

    2013-01-01

    This work presents a study on degradation of indigo carmine dye in a filter-press type FM01-LC reactor using Sb2O5-doped Ti/IrO2-SnO2 dimensionally stable anode (DSA) electrodes. Micro- and macroelectrolysis studies were carried out using solutions of 0.8 mM indigo carmine in 0.05 M NaCl, which resemble blue denim laundry industrial wastewater. Microelectrolysis results show the behaviour of DSA electrodes in comparison with the behaviour of boron-doped diamond (BDD) electrodes. In general, dye degradation reactions are carried out indirectly through active chlorine generated on DSA, whereas in the case of BDD electrodes more oxidizing species are formed, mainly OH radicals, on the electrode surface. The well-characterized geometry, flow pattern and mass transport of the FM01-LC reactor used in macroelectrolysis experiments allowed the evaluation of the effect of hydrodynamic conditions on the chlorine-mediated degradation rate. Four values of Reynolds number (Re) (93, 371, 464 and 557) at four current densities (50, 100, 150 and 200 A/m2) were tested. The results show that the degradation rate is independent of Re at low current density (50 A/m2) but becomes dependent on the Re at high current density (200 A/m2). This behaviour shows the central role of mass transport and the reactor parameters and design. The low energy consumption (2.02 and 9.04 kWh/m3 for complete discolouration and chemical oxygen demand elimination at 50 A/m2, respectively) and the low cost of DSA electrodes compared to BDD make DSA electrodes promising for practical application in treating industrial textile effluents. In the present study, chlorinated organic compounds were not detected.

  13. Effect of indigo dye effluent on the growth, biomass production and phenotypic plasticity of Scenedesmus quadricauda (Chlorococcales).

    PubMed

    Chia, Mathias A; Musa, Rilwan I

    2014-03-01

    The effect of indigo dye effluent on the freshwater microalga Scenedesmus quadricauda ABU12 was investigated under controlled laboratory conditions. The microalga was exposed to different concentrations of the effluent obtained by diluting the dye effluent from 100 to 175 times in bold basal medium (BBM). The growth rate of the microalga decreased as indigo dye effluent concentration increased (p <0.05). The EC50 was found to be 166 dilution factor of the effluent. Chlorophyll a, cell density and dry weight production as biomarkers were negatively affected by high indigo dye effluent concentration, their levels were higher at low effluent concentrations (p <0.05). Changes in coenobia size significantly correlated with the dye effluent concentration. A shift from large to small coenobia with increasing indigo dye effluent concentration was obtained. We conclude that even at low concentrations; effluents from textile industrial processes that use indigo dye are capable of significantly reducing the growth and biomass production, in addition to altering the morphological characteristics of the freshwater microalga S. quadricauda. The systematic reduction in the number of cells per coenobium observed in this study further confirms that environmental stress affects coenobium structure in the genus Scenedesmus, which means it can be considered an important biomarker for toxicity testing.

  14. Removal and transformation of effluent organic matter (EfOM) in biotreated textile wastewater by GAC/O3 pre-oxidation and enhanced coagulation.

    PubMed

    Qian, Feiyue; Sun, Xianbo; Liu, Yongdi; Xu, Hongyong

    2013-01-01

    GAC/O3 (ozonation in the presence of granular activated carbon) combined with enhanced coagulation was employed to process biotreated textile wastewater for possible reuse. The doses of ozone, GAC and coagulant were the variables studied for optimization. The effects of different treatment processes on effluent organic matter (EfOM) characteristics, including biodegradability, hydrophobic and hydrophilic nature, and apparent molecular weight (AMW) distribution were also investigated. Compared with ozonation, GAC/O3 not only presented a higher pre-oxidation efficiency, but also improved the treatability of hydrophobic and high molecular weight compounds by enhanced coagulation. After treatment by GAC/O3 pre-oxidation (0.6 mg O3 x mg(-1) COD and 20 g x L(-1) GAC) and enhanced coagulation (25 mg x L(-1) Al3+ at pH 5.5), the removal efficiencies of chemical oxygen demand (COD), dissolved organic carbon (DOC) and colour were higher than those for coagulation alone by 17.3%, 12.0% and 25.6%, respectively. Residual organic matter consisted mainly of hydrophobic acids and hydrophilic compounds of AMW < 1 kDa, which were colourless and of limited biological availability. The combination of GAC/O3 and enhanced coagulation was proved to be a simple and effective treatment strategy for removing EfOM from biotreated textile wastewater.

  15. Isolation and Characterization of Paracoccus sp. GSM2 Capable of Degrading Textile Azo Dye Reactive Violet 5

    PubMed Central

    Bheemaraddi, Mallikarjun C.; Shivannavar, Channappa T.; Gaddad, Subhashchandra M.

    2014-01-01

    A potential bacterial strain GSM2, capable of degrading an azo dye Reactive Violet 5 as a sole source of carbon, was isolated from textile mill effluent from Solapur, India. The 16S rDNA sequence and phenotypic characteristics indicated an isolated organism as Paracoccus sp. GSM2. This strain exhibited complete decolorization of Reactive Violet 5 (100 mg/L) within 16 h, while maximally it could decolorize 800 mg/L of dye within 38 h with 73% decolorization under static condition. For color removal, the most suitable pH and temperature were pH 6.0–9.0 and 25–40°C, respectively. The isolate was able to decolorize more than 70% of five structurally different azo dyes within 38 h. The isolate is salt tolerant as it can bring out more than 90% decolorization up to a salt concentration of 2% (w/v). UV-Visible absorption spectra before and after decolorization suggested that decolorization was due to biodegradation and was further confirmed by FT-IR spectroscopy. Overall results indicate the effectiveness of the strain GSM2 explored for the treatment of textile industry effluents containing various azo dyes. To our knowledge, this could be the first report on biodegradation of Reactive Violet 5 by Paracoccus sp. GSM2. PMID:24883397

  16. Optimization and enhancement of textile reactive Remazol black B decolorization and detoxification by environmentally isolated pH tolerant Pseudomonas aeruginosa KY284155.

    PubMed

    Hashem, Rasha A; Samir, Reham; Essam, Tamer M; Ali, Amal E; Amin, Magdy A

    2018-05-21

    Azo dyes are complex derivatives of diazene used in food and textile manufacture. They are highly recalcitrant compounds, and account for severe environmental and health problems. Different strains of Pseudomonas species were isolated from textile wastewater effluents. The bioconversion of Remazol black B (a commonly used water soluble dye) by Pseudomonas aeruginosa was observed in static conditions. The bio-decolorization process was optimized by a multi factorial Plackett-Burman experimental design. Decolorization of 200 mg L -1 reached 100% in 32 h. Interestingly, the presence of yeast extract, magnesium and iron in the culture media, highly accelerated the rate of decolorization. Moreover, one of our isolates, P. aeruginosa KY284155, was kept high degradation rates at high pH (pH = 9), which represents the pH of most textile wastewater effluents, and was able to tolerate high concentration of dye up to 500 mg L -1 . In bacteria, azo-dye degradation is often initiated by reductive azo compound cleavage catalyzed by azo-reductases. Three genes encoding azo-reductases, paazoR1, paazoR2 and paazoR3, could be identified in the genome of the isolated P. aeruginosa stain (B1). Bioinformatics analyses of the paazoR1, paazoR2 and paazoR3 genes reveal their prevalence and conservation in other P. aeruginosa strains. Chemical oxygen demand dramatically decreased and phyto-detoxification of the azo dye was accomplished by photocatalytic post treatment of the biodegradation products. We suggest applying combined biological photocatalytic post treatment for azo dyes on large scale, for effective, cheap decolorization and detoxification of azo-dyes, rendering them safe enough to be discharged in the environment.

  17. 40 CFR 410.50 - Applicability; description of the knit fabric finishing subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the knit... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Knit Fabric Finishing Subcategory § 410.50 Applicability; description of the knit fabric finishing subcategory. The...

  18. MUTAGENIC COMPOUNDS GENERATED FROM THE CHLORINATION OF DISPERSE AZO-DYES AND THEIR PRESENCE IN DRINKING WATER

    EPA Science Inventory

    Although the disinfection of water for human usage is necessary, the formation of toxic disinfection by-products (DBPs) does occur. Recent discovery of a novel class of mutagenic DBPs, PBTA (2-phenylbenzotriazole) derivatives, demonstrates that textile effluents have the potentia...

  19. 40 CFR 410.30 - Applicability; description of the low water use processing subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the low... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TEXTILE MILLS POINT SOURCE CATEGORY Low Water Use Processing Subcategory § 410.30 Applicability; description of the low water use processing...

  20. Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns.

    PubMed

    Prabakar, Desika; Suvetha K, Subha; Manimudi, Varshini T; Mathimani, Thangavel; Kumar, Gopalakrishnan; Rene, Eldon R; Pugazhendhi, Arivalagan

    2018-07-15

    The implementation of different pretreatment techniques and technologies prior to effluent discharge is a direct result of the inefficiency of several existing wastewater treatment methods. A majority of the industrial sectors have known to cause severe negative effects on the environment. The five major polluting industries are the paper and pulp mills, coal manufacturing facilities, petrochemical, textile and the pharmaceutical sectors. Pretreatment methods have been widely used in order to lower the toxicity levels of effluents and comply with environmental standards. In this review, the possible environmental benefits and concerns of adopting different pretreatment technologies for renewable energy production and product/resource recovery has been reviewed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Electrochemical mercerization, souring, and bleaching of textiles

    DOEpatents

    Cooper, J.F.

    1995-10-10

    Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode. 5 figs.

  2. Electrochemical mercerization, souring, and bleaching of textiles

    DOEpatents

    Cooper, John F.

    1995-01-01

    Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode.

  3. a Study for Remote Detection of Industrial Effluents' Effect on Rice Using Thermal Images

    NASA Astrophysics Data System (ADS)

    Dehnavi, S.; Abkar, A. A.; Maghsoudi, Y.; Dehnavi, E.

    2015-12-01

    Rice is one of the most important nutritious grains all over the world, so that only in some parts of Asia more than 300 million acres allocated for cultivating this product. Therefore, qualitative and quantitative management of this product is of great importance in commercial, political and financial viewpoints. Rice plant is very influenced by physical and chemical characteristics of irrigation water, due to its specific kind of planting method. Hence, chemically-polluted waters which received by plant can change in live plants and their products. Thus, a very high degree of treatment will be required if the effluent discharges to rice plants. Current waters receive a variety of land-based water pollutants ranging from industrial wastes to excess sediments. One of the most hazardous wastes are chemicals that are toxic. Some factories discharge their effluents directly into a water body. So, what would happen for rice plant or its product if this polluted water flow to paddies? Is there any remotely-based method to study for this effect? Are surface temperature distributions (thermal images) useful in this context? The first goal in this research is thus to investigate the effect of a simulated textile factory's effluent sample on the rice product. The second goal is to investigate whether the polluted plant can be identified by means of thermal remote sensing or not. The results of this laboratory research have proven that the presence of industrial wastewater cause a decrease in plant's product and its f-cover value, also some changes in radiant temperature.

  4. Performance analysis of a continuous serpentine flow reactor for electrochemical oxidation of synthetic and real textile wastewater: Energy consumption, mass transfer coefficient and economic analysis.

    PubMed

    Pillai, Indu M Sasidharan; Gupta, Ashok K

    2017-05-15

    A continuous flow electrochemical reactor was developed, and its application was tested for the treatment of textile wastewater. A parallel plate configuration with serpentine flow was chosen for the continuous flow reactor. Uniparameter optimization was carried out for electrochemical oxidation of synthetic and real textile wastewater (collected from the inlet of the effluent treatment plant). Chemical Oxygen Demand (COD) removal efficiency of 90% was achieved for synthetic textile wastewater (initial COD - 780 mg L -1 ) at a flow rate of 500 mL h -1 (retention time of 6 h) and a current density of 1.15 mA cm -2 and the energy consumption for the degradation was 9.2 kWh (kg COD) -1 . The complete degradation of real textile wastewater (initial COD of 368 mg L -1 ) was obtained at a current density of 1.15 mA cm -2 , NaCl concentration of 1 g L -1 and retention time of 6 h. Energy consumption and mass transfer coefficient of the reactions were calculated. The continuous flow reactor performed better than batch reactor with reference to energy consumption and economy. The overall treatment cost for complete COD removal of real textile wastewater was 5.83 USD m -3 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cyanobacterial flora from polluted industrial effluents.

    PubMed

    Parikh, Amit; Shah, Vishal; Madamwar, Datta

    2006-05-01

    Effluents originating from pesticides, agro-chemicals, textile dyes and dyestuffs industries are always associated with high turbidity, colour, nutrient load, and heavy metals, toxic and persistent compounds. But even with such an anthropogenic nature, these effluents contain dynamic cyanobacterial communities. Documentation of cyanobacterial cultures along the water channels of effluents discharged by above mentioned industries along the west coast of India and their relationship with water quality is reported in this study. Intensity of pollution was evaluated by physico-chemical analysis of water. Higher load of solids, carbon and nutrients were found to be persistent throughout the analysis. Sediment and water samples were found to be colored in nature. Cyanobacterial community structure was found to be influenced by the anthropogenic pollution. 40 different cyanobacterial species were recorded from 14 genera of 5 families and an elevated occurrence of Phormidium, Oscillatoria and Chroococcus genera was observed in all the sampling sites.

  6. Fate of volatile aromatic hydrocarbons in the wastewater from six textile dyeing wastewater treatment plants.

    PubMed

    Ning, Xun-An; Wang, Jing-Yu; Li, Rui-Jing; Wen, Wei-Bin; Chen, Chang-Min; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong

    2015-10-01

    The occurrence and removal of benzene, toluene, ethylbenzene, xylenes, styrene and isopropylbenzene (BTEXSI) from 6 textile dyeing wastewater treatment plants (TDWTPs) were investigated in this study. The practical capacities of the 6 representative plants, which used the activated sludge process, ranged from 1200 to 26000 m(3) d(-1). The results indicated that BTEXSI were ubiquitous in the raw textile dyeing wastewater, except for isopropylbenzene, and that toluene and xylenes were predominant in raw wastewaters (RWs). TDWTP-E was selected to study the residual BTEXSI at different stages. The total BTEXSI reduction on the aerobic process of TDWTP-E accounted for 82.2% of the entire process. The total BTEXSI concentrations from the final effluents (FEs) were observed to be below 1 μg L(-1), except for TDWTP-F (2.12 μg L(-1)). Volatilization and biodegradation rather than sludge sorption contributed significantly to BTEXSI removal in the treatment system. BTEXSI were not found to be the main contaminants in textile dyeing wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Development of a Polyphenol Oxidase Biosensor from Jenipapo Fruit Extract (Genipa americana L.) and Determination of Phenolic Compounds in Textile Industrial Effluents.

    PubMed

    Antunes, Rafael Souza; Ferraz, Denes; Garcia, Luane Ferreira; Thomaz, Douglas Vieira; Luque, Rafael; Lobón, Germán Sanz; Gil, Eric de Souza; Lopes, Flávio Marques

    2018-05-15

    In this work, an innovative polyphenol oxidase biosensor was developed from Jenipapo ( Genipa americana L.) fruit and used to assess phenolic compounds in industrial effluent samples obtained from a textile industry located in Jaraguá-GO, Brasil. The biosensor was prepared and optimized according to: the proportion of crude vegetal extract, pH and overall voltammetric parameters for differential pulse voltammetry. The calibration curve presented a linear interval from 10 to 310 µM (r² = 0.9982) and a limit of detection of 7 µM. Biosensor stability was evaluated throughout 15 days, and it exhibited 88.22% of the initial response. The amount of catechol standard recovered post analysis varied between 87.50% and 96.00%. Moreover, the biosensor was able to detect phenolic compounds in a real sample, and the results were in accordance with standard spectrophotometric assays. Therefore, the innovatively-designed biosensor hereby proposed is a promising tool for phenolic compound detection and quantification when environmental contaminants are concerned.

  8. Decolorization and Detoxification of Textile Dyes with a Laccase from Trametes hirsuta

    PubMed Central

    Abadulla, Elias; Tzanov, Tzanko; Costa, Silgia; Robra, Karl-Heinz; Cavaco-Paulo, Artur; Gübitz, Georg M.

    2000-01-01

    Trametes hirsuta and a purified laccase from this organism were able to degrade triarylmethane, indigoid, azo, and anthraquinonic dyes. Initial decolorization velocities depended on the substituents on the phenolic rings of the dyes. Immobilization of the T. hirsuta laccase on alumina enhanced the thermal stabilities of the enzyme and its tolerance against some enzyme inhibitors, such as halides, copper chelators, and dyeing additives. The laccase lost 50% of its activity at 50 mM NaCl while the 50% inhibitory concentration (IC50) of the immobilized enzyme was 85 mM. Treatment of dyes with the immobilized laccase reduced their toxicities (based on the oxygen consumption rate of Pseudomonas putida) by up to 80% (anthraquinonic dyes). Textile effluents decolorized with T. hirsuta or the laccase were used for dyeing. Metabolites and/or enzyme protein strongly interacted with the dyeing process indicated by lower staining levels (K/S) values than obtained with a blank using water. However, when the effluents were decolorized with immobilized laccase, they could be used for dyeing and acceptable color differences (ΔE*) below 1.1 were measured for most dyes. PMID:10919791

  9. ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents.

    PubMed

    Saravanan, R; Mansoob Khan, M; Gupta, Vinod Kumar; Mosquera, E; Gracia, F; Narayanan, V; Stephen, A

    2015-08-15

    A ternary ZnO/Ag/CdO nanocomposite was synthesized using thermal decomposition method. The resulting nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopy, and X-ray photoelectron spectroscopy. The ZnO/Ag/CdO nanocomposite exhibited enhanced photocatalytic activity under visible light irradiation for the degradation of methyl orange and methylene blue compared with binary ZnO/Ag and ZnO/CdO nanocomposites. The ZnO/Ag/CdO nanocomposite was also used for the degradation of the industrial textile effluent (real sample analysis) and degraded more than 90% in 210 min under visible light irradiation. The small size, high surface area and synergistic effect in the ZnO/Ag/CdO nanocomposite is responsible for high photocatalytic activity. These results also showed that the Ag nanoparticles induced visible light activity and facilitated efficient charge separation in the ZnO/Ag/CdO nanocomposite, thereby improving the photocatalytic performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities.

    PubMed

    Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal

    2015-12-01

    Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters.

  11. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27.

    PubMed

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by LC MS/MS analysis. The method led to very effective (90%) laccase immobilization and also imparted significant stability to the enzyme (more than 70% after 5 months of storage at 4°C). In batch decolorization, 90-95% decolorization was achieved of the simulated dye effluent for up to 10-20 cycles. Continuous decolorization in a packed bed bioreactor led to nearly 90% decolorization for up to 5 days. The immobilized laccase was also effective in decolorization and degradation of Acid Red 27 in the presence of a mediator. Four products of degradation were identified by LC-MS/MS analysis. The immobilized laccase in PVA-nitrate was concluded to be an effective agent in treatment of textile dye effluents.

  12. Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process

    NASA Astrophysics Data System (ADS)

    Durán, Nelson; Marcato, Priscyla D.; Alves, Oswaldo L.; Da Silva, João P. S.; De Souza, Gabriel I. H.; Rodrigues, Flávio A.; Esposito, Elisa

    2010-01-01

    This work studied a bioremediation process of silver nanoparticles with the bacterium Chromobacterium violaceum. These nanoparticles were obtained from several washes of cotton fabrics impregnated with silver nanoparticles produced by the fungus Fusarium oxysporum. The optimized growth of C. violaceum for silver nanoparticles bioremediation was obtained. The effluents of wash process of the cotton fabric were efficiently treated with C. violaceum. This treatment was based on biosorption which was very efficient for the elimination of silver nanoparticles remaining in the wash water. The bacteria after biosorption were morphologically transformed, but the normal morphology after a new culture was completely restored. The process also allowed the recovery of silver material that was leached into the effluent for a reutilization avoiding any effect to the eco-environment.

  13. Emerging Concern from Short-Term Textile Leaching: A Preliminary Ecotoxicological Survey.

    PubMed

    Lofrano, G; Libralato, G; Carotenuto, M; Guida, M; Inglese, M; Siciliano, A; Meriç, S

    2016-11-01

    Textile dyes and their residues gained growing attention worldwide. Textile industry is a strong water consumer potentially releasing xenobiotics from washing and rinsing procedures during finishing processes. On a decentralised basis, also final consumers generate textile waste streams. Thus, a procedure simulating home washing with tap water screened cotton textiles leachates (n = 28) considering physico-chemical (COD, BOD 5 , and UV absorbance) and ecotoxicological data (Daphnia magna, Pseudokirchneriella subcapitata and Lepidium sativum). Results evidenced that: (i) leachates presented low biodegradability levels; (ii) toxicity in more than half leachates presented slight acute or acute effects; (iii) the remaining leachates presented "no effect" suggesting the use of green dyes/additives, and/or well established finishing processes; (iv) no specific correlations were found between traditional physico-chemical and ecotoxicological data. Further investigations will be necessary to identify textile residues, and their potential interactions with simulated human sweat in order to evidence potential adverse effects on human health.

  14. Performance of a contact textile-based light diffuser for photodynamic therapy.

    PubMed

    Khan, Tania; Unternährer, Merthan; Buchholz, Julia; Kaser-Hotz, Barbara; Selm, Bärbel; Rothmaier, Markus; Walt, Heinrich

    2006-03-01

    Medical textiles offer a unique contact opportunity that could provide value-added comfort, reliability, and safety for light or laser-based applications. We investigated a luminous textile diffuser for use in photodynamic therapy. Textile diffusers are produced by an embroidery process. Plastic optical fibers are bent and sewn into textile to release light by macrobending. A reflective backing is incorporated to improve surface homogeneity, intensity, and safety. Clonogenic assay (MCF-7 cells) and trypan blue exclusion (NuTu19 cells) tests were performed in vitro using 0.1μg/ml m-THPC with three textile diffusers and a standard front lens diffuser. Heating effects were studied in solution and on human skin. PDT application in vivo was performed with the textile diffuser on equine sarcoids (three animals, 50mW/cm(2), 10-20J) and eight research animals. Lastly, computer simulations were performed to see how the textile diffuser might work on a curved object. At low fluency rate, there is a trend for the textile diffuser to have lower survival rates than the front lens diffuser for both cell lines. The textile diffuser was observed to retain more heat over a long period (>1min). All animals tolerated the treatments well and showed similar initial reactions. The simulations showed a likely focusing effect in a curved geometry. The initial feasibility and application using a textile-based optical diffuser has been demonstrated. Possibilities that provide additional practical advantages of the textile diffuser are discussed.

  15. EDCs, estrogenicity and genotoxicity reduction in a mixed (domestic + textile) secondary effluent by means of ozonation: a full-scale experience.

    PubMed

    Bertanza, G; Papa, M; Pedrazzani, R; Repice, C; Mazzoleni, G; Steimberg, N; Feretti, D; Ceretti, E; Zerbini, I

    2013-08-01

    WWTP (wastewater treatment plant) effluents are considered to be a major source for the release in the aquatic environment of EDCs (Endocrine-Disrupting Compounds), a group of anthropogenic substances able to alter the normal function of the endocrine system. The application of conventional processes (e.g. activated sludge with biological nitrogen removal) does not provide complete elimination of all these micropollutants and, consequently, an advanced treatment should be implemented. This experimental work was conducted on the tertiary ozonation stage of a 140,000 p.e. activated sludge WWTP, treating a mixed domestic and textile wastewater: an integrated monitoring, including both chemical (nonylphenol, together with the parent compounds mono- and di-ethoxylated, and bisphenol A were chosen as model EDCs) and biological (estrogenic and genotoxic activities) analyses, was carried out. Removal efficiencies of measured EDCs varied from 20% to 70%, depending on flow conditions (ozone dosage being 0.5 gO3/gTOC). Biological tests, furthermore, displayed that the oxidation stage did not significantly reduce (only by 20%) the estrogenicity of the effluent and revealed the presence and/or formation of genotoxic compounds. These results highlight the importance of the application of an integrated (biological+chemical) analytical procedure for a global evaluation of treatment suitability; poor performances recorded in this study have been attributed to the presence of a significant industrial component in the influent wastewater. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Elimination and ecotoxicity evaluation of phthalic acid esters from textile-dyeing wastewater.

    PubMed

    Liang, Jieying; Ning, Xun-An; Kong, Minyi; Liu, Daohua; Wang, Guangwen; Cai, Haili; Sun, Jian; Zhang, Yaping; Lu, Xingwen; Yuan, Yong

    2017-12-01

    Phthalic acid esters (PAEs), presented in fabrics, surfactants and detergents, were discharged into the ecosystem during textile-dyeing wastewater treatment and might have adverse effects on water ecosystems. In this study, comprehensive investigations of the content and component distributions of 12 PAEs across different units of four textile-dyeing wastewater plants were carried out in Guangdong Province, China. Ecotoxicity assessments were also conducted based on risk quotients (RQs). On average, 93.54% TOC and 80.14% COD Cr were removed following treatment at the four plants. The average concentration of Σ 12 PAEs in effluent was 11.78 μg/L. PAEs with highest concentrations were dimethylphthalate (6.58 μg/L), bis(2-ethylhexyl)phthalate (2.23 μg/L), and dibutylphthalate (1.98 μg/L). The concentrations of the main toxic PAEs were 2.23 μg/L (bis(2-ethylhexyl)phthalate), 0.19 μg/L (diisononylphthalate) and 0.67 μg/L (dinoctylphthalate); corresponding RQs were 1.4, 0.55, and 0.54 for green algae, respectively. The RQs of Σ 12 PAEs in effluent of the four plants were >0.1, indicating that Σ 12 PAEs posed medium or higher ecological risk to fish, Daphnia and green algae. Physicochemical-biochemical system was found to be more effective than biochemical-physicochemical system for TOC and COD Cr removal, because pre-physicochemical treatment helped to remove macromolecular organic substances, and reduced the competition with other pollutants during biochemical treatment. However, biochemical-physicochemical system was more effective than physicochemical-biochemical system for elimination of PAEs and for detoxification, since the biochemical treatment might produce the toxic PAEs that could helpfully be settled by post-physicochemical treatment. Moreover, ecotoxicity evaluation was recommended for current textile-dyeing wastewater treatment plants. Copyright © 2017. Published by Elsevier Ltd.

  17. Degradation of chlorophenols and alkylphenol ethoxylates, two representative textile chemicals, in water by advanced oxidation processes: the state of the art on transformation products and toxicity.

    PubMed

    Karci, Akin

    2014-03-01

    Advanced oxidation processes based on the generation of reactive species including hydroxyl radicals are viable options in eliminating a wide array of refractory organic contaminants in industrial effluents. The assessment of transformation products and toxicity should be, however, the critical point that would allow the overall efficiency of advanced oxidation processes to be better understood and evaluated since some transformation products could have an inhibitory effect on certain organisms. This article reviews the most recent studies on transformation products and toxicity for evaluating advanced oxidation processes in eliminating classes of compounds described as "textile chemicals" from aqueous matrices and poses questions in need of further investigation. The scope of this paper is limited to the scientific studies with two classes of textile chemicals, namely chlorophenols and alkylphenol ethoxylates, whose use in textile industry is a matter of debate due to health risks to humans and harm to the environment. The article also raises the critical question: What is the state of the art knowledge on relationships between transformation products and toxicity? Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Study on quality of effluent discharge by the Tiruppur textile dyeing units and its impact on river Noyyal, Tamil Nadu (India).

    PubMed

    Rajkumar, A Samuel; Nagan, S

    2010-10-01

    In Tiruppur, 729 textile dyeing units are under operation and these units generate 96.1 MLD of wastewater. The untreated effluent was discharged into the Noyyal River till 1997. After the issuance of directions by Tamil Nadu Pollution Control Board (TNPCB) in 1997, these units have installed 8 common effluent treatment plants (CETP) consisting of physical, chemical and biological treatment units. Some of the units have installed individual ETP (IETP). The treated effluent was finally discharged into the river. The dyeing units use sodium chloride in the dyeing process for efficient fixing of dye in the fabric efficiently. This contributes high total dissolved solids (TDS) and chlorides in the effluent. CETPs and IETPs failed to meet discharge standards of TDS and chlorides and thereby significantly affected the river water quality. TDS level in the river water was in the range of 900 - 6600 mg/L, and chloride was in the range of 230 - 2700 mg/L. Orathupalayam dam is located across Noyyal river at 32 km down stream of Tiruppur. The pollutants carried by the river were accumulated in the dam. TDS in the dam water was in the range of 4250 - 7900 mg/L and chloride was in the range of 1600 - 2700 mg/L. The dam sediments contain heavy metals of chromium, copper, zinc and lead. In 2006, the High Court has directed the dyeing units to install zero liquid discharge (ZLD) plant and to stop discharging of effluent into the river. Accordingly, the industries have installed and commissioned the ZLD plant consisting of RO plant and reject management system in 2010. The effluent after secondary treatment from the CETP is further treated in RO plant. The RO permeate is reused by the member units. The RO reject is concentrated in multiple effect evaporator (MEE)/ mechanical vacuum re-compressor (MVR). The concentrate is crystallized and centrifuged to recover salt. The salt recovered is reused. The liquid separated from the centrifuge is sent to solar evaporation pan. The salt collected in the solar pan is bagged and stored in secure land fill facility. Thus, the discharge into the river is now stopped. However, the damage caused to the groundwater and soil contamination in the river basin is yet to be restored.

  19. Application of membrane and ozonation technologies to remove color from agro-industry effluents.

    PubMed

    Koyuncu, I; Sevimli, M F; Ozturk, I; Aydin, A F

    2001-01-01

    The results of membrane and ozonation experiments carried out on various agro-industry effluents including fermentation (baker's yeast), corrugated board, opium alkaloid and textile dying industries are presented. The experiments were performed using lab-scale membrane and ozonation reactors. Color removals were in the range of 80 to 99% for the membrane treatment studies. Ozonation experiments have shown that color removals in the range of 83 to 98% are possible for the investigated wastewaters. Final color levels were lower than 100 Pt-Co unit, which is quite acceptable aesthetically. The relative unit treatment costs of ozonation were about two times higher than membrane systems especially for very strong colored effluents including fermentation and opium alkaloid industries. The study has demonstrated that both membrane and ozonation technologies are viable options for color removal.

  20. Biological aerated filter treated textile washing wastewater for reuse after ozonation pre-treatment.

    PubMed

    Wang, X J; Chen, S L; Gu, X Y; Wang, K Y; Qian, Y Z

    2008-01-01

    The combination of chemical and biological treatment processes is a promising technique to reduce refractory organics from wastewater. Ozonation can achieve high color removal, enhance biodegradability, and reduce the chemical oxygen demand (COD). The biological technique can further decrease COD of wastewater after ozonation as a pre-treatment. In this study the ozonizing-biological aerated filter processes were used to treat textile washing wastewater for reuse after conventional treatment. The result showed that when the influent qualities were COD about 80 mg/L, color 16 degree and turbidity about 8 NTU, using the combination processes with the dosages of ozone at 30-45 mg/L with the hydraulic retention time (HRT) of biological aerated filter (BAF) at 3-4 hours respectively, gave effluent qualities of COD less than 30 mg/L, color 2 degree and turbidity less than 1NTU. The cost of treatment was less than one yuan/t wastewater, and these processes could enable high quality washing water reuse in textile industry. Copyright IWA Publishing 2008.

  1. Textile wastewater treatment: colour and COD removal of reactive black-5 by ozonation

    NASA Astrophysics Data System (ADS)

    Suryawan, I. W. K.; Helmy, Q.; Notodarmojo, S.

    2018-01-01

    Textile industries produced a large amount of highly coloured wastewater containing variety of dyes in different concentrations. Due to the high concentration of organics in the effluents and the higher stability of modern synthetic dyes, the conventional biological treatment methods are ineffective for the complete colour removal and degradation of organics and dyes. On the other hand, physical-chemical treatment are not destructive, mainly just concentrate and separate the pollutants phases. This research paper investigates the removal of colour and chemical oxygen demand/COD from textile wastewater using ozone treatment. Varied ozone dosages of 1.16; 3.81; 18.79; and 40.88 mg/minute were used in the experiment. Varied wastewater containing Reactive Black 5 (RB-5) concentrations of 40 mg/L, 100 mg/L were also applied. Research result showed the highest colour removal efficiency of 96.9 % was achieved after 5 hours incubation time, while the highest COD removal efficiency of 77.5% was achieved after 2 hours incubation time.

  2. Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil

    PubMed Central

    Jayanthy, V.; Geetha, R.; Rajendran, R.; Prabhavathi, P.; Karthik Sundaram, S.; Dinesh Kumar, S.; Santhanam, P.

    2013-01-01

    The present study was investigated for soil bioremediation through sababul plant biomass (Leucaena leucocephala). The soil contaminated with textile effluent was collected from Erode (chithode) area. Various physico-chemical characterizations like N, P, and K and electrical conductivity were assessed on both control and dye contaminated soils before and after remediation. Sababul (L. leucocephala) powder used as plant biomass for remediation was a tool for textile dye removal using basic synthetic dyes by column packing and eluting. The concentration of the dye eluted was compared with its original concentration of dye and were analyzed by using UV–vis spectrophotometer. Sababul plant biomass was analyzed for its physico-chemical properties and active compounds were detected by GC–MS, HPTLC and FTIR. Plant growth was assessed with green gram on the textile contaminated soil and sababul had the potential of adsorbing the dye as the contaminated soil and also check the growth of green gram. PMID:25183943

  3. Tertiary treatment of textile wastewater with combined media biological aerated filter (CMBAF) at different hydraulic loadings and dissolved oxygen concentrations.

    PubMed

    Liu, Fang; Zhao, Chao-Cheng; Zhao, Dong-Feng; Liu, Guo-Hua

    2008-12-15

    An up-flow biological aerated filter packed with two layers media was employed for tertiary treatment of textile wastewater secondary effluent. Under steady state conditions, good performance of the reactor was achieved and the average COD, NH(4)(+)-N and total nitrogen (TN) in the effluent were 31, 2 and 8mg/L, respectively. For a fixed dissolved oxygen (DO) concentration, an increase of hydraulic loading resulted in a decrease in substrate removal. With the increase of hydraulic loadings from 0.13 to 0.78m(3)/(m(2)h), the removal efficiencies of COD, NH(4)(+)-N and TN all decreased, which dropped from 52 to 38%, from 90 to 68% and from 45 to 33%, respectively. In addition, the results also confirmed that the increase of COD and NH(4)(+)-N removal efficiencies resulted from the increase of DO concentrations, but this variation trend was not observed for TN removal. With the increase of DO concentrations from 2.4 to 6.1mg/L, the removal efficiencies of COD and NH(4)(+)-N were 39-53% and 64-88%, whenas TN removal efficiencies increased from 39 to 42% and then dropped to 35%.

  4. Biodecoloration of Reactive Black 5 by the methylotrophic yeast Candida boidinii MM 4035.

    PubMed

    Martorell, María M; Pajot, Hipólito F; Ahmed, Pablo M; de Figueroa, Lucía I C

    2017-03-01

    Azo dyes are extensively used in textile dyeing and other industries. Effluents of dying industries are specially colored and could cause severe damage to the environment. The anaerobic treatment of textile dying effluents is nowadays the preferred option, but it could generate carcinogenic aromatic amines. Recently, yeasts have become a promising alternative, combining unicellular growth with oxidative mechanisms. This work reports the characterization of the first methylotrophic yeast with dye decolorizing ability, Candida boidinii MM 4035 and some insights into its decoloration mechanism. The analysis of two selected media revealed a possible two stages mechanism of Reactive Black 5 decoloration. In glucose poor media, decoloration is incomplete and only the first stage proceeds, leading to the accumulation of a purple compound. In media with higher glucose concentrations, the yeast is able to decolorize totally an initial concentration of 200mg/L. The entire process is co-metabolic, being largely dependent on glucose concentration but being able to proceed with several nitrogen sources. Manganese dependent peroxidase but not laccase activity could be detected during decoloration. Aromatic amines do not accumulate in culture media, supporting an oxidative decoloration mechanism of unknown ecophysiological relevance. Copyright © 2016. Published by Elsevier B.V.

  5. Characterization and quantitative analysis of surfactants in textile wastewater by liquid chromatography/quadrupole-time-of-flight mass spectrometry.

    PubMed

    González, Susana; Petrović, Mira; Radetic, Maja; Jovancic, Petar; Ilic, Vesna; Barceló, Damià

    2008-05-01

    A method based on the application of ultra-performance liquid chromatography (UPLC) coupled to hybrid quadrupole-time-of-flight mass spectrometry (QqTOF-MS) with an electrospray (ESI) interface has been developed for the screening and confirmation of several anionic and non-ionic surfactants: linear alkylbenzenesulfonates (LAS), alkylsulfate (AS), alkylethersulfate (AES), dihexyl sulfosuccinate (DHSS), alcohol ethoxylates (AEOs), coconut diethanolamide (CDEA), nonylphenol ethoxylates (NPEOs), and their degradation products (nonylphenol carboxylate (NPEC), octylphenol carboxylate (OPEC), 4-nonylphenol (NP), 4-octylphenol (OP) and NPEO sulfate (NPEO-SO4). The developed methodology permits reliable quantification combined with a high accuracy confirmation based on the accurate mass of the (de)protonated molecules in the TOFMS mode. For further confirmation of the identity of the detected compounds the QqTOF mode was used. Accurate masses of product ions obtained by performing collision-induced dissociation (CID) of the (de)protonated molecules of parent compounds were matched with the ions obtained for a standard solution. The method was applied for the quantitative analysis and high accuracy confirmation of surfactants in complex mixtures in effluents from the textile industry. Positive identification of the target compounds was based on accurate mass measurement of the base peak, at least one product ion and the LC retention time of the analyte compared with that of a standard. The most frequently surfactants found in these textile effluents were NPEO and NPEO-SO4 in concentrations ranging from 0.93 to 5.68 mg/L for NPEO and 0.06 to 4.30 mg/L for NPEO-SO4. AEOs were also identified.

  6. Propagation of polarized light through textile material.

    PubMed

    Peng, Bo; Ding, Tianhuai; Wang, Peng

    2012-09-10

    In this paper a detailed investigation, based on simulations and experiments of polarized light propagation through textile material, is presented. The fibers in textile material are generally anisotropic with axisymmetric structure. The formalism of anisotropic fiber scattering (AFS) at oblique incidence is first deduced and then, based on this formalism and considered multiscattering, a polarization-dependent Monte Carlo method is employed to simulate the propagation of polarized light in textile material. Taking cotton fiber assemblies as samples, the forward-scattering Mueller matrices are calculated theoretically through the AFS-based simulations and measured experimentally by an improved Mueller matrix polarimeter. Their variations according to sample thickness are discussed primarily. With these matrices polar-decomposed, a further discussion on the optical polarization properties of cotton fiber assemblies (i.e., depolarization Δ, diattenuation D, optical rotation ψ and linear retardance δ) versus the thickness is held. Simultaneously, a meaningful comparison of both the matrices and their polar decomposition, generated from the simulations based on isotropic fiber scattering (IFS), with those simulated based on AFS is made. Results show that the IFS-derived values are strikingly different from those that are AFS-derived due to ignoring the fiber anisotropy. Furthermore, all the AFS-derived results are perfectly consistent with those obtained experimentally, which suggests that the Monte Carlo simulation based on AFS has potential applications for light scattering and propagation in textile material.

  7. ED-WAVE tool design approach: Case of a textile wastewater treatment plant in Blantyre, Malawi

    NASA Astrophysics Data System (ADS)

    Chipofya, V.; Kraslawski, A.; Avramenko, Y.

    The ED-WAVE tool is a PC based package for imparting training on wastewater treatment technologies. The system consists of four modules viz. Reference Library, Process Builder, Case Study Manager, and Treatment Adviser. The principles of case-based design and case-based reasoning as applied in the ED-WAVE tool are utilised in this paper to evaluate the design approach of the wastewater treatment plant at Mapeto David Whitehead & Sons (MDW&S) textile and garments factory, Blantyre, Malawi. The case being compared with MDW&S in the ED-WAVE tool is Textile Case 4 in Sri Lanka (2003). Equalisation, coagulation and rotating biological contactors is the sequencing of treatment units at Textile Case 4 in Sri Lanka. Screening, oxidation ditches and sedimentation is the sequencing of treatment units at MDW&S textile and garments factory. The study suggests that aerobic biological treatment is necessary in the treatment of wastewater from a textile and garments factory. MDW&S incorporates a sedimentation process which is necessary for the removal of settleable matter before the effluent is discharged to the municipal wastewater treatment plant. The study confirmed the practical use of the ED-WAVE tool in the design of wastewater treatment systems, where after encountering a new situation; already collected decision scenarios (cases) are invoked and modified in order to arrive at a particular design alternative. What is necessary, however, is to appropriately modify the case arrived at through the Case Study Manager in order to come up with a design appropriate to the local situation taking into account technical, socio-economic and environmental aspects.

  8. Monitoring the fate and behavior of TiO2 nanoparticles: Simulated in a WWTP with industrial dye-stuff effluent according to OECD 303A.

    PubMed

    Mahlalela, Lwazi C; Ngila, Jane C; Dlamini, Langelihle N

    2017-07-03

    The use of nanoparticles (NPs) in several consumer products has led to them finding their way into wastewater treatment plants (WWTPs). Some of these NPs have photocatalytic properties, thus providing a possible solution to textile industries to photodegrade dyes from their wastewater. Thus, the interaction of NPs with industrial dye effluents is inevitable. The Organization for Economic Co-operation and development (OECD) guideline for testing of chemical 303A was employed to study the fate and behaviour of TiO 2 NPs in industrial dye-stuff effluent. This was due to the unavailability of NPs' fate and behaviour test protocols. The effect of TiO 2 NPs on the treatment process was ascertained by measuring chemical oxygen demand (COD) and 5-day biological oxygen demand (BOD5). Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to study the fate and behavior of TiO 2 NPs. Acclimatization of bacteria to target pollutants was a crucial factor for the treatment efficiency of activated sludge in a simulated wastewater treatment plant (SWTP). The acclimatization of the activated sludge to the synthetic industrial dye-stuff effluent was successfully achieved. Effect of TiO 2 NPs on the treatment process efficiency was then investigated. Addition of TiO 2 NPs had no effect on the treatment process as chemical oxygen demand (COD) removal remained >80%. Measured total plate count (TPC) affirmed that the addition of TiO 2 NPs had no effect on the treatment process. The removal of total nitrogen (TN) was not efficient as the treatment system was required to have an oxic and anoxic stage for efficient TN removal. Results from X-ray powder diffraction (XRD) confirmed that the anatase phase of the added TiO 2 NPs remained unchanged even after exposure to the treatment plant. Removal of the NPs from the influent was facilitated by biosorption of the NPs on the activated sludge. Nanoparticles received by wastewater treatment plants will therefore reach the environment through sludge waste dumped in landfill. About 90% of TiO 2 was retained in the activated sludge, and 10-11% escaped with the treated effluents. Scanning electron microscope (SEM) mapping micrographs together with an energy dispersive X-ray spectroscopy (EDS) confirmed the presence of Ti in the sludge.

  9. Deposition of chromium in aquatic ecosystem from effluents of handloom textile industries in Ranaghat-Fulia region of West Bengal, India.

    PubMed

    Sanyal, Tanmay; Kaviraj, Anilava; Saha, Subrata

    2015-11-01

    Accumulation of chromium (Cr) was determined in water, sediment, aquatic plants, invertebrates and fish in aquatic ecosystems receiving effluents from handloom textile industries in Ranaghat-Fulia region of West Bengal in India. Cr was determined in the samples by atomic absorption spectrophotometer and data were analyzed functionally by Genetic Algorithm to determine trend of depositions of Cr in the sediment and water. Area plot curve was used to represent accumulation of Cr in biota. The results indicate that the aquatic ecosystems receiving the effluents from handloom textile factories are heavily contaminated by Cr. The contamination is hardly reflected in the concentration of Cr in water, but sediment exhibits seasonal fluctuation in deposition of Cr, concentration reaching to as high as 451.0 μg g(-1) during the peak production period. There is a clear trend of gradual increase in the deposition of Cr in the sediment. Aquatic weed, insect and mollusk specimens collected from both closed water bodies (S1 & S2) and riverine resources (S3 & S4) showed high rate of accumulation of Cr. Maximum concentration of Cr was detected in roots of aquatic weeds (877.5 μg g(-1)). Fish specimens collected from the polluted sites (S3 & S4) of river Churni showed moderate to high concentration of Cr in different tissues. Maximum concentration was detected in the liver of Glossogobius giuris (679.7 μg g(-1)) during monsoon followed by gill of Mystus bleekeri (190.0 μg g(-1)) and gut of G. giuris (123.7 μg g(-1)) during summer. Eutropiichthys vacha showed moderately high concentration of Cr in different tissues (65-99 μg g(-1)) while Puntius sarana showed relatively low concentration of Cr (below detection limit to 18.0 μg g(-1)) in different tissues except in gill (64.4 μg g(-1)).

  10. Deposition of chromium in aquatic ecosystem from effluents of handloom textile industries in Ranaghat–Fulia region of West Bengal, India

    PubMed Central

    Sanyal, Tanmay; Kaviraj, Anilava; Saha, Subrata

    2014-01-01

    Accumulation of chromium (Cr) was determined in water, sediment, aquatic plants, invertebrates and fish in aquatic ecosystems receiving effluents from handloom textile industries in Ranaghat–Fulia region of West Bengal in India. Cr was determined in the samples by atomic absorption spectrophotometer and data were analyzed functionally by Genetic Algorithm to determine trend of depositions of Cr in the sediment and water. Area plot curve was used to represent accumulation of Cr in biota. The results indicate that the aquatic ecosystems receiving the effluents from handloom textile factories are heavily contaminated by Cr. The contamination is hardly reflected in the concentration of Cr in water, but sediment exhibits seasonal fluctuation in deposition of Cr, concentration reaching to as high as 451.0 μg g−1 during the peak production period. There is a clear trend of gradual increase in the deposition of Cr in the sediment. Aquatic weed, insect and mollusk specimens collected from both closed water bodies (S1 & S2) and riverine resources (S3 & S4) showed high rate of accumulation of Cr. Maximum concentration of Cr was detected in roots of aquatic weeds (877.5 μg g−1). Fish specimens collected from the polluted sites (S3 & S4) of river Churni showed moderate to high concentration of Cr in different tissues. Maximum concentration was detected in the liver of Glossogobius giuris (679.7 μg g−1) during monsoon followed by gill of Mystus bleekeri (190.0 μg g−1) and gut of G. giuris (123.7 μg g−1) during summer. Eutropiichthys vacha showed moderately high concentration of Cr in different tissues (65–99 μg g−1) while Puntius sarana showed relatively low concentration of Cr (below detection limit to 18.0 μg g−1) in different tissues except in gill (64.4 μg g−1). PMID:26644938

  11. Micromagnetic Simulation of Fibers and Coatings on Textiles

    NASA Astrophysics Data System (ADS)

    Ehrmann, Andrea; Blachowicz, Tomasz

    2015-10-01

    Simulations of mechanical or comfort properties of fibers, yarns and textile fabrics have been developed for a long time. In the course of increasing interest in smart textiles, models for conductive fabrics have also been developed. The magnetic properties of fibers or magnetic coatings, however, are almost exclusively being examined experimentally. This article thus describes different possibilities of micromagnetically modeling magnetic fibers or coatings. It gives an overview of calculation times for different dimensions of magnetic materials, indicating the limits due to available computer performance and shows the influence of these dimensions on the simulated magnetic properties for magnetic coatings on fibers and fabrics.

  12. Impacts and Policy Implications of Metals Effluent Discharge into Rivers within Industrial Zones: A Sub-Saharan Perspective from Ethiopia

    NASA Astrophysics Data System (ADS)

    Zinabu, E.; Kelderman, P.; van der Kwast, J.; Irvine, K.

    2018-04-01

    Kombolcha, a city in Ethiopia, exemplifies the challenges and problems of the sub-Saharan countries where industrialization is growing fast but monitoring resources are poor and information on pollution unknown. This study monitored metals Cr, Cu, Zn, and Pb concentrations in five factories' effluents, and in the effluent mixing zones of two rivers receiving discharges during the rainy seasons of 2013 and 2014. The results indicate that median concentrations of Cr in the tannery effluents and Zn in the steel processing effluents were as high as 26,600 and 155,750 µg/L, respectively, much exceeding both the USEPA and Ethiopian emission guidelines. Cu concentrations were low in all effluents. Pb concentrations were high in the tannery effluent, but did not exceed emission guidelines. As expected, no metal emission guidelines were exceeded for the brewery, textile and meat processing effluents. Median Cr and Zn concentrations in the Leyole river in the effluent mixing zones downstream of the tannery and steel processing plant increased by factors of 52 (2660 compared with 51 µg Cr/L) and 5 (520 compared with 110 µg Zn/L), respectively, compared with stations further upstream. This poses substantial ecological risks downstream. Comparison with emission guidelines indicates poor environmental management by industries and regulating institutions. Despite appropriate legislation, no clear measures have yet been taken to control industrial discharges, with apparent mismatch between environmental enforcement and investment policies. Effluent management, treatment technologies and operational capacity of environmental institutions were identified as key improvement areas to adopt progressive sustainable development.

  13. Kinetic studies for Ni(II) biosorption from industrial wastewater by Cassia fistula (Golden Shower) biomass.

    PubMed

    Hanif, Muhammad Asif; Nadeem, Raziya; Zafar, Muhammad Nadeem; Akhtar, Kalsoom; Bhatti, Haq Nawaz

    2007-07-16

    The present study explores the ability of Cassia fistula waste biomass to remove Ni(II) from industrial effluents. C. fistula biomass was found very effective for Ni(II) removal from wastewater of Ghee Industry (GI), Nickel Chrome Plating Industry (Ni-Cr PI), Battery Manufacturing Industry (BMI), Tanner Industry: Lower Heat Unit (TILHU), Tannery Industry: Higher Heat Unit (TIHHU), Textile Industry: Dying Unit (TIDU) and Textile Industry: Finishing Unit (TIFU). The initial Ni(II) concentration in industrial effluents was found to be 34.89+/-0.01, 183.56+/-0.08, 21.19+/-0.01, 43.29+/-0.03, 47.26+/-0.02, 31.38+/-0.01 and 31.09+/-0.01mg/L in GI, Ni-Cr PI, BMI, TILHU, TIHHU, TIDU and TIFU, respectively. After biosorption the final Ni(II) concentration in industrial effluents was found to be 0.05+/-0.01, 17.26+/-0.08, 0.03+/-0.01, 0.05+/-0.01, 0.1+/-0.01, 0.07+/-0.01 and 0.06+/-0.01mg/L in GI, Ni-Cr PI, BMI, TILHU, TIHHU, TIDU and TIFU, respectively. The % sorption Ni(II) ability of C. fistula from seven industries included in present study tend to be in following order: TILHU (99.88)>GI (99.85) approximately BMI (99.85)>TIFU (99.80)>TIHHU (99.78)>TIDU (99.77)>Ni-Cr PI (90.59). Sorption kinetic experiments were performed in order to investigate proper sorption time for Ni(II) removal from wastewater. Batch metal ion uptake capacity experiments indicated that sorption equilibrium reached much faster in case of industrial wastewater samples (480min) in comparison to synthetic wastewater (1440min) using same biosorbent. The kinetic data were analyzed in term of pseudo-first-order and pseudo-second-order expressions. Pseudo-second-order model described well the sorption kinetics of Ni(II) onto C. fistula biomass from industrial effluents in comparison to pseudo-first-order kinetic model. Due to unique high Ni(II) sorption capacity of C. fistula waste biomass it can be concluded that it is an excellent biosorbent for Ni(II) uptake from industrial effluents.

  14. Treatment of textile dyehouse effluent using ceramic membrane based process in combination with chemical pretreatment.

    PubMed

    Bhattacharya, Priyankari; Ghosh, Sourja; Majumdar, Swachchha; Bandyopadhyay, Sibdas

    2013-10-01

    Treatment of highly concentrated dyebath effluent and comparatively dilute composite effluent having mixture of various reactive dyes collected from a cotton fabric dyeing unit was undertaken in the present study. Ceramic microfiltration membrane prepared from a cost effective composition of alumina and clay was used. Prior to microfiltration, a chemical pretreatment was carried out with aluminium sulphate in combination with a polymeric retention aid. An optimum dose of 100 mg/L of aluminium sulphate and 1 ml/L of a commercial flocculant Afilan RAMF was found effective for dye removal (> 98%) from the synthetic solutions of reactive dyes with initial concentration of 150 mg/L in both the single component and two component systems. In the microfiltration study, effect of operating pressure in the permeate flux was observed for both the pretreated and untreated effluents and permeate samples were analyzed for dye concentration, COD, turbidity, TSS, etc. during constant pressure filtration. About 98-99% removal of dyes was obtained in the combined process with COD reduction of 54-64%.

  15. Identification and evaluation of bioremediation potential of laccase isoforms produced by Cyathus bulleri on wheat bran.

    PubMed

    Vats, Arpita; Mishra, Saroj

    2018-02-15

    Multiplicity in laccases among lignin degrading fungal species is of interest as it confers the ability to degrade several types of lignocellulosics. The combination of laccases produced on such substrates could be beneficial for treatment of complex aromatics, including dyes. In this study, we report on production of high units (679.6Ug -1 substrate) of laccase on solid wheat bran (WB) by Cyathus bulleri. Laccase, purified from the culture filtrates of WB grown fungus, was effective for oxidation of veratryl alcohol, Reactive blue 21 and textile effluent without assistance of externally added mediators. De novo sequencing of the 'purified' laccase lead to identification of several peptides that originated from different laccase genes. Transcriptome analysis of the fungus, cultivated on WB, confirmed presence of 8 isozymes, that were re-amplified and sequenced from the cDNA prepared from WB grown fungus. The 8 isozymes were grouped into 3 classes, based on their sequence relationship with other basidiomycete laccases. The isoforms produced on WB decolorized (by ∼57%) and degraded textile effluent far more effectively, compared to laccase obtained from Basal salt cultivated fungus. The decolorization and degradation was also accompanied by more than 95% reduction in phytotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Green synthesis of palm oil mill effluent-based graphenic adsorbent for the treatment of dye-contaminated wastewater.

    PubMed

    Teow, Yeit Haan; Nordin, Nadzirah Ilyiani; Mohammad, Abdul Wahab

    2018-05-12

    Textile wastewater contains methylene blue (MB), a major coloring agent in textile industry. Activated carbon (AC) is the most widely used adsorbent in removing dyes from industrial wastewater. However, high production cost of AC is the major obstacle for its wide application in dye wastewater treatment. In this study, a sustainable approach in synthesizing graphenic adsorbent from palm oil mill effluent (POME), a potential carbonaceous source, has been explored. This new development in adsorption technique is considered as green synthesis as it does not require any binder during the synthesis process, and at the same time, it helps to solve the bottleneck of palm oil industry as POME is the main cause contributed to Malaysia's water pollution problem. The synthesized GSC was characterized through XRD, FESEM, and EDX. The adsorption performance of the synthesized GSC was evaluated by adsorption of MB. The effect of initial concentration of synthetic MB solution (1-20 mg/L) and weight of GSC (5-20 g) were investigated. A remarkable change in color of synthetic MB solution from blue to crystal clear was observed at the end of adsorption study. High efficiency of the synthesized GSC for dye-contaminated wastewater treatment is concluded.

  17. Efficiency Improvement of Some Agricultural Residue Modified Materials for Textile Dyes Absorption

    NASA Astrophysics Data System (ADS)

    Boonsong, P.; Paksamut, J.

    2018-03-01

    In this work, the adsorption efficiency was investigated of some agricultural residue modified materials as natural bio-adsorbents which were rice straw (Oryza sativa L.) and pineapple leaves (Ananas comosus (L.) Merr.) for the removal of textile dyes. Reactive dyes were used in this research. The improvement procedure of agricultural residue materials properties were alkali-acid modification with sodium hydroxide solution and hydrochloric acid solution. Adsorption performance has been investigated using batch experiments. Investigated adsorption factors consisted of adsorbent dose, contact time, adsorbent materials and pH of solution. The results were found that rice straw had higher adsorption capacity than pineapple leaves. The increasing of adsorption capacity depends on adsorbent dose and contact time. Moreover, the optimum pH for dye adsorption was acidic range because lowering pH increased the positively charges on the adsorbent surface which could be attacked by negatively charge of acid dyes. The agricultural residue modified materials had significant dye removal efficiency which these adsorbents could be used for the treatment of textile effluent in industries.

  18. Rubber Impact on 3D Textile Composites

    NASA Astrophysics Data System (ADS)

    Heimbs, Sebastian; Van Den Broucke, Björn; Duplessis Kergomard, Yann; Dau, Frederic; Malherbe, Benoit

    2012-06-01

    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools.

  19. Micromechanical models for textile structural composites

    NASA Technical Reports Server (NTRS)

    Marrey, Ramesh V.; Sankar, Bhavani V.

    1995-01-01

    The objective is to develop micromechanical models for predicting the stiffness and strength properties of textile composite materials. Two models are presented to predict the homogeneous elastic constants and coefficients of thermal expansion of a textile composite. The first model is based on rigorous finite element analysis of the textile composite unit-cell. Periodic boundary conditions are enforced between opposite faces of the unit-cell to simulate deformations accurately. The second model implements the selective averaging method (SAM), which is based on a judicious combination of stiffness and compliance averaging. For thin textile composites, both models can predict the plate stiffness coefficients and plate thermal coefficients. The finite element procedure is extended to compute the thermal residual microstresses, and to estimate the initial failure envelope for textile composites.

  20. Textile dyes induce toxicity on zebrafish early life stages.

    PubMed

    de Oliveira, Gisele Augusto Rodrigues; de Lapuente, Joaquín; Teixidó, Elisabet; Porredón, Constança; Borràs, Miquel; de Oliveira, Danielle Palma

    2016-02-01

    Textile manufacturing is one of the most polluting industrial sectors because of the release of potentially toxic compounds, such as synthetic dyes, into the environment. Depending on the class of the dyes, their loss in wastewaters can range from 2% to 50% of the original dye concentration. Consequently, uncontrolled use of such dyes can negatively affect human health and the ecological balance. The present study assessed the toxicity of the textile dyes Direct Black 38 (DB38), Reactive Blue 15 (RB15), Reactive Orange 16 (RO16), and Vat Green 3 (VG3) using zebrafish (Danio rerio) embryos for 144 h postfertilization (hpf). At the tested conditions, none of the dyes caused significant mortality. The highest RO16 dose significantly delayed or inhibited the ability of zebrafish embryos to hatch from the chorion after 96 hpf. From 120 hpf to 144 hpf, all the dyes impaired the gas bladder inflation of zebrafish larvae, DB38 also induced curved tail, and VG3 led to yolk sac edema in zebrafish larvae. Based on these data, DB38, RB15, RO16, and VG3 can induce malformations during embryonic and larval development of zebrafish. Therefore, it is essential to remove these compounds from wastewater or reduce their concentrations to safe levels before discharging textile industry effluents into the aquatic environment. © 2015 SETAC.

  1. The role of calcium and sodium in toxicity of an effluent to mysid shrimp (Mysidopsis bahia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, E.R.; Stekoll, M.S.

    2000-01-01

    The source of acute toxicity of an aged gold mill effluent to juvenile mysid shrimp (Mysidopsis bahia [Americamysis bahia]) was identified. Effluent osmolality was equivalent to that of 12 ppt seawater. At five effluent concentrations ranging from 4 to 100% (v/v), using 12 ppt seawater for dilution, the onset of responses was most rapid at 37% effluent. Simulated effluent was created by adding Na{sup +}, Ca{sup 2+}, Mg{sup 2+}, K{sup +}, Cl{sup {minus}}, and SO{sub 4}{sup 2{minus}} to distilled water at concentrations equal to those measured in the effluent. The unusual finding of a more rapid onset of responses atmore » 37% than at 100% effluent was duplicated with simulated effluent, demonstrating that responses of M. bahia to effluent were attributable to one or more of the six ions that were included in simulated effluent. Proportionally, excess Ca{sup 2+} and Na{sup +} concentrations in effluent and in simulated effluent, along with the results of the previous experiments, demonstrated that excess Ca{sup 2+} was the sole source of effluent toxicity and that Na{sup +} deficiency, relative to the proportion in seawater, reduced Ca{sup 2+} toxicity.« less

  2. Electrochemical production and use of free chlorine for pollutant removal: an experimental design approach.

    PubMed

    Antonelli, Raissa; de Araújo, Karla Santos; Pires, Ricardo Francisco; Fornazari, Ana Luiza de Toledo; Granato, Ana Claudia; Malpass, Geoffroy Roger Pointer

    2017-10-28

    The present paper presents the study of (1) the optimization of electrochemical-free chlorine production using an experimental design approach, and (2) the application of the optimum conditions obtained for the application in photo-assisted electrochemical degradation of simulated textile effluent. In the experimental design the influence of inter-electrode gap, pH, NaCl concentration and current was considered. It was observed that the four variables studied are significant for the process, with NaCl concentration and current being the most significant variables for free chlorine production. The maximum free chlorine production was obtained at a current of 2.33 A and NaCl concentrations in 0.96 mol dm -3 . The application of the optimized conditions with simultaneous UV irradiation resulted in up to 83.1% Total Organic Carbon removal and 100% of colour removal over 180 min of electrolysis. The results indicate that a systematic (statistical) approach to the electrochemical treatment of pollutants can save time and reagents.

  3. Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment.

    PubMed

    Liu, Yuyang; Chen, Xianqiong; Xin, J H

    2008-12-01

    Inspired by the non-wetting phenomena of duck feathers, the water repellent property of duck feathers was studied at the nanoscale. The microstructures of the duck feather were investigated by a scanning electron microscope (SEM) imaging method through a step-by-step magnifying procedure. The SEM results show that duck feathers have a multi-scale structure and that this multi-scale structure as well as the preening oil are responsible for their super hydrophobic behavior. The microstructures of the duck feather were simulated on textile substrates using the biopolymer chitosan as building blocks through a novel surface solution precipitation (SSP) method, and then the textile substrates were further modified with a silicone compound to achieve low surface energy. The resultant textiles exhibit super water repellent properties, thus providing a simple bionic way to create super hydrophobic surfaces on soft substrates using flexible material as building blocks.

  4. Detection of Nanosilver Agents in Antibacterial Textiles

    NASA Astrophysics Data System (ADS)

    Xu, Chengtao; Zhao, Jie; Wu, Jianjian; Nie, Jinmei; Cui, Chengmin; Xie, Weibin; Zhang, Yan

    2018-01-01

    The analytical techniques are needed to detect the nanosilver in textiles in direct contact with skin. In this paper, in order to discuss the extraction of nanosilver on the surface of textiles by human skin, we demonstrate the capability of constant temperature oscillation extraction method followed by Inductively Coupled Plasma Spectroscopy (ICP). The sweat and deionized water were selected as extraction solvent simulating the contact process of human skin with textiles. The SEM and TEM analysis shows the existence of nanosilver in the fabric and aqueous extract. ICP analysis shows accurately when analysing silver amounts in the range of 0.05∼1.2 mg/L with r2 values of 0.9997. The percent recoveries of all fabrics were all lower than 44 %.The results shows that the developed method of simulating of human sweat extraction was not very effective. So the nanosilver might not be transferred to human body effectively from the fabric.

  5. Electrokinetic remediation of inorganic and organic pollutants in textile effluent contaminated agricultural soil.

    PubMed

    Annamalai, Sivasankar; Santhanam, Manikandan; Sundaram, Maruthamuthu; Curras, Marta Pazos

    2014-12-01

    The discharge from the dyeing industries constitutes unfixed dyes, inorganic salts, heavy metal complexes etc., which spoil the surrounding areas of industrial sites. The present article reports the use of direct current electrokinetic technique for the treatment of textile contaminated soil. Impressed direct current voltage of 20 V facilitates the dye/metal ions movement in the naturally available dye contaminated soil towards the opposite electrode by electromigration. IrO2–RuO2–TiO2/Ti was used as anode and Ti used as cathode. UV–Visible spectrum reveals that higher dye intensity was nearer to the anode. Ni, Cr and Pb migration towards the cathode and migration of Cu, SO42− and Cl− towards anode were noticed. Chemical oxygen demand in soil significantly decreased upon employing electrokinetic. This technology may be exploited for faster and eco-friendly removal of dye in soil environment.

  6. Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor.

    PubMed

    Balapure, Kshama; Bhatt, Nikhil; Madamwar, Datta

    2015-01-01

    The present research emphasizes on degradation of azo dyes from simulated textile wastewater using down flow microaerophilic fixed film reactor. Degradation of simulated textile wastewater (COD 7200mg/L and dye concentration 300mg/L) was studied in a microaerophilic fixed film reactor using pumice stone as a support material under varying hydraulic retention time (HRT) and organic loading rate (OLR). The intense metabolic activity of the inoculated bacterial consortium in the reactor led to 97.5% COD reduction and 99.5% decolorization of simulated wastewater operated under OLR of 7.2kgCODm(3)/d and 24h of HRT. FTIR, (1)H NMR and GC-MS studies revealed the formation of lower molecular weight aliphatic compounds under 24h of HRT, leading to complete mineralization of simulated wastewater. The detection of oxido-reductive enzyme activities suggested the enzymatic reduction of azo bonds prior to mineralization. Toxicity studies indicated that microbial treatment favors detoxification of simulated wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater.

    PubMed

    Han, Gang; Liang, Can-Zeng; Chung, Tai-Shung; Weber, Martin; Staudt, Claudia; Maletzko, Christian

    2016-03-15

    A novel combination of forward osmosis (FO) process with coagulation/flocculation (CF) (FO-CF) has been experimentally conceived for the treatment and reuse of textile wastewater. FO is employed to spontaneously recover water from the wastewater via osmosis and thus effectively reduces its volume with a dramatically enhanced dye concentration. CF is then applied to precipitate and remove dyes from the FO concentrated stream with much improved efficiency and reduced chemical dosage. The FO-CF hybrid system exhibits unique advantages of high water flux and recovery rate, well controlled membrane fouling, high efficiency, and minimal environmental impact. Using a lab-made thin-film composite (TFC) FO membrane, an initial water flux (Jw) of 36.0 L m(-2) h(-1) with a dye rejection of 99.9% has been demonstrated by using 2 M NaCl as the draw solution and synthetic textile wastewater containing multiple textile dyes, inorganic salts and organic additives as the feed under the FO mode. The Jw could be maintained at a high value of 12.0 L m(-2) h(-1) even when the recovery rate of the wastewater reaches 90%. Remarkable reverse fouling behavior has also been observed where the Jw of the fouled membrane can be almost fully restored to the initial value by physical flushing without using any chemicals. Due to the great dye concentration in the FO concentrated wastewater stream, the CF process could achieve more than 95% dye removal with a small dosage of coagulants and flocculants at 500-1000 ppm. The newly developed FO-CF hybrid process may open up new exploration of alternative technologies for the effective treatment and reuse of textile effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A method for dye extraction using an aqueous two-phase system: Effect of co-occurrence of contaminants in textile industry wastewater.

    PubMed

    Borges, Gabriella Alexandre; Silva, Luciana Pereira; Penido, Jussara Alves; de Lemos, Leandro Rodrigues; Mageste, Aparecida Barbosa; Rodrigues, Guilherme Dias

    2016-12-01

    This paper reports a green and efficient procedure for extraction of the dyes Malachite Green (MG), Methylene Blue (MB), and Reactive Red 195 (RR) using an aqueous two-phase system (ATPS). An ATPS consists mainly of water, together with polymer and salt, and does not employ any organic solvent. The extraction efficiency was evaluated by means of the partition coefficients (K) and residual percentages (%R) of the dyes, under different experimental conditions, varying the tie-line length (TLL) of the system, the pH, the type of ATPS-forming electrolyte, and the type of ATPS-forming polymer. For MG, the best removal (K = 4.10 × 10(4), %R = 0.0069%) was obtained with the ATPS: PEO 1500 + Na2C4H4O6 (TLL = 50.21% (w/w), pH = 6.00). For MB, the maximum extraction (K = 559.9, %R = 0.258%) was achieved with the ATPS: PEO 400 + Na2SO4 (TLL = 50.31% (w/w), pH = 1.00). Finally for RR, the method that presented the best results (K = 3.75 × 10(4), %R = 0.237%) was the ATPS: PEO 400 + Na2SO4 (TLL = 50.31% (w/w), pH = 6.00). The method was applied to the recovery of these dyes from a textile effluent sample, resulting in values of K of 1.17 × 10(4), 724.1, and 3.98 × 10(4) for MG, MB, and RR, respectively, while the corresponding %R values were 0.0038, 0.154, and 0.023%, respectively. In addition, the ATPS methodology provided a high degree of color removal (96.5-97.95%) from the textile effluent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Factors affecting the immobilization of fungal biomass on CNT as a biosorbent for textile dyes removal

    NASA Astrophysics Data System (ADS)

    Adebayo Bello, Ibrahim; Kabbashi, Nassereldeen A.; Zahangir Alam, Md; Alkhatib, Ma'an F.; Nabilah Murad, Fatin

    2017-07-01

    Effluents from dye and textile industries are highly contaminated and toxic to the environment. High concentration of non-biodegradable compounds contributes to increased biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of the wastewater bodies. Dyes found in wastewater from textile industries are carcinogenic, mutagenic or teratogenic. Biological processes involving certain bacteria, fungi and activated carbon have been employed in treating wastewater. These methods are either inefficient or ineffective. These complexities necessitates search for new approaches that will offset all the shortcomings of the present solutions to the challenges faced with textile wastewater management. This study produced a new biosorbent by the immobilization of fungal biomass on carbon nanotubes. The new biosorbent is called “carbon nanotubes immobilized biomass (CNTIB)” which was produced by immobilization technique. A potential fungal strain, Aspergillus niger was selected on the basis of biomass production. It was found out in this studies that fungal biomass were better produced in acidic medium. Aspergillus niger was immobilized on carbon nanotubes. One-factor-at-a time (OFAT) was employed to determine the effect of different factors on the immobilization of fungal biomass on carbon nanotubes and optimum levels at which the three selected parameters (pH, culture time and agitation rate) would perform. Findings from OFAT showed that the optimum conditions for immobilization are a pH of 5, agitation rate of 150rpm and a culture time of 5 days.

  10. Bioremediation of direct dyes in simulated textile effluents by a paramorphogenic form of Aspergillus oryzae.

    PubMed

    Corso, C R; Almeida, E J R; Santos, G C; Morão, L G; Fabris, G S L; Mitter, E K

    2012-01-01

    Azo dyes are extensively used for coloring textiles, paper, food, leather, drinks, pharmaceutical products, cosmetics and inks. The textile industry consumes the largest amount of azo dyes, and it is estimated that approximately 10-15% of dyes used for coloring textiles may be lost in waste streams. Almost all azo dyes are synthetic and resist biodegradation, however, they can readily be reduced by a number of chemical and biological reducing systems. Biological treatment has advantages over physical and chemical methods due to lower costs and minimal environmental effect. This research focuses on the utilization of Aspergillus oryzae to remove some types of azo dyes from aqueous solutions. The fungus, physically induced in its paramorphogenic form (called 'pellets'), was used in the dye biosorption studies with both non-autoclaved and autoclaved hyphae, at different pH values. The goals were the removal of dyes by biosorption and the decrease of their toxicity. The dyes used were Direct Red 23 and Direct Violet 51. Their spectral stability (325-700 nm) was analyzed at different pH values (2.50, 4.50 and 6.50). The best biosorptive pH value and the toxicity limit, (which is given by the lethal concentration (LC(100)), were then determined. Each dye showed the same spectrum at different pH values. The best biosorptive pH was 2.50, for both non- autoclaved and autoclaved hyphae of A. oryzae. The toxicity level of the dyes was determined using the Trimmed Spearman-Karber Method, with Daphnia similis in all bioassays. The Direct Violet 51 (LC(100) 400 mg · mL(-1)) was found to be the most toxic dye, followed by the Direct Red 23 (LC(100) 900 mg · mL(-1)). The toxicity bioassays for each dye have shown that it is possible to decrease the toxicity level to zero by adding a small quantity of biomass from A. oryzae in its paramorphogenic form. The autoclaved biomass had a higher biosorptive capacity for the dye than the non-autoclaved biomass. The results show that bioremediation occurs with A. oryzae in its paramorphogenic form, and it can be used as a biosorptive substrate for treatment of industrial waste water containing azo dyes.

  11. Simulation of textile manufacturing processes for planning, scheduling, and quality control purposes

    NASA Astrophysics Data System (ADS)

    Cropper, A. E.; Wang, Z.

    1995-08-01

    Simulation, as a management information tool, has been applied to engineering manufacture and assembly operations. The application of the principles to textile manufacturing (fiber to fabric) is discussed. The particular problems and solutions in applying the simulation software package to the yarn production processes are discussed with an indication of how the software achieves the production schedule. The system appears to have application in planning, scheduling, and quality assurance. The latter being a result of the traceability possibilities through a process involving mixing and splitting of material.

  12. ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light.

    PubMed

    Saravanan, R; Karthikeyan, N; Gupta, V K; Thirumal, E; Thangadurai, P; Narayanan, V; Stephen, A

    2013-05-01

    Degradation of model organic dye and industry effluent was studied using different weight percentages of Ag into ZnO as a catalyst. In this study, the catalysts were prepared by thermal decomposition method, which was employed for the first time in the preparation of ZnO/Ag nanocomposite catalysts. The physical and chemical properties of the prepared samples were studied using various techniques. The specific surface area, which plays an important role in the photocatalytic degradation, was studied using BET analysis and 10 wt.% Ag into ZnO showed the best degrading efficiency. The optical absorption (UV-vis) and emission (PL) properties of the samples were studied and results suggest better photocatalytic properties for 10 wt.% Ag sample compared to other samples. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  13. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater.

    PubMed

    Franca, R D G; Ortigueira, J; Pinheiro, H M; Lourenço, N D

    2017-09-01

    Treatment of the highly polluting and variable textile industry wastewater using aerobic granular sludge (AGS) sequencing batch reactors (SBRs) has been recently suggested. Aiming to develop this technology application, two feeding strategies were compared regarding the capacity of anaerobic-aerobic SBRs to deal with disturbances in the composition of the simulated textile wastewater feed. Both a statically fed, anaerobic-aerobic SBR and an anaerobic plug-flow fed, anaerobic-aerobic SBR could cope with shocks of high azo dye concentration and organic load, the overall chemical oxygen demand and color removal yields being rapidly restored to 80%. Yet, subsequent azo dye metabolite bioconversion was not observed, along the 315-day run. Moreover, switching from a starch-based substrate to acetate in the feed composition deteriorated AGS stability. Overall, the plug-flow fed SBR recovered more rapidly from the imposed disturbances. Further research is needed towards guaranteeing long-term AGS stability during the treatment of textile wastewater.

  14. Ozonation of exhausted dark shade reactive dye bath for reuse.

    PubMed

    Sundrarajan, M; Vishnu, G; Joseph, Kurian

    2006-10-01

    Exhausted reactive dye bath of dark shades were collected from cotton knit wear dyeing units in Tirupur. Ozonation was conducted in a column reactor system fed with ozone at the rate of 0.16 g/min to assess its efficiency in reducing the color, chemical oxygen demand and total organic carbon. The potential of the decolorized dye bath for its repeated reuse was also analyzed. The results from the reusability studies indicate that the dyeing quality was not affected by the reuse of decolorized dye bath for two successive cycles. Complete decolorization of the effluent was achieved in 60 minutes contact time at an ozone consumption of 183 mg/L for Red, 175 for Navy Blue and 192 for Green shades respectively. The corresponding COD removal was 60%, 54% and 63% for the three shades while TOC removal efficiency was 59%, 55% and 62% respectively. It is concluded that ozonation is efficient in decolorization of exhausted dye bath effluents containing conventional reactive dyes. However, the corresponding removal of COD from the textile effluent was not significant.

  15. Pollution of Nigerian Aquatic Ecosystems by Industrial Effluents: Effects on Fish Productivity

    NASA Astrophysics Data System (ADS)

    Nwagwu, S. N.; Kuyoro, E. O.; Agboola, D. M.; Salau, K. S.; Kuyoro, T. O.

    2016-02-01

    Nigeria is uniquely endowed with vast water resources. The near-shore, estuaries, rivers, lakes and pond all taken together, offer tremendous opportunities for fish production. Globally, water bodies are primary means for disposal of waste especially the effluents from industrial, municipal, sewage and agricultural practices near the water body. Studies carried out in most cities in Nigeria has shown that industrial effluent is one of the main sources of water pollution in Nigeria and less than 10% of industries in Nigeria treat their effluents before discharging them into the water bodies. This effluent can alter the physical, chemical and biological nature of the receiving water body resulting in the death of the inhabiting organisms including fish. Untreated industrial waste discharged into water bodies have resulted in eutrophication of aquatic ecosystem as evidence by substantial algal bloom leading to dissolve oxygen depletion and eventually massive mortality of fish and other organisms. Industries like textile producing factory, paper manufacturing plants, oil refinery, brewery and fermentation factory and metal producing industries discharge their wastes into the aquatic ecosystem. These industrial wastes contain pollutants like acids, heavy metals, oil, cyanide, organic chemicals, pesticides, polychlorinated biphenyls, dioxins etc. Some of these pollutants are carcinogenic, mutagenic and teratogenic while some are poisonous depending on the level of exposure and intake by aquatic organisms and man. These pollutants affect the biological growth and reproduction of fishes in the aquatic ecosystem thereby reducing the amount of captured fishes. Fish and other aquatic lives face total extinction due to destruction of aquatic lives and natural habitats by pollution of water bodies. Effluents and wastes produced by industries should be minimised by using low and non-waste technologies; and effluents should be properly treated before they are discharged into aquatic environment.

  16. An integrated (electro- and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: Understanding the degradation mechanism and toxicity assessment.

    PubMed

    Aravind, Priyadharshini; Selvaraj, Hosimin; Ferro, Sergio; Sundaram, Maruthamuthu

    2016-11-15

    A hybrid approach for the remediation of recalcitrant dye wastewater is proposed. The chlorine-mediated electrochemical oxidation of real textile effluents and synthetic samples (using Ti/IrO2-RuO2-TiO2 anodes), lead to discoloration by 92% and 89%, respectively, in 100min, without significant mineralization. The remediation was obtained through biodegradation, after removing the residual bio-toxic active chlorine species via sunlight exposition. Results show that the electrochemical discoloration enhances the effluent biodegradability with about 90% COD removal employing acclimatized naphthalene-degrading bacterial consortia, within 144h. Based on results obtained through FT-IR and GC-MS, it is likely that azo group stripping and oxidative cleavage of dyes occur due to the nucleophilic attack of active chlorine species during electro-oxidation. This leads to generation of aromatic intermediates which are further desulfonated, deaminated or oxidized only at their functional groups. These aromatic intermediates were mineralized into simpler organic acids and aldehydes by bacterial consortia. Phyto-toxicity trials on Vigna radiata confirmed the toxic nature of the untreated dye solutions. An increase in root and shoot development was observed with the electrochemically treated solutions, the same was higher in case of bio-treated solutions. Overall, obtained results confirm the capability of the proposed hybrid oxidation scheme for the remediation of textile wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Distribution and mass balance of hexavalent and trivalent chromium in a subsurface, horizontal flow (SF-h) constructed wetland operating as post-treatment of textile wastewater for water reuse.

    PubMed

    Fibbi, Donatella; Doumett, Saer; Lepri, Luciano; Checchini, Leonardo; Gonnelli, Cristina; Coppini, Ester; Del Bubba, Massimo

    2012-01-15

    In this study, during a two-year period, we investigated the fate of hexavalent and trivalent chromium in a full-scale subsurface horizontal flow constructed wetland planted with Phragmites australis. The reed bed operated as post-treatment of the effluent wastewater from an activated sludge plant serving the textile industrial district and the city of Prato (Italy). Chromium speciation was performed in influent and effluent wastewater and in water-suspended solids, at different depths and distances from the inlet; plants were also analyzed for total chromium along the same longitudinal profile. Removals of hexavalent and trivalent chromium equal to 72% and 26%, respectively were achieved. The mean hexavalent chromium outlet concentration was 1.6 ± 0.9 μg l(-1) and complied with the Italian legal limits for water reuse. Chromium in water-suspended solids was in the trivalent form, thus indicating that its removal from wastewater was obtained by the reduction of hexavalent chromium to the trivalent form, followed by accumulation of the latter inside the reed bed. Chromium in water-suspended solids was significantly affected by the distance from the inlet. Chromium concentrations in the different plant organs followed the same trend of suspended solids along the longitudinal profile and were much lower than those found in the solid material, evidencing a low metal accumulation in P. australis. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Development of Computer-Based Resources for Textile Education.

    ERIC Educational Resources Information Center

    Hopkins, Teresa; Thomas, Andrew; Bailey, Mike

    1998-01-01

    Describes the production of computer-based resources for students of textiles and engineering in the United Kingdom. Highlights include funding by the Teaching and Learning Technology Programme (TLTP), courseware author/subject expert interaction, usage test and evaluation, authoring software, graphics, computer-aided design simulation, self-test…

  19. Dermal exposure potential from textiles that contain silver nanoparticles

    PubMed Central

    Stefaniak, Aleksandr B; Duling, Mathew G; Lawrence, Robert B; Thomas, Treye A; LeBouf, Ryan F; Wade, Eleanor E; Abbas Virji, M

    2014-01-01

    Background: Factors that influence exposure to silver particles from the use of textiles are not well understood. Objectives: The aim of this study was to evaluate the influence of product treatment and physiological factors on silver release from two textiles. Methods: Atomic and absorbance spectroscopy, electron microscopy, and dynamic light scattering (DLS) were applied to characterize the chemical and physical properties of the textiles and evaluate silver release in artificial sweat and saliva under varying physiological conditions. One textile had silver incorporated into fiber threads (masterbatch process) and the other had silver nanoparticles coated on fiber surfaces (finishing process). Results: Several complementary and confirmatory analytical techniques (spectroscopy, microscopy, etc.) were required to properly assess silver release. Silver released into artificial sweat or saliva was primarily in ionic form. In a simulated “use” and laundering experiment, the total cumulative amount of silver ion released was greater for the finishing process textile (0.51±0.04%) than the masterbatch process textile (0.21±0.01%); P<0.01. Conclusions: We found that the process (masterbatch vs finishing) used to treat textile fibers was a more influential exposure factor than physiological properties of artificial sweat or saliva. PMID:25000110

  20. Dermal exposure potential from textiles that contain silver nanoparticles.

    PubMed

    Stefaniak, Aleksandr B; Duling, Mathew G; Lawrence, Robert B; Thomas, Treye A; LeBouf, Ryan F; Wade, Eleanor E; Virji, M Abbas

    2014-01-01

    Factors that influence exposure to silver particles from the use of textiles are not well understood. The aim of this study was to evaluate the influence of product treatment and physiological factors on silver release from two textiles. Atomic and absorbance spectroscopy, electron microscopy, and dynamic light scattering (DLS) were applied to characterize the chemical and physical properties of the textiles and evaluate silver release in artificial sweat and saliva under varying physiological conditions. One textile had silver incorporated into fiber threads (masterbatch process) and the other had silver nanoparticles coated on fiber surfaces (finishing process). Several complementary and confirmatory analytical techniques (spectroscopy, microscopy, etc.) were required to properly assess silver release. Silver released into artificial sweat or saliva was primarily in ionic form. In a simulated "use" and laundering experiment, the total cumulative amount of silver ion released was greater for the finishing process textile (0·51±0·04%) than the masterbatch process textile (0·21±0·01%); P<0·01. We found that the process (masterbatch vs finishing) used to treat textile fibers was a more influential exposure factor than physiological properties of artificial sweat or saliva.

  1. Biochemical response of crayfish Astacus leptodactylus exposed to textile wastewater treated by indigenous white rot fungus Coriolus versicolor.

    PubMed

    Aksu, Onder; Yildirim, Nuran Cikcikoglu; Yildirim, Numan; Danabas, Durali; Danabas, Seval

    2015-02-01

    The discharge of textile effluents into the environment without appropriate treatment poses a serious threat for the aquatic organisms. The present study was undertaken to investigate biochemical response of crayfish Astacus leptodactylus exposed to textile wastewater (TW) treated by indigenous white rot fungus Coriolus versicolor. Glutathione S-transferase (GST), cytochrome P450 1A1 (CYP1A1), and acetylcholinesterase (AchE) levels in hepatopancreas and abdomen tissues of crayfish exposed to untreated, treated, and diluted rates (1/10) in both TW during 24 and 96 h were tested. Physiochemical parameters (electrical conductivity (EC), chemical oxygen demand (COD), pH, and total dissolved solid (TDS)) of TW were determined before and after treatment. Physiochemical parameters of TW decreased after treatment. The GST activity and AchE were generally increased, but CYP1A1 activity was decreased in hepatopancreas tissue of crayfish exposed to different kinds of untreated TW. After treatment by indigenous white rot fungus (C. versicolor), GST and CYP1A1 activities were returned to control values, while AchE activities were increasing further. In this study, only GST and CYP1A1 activities of A. leptodactylus confirmed the efficiency of TW treatment with C. versicolor.

  2. Solid waste from leather industry as adsorbent of organic dyes in aqueous-medium.

    PubMed

    Oliveira, Luiz C A; Gonçalves, Maraísa; Oliveira, Diana Q L; Guerreiro, Mário C; Guilherme, Luiz R G; Dallago, Rogério M

    2007-03-06

    The industrial tanning of leather usually produces considerable amounts of chromium-containing solid waste and liquid effluents and raises many concerns on its environmental effect as well as on escalating landfill costs. Actually, these shortcomings are becoming increasingly a limiting factor to this industrial activity that claims for alternative methods of residue disposals. In this work, it is proposed a novel alternative destination of the solid waste, based on the removal of organic contaminants from the out coming aqueous-residue. The adsorption isotherm pattern for the wet blue leather from the Aurea tanning industry in Erechim-RS (Brazil) showed that these materials present high activity on adsorbing the reactive red textile dye as well as other compounds. The adsorbent materials were characterized by IR spectroscopy and SEM and tested for the dye adsorption (reactive textile and methylene blue dyes). The concentrations of dyes were measured by UV-vis spectrophotometry and the chromium extraction from leather waste was realized by basic hydrolysis and determined by atomic absorption. As a low cost abundant adsorbent material with high adsorption ability on removing dye methylene blue (80mgg(-1)) and textile dye reactive red (163mgg(-1)), the leather waste is revealed to be a interesting alternative relatively to more costly adsorbent materials.

  3. Hydrogen production and metal-dye bioremoval by a Nostoc linckia strain isolated from textile mill oxidation pond.

    PubMed

    Mona, Sharma; Kaushik, Anubha; Kaushik, C P

    2011-02-01

    Biohydrogen production by Nostoc linckia HA-46, isolated from a textile-industry oxidation-pond was studied by varying light/dark period, pH, temperature and ratio of carbon-dioxide and argon in the gas-mixture. Hydrogen production rates were maximum under 18 h of light and 6 h of darkness, pH 8.0, 31°C, a CO(2):Ar ratio 2:10. Hydrogen production of the strain acclimatized to 20 mg/L of chromium/cobalt and 100 mg/L of Reactive red 198/crystal violet dye studied in N-supplemented/deficient medium was 6-10% higher in the presence of 1.5 g/L of NaNO(3). Rates of hydrogen production in the presence of dyes/metals by the strain (93-105 μmol/h/mg Chlorophyll) were significantly higher than in medium without metals/dyes serving as control (91.3 μmol/h/mg Chlorophyll). About 58-60% of the two metals and 35-73% of dyes were removed by cyanobacterium. Optimal conditions of temperature, pH and metals/dyes concentration for achieving high hydrogen production and wastewater treatment were found practically applicable as similar conditions are found in the effluent of regional textile-mills. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Treatability studies with granular activated carbon (GAC) and sequencing batch reactor (SBR) system for textile wastewater containing direct dyes.

    PubMed

    Sirianuntapiboon, Suntud; Sansak, Jutarat

    2008-11-30

    The GAC-SBR efficiency was decreased with the increase of dyestuff concentration or the decrease of bio-sludge concentration. The system showed the highest removal efficiency with synthetic textile wastewater (STWW) containing 40 mg/L direct red 23 or direct blue 201 under MLSS of 3,000 mg/L and hydraulic retention time (HRT) of 7.5 days. But, the effluent NO(3)(-) was higher than that of the influent. Direct red 23 was more effective than direct blue 201 to repress the GAC-SBR system efficiency. The dyes removal efficiency of the system with STWW containing direct red 23 was reduced by 30% with the increase of direct red 23 from 40 mg/L to 160 mg/L. The system with raw textile wastewater (TWW) showed quite low BOD(5) TKN and dye removal efficiencies of only 64.7+/-4.9% and 50.2+/-6.9%, respectively. But its' efficiencies could be increased by adding carbon sources (BOD(5)). The dye removal efficiency with TWW was increased by 30% and 20% by adding glucose (TWW+glucose) or Thai rice noodle wastewater (TWW+TRNWW), respectively. SRT of the systems were 28+/-1 days and 31+/-2 days with TWW+glucose and TWW+TRNWW, respectively.

  5. High-Strength Hybrid Textile Composites with Carbon, Kevlar, and E-Glass Fibers for Impact-Resistant Structures. A Review.

    NASA Astrophysics Data System (ADS)

    Priyanka, P.; Dixit, A.; Mali, H. S.

    2017-11-01

    The paper reviews the characterization of high-performance hybrid textile composites and their hybridization effects of composite's behavior. Considered are research works based on the finite-element modeling, simulation, and experimental characterization of various mechanical properties of such composites.

  6. Electrical Switchability and Dry-Wash Durability of Conductive Textiles

    PubMed Central

    Wu, Bangting; Zhang, Bowu; Wu, Jingxia; Wang, Ziqiang; Ma, Hongjuan; Yu, Ming; Li, Linfan; Li, Jingye

    2015-01-01

    There is growing interest in the area of conductive textiles in the scientific and industrial community. Herein, we successfully prepared a conductive textile via covalently grafting polyaniline (PANI) onto cotton by a multi-step treatment process. The conductivity of the resultant fabric could be tuned by immersing in water having different pH values. The conductive and insulating properties of the textile could be conveniently switched by alternately immersing in acidic and alkaline bath solutions. Most importantly, the resultant conductive fabrics were able to withstand 40 simulated dry-wash cycles, with almost no decay in the electrical conductivity, indicating their excellent dry-wash durability. The present strategy for fabricating conductive fabrics with excellent switchability of electrical properties and dry-wash durability is expected to provide inspiration for the production of multifunctional conductive textiles for use in hash or sensitive conditions. PMID:26066704

  7. Treatment of a Textile Effluent from Dyeing with Cochineal Extracts Using Trametes versicolor Fungus

    PubMed Central

    Arroyo-Figueroa, Gabriela; Ruiz-Aguilar, Graciela M. L.; López-Martínez, Leticia; González-Sánchez, Guillermo; Cuevas-Rodríguez, Germán; Rodríguez-Vázquez, Refugio

    2011-01-01

    Trametes versicolor (Tv) fungus can degrade synthetic dyes that contain azo groups, anthraquinone, triphenylmethane polymers, and heterocyclic groups. However, no references have been found related to the degradation of natural dyes, such as the carminic acid that is contained in the cochineal extract. Experiments to determine the decolorization of the effluent used in the cotton dyeing process with cochineal extract by means of Tv fungus were done. Treatments to determine decolorization in the presence or absence of Kirk's medium, glucose, and fungus, with an addition of 50% (v v-1) of nonsterilized effluent were performed. Physicochemical characterization was performed at the start and end of the treatment. Degradation kinetics were determined. A direct relationship was found between the dry weight of fungi, pH, and the decolorization system, with higher decolorization at lower pH levels (pH ~4.3). High decolorization (81% ± 0.09; 88% ± 0.17; and 99% ± 0.04) for three of the eight treatments (Kirk's medium without glucose, Kirk's medium with glucose, and without medium with glucose, respectively) was found. Toxicity tests determined an increase in the initial effluent toxicity (7.33 TU) compared with the final treatment (47.73 TU) in a period of 11 days. For this system, a degradation sequence of the carminic acid structure present in the effluent by the Tv fungus is suggested, in which it is seen that metabolites still containing aromatic structures are generated. PMID:21552764

  8. Treatment of a textile effluent from dyeing with cochineal extracts using Trametes versicolor fungus.

    PubMed

    Arroyo-Figueroa, Gabriela; Ruiz-Aguilar, Graciela M L; López-Martínez, Leticia; González-Sánchez, Guillermo; Cuevas-Rodríguez, Germán; Rodríguez-Vázquez, Refugio

    2011-05-05

    Trametes versicolor (Tv) fungus can degrade synthetic dyes that contain azo groups, anthraquinone, triphenylmethane polymers, and heterocyclic groups. However, no references have been found related to the degradation of natural dyes, such as the carminic acid that is contained in the cochineal extract. Experiments to determine the decolorization of the effluent used in the cotton dyeing process with cochineal extract by means of Tv fungus were done. Treatments to determine decolorization in the presence or absence of Kirk's medium, glucose, and fungus, with an addition of 50% (v v-1) of nonsterilized effluent were performed. Physicochemical characterization was performed at the start and end of the treatment. Degradation kinetics were determined. A direct relationship was found between the dry weight of fungi, pH, and the decolorization system, with higher decolorization at lower pH levels (pH ~4.3). High decolorization (81% ± 0.09; 88% ± 0.17; and 99% ± 0.04) for three of the eight treatments (Kirk's medium without glucose, Kirk's medium with glucose, and without medium with glucose, respectively) was found. Toxicity tests determined an increase in the initial effluent toxicity (7.33 TU) compared with the final treatment (47.73 TU) in a period of 11 days. For this system, a degradation sequence of the carminic acid structure present in the effluent by the Tv fungus is suggested, in which it is seen that metabolites still containing aromatic structures are generated.

  9. RTM user's guide

    NASA Technical Reports Server (NTRS)

    Claus, Steven J.; Loos, Alfred C.

    1989-01-01

    RTM is a FORTRAN '77 computer code which simulates the infiltration of textile reinforcements and the kinetics of thermosetting polymer resin systems. The computer code is based on the process simulation model developed by the author. The compaction of dry, woven textile composites is simulated to describe the increase in fiber volume fraction with increasing compaction pressure. Infiltration is assumed to follow D'Arcy's law for Newtonian viscous fluids. The chemical changes which occur in the resin during processing are simulated with a thermo-kinetics model. The computer code is discussed on the basis of the required input data, output files and some comments on how to interpret the results. An example problem is solved and a complete listing is included.

  10. Advanced treatment of biotreated textile industry wastewater with ozone, virgin/ozonated granular activated carbon and their combination.

    PubMed

    Arslan-Alaton, Idil; Seremet, Ozden

    2004-01-01

    Biotreated textile wastewater (CODo = 248 mg L(-1); TOCo = 58 mg L(-1); A620 = 0.007 cm(-1); A525 = 0.181 cm(-1); A436 = 0.198 cm(-1)) was subjected to advanced treatment with ozonation, granular activated carbon (GAC) adsorption in serial and simultaneous applications. Experiments were conducted to investigate the effects of applied ozone dose, ozone absorption rate, specific ozone absorption efficiency, GAC dose, and reaction pH on the treatment performance of the selected tertiary treatment scheme. In separate experiments, the impact of virgin GAC ozonation on its adsorptive capacity for biotreated and biotreated + ozonated textile effluent was also investigated. Ozonation appeared to be more effective for decolorization (kd = 0.15 min(-1) at pH = 3), whereas GAC adsorption yielded higher COD removal rates (54% at pH = 3). It was also found that GAC addition (4 g/L) at pH = 7 and 9 enhanced the COD abatement rate of the ozonation process significantly and that the sequential application of ozonation (at pH = 3-11, 675 mg L(-1) O3) followed by GAC adsorption (at pH = 3-7, 10 g L(-1) GAC) resulted in the highest treatment performances both in terms of color and COD reduction. Simultaneous application of GAC and ozone at acidic and alkaline pH seriously inhibited COD abatement rates as a consequence of competitive adsorption and partial oxidation of textile components and GAC. It could also be established that ozone absorption efficiency decreased after color removal was complete. Ozonation of biotreated textile wastewater with 113 mg L(-1) ozone resulted in an appreciable enhancement of GAC adsorptive capacity in terms of residual color removal. Ozonation of GAC at relatively low doses (= 10.8 mg/g GAC) did not improve its overall adsorption capacity.

  11. Occurrence and overlooked sources of the biocide carbendazim in wastewater and surface water.

    PubMed

    Merel, Sylvain; Benzing, Saskia; Gleiser, Carolin; Di Napoli-Davis, Gina; Zwiener, Christian

    2018-08-01

    Carbendazim is a fungicide commonly used as active substance in plant protection products and biocidal products, for instance to protect facades of buildings against fungi. However, the subsequent occurrence of this fungicide and potential endocrine disruptor in the aqueous environment is a major concern. In this study, high resolution mass spectrometry shows that carbendazim can be detected with an increasing abundance from the source to the mouth of the River Rhine. Unexpectedly, the abundance of carbendazim correlates poorly with that of other fungicides used as active ingredients in plant protection products (r 2 of 0.32 for cyproconazole and r 2 of 0.57 for propiconazole) but it correlates linearly with that of pharmaceuticals (r 2 of 0.86 for carbamazepine and r 2 of 0.89 for lamotrigine). These results suggest that the occurrence of carbendazim in surface water comes mainly from the discharge of treated domestic wastewater. This hypothesis is further confirmed by the detection of carbendazim in wastewater effluents (n = 22). In fact, bench-scale leaching tests of textiles and papers revealed that these materials commonly found in households could be a source of carbendazim in domestic wastewater. Moreover, additional river samples collected nearby two paper industries indicate that the discharge of their treated process effluents is also a source of carbendazim in the environment. While characterizing paper and textile as overlooked sources of carbendazim, this study also shows the biocide as a possible ubiquitous wastewater contaminant that would require further systematic and worldwide monitoring due to its toxicological properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Concentrate minimization and water recovery enhancement using pellet precipitator in a reverse osmosis process treating textile wastewater.

    PubMed

    Sahinkaya, Erkan; Sahin, Ahmet; Yurtsever, Adem; Kitis, Mehmet

    2018-06-09

    Industrial wastewater reuse together with zero or near zero liquid discharges have been a growing trend due to the requirement of sustainable water management mandated by water scarcity and tightening discharge regulations. Studies have been conducted on the reclamation of textile industry wastewater using RO processes. However a lot of scientific attention has been drawn upon limiting the amount of concentrate generated from RO processes, which depends on the concentrations of scale forming ions in the concentrate stream. Hence, this study aims at investigating the applicability of an ultra-filtration (UF) membrane integrated pellet reactor to remove scale forming ions, i.e. Ca 2+ , Mg 2+ and Si from the concentrate of a pilot-scale textile industry RO process, for the first time in the literature. The resulting effluent was further tested in a secondary RO process to decrease concentrate volume and increase total water recovery. The pellet reactor operated at an extremely low hydraulic retention time of 0.1 h removed scale forming ions, i.e. Ca 2+ , Mg 2+ , with 90-95% efficiency, which improved the secondary RO process performance up to 92-94% overall water recovery, i.e. near zero liquid discharge was reached. Ozonation of the concentrate partially removed COD and color, which further improved the secondary RO filtration performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Simulation of Forming and Wrinkling of Textile Composite Reinforcements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamila, N.; Wang, P.; Vidal-Salle, E.

    Because of the very weak textile bending stiffness, wrinkles are frequent during composite reinforcement forming. The simulation of the shape of these wrinkles during the forming process permits to verify there is no wrinkle in the useful part of the preform. In this paper the role of tensions, in-plane shear and bending rigidities in wrinkling development are analyzed. In-plane shear plays a main role for onset of wrinkles in double-curved shape forming but wrinkling is a global phenomenon depending on all strains and stiffnesses and on boundary conditions. The bending stiffness mainly determines the shape of the wrinkles and amore » membrane approach it is not sufficient to simulate wrinkles.« less

  14. Tribological investigation of a functional medical textile with lubricating drug-delivery finishing.

    PubMed

    Gerhardt, L-C; Lottenbach, R; Rossi, R M; Derler, S

    2013-08-01

    Textile-based drug delivery systems have a high potential for innovative medical and gerontechnological applications. In this study, the tribological behaviour and lubrication properties of a novel textile with drug delivery function/finishing was investigated by means of friction experiments that simulated cyclic dynamic contacts with skin under dry and wet conditions. The textile drug delivery system is based on a loadable biopolymer dressing on a polyester (PES) woven fabric. The fabrics were finished with low (LC) and highly cross-linked (HC) polysaccharide dressings and investigated in the unloaded condition as well as loaded with phytotherapeutic substances. The mechanical resistance and possible abrasion of the functional coatings on the textile substrate were assessed by friction measurements and scanning electron microscopical analyses. Under dry contact conditions, all investigated fabrics (PES substrate alone and textiles with loaded and unloaded dressings) showed generally low friction coefficients (0.20-0.26). Under wet conditions, the measured friction coefficients were typically higher (0.34-0.51) by a factor of 1.5-2. In the wet condition, both loaded drug delivery textiles exhibited 7-29% lower friction (0.34-0.41) than the PES fabric with unloaded dressings (0.42-0.51), indicating pronounced lubrication effects. The lubrication effects as well as the abrasion resistance of the studied textiles with drug delivery function depended on the degree of dilution of the phytotherapeutic substances. Lubricating formulations of textile-based drug delivery systems which reduce friction against the skin might be promising candidates for advanced medical textile finishes in connection with skin care and wound (decubitus ulcer) prevention. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. A finite element framework for multiscale/multiphysics analysis of structures with complex microstructures

    NASA Astrophysics Data System (ADS)

    Varghese, Julian

    This research work has contributed in various ways to help develop a better understanding of textile composites and materials with complex microstructures in general. An instrumental part of this work was the development of an object-oriented framework that made it convenient to perform multiscale/multiphysics analyses of advanced materials with complex microstructures such as textile composites. In addition to the studies conducted in this work, this framework lays the groundwork for continued research of these materials. This framework enabled a detailed multiscale stress analysis of a woven DCB specimen that revealed the effect of the complex microstructure on the stress and strain energy release rate distribution along the crack front. In addition to implementing an oxidation model, the framework was also used to implement strategies that expedited the simulation of oxidation in textile composites so that it would take only a few hours. The simulation showed that the tow architecture played a significant role in the oxidation behavior in textile composites. Finally, a coupled diffusion/oxidation and damage progression analysis was implemented that was used to study the mechanical behavior of textile composites under mechanical loading as well as oxidation. A parametric study was performed to determine the effect of material properties and the number of plies in the laminate on its mechanical behavior. The analyses indicated a significant effect of the tow architecture and other parameters on the damage progression in the laminates.

  16. Improvement of the Performance of an Electrocoagulation Process System Using Fuzzy Control of pH.

    PubMed

    Demirci, Yavuz; Pekel, Lutfiye Canan; Altinten, Ayla; Alpbaz, Mustafa

    2015-12-01

    The removal efficiencies of electrocoagulation (EC) systems are highly dependent on the initial value of pH. If an EC system has an acidic influent, the pH of the effluent increases during the treatment process; conversely, if such a system has an alkaline influent, the pH of the effluent decreases during the treatment process. Thus, changes in the pH of the wastewater affect the efficiency of the EC process. In this study, we investigated the dynamic effects of pH. To evaluate approaches for preventing increases in the pH of the system, the MATLAB/Simulink program was used to develop and evaluate an on-line computer-based system for pH control. The aim of this work was to study Proportional-Integral-Derivative (PID) control and fuzzy control of the pH of a real textile wastewater purification process using EC. The performances and dynamic behaviors of these two control systems were evaluated based on determinations of COD, colour, and turbidity removal efficiencies.

  17. Tertiary ozonation of industrial wastewater for the removal of estrogenic compounds (NP and BPA): a full-scale case study.

    PubMed

    Bertanza, G; Papa, M; Pedrazzani, R; Repice, C; Dal Grande, M

    2013-01-01

    Wastewater treatment plant (WWTP) effluents are considered to be a major source for the release in the aquatic environment of endocrine-disrupting compounds (EDCs). Ozone has proved to be a suitable solution for polishing secondary domestic effluents. In this work, the performance of a full-scale ozonation plant was investigated in order to assess the removal efficiency of four target EDCs: nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate and bisphenol A. The studied system was the tertiary treatment stage of a municipal WWTP which receives an important industrial (textile) load. Chemical analyses showed that the considered substances occurred with a significant variability, typical of real wastewaters; based on this, ozonation performance was carefully evaluated and it appeared to be negatively affected by flow-rate increase (during rainy days, with consequent contact time reduction). Moreover, EDCs' measured removal efficiency was lower than what could be predicted based on literature data, because of the relatively high residual content of biorefractory compounds still present after biological treatment.

  18. A flowthrough fecundity test with Nitocra spinipes (Harpacticoidea Crustacea) for aquatic toxicity.

    PubMed

    Bengtsson, B E; Bergström, B

    1987-12-01

    A sublethal flowthrough fecundity test with the euryhaline harpacticoid copepod Nitocra spinipes has been developed as a complement to the acute toxicity test (for 48 or 96 hr LC50) with the same species (B-E. Bengtsson, 1981, Mar. Pollut. Biol. 9,238-241). Bacterial suspension as feed and test water are continuously fed by a peristaltic pump to the system. Newly fertilized females with ovigerous bands are harvested from laboratory cultures and put into the test vessels at the start of the experiment. They are then exposed to a series of concentrations of chemicals or industrial effluents for 13 days. The amount of live offspring (metanauplia and copepodids) are recorded and an EC50 for fecundity is calculated. The report gives a detailed technical description of the test system and presents the results from 11 tests with pure chemicals (Zn, Cd, As, and pentachlorophenate) and six industrial effluents (pulp industry, textile industry, and refinery) in salinities ranging from 3 to 25%.

  19. Metabolism and biotransformation of azo dye by bacterial consortium studied in a bioreaction calorimeter.

    PubMed

    Shanmugam, Bhuvanesh Kumar; Mahadevan, Surianarayanan

    2015-11-01

    Effluents from leather and textile industries are difficult for treatment owing to its recalcitrant nature. Since the volume of effluent generated are high, a robust and active microbial consortia is required for effective treatment. The focus in the present study is the calorimetric traceability of the metabolic behaviors of mixed microbial consortia, while it grows and degrades recalcitrant substance such as an azo dye acid blue 113. The consortium exhibited a syntrophic division of substrate and was effective in degrading dye up to 0.8g/l. Notably, it was able to degrade 93.7% of the azo dye in 12-16h whereas its monocultures required 48-72h to reach 82.1%. The products of biodegradation were analyzed and the chemical pathway substantiated using chemical thermodynamic and energy release patterns. MTT assay confirmed that emanates are eco-friendly. Heat profile pattern and bioenergetics provide fundamental data for a feasible application in commercial level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent.

    PubMed

    El-Desoky, Hanaa S; Ghoneim, Mohamed M; El-Sheikh, Ragaa; Zidan, Naglaa M

    2010-03-15

    The indirect electrochemical removal of pollutants from effluents has become an attractive method in recent years. Removal (decolorization and mineralization) of Levafix Blue CA and Levafix Red CA reactive azo-dyes from aqueous media by electro-generated Fenton's reagent (Fe(2+)/H(2)O(2)) using a reticulated vitreous carbon cathode and a platinum gauze anode was optimized. Progress of oxidation (decolorization and mineralization) of the investigated azo-dyes with time of electro-Fenton's reaction was monitored by UV-visible absorbance measurements, Chemical oxygen demand (COD) removal and HPLC analysis. The results indicated that the electro-Fenton's oxidation system is efficient for treatment of such types of reactive dyes. Oxidation of each of the investigated azo-dyes by electro-generated Fenton's reagent up to complete decolorization and approximately 90-95% mineralization was achieved. Moreover, the optimized electro-Fenton's oxidation was successfully applied for complete decolorization and approximately 85-90% mineralization of both azo-dyes in real industrial wastewater samples collected from textile dyeing house at El-Mahalla El-Kobra, Egypt. (c) 2009 Elsevier B.V. All rights reserved.

  1. Perchlorate Destruction and Potable Water Production Using Membrane Biofilm Reduction and Membrane Filtration

    DTIC Science & Technology

    2013-09-01

    fraction of SRB could be active in O2 respiration, fermentation of organics, and even NO3- respiration. Therefore, the metabolic diversity of SRB...the case with PRB, which are able to reduce NO3- and ClO4-. To evaluate the model, we simulated effluent H2, UAP, and BAP concentrations, along with...effluent_experiment 56 Figure 36. Model- simulated concentrations of H2, UAP, and BAP in the effluent. Figure 37. Model- simulated

  2. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor.

    PubMed

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A

    2015-11-01

    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Proteomic and enzymatic response under Cr(VI) overload in yeast isolated from textile-dye industry effluent.

    PubMed

    Irazusta, Verónica; Bernal, Anahí Romina; Estévez, María Cristina; de Figueroa, Lucía I C

    2018-02-01

    Cyberlindnera jadinii M9 and Wickerhamomyces anomalus M10 isolated from textile-dye liquid effluents has shown capacity for chromium detoxification via Cr(VI) biological reduction. The aim of the study was to evaluate the effect of hexavalent chromium on synthesis of novel and/or specific proteins involved in chromium tolerance and reduction in response to chromium overload in two indigenous yeasts. A study was carried out following a proteomic approach with W. anomalus M10 and Cy. jadinii M9 strains. For this, proteins extracts belonging to total cell extracts, membranes and mitochondria were analyzed. When Cr(VI) was added to culture medium there was an over-synthesis of 39 proteins involved in different metabolic pathways. In both strains, chromium supplementation changed protein biosynthesis by upregulating proteins involved in stress response, methionine metabolism, energy production, protein degradation and novel oxide-reductase enzymes. Moreover, we observed that Cy. jadinii M9 and W. anomalus M10 displayed ability to activate superoxide dismutase, catalase and chromate reductase activity. Two enzymes from the total cell extracts, type II nitroreductase (Frm2) and flavoprotein wrbA (Ycp4), were identified as possibly responsible for inducing crude chromate-reductase activity in cytoplasm of W. anomalus M10 under chromium overload. In Cy.jadinii M9, mitochondrial Ferredoxine-NADP reductase (Yah1) and membrane FAD flavoprotein (Lpd1) were identified as probably involved in Cr(VI) reduction. To our knowledge, this is the first study proposing chromate reductase activity of these four enzymes in yeast and reporting a relationship between protein synthesis, enzymatic response and chromium biospeciation in Cy. jadinii and W. anomalus. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Adsorption of a Textile Dye on Commercial Activated Carbon: A Simple Experiment to Explore the Role of Surface Chemistry and Ionic Strength

    ERIC Educational Resources Information Center

    Martins, Angela; Nunes, Nelson

    2015-01-01

    In this study, an adsorption experiment is proposed using commercial activated carbon as adsorbent and a textile azo dye, Mordant Blue-9, as adsorbate. The surface chemistry of the activated carbon is changed through a simple oxidation treatment and the ionic strength of the dye solution is also modified, simulating distinct conditions of water…

  5. E-Textile Embroidered Metamaterial Transmission Line for Signal Propagation Control.

    PubMed

    Moradi, Bahareh; Fernández-García, Raul; Gil, Ignacio

    2018-06-05

    In this paper, the utilization of common fabrics for the manufacturing of e-textile metamaterial transmission lines is investigated. In order to filter and control the signal propagation in the ultra-high frequency (UHF) range along the e-textile, a conventional metamaterial transmission line was compared with embroidered metamaterial particles. The proposed design was based on a transmission line loaded with one or several split-ring resonators (SRR) on a felt substrate. To explore the relations between physical parameters and filter performance characteristics, theoretical models based on transmission matrices' description of the filter constituent components were proposed. Excellent agreement between theoretical prediction, electromagnetic simulations, and measurement were found. Experimental results showed stop-band levels higher than -30 dB for compact embroidered metamaterial e-textiles. The validated results confirmed embroidery as a useful technique to obtain customized electromagnetic properties, such as filtering, on wearable applications.

  6. In-Vivo Human Skin to Textiles Friction Measurements

    NASA Astrophysics Data System (ADS)

    Pfarr, Lukas; Zagar, Bernhard

    2017-10-01

    We report on a measurement system to determine highly reliable and accurate friction properties of textiles as needed for example as input to garment simulation software. Our investigations led to a set-up that allows to characterize not just textile to textile but also textile to in-vivo human skin tribological properties and thus to fundamental knowledge about genuine wearer interaction in garments. The method of test conveyed in this paper is measuring concurrently and in a highly time resolved manner the normal force as well as the resulting shear force caused by a friction subject intending to slide out of the static friction regime and into the dynamic regime on a test bench. Deeper analysis of various influences is enabled by extending the simple model following Coulomb's law for rigid body friction to include further essential parameters such as contact force, predominance in the yarn's orientation and also skin hydration. This easy-to-use system enables to measure reliably and reproducibly both static and dynamic friction for a variety of friction partners including human skin with all its variability there might be.

  7. Influence of detergent formulation on nutrient movement through sand columns simulating mound and conventional septic system drainfields

    NASA Astrophysics Data System (ADS)

    Alhajjar, Bashar J.; Linn Gould, C.; Chesters, Gordon; Harkin, John M.

    1990-12-01

    The effects of phosphate (P) and zeolite (Z) -built detergents on leaching of N and P through sand columns simulating septic system drainfields were examined in laboratory columns. To simulate mound septic system drainfields, paired sets of columns were dosed intermittently with septic tank effluent from households using P- or Z-built detergent. Two other paired sets of columns were flooded with P- or Z-effluent to simulate new conventional septic system drainfields; after clogging mats or "crusts" developed at infiltration surface, the subsurfaces of the columns were aerated to simulate mature (crusted) conventional septic system drainfields. NO 3 loading in leachate was 1.1 times higher and ortho-P loading was 4.3 times lower when columns were dosed with Z- than with P-effluent. Dosed columns removed P poorly; total phosphorus (TP) loading in leachate was 81 and 19 g m -2 yr -1 with P- and Z-effluent, respectively. In flooded columns 1.3, 2.0 and 1.8 times more NH 4, organic nitrogen (ON) and total nitrogen (TN) respectively, were leached with Z- than with P-effluent; NO 3 leaching was similar. Flooded columns removed P efficiently; TP leached through flooded systems was 2.5 and 1.4 g m -2 yr -1 with P- and Z effluent, respectively. Crusted columns fed Z-effluent leached 1.2, 2.6, 1.4 and 2.1 times more NH 4, NO 3, ON and TN, respectively, than those with P-effluent but 1.8 times less TP. Crusted columns removed P satisfactorily: 8.2 and 4.6 g m -2 yr -1 TP with P- and Z-effluent, respectively. The P-built detergent substantially improves the efficiency of N removal with satisfactory P removal in columns simulating conventional septic system drainfield. Simultaneous removal of N and P under flooded conditions might be explained by precipitation of struvite-type minerals. Dosed system drainfields were less efficient in removing N and P compared to flooded and crusted system drainfelds.

  8. Study of Influence of Effluent on Ground Water Using Remote Sensing, GIS and Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Pathak, S.; Bhadra, B. K.; Sharma, J. R.

    2012-07-01

    The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India). There are four Common Effluent Treatment Plant (CETP) treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi - a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat -1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer - inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer boundaries using specialized software. Establishment of other boundary conditions was based on well data. Calibration and validation of was done using ground water modelling software. Change detection analysis indicated areas of impact on land use/ cover particularly, agriculture activity. Normalised difference vegetation index found to have negative correlation with pollution level. Population dynamics have been studied and it is found to be poorly correlated with land degradation. Water levels do not show significant variations in past twenty years baring normal seasonal fluctuation. Chemical analysis of ground water samples studies in time series. The water quality studied through various parameters shows concentration in mid-reach of the Bandi river. Analysis of litholog data shows three unconfined aquifers. Pump test and resistivity survey was carried out for initial aquifer properties in local water levels. Modelling contaminant migration helped in prediction of the extent of the adversity. Surface flow is checked allowing more water but it is proving to be accumulation point in absence of good rainfall & flow in the river. Hotspots of dumping /active contamination were identified with certain remediation efforts and supply of solid waste to cement industry in addition to bio-filter for heavy metals.

  9. Infiltration/cure modeling of resin transfer molded composite materials using advanced fiber architectures

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Weideman, Mark H.; Long, Edward R., Jr.; Kranbuehl, David E.; Kinsley, Philip J.; Hart, Sean M.

    1991-01-01

    A model was developed which can be used to simulate infiltration and cure of textile composites by resin transfer molding. Fabric preforms were resin infiltrated and cured using model generated optimized one-step infiltration/cure protocols. Frequency dependent electromagnetic sensing (FDEMS) was used to monitor in situ resin infiltration and cure during processing. FDEMS measurements of infiltration time, resin viscosity, and resin degree of cure agreed well with values predicted by the simulation model. Textile composites fabricated using a one-step infiltration/cure procedure were uniformly resin impregnated and void free. Fiber volume fraction measurements by the resin digestion method compared well with values predicted using the model.

  10. Impact simulation of shrimp farm effluent on BOD-DO in Setiu River

    NASA Astrophysics Data System (ADS)

    Chong, Michael Sueng Lock; Teh, Su Yean; Koh, Hock Lye

    2017-08-01

    Release of effluent from intensive aquaculture farms into a river can pollute the receiving river and exert negative impacts on the aquatic ecosystem. In this paper, we simulate the effects of effluent released from a marine shrimp aquaculture farm into Sg Setiu, focusing on two critical water quality parameters i.e. DO (dissolved oxygen) and BOD (biochemical oxygen demand). DO is an important constituent in a river in sustaining water quality, with levels of DO below 5 mg/L deemed undesirable. DO levels can be depressed by the presence of BOD and other organics that consume DO. Water quality simulations in conjunction with management of effluent treatment can suggest mitigation measures for reducing the adverse environmental impact. For this purpose, an in-house two-dimensional water quality simulation model codenamed TUNA-WQ will be used for these simulations. TUNA-WQ has been undergoing regular updates and improvements to broaden the applicability and to improve the robustness. Here, the model is calibrated and verified for simulation of DO and BOD dynamics in Setiu River (Sg Setiu). TUNA-WQ simulated DO and BOD in Setiu River due to the discharge from a marine shrimp aquaculture farm will be presented.

  11. Carbonaceous adsorbents derived from textile cotton waste for the removal of Alizarin S dye from aqueous effluent: kinetic and equilibrium studies.

    PubMed

    Wanassi, Béchir; Hariz, Ichrak Ben; Ghimbeu, Camélia Matei; Vaulot, Cyril; Hassen, Mohamed Ben; Jeguirim, Mejdi

    2017-04-01

    Recycling cotton waste derived from the textile industry was used as a low-cost precursor for the elaboration of an activated carbon (AC) through carbonization and zinc chloride chemical activation. The AC morphological, textural, and surface chemistry properties were determined using different analytical techniques including Fourier transform infrared, temperature programmed desorption-mass spectroscopy, nitrogen manometry and scanning electron microscopy. The results show that the AC was with a hollow fiber structure in an apparent diameter of about 6.5 μm. These analyses indicate that the AC is microporous and present a uniform pore size distributed centered around 1 nm. The surface area and micropore volume were 292 m 2 .g -1 and 0.11 cm 3 .g -1 , respectively. Several types of acidic and basic oxygenated surface groups were highlighted. The point of zero charge (pH PZC ) of theca was 6.8. The AC performance was evaluated for the removal of Alizarin Red S (ARS) from aqueous solution. The maximum adsorption capacity was 74 mg.g -1 obtained at 25 °C and pH = 3. Kinetics and equilibrium models were used to determine the interaction nature of the ARS with the AC. Statistical tools were used to select the suitable models. The pseudo-second order was found to be the most appropriate kinetic model. The application of two and three isotherm models shows that Langmuir-Freundlich (n = 0.84, K = 0.0014 L.mg -1 , and q = 250 mg.g -1 ) and Sips (n = 0.84, K = 0.003 L.mg -1 , and q = 232.6 mg.g -1 ) were the suitable models. The results demonstrated that cotton waste can be used in the textile industry as a low-cost precursor for the AC synthesis and the removal of anionic dye from textile wastewater.

  12. Degradation of fifteen emerging contaminants at microg L(-1) initial concentrations by mild solar photo-Fenton in MWTP effluents.

    PubMed

    Klamerth, N; Rizzo, L; Malato, S; Maldonado, Manuel I; Agüera, A; Fernández-Alba, A R

    2010-01-01

    The degradation of 15 emerging contaminants (ECs) at low concentrations in simulated and real effluent of municipal wastewater treatment plant with photo-Fenton at unchanged pH and Fe=5 mg L(-1) in a pilot-scale solar CPC reactor was studied. The degradation of those 15 compounds (Acetaminophen, Antipyrine, Atrazine, Caffeine, Carbamazepine, Diclofenac, Flumequine, Hydroxybiphenyl, Ibuprofen, Isoproturon, Ketorolac, Ofloxacin, Progesterone, Sulfamethoxazole and Triclosan), each with an initial concentration of 100 microg L(-1), was found to depend on the presence of CO(3)(2-) and HCO(3)(-) (hydroxyl radicals scavengers) and on the type of water (simulated water, simulated effluent wastewater and real effluent wastewater), but is relatively independent of pH, the type of acid used for release of hydroxyl radicals scavengers and the initial H(2)O(2) concentration used. Toxicity tests with Vibrio fisheri showed that degradation of the compounds in real effluent wastewater led to toxicity increase. (c) 2009 Elsevier Ltd. All rights reserved.

  13. Application of CFD modelling at a full-scale ozonation plant for the removal of micropollutants from secondary effluent.

    PubMed

    Launer, M; Lyko, S; Fahlenkamp, H; Jagemann, P; Ehrhard, P

    2013-01-01

    Since November 2009, Germany's first full-scale ozonation plant for tertiary treatment of secondary effluent is in continuous operation. A kinetic model was developed and combined with the commercial computational fluid dynamics (CFD) software ANSYS(®) CFX(®) to simulate the removal of micropollutants from secondary effluents. Input data like reaction rate constants and initial concentrations of bulk components of the effluent organic matter (EfOM) were derived from experimental batch tests. Additionally, well-known correlations for the mass transfer were implemented into the simulation model. The CFD model was calibrated and validated by full-scale process data and by analytical measurements for micropollutants. The results show a good consistency of simulated values and measured data. Therewith, the validated CFD model described in this study proved to be suited for the application of secondary effluent ozonation. By implementing site-specific ozone exposition and the given reactor geometry the described CFD model can be easily adopted for similar applications.

  14. Reynolds Shear Stress for Textile Prosthetic Heart Valves in Relation to Fabric Design

    PubMed Central

    Bark, David L.; Koupei, Atieh Yousefi; Forleo, Marcio; Vaesken, Antoine; Heim, Frederic; Dasi, Lakshmi P.

    2016-01-01

    The most widely implanted prosthetic heart valves are either mechanical or bioprosthetic. While the former suffers from thrombotic risks, the latter suffers from a lack of durability. Textile valves, alternatively, can be designed with durability and to exhibit hemodynamics similar to the native valve, lowering the risk for thrombosis. Deviations from native valve hemodynamics can result in an increased Reynolds Shear Stress (RSS), which has the potential to instigate hemolysis or shear-induced thrombosis. This study is aimed at characterizing flow in multiple textile valve designs with an aim of developing a low profile valve. Valves were created using a shaping process based on heating a textile membrane and placed within a left heart simulator. Turbulence and bulk hemodynamics were assessed through particle imaging velocimetry (PIV), along with flow and pressure measurements. Overall, RSS was reduced for low profile valves relative to high profile valves, but was otherwise similar among low profile valves. However, leakage was found in 3 of the 4 low profile valve designs driving the fabric design for low profile valves. Through textile design, low profile valves can be created with favorable hemodynamics. PMID:26919564

  15. Migration of Ag- and TiO2-(Nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling.

    PubMed

    von Goetz, N; Lorenz, C; Windler, L; Nowack, B; Heuberger, M; Hungerbühler, K

    2013-09-03

    Engineered nanoparticles (ENP) are increasingly used to functionalize textiles taking advantage, e.g., of the antimicrobial activity of silver (Ag)-ENP or the UV-absorption of titania (TiO2)-ENP. Mobilization and migration of ENPs from the textile into human sweat can result in dermal exposure to these nanoobjects and their aggregates and agglomerates (NOAA). In this study we assessed exposure to NOAA migrating from commercially available textiles to artificial sweat by an experimental setup that simulates wear-and-tear during physical activity. By combining physical stress with incubation in alkaline and acidic artificial sweat solutions we experimentally realized a worst case scenario for wearing functionalized textiles during sports activities. This experimental approach is not limited to NOAA, but can be used for any other textile additive. Out of four investigated textiles, one T-shirt and one pair of trousers with claimed antimicrobial properties were found to release Ag <450 nm in detectable amounts (23-74 μg/g/L). Textiles containing TiO2 for UV protection did not release significant amounts of TiO2 <450 nm, but the antimicrobial T-shirt released both TiO2 and Ag <450 nm. The silver was present in dissolved and particulate form, whereas TiO2 was mainly found as particulate. On the basis of our experimental results we calculated external dermal exposure to Ag and TiO2 for male and female adults per use. For silver, maximal amounts of 17.1 and 8.2 μg/kg body weight were calculated for total and particulate Ag <450 nm, respectively. For TiO2, the exposure levels amount to maximal 11.6 μg/kg body weight for total (mainly particulate) TiO2. In comparison with other human exposure pathways, dermal exposure to NOAA from textiles can be considered comparably minor for TiO2-NOAA, but not for Ag-NOAA.

  16. The Fabric of the Universe: Exploring the Cosmic Web in 3D Prints and Woven Textiles

    NASA Astrophysics Data System (ADS)

    Diemer, Benedikt; Facio, Isaac

    2017-05-01

    We introduce The Fabric of the Universe, an art and science collaboration focused on exploring the cosmic web of dark matter with unconventional techniques and materials. We discuss two of our projects in detail. First, we describe a pipeline for translating three-dimensional (3D) density structures from N-body simulations into solid surfaces suitable for 3D printing, and present prints of a cosmological volume and of the infall region around a massive cluster halo. In these models, we discover wall-like features that are invisible in two-dimensional projections. Going beyond the sheer visualization of simulation data, we undertake an exploration of the cosmic web as a three-dimensional woven textile. To this end, we develop experimental 3D weaving techniques to create sphere-like and filamentary shapes and radically simplify a region of the cosmic web into a set of filaments and halos. We translate the resulting tree structure into a series of commands that can be executed by a digital weaving machine, and present a large-scale textile installation.

  17. Ozone treatment of textile wastewaters for reuse.

    PubMed

    Ciardelli, G; Capannelli, G; Bottino, A

    2001-01-01

    Treatment of textile wastewaters by means of an ozonation pilot plant are described. Wastewaters used were produced by a dyeing and finishing factory and were first treated in an active sludge plant and filtrated through sand. In the appropriate conditions very high colour removal (95-99%) was achieved and the effluent could be reused in production processes requiring water of high quality as dyeing yarns or light colorations. Even if the chemical oxygen demand of treated waters was still in a range (75-120 mg/l, a decrease of up to 60%) that was usually considered to be too high for recycling purposes, recycling experiments were successful. The economical viability of the techniques implementation was also demonstrated and the industrial plant is currently under realisation under an EU financed project. The paper considers also the possible improvement of ozone diffusion by means of membrane contactors realised in a second pilot plant, in order to further reduce operating costs of the technique. With respect to traditional systems, the gas/liquid contact surface is much higher being that of the membrane. Ozone at the interface is therefore immediately solubilized and potentially consumed with no additional resistance to the mass transfer.

  18. Sequential anaerobic-aerobic biological treatment of colored wastewaters: case study of a textile dyeing factory wastewater.

    PubMed

    Abiri, Fardin; Fallah, Narges; Bonakdarpour, Babak

    2017-03-01

    In the present study the feasibility of the use of a bacterial batch sequential anaerobic-aerobic process, in which activated sludge was used in both parts of the process, for pretreatment of wastewater generated by a textile dyeing factory has been considered. Activated sludge used in the process was obtained from a municipal wastewater treatment plant and adapted to real dyeing wastewater using either an anaerobic-only or an anaerobic-aerobic process over a period of 90 days. The use of activated sludge adapted using the anaerobic-aerobic process resulted in a higher overall decolorization efficiency compared to that achieved with activated sludge adapted using the anaerobic-only cycles. Anaerobic and aerobic periods of around 34 and 22 hours respectively resulted in an effluent with chemical oxygen demand (COD) and color content which met the standards for discharge into the centralized wastewater treatment plant of the industrial estate in which the dyeing factory was situated. Neutralization of the real dyeing wastewater and addition of carbon source to it, both of which results in significant increase in the cost of the bacterial treatment process, was not found to be necessary to achieve the required discharge standards.

  19. The application of textile sludge adsorbents for the removal of Reactive Red 2 dye.

    PubMed

    Sonai, Gabriela G; de Souza, Selene M A Guelli U; de Oliveira, Débora; de Souza, Antônio Augusto U

    2016-03-01

    Sludge from the textile industry was used as a low-cost adsorbent to remove the dye Reactive Red 2 from an aqueous solution. Adsorbents were prepared through the thermal and chemical treatment of sludge originating from physical-chemical (PC) and biological (BIO) effluent treatment processes. The adsorbent characterization was carried out through physical-chemical analysis, X-ray fluorescence (XRF) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, pHPZC determination, Boehm titration method, Brunauer-Emmett-Teller (BET) surface area analysis and scanning electron microscopy (SEM). Batch kinetic experiments and adsorption isotherm modeling were conducted under different pH and temperature conditions. The results for the kinetic studies indicate that the adsorption processes associated with these systems can be described by a pseudo-second-order model and for the equilibrium data the Langmuir model provided the best fit. The adsorption was strongly dependent on the pH but not on the temperature within the ranges studied. The maxima adsorption capacities were 159.3 mg g(-1) for the BIO adsorbent and 213.9 mg g(-1) for PC adsorbent at pH of 2 and 25 °C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Biodegradability and toxicity assessment of a real textile wastewater effluent treated by an optimized electrocoagulation process.

    PubMed

    Manenti, Diego R; Módenes, Aparecido N; Soares, Petrick A; Boaventura, Rui A R; Palácio, Soraya M; Borba, Fernando H; Espinoza-Quiñones, Fernando R; Bergamasco, Rosângela; Vilar, Vítor J P

    2015-01-01

    In this work, the application of an iron electrode-based electrocoagulation (EC) process on the treatment of a real textile wastewater (RTW) was investigated. In order to perform an efficient integration of the EC process with a biological oxidation one, an enhancement in the biodegradability and low toxicity of final compounds was sought. Optimal values of EC reactor operation parameters (pH, current density and electrolysis time) were achieved by applying a full factorial 3(3) experimental design. Biodegradability and toxicity assays were performed on treated RTW samples obtained at the optimal values of: pH of the solution (7.0), current density (142.9 A m(-2)) and different electrolysis times. As response variables for the biodegradability and toxicity assessment, the Zahn-Wellens test (Dt), the ratio values of dissolved organic carbon (DOC) relative to low-molecular-weight carboxylates anions (LMCA) and lethal concentration 50 (LC50) were used. According to the Dt, the DOC/LMCA ratio and LC50, an electrolysis time of 15 min along with the optimal values of pH and current density were suggested as suitable for a next stage of treatment based on a biological oxidation process.

  1. Filtration device for active effluents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerin, M.; Meunier, G.

    1994-12-31

    Among the various techniques relating to solid/liquid separations, filtration is currently utilized for treating radioactive effluents. After testing different equipments on various simulated effluents, the Valduc Center has decided to substitute a monoplate filter for a rotative diatomite precoated filter.

  2. Effect of mercury and arsenic from industrial effluents on the drinking water and comparison of the water quality of polluted and non-polluted areas: a case study of Peshawar and Lower Dir.

    PubMed

    Ishaq, M; Jan, F Akbar; Khan, Murad Ali; Ihsanullah, I; Ahmad, I; Shakirullah, M; Roohullah

    2013-02-01

    The purpose of the present study was to find out the sources of mercury and arsenic pollution of water in the industrial area of Peshawar, the capital of Khyber Pakhtunkhwa, Pakistan. Samples of effluents, mud, and water were collected from the target area (industrial area of Peshawar), the area of water supply source, and from the less polluted area, the Lower Dir district, as the control. Hg was determined by the cold vapor generation technique, while arsenic was determined using the electrothermal atomic absorption technique. Data of the water from the industrial area were compared with that of the source area, control area, as well as with the WHO and some international drinking water quality standards. The results show that some parameters, i.e., TDS, DO, pH, and hardness, were more than the permissible limits. Textile and glass industries were found to be the major sources of Hg and As pollution. Downstream dilution of these contaminants was also observed.

  3. Parametric models of reflectance spectra for dyed fabrics

    NASA Astrophysics Data System (ADS)

    Aiken, Daniel C.; Ramsey, Scott; Mayo, Troy; Lambrakos, Samuel G.; Peak, Joseph

    2016-05-01

    This study examines parametric modeling of NIR reflectivity spectra for dyed fabrics, which provides for both their inverse and direct modeling. The dye considered for prototype analysis is triarylamine dye. The fabrics considered are camouflage textiles characterized by color variations. The results of this study provide validation of the constructed parametric models, within reasonable error tolerances for practical applications, including NIR spectral characteristics in camouflage textiles, for purposes of simulating NIR spectra corresponding to various dye concentrations in host fabrics, and potentially to mixtures of dyes.

  4. Studies on Nano-Engineered TiO2 Photo Catalyst for Effective Degradation of Dye

    NASA Astrophysics Data System (ADS)

    Sowmya, S. R.; Madhu, G. M.; Hashir, Mohammed

    2018-02-01

    All Heterogeneous photo catalysis employing efficient photo-catalyst is the advanced dye degradation technology for the purification of textile effluent. The present work focuses on Congo red dye degradation employing synthesized Ag doped TiO2 nanoparticles as photocatalyst which is characterized using SEM, XRD and FTIR. Studies are conducted to study the effect of various parameters such as initial dye concentration, catalyst loading and pH of solution. Ag Doped TiO2 photocatalyst improve the efficacy of TiO2 by reducing high band gap and electron hole recombination of TiO2. The reaction kinetics is analyzed and the process is found to follow pseudo first order kinetics.

  5. Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters.

    PubMed

    Sun, Minghao; He, Honghui; Zeng, Nan; Du, E; Guo, Yihong; Peng, Cheng; He, Yonghong; Ma, Hui

    2014-05-10

    Polarization parameters contain rich information on the micro- and macro-structure of scattering media. However, many of these parameters are sensitive to the spatial orientation of anisotropic media, and may not effectively reveal the microstructural information. In this paper, we take polarization images of different textile samples at different azimuth angles. The results demonstrate that the rotation insensitive polarization parameters from rotating linear polarization imaging and Mueller matrix transformation methods can be used to distinguish the characteristic features of different textile samples. Further examinations using both experiments and Monte Carlo simulations reveal that the residue rotation dependence in these polarization parameters is due to the oblique incidence illumination. This study shows that such rotation independent parameters are potentially capable of quantitatively classifying anisotropic samples, such as textiles or biological tissues.

  6. Treatment of cotton textile wastewater using lime and ferrous sulfate.

    PubMed

    Georgiou, D; Aivazidis, A; Hatiras, J; Gimouhopoulos, K

    2003-05-01

    This technical note summarizes the results of a textile wastewater treatment process aiming at the destruction of the wastewater's color by means of coagulation/flocculation techniques using ferrous sulfate and/or lime. All the experiments were run in a pilot plant that simulated an actual industrial wastewater treatment plant. Treatment with lime alone proved to be very effective in removing the color (70-90%) and part of the COD (50-60%) from the textile wastewater. Moreover, the treatment with ferrous sulfate regulating the pH in the range 9.0+/-0.5 using lime was equally effective. Finally, the treatment with lime in the presence of increasing doses of ferrous sulfate was tested successfully, however; it proved to be very costly mainly due to the massive production of solids that precipitated.

  7. Original method to compute epipoles using variable homography: application to measure emergent fibers on textile fabrics

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Cudel, Christophe; Kohler, Sophie; Fontaine, Stéphane; Haeberlé, Olivier; Klotz, Marie-Louise

    2012-04-01

    Fabric's smoothness is a key factor in determining the quality of finished textile products and has great influence on the functionality of industrial textiles and high-end textile products. With popularization of the zero defect industrial concept, identifying and measuring defective material in the early stage of production is of great interest to the industry. In the current market, many systems are able to achieve automatic monitoring and control of fabric, paper, and nonwoven material during the entire production process, however online measurement of hairiness is still an open topic and highly desirable for industrial applications. We propose a computer vision approach to compute epipole by using variable homography, which can be used to measure emergent fiber length on textile fabrics. The main challenges addressed in this paper are the application of variable homography on textile monitoring and measurement, as well as the accuracy of the estimated calculation. We propose that a fibrous structure can be considered as a two-layer structure, and then we show how variable homography combined with epipolar geometry can estimate the length of the fiber defects. Simulations are carried out to show the effectiveness of this method. The true length of selected fibers is measured precisely using a digital optical microscope, and then the same fibers are tested by our method. Our experimental results suggest that smoothness monitored by variable homography is an accurate and robust method of quality control for important industrial fabrics.

  8. Using variable homography to measure emergent fibers on textile fabrics

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Cudel, Christophe; Kohler, Sophie; Fontaine, Stéphane; Haeberlé, Olivier; Klotz, Marie-Louise

    2011-07-01

    A fabric's smoothness is a key factor to determine the quality of textile finished products and has great influence on the functionality of industrial textiles and high-end textile products. With popularization of the 'zero defect' industrial concept, identifying and measuring defective material in the early stage of production is of great interest for the industry. In the current market, many systems are able to achieve automatic monitoring and control of fabric, paper, and nonwoven material during the entire production process, however online measurement of hairiness is still an open topic and highly desirable for industrial applications. In this paper we propose a computer vision approach, based on variable homography, which can be used to measure the emergent fiber's length on textile fabrics. The main challenges addressed in this paper are the application of variable homography to textile monitoring and measurement, as well as the accuracy of the estimated calculation. We propose that a fibrous structure can be considered as a two-layer structure and then show how variable homography can estimate the length of the fiber defects. Simulations are carried out to show the effectiveness of this method to measure the emergent fiber's length. The true lengths of selected fibers are measured precisely using a digital optical microscope, and then the same fibers are tested by our method. Our experimental results suggest that smoothness monitored by variable homography is an accurate and robust method for quality control of important industrially fabrics.

  9. Detection of vapor-phase organophosphate threats using wearable conformable integrated epidermal and textile wireless biosensor systems.

    PubMed

    Mishra, Rupesh K; Martín, Aida; Nakagawa, Tatsuo; Barfidokht, Abbas; Lu, Xialong; Sempionatto, Juliane R; Lyu, Kay Mengjia; Karajic, Aleksandar; Musameh, Mustafa M; Kyratzis, Ilias L; Wang, Joseph

    2018-03-15

    Flexible epidermal tattoo and textile-based electrochemical biosensors have been developed for vapor-phase detection of organophosphorus (OP) nerve agents. These new wearable sensors, based on stretchable organophosphorus hydrolase (OPH) enzyme electrodes, are coupled with a fully integrated conformal flexible electronic interface that offers rapid and selective square-wave voltammetric detection of OP vapor threats and wireless data transmission to a mobile device. The epidermal tattoo and textile sensors display a good reproducibility (with RSD of 2.5% and 4.2%, respectively), along with good discrimination against potential interferences and linearity over the 90-300mg/L range, with a sensitivity of 10.7µA∙cm 3 ∙mg -1 (R 2 = 0.983) and detection limit of 12mg/L in terms of OP air density. Stress-enduring inks, used for printing the electrode transducers, ensure resilience against mechanical deformations associated with textile and skin-based on-body sensing operations. Theoretical simulations are used to estimate the OP air density over the sensor surface. These fully integrated wearable wireless tattoo and textile-based nerve-agent vapor biosensor systems offer considerable promise for rapid warning regarding personal exposure to OP nerve-agent vapors in variety of decentralized security applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Adsorption of Procion Blue MX-R dye from aqueous solutions by lignin chemically modified with aluminium and manganese.

    PubMed

    Adebayo, Matthew A; Prola, Lizie D T; Lima, Eder C; Puchana-Rosero, M J; Cataluña, Renato; Saucier, Caroline; Umpierres, Cibele S; Vaghetti, Julio C P; da Silva, Leandro G; Ruggiero, Reinaldo

    2014-03-15

    A macromolecule, CML, was obtained by purifying and carboxy-methylating the lignin generated from acid hydrolysis of sugarcane bagasse during bioethanol production from biomass. The CMLs complexed with Al(3+) (CML-Al) and Mn(2+) (CML-Mn) were utilised for the removal of a textile dye, Procion Blue MX-R (PB), from aqueous solutions. CML-Al and CML-Mn were characterised using Fourier transform infrared spectroscopy (FTIR), scanning differential calorimetry (SDC), scanning electron microscopy (SEM) and pHPZC. The established optimum pH and contact time were 2.0 and 5h, respectively. The kinetic and equilibrium data fit into the general order kinetic model and Liu isotherm model, respectively. The CML-Al and CML-Mn have respective values of maximum adsorption capacities of 73.52 and 55.16mgg(-1) at 298K. Four cycles of adsorption/desorption experiments were performed attaining regenerations of up to 98.33% (CML-Al) and 98.08% (CML-Mn) from dye-loaded adsorbents, using 50% acetone+50% of 0.05molL(-1) NaOH. The CML-Al removed ca. 93.97% while CML-Mn removed ca. 75.91% of simulated dye house effluents. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system.

    PubMed

    Zuriaga-Agustí, E; Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I; Mendoza-Roca, J A

    2014-05-01

    Ultrafiltration membrane processes have become an established technology in the treatment and reuse of secondary effluents. Nevertheless, membrane fouling arises as a major obstacle in the efficient operation of these systems. In the current study, the performance of tubular ultrafiltration ceramic membranes was evaluated according to the roles exerted by membrane pore size, transmembrane pressure and feed concentration on a binary foulant system simulating textile wastewater. For that purpose, carboxymethyl cellulose sodium salt (CMC) and an azo dye were used as colloidal and organic foulants, respectively. Results showed that a larger pore size enabled more solutes to get adsorbed into the pores, producing a sharp permeate flux decline attributed to the rapid pore blockage. Besides, an increase in CMC concentration enhanced severe fouling in the case of the tighter membrane. Concerning separation efficiency, organic matter was almost completely removed with removal efficiency above 98.5%. Regarding the dye, 93% of rejection was achieved. Comparable removal efficiencies were attributed to the dynamic membrane formed by the cake layer, which governed process performance in terms of rejection and selectivity. As a result, none of the evaluated parameters showed significant influence on separation efficiency, supporting the significant role of cake layer on filtration process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Design and performance characterization strategy using modeling for biofiltration control of odorous hydrogen sulfide.

    PubMed

    Martin, Ronald W; Mihelcic, James R; Crittenden, John C

    2004-07-01

    Biofilter, dynamic modeling software characterizing contaminant removal via biofiltration, was used in the preliminary design of a biofilter to treat odorous hydrogen sulfide (H2S). Steady-state model simulations were run to generate performance plots for various influent concentrations, loadings, residence times, media sizes, and temperatures. Although elimination capacity and removal efficiency frequently are used to characterize biofilter performance, effluent concentration can be used to characterize performance when treating to a target effluent concentration. Model simulations illustrate that, at a given temperature, a biofilter cannot reduce H2S emissions below a minimum value, no matter how large the biofilter or how long the residence time. However, a higher biofilter temperature results in lower effluent H2S concentrations. Because dynamic model simulations show that shock loading can significantly increase the effluent concentration above values predicted by the steady-state model simulations, it is recommended that, to consistently meet treatment objectives, dynamic feed conditions should be considered. This study illustrates that modeling can serve as a valuable tool in the design and performance optimization of biofilters.

  13. A finite element analysis of a 3D auxetic textile structure for composite reinforcement

    NASA Astrophysics Data System (ADS)

    Ge, Zhaoyang; Hu, Hong; Liu, Yanping

    2013-08-01

    This paper reports the finite element analysis of an innovative 3D auxetic textile structure consisting of three yarn systems (weft, warp and stitch yarns). Different from conventional 3D textile structures, the proposed structure exhibits an auxetic behaviour under compression and can be used as a reinforcement to manufacture auxetic composites. The geometry of the structure is first described. Then a 3D finite element model is established using ANSYS software and validated by the experimental results. The deformation process of the structure at different compression strains is demonstrated, and the validated finite element model is finally used to simulate the auxetic behaviour of the structure with different structural parameters and yarn properties. The results show that the auxetic behaviour of the proposed structure increases with increasing compression strain, and all the structural parameters and yarn properties have significant effects on the auxetic behaviour of the structure. It is expected that the study could provide a better understanding of 3D auxetic textile structures and could promote their application in auxetic composites.

  14. Stitch modeling of non crimp fabric in forming simulations

    NASA Astrophysics Data System (ADS)

    Steer, Q.; Colmars, J.; Boisse, P.

    2018-05-01

    The use of Non Crimp Fabric composite has increased during the last years due to cheaper cost of manufacturing and high mechanicals properties suitable for applications such as aeronautic, automotive and wind turbines. The main difference between Non Crimp Fabric (NCF) and textile reinforcement is the mean of manufacturing: where in textile fibers are woven, in NCF layers of unidirectional oriented fibers are assembled with a stitch. As a consequence, the stitch especially its geometry (stitch pattern) will have a major influence on the deformation of this type of reinforcement during forming process. Experimental campaigns on NCF samples compared to textile with the same fibers orientation have showed that the stitch affects the shear behavior of the reinforcement which is the main mode of deformation in the forming process. A description of the stitch has been implemented in a shell element for macro scale forming simulation as a first approach based on simple hypothesis. Further works are focus on the specific behavior of the stitch along the fabric and interaction with the fibers layers during shear deformation of the reinforcement and a method to implement the stitch in a more refined model of the fabric.

  15. Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric

    NASA Astrophysics Data System (ADS)

    Babu Roshni, Satheesh; Jayakrishnan, M. P.; Mohanan, P.; Peethambharan Surendran, Kuzhichalil

    2017-10-01

    In this paper, we investigated the simulation and fabrication of an E-shaped microstrip patch antenna realized on multilayered polyester fabric suitable for WiMAX (Worldwide Interoperability for Microwave Access) applications. The main challenges while designing a textile antenna were to provide adequate thickness, surface uniformity and water wettability to the textile substrate. Here, three layers of polyester fabric were stacked together in order to obtain sufficient thickness, and were subsequently dip coated with polyvinyl butyral (PVB) solution. The PVB-coated polyester fabric showed a hydrophobic nature with a contact angle of 91°. The RMS roughness of the uncoated and PVB-coated polyester fabric was about 341 nm and 15 nm respectively. The promising properties, such as their flexibility, light weight and cost effectiveness, enable effortless integration of the proposed antenna into clothes like polyester jackets. Simulated and measured results in terms of return loss as well as gain were showcased to confirm the usefulness of the fabricated prototype. The fabricated antenna successfully operates at 3.37 GHz with a return loss of 21 dB and a maximum measured gain of 3.6 dB.

  16. Radiative human body cooling by nanoporous polyethylene textile.

    PubMed

    Hsu, Po-Chun; Song, Alex Y; Catrysse, Peter B; Liu, Chong; Peng, Yucan; Xie, Jin; Fan, Shanhui; Cui, Yi

    2016-09-02

    Thermal management through personal heating and cooling is a strategy by which to expand indoor temperature setpoint range for large energy saving. We show that nanoporous polyethylene (nanoPE) is transparent to mid-infrared human body radiation but opaque to visible light because of the pore size distribution (50 to 1000 nanometers). We processed the material to develop a textile that promotes effective radiative cooling while still having sufficient air permeability, water-wicking rate, and mechanical strength for wearability. We developed a device to simulate skin temperature that shows temperatures 2.7° and 2.0°C lower when covered with nanoPE cloth and with processed nanoPE cloth, respectively, than when covered with cotton. Our processed nanoPE is an effective and scalable textile for personal thermal management. Copyright © 2016, American Association for the Advancement of Science.

  17. Bacteria in non-woven textile filters for domestic wastewater treatment.

    PubMed

    Spychała, Marcin; Starzyk, Justyna

    2015-01-01

    The objective of this study was preliminary identification of heterotrophic and ammonia oxidizing bacteria (AOB) cell concentration in the cross-sectional profile of geotextile filters for wastewater treatment. Filters of thicknesses 3.6 and 7.2 mm, made of non-woven textile TS20, were supplied with septic tank effluent and intermittently dosed and filtered under hydrostatic pressure. The cumulative loads of chemical oxygen demand (COD) and total solids were about 1.36 and 1.06 kg/cm2, respectively. The filters under analysis reached a relatively high removal efficiency for organic pollution 70-90% for biochemical oxygen demand (BOD5) and 60-85% for COD. The ammonia nitrogen removal efficiency level proved to be unstable (15-55%). Biomass samples for dry mass identification were taken from two regions: continuously flooded with wastewater and intermittently flooded with wastewater. The culturable heterotrophic bacteria were determined as colony-forming units (CFUs) on microbiological-selective media by means of the plate method. AOB and nitrite oxidizing bacteria (NOB) were examined using the FISH technique. A relatively wide range of heterotrophic bacteria was observed from 7.4×10(5)/cm2 to 3.8×10(6)/cm2 in geotextile layers. The highest concentration of heterotrophic bacteria (3.8×10(6)/cm2) was observed in the first layer of the textile filter. AOB were identified occasionally--about 8-15% of all bacteria colonizing the last filter layer, but occasionally much higher concentrations and ammonia nitrogen efficiency were achieved. Bacteria oxidizing nitrite to nitrate were not observed. The relation of total and organic fraction of biomass to culturable heterotrophic bacteria was also found.

  18. Performance evaluation of different solar advanced oxidation processes applied to the treatment of a real textile dyeing wastewater.

    PubMed

    Manenti, Diego R; Soares, Petrick A; Silva, Tânia F C V; Módenes, Aparecido N; Espinoza-Quiñones, Fernando R; Bergamasco, Rosângela; Boaventura, Rui A R; Vilar, Vítor J P

    2015-01-01

    The performance of different solar-driven advanced oxidation processes (AOPs), such as TiO2/UV, TiO2/H2O2/UV, and Fe(2+)/H2O2/UV-visible in the treatment of a real textile effluent using a pilot plant with compound parabolic collectors (CPCs), was investigated. The influence of the main photo-Fenton reaction variables such as iron concentration (20-100 mg Fe(2+) L(-1)), pH (2.4-4.5), temperature (10-50 °C), and irradiance (22-68 WUV m(-2)) was evaluated in a lab-scale prototype using artificial solar radiation. The real textile wastewater presented a beige color, with a maximum absorbance peak at 641 nm, alkaline pH (8.1), moderate organic content (dissolved organic carbon (DOC) = 129 mg C L(-1) and chemical oxygen demand (COD) = 496 mg O2 L(-1)), and high conductivity mainly associated to the high concentration of chloride (1.1 g Cl(-) L(-1)), sulfate (0.4 g SO 4 (2 -) L(- 1)), and sodium (1.2 g Na(+) L(-1)) ions. Although all the processes tested contributed to complete decolorization and effective mineralization, the most efficient process was the solar photo-Fenton with an optimum catalyst concentration of 60 mg Fe(2+) L(-1), leading to 70 % mineralization (DOCfinal = 41 mg C L(-1); CODfinal < 150 mg O2 L(-1)) at pH 3.6, requiring a UV energy dose of 3.5 kJUV L(-1) (t 30 W = 22.4 min; [Formula: see text]; [Formula: see text]) and consuming 18.5 mM of H2O2.

  19. Thiocyanate, calcium and sulfate as causes of toxicity to Ceriodaphnia dubia in a hard rock mining effluent.

    PubMed

    Brix, Kevin V; Gerdes, Robert; Grosell, Martin

    2010-10-01

    A series of Toxicity Identification Evaluations (TIEs) to identify the cause(s) of observed toxicity to Ceriodaphnia dubia have been conducted on a hard rock mining effluent. Characteristic of hard rock mining discharges, the effluent has elevated (∼3000 mg l(-1)) total dissolved solids (TDS) composed primarily of Ca(2+) and SO(4)(2-). The effluent typically exhibits 6-12 toxic units (TUs) when tested with C. dubia. Phase I and II toxicity identification evaluations (TIEs) indicated Ca(2+) and SO(4)(2-) contributed only ∼4 TUs of toxicity, but this was likely an underestimate due to problems with simulating the supersaturated CaSO(4) concentrations in the effluent. Treatment of the effluent with BaCO(3) to precipitate Ca(2+) and SO(4)(2-) revealed that these ions contribute ∼6 TUs of the observed toxicity, but the remaining source(s) of toxicity (up to 6 TUs) remained unidentified. Subsequent investigations identified thiocyanate (SCN(-)) in the effluent at 100-150 μM. Toxicity tests reveal that C. dubia are sensitive to SCN(-) with an estimated IC25 of 8.3 μΜ for reproduction in moderately hard water suggesting between 12 and 18 TUs of toxicity in the effluent. Additional experiments demonstrated that SCN(-) toxicity is reduced in the high TDS matrix of the mining effluent. Testing of a mock effluent simulating the major ion and SCN(-) concentrations resulted in 10.4 TUs, suggesting that Ca(2+), SO(4)(2-) and SCN(-) are the three toxicants present in this effluent. This research suggests SCN(-) may be a more common cause of toxicity in mining effluents than is generally recognized. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. A robust simulation-optimization modeling system for effluent trading--a case study of nonpoint source pollution control.

    PubMed

    Zhang, J L; Li, Y P; Huang, G H

    2014-04-01

    In this study, a robust simulation-optimization modeling system (RSOMS) is developed for supporting agricultural nonpoint source (NPS) effluent trading planning. The RSOMS can enhance effluent trading through incorporation of a distributed simulation model and an optimization model within its framework. The modeling system not only can handle uncertainties expressed as probability density functions and interval values but also deal with the variability of the second-stage costs that are above the expected level as well as capture the notion of risk under high-variability situations. A case study is conducted for mitigating agricultural NPS pollution with an effluent trading program in Xiangxi watershed. Compared with non-trading policy, trading scheme can successfully mitigate agricultural NPS pollution with an increased system benefit. Through trading scheme, [213.7, 288.8] × 10(3) kg of TN and [11.8, 30.2] × 10(3) kg of TP emissions from cropped area can be cut down during the planning horizon. The results can help identify desired effluent trading schemes for water quality management with the tradeoff between the system benefit and reliability being balanced and risk aversion being considered.

  1. Determination of labile copper, cobalt, and chromium in textile mill wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crain, J.S.; Essling, A.M.; Kiely, J.T.

    1997-01-01

    Copper, chromium, and cobalt species present in filtered wastewater effluent were separated by cation exchange and reverse phase chromatography. Three sample fractions were obtained: one containing metal cations (i.e., trivalent Cr, divalent Cu, and divalent Co), one containing organic species (including metallized dyes), and one containing other unretained species. The metal content of each fraction was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The sum of the corrected data was compared to the metal content of a filtered effluent aliquot digested totally with fuming sulfuric acid. Other aliquots of the filtered effluent were spiked with the metals ofmore » interest and digested to confirm chemical yield and accuracy. Method detection limits were consistently below 20 {mu}g L{sup -1} for Cu, 30 {mu}g L{sup -1} for Co, and 10 {mu}g L{sup -1} for Cr. Spike recoveries for undifferentiated Cu and Cr were statistically indistinguishable from unity; although Co spike recoveries were slightly low ({approximately}95%), its chemical yield was 98%. Copper retention on the sodium sulfonate cation exchange resin was closely correlated with the [EDTA]/[Cu] ratio, suggesting that metals retained upon the cation exchange column were assignable to labile metal species; however, mass balances for all three elements, though reasonable ({approximately}90%), were significantly different from unity. Mechanical factors may have contributed to the material loss, but other data suggest that some metal species reacted irreversibly with the reverse phase column. 3 refs., 2 figs., 4 tabs.« less

  2. Purification and Characterization of a Novel Laccase from Cerrena sp. HYB07 with Dye Decolorizing Ability

    PubMed Central

    Yang, Jie; Lin, Qi; Ng, Tzi Bun; Ye, Xiuyun; Lin, Juan

    2014-01-01

    Laccases (EC 1.10.3.2) are a class of multi-copper oxidases with important industrial values. A basidiomycete strain Cerrena sp. HYB07 with high laccase yield was identified. After cultivation in the shaking flask for 4 days, a maximal activity of 210.8 U mL−1 was attained. A 58.6-kDa laccase (LacA) with 7.2% carbohydrate and a specific activity of 1952.4 U mg−1 was purified. 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) was the optimal substrate, with K m and k cat being 93.4 µM and 2468.0 s−1, respectively. LacA was stable at 60°C, pH 5.0 and above, and in organic solvents. Metal ions Na+, K+, Ca2+, Mg2+, Mn2+, Zn2+ enhanced LacA activity, while Fe2+ and Li+ inhibited LacA activity. LacA decolorized structurally different dyes and a real textile effluent. Its gene and cDNA sequences were obtained. Putative cis-acting transcriptional response elements were identified in the promoter region. The high production yield and activity, robustness and dye decolorizing capacity make LacA and Cerrena sp. HYB07 potentially useful for industrial and environmental applications such as textile finishing and wastewater treatment. PMID:25356987

  3. Biodegradation of textile wastewater: enhancement of biodegradability via the addition of co-substrates followed by phytotoxicity analysis of the effluent.

    PubMed

    Ceretta, María Belén; Durruty, Ignacio; Orozco, Ana Micaela Ferro; González, Jorge Froilán; Wolski, Erika Alejandra

    2018-05-01

    This work reports on the biodegradation of textile wastewater by three alternative microbial treatments. A bacterial consortium, isolated from a dyeing factory, showed significant efficacy in decolourizing wastewater (77.6 ± 3.0%); the decolourization rate was 5.80 ± 0.31 mg of azo dye·L -1 ·h -1 , without the addition of an ancillary carbon source (W). The degradation was 52% (measured as COD removal) and the products of the treatment showed low biodegradability (COD/BOD 5 = 4.2). When glucose was added to the wastewater, (W + G): the decolourization efficiency increased to 87.24 ± 2.5% and the decolourization rate significantly improved (25.67 ± 3.62 mg·L -1 ·h -1 ), although the COD removal efficiency was only 44%. Finally, the addition of starch (W + S) showed both a similar decolourization rate and efficiency to the W treatment, but a higher COD removal efficiency (72%). In addition, the biodegradability of the treated wastewater was considerably improved (COD/BOD 5 = 1.2) when starch was present. The toxicity of the degradation products was tested on Lactuca sativa seeds. In all treatments, toxicity was reduced with respect to the untreated wastewater. The W + S treatment gave the best performance.

  4. A dynamic tester to evaluate the thermal and moisture behaviour of the surface of textiles.

    PubMed

    Li, Wenbin; Xu, Weilin; Wang, Hao; Wang, Xin

    2016-01-01

    The thermal and moisture behaviour of the microclimate of textiles is crucial in determining the physiological comfort of apparel, but it has not been investigated sufficiently due to the lack of particular evaluation techniques. Based on sensing, temperature controlling and wireless communicating technology, a specially designed tester has been developed in this study to evaluate the thermal and moisture behaviour of the surface of textiles in moving status. A temperature acquisition system and a temperature controllable hotplate have been established to test temperature and simulate the heat of human body, respectively. Relative humidity of the surface of fabric in the dynamic process has been successfully tested through sensing. Meanwhile, wireless communication technology was applied to transport the acquired data of temperature and humidity to computer for further processing. Continuous power supply was achieved by intensive contact between an elastic copper plate and copper ring on the rotating shaft. This tester provides the platform to evaluate the thermal and moisture behaviour of textiles. It enables users to conduct a dynamic analysis on the temperature and humidity together with the thermal and moisture transport behaviour of the surface of fabric in moving condition. Development of this tester opens the door of investigation on the micro-climate of textiles in real time service, and eventually benefits the understanding of the sensation comfort and wellbeing of apparel wearers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A Critical Comparison of Methods for the Analysis of Indigo in Dyeing Liquors and Effluents

    PubMed Central

    Buscio, Valentina; Crespi, Martí; Gutiérrez-Bouzán, Carmen

    2014-01-01

    Indigo is one of the most important dyes in the textile industry. The control of the indigo concentration in dyeing liquors and effluents is an important tool to ensure the reproducibility of the dyed fabrics and also to establish the efficiency of the wastewater treatment. In this work, three analytical methods were studied and validated with the aim to select a reliable, fast and automated method for the indigo dye determination. The first method is based on the extraction of the dye, with chloroform, in its oxidized form. The organic solution is measured by Ultraviolet (UV)-visible spectrophotometry at 604 nm. The second method determines the concentration of indigo in its leuco form in aqueous medium by UV-visible spectrophotometry at 407 nm. Finally, in the last method, the concentration of indigo is determined by redox titration with potassium hexacyanoferrate (K3(Fe(CN)6)). The results indicated that the three methods that we studied met the established acceptance criteria regarding accuracy and precision. However, the third method was considered the most adequate for application on an industrial scale due to its wider work range, which provides a significant advantage over the others. PMID:28788185

  6. Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow

    NASA Astrophysics Data System (ADS)

    Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.

    2012-05-01

    Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.

  7. Toward the complete utilization of rice straw: Methane fermentation and lignin recovery by a combinational process involving mechanical milling, supporting material and nanofiltration.

    PubMed

    Sasaki, Kengo; Okamoto, Mami; Shirai, Tomokazu; Tsuge, Yota; Fujino, Ayami; Sasaki, Daisuke; Morita, Masahiko; Matsuda, Fumio; Kikuchi, Jun; Kondo, Akihiko

    2016-09-01

    Rice straw was mechanically milled using a process consuming 1.9MJ/kg-biomass, and 10g/L of unmilled or milled rice straw was used as the carbon source for methane fermentation in a digester containing carbon fiber textile as the supporting material. Milling increased methane production from 226 to 419mL/L/day at an organic loading rate of 2180mg-dichromate chemical oxygen demand/L/day, corresponding to 260mLCH4/gVS. Storage of the fermentation effluent at room temperature decreased the weight of the milled rice straw residue from 3.81 to 1.00g/L. The supernatant of the effluent was subjected to nanofiltration. The black concentrates deposited on the nanofiltration membranes contained 53.0-57.9% lignin. Solution nuclear magnetic resonance showed that lignin aromatic components such as p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) were retained primarily, and major lignin interunit structures such as the β-O-4-H/G unit were absent. This combinational process will aid the complete utilization of rice straw. Copyright © 2016. Published by Elsevier Ltd.

  8. Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris.

    PubMed

    Hernández-Zamora, Miriam; Cristiani-Urbina, Eliseo; Martínez-Jerónimo, Fernando; Perales-Vela, Hugo Virgilio; Ponce-Noyola, Teresa; Montes-Horcasitas, María del Carmen; Cañizares-Villanueva, Rosa Olivia

    2015-07-01

    Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.

  9. Design & Performance of Wearable Ultra Wide Band Textile Antenna for Medical Applications

    NASA Astrophysics Data System (ADS)

    Singh, Nikhil; Singh, Ashutosh Kumar; Singh, Vinod Kumar

    2015-02-01

    The concept of wearable products such as textile antenna are being developed which are capable of monitoring, alerting and demanding attention whenever hospital emergency is needed, hence minimizing labour and resource. In the proposed work by using textile material as a substrate the ultra wideband antenna is designed especially for medical applications.Simulated and measured results here shows that the proposed antenna design meets the requirements of wide working bandwidth and provides 13.08 GHz bandwidth with very small size, washable (if using conductive thread for conductive parts) and flexible materials. Results in terms of bandwidth, radiation pattern, return loss as well as gain and efficiency are presented to validate the usefulness of the current proposed design. The work done here has many implications for future research and it could help patients with such flexible and comfortable medical monitoring techniques.

  10. Modelling the development of defects during composite reinforcements and prepreg forming

    PubMed Central

    Hamila, N.; Madeo, A.

    2016-01-01

    Defects in composite materials are created during manufacture to a large extent. To avoid them as much as possible, it is important that process simulations model the onset and the development of these defects. It is then possible to determine the manufacturing conditions that lead to the absence or to the controlled presence of such defects. Three types of defects that may appear during textile composite reinforcement or prepreg forming are analysed and modelled in this paper. Wrinkling is one of the most common flaws that occur during textile composite reinforcement forming processes. The influence of the different rigidities of the textile reinforcement is studied. The concept of ‘locking angle’ is questioned. A second type of unusual behaviour of fibrous composite reinforcements that can be seen as a flaw during their forming process is the onset of peculiar ‘transition zones’ that are directly related to the bending stiffness of the fibres. The ‘transition zones’ are due to the bending stiffness of fibres. The standard continuum mechanics of Cauchy is not sufficient to model these defects. A second gradient approach is presented that allows one to account for such unusual behaviours and to master their onset and development during forming process simulations. Finally, the large slippages that may occur during a preform forming are discussed and simulated with meso finite-element models used for macroscopic forming. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242300

  11. Modelling the development of defects during composite reinforcements and prepreg forming.

    PubMed

    Boisse, P; Hamila, N; Madeo, A

    2016-07-13

    Defects in composite materials are created during manufacture to a large extent. To avoid them as much as possible, it is important that process simulations model the onset and the development of these defects. It is then possible to determine the manufacturing conditions that lead to the absence or to the controlled presence of such defects. Three types of defects that may appear during textile composite reinforcement or prepreg forming are analysed and modelled in this paper. Wrinkling is one of the most common flaws that occur during textile composite reinforcement forming processes. The influence of the different rigidities of the textile reinforcement is studied. The concept of 'locking angle' is questioned. A second type of unusual behaviour of fibrous composite reinforcements that can be seen as a flaw during their forming process is the onset of peculiar 'transition zones' that are directly related to the bending stiffness of the fibres. The 'transition zones' are due to the bending stiffness of fibres. The standard continuum mechanics of Cauchy is not sufficient to model these defects. A second gradient approach is presented that allows one to account for such unusual behaviours and to master their onset and development during forming process simulations. Finally, the large slippages that may occur during a preform forming are discussed and simulated with meso finite-element models used for macroscopic forming. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).

  12. Imaging tristimulus colorimeter for the evaluation of color in printed textiles

    NASA Astrophysics Data System (ADS)

    Hunt, Martin A.; Goddard, James S., Jr.; Hylton, Kathy W.; Karnowski, Thomas P.; Richards, Roger K.; Simpson, Marc L.; Tobin, Kenneth W., Jr.; Treece, Dale A.

    1999-03-01

    The high-speed production of textiles with complicated printed patterns presents a difficult problem for a colorimetric measurement system. Accurate assessment of product quality requires a repeatable measurement using a standard color space, such as CIELAB, and the use of a perceptually based color difference formula, e.g. (Delta) ECMC color difference formula. Image based color sensors used for on-line measurement are not colorimetric by nature and require a non-linear transformation of the component colors based on the spectral properties of the incident illumination, imaging sensor, and the actual textile color. This research and development effort describes a benchtop, proof-of-principle system that implements a projection onto convex sets (POCS) algorithm for mapping component color measurements to standard tristimulus values and incorporates structural and color based segmentation for improved precision and accuracy. The POCS algorithm consists of determining the closed convex sets that describe the constraints on the reconstruction of the true tristimulus values based on the measured imperfect values. We show that using a simulated D65 standard illuminant, commercial filters and a CCD camera, accurate (under perceptibility limits) per-region based (Delta) ECMC values can be measured on real textile samples.

  13. PHOTOCITYTEX - A LIFE project on the air pollution treatment in European urban environments by means of photocatalytic textiles

    NASA Astrophysics Data System (ADS)

    Ródenas, Milagros; Fages, Eduardo; Fatarella, Enrico; Herrero, David; Castagnoli, Lidia; Borrás, Esther; Vera, Teresa; Gómez, Tatiana; Carreño, Javier; López, Ramón; Gimeno, Cristina; Catota, Marlon; Muñoz, Amalia

    2016-04-01

    In urban areas, air pollution from traffic is becoming a growing problem. In recent years the use of titanium dioxide (TiO2) based photocatalytic self-cleaning and de-polluting materials has been considered to remove these pollutants. TiO2 is now commercially available and used in construction material or paints for environmental purposes. Further work, however, is still required to clarify the potential impacts from wider TiO2 use. Specific test conditions are required to provide objective and accurate knowledge. Under the LIFE PHOTOCITYTEX project, the effectiveness of using TiO2-based photocatalytic nanomaterials in building textiles as a way of improving the air quality in urban areas will be assessed. Moreover, information on secondary products formed during the tests will be obtained, yielding a better overall understanding of the whole process and its implications. For this purpose, a series of demonstrations are foreseen, comprising 1. lab-test and development of textile prototypes at lab scale, 2. larger scale demonstration of the use of photocatalytic textiles in the depollution of urban environments employing the EUPHORE chambers to simulate a number of environmental conditions of various European cities and 3. field demonstrations installing the photocatalytic textiles in two urban locations in Quart de Poblet, a tunnel and a school. A one-year extensive passive dosimetric campaign has already being carried out to characterize the selected urban sites before the installation of the photocatalytic textile prototypes, and a similar campaign after their installation is ongoing. Also, more comprehensive intensive active measurement campaigns have been conducted to account for winter and summer conditions. In parallel, lab-tests have already been completed to determine optimal photocatalytic formulations on textiles, followed by experiments at EUPHORE. Information on the deployment of the campaigns is given together with laboratory conclusions and first verification on the photocatalytic textile effectiveness as observed in the field campaigns and at EUPHORE. A discussion on the impact of this depolluting solution on the air quality of urban environments is given.

  14. Investigation of the influence of textiles and surface treatments on blistering using a novel simulant.

    PubMed

    Guerra, C; Schwartz, C J

    2012-02-01

    Friction blisters occur when shear loading causes the separation of dermal layers. Consequences range from minor pain to life-threatening infection. Past research in blister formation has focused on in vivo experiments, which complicate a mechanics-based study of the phenomenon. A Synthetic Skin Simulant Platform (3SP) approach was developed to investigate the effect of textile fabrics (t-shirt knit and denim cottons) and surface treatments (dry and wet lubricants) on blister formation. 3SP samples consist of bonded elastomeric layers that are surrogates for various dermal layers. These layers display frictional and mechanical properties similar to their anatomical analogues. Blistering was assessed by the measurement of deboned area between layers. Denim caused greater blistering than did the t-shirt knit cotton, and both lubricants significantly reduced blister area and surface damage. A triglyceride-based lubricant had a more pronounced effect on blister reduction than corn starch. The triglyceride lubricant used with t-shirt knit cotton resulted in no blisters being formed. The performance of the 3SP approach follows previously reported frictional behavior of skin in vivo. The results of textile and surface treatment performance suggest that future 3SP iterations can be focused on specific anatomical sites based on application type. © 2011 John Wiley & Sons A/S.

  15. Electrical bioimpedance enabling prompt intervention in traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Seoane, Fernando; Atefi, S. Reza

    2017-05-01

    Electrical Bioimpedance (EBI) is a well spread technology used in clinical practice across the world. Advancements in Textile material technology with conductive textile fabrics and textile-electronics integration have allowed exploring potential applications for Wearable Measurement Sensors and Systems exploiting. The sensing principle of electrical bioimpedance is based on the intrinsic passive dielectric properties of biological tissue. Using a pair of electrodes, tissue is electrically stimulated and the electrical response can be sensed with another pair of surface electrodes. EBI spectroscopy application for cerebral monitoring of neurological conditions such as stroke and perinatal asphyxia in newborns have been justified using animal studies and computational simulations. Such studies have shown proof of principle that neurological pathologies indeed modify the dielectric composition of the brain that is detectable via EBI. Similar to stroke, Traumatic Brain Injury (TBI) also affects the dielectric properties of brain tissue that can be detected via EBI measurements. Considering the portable and noninvasive characteristics of EBI it is potentially useful for prehospital triage of TBI patients where. In the battlefield blast induced Traumatic Brain Injuries are very common. Brain damage must be assessed promptly to have a chance to prevent severe damage or eventually death. The relatively low-complexity of the sensing hardware required for EBI sensing and the already proven compatibility with textile electrodes suggest the EBI technology is indeed a candidate for developing a handheld device equipped with a sensorized textile cap to produce an examination in minutes for enabling medically-guided prompt intervention.

  16. Concurrent uptake and metabolism of dyestuffs through bio-assisted phytoremediation: a symbiotic approach.

    PubMed

    Tahir, Uruj; Sohail, Sana; Khan, Umair Hassan

    2017-10-01

    Manipulation of bio-technological processes in treatment of dyestuffs has attracted considerable attention, because a large proportion of these synthetic dyes enter into natural environment during synthesis and dyeing operations that contaminates different ecosystems. Moreover, these dyestuffs are toxic and difficult to degrade because of their synthetic origin, durability, and complex aromatic molecular structures. Hence, bio-assisted phytoremediation has recently emerged as an innovative cleanup approach in which microorganisms and plants work together to transform xenobiotic dyestuffs into nontoxic or less harmful products. This manuscript will focus on competence and potential of plant-microbe synergistic systems for treatment of dyestuffs, their mixtures and real textile effluents, and effects of symbiotic relationship on plant performances during remediation process and will highlight their metabolic activities during bio-assisted phytodegradation and detoxification.

  17. Hydrodynamics and water quality models applied to Sepetiba Bay

    NASA Astrophysics Data System (ADS)

    Cunha, Cynara de L. da N.; Rosman, Paulo C. C.; Ferreira, Aldo Pacheco; Carlos do Nascimento Monteiro, Teófilo

    2006-10-01

    A coupled hydrodynamic and water quality model is used to simulate the pollution in Sepetiba Bay due to sewage effluent. Sepetiba Bay has a complicated geometry and bottom topography, and is located on the Brazilian coast near Rio de Janeiro. In the simulation, the dissolved oxygen (DO) concentration and biochemical oxygen demand (BOD) are used as indicators for the presence of organic matter in the body of water, and as parameters for evaluating the environmental pollution of the eastern part of Sepetiba Bay. Effluent sources in the model are taken from DO and BOD field measurements. The simulation results are consistent with field observations and demonstrate that the model has been correctly calibrated. The model is suitable for evaluating the environmental impact of sewage effluent on Sepetiba Bay from river inflows, assessing the feasibility of different treatment schemes, and developing specific monitoring activities. This approach has general applicability for environmental assessment of complicated coastal bays.

  18. Adsorption of reactive blue BF-5G dye by soybean hulls: kinetics, equilibrium and influencing factors.

    PubMed

    Honorio, Jacqueline Ferandin; Veit, Márcia Teresinha; Gonçalves, Gilberto da Cunha; de Campos, Élvio Antonio; Fagundes-Klen, Márcia Regina

    2016-01-01

    The textile industry is known for the high use of chemicals, such as dyes, and large volumes of effluent that contaminate waters, a fact that has encouraged research and improved treatment techniques. In this study, we used unprocessed soybean hulls for the removal of reactive blue BF-5G dye. The point of zero charge of soybean hulls was 6.76. Regarding the speed of agitation in the adsorption process, the resistance to mass transfer that occurs in the boundary layer was eliminated at 100 rpm. Kinetics showed an experimental amount of dye adsorbed at equilibrium of 57.473 mg g(-1) obtained under the following conditions: dye initial concentration = 400 mg L(-1); diameter of particle = 0.725 mm; dosage = 6 g L(-1); pH 2; 100 rpm; temperature = 30 °C; and duration of 24 hours. The pseudo-second order best showed the dye removal kinetics. The adsorption isotherms performed at different temperatures (20, 30, 40 and 50 °C) showed little variation in the concentration range assessed, being properly adjusted by the Langmuir isotherm model. The maximum capacity of dye adsorption was 72.427 mg g(-1) at 30 °C. Since soybean hull is a low-cost industrial byproduct, it proved to be a potential adsorbent for the removal of the textile dye assessed.

  19. Production and characterization of laccase from Cyathus bulleri and its use in decolourization of recalcitrant textile dyes.

    PubMed

    Salony; Mishra, S; Bisaria, V S

    2006-08-01

    Many fungi (particularly the white rot) are well suited for treatment of a broad range of textile dye effluents due to the versatility of the lignin-degrading enzymes produced by them. We have investigated decolourization of a number of recalcitrant reactive azo and acid dyes using the culture filtrate and purified laccase from the fungus Cyathus bulleri. For this, the enzyme was purified from the culture filtrate to a high specific activity of 4,022 IU mg(-1) protein, produced under optimized carbon, nitrogen and C/N ratio with induction by 2,6-dimethylaniline. The protein was characterized as a monomer of 58+/-5.0 kDa with carbohydrate content of 16% and was found to contain all three Cu(II) centres. The three internal peptide sequences showed sequence identity (80-92%) with laccases of a number of white rot fungi. Substrate specificity indicated highest catalytic efficiency (k(cat)/K(M)) on guaiacol followed by 2,2'-azino-bis(3-ethylthiazoline-6-sulfonic acid) (ABTS). Decolourization of a number of reactive azo and acid dyes was seen with the culture filtrate of the fungus containing predominantly laccase. In spite of no observable effect of purified laccase on other dyes, the ability to decolourize these was achieved in the presence of the redox mediator ABTS, with 50% decolourization in 0.5-5.4 days.

  20. A sustainable slashing industry using biodegradable sizes from modified soy protein to replace petro-based poly(vinyl alcohol).

    PubMed

    Zhao, Yi; Zhao, Yuzhu; Xu, Helan; Yang, Yiqi

    2015-02-17

    Biodegradable sizing agents from triethanolamine (TEA) modified soy protein could substitute poly(vinyl alcohol)(PVA) sizes for high-speed weaving of polyester and polyester/cotton yarns to substantially decrease environmental pollution and impel sustainability of textile industry. Nonbiodegradable PVA sizes are widely used and mainly contribute to high chemical oxygen demand (COD) in textile effluents. It has not been possible to effectively degrade, reuse or replace PVA sizes so far. Soy protein with good biodegradability showed potential as warp sizes in our previous studies. However, soy protein sizes lacked film flexibility and adhesion for required high-speed weaving. Additives with multiple hydroxyl groups, nonlinear molecule, and electric charge could physically modify secondary structure of soy protein and lead to about 23.6% and 43.3% improvement in size adhesion and ability of hair coverage comparing to unmodified soy protein. Industrial weaving results showed TEA-soy protein had relative weaving efficiency 3% and 10% higher than PVA and chemically modified starch sizes on polyester/cotton fabrics, and had relative weaving efficiency similar to PVA on polyester fabrics, although with 3- 6% lower add-on. In addition, TEA-soy sizes had a BOD5/COD ratio of 0.44, much higher than 0.03 for PVA, indicating that TEA-soy sizes were easily biodegradable in activated sludge.

  1. Protozoa and metazoa relations to technological conditions of non-woven textile filters for wastewater treatment.

    PubMed

    Spychała, Marcin; Sowińska, Aleksandra; Starzyk, Justyna; Masłowski, Adam

    2015-01-01

    The objective of this study was a preliminary identification of basic groups of micro-organisms in the cross-sectional profile of geotextile filters for septic tank effluent (STE) treatment and their relations to technological conditions. Reactors with textile filters treating wastewater were investigated on a semi-technical scale. Filters were vertically situated and STE was filtered through them under hydrostatic pressure at a wastewater surface height of 7-20 cm. Filters were made of four layers of non-woven TS 20 geotextile of 0.9 mm thickness. Various groups of organisms were observed; the most abundant group comprised free-swimming and crawling ciliates, less abundant were stalked ciliates and the least numerous were nematodes. The individual counts of all groups of micro-organisms investigated during the study were variable according to time and space. The high abundance of Opercularia, a commonly observed genus of stalked ciliates, was related to the high efficiency of wastewater treatment and dissolved oxygen concentration of about 1.0 g/m3. Numbers of free-swimming and crawling ciliates had a tendency to decrease in relation to the depth of filter cross-sectional profile. The variability in counts of particular groups of organisms could be related to the local stress conditions. No correlation between identified organism count and total mass concentration in the cross-sectional filter profile was found.

  2. Solid-phase microfibers based on polyethylene glycol modified single-walled carbon nanotubes for the determination of chlorinated organic carriers in textiles.

    PubMed

    Zhang, Wei-Ya; Sun, Yin; Wang, Cheng-Ming; Wu, Cai-Ying

    2011-09-01

    Based on polyethylene glycol modified single-walled carbon nanotubes, a novel sol-gel fiber coating was prepared and applied to the headspace microextraction of chlorinated organic carriers (COCs) in textiles by gas chromatography-electron capture detection. The preparation of polyethylene glycol modified single-walled carbon nanotubes and the sol-gel fiber coating process was stated and confirmed by infrared spectra, Raman spectroscopy, and scanning electron microscopy. Several parameters affecting headspace microextraction, including extraction temperature, extraction time, salting-out effect, and desorption time, were optimized by detecting 11 COCs in simulative sweat samples. Compared with the commercial solid-phase microextraction fibers, the sol-gel polyethylene glycol modified single-walled carbon nanotubes fiber showed higher extraction efficiency, better thermal stability, and longer life span. The method detection limits for COCs were in the range from 0.02 to 7.5 ng L(-1) (S/N = 3). The linearity of the developed method varied from 0.001 to 50 μg L(-1) for all analytes, with coefficients of correlation greater than 0.974. The developed method was successfully applied to the analysis of trace COCs in textiles, the recoveries of the analytes indicated that the developed method was considerably useful for the determination of COCs in ecological textile samples.

  3. Unraveling cellulose microfibrils: a twisted tale

    USDA-ARS?s Scientific Manuscript database

    Molecular dynamics (MD) simulations of hydrated cellulose microfibrils are attractive to the textiles industry for their capacity to characterize water interactions with cotton fiber, as well as to the biofuels industry for their potential to provide insight toward efficient mechanisms for conversio...

  4. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea.

    PubMed

    Talvitie, Julia; Heinonen, Mari; Pääkkönen, Jari-Pekka; Vahtera, Emil; Mikola, Anna; Setälä, Outi; Vahala, Riku

    2015-01-01

    This study on the removal of microplastics during different wastewater treatment unit processes was carried out at Viikinmäki wastewater treatment plant (WWTP). The amount of microplastics in the influent was high, but it decreased significantly during the treatment process. The major part of the fibres were removed already in primary sedimentation whereas synthetic particles settled mostly in secondary sedimentation. Biological filtration further improved the removal. A proportion of the microplastic load also passed the treatment and was found in the effluent, entering the receiving water body. After the treatment process, an average of 4.9 (±1.4) fibres and 8.6 (±2.5) particles were found per litre of wastewater. The total textile fibre concentration in the samples collected from the surface waters in the Helsinki archipelago varied between 0.01 and 0.65 fibres per litre, while the synthetic particle concentration varied between 0.5 and 9.4 particles per litre. The average fibre concentration was 25 times higher and the particle concentration was three times higher in the effluent compared to the receiving body of water. This indicates that WWTPs may operate as a route for microplastics entering the sea.

  5. Bioremediation of dyes by fungi isolated from contaminated dye effluent sites for bio-usability

    PubMed Central

    Rani, Babita; Kumar, Vivek; Singh, Jagvijay; Bisht, Sandeep; Teotia, Priyanku; Sharma, Shivesh; Kela, Ritu

    2014-01-01

    Biodegradation and detoxification of dyes, Malachite green, Nigrosin and Basic fuchsin have been carried out using two fungal isolates Aspergillus niger, and Phanerochaete chrysosporium, isolated from dye effluent soil. Three methods were selected for biodegradation, viz. agar overlay and liquid media methods; stationary and shaking conditions at 25 °C. Aspergillus niger recorded maximum decolorization of the dye Basic fuchsin (81.85%) followed by Nigrosin (77.47%), Malachite green (72.77%) and dye mixture (33.08%) under shaking condition. Whereas, P. chrysosporium recorded decolorization to the maximum with the Nigrosin (90.15%) followed by Basic fuchsin (89.8%), Malachite green (83.25%) and mixture (78.4%). The selected fungal strains performed better under shaking conditions compared to stationary method; moreover the inoculation of fungus also brought the pH of the dye solutions to neutral from acidic. Seed germination bioassay study exhibited that when inoculated dye solutions were used, seed showed germination while uninoculated dyes inhibited germination even after four days of observation. Similarly, microbial growth was also inhibited by uninoculated dyes. The excellent performance of A. niger and P. chrysporium in the biodegradation of textile dyes of different chemical structures suggests and reinforces the potential of these fungi for environmental decontamination. PMID:25477943

  6. A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste.

    PubMed

    Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal

    2011-12-01

    The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.

  7. A robust method for determining water-extractable alkylphenol polyethoxylates in textile products by reaction-based headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; Huang, Bo-Xi; Mai, Xiao-Xia

    2015-08-07

    Alkylphenol polyethoxylates (APEO), surfactants used in the production of textiles, have the potential to move from the fabric to the skin of the person wearing the clothes, posing an inherent risk of adverse health consequences. Therefore, the textile industry needs a fast, robust method for determining aqueous extractable APEO in fabrics. The currently-favored HPLC methods are limited by the presence of a mixture of analytes (due to the molecular weight distribution) and a lack of analytical standards for quantifying results. As a result, it has not been possible to reach consensus on a standard method for the determination of APEO in textiles. This paper addresses these limitations through the use of reaction-based head space-gas chromatography (HS-GC). Specifically, water is used to simulate body sweat and extract APEO. HI is then used to react the ethoxylate chains to depolymerize the chains into iodoethane that is quantified through HS-GC, providing an estimate of the average amount of APEO in the clothing. Data are presented to justify the optimal operating conditions; i.e., water extraction at 60°C for 1h and reaction with a specified amount of HI in the headspace vial at 135°C for 4h. The results show that the HS-GC method has good precision (RSD<10%) and good accuracy (recoveries from 95 to 106%) for the quantification of APEO content in textile and related materials. As such, the method should be a strong candidate to become a standard method for such determinations. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Recent advancements in bioremediation of dye: Current status and challenges.

    PubMed

    Vikrant, Kumar; Giri, Balendu Shekhar; Raza, Nadeem; Roy, Kangkan; Kim, Ki-Hyun; Rai, Birendra Nath; Singh, Ram Sharan

    2018-04-01

    The rampant industrialization and unchecked growth of modern textile production facilities coupled with the lack of proper treatment facilities have proliferated the discharge of effluents enriched with toxic, baleful, and carcinogenic pollutants including dyes, heavy metals, volatile organic compounds, odorants, and other hazardous materials. Therefore, the development of cost-effective and efficient control measures against such pollution is imperative to safeguard ecosystems and natural resources. In this regard, recent advances in biotechnology and microbiology have propelled bioremediation as a prospective alternative to traditional treatment methods. This review was organized to address bioremediation as a practical option for the treatment of dyes by evaluating its performance and typical attributes. It further highlights the current hurdles and future prospects for the abatement of dyes via biotechnology-based remediation techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Modeling effluent distribution and nitrate transport through an on-site wastewater system.

    PubMed

    Hassan, G; Reneau, R B; Hagedorn, C; Jantrania, A R

    2008-01-01

    Properly functioning on-site wastewater systems (OWS) are an integral component of the wastewater system infrastructure necessary to renovate wastewater before it reaches surface or ground waters. There are a large number of factors, including soil hydraulic properties, effluent quality and dispersal, and system design, that affect OWS function. The ability to evaluate these factors using a simulation model would improve the capability to determine the impact of wastewater application on the subsurface soil environment. An existing subsurface drip irrigation system (SDIS) dosed with sequential batch reactor effluent (SBRE) was used in this study. This system has the potential to solve soil and site problems that limit OWS and to reduce the potential for environmental degradation. Soil water potentials (Psi(s)) and nitrate (NO(3)) migration were simulated at 55- and 120-cm depths within and downslope of the SDIS using a two-dimensional code in HYDRUS-3D. Results show that the average measured Psi(s) were -121 and -319 cm, whereas simulated values were -121 and -322 cm at 55- and 120-cm depths, respectively, indicating unsaturated conditions. Average measured NO(3) concentrations were 0.248 and 0.176 mmol N L(-1), whereas simulated values were 0.237 and 0.152 mmol N L(-1) at 55- and 120-cm depths, respectively. Observed unsaturated conditions decreased the potential for NO(3) to migrate in more concentrated plumes away from the SDIS. The agreement (high R(2) values approximately 0.97) between the measured and simulated Psi(s) and NO(3) concentrations indicate that HYDRUS-3D adequately simulated SBRE flow and NO(3) transport through the soil domain under a range of environmental and effluent application conditions.

  10. Carbonaceous material production from vegetable residue and their use in the removal of textile dyes present in wastewater

    NASA Astrophysics Data System (ADS)

    Peláez-Cid, A. A.; Tlalpa-Galán, M. A.; Herrera-González, A. M.

    2013-06-01

    This paper presents the adsorption results of acid, basic, direct, vat, and reactive-type dyes on carbonaceous adsorbent materials prepared starting off vegetable residue such as Opuntia ficus indica and Casimiroa edulis fruit wastes. The adsorbents prepared from Opuntia ficus indica waste were designated: TunaAsh, CarTunaT, and CarTunaQ. The materials obtained from Casimiroa edulis waste were named: CenZAP, CarZAPT, and CarZAPQ. TunaAsh and CenZAP consist of ashes obtained at 550 °C CarTunaT and CarZAPT consist of the materials carbonized at 400 °C lastly, CarTunaQ and CarZAPQ consist of chemically activated carbons using H3PO4 at 400 °C. Only the chemically activated materials were washed with distilled water until a neutral pH was obtained after their carbonization. All materials were ground and sieved to obtain a particle size ranging from 0.25 to 0.84 mm. The static adsorption results showed that both ashes and chemically activated carbon are more efficient at dye removal for both vegetable residues. For TunaAsh and CarTunaQ, removal rates of up to 100% in the cases of basic, acid, and direct dyes were achieved. Regarding wastewater containing reactive dyes, the efficiency ranged from 60 to 100%. For vat effluents, it ranged from 42 to 52%. In the case of CenZAP and CarZAPQ, it was possible to treat reactive effluents with rates ranging between 63 and 91%. Regarding vat effluents, it ranged from 57 to 68%. The process of characterization for all materials was done using scanning electron microscopy and infrared spectroscopy.

  11. UiO-66-NH2 Metal-Organic Framework (MOF) Nucleation on TiO2, ZnO, and Al2O3 Atomic Layer Deposition-Treated Polymer Fibers: Role of Metal Oxide on MOF Growth and Catalytic Hydrolysis of Chemical Warfare Agent Simulants.

    PubMed

    Lee, Dennis T; Zhao, Junjie; Oldham, Christopher J; Peterson, Gregory W; Parsons, Gregory N

    2017-12-27

    Metal-organic frameworks (MOFs) chemically bound to polymeric microfibrous textiles show promising performance for many future applications. In particular, Zr-based UiO-66-family MOF-textiles have been shown to catalytically degrade highly toxic chemical warfare agents (CWAs), where favorable MOF/polymer bonding and adhesion are attained by placing a nanoscale metal-oxide layer on the polymer fiber preceding MOF growth. To date, however, the nucleation mechanism of Zr-based MOFs on different metal oxides and how product performance is affected are not well understood. Herein, we provide new insight into how different inorganic nucleation films (i.e., Al 2 O 3 , ZnO, or TiO 2 ) conformally coated on polypropylene (PP) nonwoven textiles via atomic layer deposition (ALD) influence the quality, overall surface area, and the fractional yield of UiO-66-NH 2 MOF crystals solvothermally grown on fiber substrates. Of the materials explored, we find that TiO 2 ALD layers lead to the most effective overall MOF/fiber adhesion, uniformity, and a rapid catalytic degradation rate for a CWA simulant, dimethyl p-nitrophenyl phosphate (DMNP) with t 1/2 = 15 min, 580-fold faster than the catalytic performance of untreated PP textiles. Interestingly, compared to ALD TiO 2 and Al 2 O 3 , ALD ZnO induces a larger MOF yield in solution and mass loading on PP fibrous mats. However, this larger MOF yield is ascribed to chemical instability of the ZnO layer under MOF formation condition, leading to Zn 2+ ions that promote further homogeneous MOF growth. Insights presented here improve understanding of compatibility between active MOF materials and substrate surfaces, which we believe will help advanced MOF composite materials for a variety of useful functions.

  12. Smart textiles: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Cherenack, Kunigunde; van Pieterson, Liesbeth

    2012-11-01

    Smart textiles research represents a new model for generating creative and novel solutions for integrating electronics into unusual environments and will result in new discoveries that push the boundaries of science forward. A key driver for smart textiles research is the fact that both textile and electronics fabrication processes are capable of functionalizing large-area surfaces at very high speeds. In this article we review the history of smart textiles development, introducing the main trends and technological challenges faced in this field. Then, we identify key challenges that are the focus of ongoing research. We then proceed to discuss fundamentals of smart textiles: textile fabrication methods and textile interconnect lines, textile sensor, and output device components and integration of commercial components into textile architectures. Next we discuss representative smart textile systems and finally provide our outlook over the field and a prediction for the future.

  13. Uncertainty and sensitivity analysis of control strategies using the benchmark simulation model No1 (BSM1).

    PubMed

    Flores-Alsina, Xavier; Rodriguez-Roda, Ignasi; Sin, Gürkan; Gernaey, Krist V

    2009-01-01

    The objective of this paper is to perform an uncertainty and sensitivity analysis of the predictions of the Benchmark Simulation Model (BSM) No. 1, when comparing four activated sludge control strategies. The Monte Carlo simulation technique is used to evaluate the uncertainty in the BSM1 predictions, considering the ASM1 bio-kinetic parameters and influent fractions as input uncertainties while the Effluent Quality Index (EQI) and the Operating Cost Index (OCI) are focused on as model outputs. The resulting Monte Carlo simulations are presented using descriptive statistics indicating the degree of uncertainty in the predicted EQI and OCI. Next, the Standard Regression Coefficients (SRC) method is used for sensitivity analysis to identify which input parameters influence the uncertainty in the EQI predictions the most. The results show that control strategies including an ammonium (S(NH)) controller reduce uncertainty in both overall pollution removal and effluent total Kjeldahl nitrogen. Also, control strategies with an external carbon source reduce the effluent nitrate (S(NO)) uncertainty increasing both their economical cost and variability as a trade-off. Finally, the maximum specific autotrophic growth rate (micro(A)) causes most of the variance in the effluent for all the evaluated control strategies. The influence of denitrification related parameters, e.g. eta(g) (anoxic growth rate correction factor) and eta(h) (anoxic hydrolysis rate correction factor), becomes less important when a S(NO) controller manipulating an external carbon source addition is implemented.

  14. Effects of wastewater effluent on the South Platte River from Littleton to Denver

    USGS Publications Warehouse

    Spahr, N.E.; Blakely, S.R.

    1985-01-01

    The U.S. Geological Survey 's one-dimensional steady-state water quality model was used to investigate the effects of the effluent from the Bi-City WWTP (Wastewater Treatment Plant) on the South Platte River. The Bi-City WWTP is operated by the Cities of Littleton and Englewood. The model was calibrated from a 14.5 mile reach for 5-day carbonaceous biochemical oxygen demand, organic, ammonia, nitrite and nitrate using data collected during September 1983. Model verification was completed using data collected during October 1982 and January 1984 for all constituents except nitrite nitrogen. Nitrite nitrogen could not be verified for the cold temperature conditions of January of 1984. Measured benthic sediment oxygen demand used in model ranged from 1.01 to 2.77 grams per square meter per day. Model simulations were made for an estimated 7-day, 10-year discharge of 18 cubic feet per second, upstream from the outfall of the WWTP. Two groups of simulations were made for both warm and cold temperature conditions. In the first group of simulation variations were made in effluent 5-day carbonaceous biochemical oxygen demand concentrations and flow rates. The second group of simulations varied the amount of nitrogen discharged as ammonia and nitrate. The extent of the mixing zone downstream of the WWTP outfall was determined by injecting Rhodamine WT dye into the effluent. The mixing zone was found to extend 0.8 miles during low-flow conditions. (USGS)

  15. A novel textile characterisation approach using an embedded sensor system and segmented textile manipulation

    NASA Astrophysics Data System (ADS)

    Fial, Julian; Carosella, Stefan; Langheinz, Mario; Wiest, Patrick; Middendorf, Peter

    2018-05-01

    This paper investigates the application of sensors on carbon fibre textiles for the purpose of textile characterisation and draping process optimisation. The objective is to analyse a textile's condition during the draping operation and actively manipulate boundary conditions in order to create better preform qualities. Various realisations of textile integrated sensors are presented, focusing on the measurement of textile strain. Furthermore, a complex textile characterisation approach is presented where these sensors shall be implemented in.

  16. Enhancement of a solar photo-Fenton reaction with ferric-organic ligands for the treatment of acrylic-textile dyeing wastewater.

    PubMed

    Soares, Petrick A; Batalha, Mauro; Souza, Selene M A Guelli U; Boaventura, Rui A R; Vilar, Vítor J P

    2015-04-01

    Literature describes a kinetic mineralization profile for most of acrylic-textile dyeing wastewaters using a photo-Fenton reaction characterized by a slow degradation process and high reactants consumption. This work tries to elucidate that the slow decay on DOC concentration is associated with the formation of stable complexes between Fe(3+) and textile auxiliary products, limiting the photoreduction of Fe(3+). This work also evaluates the enhancement of a solar photo-Fenton reaction through the use of different ferric-organic ligands applied to the treatment of a simulated acrylic-textile dyeing wastewater, as a pre-oxidation step to enhance its biodegradability. The photo-Fenton reaction was negatively affected by two dyeing auxiliary products: i) Sera(®) Tard A-AS, a surfactant mainly composed of alkyl dimethyl benzyl ammonium chloride and ii) Sera(®) Sperse M-IW, a dispersing agent composed of polyglycol solvents. The catalytic activity of the organic ligands toward the ferrous-catalysed system followed this order: Fe(III)-Oxalate > Fe(III)-Citrate > Fe(III)-EDDS, and all were better than the traditional photo-Fenton reaction. Different design parameters such as iron concentration, pH, temperature, flow conditions, UV irradiance and H2O2 addition strategy and dose were evaluated. The ferrioxalate induced photo-Fenton process presented the best results, achieving 87% mineralization after 9.3 kJUV L(-1) and allowing to work until near neutral pH values. As expected, the biodegradability of the textile wastewater was significantly enhanced during the photo-Fenton treatment, achieving a value of 73%, consuming 32.4 mM of H2O2 and 5.7 kJUV L(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Polyester Textiles as a Source of Microplastics from Households: A Mechanistic Study to Understand Microfiber Release During Washing.

    PubMed

    Hernandez, Edgar; Nowack, Bernd; Mitrano, Denise M

    2017-06-20

    Microplastic fibers make up a large proportion of microplastics found in the environment, especially in urban areas. There is good reason to consider synthetic textiles a major source of microplastic fibers, and it will not diminish since the use of synthetic fabrics, especially polyester, continues to increase. In this study we provide quantitative data regarding the size and mass of microplastic fibers released from synthetic (polyester) textiles during simulated home washing under controlled laboratory conditions. Consideration of fabric structure and washing conditions (use of detergents, temperature, wash duration, and sequential washings) allowed us to study the propensity of fiber shedding in a mechanistic way. Thousands of individual fibers were measured (number, length) from each wash solution to provide a robust data set on which to draw conclusions. Among all the variables tested, the use of detergent appeared to affect the total mass of fibers released the most, yet the detergent composition (liquid or powder) or overdosing of detergent did not significantly influence microplastic release. Despite different release quantities due to the addition of a surfactant (approximately 0.025 and 0.1 mg fibers/g textile washed, without and with detergent, respectively), the overall microplastic fiber length profile remained similar regardless of wash condition or fabric structure, with the vast majority of fibers ranging between 100 and 800 μm in length irrespective of wash cycle number. This indicates that the fiber staple length and/or debris encapsulated inside the fabric from the yarn spinning could be directly responsible for releasing stray fibers. This study serves as a first look toward understanding the physical properties of the textile itself to better understand the mechanisms of fiber shedding in the context of microplastic fiber release into laundry wash water.

  18. Effects of humidity on skin friction against medical textiles as related to prevention of pressure injuries.

    PubMed

    Schwartz, Danit; Magen, Yana Katsman; Levy, Ayelet; Gefen, Amit

    2018-05-24

    Sustained pressure, shear forces, and friction, as well as elevated humidity/moisture, are decisive physical factors in the development of pressure injuries (PIs). To date, further research is needed in order to understand the influence of humidity and moisture on the coefficient of friction (COF) of skin against different types of medical textiles. The aim of this work was to investigate the effects of moisture caused by sweat, urine, or saline on the resulting COF of skin against different textiles used in the medical setting in the context of PI prevention. For that purpose, we performed physical measurements of static COFs of porcine skin followed by finite element (FE) computational modelling in order to illustrate the effect of increased COF at the skin on the resulting strains and stresses deep within the soft tissues of the buttocks. The COF of dry skin obtained for the 3 textiles varied between 0.59 (adult diaper) and 0.91 (polyurethane dressing). In addition, the COF increased with the added moisture in all of the tested cases. The results of the FE simulations further showed that increased COF results in elevated strain energy density and shear strain values in the skin and deeper tissues and, hence, in an increased risk for PI development. We conclude that moisture may accelerate PI formation by increasing the COF between the skin and the medical textile, regardless of the type of the liquid that is present. Hence, reduction of the wetness/moisture between the skin and fabrics in patients at a high risk of developing PIs is a key measure in PI prevention. © 2018 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  19. Thermal Response of UHMWPE Materials in a Flash Flame Test Environment

    DTIC Science & Technology

    2014-11-13

    Evaluation of Flame Resistant Clothing for Protection Against Fire Simulations Using an Instrumented Manikin. Several UHMWPE fabrics were tested underneath...PROTECTIVE CLOTHING COTTON FLASH FLAMES UNDERGARMENTS TEST AND EVALUATION FABRICS FLAME TESTING FIRE ...PROTECTION FIRE RESISTANT TEXTILES UHMWPE(ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE

  20. Geometrical analysis of woven fabric microstructure based on micron-resolution computed tomography data

    NASA Astrophysics Data System (ADS)

    Krieger, Helga; Seide, Gunnar; Gries, Thomas; Stapleton, Scott E.

    2018-04-01

    The global mechanical properties of textiles such as elasticity and strength, as well as transport properties such as permeability depend strongly on the microstructure of the textile. Textiles are heterogeneous structures with highly anisotropic material properties, including local fiber orientation and local fiber volume fraction. In this paper, an algorithm is presented to generate a virtual 3D-model of a woven fabric architecture with information about the local fiber orientation and the local fiber volume fraction. The geometric data of the woven fabric impregnated with resin was obtained by micron-resolution computed tomography (μCT). The volumetric μCT-scan was discretized into cells and the microstructure of each cell was analyzed and homogenized. Furthermore, the discretized data was used to calculate the local permeability tensors of each cell. An example application of the analyzed data is the simulation of the resin flow through a woven fabric based on the determined local permeability tensors and on Darcy's law. The presented algorithm is an automated and robust method of going from μCT-scans to structural or flow models.

  1. Evaluating the combined efficacy of polymers with fungicides for protection of museum textiles against fungal deterioration in Egypt.

    PubMed

    Abdel-Kareem, Omar

    2010-01-01

    Fungal deterioration is one of the highest risk factors for damage of historical textile objects in Egypt. This paper represents both a study case about the fungal microflora deteriorating historical textiles in the Egyptian Museum and the Coptic museum in Cairo, and evaluation of the efficacy of several combinations of polymers with fungicides for the reinforcement of textiles and their prevention against fungal deterioration. Both cotton swab technique and biodeteriorated textile part technique were used for isolation of fungi from historical textile objects. The plate method with the manual key was used for identification of fungi. The results show that the most dominant fungi isolated from the tested textile samples belong to Alternaria, Aspergillus, Chaetomium, Penicillium and Trichoderma species. Microbiological testing was used for evaluating the usefulness of the suggested conservation materials (polymers combined with fungicides) in prevention of the fungal deterioration of ancient Egyptian textiles. Textile samples were treated with 4 selected polymers combined with two selected fungicides. Untreated and treated textile samples were deteriorated by 3 selected active fungal strains isolated from ancient Egyptian textiles. This study reports that most of the tested polymers combined with the tested fungicides prevented the fungal deterioration of textiles. Treatment of ancient textiles by suggested polymers combined with the suggested fungicides not only reinforces these textiles, but also prevents fungal deterioration and increases the durability of these textiles. The tested polymers without fungicides reduce the fungal deterioration of textiles but do not prevent it completely.

  2. Enhanced photocatalytic degradation of dyes under sunlight using biocompatible TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Bharati, B.; Sonkar, A. K.; Singh, N.; Dash, D.; Rath, Chandana

    2017-08-01

    As TiO2 is one of the most popular photocatalysts, we have studied here the photocatalytic degradation of the most common dyestuffs like rhodamine B (RhB), congo red (CR) and methylene blue (MB), which mainly come from the textile and photographic industries using nanoparticles of TiO2. Nanoparticles of TiO2 synthesized through a simple and cost effective sol-gel technique crystallizes in the anatase phase, showing a band gap less than that of bulk value. Particles consisting of coherently scattered domains of size 33 nm are found to be agglomerated and polycrystalline in nature. While the degradation rates of MB, CR and RhB after irradiating with a renewable source of energy, i.e. sunlight, show 100% degradation, TiO2 irradiated with UV light of 4.8 eV shows a much slower degradation rate. To use the waste water after photocatalysis, we examine further the biocompatibile nature of the TiO2 nanoparticles by platelet interaction activity, hemolysis effect and MTT assay. It is worth mentioning here that TiO2 nanoparticles are found to be highly hemocompatible, show no platelet aggregation, and the level of intracellular ROS in human platelets does not show significant change in ROS level. We conclude that TiO2 nanoparticles constitute an excellent photocatalyst and biocompatible material, and that after photocatalytic degradation of dye effluents obtained from textile industries, purified water can be used in agriculture and domestic sectors.

  3. Basic dye decomposition kinetics in a photocatalytic slurry reactor.

    PubMed

    Wu, Chun-Hsing; Chang, Hung-Wei; Chern, Jia-Ming

    2006-09-01

    Wastewater effluent from textile plants using various dyes is one of the major water pollutants to the environment. Traditional chemical, physical and biological processes for treating textile dye wastewaters have disadvantages such as high cost, energy waste and generating secondary pollution during the treatment process. The photocatalytic process using TiO2 semiconductor particles under UV light illumination has been shown to be potentially advantageous and applicable in the treatment of wastewater pollutants. In this study, the dye decomposition kinetics by nano-size TiO2 suspension at natural solution pH was experimentally studied by varying the agitation speed (50-200 rpm), TiO2 suspension concentration (0.25-1.71 g/L), initial dye concentration (10-50 ppm), temperature (10-50 degrees C), and UV power intensity (0-96 W). The experimental results show the agitation speed, varying from 50 to 200 rpm, has a slight influence on the dye decomposition rate and the pH history; the dye decomposition rate increases with the TiO2 suspension concentration up to 0.98 g/L, then decrease with increasing TiO2 suspension concentration; the initial dye decomposition rate increases with the initial dye concentration up to a certain value depending upon the temperature, then decreases with increasing initial dye concentration; the dye decomposition rate increases with the UV power intensity up to 64 W to reach a plateau. Kinetic models have been developed to fit the experimental kinetic data well.

  4. Textile Messages: Dispatches from the World of E-Textiles and Education. New Literacies and Digital Epistemologies. Volume 62

    ERIC Educational Resources Information Center

    Buechley, Leah, Ed.; Peppler, Kylie, Ed.; Eisenberg, Michael, Ed.; Yasmin, Kafai, Ed.

    2013-01-01

    "Textile Messages" focuses on the emerging field of electronic textiles, or e-textiles--computers that can be soft, colorful, approachable, and beautiful. E-textiles are articles of clothing, home furnishings, or architectures that include embedded computational and electronic elements. This book introduces a collection of tools that…

  5. Chitosan-edible oil based materials as upgraded adsorbents for textile dyes.

    PubMed

    Dos Santos, Clayane Carvalho; Mouta, Rodolpho; Junior, Manoel Carvalho Castro; Santana, Sirlane Aparecida Abreu; Silva, Hildo Antonio Dos Santos; Bezerra, Cícero Wellington Brito

    2018-01-15

    Biopolymer chitosan is a low cost, abundant, environmentally friendly, very selective and efficient anionic dyes adsorbent, being a promising material for large-scale removal of dyes from wastewater. However, raw chitosan (CS) is an ineffective cationic dyes adsorbent and its performance is pH sensitive, thus, CS modifications that address these issues need to be developed. Here, we report the preparation and characterization of two new CS modifications using edible oils (soybean oil or babassu oil), and their adsorption performance for two dyes, one anionic (remazol red, RR) and one cationic (methylene blue, MB). Both modifications extended the pH range of RR adsorption. The babassu oil modification increased adsorption capacity of the cationic dye MB, whereas the soybean oil modification increased that of RR. Such improvements demonstrate the potential of these two new CS modifications as adsorbent candidates for controlling dyes pollution in effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Choline-based ionic liquids-enhanced biodegradation of azo dyes.

    PubMed

    Sekar, Sudharshan; Surianarayanan, Mahadevan; Ranganathan, Vijayaraghavan; MacFarlane, Douglas R; Mandal, Asit Baran

    2012-05-01

    Industrial wastewaters such as tannery and textile processing effluents are often characterized by a high content of dissolved organic dyes, resulting in large values of chemical and biological oxygen demand (COD and BOD) in the aquatic systems into which they are discharged. Such wastewater streams are of rapidly growing concern as a major environmental issue in developing countries. Hence there is a need to mitigate this challenge by effective approaches to degrade dye-contaminated wastewater. In this study, several choline-based salts originally developed for use as biocompatible hydrated ionic liquids (i.e., choline sacchrinate (CS), choline dihydrogen phosphate (CDP), choline lactate (CL), and choline tartarate (CT)) have been successfully employed as the cosubstrate with S. lentus in the biodegradation of an azo dye in aqueous solution. We also demonstrate that the azo dye has been degraded to less toxic components coupled with low biomass formation. © 2012 American Chemical Society

  7. Adsorption of Safranin-T from wastewater using waste materials- activated carbon and activated rice husks.

    PubMed

    Gupta, Vinod K; Mittal, Alok; Jain, Rajeev; Mathur, Megha; Sikarwar, Shalini

    2006-11-01

    Textile effluents are major industrial polluters because of high color content, about 15% unfixed dyes and salts. The present paper is aimed to investigate and develop cheap adsorption methods for color removal from wastewater using waste materials activated carbon and activated rice husk-as adsorbents. The method was employed for the removal of Safranin-T and the influence of various factors such as adsorbent dose, adsorbate concentration, particle size, temperature, contact time, and pH was studied. The adsorption of the dye over both the adsorbents was found to follow Langmuir and Freundlich adsorption isotherm models. Based on these models, different useful thermodynamic parameters have been evaluated for both the adsorption processes. The adsorption of Safranin-T over activated carbon and activated rice husks follows first-order kinetics and the rate constants for the adsorption processes decrease with increase in temperature.

  8. Eco-friendly surface modification on polyester fabrics by esterase treatment

    NASA Astrophysics Data System (ADS)

    Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping

    2014-03-01

    Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.

  9. Methyl Red Decolorization Efficiency of a Korea Strain of Aspergillus sp. Immobilized into Different Polymeric Matrices.

    PubMed

    Kim, Beom-Su; Blaghen, Mohamed; Lee, Kang-Min

    2017-07-01

      Intensive research studies have revealed that fungal decolorization of dye wastewater is a promising replacement for the current process of dye wastewater decolorization. The authors isolated an Aspergillus sp. from the effluent of a textile industry area in Korea and assessed the effects of a variety of operational parameters on the decolorization of methyl red (MR) by this strain of Aspergillus sp. This Aspergillus sp. was then immobilized by entrapment in several polymeric matrices and the effects of operational conditions on MR decolorization were investigated again. The optimal decolorization activity of this Aspergillus sp. was observed in 1% glucose at a temperature of 37 °C and pH of 6.0. Furthermore, stable decolorization efficiency was observed when fungal biomass was immobilized into alginate gel during repeated batch experiment. These results suggest that the Aspergillus sp. isolated in Korea could be used to treat industrial wastewaters containing MR dye.

  10. Monitoring of metal pollution in waterways across Bangladesh and ecological and public health implications of pollution.

    PubMed

    Kibria, Golam; Hossain, Md Maruf; Mallick, Debbrota; Lau, T C; Wu, Rudolf

    2016-12-01

    Using innovative artificial mussels technology for the first time, this study detected eight heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, U, Zn) on a regular basis in waterways across Bangladesh (Chittagong, Dhaka and Khulna). Three heavy metals, viz. Co, Cr and Hg were always below the instrumental detection levels in all the sites during the study period. Through this study, seven metal pollution "hot spots" have been identified, of which, five "hot spots" (Cu, Fe, Mn, Ni, Pb) were located in the Buriganga River, close to the capital Dhaka. Based on this study, the Buriganga River can be classified as the most polluted waterway in Bangladesh compared to waterways monitored in Khulna and Chittagong. Direct effluents discharged from tanneries, textiles are, most likely, reasons for elevated concentrations of heavy metals in the Buriganga River. In other areas (Khulna), agriculture and fish farming effluents may have caused higher Cu, U and Zn in the Bhairab and Rupsa Rivers, whereas untreated industrial discharge and ship breaking activities can be linked to elevated Cd in the coastal sites (Chittagong). Metal pollution may cause significant impacts on water quality (irrigation, drinking), aquatic biodiversity (lethal and sub-lethal effects), food contamination/food security (bioaccumulation of metals in crops and seafood), human health (diseases) and livelihoods of people associated with wetlands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Effectiveness of Rice Agricultural Waste, Microbes and Wetland Plants in the Removal of Reactive Black-5 Azo Dye in Microcosm Constructed Wetlands.

    PubMed

    Saba, Beenish; Jabeen, Madeeha; Khalid, Azeem; Aziz, Irfan; Christy, Ann D

    2015-01-01

    Azo dyes are commonly generated as effluent pollutants by dye using industries, causing contamination of surface and ground water. Various strategies are employed to treat such wastewater; however, a multi-faceted treatment strategy could be more effective for complete removal of azo dyes from industrial effluent than any single treatment. In the present study, rice husk material was used as a substratum in two constructed wetlands (CWs) and augmented with microorganisms in the presence of wetland plants to effectively treat dye-polluted water. To evaluate the efficiency of each process the study was divided into three levels, i.e., adsorption of dye onto the substratum, phytoremediation within the CW and then bioremediation along with the previous two processes in the augmented CW. The adsorption process was helpful in removing 50% dye in presence of rice husk while 80% in presence of rice husk biocahr. Augmentation of microorganisms in CW systems has improved dye removal efficiency to 90%. Similarly presence of microorganisms enhanced removal of total nitrogen (68% 0 and Total phosphorus (75%). A significant improvement in plant growth was also observed by measuring plant height, number of leaves and leave area. These findings suggest the use of agricultural waste as part of a CW substratum can provide enhanced removal of textile dyes.

  12. Plasmachemical degradation of azo dyes by humid air plasma: Yellow Supranol 4 GL, Scarlet Red Nylosan F3 GL and industrial waste.

    PubMed

    Abdelmalek, F; Gharbi, S; Benstaali, B; Addou, A; Brisset, J L

    2004-05-01

    A recent non-thermal plasma technique (i.e., a gliding arc discharge which generates reactive species at atmospheric pressure) is tested for pollution abatement of dyes dispersed in synthetic solutions and industrial effluents. Yellow Supranol 4 GL (YS) and Scarlet Red Nylosan F3 GL (SRN) are toxic synthetic dyes widely used in the Algerian textile industry and frequently present in liquid wastes of manufacture plants. Classical removal treatment processes are not efficient enough, so that the presence of dyes in liquid effluents may cause serious environmental problems, in connection with reusing waste waters for irrigation. The degradation processes achieved by the oxidising species formed in the plasma are followed by UV/VIS spectroscopy and by chemical oxygen demand measurements. They are almost complete (i.e., 92.5% for YS and 90% for dilute SRN) and rapidly follow pseudo-first-order laws, with overall estimated rate constants 3 x 10(-4) and 4 x 10(-4)s-1 for YS and SRN, respectively. The degradation rate constant for the industrial mixture (i.e., k = 1.45 x 10(-3)s-1) is a mean value for two consecutive steps (210(-3) and 6 x 10(-5)s-1) measured at the absorption peaks of the major constituent dyes, YS and SRN.

  13. Effect of textiles structural parameters on surgical healing; a case study

    NASA Astrophysics Data System (ADS)

    Marwa, A. Ali

    2017-10-01

    Medical Textiles is one of the most rapidly expanding sectors in the technical textile market. The huge growth of medical textiles applications was over the last 12 years. “Biomedical Textiles” is a subcategory of medical textiles that narrows the field down to those applications that are intended for active tissue contact, tissue regeneration or surgical implantation. Since the mid-1960s, the current wave of usage is coming as a result of new fibers and new technologies for textile materials construction. “Biotextiles” term include structures composed of textile fibers designed for use in specific biological environments. Medical Textile field was utilizing different materials, textile techniques and structures to provide new medical products with high functionality in the markets. There are other processes that are associated with textiles in terms of the various treatments and finishing. The aim of this article is to draw attention to the medical field in each of Vitro and Vivo trend, and its relation with textile structural parameters, with regard to the fiber material, production techniques, and fabric structures. Also, it is focusing on some cases studies which were applied in our research which produced with different textile parameters. Finally; an overview is presented about modern and innovative applications of the medical textiles.

  14. Nettle as a distinct Bronze Age textile plant.

    PubMed

    Bergfjord, C; Mannering, U; Frei, K M; Gleba, M; Scharff, A B; Skals, I; Heinemeier, J; Nosch, M-L; Holst, B

    2012-01-01

    It is generally assumed that the production of plant fibre textiles in ancient Europe, especially woven textiles for clothing, was closely linked to the development of agriculture through the use of cultivated textile plants (flax, hemp). Here we present a new investigation of the 2800 year old Lusehøj Bronze Age Textile from Voldtofte, Denmark, which challenges this assumption. We show that the textile is made of imported nettle, most probably from the Kärnten-Steiermark region, an area which at the time had an otherwise established flax production. Our results thus suggest that the production of woven plant fibre textiles in Bronze Age Europe was based not only on cultivated textile plants but also on the targeted exploitation of wild plants. The Lusehøj find points to a hitherto unrecognized role of nettle as an important textile plant and suggests the need for a re-evaluation of textile production resource management in prehistoric Europe.

  15. Nettle as a distinct Bronze Age textile plant

    PubMed Central

    Bergfjord, C.; Mannering, U.; Frei, K. M.; Gleba, M.; Scharff, A. B.; Skals, I.; Heinemeier, J.; Nosch, M. -L; Holst, B.

    2012-01-01

    It is generally assumed that the production of plant fibre textiles in ancient Europe, especially woven textiles for clothing, was closely linked to the development of agriculture through the use of cultivated textile plants (flax, hemp). Here we present a new investigation of the 2800 year old Lusehøj Bronze Age Textile from Voldtofte, Denmark, which challenges this assumption. We show that the textile is made of imported nettle, most probably from the Kärnten-Steiermark region, an area which at the time had an otherwise established flax production. Our results thus suggest that the production of woven plant fibre textiles in Bronze Age Europe was based not only on cultivated textile plants but also on the targeted exploitation of wild plants. The Lusehøj find points to a hitherto unrecognized role of nettle as an important textile plant and suggests the need for a re-evaluation of textile production resource management in prehistoric Europe. PMID:23024858

  16. Effect of hot acid hydrolysis and hot chlorine dioxide stage on bleaching effluent biodegradability.

    PubMed

    Gomes, C M; Colodette, J L; Delantonio, N R N; Mounteer, A H; Silva, C M

    2007-01-01

    The hot acid hydrolysis followed by chlorine dioxide (A/D*) and hot chlorine dioxide (D*) technologies have proven very useful for bleaching of eucalyptus kraft pulp. Although the characteristics and biodegradability of effluents from conventional chlorine dioxide bleaching are well known, such information is not yet available for effluents derived from hot acid hydrolysis and hot chorine dioxide bleaching. This study discusses the characteristics and biodegradability of such effluents. Combined whole effluents from the complete sequences DEpD, D*EpD, A/D*EpD and ADEpD, and from the pre-bleaching sequences DEp, D*Ep, A/D*Ep and ADEp were characterized by quantifying their colour, AOX and organic load (BOD, COD, TOC). These effluents were also evaluated for their treatability by simulation of an activated sludge system. It was concluded that treatment in the laboratory sequencing batch reactor was efficient for removal of COD, BOD and TOC of all effluents. However, colour increased after biological treatment, with the greatest increase found for the effluent produced using the AD technology. Biological treatment was less efficient at removing AOX of effluents from the sequences with D*, A/D* and AD as the first stages, when compared to the reference D stage; there was evidence of the lower treatability of these organochlorine compounds from these sequences.

  17. Smart textiles.

    PubMed

    Van Langenhove, Lieva; Hertleer, Carla; Catrysse, Michael; Puers, Robert; Van Egmond, Harko; Matthijs, Dirk

    2004-01-01

    After technical textiles and functional textiles, also smart textiles came into force a few years ago. The term 'smart textiles' covers a broad range. The application possibilities are only limited by our imagination and creativity. In this presentation, it is further explored what smart textiles precisely mean. In a second part, an analysis is made of the possibilities, the state of affairs and the needs for further research.

  18. Effects of industrial effluents, heavy metals, and organic solvents on mallard embryo development.

    PubMed

    Hoffman, D J; Eastin, W C

    1981-09-01

    Mallard eggs were externally exposed at 3 and 8 days of incubation to 7 different industrial effluents and to 7 different heavy metal, organic solvent, and petroleum solutions to screen for potential embryo-toxic effects. This route of exposure was chosen in order to simulate the transfer of pollutant from the plumage of aquatic birds to their eggs. Five of the effluents including mineral pigment, scouring effluent, sludge, and tannery effluent resulted in small but significant reductions in embryonic growth. Treatment with methyl mercury chloride solution of 50 ppm (Hg) impaired embryonic growth but much higher concentrations were required to affect survival and cause teratogenic effects. Oil used to suppress road dust was the most toxic of the pollutants tested and only 0.5 microliter/egg caused 60% mortality by 18 days of development. These findings, in combination with other studies suggest that petroleum pollutants, or effluents in combination with petroleum, may pose a hazard to birds' eggs when exposure is by this route.

  19. Effects of industrial effluents, heavy metals, and organic solvents on mallard embryo development

    USGS Publications Warehouse

    Hoffman, D.J.; Eastin, W.C.

    1981-01-01

    Mallard eggs were externally exposed at 3 and 8 days of incubation to 7 different industrial effluents and to 7 different heavy metal, organic solvent, and petroleum solutions to screen for potential embryo-toxic effects. This route of exposure was chosen in order to simulate the transfer of pollutant from the plumage of aquatic birds to their eggs. Five of the effluents including mineral pigment, scouring effluent, sludge, and tannery effluent resulted in small but significant reductions in embryonic growth. Treatment with methyl mercury chloride solution of 50 ppm (Hg) impaired embryonic growth but much higher concentrations were required to affect survival and cause teratogenic effects. Oil used to suppress road dust was the most toxic of the pollutants tested and only 0.5 microliter/egg caused 60% mortality by 18 days of development. These findings, in combination with other studies suggest that petroleum pollutants, or effluents in combination with petroleum, may pose a hazard to birds' eggs when exposure is by this route.

  20. Extraction-Separation Performance and Dynamic Modeling of Orion Test Vehicles with Adams Simulation: 3rd Edition

    NASA Technical Reports Server (NTRS)

    Varela, Jose G.; Reddy, Satish; Moeller, Enrique; Anderson, Keith

    2017-01-01

    NASA's Orion Capsule Parachute Assembly System (CPAS) Project is now in the qualification phase of testing, and the Adams simulation has continued to evolve to model the complex dynamics experienced during the test article extraction and separation phases of flight. The ability to initiate tests near the upper altitude limit of the Orion parachute deployment envelope requires extractions from the aircraft at 35,000 ft-MSL. Engineering development phase testing of the Parachute Test Vehicle (PTV) carried by the Carriage Platform Separation System (CPSS) at altitude resulted in test support equipment hardware failures due to increased energy caused by higher true airspeeds. As a result, hardware modifications became a necessity requiring ground static testing of the textile components to be conducted and a new ground dynamic test of the extraction system to be devised. Force-displacement curves from static tests were incorporated into the Adams simulations, allowing prediction of loads, velocities and margins encountered during both flight and ground dynamic tests. The Adams simulation was then further refined by fine tuning the damping terms to match the peak loads recorded in the ground dynamic tests. The failure observed in flight testing was successfully replicated in ground testing and true safety margins of the textile components were revealed. A multi-loop energy modulator was then incorporated into the system level Adams simulation model and the effect on improving test margins be properly evaluated leading to high confidence ground verification testing of the final design solution.

  1. New textile composite materials development, production, application

    NASA Technical Reports Server (NTRS)

    Mikhailov, Petr Y.

    1993-01-01

    New textile composite materials development, production, and application are discussed. Topics covered include: super-high-strength, super-high-modulus fibers, filaments, and materials manufactured on their basis; heat-resistant and nonflammable fibers, filaments, and textile fabrics; fibers and textile fabrics based on fluorocarbon poylmers; antifriction textile fabrics based on polyfen filaments; development of new types of textile combines and composite materials; and carbon filament-based fabrics.

  2. Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective

    PubMed Central

    Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon

    2015-01-01

    Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study. PMID:28347078

  3. Textile-Based Electronic Components for Energy Applications: Principles, Problems, and Perspective.

    PubMed

    Kaushik, Vishakha; Lee, Jaehong; Hong, Juree; Lee, Seulah; Lee, Sanggeun; Seo, Jungmok; Mahata, Chandreswar; Lee, Taeyoon

    2015-09-07

    Textile-based electronic components have gained interest in the fields of science and technology. Recent developments in nanotechnology have enabled the integration of electronic components into textiles while retaining desirable characteristics such as flexibility, strength, and conductivity. Various materials were investigated in detail to obtain current conductive textile technology, and the integration of electronic components into these textiles shows great promise for common everyday applications. The harvest and storage of energy in textile electronics is a challenge that requires further attention in order to enable complete adoption of this technology in practical implementations. This review focuses on the various conductive textiles, their methods of preparation, and textile-based electronic components. We also focus on fabrication and the function of textile-based energy harvesting and storage devices, discuss their fundamental limitations, and suggest new areas of study.

  4. Detection of the Deformation of an Intelligent Textile in a Specific Point

    PubMed Central

    Alsina, Maria; Escudero, Francesc; Margalef, Jordi; Cambra, Vicente; Gisbert, José

    2007-01-01

    An intelligent textile is a textile structure that measures and reacts in front of external agents or stimulus with or without integrated electronic equipment. The finality of the present textile is to take one more step towards intelligent textile, considering the integration of electronics and textile needs, to be industrially viable and to keep up the necessary competitiveness, raising the final price as little as possible. The finality of these experiments is to develop a textile that varies in conductivity and resistance in relation to the elongation of the textile, detecting changes caused by the alteration of a piece of clothing, from the pressure of a finger on the material, for example. One of the most important characteristics of textile is the capacity of reproducing measures, of varying the response in different tests. Two lines of research were opened: the study of the most adequate structure to achieve a response that can be reproduced and the study of the best way of taking measures without altering the behavior of the textile.

  5. Exploring the Applied Arts. Publication No. 0041.

    ERIC Educational Resources Information Center

    Sokolowski, Kathleen

    The program covered in this curriculum guide deals with applied arts, concentrating on the areas of advertising, fashion illustration, graphic design, cartooning, and textile design and decoration. These areas have been developed to give a hands-on experience to the students by simulating the working world and the student's place in it. Each area…

  6. Emulsion liquid membrane for textile dye removal: Stability study

    NASA Astrophysics Data System (ADS)

    Kusumastuti, Adhi; Syamwil, Rodia; Anis, Samsudin

    2017-03-01

    Although textile dyes is basically available in very low concentration; it should be removed due to the toxicity to human body and environment. Among the existing methods, emulsion liquid membrane (ELM) is a promising method by providing high interfacial area and the ability to remove a very low concentration of the solute. The optimal emulsions were produced using commercially supplied homogeniser. The drop size was measured by the aid of microscope and image J software. Initially, methylene blue in simulated wastewater was extracted using a stirrer. Methylene blue concentration was determined using spectrophotometer. The research obtained optimal emulsion at surfactant concentration of 4 wt. %, kerosene as diluent, emulsification time of 30 min, emulsification speed of 2000 rpm. The lowest membrane breakage and the longest stability time were about 0.11% and 150 min, respectively.

  7. Clothing and Textiles (Intermediate). Instructor's Guide. Revised.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This clothing and textiles teacher's manual contains five instructional units for a semester course. Units included are (1) Significance of Textiles and Clothing to the Individual in Society; (2) Nature of Textiles and Clothing; (3) Acquisition, Use, and Care of Textiles and Clothing; (4) Garment Construction; and (5) Occupations in…

  8. The future of textile production in high wage countries

    NASA Astrophysics Data System (ADS)

    Kemper, M.; Gloy, Y.-S.; Gries, T.

    2017-10-01

    It is undisputed that smart production in the context of industry 4.0 offers significant potential for industrial production in Germany. Exploiting this potential provides an opportunity to meet the growing competitive pressure for textile production in high-wage Germany. The complete cross-linking of textile mills towards Textile Production 4.0 means substantial savings. However, currently there are still some challenges that have to be overcome on the long way to Textile Production 4.0. This paper initially reflects the particular challenges of textile production in high-wage Germany. Later, the vision of the future of smart textile production will be outlined. In addition, first pilot solutions and current research approaches which pave the way for Textile Production 4.0 are described.

  9. Development of smart textiles with embedded fiber optic chemical sensors

    NASA Astrophysics Data System (ADS)

    Khalil, Saif E.; Yuan, Jianming; El-Sherif, Mahmoud A.

    2004-03-01

    Smart textiles are defined as textiles capable of monitoring their own health conditions or structural behavior, as well as sensing external environmental conditions. Smart textiles appear to be a future focus of the textile industry. As technology accelerates, textiles are found to be more useful and practical for potential advanced technologies. The majority of textiles are used in the clothing industry, which set up the idea of inventing smart clothes for various applications. Examples of such applications are medical trauma assessment and medical patients monitoring (heart and respiration rates), and environmental monitoring for public safety officials. Fiber optics have played a major role in the development of smart textiles as they have in smart structures in general. Optical fiber integration into textile structures (knitted, woven, and non-woven) is presented, and defines the proper methodology for the manufacturing of smart textiles. Samples of fabrics with integrated optical fibers were processed and tested for optical signal transmission. This was done in order to investigate the effect of textile production procedures on optical fiber performance. The tests proved the effectiveness of the developed methodology for integration of optical fibers without changing their optical performance or structural integrity.

  10. Defined UV protection by apparel textiles.

    PubMed

    Hoffmann, K; Laperre, J; Avermaete, A; Altmeyer, P; Gambichler, T

    2001-08-01

    This article was written to update information on test methods and standards for determining the UV protection of apparel textiles and on factors affecting UV protective properties of fabrics, from dermatological and textile technological viewpoints. Articles from dermatological and textile technological journals published from 1990 to 2001 were identified from MEDLINE, Excerpta Medica/EMBASE, World Textiles, and Textile Technology Digest. Peer-reviewed dermatological articles, textile technological research articles, and normative publications were selected. Independent data extraction was performed by several observers. Spectrophotometry is the preferred method for determining UV protection factor of textile materials. Various textile qualities affect the UV protection factor of a finished garment; important elements are the fabric porosity, type, color, weight, and thickness. The application of UV absorbers in the yarns significantly improves the UV protection factor of a garment. With wear and use, several factors can alter the UV protective properties of a textile, including stretch, wetness, and degradation due to laundering. Standards in the field exist in Australia and Great Britain, and organizations such as the European Standardization Commission in Europe and the American Association of Textile Chemists and Colorists and the American Society for Testing and Materials in the United States are also establishing standards for the determination and labeling of sun protective clothing. Various textile qualities and conditions of wear and use affect UV protective properties of apparel textiles. The use of UV blocking fabrics can provide excellent protection against the hazards of sunlight; this is especially true for garments manufactured as UV protective clothing.

  11. Polysulfone thin film composite nanofiltration membranes for removal of textile dyes wastewater

    NASA Astrophysics Data System (ADS)

    Sutedja, Andrew; Aileen Josephine, Claresta; Mangindaan, Dave

    2017-12-01

    This research was conducted to produce nanofiltration (NF) membranes, which have good performance in terms of removal of textile dye (Reactive Red 120, RR120) from simulated wastewater as one of several eco-engineering developments for sustainable water resource management. Phase inversion technique was utilized to fabricate the membrane with polysulfone (PSF) support, dissolved in N-methyl-2 pyrollidone (NMP) solvent, and diethylene glycol (DEG) as non-solvent additive. The fabricated membrane then modified with the additional of dopamine coating and further modified by interfacial polymerization (IP) to form a thin film composite (TFC)-NF membrane with PSF substrate. TFC was formed from interaction between amine monomer (2 %-weight of m-phenylenediamine (MPD) in deionized water) and acyl chloride (0.2 %-weight of trimesoyl chloride (TMC) in hexane). From this study, the fabricated PSF-TFC membrane could remove dyestuff from RR120 wastewater by 88% rejection at 120 psi. The result of this study is promising to be applied in Indonesia where researches on removal of dyes from textile wastewater by using membranes are still quite rare. Therefore, this paper may open new avenues for development of eco-engineering development in Indonesia.

  12. Model-based evaluation of struvite recovery from an in-line stripper in a BNR process (BCFS).

    PubMed

    Hao, X D; van Loosdrecht, M C M

    2006-01-01

    Phosphate removal and recovery can be combined in BNR processes. This may be realised by struvite precipitation from the supernatant of the sludge in anaerobic compartments. This can be beneficial for either improving bio-P removal effluent quality or lowering the influent COD/P ratio required for bio-P removal. For this reason, a patented BNR process, BCFS, was developed and applied in The Netherlands. Several questions relating to P-recovery and behaviour of the system remain unclear and need to be ascertained. For this purpose, a modelling technique was employed in this study. With the help of a previous developed model describing carbon oxidation and nutrient removal, three cases were fully simulated. The simulations demonstrated that there was an optimal stripping flow rate and P-recovery would increase in costs and bio-P activity might be negatively affected due to decreased bio-P efficiency if this value was exceeded. The simulations indicated that the minimal COD(biod)/P ratio required for the effluent standard (1 g P/m3) could be lowered from 20 to 10 with 36% of P-recovery. A simulation with dynamic inflow revealed that the dynamic influent loads affected slightly the anaerobic supernatant phosphate concentration but the effluent phosphate concentration would not be affected with regular P-recovery.

  13. Textile industry and occupational cancer.

    PubMed

    Singh, Zorawar; Chadha, Pooja

    2016-01-01

    Thousands of workers are engaged in textile industry worldwide. Textile industry involves the use of different kinds of dyes which are known to possess carcinogenic properties. Solvents used in these industries are also associated with different health related hazards including cancer. In previous studies on textile and iron industries, the authors have reported genotoxicity among them and observed occurrence of cancer deaths among textile industry workers. Thus, an attempt has been made to compile the studies on the prevalence of different types of cancers among textile industry workers. A wide literature search has been done for compiling the present paper. Papers on cancer occurrence among textile industry workers have been taken from 1976 to 2015. A variety of textile dyes and solvents, many of them being carcinogenic, are being used worldwide in the textile industry. The textile industry workers are therefore, in continuous exposure to these dyes, solvents, fibre dusts and various other toxic chemicals. The present study evaluates the potential of different chemicals and physical factors to be carcinogenic agents among occupationally exposed workers by going through various available reports and researches. Papers were collected using different databases and a number of studies report the association of textile industry and different types of cancer including lung, bladder, colorectal and breast cancer. After going through the available reports, it can be concluded that workers under varied job categories in textile industries are at a higher risk of developing cancer as various chemicals used in the textile industry are toxic and can act as potential health risk in inducing cancer among them. Assessing the cancer risk at different job levels in textile industries may be found useful in assessing the overall risk to the workers and formulating the future cancer preventive strategies.

  14. Characteristics of purple nonsulfur bacteria grown under Stevia residue extractions.

    PubMed

    Xu, J; Feng, Y; Wang, Y; Lin, X

    2013-11-01

    As a consequence of the large-scale cultivation of Stevia plants, releases of plant residues, the byproduct after sweetener extraction, to the environment are inevitable. Stevia residue and its effluent after batching up contain large amounts of organic matters with small molecular weight, which therefore are a potential pollution source. Meanwhile, they are favourite substrates for micro-organism growths. This investigation was aimed to utilize the simulated effluent of Stevia residue to enrich the representative purple nonsulfur bacterium (PNSB), Rhodopseudomonas palustris (Rps. palustris), which has important economic values. The growth profile and quality of Rps. palustris were characterized by spectrophotometry, compared to those grown in common PNSB mineral synthetic medium. Our results revealed that the simulated effluent of Stevia residue not only stimulated Rps. palustris growth to a greater extent, but also increased its physiologically active cytochrome concentrations and excreted indole-3-acetic acid (IAA) content. This variation in phenotype of Rps. palustris could result from the shift in its genotype, further revealed by the repetitive sequence-based PCR (rep-PCR) fingerprinting analysis. Our results showed that the effluent of Stevia residue was a promising substrate for microbial growth. © 2013 The Society for Applied Microbiology.

  15. Physiological effects of an additional stressor on fish exposed to a simulated heavy-metal-containing effluent from a sulfide ore smeltery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, A.; Haux, C.; Sjoebeck, M.L.

    1984-04-01

    Perches (Perca fluviatilis), kept in slightly hypotonic brackish water, were exposed to dilutions of a simulated heavy-metal-containing effluent from a sulfide ore smeltery . Biochemical and hematological effects of the effluent, as well as the metal residues in liver and muscle tissues, were investigated after 12 and 27 days of exposure. The metal analyses revealed no significant uptake of metals in liver and muscle during the experiment. In spite of this, the exposed fish showed several physiological effects. Some of these, e.g., anemia, hypocalcemia, increased muscle water content, and reduced liver size, were of a transient nature, while others, suchmore » as disturbed chloride balance and hyperglycemia, seemed to be more persistent. At the end of the experiment (29-33 days of exposure), the physiological response to stress treatment (asphyxia) and a subsequent recovery were studied in exposed and unexposed fish. This stress investigation indicates that an additional stressor may strengthen the toxic effects of the heavy-metal-containing effluent. Furthermore, the secondary stress responses were more pronounced and the ability to recover from them seemed to be impaired in exposed fish as compared to unexposed fish.« less

  16. Surface-Roughness-Based Virtual Textiles: Evaluation Using a Multi-Contactor Display.

    PubMed

    Philpott, Matthew; Summers, Ian R

    2015-01-01

    Virtual textiles, generated in response to exploratory movements, are presented to the fingertip via a 24-contactor vibrotactile array. Software models are based on surface-roughness profiles from real textiles. Results suggest that distinguishable "textile-like" surfaces are produced, but these lack the necessary accuracy for reliable matching to real textiles.

  17. Investigations of the historic textiles excavated from Ancient Ainos (Enez - Turkey) by multiple analytical techniques

    NASA Astrophysics Data System (ADS)

    Akyuz, Sevim; Akyuz, Tanil; Cakan, Banu; Basaran, Sait

    2014-09-01

    Some metal ornamented textile specimens and a textile button, excavated from Ancient Ainos (Enez - Turkey), have been investigated using FTIR and EDXRF spectrometry, for the purpose of material identification. FTIR spectral results indicated that textiles were made from partially degummed Bombyx mori silk. The IR spectral investigation of the textile button revealed that some cellulose fillings were used inside the button. The EDXRF analysis of the metal ornaments showed that they were silver plated copper. Surface morphology of the textiles and the metal ornaments were investigated by SEM images. It was shown that textile fibers were highly degraded.

  18. Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments.

    PubMed

    García-Olalla, Oscar; Alegre, Enrique; Fernández-Robles, Laura; Fidalgo, Eduardo; Saikia, Surajit

    2018-04-25

    Textile based image retrieval for indoor environments can be used to retrieve images that contain the same textile, which may indicate that scenes are related. This makes up a useful approach for law enforcement agencies who want to find evidence based on matching between textiles. In this paper, we propose a novel pipeline that allows searching and retrieving textiles that appear in pictures of real scenes. Our approach is based on first obtaining regions containing textiles by using MSER on high pass filtered images of the RGB, HSV and Hue channels of the original photo. To describe the textile regions, we demonstrated that the combination of HOG and HCLOSIB is the best option for our proposal when using the correlation distance to match the query textile patch with the candidate regions. Furthermore, we introduce a new dataset, TextilTube, which comprises a total of 1913 textile regions labelled within 67 classes. We yielded 84.94% of success in the 40 nearest coincidences and 37.44% of precision taking into account just the first coincidence, which outperforms the current deep learning methods evaluated. Experimental results show that this pipeline can be used to set up an effective textile based image retrieval system in indoor environments.

  19. Textile Retrieval Based on Image Content from CDC and Webcam Cameras in Indoor Environments

    PubMed Central

    García-Olalla, Oscar; Saikia, Surajit

    2018-01-01

    Textile based image retrieval for indoor environments can be used to retrieve images that contain the same textile, which may indicate that scenes are related. This makes up a useful approach for law enforcement agencies who want to find evidence based on matching between textiles. In this paper, we propose a novel pipeline that allows searching and retrieving textiles that appear in pictures of real scenes. Our approach is based on first obtaining regions containing textiles by using MSER on high pass filtered images of the RGB, HSV and Hue channels of the original photo. To describe the textile regions, we demonstrated that the combination of HOG and HCLOSIB is the best option for our proposal when using the correlation distance to match the query textile patch with the candidate regions. Furthermore, we introduce a new dataset, TextilTube, which comprises a total of 1913 textile regions labelled within 67 classes. We yielded 84.94% of success in the 40 nearest coincidences and 37.44% of precision taking into account just the first coincidence, which outperforms the current deep learning methods evaluated. Experimental results show that this pipeline can be used to set up an effective textile based image retrieval system in indoor environments. PMID:29693590

  20. Textile Functionalization and Its Effects on the Release of Silver Nanoparticles into Artificial Sweat.

    PubMed

    Wagener, Sandra; Dommershausen, Nils; Jungnickel, Harald; Laux, Peter; Mitrano, Denise; Nowack, Bernd; Schneider, Gregor; Luch, Andreas

    2016-06-07

    This study addresses the release of total silver (Ag) and silver nanoparticles (Ag-NPs) from textiles into artificial sweat, particularly considering the functionalization technology used in textile finishing. Migration experiments were conducted for four commercially available textiles and for six laboratory-prepared textiles. Two among these lab-prepared textiles represent materials in which Ag-NPs were embedded within the textile fibers (composites), whereas the other lab-prepared textiles contain Ag particles on the respective fiber surfaces (coatings). The results indicate a smaller release of total Ag from composites in comparison to surface-coated textiles. The particulate fraction determined within the artificial sweat was negligible for most textiles, meaning that the majority of the released Ag is present as dissolved Ag. It is also relevant to note that nanotextiles do not release more particulate Ag than conventional Ag textiles. The results rather indicate that the functionalization type is the most important parameter affecting the migration. Furthermore, after measuring different Ag-NP types in their pristine form with inductively coupled plasma mass spectrometry in the single particle mode, there is evidence that particle modifications, like surface coating, may also influence the dissolution behavior of the Ag-NPs in the sweat solutions. These factors are important when discussing the likelihood of consumer exposure.

  1. Flexible Textile-Based Organic Transistors Using Graphene/Ag Nanoparticle Electrode

    PubMed Central

    Kim, Youn; Kwon, Yeon Ju; Lee, Kang Eun; Oh, Youngseok; Um, Moon-Kwang; Seong, Dong Gi; Lee, Jea Uk

    2016-01-01

    Highly flexible and electrically-conductive multifunctional textiles are desirable for use in wearable electronic applications. In this study, we fabricated multifunctional textile composites by vacuum filtration and wet-transfer of graphene oxide films on a flexible polyethylene terephthalate (PET) textile in association with embedding Ag nanoparticles (AgNPs) to improve the electrical conductivity. A flexible organic transistor can be developed by direct transfer of a dielectric/semiconducting double layer on the graphene/AgNP textile composite, where the textile composite was used as both flexible substrate and conductive gate electrode. The thermal treatment of a textile-based transistor enhanced the electrical performance (mobility = 7.2 cm2·V−1·s−1, on/off current ratio = 4 × 105, and threshold voltage = −1.1 V) due to the improvement of interfacial properties between the conductive textile electrode and the ion-gel dielectric layer. Furthermore, the textile transistors exhibited highly stable device performance under extended bending conditions (with a bending radius down to 3 mm and repeated tests over 1000 cycles). We believe that our simple methods for the fabrication of graphene/AgNP textile composite for use in textile-type transistors can potentially be applied to the development of flexible large-area electronic clothes. PMID:28335276

  2. 49 CFR 178.520 - Standards for textile bags.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... for a sift-proof textile bag; and (3) 5L3 for a water-resistant textile bag. (b) Construction requirements for textile bags are as follows: (1) The textiles used must be of good quality. The strength of... use of paper bonded to the inner surface of the bag by a water-resistant adhesive such as bitumen...

  3. 49 CFR 178.520 - Standards for textile bags.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... for a sift-proof textile bag; and (3) 5L3 for a water-resistant textile bag. (b) Construction requirements for textile bags are as follows: (1) The textiles used must be of good quality. The strength of... use of paper bonded to the inner surface of the bag by a water-resistant adhesive such as bitumen...

  4. 49 CFR 178.520 - Standards for textile bags.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for a sift-proof textile bag; and (3) 5L3 for a water-resistant textile bag. (b) Construction requirements for textile bags are as follows: (1) The textiles used must be of good quality. The strength of... use of paper bonded to the inner surface of the bag by a water-resistant adhesive such as bitumen...

  5. A pilot study on the assessment of trace organic contaminants including pharmaceuticals and personal care products from on-site wastewater treatment systems along Skaneateles Lake in New York State, USA.

    PubMed

    Subedi, Bikram; Codru, Neculai; Dziewulski, David M; Wilson, Lloyd R; Xue, Jingchuan; Yun, Sehun; Braun-Howland, Ellen; Minihane, Christine; Kannan, Kurunthachalam

    2015-04-01

    On-site wastewater treatment systems (OWTSs or septic systems) are designed to treat and dispose effluents on the same property that produces the wastewater. Approximately 25% of the U.S. population is served by such facilities. Nevertheless, studies on the treatment efficiency and discharge of organic contaminants through septic effluents are lacking. This pilot study showed the occurrence of organic contaminants including pharmaceuticals and personal care products (PPCPs), perfluoroalkyl surfactants (PFASs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in septic effluents, adjacent lake water samples, household drinking water in homes that use lake water or a well adjacent to the lake as a source of drinking water, and offshore lake water samples. Septic effluent as well as lake and tap water samples were collected from several households with OWTSs around Skaneateles Lake located in central New York. The advanced on-site systems were installed in some households for the purpose of limiting nutrient levels in the effluent to protect the local surface water. Additionally, because many of these systems serve homes with limited land, advanced treatment systems were needed. The median concentrations of ten PPCPs (ranged from 0.45 to 388 ng/L) and eleven PFASs (ranged from 0.20 to 14.6 ng/L) in septic water were significantly higher (p ≤ 0.01) than in lake water samples. The median concentrations of PPCPs and PFASs in lake and tap water samples were not significantly different (p ≥ 0.65). The median concentrations of ∑PBDEs in septic, lake, and tap water samples were 7.47, 3.49, and 2.22 ng/L, respectively, and those for ∑PCBs were 33.1, 29.2, and 28.6 ng/L, respectively. The mass flux of PPCPs (i.e. the mass flow of PPCPs per unit area per unit time) through the disposal of treated septic effluent from textile biofilter and aerobic treatments to the dispersal unit ranged from 12 (carbamazepine) to 66900 μg/m(2)/day (caffeine) whereas that for PFASs ranged from 7.0 (perfluorobutanesulfonate) to 833 μg/m(2)/day (perfluorooctanoic acid). Based on the ratio of measured concentrations and method detection limit, triclocarban, perfluorooctanoic acid, and perfluorooctanesulfonate have the potential to be used as chemical tracers of septic water contamination in Skaneateles Lake. The median concentrations of atenolol, a beta-blocker drug, in septic water were significantly (ρ = 0.86, p = 0.01) correlated with enterococci counts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Predicting the physical effects of relocating Boston's sewage outfall

    USGS Publications Warehouse

    Signell, R.P.; Jenter, H.L.; Blumberg, A.F.

    2000-01-01

    Boston is scheduled to cease discharge of sewage effluent in Boston Harbor in Spring 2000 and begin discharge at a site 14 km offshore in Massachusetts Bay in a water depth of about 30 m. The effects of this outfall relocation on effluent dilution, salinity and circulation are predicted with a three-dimensional hydrodynamic model. The simulations predict that the new bay outfall will greatly decrease effluent concentrations in Boston Harbor (relative to the harbour outfall) and will not significantly change mean effluent concentrations over most of Massachusetts Bay. With the harbour outfall, previous observations and these simulations show that effluent concentrations exceed 0??5% throughout the harbour, with a harbour wide average of 1-2%. With the bay outfall, effluent concentrations exceed 0??5% only within a few km of the new outfall, and harbour concentrations drop to 0??1-0??2%, a 10-fold reduction. During unstratified winter conditions, the local increase in effluent concentration at the bay outfall site is predicted to exist throughout the water column. During stratified summer conditions, however, effluent released at the sea bed rises and is trapped beneath the pycnocline. The local increase in effluent concentration is limited to the lower layer, and as a result, surface layer effluent concentrations in the vicinity of the new outfall site are predicted to decrease (relative to the harbour outfall) during the summer. Slight changes are predicted for the salinity and circulation fields. Removing the fresh water associated with the effluent discharge in Boston Harbor is predicted to increase the mean salinity of the harbour by 0??5 and decrease the mean salinity by 0??10-0??15 within 2-3 km of the outfall. Relative to the existing mean flow, the buoyant discharge at the new outfall is predicted to generate density-driven mean currents of 2-4 cm s-1 that spiral out in a clockwise motion at the surface during winter and at the pycnocline (15-20 m depth) during summer. Compensating counterclockwise currents are predicted to spiral in toward the source at the bottom. Because the scale of the residual current structure induced by the new discharge is comparable to or smaller than typical subtidal water parcel excursions, Lagrangian trajectories will not follow the Eulerian residual flow. Thus, mean currents measured from moorings within 5 km of the bay outfall site will be more useful for model comparison than to indicate net transport pathways.

  7. Hospital Textiles, Are They a Possible Vehicle for Healthcare-Associated Infections?

    PubMed Central

    Fijan, Sabina; Šostar Turk, Sonja

    2012-01-01

    Textiles are a common material in healthcare facilities; therefore it is important that they do not pose as a vehicle for the transfer of pathogens to patients or hospital workers. During the course of use hospital textiles become contaminated and laundering is necessary. Laundering of healthcare textiles is most commonly adequate, but in some instances, due to inappropriate disinfection or subsequent recontamination, the textiles may become a contaminated inanimate surface with the possibility to transfer pathogens. In this review we searched the published literature in order to answer four review questions: (1) Are there any reports on the survival of microorganisms on hospital textiles after laundering? (2) Are there any reports that indicate the presence of microorganisms on hospital textiles during use? (3) Are there any reports that microorganisms on textiles are a possible source infection of patients? (4) Are there any reports that microorganisms on textiles are a possible source infection for healthcare workers? PMID:23202690

  8. Alkali, thermo and halo tolerant fungal isolate for the removal of textile dyes.

    PubMed

    Kaushik, Prachi; Malik, Anushree

    2010-11-01

    In the present study potential of a fungal isolate Aspergillus lentulusFJ172995, was investigated for the removal of textile dyes. The removal percentages of dyes such as Acid Navy Blue, Orange-HF, Fast Red A, Acid Sulphone Blue and Acid Magenta were determined as 99.43, 98.82, 98.75, 97.67 and 69.98, respectively. None of the dyes inhibited the growth of A. lentulus. Detailed studies on growth kinetics, mechanism of dye removal and effect of different parameters on dye removal were conducted using Acid Navy Blue dye. It was observed that A. lentulus could completely remove Acid Navy Blue even at high initial dye concentrations, up to 900 mg/L. Highest uptake capacity of 212.92 mg/g was observed at an initial dye concentration of 900 mg/L. Dye removing efficiency was not altered with the variation of pH; and biomass production as well as dye removal was favored at higher temperatures. Dye removal was also efficient even at high salt concentration. Through growth kinetics studies it was observed that the initial exponential growth phase coincided with the phase of maximal dye removal. Microscopic studies suggest that bioaccumulation along with biosorption is the principle mechanism involved in dye removal by A. lentulus. Thus, it is concluded that being alkali, thermo and halo tolerant, A. lentulus isolate has a great potential to be utilized for the treatment of dye bearing effluents which are usually alkaline, hot and saline. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Alizarin red S dye removal from contaminated water on calcined [Mg/Al, Zn/Al and MgZn/Al]-LDH

    NASA Astrophysics Data System (ADS)

    Aissat, Miloud; Hamouda, Sara; Benhadria, Naceur; Chellali, Rachid; Bettahar, Noureddine

    2018-05-01

    The waste water rejected by the textile industries is loaded with organic dyes, responsible for the high color present in the effluents. Some dyes and / or their degradation products could be carcinogenic and may have mutagenic properties. The rapid growth of the global economy has caused many environmental problems with a huge pollution problem. The abuse use of chemicals product is an environmental toxicological problem. The consequences can be serious for water resources. In this perspective, our study comes to participate with new means of depollution using new materials with interesting properties in the treatment of pollution. Among these materials, LDHs whose synthesis is easy and inexpensive can be a tool in the treatment of water Polluted [1]. Our contribution consists in using HDL as a means of sorption of dyes which are considered as polluting agents of waters especially for the industry textile. This study considers the removal of the Alizarine Red S (AR) from water on calcined MgAl,ZnAL and MgZnAL-layered double hydroxides. The different LDH was prepared by copreprecipation method. The materials was obtained for molar ratios R =2 for the different LDH. The carbonated layered Calcination of these solids leads to the formation of mixed oxides which have the property of being able to be regenerated by adsorbing new anionic entities. Adsorbents and adsorption products were characterized by physicochemical techniques. The structural characterization of the material was carried out by X-ray diffraction, infrared spectroscopy (FTIR). Dosages of the polluted solutions were monitored by UV-Visible spectrometry.

  10. Can TiO2-based photocatalytic textiles be used to improve the urban air quality?

    NASA Astrophysics Data System (ADS)

    Ródenas, Mila; Fages, Eduardo; Fatarella, Enrico; Herrero, David; Castagnoli, Lidia; Borràs, Esther; Vera, Teresa; Gómez, Tatiana; Catota, Marlon; Carreño, Javier; Hernández, Daniel; Gimeno, Cristina; López, Ramón; Muñoz, Amalia

    2017-04-01

    Despite current legislation and efforts made to improve urban air quality, significant negative effects still persist. That is the case of traffic, which impact on air pollution is a growing problem. For this reason, depollution measures are necessary to reach safer air quality levels. Recently, the use of titanium dioxide (TiO2) based photocatalytic self-cleaning and de-polluting materials has been considered to remove air pollutants, especially NOx. TiO2 can be found in the market under different formats for environmental purposes, and its effectiveness depends not only on the support (concrete, paints, etc) but also on the impregnation method (layer, embedded, etc). By combining laboratory and field campaigns, the LIFE PHOTOCITYTEX project was conceived to demonstrate the effectiveness of using TiO2-based photocatalytic nanomaterials in textiles as a way of alleviating the air pollution in urban areas. Within the project, which is already within its last year, two one-year extensive passive dosimetric campaigns have already been completed to assess their impact on the selected urban sites, measuring before and after the installation of the photocatalytic textile prototypes, respectively. Also, intensive active measurement campaigns (using active dosimetry, monitors and instrumentation for physical parameters) have been conducted to account for winter and summer conditions. Besides, lab-tests have been concluded to determine optimal photocatalytic formulations on textiles, and these have been tested at the EUPHORE simulation chambers under typical environmental conditions of various European cities. Besides the effect on NOx, which has been the main focus of the study, VOCs formation and abatement has been assessed, yielding in a better overall understanding of the whole process and its implications. Very promising results on the deep reduction of NOx have been observed at EUPHORE. From the calculation of the uptake coefficient, a mathematical model tool foresees an averaged NOx reduction of 2.5% under gentle wind conditions in the whole volume of the tunnel location. Furthermore, in the urban campaigns, NOx and NO2 reductions above 20% have been found in the vicinity of the textile (10cm from the textile). An overview of the campaigns deployment will be given together with the results obtained, with emphasis on the observed seasonal and temporal variability. Implications, impact and possibilities of the use photocatalytic textiles as a remediation technique to improve the air quality will be discussed. Acknowledgements PHOTOCITYTEX project (LIFE13 ENV/ES/000603) is acknowledged for supporting this work. Fundación CEAM is partly supported by Generalitat Valenciana - Spain.

  11. Micro/nanoencapsulation of essential oils and fragrances: Focus on perfumed, antimicrobial, mosquito-repellent and medical textiles.

    PubMed

    Ghayempour, Soraya; Montazer, Majid

    2016-09-01

    Herbal products have been widely used due to good antimicrobial, fragrance and medical properties. Essential oils and fragrances can be applied on the textile substrates as micro/nanocapsules to prolong lifetime by controlling the release rate. The present review tries to give a general overview on the application of micro/nanoencapsulated essential oils on the textile substrates to achieve aromatherapy textiles. These are divided into four diverse categories as the following: antimicrobial, perfumed, mosquito-repellent and medical textiles. The reports in this field revealed that the encapsulation technique plays an important role in the finishing of plant extracts on the textile substrates. It is also anticipated that aromatherapy textiles have to be developed in the new fields such as multifunctional textiles having wound-healing, antimicrobial and fragrant properties.

  12. Vacuum Drying Technique

    NASA Technical Reports Server (NTRS)

    1979-01-01

    At Valley Forge, Pennsylvania, General Electric Company's Space Division has a large environmental chamber for simulating the conditions under which an orbiting spacecraft operates. Normally it is used to test company-built space systems, such as NASA's Landsat and Nimbus satellites. It is also being used in a novel spinoff application-restoring water-damaged books and other paper products and textiles.

  13. Measurements in flame retardant textiles and protective clothing using an instrumented

    NASA Astrophysics Data System (ADS)

    Kort-Kamp, V. M.; Santos, A. M.; Azevedo, A. F.; Lima, R. M. V.; Bittencourt, E.

    2018-03-01

    The flame test manikin system can be used to evaluate the performance of thermal protective clothing under fire simulation conditions. Different weights of thermal protective garments were tested and the total clothed burn injury area decreased as the fabric weight increased. In addition, a comparison of different compositions for the same weight was analyzed too.

  14. Production and validation of model iron-tannate dyed textiles for use as historic textile substitutes in stabilisation treatment studies

    PubMed Central

    2012-01-01

    Background For millennia, iron-tannate dyes have been used to colour ceremonial and domestic objects shades of black, grey, or brown. Surviving iron-tannate dyed objects are part of our cultural heritage but their existence is threatened by the dye itself which can accelerate oxidation and acid hydrolysis of the substrate. This causes many iron-tannate dyed textiles to discolour and decrease in tensile strength and flexibility at a faster rate than equivalent undyed textiles. The current lack of suitable stabilisation treatments means that many historic iron-tannate dyed objects are rapidly crumbling to dust with the knowledge and value they hold being lost forever. This paper describes the production, characterisation, and validation of model iron-tannate dyed textiles as substitutes for historic iron-tannate dyed textiles in the development of stabilisation treatments. Spectrophotometry, surface pH, tensile testing, SEM-EDX, and XRF have been used to characterise the model textiles. Results On application to textiles, the model dyes imparted mid to dark blue-grey colouration, an immediate tensile strength loss of the textiles and an increase in surface acidity. The dyes introduced significant quantities of iron into the textiles which was distributed in the exterior and interior of the cotton, abaca, and silk fibres but only in the exterior of the wool fibres. As seen with historic iron-tannate dyed objects, the dyed cotton, abaca, and silk textiles lost tensile strength faster and more significantly than undyed equivalents during accelerated thermal ageing and all of the dyed model textiles, most notably the cotton, discoloured more than the undyed equivalents on ageing. Conclusions The abaca, cotton, and silk model textiles are judged to be suitable for use as substitutes for cultural heritage materials in the testing of stabilisation treatments. PMID:22616934

  15. Production and validation of model iron-tannate dyed textiles for use as historic textile substitutes in stabilisation treatment studies.

    PubMed

    Wilson, Helen; Carr, Chris; Hacke, Marei

    2012-05-22

    For millennia, iron-tannate dyes have been used to colour ceremonial and domestic objects shades of black, grey, or brown. Surviving iron-tannate dyed objects are part of our cultural heritage but their existence is threatened by the dye itself which can accelerate oxidation and acid hydrolysis of the substrate. This causes many iron-tannate dyed textiles to discolour and decrease in tensile strength and flexibility at a faster rate than equivalent undyed textiles. The current lack of suitable stabilisation treatments means that many historic iron-tannate dyed objects are rapidly crumbling to dust with the knowledge and value they hold being lost forever.This paper describes the production, characterisation, and validation of model iron-tannate dyed textiles as substitutes for historic iron-tannate dyed textiles in the development of stabilisation treatments. Spectrophotometry, surface pH, tensile testing, SEM-EDX, and XRF have been used to characterise the model textiles. On application to textiles, the model dyes imparted mid to dark blue-grey colouration, an immediate tensile strength loss of the textiles and an increase in surface acidity. The dyes introduced significant quantities of iron into the textiles which was distributed in the exterior and interior of the cotton, abaca, and silk fibres but only in the exterior of the wool fibres. As seen with historic iron-tannate dyed objects, the dyed cotton, abaca, and silk textiles lost tensile strength faster and more significantly than undyed equivalents during accelerated thermal ageing and all of the dyed model textiles, most notably the cotton, discoloured more than the undyed equivalents on ageing. The abaca, cotton, and silk model textiles are judged to be suitable for use as substitutes for cultural heritage materials in the testing of stabilisation treatments.

  16. Uncertainty analysis for effluent trading planning using a Bayesian estimation-based simulation-optimization modeling approach.

    PubMed

    Zhang, J L; Li, Y P; Huang, G H; Baetz, B W; Liu, J

    2017-06-01

    In this study, a Bayesian estimation-based simulation-optimization modeling approach (BESMA) is developed for identifying effluent trading strategies. BESMA incorporates nutrient fate modeling with soil and water assessment tool (SWAT), Bayesian estimation, and probabilistic-possibilistic interval programming with fuzzy random coefficients (PPI-FRC) within a general framework. Based on the water quality protocols provided by SWAT, posterior distributions of parameters can be analyzed through Bayesian estimation; stochastic characteristic of nutrient loading can be investigated which provides the inputs for the decision making. PPI-FRC can address multiple uncertainties in the form of intervals with fuzzy random boundaries and the associated system risk through incorporating the concept of possibility and necessity measures. The possibility and necessity measures are suitable for optimistic and pessimistic decision making, respectively. BESMA is applied to a real case of effluent trading planning in the Xiangxihe watershed, China. A number of decision alternatives can be obtained under different trading ratios and treatment rates. The results can not only facilitate identification of optimal effluent-trading schemes, but also gain insight into the effects of trading ratio and treatment rate on decision making. The results also reveal that decision maker's preference towards risk would affect decision alternatives on trading scheme as well as system benefit. Compared with the conventional optimization methods, it is proved that BESMA is advantageous in (i) dealing with multiple uncertainties associated with randomness and fuzziness in effluent-trading planning within a multi-source, multi-reach and multi-period context; (ii) reflecting uncertainties existing in nutrient transport behaviors to improve the accuracy in water quality prediction; and (iii) supporting pessimistic and optimistic decision making for effluent trading as well as promoting diversity of decision alternatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Simulation of Propagation of Compartment Fire on Building Facades

    NASA Astrophysics Data System (ADS)

    Simion, A.; Dragne, H.; Stoica, D.; Anghel, I.

    2018-06-01

    The façade fire simulation of buildings is carried out with Pyrosim numerical fire modeling program, following the implementation of a fire scenario in this simulation program. The scenario that was implemented in the Pyrosim program by researchers from the INCERC Fire Safety Research and Testing Laboratory complied with the requirements of BS 8414. The results obtained following the run of the computational program led to the visual validation of effluents at different time points from the beginning of the thermal load burning, as well as the validation in terms of recorded temperatures. It is considered that the results obtained are reasonable, the test being fully validated from the point of view of the implementation of the fire scenario, of the correct development of the effluents and of the temperature values [1].

  18. Wearable Electricity Generators Fabricated Utilizing Transparent Electronic Textiles Based on Polyester/Ag Nanowires/Graphene Core-Shell Nanocomposites.

    PubMed

    Wu, Chaoxing; Kim, Tae Whan; Li, Fushan; Guo, Tailiang

    2016-07-26

    The technological realization of wearable triboelectric generators is attractive because of their promising applications in wearable self-powered intelligent systems. However, the low electrical conductivity, the low electrical stability, and the low compatibility of current electronic textiles (e-textiles) and clothing restrict the comfortable and aesthetic integration of wearable generators into human clothing. Here, we present high-performance, transparent, smart e-textiles that employ commercial textiles coated with silver nanowire/graphene sheets fabricated by using a scalable, environmentally friendly, full-solution process. The smart e-textiles show superb and stable conduction of below 20 Ω/square as well as excellent flexibility, stretchability, foldability, and washability. In addition, wearable electricity-generating textiles, in which the e-textiles act as electrodes as well as wearable substrates, are presented. Because of the high compatibility of smart e-textiles and clothing, the electricity-generating textiles can be easily integrated into a glove to harvest the mechanical energy induced by the motion of the fingers. The effective output power generated by a single generator due to that motion reached as high as 7 nW/cm(2). The successful demonstration of the electricity-generating glove suggests a promising future for polyester/Ag nanowire/graphene core-shell nanocomposite-based smart e-textiles for real wearable electronic systems and self-powered clothing.

  19. An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor.

    PubMed

    Andleeb, Saadia; Atiq, Naima; Robson, Geoff D; Ahmed, Safia

    2012-06-01

    Biodegradation and biodecolorization of Drimarene blue K(2)RL (anthraquinone) dye by a fungal isolate Aspergillus flavus SA2 was studied in lab-scale immobilized fluidized bed bioreactor (FBR) system. Fungus was immobilized on 0.2-mm sand particles. The reactor operation was carried out at room temperature and pH 5.0 in continuous flow mode with increasing concentrations (50, 100, 150, 200, 300, 500 mg l(-1)) of dye in simulated textile effluent on the 1st, 2nd, 5th, 8th, 11th, and 14th days. The reactors were run on fill, react, settle, and draw mode, with hydraulic retention time (HRT) of 24-72 h. Total run time for reactor operation was 17 days. The average overall biological oxygen demand (BOD), chemical oxygen demand (COD), and color removal in the FBR system were up to 85.57%, 84.70%, and 71.3%, respectively, with 50-mg l(-1) initial dye concentration and HRT of 24 h. Reductions in BOD and COD levels along with color removal proved that the mechanism of biodecolorization and biodegradation occurred simultaneously. HPLC and LC-MS analysis identified phthalic acid, benzoic acid, 1, 4-dihydroxyanthraquinone, 2,3-dihydro-9,10-dihydroxy-1,4-anthracenedione, and catechol as degradation products of Drimarene blue K(2)RL dye. Phytotoxicity analysis of bioreactor treatments provided evidence for the production of less toxic metabolites in comparison to the parent dye. The present fluidized bed bioreactor setup with indigenously isolated fungal strain in its immobilized form is efficiently able to convert the parent toxic dye into less toxic by-products.

  20. Role of alginate in antibacterial finishing of textiles.

    PubMed

    Li, Jiwei; He, Jinmei; Huang, Yudong

    2017-01-01

    Antibacterial finishing of textiles has been introduced as a necessary process for various purposes especially creating a fabric with antimicrobial activities. Currently, the textile industry continues to look for textiles antimicrobial finishing process based on sustainable biopolymers from the viewpoints of environmental friendliness, industrialization, and economic concerns. This paper reviews the role of alginate, a sustainable biopolymer, in the development of antimicrobial textiles, including both basic physicochemical properties of alginate such as preparation, chemical structure, molecular weight, solubility, viscosity, and sol-gel transformation property. Then different processing routes (e.g. nanocomposite coating, ionic cross-linking coating, and Layer-by-Layer coating) for the antibacterial finishing of textiles by using alginate are revised in some detail. The achievements in this area have increased our knowledge of alginate application in the field of textile industry and promoted the development of green textile finishing. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Scalable and Environmentally Benign Process for Smart Textile Nanofinishing.

    PubMed

    Feng, Jicheng; Hontañón, Esther; Blanes, Maria; Meyer, Jörg; Guo, Xiaoai; Santos, Laura; Paltrinieri, Laura; Ramlawi, Nabil; Smet, Louis C P M de; Nirschl, Hermann; Kruis, Frank Einar; Schmidt-Ott, Andreas; Biskos, George

    2016-06-15

    A major challenge in nanotechnology is that of determining how to introduce green and sustainable principles when assembling individual nanoscale elements to create working devices. For instance, textile nanofinishing is restricted by the many constraints of traditional pad-dry-cure processes, such as the use of costly chemical precursors to produce nanoparticles (NPs), the high liquid and energy consumption, the production of harmful liquid wastes, and multistep batch operations. By integrating low-cost, scalable, and environmentally benign aerosol processes of the type proposed here into textile nanofinishing, these constraints can be circumvented while leading to a new class of fabrics. The proposed one-step textile nanofinishing process relies on the diffusional deposition of aerosol NPs onto textile fibers. As proof of this concept, we deposit Ag NPs onto a range of textiles and assess their antimicrobial properties for two strains of bacteria (i.e., Staphylococcus aureus and Klebsiella pneumoniae). The measurements show that the logarithmic reduction in bacterial count can get as high as ca. 5.5 (corresponding to a reduction efficiency of 99.96%) when the Ag loading is 1 order of magnitude less (10 ppm; i.e., 10 mg Ag NPs per kg of textile) than that of textiles treated by traditional wet-routes. The antimicrobial activity does not increase in proportion to the Ag content above 10 ppm as a consequence of a "saturation" effect. Such low NP loadings on antimicrobial textiles minimizes the risk to human health (during textile use) and to the ecosystem (after textile disposal), as well as it reduces potential changes in color and texture of the resulting textile products. After three washes, the release of Ag is in the order of 1 wt %, which is comparable to textiles nanofinished with wet routes using binders. Interestingly, the washed textiles exhibit almost no reduction in antimicrobial activity, much as those of as-deposited samples. Considering that a realm of functional textiles can be nanofinished by aerosol NP deposition, our results demonstrate that the proposed approach, which is universal and sustainable, can potentially lead to a wide number of applications.

  2. Textile inspired flexible metamaterial with negative refractive index

    NASA Astrophysics Data System (ADS)

    Burgnies, L.; Lheurette, É.; Lippens, D.

    2015-04-01

    This work introduces metallo-dielectric woven fabric as a metamaterial for phase-front manipulation. Dispersion diagram as well as effective medium parameters retrieved from reflection and transmission coefficients point out negative values of refractive index. By numerical simulations, it is evidenced that a pair of meandered metallic wires, arranged in a top to bottom configuration, can yield to a textile metamaterial with simultaneously negative permittivity and permeability. While the effective negative permittivity stems from the metallic grid arrangement, resonating current loop resulting from the top to bottom configuration of two meandered metallic wires in near proximity produces magnetic activity with negative permeability. By adjusting the distance between pairs of metallic wires, the electric plasma frequency can be shifted to overlap the magnetic resonance. Finally, it is shown that the woven metamaterial is insensitive to the incident angle up to around 60°.

  3. Natural ageing process accelerates the release of Ag from functional textile in various exposure scenarios

    PubMed Central

    Ding, Dahu; Chen, Lulu; Dong, Shaowei; Cai, Hao; Chen, Jifei; Jiang, Canlan; Cai, Tianming

    2016-01-01

    Natural ageing process occurs throughout the life cycle of textile products, which may possess influences on the release behavior of additives such as silver nanoparticles (Ag NPs). In this study, we assessed the releasability of Ag NPs from a Ag NPs functionalized textile in five different exposure scenarios (i.e. tap water (TW), pond water (PW), rain water (RW), artificial sweat (AS), and detergent solution (DS) along with deionized water (DW) as reference), which were very likely to occur throughout the life cycle of the textile. For the pristine textile, although the most remarkable release was found in DW (6–15 μg Ag/g textile), the highest release rate was found in RW (around 7 μg Ag/(g textile·h)). After ageing treatment, the total released Ag could be increased by 75.7~386.0% in DW, AS and DS. Morphological analysis clearly showed that the Ag NPs were isolated from the surface of the textile fibre due to the ageing treatment. This study provides useful information for risk assessment of nano-enhanced textile products. PMID:27869136

  4. Scalable Production of Graphene-Based Wearable E-Textiles.

    PubMed

    Karim, Nazmul; Afroj, Shaila; Tan, Sirui; He, Pei; Fernando, Anura; Carr, Chris; Novoselov, Kostya S

    2017-12-26

    Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors.

  5. Natural ageing process accelerates the release of Ag from functional textile in various exposure scenarios

    NASA Astrophysics Data System (ADS)

    Ding, Dahu; Chen, Lulu; Dong, Shaowei; Cai, Hao; Chen, Jifei; Jiang, Canlan; Cai, Tianming

    2016-11-01

    Natural ageing process occurs throughout the life cycle of textile products, which may possess influences on the release behavior of additives such as silver nanoparticles (Ag NPs). In this study, we assessed the releasability of Ag NPs from a Ag NPs functionalized textile in five different exposure scenarios (i.e. tap water (TW), pond water (PW), rain water (RW), artificial sweat (AS), and detergent solution (DS) along with deionized water (DW) as reference), which were very likely to occur throughout the life cycle of the textile. For the pristine textile, although the most remarkable release was found in DW (6-15 μg Ag/g textile), the highest release rate was found in RW (around 7 μg Ag/(g textile·h)). After ageing treatment, the total released Ag could be increased by 75.7~386.0% in DW, AS and DS. Morphological analysis clearly showed that the Ag NPs were isolated from the surface of the textile fibre due to the ageing treatment. This study provides useful information for risk assessment of nano-enhanced textile products.

  6. Core-Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths.

    PubMed

    Yu, Aifang; Pu, Xiong; Wen, Rongmei; Liu, Mengmeng; Zhou, Tao; Zhang, Ke; Zhang, Yang; Zhai, Junyi; Hu, Weiguo; Wang, Zhong Lin

    2017-12-26

    Although textile-based triboelectric nanogenerators (TENGs) are highly promising because they scavenge energy from their working environment to sustainably power wearable/mobile electronics, the challenge of simultaneously possessing the qualities of cloth remains. In this work, we propose a strategy for TENG textiles as power cloths in which core-shell yarns with core conductive fibers as the electrode and artificial polymer fibers or natural fibrous materials tightly twined around core conductive fibers are applied as the building blocks. The resulting TENG textiles are comfortable, flexible, and fashionable, and their production processes are compatible with industrial, large-scale textile manufacturing. More importantly, the comfortable TENG textiles demonstrate excellent washability and tailorability and can be fully applied in further garment processing. TENG textiles worn under the arm or foot have also been demonstrated to scavenge various types of energy from human motion, such as patting, walking, and running. All of these merits of proposed TENG textiles for clothing uses suggest their great potentials for viable applications in wearable electronics or smart textiles in the near future.

  7. Color tunable photonic textiles for wearable display applications

    NASA Astrophysics Data System (ADS)

    Sayed, I.; Berzowska, J.; Skorobogatiy, M.

    2010-04-01

    Integration of optical functionalities such as light emission, processing and collection into flexible woven matrices of fabric have grabbed a lot of attention in the last few years. Photonic textiles frequently involve optical fibers as they can be easily processed together with supporting fabric fibers. This technology finds uses in various fields of application such as interactive clothing, signage, wearable health monitoring sensors and mechanical strain and deformation detectors. Recent development in the field of Photonic Band Gap optical fibers (PBG) could potentially lead to novel photonic textiles applications and techniques. Particularly, plastic PBG Bragg fibers fabricated in our group have strong potential in the field of photonic textiles as they offer many advantages over standard silica fibers at the same low cost. Among many unusual properties of PBG textiles we mention that they are highly reflective, PBG textiles are colored without using any colorants, PBG textiles can change their color by controlling the relative intensities of guided and reflected light, and finally, PBG textiles can change their colors when stretched. Some of the many experimental realization of photonic bandgap fiber textiles and their potential applications in wearable displays are discussed.

  8. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review.

    PubMed

    Dhal, B; Thatoi, H N; Das, N N; Pandey, B D

    2013-04-15

    Chromium is a highly toxic non-essential metal for microorganisms and plants, and its occurrence is rare in nature. Lower to higher chromium containing effluents and solid wastes released by activities such as mining, metal plating, wood preservation, ink manufacture, dyes, pigments, glass and ceramics, tanning and textile industries, and corrosion inhibitors in cooling water, induce pollution and may cause major health hazards. Besides, natural processes (weathering and biochemical) also contribute to the mobility of chromium which enters in to the soil affecting the plant growth and metabolic functions of the living species. Generally, chemical processes are used for Cr- remediation. However, with the inference derived from the diverse Cr-resistance mechanism displayed by microorganisms and the plants including biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux, bioremediation is emerging as a potential tool to address the problem of Cr(VI) pollution. This review focuses on the chemistry of chromium, its use, and toxicity and mobility in soil, while assessing its concentration in effluents/wastes which becomes the source of pollution. In order to conserve the environment and resources, the chemical/biological remediation processes for Cr(VI) and their efficiency have been summarised in some detail. The interaction of chromium with various microbial/bacterial strains isolated and their reduction capacity towards Cr(VI) are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Characterization and decolorization applicability of xerogel matrix immobilized manganese peroxidase produced from Trametes versicolor IBL-04.

    PubMed

    Iqbal, Hafiz Muhammad Nasir; Asgher, Muhammad

    2013-05-01

    A novel manganese peroxidase (MnP) isolated from solid state culture of Trametes versicolor IBL-04 was immobilized using xerogel matrix composed of trimethoxysilane (TMOS) and propyltetramethoxysilane (PTMS). FTIR spectroscopy confirmed the successful entrapment of MnP into the xerogel matrix. An immobilization efficiency of 92.2% was achieved with a purified active fraction containing 2 mg/mL MnP. After 24 h incubation at varying pH and temperatures, the immobilized MnP retained 82 and 75% activity at pH 4 and 80°C, respectively. Xerogel matrix immobilization enhanced the catalytic efficiency of entrapped MnP. Metal ions including Cu2+, Mn2+ and Fe2+ stimulated enzyme activity while cysteine, EDTA and Ag+ inhibited the activity. MnP preserved 82% of its initial activity during oxidation of MnSO4 in 10 consecutive cycles, demonstrating the reusability of xerogel entrapped MnP. The immobilized MnP could be stored for up to 75 days at 4°C without significant activity loss. To explore the industrial applicability of MnP, the immobilized MnP was tested for decolorization of textile industry effluent in a Packed Bed Reactor System (PBRS). After five consecutive cycles, 98.8% decolorization of effluent was achieved within 5 h. The kinetic properties, storage stability and reusability of entrapped MnP from T. versicolor IBL-04 reflect its prospects as biocatalyst for bioremediation and other industrial applications.

  10. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects.

    PubMed

    Pensupa, Nattha; Leu, Shao-Yuan; Hu, Yunzi; Du, Chenyu; Liu, Hao; Jing, Houde; Wang, Huaimin; Lin, Carol Sze Ki

    2017-08-16

    In recent years, there have been increasing concerns in the disposal of textile waste around the globe. The growth of textile markets not only depends on population growth but also depends on economic and fashion cycles. The fast fashion cycle in the textile industry has led to a high level of consumption and waste generation. This can cause a negative environmental impact since the textile and clothing industry is one of the most polluting industries. Textile manufacturing is a chemical-intensive process and requires a high volume of water throughout its operations. Wastewater and fiber wastes are the major wastes generated during the textile production process. On the other hand, the fiber waste was mainly created from unwanted clothes in the textile supply chain. This fiber waste includes natural fiber, synthetic fiber, and natural/synthetic blends. The natural fiber is mostly comprised of cellulosic material, which can be used as a resource for producing bio-based products. The main challenge for utilization of textile waste is finding the method that is able to recover sugars as monosaccharides. This review provides an overview of valorization of textile waste to value-added products, as well as an overview of different strategies for sugar recovery from cellulosic fiber and their hindrances.

  11. Fuzzy logic for plant-wide control of biological wastewater treatment process including greenhouse gas emissions.

    PubMed

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2018-06-01

    The application of control strategies is increasingly used in wastewater treatment plants with the aim of improving effluent quality and reducing operating costs. Due to concerns about the progressive growth of greenhouse gas emissions (GHG), these are also currently being evaluated in wastewater treatment plants. The present article proposes a fuzzy controller for plant-wide control of the biological wastewater treatment process. Its design is based on 14 inputs and 6 outputs in order to reduce GHG emissions, nutrient concentration in the effluent and operational costs. The article explains and shows the effect of each one of the inputs and outputs of the fuzzy controller, as well as the relationship between them. Benchmark Simulation Model no 2 Gas is used for testing the proposed control strategy. The results of simulation results show that the fuzzy controller is able to reduce GHG emissions while improving, at the same time, the common criteria of effluent quality and operational costs. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Silver speciation and release in commercial antimicrobial textiles as influenced by washing.

    PubMed

    Lombi, Enzo; Donner, Erica; Scheckel, Kirk G; Sekine, Ryo; Lorenz, Christiane; Von Goetz, Natalie; Nowack, Bernd

    2014-09-01

    The use of nanoscale Ag in textiles is one the most often mentioned uses of nano-Ag. It has previously been shown that significant amounts of the Ag in the textiles are released upon washing. However, the form of Ag present in the textiles remains largely unknown as product labelling is insufficient. The aim of this study was therefore to investigate the solid phase speciation of Ag in original and washed silver textiles using XANES. The original Ag speciation in the textiles was found to vary greatly between different materials with Ag(0), AgCl, Ag2S, Ag-phosphate, ionic Ag and other species identified. Furthermore, within the same textile a number of different species were found to coexist. This is likely due to a combination of factors such as the synthesis processes at industrial scale and the possible reaction of Ag with atmospheric gases. Washing with two different detergents resulted in marked changes in Ag-speciation. For some textiles the two detergents induced similar transformation, in other textiles they resulted in very different Ag species. This study demonstrates that in functional Ag textiles a variety of different Ag species coexist before and after washing. These results have important implications for the risk assessment of Ag textiles because they show that the metallic Ag is only one of the many silver species that need to be considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Industrial recovered-materials-utilization targets for the textile-mill-products industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1979-01-01

    The Congress, in the National Energy Conservation and Policy Act of 1978 (NECPA), directed the Department of Energy to establish materials recovery targets for the metals and metal products, paper and allied products, rubber, and textile-mill-products industries. The targets were developed to provide incentives for using energy-saving recorded materials and to provied a yardstick for measuring progress and improvement in this endeavor. The NECPA indicates that the targets should represent the maximum technically and economically feasible increase in the use of energy-saving recovered materials that each industry can achieve progressively by January 1, 1987. Materials affected by recovered-materials targets includemore » and are limited to aluminum, copper, lead, zinc, iron, steel, paper and associated products, textile-mill, products, and rubber. Using information gathered from the textile-mill-products industry and from other textile-relaed sources, DOE has developed recovered materials targets for that industry. This report presents those targets and their basis and justification. Following an overview of the textile industry, the chapters are: Textile-Mill-Products Industry Operations; Economic Analysis of the Textile-Mill-Products Industry; Governmental and Regulatory Influence on the US Textile Industry; Current Mill Use of Recovered Materials in the Textile-Mill-Products Industry; Limitations on the Use of Recovered Materials in the US Textile-Mill-Products Industry; Materials-Recovery Targets; and Government and Industry Actions That Could Increase the Use of Recovered Materials.« less

  14. Prediction analysis of effluent removal in a septic sludge treatment plant: a biomimetics engineering approach.

    PubMed

    Chun, Ting Sie; Malek, M A; Ismail, Amelia Ritahani

    2014-09-20

    Effluent discharge from septic tanks is affecting the environment in developing countries. The most challenging issue facing these countries is the cost of inadequate sanitation, which includes significant economic, social, and environmental burdens. Although most sanitation facilities are evaluated based on their immediate costs and benefits, their long-term performance should also be investigated. In this study, effluent quality-namely, the biological oxygen demand (BOD), chemical oxygen demand (COD), and total suspended solid (TSS)-was assessed using a biomimetics engineering approach. A novel immune network algorithm (INA) approach was applied to a septic sludge treatment plant (SSTP) for effluent-removal predictive modelling. The Matang SSTP in the city of Kuching, Sarawak, on the island of Borneo, was selected as a case study. Monthly effluent discharges from 2007 to 2011 were used for training, validating, and testing purposes using MATLAB 7.10. The results showed that the BOD effluent-discharge prediction was less than 50% of the specified standard after the 97(th) month of operation. The COD and TSS effluent removals were simulated at the 85(th) and the 121(st) months, respectively. The study proved that the proposed INA-based SSTP model could be used to achieve an effective SSTP assessment and management technique.

  15. Sewing up Science

    ERIC Educational Resources Information Center

    Tofel-Grehl, Colby; Fields, Deborah

    2015-01-01

    Electronic textiles (e-textiles)--fabrics embedded with electrical or electronic components--offer a new model for teaching this content. E-textiles also engage students in programming and engineering design through nontraditional projects and materials. This article describes a four-week electricity curriculum using three e-textiles projects that…

  16. Textiles and Apparel Design.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Curriculum Center.

    This document contains teacher's materials for a seven-unit secondary education vocational home economics course on textiles and apparel design. The units cover: (1) fiber/fiber characteristics and textile development (including fabrication and dyeing, printing, and finishing); (2) textile and apparel design industries (including their history and…

  17. Atomic layer deposition on polymer fibers and fabrics for multifunctional and electronic textiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozena, Alexandra H.; Oldham, Christopher J.; Parsons, Gregory N., E-mail: gnp@ncsu.edu

    Textile materials, including woven cotton, polymer knit fabrics, and synthetic nonwoven fiber mats, are being explored as low-cost, flexible, and light-weight platforms for wearable electronic sensing, communication, energy generation, and storage. The natural porosity and high surface area in textiles is also useful for new applications in environmental protection, chemical decontamination, pharmaceutical and chemical manufacturing, catalytic support, tissue regeneration, and others. These applications raise opportunities for new chemistries, chemical processes, biological coupling, and nanodevice systems that can readily combine with textile manufacturing to create new “multifunctional” fabrics. Atomic layer deposition (ALD) has a unique ability to form highly uniform andmore » conformal thin films at low processing temperature on nonuniform high aspect ratio surfaces. Recent research shows how ALD can coat, modify, and otherwise improve polymer fibers and textiles by incorporating new materials for viable electronic and other multifunctional capabilities. This article provides a current overview of the understanding of ALD coating and modification of textiles, including current capabilities and outstanding problems, with the goal of providing a starting point for further research and advances in this field. After a brief introduction to textile materials and current textile treatment methods, the authors discuss unique properties of ALD-coated textiles, followed by a review of recent electronic and multifunctional textiles that use ALD coatings either as direct functional components or as critical nucleation layers for active materials integration. The article concludes with possible future directions for ALD on textiles, including the challenges in materials, manufacturing, and manufacturing integration that must be overcome for ALD to reach its full potential in electronic and other emerging multifunctional textile systems.« less

  18. Recent progress in NASA Langley textile reinforced composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

    1992-01-01

    The NASA LaRC is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. In addition to in-house research, the program was recently expanded to include major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house focus is as follows: development of a science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of design, fabrication and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3D weaving, 2D and 3D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials.

  19. Reduction of health care-associated infection indicators by copper oxide-impregnated textiles: Crossover, double-blind controlled study in chronic ventilator-dependent patients.

    PubMed

    Marcus, Esther-Lee; Yosef, Hana; Borkow, Gadi; Caine, Yehezkel; Sasson, Ady; Moses, Allon E

    2017-04-01

    Copper oxide has potent wide-spectrum biocidal properties. The purpose of this study is to determine if replacing hospital textiles with copper oxide-impregnated textiles reduces the following health care-associated infection (HAI) indicators: antibiotic treatment initiation events (ATIEs), fever days, and antibiotic usage in hospitalized chronic ventilator-dependent patients. A 7-month, crossover, double-blind controlled trial including all patients in 2 ventilator-dependent wards in a long-term care hospital. For 3 months (period 1), one ward received copper oxide-impregnated textiles and the other received untreated textiles. After a 1-month washout period of using regular textiles, for 3 months (period 2) the ward that received the treated textiles received the control textiles and vice versa. The personnel were blinded to which were treated or control textiles. There were no differences in infection control measures during the study. There were reductions of 29.3% (P = .002), 55.5% (P < .0001), 23.0% (P < .0001), and 27.5% (P < .0001) in the ATIEs, fever days (>37.6°C), days of antibiotic treatment, and antibiotic defined daily dose per 1,000 hospitalization days, respectively, when using the copper oxide-impregnated textiles. Use of copper oxide-impregnated biocidal textiles in a long-term care ward of ventilator-dependent patients was associated with a significant reduction of HAI indicators and antibiotic utilization. Using copper oxide-impregnated biocidal textiles may be an important measure aimed at reducing HAIs in long-term care medical settings. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  20. Antibiotic Dosing in Continuous Renal Replacement Therapy.

    PubMed

    Shaw, Alexander R; Mueller, Bruce A

    2017-07-01

    Appropriate antibiotic dosing is critical to improve outcomes in critically ill patients with sepsis. The addition of continuous renal replacement therapy makes achieving appropriate antibiotic dosing more difficult. The lack of continuous renal replacement therapy standardization results in treatment variability between patients and may influence whether appropriate antibiotic exposure is achieved. The aim of this study was to determine if continuous renal replacement therapy effluent flow rate impacts attaining appropriate antibiotic concentrations when conventional continuous renal replacement therapy antibiotic doses were used. This study used Monte Carlo simulations to evaluate the effect of effluent flow rate variance on pharmacodynamic target attainment for cefepime, ceftazidime, levofloxacin, meropenem, piperacillin, and tazobactam. Published demographic and pharmacokinetic parameters for each antibiotic were used to develop a pharmacokinetic model. Monte Carlo simulations of 5000 patients were evaluated for each antibiotic dosing regimen at the extremes of Kidney Disease: Improving Global Outcomes guidelines recommended effluent flow rates (20 and 35 mL/kg/h). The probability of target attainment was calculated using antibiotic-specific pharmacodynamic targets assessed over the first 72 hours of therapy. Most conventional published antibiotic dosing recommendations, except for levofloxacin, reach acceptable probability of target attainment rates when effluent rates of 20 or 35 mL/kg/h are used. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  1. Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human-Machine Interaction.

    PubMed

    Cao, Ran; Pu, Xianjie; Du, Xinyu; Yang, Wei; Wang, Jiaona; Guo, Hengyu; Zhao, Shuyu; Yuan, Zuqing; Zhang, Chi; Li, Congju; Wang, Zhong Lin

    2018-05-22

    Multifunctional electronic textiles (E-textiles) with embedded electric circuits hold great application prospects for future wearable electronics. However, most E-textiles still have critical challenges, including air permeability, satisfactory washability, and mass fabrication. In this work, we fabricate a washable E-textile that addresses all of the concerns and shows its application as a self-powered triboelectric gesture textile for intelligent human-machine interfacing. Utilizing conductive carbon nanotubes (CNTs) and screen-printing technology, this kind of E-textile embraces high conductivity (0.2 kΩ/sq), high air permeability (88.2 mm/s), and can be manufactured on common fabric at large scales. Due to the advantage of the interaction between the CNTs and the fabrics, the electrode shows excellent stability under harsh mechanical deformation and even after being washed. Moreover, based on a single-electrode mode triboelectric nanogenerator and electrode pattern design, our E-textile exhibits highly sensitive touch/gesture sensing performance and has potential applications for human-machine interfacing.

  2. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-09-22

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect themore » best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.« less

  3. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    NASA Astrophysics Data System (ADS)

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-09-01

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  4. Recent progress in NASA Langley Research Center textile reinforced composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

    1992-01-01

    Research was conducted to explore the benefits of textile reinforced composites for transport aircraft primary structures. The objective is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. Some program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. Textile 3-D weaving, 3-D braiding, and knitting and/or stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighted against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural parts are required to establish the potential of textile reinforced composite materials.

  5. Stretchable, porous, and conductive energy textiles.

    PubMed

    Hu, Liangbing; Pasta, Mauro; Mantia, Fabio La; Cui, Lifeng; Jeong, Sangmoo; Deshazer, Heather Dawn; Choi, Jang Wook; Han, Seung Min; Cui, Yi

    2010-02-10

    Recently there is strong interest in lightweight, flexible, and wearable electronics to meet the technological demands of modern society. Integrated energy storage devices of this type are a key area that is still significantly underdeveloped. Here, we describe wearable power devices using everyday textiles as the platform. With an extremely simple "dipping and drying" process using single-walled carbon nanotube (SWNT) ink, we produced highly conductive textiles with conductivity of 125 S cm(-1) and sheet resistance less than 1 Omega/sq. Such conductive textiles show outstanding flexibility and stretchability and demonstrate strong adhesion between the SWNTs and the textiles of interest. Supercapacitors made from these conductive textiles show high areal capacitance, up to 0.48F/cm(2), and high specific energy. We demonstrate the loading of pseudocapacitor materials into these conductive textiles that leads to a 24-fold increase of the areal capacitance of the device. These highly conductive textiles can provide new design opportunities for wearable electronics and energy storage applications.

  6. Chromate Dissociation from Primer Paint in Simulated Lung Fluid.

    DTIC Science & Technology

    2000-03-01

    not done properly. Chromium is found naturally in the earth’s crust; trivalent chromium is a necessary dietary mineral. Other oxidative states such...exposures to chromium can include welding , leather tanning, electroplating, textile manufacturing, photoengraving, copier servicing and paints/pigments...production, production of chromates and chromate pigments, leather tanning, chromium plating and welding . Unfortunately, no detailed health studies have

  7. Scalable Production of Graphene-Based Wearable E-Textiles

    PubMed Central

    2017-01-01

    Graphene-based wearable e-textiles are considered to be promising due to their advantages over traditional metal-based technology. However, the manufacturing process is complex and currently not suitable for industrial scale application. Here we report a simple, scalable, and cost-effective method of producing graphene-based wearable e-textiles through the chemical reduction of graphene oxide (GO) to make stable reduced graphene oxide (rGO) dispersion which can then be applied to the textile fabric using a simple pad-dry technique. This application method allows the potential manufacture of conductive graphene e-textiles at commercial production rates of ∼150 m/min. The graphene e-textile materials produced are durable and washable with acceptable softness/hand feel. The rGO coating enhanced the tensile strength of cotton fabric and also the flexibility due to the increase in strain% at maximum load. We demonstrate the potential application of these graphene e-textiles for wearable electronics with activity monitoring sensor. This could potentially lead to a multifunctional single graphene e-textile garment that can act both as sensors and flexible heating elements powered by the energy stored in graphene textile supercapacitors. PMID:29185706

  8. Antimicrobial Approaches for Textiles: From Research to Market

    PubMed Central

    Morais, Diana Santos; Guedes, Rui Miranda; Lopes, Maria Ascensão

    2016-01-01

    The large surface area and ability to retain moisture of textile structures enable microorganisms’ growth, which causes a range of undesirable effects, not only on the textile itself, but also on the user. Due to the public health awareness of the pathogenic effects on personal hygiene and associated health risks, over the last few years, intensive research has been promoted in order to minimize microbes’ growth on textiles. Therefore, to impart an antimicrobial ability to textiles, different approaches have been studied, being mainly divided into the inclusion of antimicrobial agents in the textile polymeric fibers or their grafting onto the polymer surface. Regarding the antimicrobial agents, different types have been used, such as quaternary ammonium compounds, triclosan, metal salts, polybiguanides or even natural polymers. Any antimicrobial treatment performed on a textile, besides being efficient against microorganisms, must be non-toxic to the consumer and to the environment. This review mainly intends to provide an overview of antimicrobial agents and treatments that can be performed to produce antimicrobial textiles, using chemical or physical approaches, which are under development or already commercially available in the form of isolated agents or textile fibers or fabrics. PMID:28773619

  9. Cosmetic textiles with biological benefits: gelatin microcapsules containing vitamin C.

    PubMed

    Cheng, Shuk Yan; Yuen, Marcus Chun Wah; Kan, Chi Wai; Cheuk, Kevin Ka Leung; Chui, Chung Hin; Lam, Kim Hung

    2009-10-01

    In recent years, textile materials with special applications in the cosmetic field have been developed. A new sector of cosmetic textiles is opened up and several cosmetic textile products are currently available in the market. Microencapsulation technology is an effective technique to control the release properties of active ingredients that prolong the functionality of cosmetic textiles. This study discusses the development of cosmetic textiles and addresses microencapsulation technology with respect to its historical background, significant advantages, microencapsulation methods and recent applications in the textile industry. Gelatin microcapsules containing vitamin C were prepared using emulsion hardening technique. Both the optical microscopy and scanning electron microscopy demonstrated that the newly developed microcapsules were in the form of core-shell spheres with relatively smooth surface. The particle size of microcapsules ranged from 5.0 to 44.1 microm with the average particle size being 24.6 microm. The gelatin microcapsules were proved to be non-cytotoxic based on the research findings of the toxicity studies conducted on human liver and breast cell lines as well as primary bone marrow culture obtained from patient with non-malignant haematological disorder. The gelatin microcapsules were successfully grafted into textile materials for the development of cosmetic textiles.

  10. Electrochemical Impedance Analysis of a PEDOT:PSS-Based Textile Energy Storage Device

    PubMed Central

    Gokceoren, Argun Talat; Odhiambo, Sheilla Atieno; De Mey, Gilbert; Hertleer, Carla; Van Langenhove, Lieva

    2017-01-01

    A textile-based energy storage device with electroactive PEDOT:PSS (poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate)) polymer functioning as a solid-state polyelectrolyte has been developed. The device was fabricated on textile fabric with two plies of stainless-steel electroconductive yarn as the electrodes. In this study, cyclic voltammetry and electrochemical impedance analysis were used to investigate ionic and electronic activities in the bulk of PEDOT:PSS and at its interfaces with stainless steel yarn electrodes. The complex behavior of ionic and electronic origins was observed in the interfacial region between the conductive polymer and the electrodes. The migration and diffusion of the ions involved were confirmed by the presence of the Warburg element with a phase shift of 45° (n = 0.5). Two different equivalent circuit models were found by simulating the model with the experimental results: (QR)(QR)(QR) for uncharged and (QR)(QR)(Q(RW)) for charged samples. The analyses also showed that the further the distance between electrodes, the lower the capacitance of the cell. The distribution of polymer on the cell surface also played important role to change the capacitance of the device. The results of this work may lead to a better understanding of the mechanism and how to improve the performance of the device. PMID:29283427

  11. From Wood to Textiles: Top-Down Assembly of Aligned Cellulose Nanofibers.

    PubMed

    Jia, Chao; Chen, Chaoji; Kuang, Yudi; Fu, Kun; Wang, Yilin; Yao, Yonggang; Kronthal, Spencer; Hitz, Emily; Song, Jianwei; Xu, Fujun; Liu, Boyang; Hu, Liangbing

    2018-06-07

    Advanced textiles made of macroscopic fibers are usually prepared from synthetic fibers, which have changed lives over the past century. The shortage of petrochemical resources, however, greatly limits the development of the textile industry. Here, a facile top-down approach for fabricating macroscopic wood fibers for textile applications (wood-textile fibers) comprising aligned cellulose nanofibers directly from natural wood via delignification and subsequent twisting is demonstrated. Inherently aligned cellulose nanofibers are well retained, while the microchannels in the delignified wood are squeezed and totally removed by twisting, resulting in a dense structure with approximately two times higher mechanical strength (106.5 vs 54.9 MPa) and ≈20 times higher toughness (7.70 vs 0.36 MJ m -3 ) than natural wood. Dramatically different from natural wood, which is brittle in nature, the resultant wood-textile fibers are highly flexible and bendable, likely due to the twisted structures. The wood-textile fibers also exhibit excellent knitting properties and dyeability, which are critical for textile applications. Furthermore, functional wood-textile fibers can be achieved by preinfiltrating functional materials in the delignified wood film before twisting. This top-down approach of fabricating aligned macrofibers is simple, scalable, and cost-effective, representing a promising direction for the development of smart textiles and wearable electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Econazole imprinted textiles with antifungal activity.

    PubMed

    Hossain, Mirza Akram; Lalloz, Augustine; Benhaddou, Aicha; Pagniez, Fabrice; Raymond, Martine; Le Pape, Patrice; Simard, Pierre; Théberge, Karine; Leblond, Jeanne

    2016-04-01

    In this work, we propose pharmaceutical textiles imprinted with lipid microparticles of Econazole nitrate (ECN) as a mean to improve patient compliance while maintaining drug activity. Lipid microparticles were prepared and characterized by laser diffraction (3.5±0.1 μm). Using an optimized screen-printing method, microparticles were deposited on textiles, as observed by scanning electron microscopy. The drug content of textiles (97±3 μg/cm(2)) was reproducible and stable up to 4 months storage at 25 °C/65% Relative Humidity. Imprinted textiles exhibited a thermosensitive behavior, as witnessed by a fusion temperature of 34.8 °C, which enabled a larger drug release at 32 °C (temperature of the skin) than at room temperature. In vitro antifungal activity of ECN textiles was compared to commercial 1% (wt/wt) ECN cream Pevaryl®. ECN textiles maintained their antifungal activity against a broad range of Candida species as well as major dermatophyte species. In vivo, ECN textiles also preserved the antifungal efficacy of ECN on cutaneous candidiasis infection in mice. Ex vivo percutaneous absorption studies demonstrated that ECN released from pharmaceutical textiles concentrated more in the upper skin layers, where the fungal infections develop, as compared to dermal absorption of Pevaryl®. Overall, these results showed that this technology is promising to develop pharmaceutical garments textiles for the treatment of superficial fungal infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Auxetic textiles.

    PubMed

    Rant, Darja; Rijavec, Tatjana; Pavko-Čuden, Alenka

    2013-01-01

    Common materials have Poisson's ratio values ranging from 0.0 to 0.5. Auxetic materials exhibit negative Poisson's ratio. They expand laterally when stretched longitudinally and contract laterally when compressed. In recent years the use of textile technology to fabricate auxetic materials has attracted more and more attention. It is reflected in the extent of available research work exploring the auxetic potential of various textile structures and subsequent increase in the number of research papers published. Generally there are two approaches to producing auxetic textiles. The first one includes the use of auxetic fibers to produce an auxetic textile structure, whereas the other utilizes conventional fibres to produce a textile structure with auxetic properties. This review deals with auxetic materials in general and in the specific context of auxetic polymers, auxetic fibers, and auxetic textile structures made from conventional fibers and knitted structures with auxetic potential.

  14. Developing a national programme for textiles and clothing recovery.

    PubMed

    Bukhari, Mohammad Abdullatif; Carrasco-Gallego, Ruth; Ponce-Cueto, Eva

    2018-04-01

    Textiles waste is relatively small in terms of weight as compared to other waste streams, but it has a large impact on human health and environment, and its rate is increasing due to the 'fast fashion' model. In this paper, we examine the French national programme for managing post-consumer textiles and clothing through a case study research. To date, France is the only country in the world implementing an extended producer responsibility (EPR) policy for end-of-use clothing, linen and shoes. The case highlights the benefits of using an EPR policy and provides interesting insights about the challenges faced by the textiles waste sector. For instance, the EPR policy has contributed to a threefold increase in the collection and recycling rates of post-consumer textiles since 2006. In addition, the material recovery rate of the post-consumer textiles can reach 90%, 50% of which can be directly reused. However, the 'reuse' stream is facing some challenges because its main market is in Africa and many African countries are considering banning the import of used textiles to encourage a competitive textiles industry locally and internationally. The EPR policy shows a great potential to identify new markets for 'reuse' and to improve the textiles waste sector. Such an EPR policy also could drive societies to financially support innovation and research to provide feasible solutions for fashion producers to adopt eco-design and design for recycling practices. This paper provides guidance for policy makers, shareholders, researchers and practitioners interested in diverting post-consumer textiles and clothing waste from landfills and promoting circular textiles transition.

  15. Textile materials for the design of wearable antennas: a survey.

    PubMed

    Salvado, Rita; Loss, Caroline; Gonçalves, Ricardo; Pinho, Pedro

    2012-11-15

    In the broad context of Wireless Body Sensor Networks for healthcare and pervasive applications, the design of wearable antennas offers the possibility of ubiquitous monitoring, communication and energy harvesting and storage. Specific requirements for wearable antennas are a planar structure and flexible construction materials. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar microstrip antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. However, little information can be found on the electromagnetic properties of regular textiles. Therefore this paper is mainly focused on the analysis of the dielectric properties of normal fabrics. In general, textiles present a very low dielectric constant that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. This paper presents a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented.

  16. Textile Materials for the Design of Wearable Antennas: A Survey

    PubMed Central

    Salvado, Rita; Loss, Caroline; Gonçalves, Ricardo; Pinho, Pedro

    2012-01-01

    In the broad context of Wireless Body Sensor Networks for healthcare and pervasive applications, the design of wearable antennas offers the possibility of ubiquitous monitoring, communication and energy harvesting and storage. Specific requirements for wearable antennas are a planar structure and flexible construction materials. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar microstrip antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. However, little information can be found on the electromagnetic properties of regular textiles. Therefore this paper is mainly focused on the analysis of the dielectric properties of normal fabrics. In general, textiles present a very low dielectric constant that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. This paper presents a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented. PMID:23202235

  17. 16 CFR 303.12 - Trimmings of household textile articles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Trimmings of household textile articles. 303... household textile articles. (a) Trimmings incorporated in articles of wearing apparel and other household textile articles may, among other forms of trim, include: (1) Rick-rack, tape, belting, binding, braid...

  18. 16 CFR 303.12 - Trimmings of household textile articles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Trimmings of household textile articles. 303... household textile articles. (a) Trimmings incorporated in articles of wearing apparel and other household textile articles may, among other forms of trim, include: (1) Rick-rack, tape, belting, binding, braid...

  19. 16 CFR 303.12 - Trimmings of household textile articles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Trimmings of household textile articles. 303... household textile articles. (a) Trimmings incorporated in articles of wearing apparel and other household textile articles may, among other forms of trim, include: (1) Rick-rack, tape, belting, binding, braid...

  20. 16 CFR 303.12 - Trimmings of household textile articles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Trimmings of household textile articles. 303... household textile articles. (a) Trimmings incorporated in articles of wearing apparel and other household textile articles may, among other forms of trim, include: (1) Rick-rack, tape, belting, binding, braid...

  1. 75 FR 5578 - Submission for OMB Review; Comment Request-Flammability Standards for Clothing Textiles and Vinyl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... Standards for Clothing Textiles and Vinyl Plastic Film AGENCY: Consumer Product Safety Commission. ACTION... Commission's flammability standards for clothing textiles and vinyl plastic film. DATES: Written comments on... collection requirements should be captioned ``Clothing Textiles and Film, Collection of Information'' and...

  2. 16 CFR 303.12 - Trimmings of household textile articles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Trimmings of household textile articles. 303... CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.12 Trimmings of household textile articles. (a) Trimmings incorporated in articles of wearing apparel and other household...

  3. A Review on the Modification of Polysaccharide Through Graft Copolymerization for Various Potential Applications

    PubMed Central

    Kumar, Deepak; Pandey, Jyoti; Raj, Vinit; Kumar, Pramendra

    2017-01-01

    Introduction: Graft copolymerization is one of the most promising technique uses to modify the properties of naturally available polymers with a minimum loss in their native characteristics. Methods and Materials: Graft copolymerization is a very significant technique to add hybrid properties in backbone of polymers. The grafting generally initiated through the formation of free radical centers on the polymer backbone as well as monomer. Results: Grafted polysaccharides have various applications in different important scientific areas such as drug delivery, pharmaceutical field, plastic industry, waste water treatment, tannery effluent treatment, textile industry, agriculture area, etc. all of this fascinated us to summarize the major research articles over the last two decades outlining different methods of grafting, surface modification, graft copolymerization of synthetic and natural polymers. Conclusion: Various redox initiator systems viz. Ceric ammonium nitrate, per sulfate, Irradiation, FAS-H2O2 etc. is also explored for grafting of vinyl through conventional and non-conventional techniques. PMID:29151987

  4. Removal efficiency of Cr6+ by indigenous Pichia sp. isolated from textile factory effluent.

    PubMed

    Fernández, Pablo M; Martorell, María M; Fariña, Julia I; Figueroa, Lucia I C

    2012-01-01

    Resistance of the indigenous strains P. jadinii M9 and P. anomala M10, to high Cr(6+) concentrations and their ability to reduce chromium in culture medium was studied. The isolates were able to tolerate chromium concentrations up to 104 μg mL(-1). Growth and reduction of Cr(6+) were dependent on incubation temperature, agitation, Cr(6+) concentration, and pH. Thus, in both studied strains the chromium removal was increased at 30 °C with agitation. The optimum pH was different, with values of pH 3.0 and pH 7.0 in the case of P. anomala M10 and pH 7.0 using P. jadinii M9. Chromate reduction occurred both in intact cells (grown in culture medium) as well as in cell-free extracts. Chromate reductase activity could be related to cytosolic or membrane-associated proteins. The presence of a chromate reductase activity points out a possible role of an enzyme in Cr(6+) reduction.

  5. Removal Efficiency of Cr6+ by Indigenous Pichia sp. Isolated from Textile Factory Effluent

    PubMed Central

    Fernández, Pablo M.; Martorell, María M.; Fariña, Julia I.; Figueroa, Lucia I. C.

    2012-01-01

    Resistance of the indigenous strains P. jadinii M9 and P. anomala M10, to high Cr6+ concentrations and their ability to reduce chromium in culture medium was studied. The isolates were able to tolerate chromium concentrations up to 104 μg mL−1. Growth and reduction of Cr6+ were dependent on incubation temperature, agitation, Cr6+ concentration, and pH. Thus, in both studied strains the chromium removal was increased at 30°C with agitation. The optimum pH was different, with values of pH 3.0 and pH 7.0 in the case of P. anomala M10 and pH 7.0 using P. jadinii M9. Chromate reduction occurred both in intact cells (grown in culture medium) as well as in cell-free extracts. Chromate reductase activity could be related to cytosolic or membrane-associated proteins. The presence of a chromate reductase activity points out a possible role of an enzyme in Cr6+ reduction. PMID:22629188

  6. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications.

    PubMed

    Nancharaiah, Y V; Kiran Kumar Reddy, G

    2018-01-01

    Aerobic granular sludge (AGS) is a novel microbial community which allows simultaneous removal of carbon, nitrogen, phosphorus and other pollutants in a single sludge system. AGS is distinct from activated sludge in physical, chemical and microbiological properties and offers compact and cost-effective treatment for removing oxidized and reduced contaminants from wastewater. AGS sequencing batch reactors have shown their utility in the treatment of abattoir, live-stock, rubber, landfill leachate, dairy, brewery, textile and other effluents. AGS is extensively researched for wide-spread implementation in sewage treatment plants. However, formation of AGS takes relatively much longer time while treating low-strength wastewaters like sewage. Strategies like increased volumetric flow by means of short cycles and mixing of sewage with industrial wastewaters can promote AGS formation while treating low-strength sewage. This article reviewed the state of research on AGS formation mechanisms, bioremediation capabilities and biotechnological applications of AGS technology in domestic and industrial wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Microplastic contamination in the San Francisco Bay, California, USA.

    PubMed

    Sutton, Rebecca; Mason, Sherri A; Stanek, Shavonne K; Willis-Norton, Ellen; Wren, Ian F; Box, Carolynn

    2016-08-15

    Despite widespread detection of microplastic pollution in marine environments, data describing microplastic abundance in urban estuaries and microplastic discharge via treated municipal wastewater are limited. This study presents information on abundance, distribution, and composition of microplastic at nine sites in San Francisco Bay, California, USA. Also presented are characterizations of microplastic in final effluent from eight wastewater treatment plants, employing varying treatment technologies, that discharge to the Bay. With an average microplastic abundance of 700,000particles/km(2), Bay surface water appears to have higher microplastic levels than other urban waterbodies sampled in North America. Moreover, treated wastewater from facilities that discharge into the Bay contains considerable microplastic contamination. Facilities employing tertiary filtration did not show lower levels of contamination than those using secondary treatment. As textile-derived fibers were more abundant in wastewater, higher levels of fragments in surface water suggest additional pathways of microplastic pollution, such as stormwater runoff. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Removal of methyl orange and methylene blue dyes from aqueous solution using lala clam (Orbicularia orbiculata) shell

    NASA Astrophysics Data System (ADS)

    Eljiedi, Arwa Alseddig Ahmed; Kamari, Azlan

    2017-05-01

    Textile effluents are considered as potential sources of water pollution because they contain toxic dyes. In the present study, lala clam shell was used as an alternative low-cost adsorbent for the removal of two harmful dyes, namely methyl orange (MO) and methylene blue (MB) from aqueous solution. Batch adsorption studies were carried out by varying experimental parameters such as solution pH, initial concentration and adsorbent dosage. The optimum pH values for MO and MB removal were pH 2.0 and pH 8.0, respectively. At an initial MO and MB concentration of 20 mg/L, the maximum removal percentage of MO and MB were 18.9 % and 81.3 %, respectively. The adsorption equilibrium data were correlated with both Langmuir and Freundlich isotherm models. The biomass adsorbent was characterised using Field Emission Scanning Electron Microscope (FESEM) and Fourier Transform Infrared Spectrometer (FTIR). Results from this study suggest that lala clam shell, a fishery waste, can be beneficial for water treatment.

  9. Sources and dispersive modes of micro-fibers in the environment.

    PubMed

    Carr, Steve A

    2017-05-01

    Understanding the sources and distribution of microfibers (MFs) in the environment is critical if control and remediation measures are to be effective. Microfibers comprise an overwhelming fraction (>85%) of microplastic debris found on shorelines around the world. Although primary sources have not been fully vetted, until recently it was widely believed that domestic laundry discharges were the major source. It was also thought that synthetic fibers and particles having dimensions <5 mm easily bypassed filtration and other solid separation processes at wastewater treatment plants (WWTPs) and entered oceans and surface waters. A more thorough assessment of WWTP effluent discharges indicates, however, that fiber and particulate counts do not support the belief that plants are the primary vectors for fibers entering the environment. This finding may bolster concerns that active and pervasive shedding of fibers from common fabrics and textiles could be contributing significantly, via direct pathways, to burgeoning environmental loads. Integr Environ Assess Manag 2017;13:466-469. © 2017 SETAC. © 2017 SETAC.

  10. A Review of the NASA Textile Composites Research

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.; Dexter, H. B.; Raju, I. S.

    1997-01-01

    During the past 15 years NASA has taken the lead role in exploiting the benefits of textile reinforced composite materials for application to aircraft structures. The NASA Advanced Composites Technology (ACT) program was started in 1989 to develop composite primary structures for commercial transport airplanes with costs that are competitive with metal structures. As part of this program, several contractors investigated the cost, weight, and performance attributes of textile reinforced composites. Textile composites made using resin transfer molding type processes were evaluated for numerous applications. Methods were also developed to predict resin infiltration and flow in textile preforms and to predict and measure mechanical properties of the textile composites. This paper describes the salient results of that program.

  11. Electroactive polymer-based devices for e-textiles in biomedicine.

    PubMed

    Carpi, Federico; De Rossi, Danilo

    2005-09-01

    This paper describes the early conception and latest developments of electroactive polymer (EAP)-based sensors, actuators, electronic components, and power sources, implemented as wearable devices for smart electronic textiles (e-textiles). Such textiles, functioning as multifunctional wearable human interfaces, are today considered relevant promoters of progress and useful tools in several biomedical fields, such as biomonitoring, rehabilitation, and telemedicine. After a brief outline on ongoing research and the first products on e-textiles under commercial development, this paper presents the most highly performing EAP-based devices developed by our lab and other research groups for sensing, actuation, electronics, and energy generation/storage, with reference to their already demonstrated or potential applicability to electronic textiles.

  12. Conformal dual-band textile antenna with metasurface for WBAN application

    NASA Astrophysics Data System (ADS)

    Giman, Fatin Nabilah; Soh, Ping Jack; Jamlos, Mohd Faizal; Lago, Herwansyah; Al-Hadi, Azremi Abdullah; Abdulmalek, Mohamedfareq; Abdulaziz, Nidhal

    2017-01-01

    This paper presents the design of a dual-band wearable planar slotted dipole integrated with a metasurface. It operates in the 2.45 GHz (lower) and 5.8 GHz (upper) bands and made fully using textiles to suit wireless body area network applications. The metasurface in the form of an artificial magnetic conductor (AMC) plane is formed using a rectangular patch incorporated with a diamond-shaped slot to generate dual-phase response. This plane is then integrated with the planar slotted dipole antenna prior to its assessment in free space and bent configurations. Simulations and measurements indicated a good agreement, and the antenna featured an impedance bandwidth of 164 and 592 MHz in the lower and upper band, respectively. The presence of the AMC plane also minimized the backward radiation toward the human body and enhanced realized gains by up to 3.01 and 7.04 dB in the lower and upper band.

  13. MOFabric: Electrospun Nanofiber Mats from PVDF/UiO-66-NH2 for Chemical Protection and Decontamination.

    PubMed

    Lu, Annie Xi; McEntee, Monica; Browe, Matthew A; Hall, Morgan G; DeCoste, Jared B; Peterson, Gregory W

    2017-04-19

    Textiles capable of capture and detoxification of toxic chemicals, such as chemical-warfare agents (CWAs), are of high interest. Some metal-organic frameworks (MOFs) exhibit superior reactivity toward CWAs. However, it remains a challenge to integrate powder MOFs into engineered materials like textiles, while retaining functionalities like crystallinity, adsorptivity, and reactivity. Here, we present a simple method of electrospinning UiO-66-NH 2 , a zirconium MOF, with polyvinylidene fluoride (PVDF). The electrospun composite, which we refer to as "MOFabric", exhibits comparable crystal patterns, surface area, chlorine uptake, and simulant hydrolysis to powder UiO-66-NH 2 . The MOFabric is also capable of breaking down GD (O-pinacolyl methylphosphonofluoridae) faster than powder UiO-66-NH 2. Half-life of GD monitored by solid-state NMR for MOFabric is 131 min versus 315 min on powder UiO-66-NH 2 .

  14. Multi-Scaled Modeling the Mechanical Properties of Tubular Composites Reinforced with Innovated 3D Weft Knitted Spacer Fabrics

    NASA Astrophysics Data System (ADS)

    Omrani, Elahe; Hasani, Hossein; Dibajian, Sayed Houssain

    2018-02-01

    Textile composites of 3D integrated spacer configurations have been recently focused by several researchers all over the world. In the present study, newly-designed tubular composites reinforced with 3D spacer weft knitted fabrics were considered and the effects of their structural parameters on some applicable mechanical properties were investigated. For this purpose, two different samples of 3D spacer weft knitted textile types in tubular form were produced on an electronic flat knitting machine, using glass/nylon hybrid yarns. Thermoset tubular-shaped composite parts were manufactured via vacuum infusion molding process using epoxy resin. The mechanical properties of the produced knitted composites in term of external static and internal hydrostatic pressures were evaluated. Resistance of the produced composites against the external static and internal hydrostatic pressures was numerically simulated using multi-scale modeling method. The finding revealed that there is acceptable correlation between experimental and theoretical results.

  15. Decolourization of dye-containing effluent using mineral coagulants produced by electrocoagulation.

    PubMed

    Zidane, Fatiha; Drogui, Patrick; Lekhlif, Brahim; Bensaid, Jalila; Blais, Jean-François; Belcadi, Said; El Kacemi, Kacem

    2008-06-30

    The colour and colour causing-compounds has always been undesirable in water for any use, be it industrial or domestic wastewaters. The discharge of such effluents causes excessive oxygen demand in the receiving water and then a treatment is required before discharge into ecosystems. This study examined the possibility to remove colour causing-compounds from effluent by chemical coagulation, in comparison with direct electrocoagulation. The inorganic coagulants (C1, C2 and C3) in the form of dry powder tested, were respectively produced from electrolysis of S1=[NaOH (7.5 x 10(-3)M)], S2=[NaCl (10(-2)M)], and S3=[NaOH (7.5 x 10(-3)M)+NaCl (10(-2)M)] solutions, using sacrificial aluminium electrodes operated at an electrical potential of 12 V. Reactive textile dye (CI Reactive Red 141) was used as model of colour-causing compound prepared at a concentration of 50 mgl(-1). The best performances of dye removal were obtained with C(2) having a chemical structure comprised of a mixture of polymeric specie (Al45O45(OH)45Cl) and monomeric species (AlCl(OH)2.2H2O and Al(OH)3). The removal efficiency (R(A)) evaluated by measuring the yields of 540 nm-absorbance removal varied from 41 to 96% through 60 min of treatment by imposing a concentration of C2 ranging from 100 to 400 mg l(-1). The effectiveness of the treatment increased and the effluent became more and more transparent while increasing C(2) concentration. The comparison of chemical treatment using C2 coagulant and direct electrocoagulation of CI Reactive Red 141 containing synthetic solution demonstrated the advantage of chemical treatment during the first few minutes of treatment. A yield of 88% of absorbance removal was recorded using C2 coagulant (400 mg l(-1)) over the first 10 min of treatment, compared to 60% measured using direct electrocoagulation while imposing either 10 or 15 V of electrical potential close to the value (12 V) required during C2 production. However, at the end of the treatment (after 60 min of treatment), CI Reactive Red 141 pollutant was completely removed from solution (540 nm-absorbance removal of 100%) using direct electrochemical treatment, compared to 96.4% of absorbance removed while treating dye-containing synthetic solution by means of C2 coagulant.

  16. Viking and Early Middle Ages Northern Scandinavian Textiles Proven to be made with Hemp

    NASA Astrophysics Data System (ADS)

    Skoglund, G.; Nockert, M.; Holst, B.

    2013-10-01

    Nowadays most plant textiles used for clothing and household are made of cotton and viscose. Before the 19th century however, plant textiles were mainly made from locally available raw materials, in Scandinavia these were: nettle, hemp and flax. It is generally believed that in Viking and early Middle Ages Scandinavia hemp was used only for coarse textiles (i.e. rope and sailcloth). Here we present an investigation of 10 Scandinavian plant fibre textiles from the Viking and Early Middle Ages, believed to be locally produced. Up till now they were all believed to be made of flax. We show that 4 textiles, including two pieces of the famous Överhogdal Viking wall-hanging are in fact made with hemp (in three cases hemp and flax are mixed). This indicates that hemp was important, not only for coarse but also for fine textile production in Viking and Early Middle Ages in Scandinavia.

  17. Development of Stitched, Braided and Woven Composite Structures in the ACT Program and at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Dow, Marvin B.; Dexter, H. Benson

    1997-01-01

    Summary results are presented from the research conducted on woven, braided, knitted and stitched (textile) composites at the Langley Research Center and under the NASA Advanced Composites Technology (ACT) Program in the period from 1985 to 1997. The report also includes an annotated bibliography of 270 U.S. publications on textile composites (with their abstracts). Two major research areas are discussed: (1) the general research in textile composites performed throughout the period under the direction of the Langley Research Center and (2) the development of textile composite aircraft structures by industry under the NASA ACT Program. The annotated bibliography is organized in three subsections: (1) general textiles R&D under the auspices of Langley, (2) ACT Program development of textile structural components, and (3) textiles research by individuals and organizations not associated with the ACT Program. An author index is provided for the reports and documents.

  18. The solar textile challenge: how it will not work and where it might.

    PubMed

    Krebs, Frederik C; Hösel, Markus

    2015-03-01

    Solar textiles are highlighted as a future technology with transformative power within the fields of both textiles and solar cells provided that developments are made in critical areas. Specifically, these are fundamental solutions to materials and material combinations with mechanical stability and flexibility imposed by textile architectures, scientific solutions to achieve high carrier transport efficiency and optical transmission in a textile topology, technical solutions to controlling the physical disposition of the anode and cathode along with their specific and error-free contacting and, finally, practical solutions to fast and efficient manufacture and integration. The areas of application and the penetration of solar textiles into our everyday life are expected to be explosive pending efficient developments within these four key areas. A shortcoming in one or more of these will, however, lead to the solar textiles being banned to academic existence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Large-Area All-Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals.

    PubMed

    Liu, Mengmeng; Pu, Xiong; Jiang, Chunyan; Liu, Ting; Huang, Xin; Chen, Libo; Du, Chunhua; Sun, Jiangman; Hu, Weiguo; Wang, Zhong Lin

    2017-11-01

    Wearable pressure sensors, which can perceive and respond to environmental stimuli, are essential components of smart textiles. Here, large-area all-textile-based pressure-sensor arrays are successfully realized on common fabric substrates. The textile sensor unit achieves high sensitivity (14.4 kPa -1 ), low detection limit (2 Pa), fast response (≈24 ms), low power consumption (<6 µW), and mechanical stability under harsh deformations. Thanks to these merits, the textile sensor is demonstrated to be able to recognize finger movement, hand gestures, acoustic vibrations, and real-time pulse wave. Furthermore, large-area sensor arrays are successfully fabricated on one textile substrate to spatially map tactile stimuli and can be directly incorporated into a fabric garment for stylish designs without sacrifice of comfort, suggesting great potential in smart textiles or wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Textiles and Microbes

    NASA Astrophysics Data System (ADS)

    Freney, Jean; Renaud, François N. R.

    Microbes can be carried by and even multiply on textiles. The first real, premeditated, microbiological warfare happened in 1763, during the Anglo-French wars in North America, when Native American emissaries were given blankets or handkerchiefs contaminated with smallpox. Thus, a small epidemic started and spread rapidly, causing considerable damage to the rank and file of the Native Americans. Nowadays, it could be said that textiles could be vectors of infections in hospitals or communities. The making of antimicrobial textiles could prevent them from becoming a reservoir of microbes in the transmission of infections and in cases of voluntary contamination in a terrorist threat for example. However, methods have to show that textiles are really active and do not attack the cutaneous flora they are in contact with. In this chapter, the role of textiles in the transmission of infections is summarized and the main characteristics of antimicrobial textiles are described.

  1. Textile electrode characterization: dependencies in the skin-clothing-electrode interface

    NASA Astrophysics Data System (ADS)

    Macías, R.; Fernández, M.; Bragós, R.

    2013-04-01

    Given the advances in the technology known as smart textiles, the use of textile electrodes is more and more common. However this kind of electrodes presents some differences regarding the standard ones as the Ag-AgCl electrodes. Therefore to characterize them as best as possible is required. In order to make the characterization reproducible and repetitive, a skin dummy made of agar-agar and a standardized measurement set-up is used in this article. Thus, some dependencies in the skin-electrode interface are described. These dependencies are related to the surface of the textile electrode, the conductive material and the applied pressure. Furthermore, the dependencies on clothing in the skin-textile electrode interface are also analyzed. Thus, based on some parameters such as textile material, width and number of layers, the behavior of the interface made up by the skin, the textile electrode and clothing is depicted.

  2. Viking and early Middle Ages northern Scandinavian textiles proven to be made with hemp.

    PubMed

    Skoglund, G; Nockert, M; Holst, B

    2013-10-18

    Nowadays most plant textiles used for clothing and household are made of cotton and viscose. Before the 19th century however, plant textiles were mainly made from locally available raw materials, in Scandinavia these were: nettle, hemp and flax. It is generally believed that in Viking and early Middle Ages Scandinavia hemp was used only for coarse textiles (i.e. rope and sailcloth). Here we present an investigation of 10 Scandinavian plant fibre textiles from the Viking and Early Middle Ages, believed to be locally produced. Up till now they were all believed to be made of flax. We show that 4 textiles, including two pieces of the famous Överhogdal Viking wall-hanging are in fact made with hemp (in three cases hemp and flax are mixed). This indicates that hemp was important, not only for coarse but also for fine textile production in Viking and Early Middle Ages in Scandinavia.

  3. Silver speciation and release in commercial antimicrobial textiles as influenced by washing

    EPA Science Inventory

    The use of nanoscale Ag in textiles is one the most often mentioned uses of nano-Ag. It has previously been shown that significant amounts of the Ag in the textiles are released upon washing. However, the form of Ag present in the textiles remains largely unknown as product label...

  4. 4-H Textile Science Textile Arts Projects.

    ERIC Educational Resources Information Center

    Scholl, Jan

    This packet contains three 4-H textile arts projects for students in the textile sciences area. The projects cover weaving, knitting, and crocheting. Each project provides an overview of what the student will learn, what materials are needed, and suggested projects for the area. Projects can be adapted for beginning, intermediate, or advanced…

  5. 16 CFR 1610.33 - Test procedures for textile fabrics and film.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Test procedures for textile fabrics and film... for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose fiber... under the procedures outlined in part 1611, Standard for the Flammability of Vinyl Plastic Film, and if...

  6. 16 CFR 1610.33 - Test procedures for textile fabrics and film.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Test procedures for textile fabrics and film... for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose fiber... under the procedures outlined in part 1611, Standard for the Flammability of Vinyl Plastic Film, and if...

  7. 16 CFR 1610.33 - Test procedures for textile fabrics and film.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Test procedures for textile fabrics and film... for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose fiber... under the procedures outlined in part 1611, Standard for the Flammability of Vinyl Plastic Film, and if...

  8. 16 CFR 1611.33 - Test procedures for textile fabrics and film.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Test procedures for textile fabrics and film... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.33 Test procedures for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose...

  9. 16 CFR 1611.33 - Test procedures for textile fabrics and film.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Test procedures for textile fabrics and film... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.33 Test procedures for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose...

  10. 16 CFR 1611.33 - Test procedures for textile fabrics and film.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Test procedures for textile fabrics and film... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.33 Test procedures for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose...

  11. 16 CFR 1610.33 - Test procedures for textile fabrics and film.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for textile fabrics and film... for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose fiber... under the procedures outlined in part 1611, Standard for the Flammability of Vinyl Plastic Film, and if...

  12. 16 CFR 1611.33 - Test procedures for textile fabrics and film.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for textile fabrics and film... REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.33 Test procedures for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro-cellulose...

  13. The Role of China in the UK Relative Imports from Three Selected Trading Regions: The Case of Textile Raw Material Industry.

    PubMed

    Xu, Junqian

    2017-11-30

    The UK textile industry was very prosperous in the past but in the 1970s Britain started to import textile materials from abroad. Since 1990, half of its textile materials have been imported from the EEA (European Economic Area), ASEAN (Association of Southeast Asian Nations) and North America countries. Meanwhile, UK imports from China have increased dramatically. Through comparisons, this paper calculates the trade competitiveness index and relative competitive advantages of regions and investigates the impact of Chinese textiles on UK imports from three key free trade regions across the textile sectors in the period 1990-2016 on the basis of United Nation Comtrade Rev. 3. We find that China's textile prices, product techniques, political trade barriers and even tax system have made a varied impact on the UK's imports across related sectors in the context of green trade and the strengthening of barriers, which helps us recognize China's competitiveness in international trading and also provides advice on China's sustainable development of textile exports.

  14. Health and safety concerns of textiles with nanomaterials

    NASA Astrophysics Data System (ADS)

    Almeida, L.; Ramos, D.

    2017-10-01

    There is a growing concern related to the effects of nanomaterials in health and safety.Nanotechnologies are already present in many consumer products, including textiles. “Nanotextiles” can be considered as traditional textiles with the incorporation of nanoparticles. They present often functionalities such as antibacterial, ultraviolet radiation protection, water and dirt repellency, self-cleaning or flame retardancy. Nanoparticles can be released from the textile materials due to different effects (abrasion and other mechanical stresses, sweat, irradiation, washing, temperature changes, etc.). It is then expectable that “nanotextiles” may release individual nanoparticles, agglomerates of nanoparticles or small particles of textile with or without nanoparticles, depending on the type of integration of the nanoparticles in textiles. The most important exposure route of the human body to nanoparticles in case of textiles is skin contact. Several standards are being developed under the auspices of the European Committee for Standardization. In this paper, it is presented the development and application of a test method to evaluate the skin exposure to nanoparticles, to evaluate the transfer of the nanoparticles from the textile to the skin by the effect of abrasion and sweat.

  15. Highly Flexible Dye-sensitized Solar Cells Produced by Sewing Textile Electrodes on Cloth

    PubMed Central

    Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Lee, Dong Y.

    2014-01-01

    Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices. PMID:24957920

  16. Highly flexible dye-sensitized solar cells produced by sewing textile electrodes on cloth.

    PubMed

    Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y

    2014-06-24

    Textile forms of solar cells possess special advantages over other types of solar cells, including their light weight, high flexibility, and mechanical robustness. Recent demand for wearable devices has promoted interest in the development of high-efficiency textile-based solar cells for energy suppliers. However, the weaving process occurs under high-friction, high-tension conditions that are not conducive to coated solar-cell active layers or electrodes deposited on the wire or strings. Therefore, a new approach is needed for the development of textile-based solar cells suitable for woven fabrics for wide-range application. In this report, we present a highly flexible, efficient DSSC, fabricated by sewing textile-structured electrodes onto casual fabrics such as cotton, silk, and felt, or paper, thereby forming core integrated DSSC structures with high energy-conversion efficiency (~5.8%). The fabricated textile-based DSSC devices showed high flexibility and high performance under 4-mm radius of curvature over thousands of deformation cycles. Considering the vast number of textile types, our textile-based DSSC devices offer a huge range of applications, including transparent, stretchable, wearable devices.

  17. Smart textiles: a new drug delivery system for symptomatic treatment of a common cold.

    PubMed

    Wienforth, F; Landrock, A; Schindler, C; Siegert, J; Kirch, W

    2007-05-01

    Smart textiles provide the possibility of being coated with cineole, menthol, and camphor. Due to over-the-counter availability, ethereal oils are frequently used to treat a common cold. The existing pharmaceutical forms entail the risk of oral ingestion by children, which can cause severe intoxications. This risk could be limited by a smart textile application. Prior to applicability tests in children, the principal traceability of smart textile-applied ethereal oils at their site of action in the alveoli has to be demonstrated. Therefore, a crossover trial (ointment vs smart textiles) with 6 healthy volunteers was carried out as a proof-of-concept study. As a result, the principle proof is given that smart textile-applied ethereal oils are available at their site of action. Because of the volatility of the active ingredients, a close-fitting textile form has to be developed for further clinical development of smart textiles to achieve higher concentrations in the alveoli. Slower liberation properties and a more convenient skin sensation in comparison to available pharmaceutical forms may provide advantages for the applicability in both children and adults.

  18. The Role of China in the UK Relative Imports from Three Selected Trading Regions: The Case of Textile Raw Material Industry

    PubMed Central

    Xu, Junqian

    2017-01-01

    The UK textile industry was very prosperous in the past but in the 1970s Britain started to import textile materials from abroad. Since 1990, half of its textile materials have been imported from the EEA (European Economic Area), ASEAN (Association of Southeast Asian Nations) and North America countries. Meanwhile, UK imports from China have increased dramatically. Through comparisons, this paper calculates the trade competitiveness index and relative competitive advantages of regions and investigates the impact of Chinese textiles on UK imports from three key free trade regions across the textile sectors in the period 1990–2016 on the basis of United Nation Comtrade Rev. 3. We find that China’s textile prices, product techniques, political trade barriers and even tax system have made a varied impact on the UK’s imports across related sectors in the context of green trade and the strengthening of barriers, which helps us recognize China’s competitiveness in international trading and also provides advice on China’s sustainable development of textile exports. PMID:29189756

  19. An Evaluation Model for Sustainable Development of China’s Textile Industry: An Empirical Study

    NASA Astrophysics Data System (ADS)

    Zhao, Hong; Lu, Xiaodong; Yu, Ting; Yin, Yanbin

    2018-04-01

    With economy’s continuous rapid growth, textile industry is required to search for new rules and adjust strategies in order to optimize industrial structure and rationalize social spending. The sustainable development of China’s textile industry is a comprehensive research subject. This study analyzed the status of China’s textile industry and constructed the evaluation model based on the economical, ecologic, and social benefits. Analytic Hierarchy Process (AHP) and Data Envelopment Analysis (DEA) were used for an empirical study of textile industry. The result of evaluation model suggested that the status of the textile industry has become the major problems in the sustainable development of China’s textile industry. It’s nearly impossible to integrate into the global economy if no measures are taken. The enterprises concerned with the textile industry status should be reformed in terms of product design, raw material selection, technological reform, technological progress, and management, in accordance with the ideas and requirements of sustainable development. The results of this study are benefit for 1) discover the main elements restricting the industry’s sustainable development; 2) seek for corresponding solutions for policy formulation and implementation of textile industry; 3) provide references for enterprises’ development transformation in strategic deployment, fund allocation, and personnel assignment.

  20. Blue and grey water footprint of textile industry in China.

    PubMed

    Wang, Laili; Ding, Xuemei; Wu, Xiongying

    2013-01-01

    Water footprint (WF) is a newly developed idea that indicates impacts of freshwater appropriation and wastewater discharge. The textile industry is one of the oldest, longest and most complicated industrial chains in the world's manufacturing industries. However, the textile industry is also water intensive. In this paper, we applied a bottom-up approach to estimate the direct blue water footprint (WFdir,blue) and direct grey water footprint (WFdir,grey) of China's textile industry at sector level based on WF methodology. The results showed that WFdir,blue of China's textile industry had an increasing trend from 2001 to 2010. The annual WFdir,blue surpassed 0.92 Gm(3)/yr (giga cubic meter a year) since 2004 and rose to peak value of 1.09 Gm(3)/yr in 2007. The original and residuary WFdir,grey (both were calculated based on the concentration of chemical oxygen demand (CODCr)) of China's textile industry had a similar variation trend with that of WFdir,blue. Among the three sub-sectors of China's textile industry, the manufacture of textiles sector's annual WFdir,blue and WFdir,grey were much larger than those of the manufacture of textile wearing apparel, footware and caps sector and the manufacture of chemical fibers sector. The intensities of WFdir,blue and WF(res)dir,grey of China's textile industry were year by year decreasing through the efforts of issuing restriction policies on freshwater use and wastewater generation and discharge, and popularization of water saving and wastewater treatment technologies.

  1. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO2 Composite Textiles.

    PubMed

    Wang, Jinjie; Dong, Liubing; Xu, Chengjun; Ren, Danyang; Ma, Xinpei; Kang, Feiyu

    2018-04-04

    Polymorphous supercapacitors were constructed from flexible three-dimensional carbon network/polyaniline (PANI)/MnO 2 composite textile electrodes. The flexible textile electrodes were fabricated through a layer-by-layer construction strategy: PANI, carbon nanotubes (CNTs), and MnO 2 were deposited on activated carbon fiber cloth (ACFC) in turn through an electropolymerization process, "dipping and drying" method, and in situ chemical reaction, respectively. In the fabricated ACFC/PANI/CNTs/MnO 2 textile electrodes, the ACFC/CNT hybrid framework serves as a porous and electrically conductive 3D network for the rapid transmission of electrons and electrolyte ions, where ACFC, PANI, and MnO 2 are high-performance supercapacitor electrode materials. In the electrolyte of H 2 SO 4 solution, the textile electrode-based symmetric supercapacitor delivers superior areal capacitance, energy density, and power density of 4615 mF cm -2 (for single electrode), 157 μW h cm -2 , and 10372 μW cm -2 , respectively, whereas asymmetric supercapacitor assembled with the prepared composite textile as the positive electrode and ACFC as the negative electrode exhibits an improved energy density of 413 μW h cm -2 and a power density of 16120 μW cm -2 . On the basis of the ACFC/PANI/CNTs/MnO 2 textile electrodes, symmetric and asymmetric solid-state textile supercapacitors with a PVA/H 2 SO 4 gel electrolyte were also produced. These solid-state textile supercapacitors exhibit good electrochemical performance and high flexibility. Furthermore, flexible solid-state fiber-like supercapacitors were prepared with fiber bundle electrodes dismantled from the above composite textiles. Overall, this work makes a meaningful exploration of the versatile applications of textile electrodes to produce polymorphous supercapacitors.

  2. Measurement of EMG activity with textile electrodes embedded into clothing.

    PubMed

    Finni, T; Hu, M; Kettunen, P; Vilavuo, T; Cheng, S

    2007-11-01

    Novel textile electrodes that can be embedded into sports clothing to measure averaged rectified electromyography (EMG) have been developed for easy use in field tests and in clinical settings. The purpose of this study was to evaluate the validity, reliability and feasibility of this new product to measure averaged rectified EMG. The validity was tested by comparing the signals from bipolar textile electrodes (42 cm(2)) and traditional bipolar surface electrodes (1.32 cm(2)) during bilateral isometric knee extension exercise with two electrode locations (A: both electrodes located in the same place, B: traditional electrodes placed on the individual muscles according to SENIAM, n=10 persons for each). Within-session repeatability (the coefficient of variation CV%, n=10) was calculated from five repetitions of 60% maximum voluntary contraction (MVC). The day-to-day repeatability (n=8) was assessed by measuring three different isometric force levels on five consecutive days. The feasibility of the textile electrodes in field conditions was assessed during a maximal treadmill test (n=28). Bland-Altman plots showed a good agreement within 2SD between the textile and traditional electrodes, demonstrating that the textile electrodes provide similar information on the EMG signal amplitude to the traditional electrodes. The within-session CV ranged from 13% to 21% in both the textile and traditional electrodes. The day-to-day CV was smaller, ranging from 4% to 11% for the textile electrodes. A similar relationship (r(2)=0.5) was found between muscle strength and the EMG of traditional and textile electrodes. The feasibility study showed that the textile electrode technique can potentially make EMG measurements very easy in field conditions. This study indicates that textile electrodes embedded into shorts is a valid and feasible method for assessing the average rectified value of EMG.

  3. An overview of the NASA textile composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson

    1993-01-01

    The NASA Langley Research Center is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structures. In addition to in-house research, the program includes major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house research is focused on science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of innovative design concepts, cost-effective fabrication, and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3-D weaving, 2-D and 3-D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials. The goals of the NASA Langley-sponsored research program are to demonstrate technology readiness with subscale composite components by 1995 and to verify the performance of full-scale composite primary aircraft structural components by 1997. The status of textile reinforced composite structural elements under development by Boeing, Douglas, Lockheed, and Grumman are presented. Included are braided frames and woven/stitched wing and fuselage panels.

  4. Spinning Disc Technology – Residence Time Distribution and Efficiency in Textile Wastewater Treatment Application

    NASA Astrophysics Data System (ADS)

    Iacob Tudose, E. T.; Zaharia, C.

    2018-06-01

    The spinning disc (SD) technology has received increased attention in the last years due to its enhanced fluid flow features resulting in improved property transfers. The actual study focuses on characterization of the flow within a spinning disc system based on experimental data used to establish the residence time distribution (RTD) and its dependence on the feeding liquid flowrate and the disc rotational speed. To obtain these data, an inert tracer (sodium chloride) was injected as a pulse input in the liquid stream entering the disc and the salt concentration of the liquid leaving the disc was continuously recorded. The obtained data indicate that an increase in the liquid flowrate from 10 L/h to 30 L/h determines a narrower RTD function. Also, at rotational speed of 200 rpm, the residence time distribution is broader than that for 500 rpm and 800 rpm. The RTD data suggest that depending on the needed flow characteristics, one can choose a certain flowrate and rotational speed domain for its application. Also, the SD technology was used to process textile wastewater treated with bentonite (as both coagulation and discoloration agent) in order to investigate whether the quality indicators such as the total suspended solid content, turbidity and discoloration, can be improved. The experimental results are promising since the discoloration and the removals of suspended solids attained values of over 40%, and respectively, 50 %, depending on the effluent flowrate (10 l/h and 30 L/h), and the disc rotational speed (200 rpm, 550 rpm and 850 rpm) without any other addition of chemicals, or initiation of other simultaneous treatment processes (e.g., advanced oxidative, or reductive, or biochemical processes). This recommends spinning disc technology as a suitable and promising tool to improve different wastewater characteristics.

  5. Sorption isotherms, kinetic and optimization process of amino acid proline based polymer nanocomposite for the removal of selected textile dyes from industrial wastewater.

    PubMed

    Raghunath, Sharista; Anand, K; Gengan, R M; Nayunigari, Mithil Kumar; Maity, Arjun

    2016-12-01

    In this article, adsorption and kinetic studies were carried out on three textile dyes, namely Reactive Blue 222 (RB 222), Reactive Red 195 (RR 195) and Reactive Yellow 145 (RY 145). The dyes studied in a mixture were adsorbed under various conditions onto PRO-BEN, a bentonite modified with a new cationic proline polymer (l-proline-epichlorohydrin polymer). The proline polymer was characterized by 1 H NMR, Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and TEM. The PRO-BEN composite was characterized by FT-IR, dynamic light scattering (DLS) (zeta potential), TEM imaging, SEM/EDX and X-ray photoelectron spectroscopy (characterize the binding energy). During adsorption studies, factors involving pH, temperature, the initial concentrations of the dyes and the quantity of PRO-BEN used during adsorption were established. The results revealed that the adsorption mechanism was categorized by the Langmuir type 1 isotherm. The adsorption data followed the pseudo-second order kinetic model. The intraparticle diffusion model indicated that adsorption did not only depend on the intraparticle diffusion of the dyes. The thermodynamic parameters verified that the adsorption process was spontaneous and exothermic. The Gibbs free energy values indicated that physisorption had occurred. Successful adsorption of dyes from an industrial effluent was achieved. Desorption studies concluded that PRO-BEN desorbed the dyes better than alumina. This can thereby be viewed as a recyclable remediation material. The PRO-BEN composite could be a cost efficient alternative towards the removal of organic dyes in wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity.

    PubMed

    Vyavahare, Govind D; Gurav, Ranjit G; Jadhav, Pooja P; Patil, Ravishankar R; Aware, Chetan B; Jadhav, Jyoti P

    2018-03-01

    In the present study, sorption and detoxification of malachite green (MG) dye was executed using biochar resulting after pyrolysis of agro-industrial waste at 400, 600 and 800 °C. Maximum sorption of MG dye (3000 mg/L) was observed on the sugarcane bagasse biochar (SCB) prepared at 800 °C. The interactive effects of different factors like dye concentration, time, pH and temperature on sorption of MG dye were investigated using response surface methodology (RSM). Optimum MG dye concentration, contact time, temperature and pH predicted through Box-Behnken based RSM model were 3000 mg/L MG dye, 51.89 min, 60 °C and 7.5, respectively. ANOVA analysis displayed the non-significant lack of fit value (0.4566), whereas, the predicted correlation coefficient values (R 2 0.8494) were reasonably in agreement with the adjusted value (R 2 0.9363) demonstrating highly significant model for MG dye sorption. The applicability of this model was also checked through F- test (30.39) with lower probability (0.0001) value. Furthermore, the characterization of SCB was performed using fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), Brunauer-Emmett-Teller surfaces (BET), total organic carbon (TOC) and atomic absorption spectroscopy (AAS). Phyto-toxicity and cytogenotoxicity studies showed successful removal of MG dye using SCB. In addition, the batch sorption studies for reutilization of SCB revealed that the SCB was effective in removal of MG for five repeated cycles. This technology would be effective for treating the toxic textile effluent released from the textile industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Resource Communication Technology and Marketing of Textile Products: A U.S. Textile Industry Case Study

    ERIC Educational Resources Information Center

    Baah, Anthony

    2010-01-01

    The purpose of the qualitative positivistic case study was to explore whether resource communication technology has helped or would help the marketing of textile products in the U.S. textile industry. The contributions of human capital in the marketing department, the marketing-demand information system function, and the product supply chain…

  8. 16 CFR § 1611.33 - Test procedures for textile fabrics and film.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Test procedures for textile fabrics and film... FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.33 Test procedures for textile fabrics and film. (a)(1) All textile fabrics (except those with a...

  9. 16 CFR § 1610.33 - Test procedures for textile fabrics and film.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Test procedures for textile fabrics and film... Test procedures for textile fabrics and film. (a)(1) All textile fabrics (except those with a nitro... of Vinyl Plastic Film, and if such coated fabrics do not exhibit a rate of burning in excess of that...

  10. Cutaneous Recording and Stimulation of Muscles Using Organic Electronic Textiles.

    PubMed

    Papaiordanidou, Maria; Takamatsu, Seiichi; Rezaei-Mazinani, Shahab; Lonjaret, Thomas; Martin, Alain; Ismailova, Esma

    2016-08-01

    Electronic textiles are an emerging field providing novel and non-intrusive solutions for healthcare. Conducting polymer-coated textiles enable a new generation of fully organic surface electrodes for electrophysiological evaluations. Textile electrodes are able to assess high quality muscular monitoring and to perform transcutaneous electrical stimulation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Smart Electronic Textiles.

    PubMed

    Weng, Wei; Chen, Peining; He, Sisi; Sun, Xuemei; Peng, Huisheng

    2016-05-17

    This Review describes the state-of-the-art of wearable electronics (smart textiles). The unique and promising advantages of smart electronic textiles are highlighted by comparing them with the conventional planar counterparts. The main kinds of smart electronic textiles based on different functionalities, namely the generation, storage, and utilization of electricity, are then discussed with an emphasis on the use of functional materials. The remaining challenges are summarized together with important new directions to provide some useful clues for the future development of smart electronic textiles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Exploring dynamic lighting, colour and form with smart textiles

    NASA Astrophysics Data System (ADS)

    Cabral, I.; Silva, C.; Worbin, L.; Souto, A. P.

    2017-10-01

    This paper addresses an ongoing research, aiming at the development of smart textiles that transform the incident light that passes through them - light transmittance - to design dynamic light without acting upon the light source. A colour and shape change prototype was developed with the objective of studying textile changes in time; to explore temperature as a dynamic variable through electrical activation of the smart materials and conductive threads integrated in the textile substrate; and to analyse the relation between textile chromic and morphologic behaviour in interaction with light. Based on the experiments conducted, results have highlighted some considerations of the dynamic parameters involved in the behaviour of thermo-responsive textiles and demonstrated design possibilities to create interactive lighting scenarios.

  13. ATTRIBUTES OF AESTHETIC QUALITY USED BY TEXTILE CONSERVATORS IN EVALUATING CONSERVATION INTERVENTIONS ON MUSEUM COSTUMES.

    PubMed

    Nilsson, Johanna; Axelsson, Östen

    2015-08-01

    Aesthetic quality is central to textile conservators when evaluating a conservation method. However, the literature on textile conservation chiefly focuses on physical properties, and little is known about what factors determine aesthetic quality according to textile conservators. The latter was explored through two experiments. Experiment 1 explored the underlying attributes of aesthetic quality of textile conservation interventions. Experiment 2 explored the relationships between these attributes and how well they predicted aesthetic quality. Rank-order correlation analyses revealed two latent factors called Coherence and Completeness. Ordinal regression analysis revealed that Coherence was the most important predictor of aesthetic quality. This means that a successful conservation intervention is visually well-integrated with the textile item in terms of the material and method.

  14. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Daniel J.; Nash, Charles A.; Adamson, Duane J.

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it tomore » the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations. That simulant can be used in evaporator testing to predict the composition of the effluents from the Effluent Management Facility (EMF) evaporator to aid in planning for their disposition. This document describes the method used to formulate a simulant of this LAW Melter Off-Gas Condensate stream, which, after pH adjustment, is the feed to the evaporator in the EMF.« less

  15. Bioprospecting of gum kondagogu (Cochlospermum gossypium) for bioremediation of uranium (VI) from aqueous solution and synthetic nuclear power reactor effluents.

    PubMed

    Sashidhar, R B; Selvi, S Kalaignana; Vinod, V T P; Kosuri, Tanuja; Raju, D; Karuna, R

    2015-10-01

    An ecofriendly green chemistry method using a natural biopolymer, Gum Kondagogu (GK) for the removal of U (VI) from aqueous, simulated nuclear effluents was studied. The adsorption characteristic of GK towards U (VI) from aqueous solution was studied at varied pH, contact time, adsorbent dose, initial U (VI) concentration and temperature using UV-Visible spectroscopy and ICP-MS. Maximum adsorption was seen at pH 4, 0.1% GK with 60 min contact time at room temperature. The GK- U (VI) composite was characterized by FT-IR, zeta potential, TEM and SEM-EDAX. The Langmuir isotherm was found to be 487 mg of U (VI) g(-1) of GK. The adsorption capacity and (%) of U (VI) was found to be 490 ± 5.4 mg g(-1) and 98.5%. Moreover adsorption of U (VI) by GK was not influenced by other cations present in the simulated effluents. The adsorbed U (VI) was efficiently stripped from composite using 1 M HCl. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Assessment and management of the performance risk of a pilot reclaimed water disinfection process.

    PubMed

    Zhou, Guangyu; Zhao, Xinhua; Zhang, Lei; Wu, Qing

    2013-10-01

    Chlorination disinfection has been widely used in reclaimed water treatment plants to ensure water quality. In order to assess the downstream quality risk of a running reclaimed water disinfection process, a set of dynamic equations was developed to simulate reactions in the disinfection process concerning variables of bacteria, chemical oxygen demand (COD), ammonia and monochloramine. The model was calibrated by the observations obtained from a pilot disinfection process which was designed to simulate the actual process in a reclaimed water treatment plant. A Monte Carlo algorithm was applied to calculate the predictive effluent quality distributions that were used in the established hierarchical assessment system for the downstream quality risk, and the key factors affecting the downstream quality risk were defined using the Regional Sensitivity Analysis method. The results showed that the seasonal upstream quality variation caused considerable downstream quality risk; the effluent ammonia was significantly influenced by its upstream concentration; the upstream COD was a key factor determining the process effluent risk of bacterial, COD and residual disinfectant indexes; and lower COD and ammonia concentrations in the influent would mean better downstream quality.

  17. Hydrology of Fritchie Marsh, coastal Louisiana

    USGS Publications Warehouse

    Kuniansky, E.L.

    1985-01-01

    Fritchie Marsh, near Slidell, Louisiana, is being considered as a disposal site for sewage effluent. A two-dimensional, finite element, surface water modeling systems was used to solve the shallow water equations for flow. Factors affecting flow patterns are channel locations, inlets, outlets, islands, marsh vegetation, marsh geometry, stage of the West Pearl River, flooding over the lower Pearl River basin, gravity tides, wind-induced currents, and sewage discharge to the marsh. Four steady-state simulations were performed for two hydrologic events at two rates of sewage discharge. The events, near tide with no wind or rain and neap tide with a tide differential across the marsh, were selected as worst-case events for sewage effluent dispersion and were assumed as steady state events. Because inflows and outflows to the marsh are tidally affected, steady state simulations cannot fully define the hydraulic characteristics of the marsh for all hydrologic events. Model results and field data indicate that, during near tide with little or no rain, large parts of the marsh are stagnant; and sewage effluent, at existing and projected flows, has minimal effect on marsh flows. (USGS)

  18. X-ray Imaging of Transplanar Liquid Transport Mechanisms in Single Layer Textiles.

    PubMed

    Zhang, Gannian; Parwani, Rachna; Stone, Corinne A; Barber, Asa H; Botto, Lorenzo

    2017-10-31

    Understanding the penetration of liquids within textile fibers is critical for the development of next-generation smart textiles. Despite substantial research on liquid penetration in the plane of the textile, little is known about how the liquid penetrates in the thickness direction. Here we report a time-resolved high-resolution X-ray measurement of the motion of the liquid-air interface within a single layer textile, as the liquid is transported across the textile thickness following the deposition of a droplet. The measurement of the time-dependent position of the liquid meniscus is made possible by the use of ultrahigh viscosity liquids (dynamic viscosity from 10 5 to 2.5 × 10 6  times larger than water). This approach enables imaging due to the slow penetration kinetics. Imaging results suggest a three-stage penetration process with each stage being associated with one of the three types of capillary channels existing in the textile geometry, providing insights into the effect of the textile structure on the path of the three-dimensional liquid meniscus. One dimensional kinetics studies show that our data for the transplanar penetration depth Δx L vs time do not conform to a power law, and that the measured rate of penetration for long times is smaller than that predicted by Lucas-Washburn kinetics, challenging commonly held assumptions regarding the validity of power laws when applied to relatively thin textiles.

  19. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation.

    PubMed

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-07-16

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes.

  20. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation

    PubMed Central

    Zhou, Hui; Lu, Yi; Chen, Wanzhen; Wu, Zhen; Zou, Haiqing; Krundel, Ludovic; Li, Guanglin

    2015-01-01

    Textile electrodes are becoming an attractive means in the facilitation of surface electrical stimulation. However, the stimulation comfort of textile electrodes and the mechanism behind stimulation discomfort is still unknown. In this study, a textile stimulation electrode was developed using conductive fabrics and then its impedance spectroscopy, stimulation thresholds, and stimulation comfort were quantitatively assessed and compared with those of a wet textile electrode and a hydrogel electrode on healthy subjects. The equivalent circuit models and the finite element models of different types of electrode were built based on the measured impedance data of the electrodes to reveal the possible mechanism of electrical stimulation pain. Our results showed that the wet textile electrode could achieve similar stimulation performance as the hydrogel electrode in motor threshold and stimulation comfort. However, the dry textile electrode was found to have very low pain threshold and induced obvious cutaneous painful sensations during stimulation, in comparison to the wet and hydrogel electrodes. Indeed, the finite element modeling results showed that the activation function along the z direction at the depth of dermis epidermis junction of the dry textile electrode was significantly larger than that of the wet and hydrogel electrodes, thus resulting in stronger activation of pain sensing fibers. Future work will be done to make textile electrodes have similar stimulation performance and comfort as hydrogel electrodes. PMID:26193273

  1. A Rubric for Describing Competences in the Areas of Circuitry, Computation, and Crafting after a Course Using E-Textiles

    ERIC Educational Resources Information Center

    Lee, Victor R.; Fields, Deborah A.

    2017-01-01

    Purpose: In light of growing interest in the maker movement and electronic textiles (e-textiles) as an educational technology, the purpose of this paper is to characterize competence change in undergraduate students who participated in a semester-length course that used e-textiles. Design/methodology/approach: This qualitative and exploratory…

  2. Long-term respiratory health effects in textile workers.

    PubMed

    Lai, Peggy S; Christiani, David C

    2013-03-01

    Over 60 million people worldwide work in the textile or clothing industry. Recent studies have recognized the contribution of workplace exposures to chronic lung diseases, in particular chronic obstructive pulmonary disease (COPD). Early studies in textile workers have focused on the relationship between hemp or cotton dust exposure and the development of a syndrome termed byssinosis. The purpose of this review is to evaluate the effect of long-term exposure to organic dust in textile workers on chronic respiratory disease in the broader context of disease classifications, such as reversible or irreversible obstructive lung disease (i.e. asthma or COPD), and restrictive lung disease. Cessation of exposure to cotton dust leads to improvement in lung function. Recent animal models have suggested a shift in the lung macrophage:dendritic cell population ratio as a potential mechanistic explanation for persistent inflammation in the lung due to repeated cotton dust-related endotoxin exposure. Other types of textile dust, such as silk, may contribute to COPD in textile workers. Textile dust-related obstructive lung disease has characteristics of both asthma and COPD. Significant progress has been made in the understanding of chronic lung disease due to organic dust exposure in textile workers.

  3. Interactive textiles for warrior systems applications.

    PubMed

    Leitch, D Paul

    2004-01-01

    The purpose of this paper is to briefly summarize the basis of the U.S. Army's interest in Interactive Textiles and to describe some of the salient needs in the area of healthcare and E-Textiles and finally to indicate the current and near term market for interactive textile solutions. The basis of current Army, indeed DoD interest in Interactive Textiles including E-Textiles is found in the concept of Network-Centric Warfare. The individual soldier in this concept is often at the hub of a vast information network than shares information across platforms such as vehicles and aircraft as well as across echelongs of command from the font line to the rearmost command and control centers. In order to realize the advantages of such a war fighting concept, E-Textiles are required in a number of areas including soldier's uniforms, tentage and airdrop systems. With respect to healthcare, the Army's interest in E-Textile solutions lie in the areas of human performance monitoring (broadly defined to include physiological states such as blood pressure and hydration as well as the more difficult to measure states of attentiveness and cognitive functioning), wound detection and treatment, energy harvesting and flexible displays.

  4. Development of 2D and 3D structured textile batteries processing conductive material with Tailored Fiber Placement (TFP)

    NASA Astrophysics Data System (ADS)

    Normann, M.; Grethe, T.; Zöll, K.; Ehrmann, A.; Schwarz-Pfeiffer, A.

    2017-10-01

    In recent years smart textiles have gained a significant increase of attention. Electrotherapeutic socks, light emitting dresses or shirts with integrated sensors, having the ability to process data of vital parameters, are just a few examples and the full potential is not yet exhausted: Smart textiles are not only used for clothing purposes. Sensors for the care of the elderly, light applications for home textiles and monitoring systems in the automotive section are promising fields for the future. For all these electrical and electronic features, the supply of power is needed. The most common used power supplies, however, are not flexible, often not lightweight and therefore a huge problem for the integration into textile products. In recent projects, textile-based batteries are being developed. Metal-coated fabrics and yarns (e.g. silver, copper, nickel, zinc) as well as carbon based materials were used to create textile based energy sources. This article gives an overview of textile based electrochemical cells by combining different conductive yarns and a gel-electrolyte. The available materials will be processed by embroidering utilizing tailored fiber placement (TFP). The electrical characteristics of different embroidered patterns and material combinations are examined.

  5. Flexible and stretchable microbial fuel cells with modified conductive and hydrophilic textile.

    PubMed

    Pang, Sumiao; Gao, Yang; Choi, Seokheun

    2018-02-15

    We built a flexible, stretchable microbial fuel cell (MFC) by laminating two functional components: a bioanode textile with a conductive and hydrophilic polymer coating and a solid-state cathode textile loaded with silver oxide. The textile MFC used Pseudomonas aeruginosa PAO1 as a biocatalyst to generate the maximum power and current density of 1.0µW/cm 2 and 6.3µA/cm 2 , respectively, which are comparable with or even higher than other flexible MFCs such as paper-based devices (~ a few µW/cm 2 ). Additionally, the textile MFC generated consistent power even with repeated 70 cycles of 50% stretching. A simple batch fabrication method simultaneously produced 20 individual 2cm × 2cm devices by using brushing, spraying, ironing, and computerized sewing, a process that will revolutionize the mass production of textile MFCs. This achievement is scientifically meaningful because developing textile MFCs requires integration of both electronic and fluidic components into the textile three-dimensionally. This flexible and stretchable energy harvesting device is expected to be easily integrated with the next generation stretchable electronics for realizing low-power, stand-alone, self-sustainable systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Recent researches concerning the obtaining of functional textiles based on conductive yarns

    NASA Astrophysics Data System (ADS)

    Leon, A. L.; Manea, L. R.; Hristian, L.

    2016-08-01

    Modem textile industry is influenced both by consumers' lifestyle and by novel materials. Functional textiles can be included into the group of technical textiles. The functional activity can be shortly interpreted as "sense - react - adapt" to the environment while traditional materials meet only passive protective role, a barrier between body and environment. Functional materials cross the conventional limits because they are designed for specific performances, being part of domains as: telemedicine, medicine, aeronautics, biotechnology, nanotechnology, protective clothes, sportswear, etc. This paper highlights the most recent developments in the field of using conductive yarns for obtaining functional textiles. Conductive fabrics can be done by incorporating into the textile structure the conductive fibers / yarns. The technologies differ from embroidering, sewing, weaving, knitting to braiding and obtaining nonwovens. The conductive fabrics production has a quickly growth because it is a high demand for these textiles used for data transfer in clothing, monitoring vital signs, germ-free garments, brain-computer interface, etc. Nowadays it is of high interest surface treatments of fibers/yarns which can be considered as a novel kind of textile finishing. There are presented some researches related to obtaining conductive yarns by coating PET and PP yarns with PANi conductive polymer.

  7. Long term respiratory health effects in textile workers

    PubMed Central

    Lai, Peggy S.; Christiani, David C.

    2013-01-01

    Purpose of review Over 60 million people worldwide work in the textile or clothing industry. Recent studies have recognized the contribution of workplace exposures to chronic lung diseases, in particular chronic obstructive pulmonary disease (COPD). Early studies in textile workers have focused on the relationship between hemp or cotton dust exposure and the development of a syndrome termed Byssinosis. The purpose of this review is to evaluate the effect of long term exposure to organic dust in textile workers on chronic respiratory disease in the broader context of disease classifications such as reversible or irreversible obstructive lung disease (i.e. asthma or COPD), and restrictive lung disease. Recent findings Cessation of exposure to cotton dusts leads to improvement in lung function. Recent animal models have suggested a shift in the lung macrophage:dendritic cell population as a potential mechanistic explanation for persistent inflammation in the lung due to repeated cotton-dust related endotoxin exposure. Other types of textile dust, such as silk, may contribute to COPD in textile workers. Summary Textile dust related obstructive lung disease has characteristics of both asthma and COPD. Significant progress has been made in the understanding of chronic lung disease due to organic dust exposure in textile workers. PMID:23361196

  8. Possible Applications of 3D Printing Technology on Textile Substrates

    NASA Astrophysics Data System (ADS)

    Korger, M.; Bergschneider, J.; Lutz, M.; Mahltig, B.; Finsterbusch, K.; Rabe, M.

    2016-07-01

    3D printing is a rapidly emerging additive manufacturing technology which can offer cost efficiency and flexibility in product development and production. In textile production 3D printing can also serve as an add-on process to apply 3D structures on textiles. In this study the low-cost fused deposition modeling (FDM) technique was applied using different thermoplastic printing materials available on the market with focus on flexible filaments such as thermoplastic elastomers (TPE) or Soft PLA. Since a good adhesion and stability of the 3D printed structures on textiles are essential, separation force and abrasion resistance tests were conducted with different kinds of printed woven fabrics demonstrating that a sufficient adhesion can be achieved. The main influencing factor can be attributed to the topography of the textile surface affected by the weave, roughness and hairiness offering formlocking connections followed by the wettability of the textile surface by the molten polymer, which depends on the textile surface energy and can be specifically controlled by washing (desizing), finishing or plasma treatment of the textile before the print. These basic adhesion mechanisms can also be considered crucial for 3D printing on knitwear.

  9. Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles.

    PubMed

    Specos, M M Miró; García, J J; Tornesello, J; Marino, P; Vecchia, M Della; Tesoriero, M V Defain; Hermida, L G

    2010-10-01

    Microcapsules containing citronella essential oil were prepared by complex coacervation and applied to cotton textiles in order to study the repellent efficacy of the obtained fabrics. Citronella released from treated textiles was indirectly monitored by the extractable content of its main components. Repellent activity was assessed by exposure of a human hand and arm covered with the treated textiles to Aedes aegypti mosquitoes. Fabrics treated with microencapsulated citronella presented a higher and longer lasting protection from insects compared to fabrics sprayed with an ethanol solution of the essential oil, assuring a repellent effect higher than 90% for three weeks. Complex coacervation is a simple, low cost, scalable and reproducible method of obtaining encapsulated essential oils for textile application. Repellent textiles were achieved by padding cotton fabrics with microcapsules slurries using a conventional pad-dry method. This methodology requires no additional investment for textile finishing industries, which is a desirable factor in developing countries. Copyright © 2010 Royal Society of Tropical Medicine and Hygiene.

  10. Fully Printed Ultraflexible Supercapacitor Supported by a Single-Textile Substrate.

    PubMed

    Zhang, Huihui; Qiao, Yan; Lu, Zhisong

    2016-11-30

    Textile-based supercapacitors have recently attracted much attention owing to their great potential as energy storage components in wearable electronics. However, fabrication of a high-performance, fully printed, and ultraflexible supercapacitor based on a single textile still remains a great challenge. Herein, a facile, low-cost, and textile-compatible method involving screen printing and transfer printing is developed to construct all-solid-state supercapacitors on a single silk fabric. The system exhibits a high specific capacitance of 19.23 mF cm -2 at a current density of 1 mA cm -2 and excellent cycling stability with capacitance retention of 84% after 2000 charging/discharging cycles. In addition, the device possesses superior mechanical stability with stable performance and structures after 100 times of bending and twisting. A butterfly-patterned supercapacitor was manufactured to demonstrate the compatibility of the printing approaches to textile aesthetics. This work may provide a facile and versatile approach for fabricating rationally designed ultraflexible textile-based power-storage elements for potential applications in smart textiles and stretchable/flexible electronics.

  11. Electrical characterization of conductive textile materials and its evaluation as electrodes for venous occlusion plethysmography.

    PubMed

    Goy, C B; Dominguez, J M; Gómez López, M A; Madrid, R E; Herrera, M C

    2013-08-01

    The ambulatory monitoring of biosignals involves the use of sensors, electrodes, actuators, processing tools and wireless communication modules. When a garment includes these elements with the purpose of recording vital signs and responding to specific situations it is call a 'Smart Wearable System'. Over the last years several authors have suggested that conductive textile material (e-textiles) could perform as electrode for these systems. This work aims at implementing an electrical characterization of e-textiles and an evaluation of their ability to act as textile electrodes for lower extremity venous occlusion plethysmography (LEVOP). The e-textile electrical characterization is carried out using two experimental set-ups (in vitro evaluation). Besides, LEVOP records are obtained from healthy volunteers (in vivo evaluation). Standard Ag/AgCl electrodes are used for comparison in all tests. Results shown that the proposed e-textiles are suitable for LEVOP recording and a good agreement between evaluations (in vivo and in vitro) is found.

  12. Characterization of Textile-Insulated Capacitive Biosensors

    PubMed Central

    Ng, Charn Loong; Reaz, Mamun Bin Ibne

    2017-01-01

    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test. PMID:28287493

  13. Control of C/N ratio for butyric acid production from textile wastewater sludge by anaerobic digestion.

    PubMed

    Fu, Bo; Zhang, Jingjing; Fan, Jinfeng; Wang, Jin; Liu, He

    2012-01-01

    Increasing textile wastewaters and their biotreatment byproduct-waste activated sludge are serious pollution problems. Butyric acid production from textile wastewater sludge by anaerobic digestion at different C/N ratios was investigated. Adding starch to textile wastewater sludge with a C/N ratio of 30 increased the butyric acid concentration and percentage accounting for total volatile fatty acids (TVFAs) to 21.42 g/L and 81.5%, respectively, as compared with 21.42 g/L and 10.6% of textile wastewater sludge alone. The maximum butyric acid yield (0.45 g/g VS), conversion rate (0.74 g/g VS(digest)) and production rate (2.25 g/L d) was achieved at a C/N ratio of 30. The biological toxicity of textile wastewater sludge also significantly decreased after the anaerobic digestion. The study indicated that the anaerobic co-digestion of textile wastewater sludge and carbohydrate-rich waste with appropriate C/N ratio is possible for butyric acid production.

  14. Applying NISHIJIN historical textile technique for e-Textile.

    PubMed

    Kuroda, Tomohiro; Hirano, Kikuo; Sugimura, Kazushige; Adachi, Satoshi; Igarashi, Hidetsugu; Ueshima, Kazuo; Nakamura, Hideo; Nambu, Masayuki; Doi, Takahiro

    2013-01-01

    The e-Textile is the key technology for continuous ambient health monitoring to increase quality of life of patients with chronic diseases. The authors introduce techniques of Japanese historical textile, NISHIJIN, which illustrate almost any pattern from one continuous yarn within the machine weaving process, which is suitable for mixed flow production. Thus, NISHIJIN is suitable for e-Textile production, which requires rapid prototyping and mass production of very complicated patterns. The authors prototyped and evaluated a few vests to take twelve-lead electrocardiogram. The result tells that the prototypes obtains electrocardiogram, which is good enough for diagnosis.

  15. FIBER-TEX 1991: The Fifth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor)

    1992-01-01

    This document is a compilation of papers presented at a joint NASA/North Carolina State University/DoD/Clemson University/Drexel University conference on Fibers, Textile Technology, and Composites Structures held at the College of Textiles Building on Centennial Campus of North Carolina State University, Raleigh, North Carolina on October 15-17, 1991. Conference papers presented information on advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, pultruded composites, and the latest requirements for the use of textiles in the production of composite materials and structures.

  16. Bio-catalytic performance and dye-based industrial pollutants degradation potential of agarose-immobilized MnP using a Packed Bed Reactor System.

    PubMed

    Bilal, Muhammad; Asgher, Muhammad; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-09-01

    In this study, the matrix-entrapment technique was adopted to immobilize a novel manganese peroxidase (MnP). Agarose beads developed from 3.0% agarose concentration furnished the preeminent immobilization yield (92.76%). The immobilized MnP exhibited better resistance to changes in the pH and temperature as compared to the free counterpart, with optimal conditions being pH 6.0 and 45°C. Thermal and storage stability characteristics were significantly improved after immobilization, and the immobilized-MnP displayed higher tolerance against different temperatures than free MnP state. After 72h, the insolubilized MnP retained its activity up to 41.2±1.7% and 33.6±1.4% at 55°C and 60°C, respectively, and 34.3±1.9% and 22.0±1.1% activities at 65°C and 70°C, respectively, after 48h of the incubation period. A considerable reusability profile was recorded with ten consecutive cycles. Moreover, to explore the industrial applicability, the agarose-immobilized-MnP was tested for bioremediation of textile industry effluent purposes. After six consecutive cycles, the tested effluents were decolorized to different extents (with a maximum of 98.4% decolorization). In conclusion, the remarkable bioremediation potential along with catalytic, thermo-stability, reusability, as well as storage stability features of the agarose-immobilized-MnP reflect its prospects as a biocatalyst for bioremediation and other industrial applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. [Local impact of antiseptic medical textile on tissues of organism].

    PubMed

    Nazarchuk, O A; Vernyhorods'kyĭ, S V; Paliĭ, V H; Nazarchuk, H H; Paliĭ, D V; Honchar, O O; Zadereĭ, N V

    2013-07-01

    Morphological investigation for studying of a local impact on the tissues, localized in the antiseptic textile implantation zone, was conducted. The textile was impregnated by composition of decametoxine with modified polysaccharides. Basing on the investigation result there was established the absence of a toxic impact of antiseptic medical textile on the macroorganism tissues, the regenerative processes course, the wounds epithelization, antioedematous and anti-inflammatory effects.

  18. Evaluation of camouflage pattern performance of textiles by human observers and CAMAELEON

    NASA Astrophysics Data System (ADS)

    Heinrich, Daniela H.; Selj, Gorm K.

    2017-10-01

    Military textiles with camouflage pattern are an important part of the protection measures for soldiers. Military operational environments differ a lot depending on climate and vegetation. This requires very different camouflage pattern to achieve good protection. To find the best performing pattern for given environments we have in earlier evaluations mainly applied observer trials as evaluation method. In these camouflage evaluation test human observers were asked to search for targets (in natural settings) presented on a high resolution PC screen, and the corresponding detection times were recorded. Another possibility is to base the evaluation on simulations. CAMAELEON is a licensed tool that ranks camouflaged targets by their similarity with local backgrounds. The similarity is estimated through the parameters local contrast, orientation of structures in the pattern and spatial frequency, by mimicking the response and signal processing in the visual cortex of the human eye. Simulations have a number of advantages over observer trials, for example, that they are more flexible, cheaper, and faster. Applying these two methods to the same images of camouflaged targets we found that CAMAELEON simulation results didn't match observer trial results for targets with disruptive patterns. This finding now calls for follow up studies in order to learn more about the advantages and pitfalls of CAMAELEON. During recent observer trials we studied new camouflage patterns and the effect of additional equipment, such as combat vests. In this paper we will present the results from a study comparing evaluation results of human based observer trials and CAMAELEON.

  19. Distribution of effluent injected into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant, southeastern Florida, 1997–2011

    USGS Publications Warehouse

    King, Jeffrey N.; Decker, Jeremy D.

    2018-02-09

    Nonhazardous, secondarily treated, domestic wastewater (effluent) has been injected about 1 kilometer below land surface into the Boulder Zone of the Floridan aquifer system at the North District Wastewater Treatment Plant in southeastern Florida. The Boulder Zone contains saline, nonpotable water. Effluent transport out of the injection zone is a risk of underground effluent injection. At the North District Wastewater Treatment Plant, injected effluent was detected outside the Boulder Zone. The U.S. Geological Survey, in cooperation with Miami-Dade Water and Sewer Department, investigated effluent transport from the Boulder Zone to overlying permeable zones in the Floridan aquifer system.One conceptual model is presented to explain the presence of effluent outside of the injection zone in which effluent injected into the Boulder Zone was transported to the Avon Park permeable zone, forced by buoyancy and injection pressure. In this conceptual model, effluent injected primarily into the Boulder Zone reaches a naturally occurring feature (a karst-collapse structure) near an injection well, through which the effluent is transported vertically upward to the uppermost major permeable zone of the Lower Floridan aquifer. The effluent is then transported laterally through the uppermost major permeable zone of the Lower Floridan aquifer to another naturally occurring feature northwest of the North District Wastewater Treatment Plant, through which it is then transported vertically upward into the Avon Park permeable zone. In addition, a leak within a monitoring well, between monitoring zones, allowed interflow between the Avon Park permeable zone and the Upper Floridan aquifer. A groundwater flow and effluent transport simulation of the hydrogeologic system at the North District Wastewater Treatment Plant, based on the hypothesized and non-unique conceptualization of the subsurface hydrogeology and flow system, generally replicated measured effluent constituent concentration trends. The model was calibrated to match observed concentration trends for total ammonium (NH4+) and total dissolved solids.The investigation qualitatively indicates that fractures, karst-collapse structures, faults, or other hydrogeologic features may permit effluent injected into the Boulder Zone to be transported to overlying permeable zones in the Floridan aquifer system. These findings, however, are qualitative because the locations of transport pathways that might exist from the Boulder Zone to the Avon Park permeable zone are largely unknown.

  20. Benzothiazole, benzotriazole, and their derivates in clothing textiles--a potential source of environmental pollutants and human exposure.

    PubMed

    Avagyan, Rozanna; Luongo, Giovanna; Thorsén, Gunnar; Östman, Conny

    2015-04-01

    Textiles play an important role in our daily life, and textile production is one of the oldest industries. In the manufacturing chain from natural and/or synthetic fibers to the final clothing products, the use of many different chemicals is ubiquitous. A lot of research has focused on chemicals in textile wastewater, but the knowledge of the actual content of harmful chemicals in clothes sold on the retail market is limited. In this paper, we have focused on eight benzothiazole and benzotriazole derivatives, compounds rated as high production volume chemicals. Twenty-six clothing samples of various textile materials and colors manufactured in 14 different countries were analyzed in textile clothing using liquid chromatography tandem mass spectrometry. Among the investigated textile products, 11 clothes were for babies, toddlers, and children. Eight of the 11 compounds included in the investigation were detected in the textiles. Benzothiazole was present in 23 of 26 investigated garments in concentrations ranging from 0.45 to 51 μg/g textile. The garment with the highest concentration of benzothiazole contained a total amount of 8.3 mg of the chemical. The third highest concentration of benzothiazole (22 μg/g) was detected in a baby body made from "organic cotton" equipped with the "Nordic Ecolabel" ("Svanenmärkt"). It was also found that concentrations of benzothiazoles in general were much higher than those for benzotriazoles. This study implicates that clothing textiles can be a possible route for human exposure to harmful chemicals by skin contact, as well as being a potential source of environmental pollutants via laundering and release to household wastewater.

Top